
全国PT調査データを活用した シミュレータの検討

2023.1.25 第2回 都市交通調査の深度化に向けた検討委員会

1. 個人データ生成モデルによるデータ生成結果

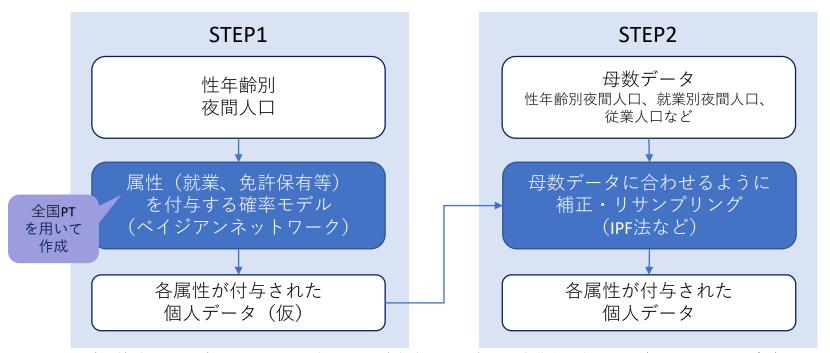
- (1) 個人データ生成モデルの概要
- (2) 検討内容
 - ①全国PTデータを用いた個人データ生成モデルによる データ生成及び妥当性確認結果
 - ②山形都市圏における P T データとの比較によるシミュレータ の性能検証結果
- (3) 個人データ生成モデルに関する検討のまとめ

2. アクティビティベースドモデルの推定結果

- (1) アクティビティベースドモデルの概要
- (2) ツアー交通手段選択モデルの推定結果
- (3) ツアー目的地選択モデルの推定結果
- (4) ツアー活動開始時刻選択モデルの推定結果
- (5) ツアー発生回数選択モデルの推定結果
- (6) 各モデルの推定結果の概要と今後の課題

3. 山形都市圏におけるシミュレータの検証結果

- (1) シミュレータの検証内容
- (2)活動発生の検証
- (3)目的地の検証
- (4) 交通手段の検証
- (5) 時間帯の検証
- (6) まとめと今後の課題


4. 今後の進め方とご意見いただきたい事項

1. 個人データ生成モデルによるデータ生成結果

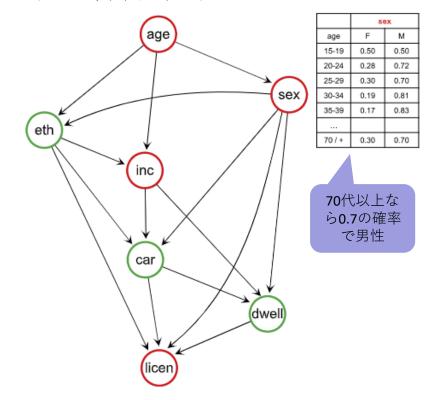
- (1) 個人データ生成モデルの概要
- (2) 検討内容
 - ①全国PTデータを用いた個人データ生成モデルによる データ生成及び妥当性確認結果
 - ②山形都市圏における P T データとの比較によるシミュレータ の性能検証結果
- (3) 個人データ生成モデルに関する検討のまとめ

(1) 個人データ生成モデルの概要

- 様々な属性が付与された個人データがアクティビティベースドモデルのインプットデータとして必要
- 以下の2ステップにより個人データを生成する方法を検討する
 - STEP1 各個人の属性を付与する確率モデルを適用し、各属性が付与された個人データを一度生成する
 - **STEP2** 母数となるデータ(夜間人口、従業人口等)に合うよう、個人のウェイトを補正 (もしくはリサンプリング)を行う

- ※今回検討している全国PTを活用した方法では、各都市圏のPTデータの初期値分布がない(もしくは小サンプル)ため、IPF法等の補正方法だけでの適用は困難
- ※IPF(Iterative Proportional Fitting)法とは、複数の周辺分布(今回の場合、母数データ)に合うように、同時分布(今回の場合、各属性が付与された個人データ)の拡大係数を算出する方法

作成する個人属性


項目	区分	モデル	母数データ候補
居住地	ゾーン単位(町字単位)	(インプット)	国勢調査500m
性別	1:男、2:女	(インプット)	国勢調査500m
年齢	2:5~9歳、3:10~14歳、4:15~19歳、5:20~24歳、6:25~29歳、7:30~34歳、8:35~39歳、9:40~44歳、10:45~49歳、11:50~54歳、12:55~59歳、13:60~64歳、14:65~69歳、15:70~74歳、16:75~79歳、17:80~84歳、18:85歳~	(インプット)	国勢調査500m
世帯主	1:世帯主、2:世帯主以外	BNにより生成	国勢調査市町村
	1:就業者、2:非就業者	BNにより生成	国勢調査市町村
就業	1:自営業、2:正規職員、3:非正規・パート・アルバイト、4:その 他就業者、5:学生、6:主婦、7:無職	BNにより生成	国勢調査市町村
勤務先	ゾーン単位(町字単位)	別モデルで作成 (詳細今後検討)	国勢調査市町村
職業	1:管理的職業従事者、2:専門的・技術的職業従事者、3:事務従事者、4:販売従事者、5:サービス職業従事者、6:保安職業従事者、7:農林漁業作業者、8:生産工程・労務作業者、9:輸送・機械運転従事者、10:建設・採掘従事者、11:運搬・清掃・包装等従事者、12:その他職業	BNにより生成	国勢調査市町村
免許	1:免許あり、2:免許なし	BNにより生成	_
自動車	1:自由に使える自動車あり、2:自由に使える自動車なし	BNにより生成	_
世帯属性	<人数>1:1人、2:2人、3:3人以上	BNにより生成	国勢調査市町村
	<子ども(10歳未満)>人数	BNにより生成	-
	<高齢者(75歳以上)>人数	BNにより生成	-
	<世帯年収>1:200万円未満、2:200~599万円、3:600万円以上	BNにより生成	_

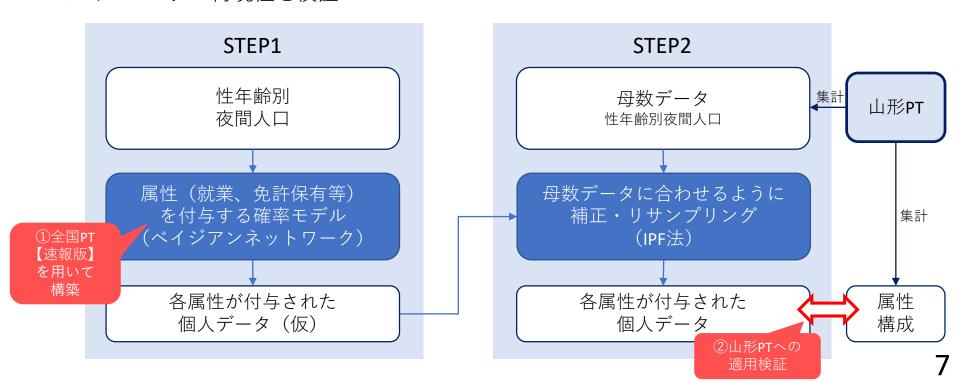
参考:個人の属性を付与する確率モデル(ベイジアンネットワーク)

- 各属性の依存関係を有向非巡回グラフ(DAG: Directed acyclic graphs)で表現すると ともに、個々の変数の関係を条件付き確率で表現する確率モデル
- 推定の手順
 - ① 構造推定:グラフのトポロジーを探索
 - スコア関数(AIC, BIC等)の最適化 ※Tabu search法等で探索

- ② パラメータ推定:
 - 最尤推定 or ベイズ推定
- Bayesian Networkの強み
 - BICの導入によってoverfittingを防ぐ
 - 条件付き確率の使用により、属性の数 が多い場合にも、モデルの推定に必要 なデータ数が多くなりづらい

<ベイジアンネットワークのイメージ>

(2) 検討内容


① 全国PTデータを用いた個人データ生成モデルによるデータ生成及び妥当性確認結果

- R3全国PT調査データ【速報版】※を用いて、ベイジアンネットワークにより個人データを 生成するモデルを構築し、データを生成
- モデル構築に用いたR3全国PT調査データ【速報版】を用いて交差検証

※「国土交通省全国都市交通特性調査(令和3年調査については速報版)」を利用

<u>② 山形都市圏におけるPTデータとの比較によるシミュレータの性能検証結果</u>

- 山形都市圏において、①で構築した個人データ生成モデルを適用してデータを生成
- 山形都市圏PTから集計した性年齢別夜間人口に合わせるように生成し、各種属性構成 (性年齢以外)に関して、山形都市圏PTから集計された属性構成との比較により シミュレータの再現性を検証

参考:検証方法の詳細

検証	モデル作成用 推定データ	合わせる周辺分布	検証内容
①モデル の作成	全国PT【速報版】 都市類型4-10の 20%の個人データ	全国PT【速報版】の 性別、年齢(5歳刻み)	 学習に用いなかった80%の データで比較検証 20%の無作為抽出を10回繰り 返し、属性構成比の再現性を 確認することで、汎化性能の 検証を行う(交差検証)
②山形都 市圏への 適用検証	全国PT【速報版】 都市類型4-10の 100%の個人データ	山形PTの 性別、年齢(5歳刻み)	・山形PTの属性構成比との再現性を確認する

■検証に用いる指標

- 属性別の構成比の再現性 (検証①、②共通)
 - ✔ 就業形態、免許保有有無、自由に使える自動 車有無、世帯主、世帯人数、子供の有無等
- 属性別の構成比のバラつき (検証①のみ)
- 属性クロス項目の再現性(検証②のみ)

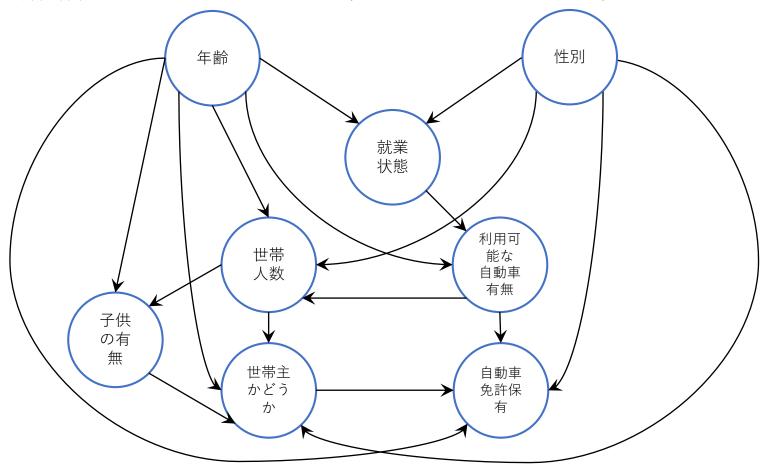
適用する山形都市圏の 山形市は都市類型8に該当

■全国PTの都市類型

	都市類型	<u>U</u>	調査対象都市	
1		中心 都市	さいたま市、千葉市、東京区部、 横浜市、川崎市、名古屋市、 京都市、大阪市、神戸市	
2	三大	周辺 都市 ^{※1}	取手市、所沢市、松戸市、 稲城市、堺市、奈良市	
3	都市圏	周辺 都市 ^{※2}	青梅市、小田原市、岐阜市、 豊橋市、春日井市、津島市、 東海市、四日市市、亀山市、 近江八幡市、宇治市、豊中市、 泉佐野市、明石市	
4	地方中枢	中心 都市	札幌市、仙台市、広島市、 北九州市、福岡市]
5	都市圏	周辺 都市	小樽市、千歳市、塩竈市、 呉市、大竹市、太宰府市	
6	地方中核 都市圏	中心 都市	宇都宮市、金沢市、静岡市、 松山市、熊本市、鹿児島市	
7	中心都市 40万人以上	周辺 都市	小矢部市、小松市、磐田市、 総社市、諫早市、臼杵市	
8	地方中核 都市圏	中心 都市	弘前市、盛岡市、郡山市、 松江市、徳島市、高知市	山形都市圏
9	中心都市 40万人未満	周辺 都市	高崎市、山梨市、海南市、 安来市、南国市、浦添市	
10	地方中心 都市圏 その他 の都市	_	湯沢市、伊那市、上越市、 長門市、今治市、人吉市	

参考:山形都市圏PTデータの概要

調査時期	平成29年(2017年) 10~11月
調査範囲	山形広域都市圏(山形市・天童市・上山市・山辺町・中山町) 人 口:358,606人 ※平成27年国勢調査、5歳以上人口 面 積:828km ²
サンプル数	回収サンプル数 23,100人 標本率 6.55% ※サンプル設計の考え方: 道路交通センサスBゾーンの目的別手段別発生集中量 ゾーン数37、目的4区分、交通手段4区分
ゾーン数	大ゾーン:26 中ゾーン:73 小ゾーン:898



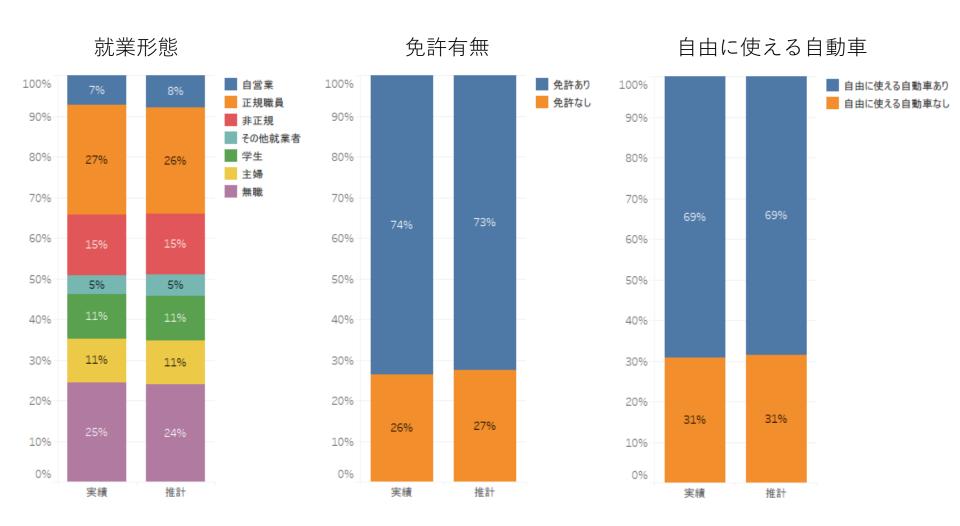
①全国PTデータを用いた個人データ生成モデルによるデータ生成及び妥当性確認結果

作成されたベイジアンネットワークの構造

- 全国PTデータ【速報版】 (都市類型4-10) を対象にベイジアンネットワークの構造推定を行った ところ、以下のネットワークが得られた
- リンクは概ね想定される関係性を表しているが、「世帯主かどうか」→「自動車免許保有」など、 一部関係性が想定しづらいリンクもある(過剰にリンクが生成されている可能性)

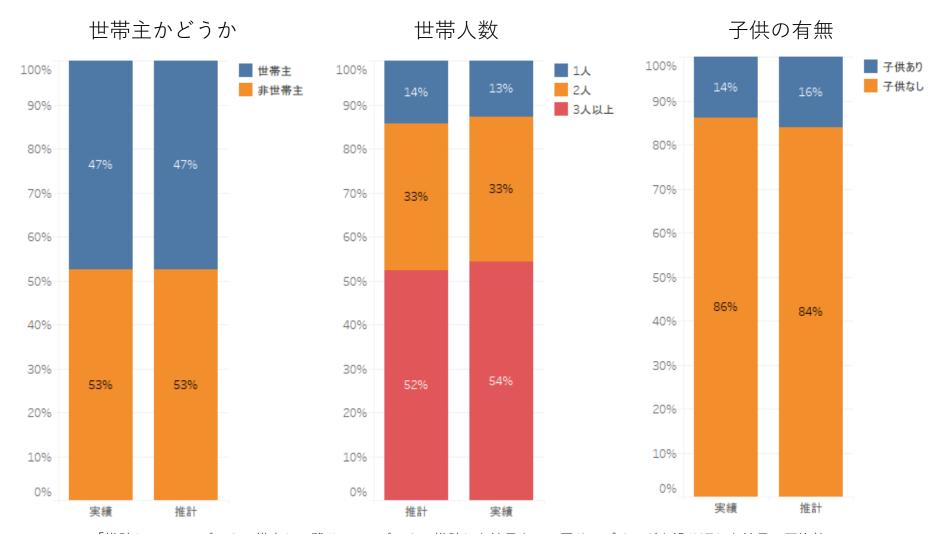
※全国PT 【速報版】の都市類型4-10の全てのデータを用いて構造推定を行った結果

①データ生成:交差検証による再現性の確認 (年齢、性別)


• 性年齢別周辺分布に合わせるように推計したため、年齢と性別の構成比は、一致していることが確認できる

※「推計」は20%のデータで推定し、残り80%のデータで推計した結果を、10回サンプリングを繰り返した結果の平均値 「実績」は100%のデータで集計

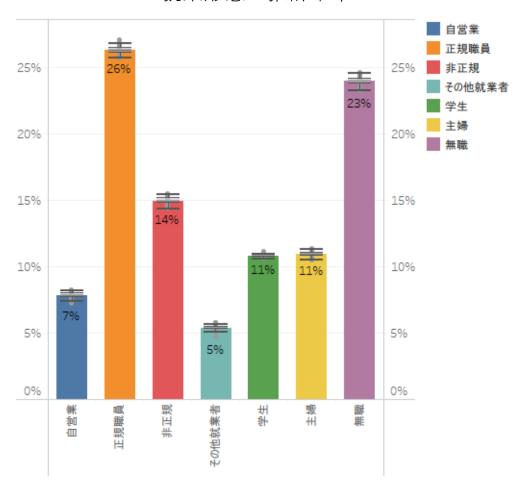
①データ生成:交差検証による再現性の確認(就業形態、免許有無等)


• 就業形態、免許有無、自由に使える自動車の構成比に関して、±1%以内の誤差であり、 再現性は高い

※「推計」は20%のデータで推定し、残り80%のデータで推計した結果を、10回サンプリングを繰り返した結果の平均値 「実績」は100%のデータで集計

①データ生成:交差検証による再現性の確認(世帯関係)

• 世帯主、世帯人数、子供の有無の構成比に関して、±2%以内の誤差であり、再現 性は高い



※「推計」は20%のデータで推定し、残り80%のデータで推計した結果を、10回サンプリングを繰り返した結果の平均値 「実績」は100%のデータで集計

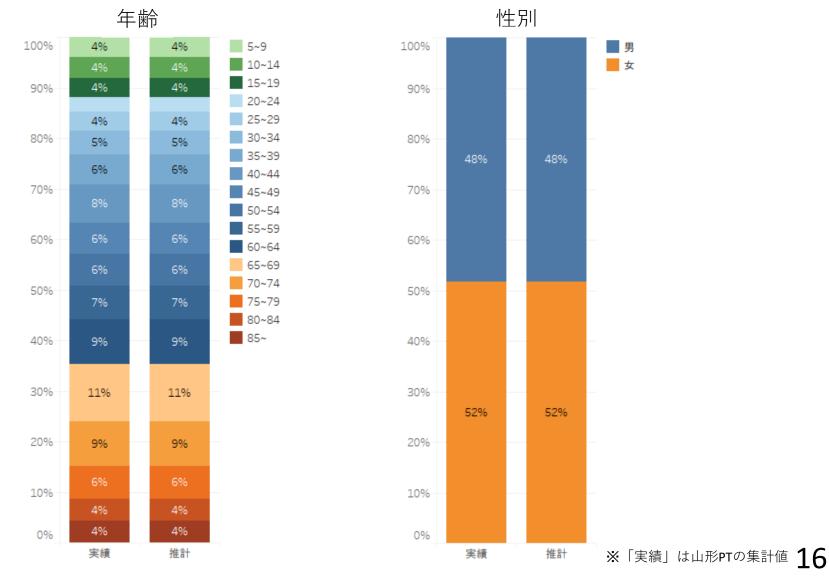
①データ生成:交差検証による結果のバラつきの確認 (就業形態)


• 10回サンプリングを繰り返した結果のバラつきを確認したところ、就業形態の推計確率の違いは1%前後であり、学習データの違いにより推定結果の大きな違いはない

就業形態の推計確率

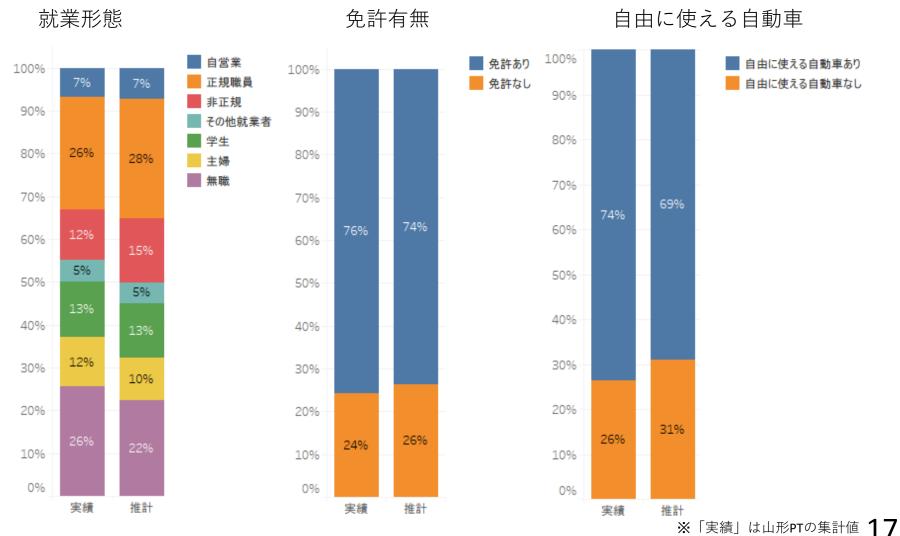
①データ生成:交差検証による結果のバラつきの確認(免許有無等、世帯関係)

その他の各種属性の構成比でも、学習データの違いによる推定結果の大きな違いはみられない

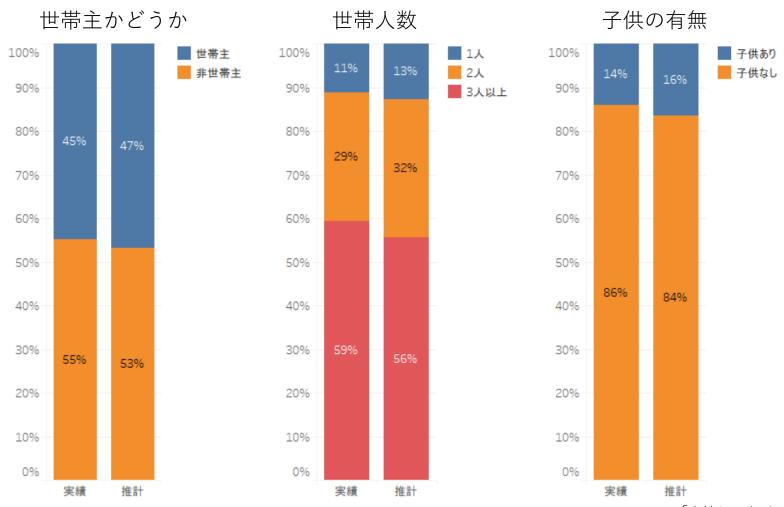


※20%のデータで推定し、残り80%のデータで推計した結果を、10回サンプリングを繰り返した結果を表示

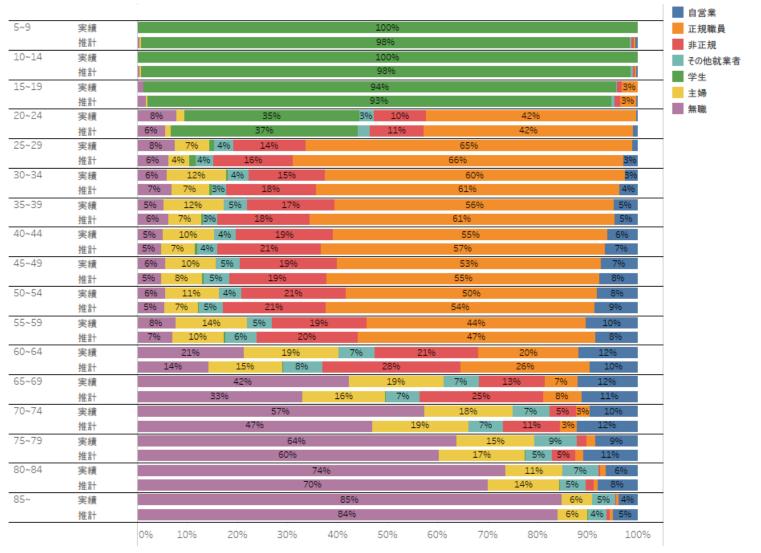
②山形都市圏における P T データとの比較によるシミュレータの性能検証結果


山形都市圏への適用検証:再現性の検証(年齢、性別)

- 全国PT【速報版】で推定したベイシアネットワークを、山形の性年齢別の人口に適用
- 性年齢別周辺分布に合わせるように推計したため、年齢と性別の構成比は一致


②山形都市圏への適用検証:再現性の検証(就業形態、免許有無等)

- 就業形態、免許有無、自由に使える自動車の構成比は、最大誤差5%前後で実績と概ね整合
- 免許・自動車保有は、地域特性を考慮していないため、推計保有割合がやや少ないと想定される


②山形都市圏への適用検証:再現性の検証(世帯関係)

- 世帯主、世帯人数、子供の有無の構成比は、最大誤差3%前後で実績と概ね整合
- 世帯関連の属性では一人暮らし・子供なしがやや多く推計されており、地域特性を加味すること で改善する可能性があると考えられる

②山形都市圏への適用検証:属性クロス項目の再現性の検証(年齢/就業形態)

- 年齢別の就業形態の構成比を確認すると、全体としておおむね傾向は再現
- ただし、60-74歳の高齢者等では、就業形態の構成比に5%以上の乖離があるカテゴリもみられる (実績はH29山形PT、推計はR3全国PTをもとにしており、経年的な変化も含めた確認が必要)

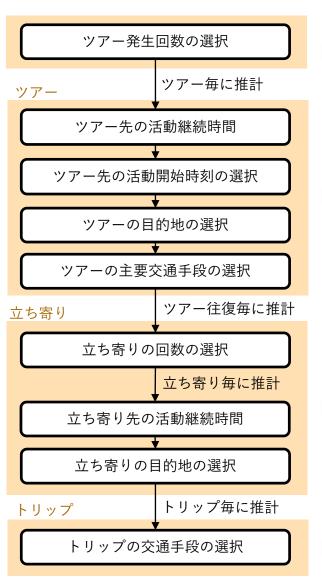
②山形都市圏への適用検証:属性クロス項目の再現性の検証(年齢/免許有無)

- 年齢別の免許保有構成比を確認すると、全体として傾向は概ね再現
- 20~59歳の免許保有が少なく推計されており、特に20-24歳は5%以上の乖離がみられる
- 地域特性等を加味することで改善することができると考えられる

(3) 個人データ生成モデルに関する検討のまとめ

まとめ

- 交差検証の結果、推定に用いた全国PTデータ【速報版】に対しての再現性は高いことを確認
- 山形都市圏へ適用し、シミュレータの再現性を検証したところ、全体の傾向については概ね表現されていることを確認
- ただし、免許・自動車保有が過小に推計される等の改善点も明らかになった


今後の課題

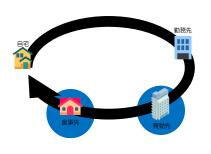
- 属性の追加:地域特性(人口等の都市規模や交通整備水準を示す指標)
- 都市類型レベルの交差検証
 - ✓ 特定の都市類型のみでモデル作成し、他の都市類型に対する再現性を検証することで、都市間の移転性を確認
- 勤務地の推計方法のさらなる検討

2. アクティビティベースドモデル の推定結果

- (1) アクティビティベースドモデルの概要
- (2) ツアー交通手段選択モデルの推定結果
- (3) ツアー目的地選択モデルの推定結果
- (4) ツアー活動開始時刻選択モデルの推定結果
- (5) ツアー発生回数選択モデルの推定結果
- (6) 各モデルの推定結果の概要と今後の課題

(1) アクティビティベースドモデルの概要:構造

ツアーの発生回数 (0回、1回、2回、、、) を選択

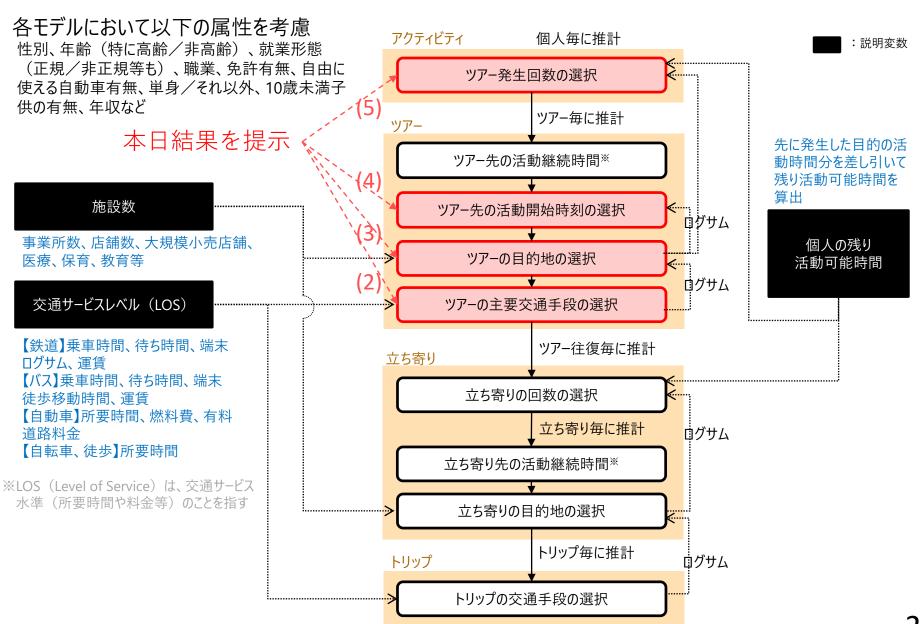

ツアーの

- 活動時間 (連続時間)
- ・活動開始時刻 (1時間単位)
- ・目的地 (ゾーン単位)
- ・主要交通手段(鉄道、バス、自動車、自転車、徒歩)

を選択

ツアー内の立ち寄りの

- ・回数(0回、1回、2回、、、)
- 活動時間 (連続時間)
- ・目的地(ゾーン単位)
- を選択



各トリップ単位での交通手段を選択 (鉄道、バス、自動車、自転車、徒歩)

(1) アクティビティベースドモデルの概要:考慮する説明変数

参考:モデルと説明変数の詳細①

	モデル概要	想定される説明変数
ツアー発生 回数 ※本日提示 (5)	・多項ロジットモデル(MNL) ・目的毎にツアーの発生回数を選択 ・選択肢集合は全国PTの実績データをもとに設定 ・目的別に作成し、計7個のモデルを作成予定	 個人属性:性別、年齢、就業形態(正規/非正規等)、免許有無、自由に使える自動車有無 世帯属性:世帯構成(単身/それ以外)、子供の有無、年収 時間制約:残り活動可能時間 アクセシビリティ:目的地選択モデルのログサム変数
ツアー活動 継続時間	・生存時間モデル ・目的地での活動時間を推計(1分単位) ・目的別に作成し、計7個のモデルを作成予定 ※サンプル数が少ない場合には、目的の統合も検討(他のモ デルも同様)	個人属性:性別、年齢(高齢/非高齢)、就業形態(正規/非正規等)時間制約:残り活動可能時間
ツアー活動 開始時刻 ※本日提示 (4)	・多項ロジットモデル(MNL) ・目的地での活動開始時刻(目的地への到着時刻)を1時間単位で選択 ・選択肢集合は全国PTの実績データをもとに設定し、また、 先にツアーが発生している時間帯は除いて設定 ・目的別に作成し、計7個のモデルを作成予定	個人属性:性別、年齢(高齢/非高齢等)、就業形態(正規/非正規等)移動抵抗:目的地選択モデルのログサム変数 (通勤・通学は主要交通手段選択モデルのログサム変数)
ツアー 目的地 ※本日提示 (3)	・多項ロジットモデル(MNL) ・目的地をゾーン単位で選択 ・選択肢集合作成時に、時空間プリズムを加味(残り活動可能 時間で到達できるゾーンのみを選択肢集合とする) ・通勤通学を除く目的別に作成し、計5個のモデルを作成予定 ※通勤と通学は、個人単位で勤務先・通学先を予め割り当て ているため、目的地選択モデルは作成しない	 ・個人属性:性別、年齢(高齢/非高齢) ・ゾーンの魅力度:事業所数、店舗数、大規模小売店舗数、文化施設数、集客施設数、行政施設数、保育施設数、医療施設数、教育施設数、ゾーン面積 ・移動抵抗:主要交通手段選択のログサム変数、ゾーン内々距離
ツアー交通 手段 ※本日提示 (2)	・多項ロジットモデル(MNL) ・ツアーの主要な交通手段を選択 ・鉄道、バス、自動車、自転車、徒歩の5つの選択肢 ・時空間プリズムを加味(残り活動可能時間で到達できる交通 手段のみを選択肢集合とする) ・目的別に作成し、計7個のモデルを作成	 個人属性:性別、年齢(高齢/非高齢等)、免許有無、自由に使える自動車有無 鉄道:乗車時間、待ち時間、端末ログサム、運賃 バス:乗車時間、待ち時間、端末徒歩移動時間、運賃 自動車:所要時間、燃料費 自転車、徒歩:所要時間

参考:モデルと説明変数の詳細②

	モデル概要	想定される説明変数
立寄発生回数	・多項ロジットモデル(MNL) ・目的毎に立ち寄りの発生回数を選択 ・選択肢集合は全国PTの実績データをもとに設定 ・目的別ツアー目的別往復別にモデルを作成予定	・ツアーの特性:ツアーの目的・個人属性:性別、年齢(高齢/非高齢)、就業/非就業・世帯属性:世帯構成(単身/それ以外)、子供の有無、年収・時間制約:残り活動可能時間・アクセシビリティ:立ち寄り目的地選択モデルのログサム変数
立寄活動継続時間	・生存時間モデル ・目的地での活動時間を推計(1分単位) ・目的別往復別に作成予定	ツアーの特性:ツアーの目的個人属性:性別、年齢(高齢/非高齢)、就業形態(正規/非正規等)時間制約:残り活動可能時間、先に立ち寄りが発生しているか
立寄場所	・多項ロジットモデル(MNL) ・目的地をゾーン単位で選択 ・選択肢集合は、居住地とツアー目的地から離れたゾーンは含まれないように生成 ・目的別往復別にモデルを作成予定	 個人属性:性別、年齢(高齢/非高齢) ゾーンの魅力度:事業所数、店舗数、大規模小売店舗数、保育施設数、医療施設数 移動抵抗:トリップ交通手段選択のログサム変数、 迂回距離(ログサム変数が有意とならない場合)
リップ 交通 手段	・多項ロジットモデル(MNL) ・トリップの交通手段を選択 ・鉄道、バス、自動車、自転車、徒歩の5つの選択肢 ツアーの主要交通手段よりも上位の交通手段は、利用可能性 無しとして、トリップの代表交通手段としては選択されない とする ※交通手段の優先順位 鉄道 > バス > 自動車 > 自転車 > 徒歩 ・目的別に作成し、計7個のモデルを作成予定 ※サンプル数が少ない場合には、目的の統合も検討	 ツアーの特性:ツアーの主要交通手段 鉄道:幹線時間(待ち時間含む)、端末ログサム、運賃 バス:幹線時間(待ち時間含む)、運賃 自動車:所要時間、燃料費 自転車、徒歩:所要時間

(2) ツアー交通手段選択モデルの推定結果 (前回報告)

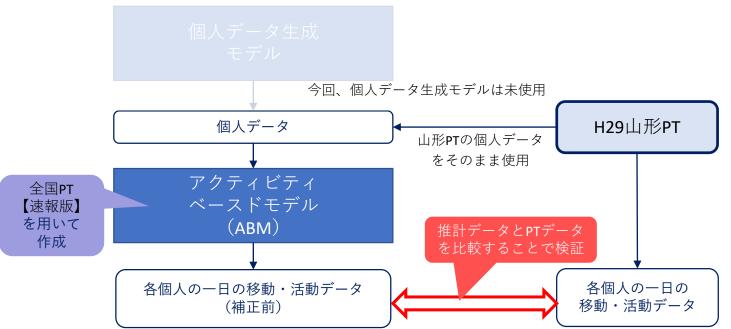
(3) ツアー目的地選択モデルの推定結果

(4) ツアー活動開始時刻選択モデルの推定結果

(5) ツアー発生回数選択モデルの推定結果

(6) 各モデルの推定結果の概要と今後の課題

	モデル概要	推定結果の概要	課題
ツアー 発生回数	・多項ロジットモデル(MNL) ・目的毎にツアーの発生回数を選択 ・選択肢集合は全国PTの実績データをもとに設定 ・目的別に作成し、計7個のモデルを作成予定	年齢、就業形態、子供の有無 (送迎)等を説明変数に採用通勤、私事の一部モデルで回数 分布の全P実績値と推計値に有意 差が見られる	説明変数の精査(属性の追加、職業などのリモートワークに該当する変数の考慮)都市類型の束ね方の再検討
ツアー 活動開始 時刻	・多項ロジットモデル(MNL) ・目的地での活動開始時刻(目的地への到着時刻) を1時間単位で選択 ・選択肢集合は全国PTの実績データをもとに設定し、 また、先にツアーが発生している時間帯は除いて 設定 ・目的別に作成し、計7個のモデルを作成予定	年齢、就業形態、高齢者や子供の有無(送迎)等を説明変数に採用通勤、通学の一部モデルで時間帯分布の全P実績値と推計値に有意差が見られる	説明変数の精査(属性の追加)都市類型の束ね方の再検討
ツアー 目的地	・多項ロジットモデル(MNL) ・目的地をゾーン単位で選択 ・選択肢集合作成時に、時空間プリズムを加味(残 り活動可能時間で到達できるゾーンのみを選択肢 集合とする) ・通勤通学を除く目的別に作成し、計5個のモデルを 作成予定 ※通勤と通学は、個人単位で勤務先・通学先を予 め割り当ているため、目的地選択モデルは作成し ない	 手段選択モデルのログサム、距離、施設密度、ゾーン面積等を説明変数に採用 距離帯ダミー有無でモデルを推計→ダミー無モデルはログサム変数の条件(λ<1.0)を満たさず 距離帯分布の現況再現性は高い 	•都市類型の束ね方の再検討
ツアー 交通手段	・多項ロジットモデル(MNL) ・ツアーの主要な交通手段を選択 ・鉄道、バス、自動車、自転車、徒歩の5つの選択肢 ・時空間プリズムを加味(残り活動可能時間で到達 できる交通手段のみを選択肢集合とする) ・目的別に作成し、計7個のモデルを作成	・時間、運賃、端末手段選択モデルのログサム、免許保有・自動車保有等を説明変数に採用・都市レベルの鉄道や自動車は概ね再現	・都市内の再現性の詳細確認 ・潜在クラスモデルや都市類 型の束ね方の再検討


3. 山形都市圏におけるシミュレータの検証結果

- (1) 本日の検討内容
- (2) 活動発生の検証
- (3) 目的地の検証
- (4) 交通手段の検証
- (5) 時間帯の検証
- (6) まとめと今後の課題

(1) シミュレータの検証内容

- R3全国PT調査データ【速報版】※を用いて推定したアクティビティベースドモデルを、 山形都市圏を対象に適用
- H29山形PTと比較することで、モデルの改善点・全国PTモデルを各都市圏に適用する際の課題等を整理
- 具体的には以下の視点で比較検証を実施
 - 活動発生の検証:外出率、アクティビティパターン、目的別発生トリップ数等
 - 目的地の検証:距離帯別トリップ数、目的別着トリップ数
 - 交通手段の検証:交通手段別トリップ数、距離帯別分担率
 - 時間帯の検証:時間帯別トリップ数

※「国土交通省全国都市交通特性調査(令和3年調査については速報版)」を利用

※今回構築したツアーモデル以外は、東京都市圏で構築されたアクティビティベースドモデルのパラメータを活用 ※R3全国PT【速報版】(山形市に該当する都市類型8の都市)の実績値とシミュレーションによる推計値とも比較

(6) まとめと今後の課題

	検証結果	課題:モデル改善	課題:補正	
活動発生	・20-69歳、特に正規職員、非正規・パート・アルバイトの外出率が低い	• <u>通勤ツアー発生回数モデルの属</u> <u>性</u> をより詳細に考慮	・モデルの改善では都市の違 いや経年的な変化への対応	
	・就業者の通勤の原単位が小さい	• <u>通勤ツアー発生回数モデルの属</u> <u>性</u> をより詳細に考慮	こに限界があると考えられる ため、小サンプルPTで補正	
	・就業者の私事の原単位が小さい(特に立ち寄り) ・非就業者の私事の原単位が小さい(複数立ち寄りが少な くトリップパターンが異なる)	•全国PTデータを用いた <u>立ち寄り</u> モデル の作成	-	
目的地	・中ゾーン別の目的別着トリップ分布は概ね山形PTを再現 ・ただし、私事の山形都心や買物特定ゾーン等の表現には 課題	• <u>目的地選択モデルにおける施設</u> <u>数</u> の考慮の仕方の改善	モデルの改善では限界があると考えられるため、小サンプルPTもしくはビッグ	
	・小ゾーン別の目的別着トリップ分布の再現は課題 ・特に、買物や通院等の特定施設(小ゾーン)に集中する トリップの表現に課題	• <u>目的地選択モデルにおける施設</u> <u>数</u> の考慮の仕方の改善	データでの補正	
	・目的別距離帯分布は概ね山形PTを再現 ・ただし、私事に関してはゾーン内々トリップが過大と なっており、再現性に課題	•目的地選択モデルの改善	-	
交通手段	・目的別距離帯別分担率は概ね山形PTを再現 ・ただし、短距離に関しては、自動車の推計値が過大にな る傾向がある ・また、実績では鉄道が一定程度利用されているが、推計 値では過小となっている	• <u>交通手段選択モデルでの都市間</u> <u>の移転性</u> を高める	モデルの改善では限界があると考えられるため、小サンプルPTで補正	
	・ゾーン内々トリップの分担率の再現性が低い	・内々トリップの交通手段選択モ デルの適用の改善(内々の自動 車LOSの作成)	-	
	・通学の分担率の再現性が低い	• 通学のみ別モデルもしくは通学 ダミーを追加	-	
時間帯	・送迎、 買物など の夕方時間帯のトリップが少ない	•全国PTデータを用いた 立ち寄り <u>モデル</u> の作成	-	

4. 今後の進め方とご意見いただきたい事項

今後の方針

- 前述の検証結果をふまえたモデルの改善
- モデル・シミュレーションの汎化性能確保のためのモデル作成・検証
 - ✔ 全国PTデータを用いたモデルの改善及び都市間の移転性の検証
 - ✓ 山形以外のPT調査データを用いた検証
- ■汎化性能の検証

全国PTデータ内での検証 (内部検証)

<u>ほかデータでの検証</u> (外部検証) これまでの検証

- ・交通手段選択モデルでの都市類型 間の移転性の簡易的な検証
- ・山形都市圏での適用による山形PT の再現性の検証

今後の検証

- ・交通手段モデルへの潜在クラス 等の適用による汎化性の向上
- ・発生モデルや目的地モデルでの 移転性の検証
- ・山形都市圏での継続検証
- ・他都市圏(H26群馬もしくはR3 実施都市など)での検証

ご意見いただきたい事項

- モデル・シミュレーションの検証結果の解釈、再現性向上のための改善点に関 してご意見いただきたい
- 個人モデル、アクティビティベースドモデルの構造や考慮する説明変数に関して、今後の改善点のご意見いただきたい(長期的な課題として)
- 今後の検証の進め方に関して、ご意見いただきたい