Enhancement of heavy rain countermeasures through early detection of local heavy rain

Inundation damage due to local heavy rain

Rapid increase of river water due to local heavy rain

Rapid increase of river water causes numerous water accidents.

• Toga River in Kobe City, Hyogo Prefecture (July 28, 2008) Five persons in the river were washed away and killed.

→Water level rose by 1.3 m in ten minutes. (Water level rose by approximately 1 m in two minutes: Report of a Japan Society of Civil Engineers investigation team)

- Sewerage system in Toshima-ward, Tokyo (August 5, 2008) Five workers in a sewer pipe were washed away and killed.
 - →Evacuation efforts after confirming water increase were too late.
- Nomi River in Ota-ward, Tokyo (July 8, 2008) Two workers were washed away and killed.
 - →Rainfall in the upper reaches increased river water despite no precipitation at the work site.

Rapid increase of river water near the Kabuto Bridge on the Toga River (Source: River monitoring system of Kobe municipal government)

Rapid increase of river water causes water accidents

- Heavy rain induces flooding and causes river water to increase rapidly before people are evacuated.
- ·Heavy rain not only at a spot but also in surrounding areas causes flooding.

Heavy rain in recent years and in the future

Increase of occurrence of heavy rain due to climate change

The frequency of heavy rain is **expected to increase with the progress of global warming**.

Heavy rain is expected to occur more frequently.
⇒Frequent water accidents due to increasing heavy rain are of concern.

How to detect local heavy rain

Characteristics of heavy rain (i) Heavy rain intensifies quickly

Observation for detecting heavy rain in the initial stage of generation

Characteristics of heavy rain (ii) Heavy rain in a range of several to dozens of kilometers

Example of detection of the generation of the Nerima heavy rain in August 1998

Through the courtesy of Prof. Yamada laboratory of Chuo University (observation resolution: 500 m mesh)

Detailed precipitation observation with 250 through 500 m mesh

4:50

5:00

•Monitoring system is required for heavy rain that quickly intensifies and induces large amounts of rain locally.

Previous local heavy rain monitoring system

No adequate monitoring system had been developed to detect local heavy rain.

Reinforcement of heavy rain monitoring system using multi-parameter (MP) radar

Characteristics of MP radar

Introduction of multi-parameter

1.Radar observation using X-band

 \rightarrow Detailed rainfall observation with 250- to 500-m mesh 2. Accurate estimation of rainfall with no requirement of correction

 \rightarrow Rainfall observation with frequent update at intervals of approximately one minute

Rainfall over a wide area can be detected in detail instantaneously and accurately.

Rainfall observation to detect local heavy rain is possible.

Heavy rain observation using MP radars

Problems with observation using MP radars

Deterioration of rainfall estimation accuracy due to interruption by rainfall

Estimating rainfall based on the field intensity as conventionally practiced using X-band waves results in considerable decaying due to rainfall. In the event of heavy rain in particular, rainfall amount estimation accuracy is deteriorated.

We have overcome the deterioration of rainfall estimation accuracy through

- •Rainfall estimation using phase data that is unlikely to be affected by rainfall
- Rainfall estimation in cooperation with C-band radar data that is unlikely to be affected by rainfall
- •Rainfall observation in different directions using multiple radars

Narrow observation range

Observation using X-band waves covers a narrower range than observation using C-band waves because of the characteristics of radioactive waves.

•Observation range is enlarged by developing a network of MP radars.

Reinforcement of heavy rain monitoring system

•Heavy rain monitoring system is reinforced and heavy rain countermeasures through early detection of local heavy rain are implemented.

• Inundation is mitigated, inundation damage is reduced and water accidents are prevented by taking effective measures in the basin and enhancing evacuation measures.

Enhancement of evacuation measures

Effective measures in the basin and effective facilities operation

• Measures in the basin

Effective installation and operation of drainage retention and infiltration facilities

Methods are to be established for evaluating the runoff control effects of drainage retention and infiltration facilities based on the heavy rain monitoring data (precipitation data) and rainwater discharge data that are precise in terms of time and space, and methods are to be proposed for effectively installing and using drainage retention and infiltration facilities.

• Operation of facilities

Effective operation of facilities

Methods are to be proposed for effective operation of facilities based on the heavy rain monitoring data that is precise in terms of time and space.

• Proposal of best combination of measures

Structural and non-structural alternatives are to be proposed as measures in the basin, sewerage and rivers; the effectiveness of inundation mitigation measures is to be evaluated using an inundation prediction model; and the best combination of measures is to be proposed.

Research schedule

	Enhancement of evacuation measures			Effective measures in
	Distribution of heavy rain monitoring information	Distribution of rain area movement prediction information	Distribution of inundation prediction information	the basin and effective operation of facilities
FY 2009	Development of rainfall monitoring system	Development of rain area movement prediction system	Development of inundation prediction system	Rainwater discharge observation
FY 2010	Commencement of pilot operation, verification of accuracy and expansion to additional areas	Commencement of pilot operation, verification of accuracy and expansion to additional areas	Pilot operation and model enhancement	Establishment of methods for evaluating the effectiveness of runoff control facilities
FY 2011	Enhancement of algorithm	Model enhancement	Expansion to additional areas	Proposal of methods for effective installation and use of runoff control facilities
FY 2012	Verification of accuracy	Verification of accuracy	Verification of accuracy	Proposal of methods for effective operation of facilities
FY 2013	Commencement of full-scale operation	Commencement of full-scale operation	Commencement of full-scale operation	Proposal of the best combination of structural and non-structural measures