河川構造物管理研究セミナー 平成28年3月1日(火)

堤防及び河川構造物の 総合的な点検・診断技術の実用化 に関する研究開発

研究代表者 (国研)土木研究所 地質・地盤研究グループ 上席研究員(土質・振動) 佐々木 哲也

研究の背景・課題

◎樋門・樋管周り等の空洞化

函体下の空洞に係る漏水

◎コンクリート部材の劣化

目地の部分で大きな段差(不同沈下)

◎鋼矢板部材の劣化

矢板護岸の腐食

堤防やコンクリート構造物、矢板護岸等は膨大な延長や箇所に上り、安全性確保のための適切な管理の実施には維持管理の合理化が必要

- ①河川構造物としての機能低下につながる変状の発生メカニズムと進行過程の明確化 真に危険となる変状形態とその程度を明確化 点検・診断の合理化、対策優先度の設定、適切な補修・補強方法の選定
- ②物理探査等の非破壊検査技術の活用 不可視箇所等における点検の効率化や連続的なデータの取得等 真に弱点となる箇所、区間を的確かつ効率的に抽出

点検箇所や要対策箇所を適切に絞り込むことにより 維持管理の合理化につなげる

研究の実施体制

構造物周辺の空洞化

空洞化が堤防機能に与える影響【佐々木、石原、吉田】

非破壊検査技術の適用性 【佐藤,高橋(GPR), 茂木,高井,重藤(電磁法), 北(表面探査)】

コンクリート部材

致命傷に繋がる劣化状況の明確化 【渡辺、片平、古賀】

非破壊検査技術のレビュー・標準化【齋藤、三木、鈴木】

鋼材

致命傷に繋がる劣化状況の明確化 【杉浦(健全度評価)、西崎(劣化)】

非破壊検査技術のレビュー【富山】

氏	名	所属・役職	研究分担内容
	_	***************************************	***************************************
佐々木		土木研究所・上席研究員	全体取りまとめ
石原	雅規	土木研究所・主任研究員	樋門周辺堤防詳細点
吉田	直人	土木研究所・研究員	検結果分析、模型実 験
佐藤	源之	物探学会会員(東北大)	GPRによる空洞検出の
高橋	一徳	物探学会会員(東北大)	高確度化に関する研究
茂木	透	物探学会理事(北大)	電磁法による高透水 ゾーン検出技術の研
高井	伸雄	物探学会会員(北大)	究
重藤	迪子	物探学会会員(北大)	
北高	高穂	物探学会堤防研究委員	表面探査技術の研究
渡辺	博志	土木研究所・上席研究員	コンクリート構造物
片平	博	土木研究所•主任研究員	の健全度評価技術の
古賀	裕久	土木研究所・主任研究員	検討
斎藤	秀樹	物探学会会長	コンクリート内部劣
三木	茂	物探学会理事	化度診断要素技術の
鈴木	敬一	物探学会理事	研究
西崎	到	土木研究所・上席研究員	鋼矢板劣化の検討
冨山	禎仁	土木研究所・主任研究員	鋼矢板非破壊検査手 法の調査
杉浦	邦征	京都大学	鋼矢板の健全度評価

研究目標

項目

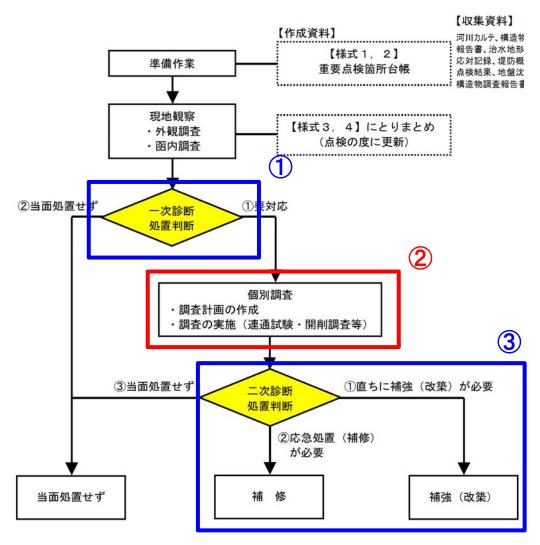
- (1) 樋門・樋管周り等の空洞化に関する堤防機能低下過程の解明と非破壊検査技術 の適用性の明確化
 - (1-1)空洞化に関する堤防機能低下過程の解明
 - (1-2)GPR空洞検出技術の研究開発
 - (1-3)電磁法による高透水ゾーン検出技術の研究開発
 - (1-4) 堤防表面探査技術の研究開発
- (2) 樋門・樋管のコンクリート部材の、致命傷に繋がる劣化状況の明確化と既存非破壊検査技術の適用性の把握
 - (2-1)致命傷に繋がる劣化状況の明確化
 - (2-2)既存非破壊検査技術の適用性の把握
- (3) 樋門・樋管と矢板護岸等の鋼材の、致命傷に繋がる劣化状況の明確化と既存非破壊検査技術の適用性の把握
 - (3-1)致命傷に繋がる劣化状況の明確化
 - (3-2)既存非破壊検査技術の適用性の把握

(1)樋門・樋管周り等の空洞化に関する堤防機能低下過程の解明 樋門樋管周り等に関する研究内容

研究目的(堤防)

- ・樋門・樋管周り等の空洞化に関する堤防機能低下過程の解明
- ・樋門・樋管周り等の空洞化に関する非破壊検査技術の適用性の明確化

検討内容

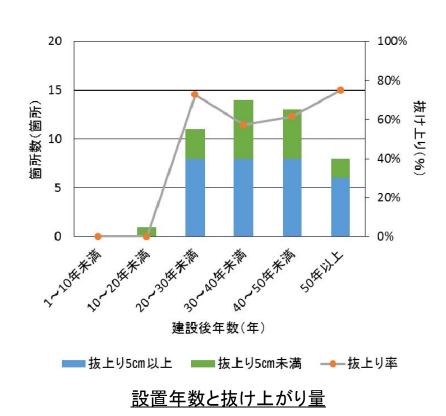

- ①既存点検結果の分析、模型実験結果の分析
 - 十分な範囲で、樋門周辺堤防の抜け上がりが計測されていないものを現地調査で確認
 - 信頼性の高いデータを用いて、点検結果と模型実験結果を比較分析
- ②物理探査と既存調査技術を組合せた調査手法の適用性の検討
 - ・樋門点検結果におけるGPRによる空洞検出事例のデータの分析
- ③空洞が堤防の耐浸透機能低下へ与える影響の検討
 - 連通試験の結果を利用し、矢板の止水機能を評価。
 - ・浸透流計算、円弧すべり計算等により、空洞が堤防機能低下へ与える影響を整理。

研究成果

- ①スクリーニング法の提案
- ②非破壊検査技術による空洞の確認方法の提案
- ③空洞による堤防の安全性への影響を踏まえた対策優先度の提案

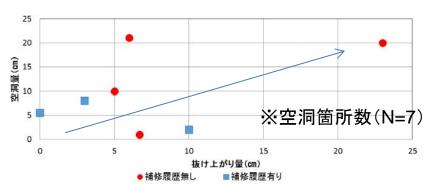
(1)樋門・樋管周り等の空洞化に関する堤防機能低下過程の解明 点検フローと成果の位置付け

構造物周辺堤防の詳細点検フロー


①スクリーニング法の提案

⇒抜け上がりや地盤情報による空洞箇 所の効率的な抽出方法

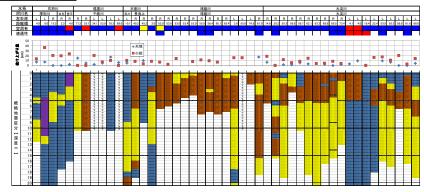
- ②非破壊検査技術による空洞の 確認方法の提案
- ⇒物理探査による空洞の可能性、効率 的な抽出手法


- ③空洞による堤防の安全性への影響を 踏まえた対策優先度の提案
- <u>⇒連通試験の結果を利用した空洞の堤</u> 防への安全性の評価手法

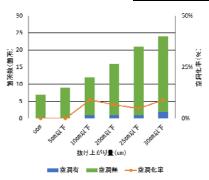
(1-1)スクリーニング法の提案 点検結果の分析

25 45%
20 38%
38%
30%
30%
550 0・2cm未満 5-10cm未満 10cm以上 拡上り量(cm)
■ 補修履歴の無い箇所での空洞有り ■ 空洞無し ● 空洞化率

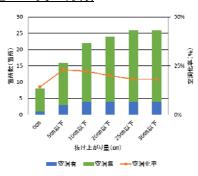
抜け上り量と空洞化率


抜け上り量と空洞量

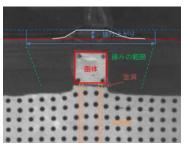
- ・<u>建設後の年数が長くなるほど、抜け上がり量が多くなる傾向</u>で、5cm以上の抜け上がり量 の割合が多くなる。
- ・抜け上がり量が少ない5cm未満では、補修履歴等が無い限り、空洞は生じていない傾向。 また、<u>抜け上がり量が5cm~10cmで、空洞化率は高い。</u>
- ・補修履歴が無い限り、空洞が生じている箇所は、抜け上がりが生じている。

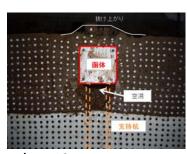

(1-1)スクリーニング法の提案

基礎地盤土質による分析結果

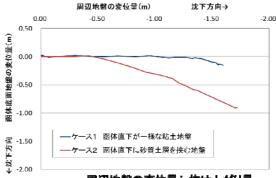

点検結果

樋門位置の基礎地盤の土質の分類


函体直下の地盤が粘土


函体直下の地盤が砂・礫質土

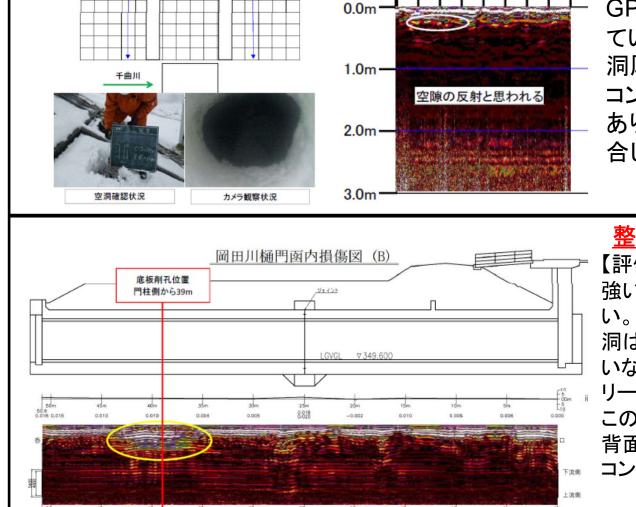
空洞化率


模型実験の結果

ケース1 函体直下の地盤が粘土

ケース2 函体直下の地盤が砂質土

地盤条件によって、空洞ができ始める抜け上がり量 の大きさが異なる。


- ・点検結果において、<u>函体直下の地盤が粘土である場合、抜け上がり量が小さい時は、</u> 空洞が確認されない。これは、模型実験結果と同様の傾向が確認されている。
- ⇒抜け上がり量および函体直下の基礎地盤の土質により、空洞出現率が異なる。 スクリーニング手法として、<u>抜け上がり量+基礎地盤の土質</u>を提案

(1-2)非破壊検査技術による空洞の確認方法の提案 GPRによる空洞検出技術の適用性の検討

上段側

0.Qm

空洞量6cm

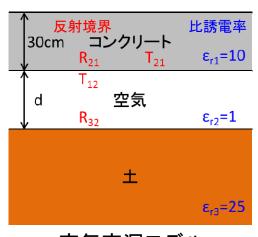
整合した例

【評価】

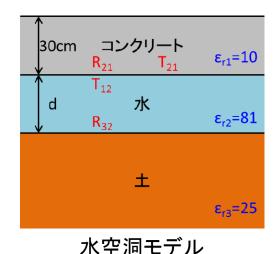
下段側

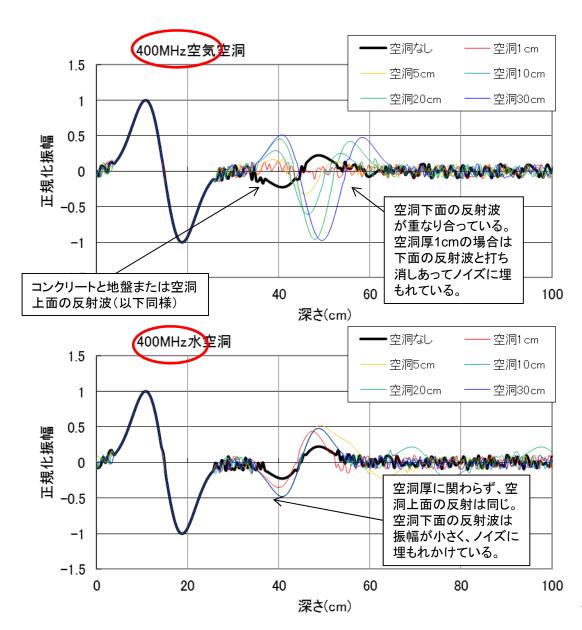
5.0m

GPRからは空隙と評価し ているが削孔の結果、空 洞厚は6cmであった。 コンクリート厚は11cmで あり、GPRの結果とも整 合している。

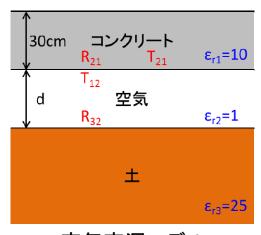

整合しなかった例

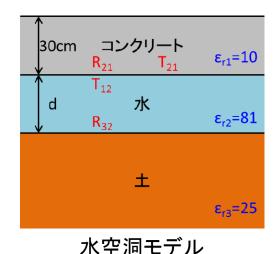
【評価】

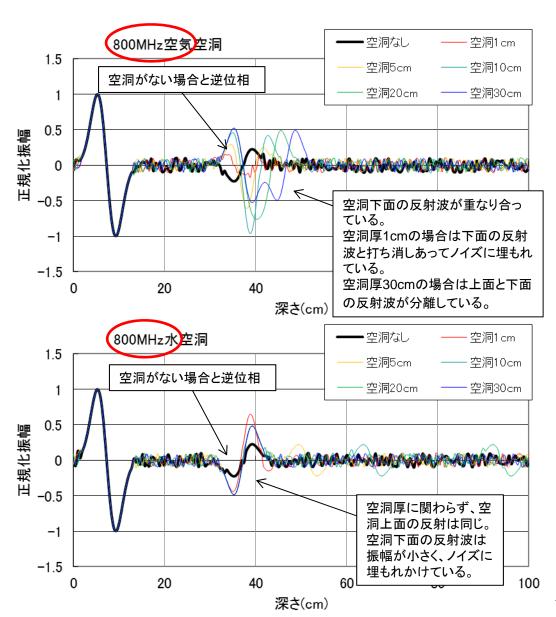

強い反射としか判断していな い。削孔の結果、実際に空 洞はなかったため、整合して いないと判断する。コンク リート厚が150cmであるため、 この深さの反射は明らかに 背面空洞によるものではなく コンクリート内部のもの。


(1-2)非破壊検査技術による空洞の確認方法の提案

GPRによる空洞検出能力のシミュレーション


空気空洞モデル




(1-2)非破壊検査技術による空洞の確認方法の提案

• GPRによる空洞検出能力のシミュレーション

空気空洞モデル

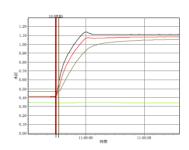
(1-2)非破壊検査技術による空洞の確認方法の提案 GPRによる空洞検出技術の適用性の検討

空洞評価方法の課題と方策

- 〇空洞探査の適用範囲(市販のGPR探査器、400MHz,800MHz等)
 - 空洞の有無であれば、で探査可能。
 - ・鉄筋コンクリートの場合、適用できる厚さの限界は50~60cm程度まで。
 - ・空洞の厚さを把握することは困難 ⇒ 削孔で確認する必要あり

〇適用方法

・空洞の平面的な広がりを把握するには、補助測線(横断、平行)が必要

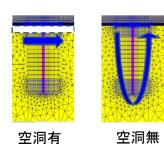

〇検証事例

- ・厚さ100cmを超えるコンクリートでは、空洞からの反射波は得られなかった。
- 45cmのコンクリート厚さでは、空洞からの反射波を捉えられている。

一般的な適用範囲を明確にするとともに、空洞の面的な範囲を効率的に調査する手法を整理

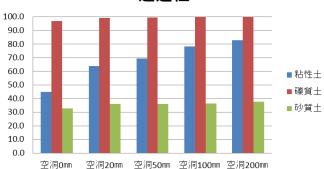
(1-3)空洞の堤防への安全性の影響を踏まえた対策優先度の提案 連通試験結果を用いた安全性評価法の検討

連通試験結果の整理


矢板前の圧力水頭を100とl た場合の矢板裏の割合(%

<u>連通試験結果</u>

▶ 止水矢板の透水性を評価


		函体緒元			透水係数			
	土質	空洞厚	矢板長	孔間距離	浸透路長	土質	空洞	矢板
		(mm)	(mm)	(mm)	(mm)	(m/s)	(m/s)	(m/s)
A樋管	礫質土	20	3500	6500	13500	1.00E-04	1.00E-02	2.30E-06
B樋管	粘性土	100	550	4800	5900	1.00E-08	1.00E-02	1.70E-07
C樋管	砂質土	50	550	4800	5900	4.60E-06	1.00E-02	1.00E-09

浸透流解析による矢板の連通性を分析

連通試験結果を再現した浸透流解析モデル

連通性

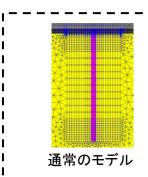
粘性土の場合は、空洞の大きさにより連通性に大きな影響を与える。

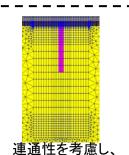
わらない。

▶ 底版背面の土質が礫質

土のような高い透水性の場合、空洞の有無に

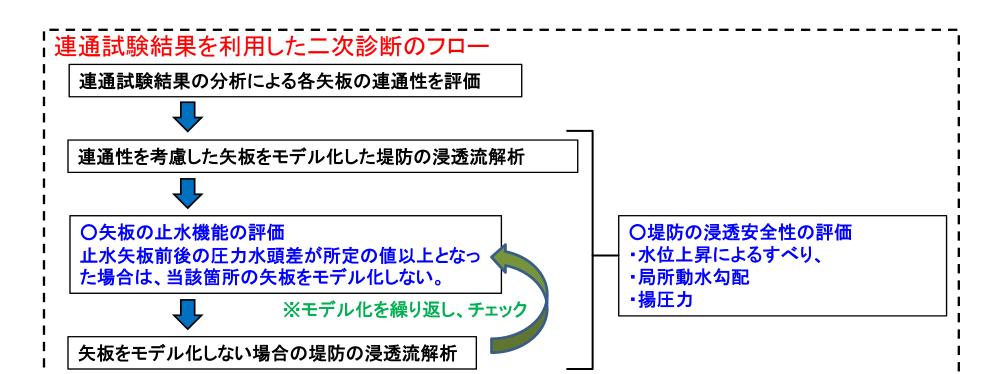
より連通性はほとんど変


底版背面の土質と連通性の関係


周辺堤防の浸透安全性評価のためのモデル化

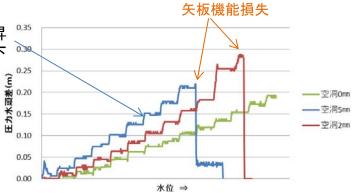
浸透流解析による安全性(機能低下)を評価

⇒矢板の連通性を考慮した評価法を提案

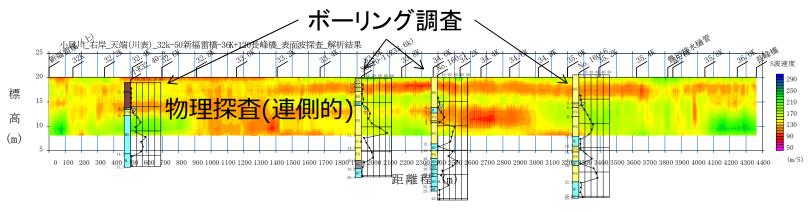


矢板長を短くしたモデル

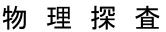
矢板の連通性を考慮したモデル案


(1-3)空洞の堤防への安全性の影響を踏まえた対策優先度の提案 連通試験結果を用いた安全性評価法の検討

評価項目


- 〇矢板の止水機能
 - 止水矢板前後の圧力水頭差
- 〇堤防の浸透安全性
 - ・すべり、局所動水勾配、揚圧力

空洞の存在により 矢板前面の圧力上昇 矢板背面の圧力低下



(1-4)物理探査による堤防の縦断的な異常部検出方法の検討

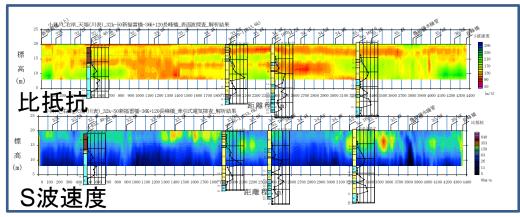
ボーリング等による調査:点(離散的)の調査物理探査:線(連続的)の調査

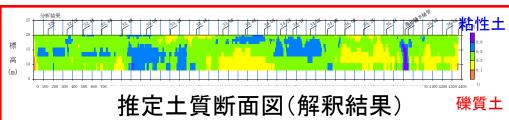
- ・堤防を縦断的に評価するには、縦断的な情報が必要
- <u>それぞれの特徴を活かして</u>、効率的、精度良く、縦断的な情報を取得できないか? (物理探査だけで安全性を評価しようとしない)

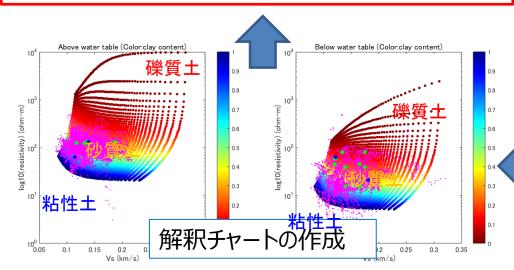
ボーリング位置、一連区間の合理的な設定に資する情報

一方通行ではないことも重要

ボーリング調査

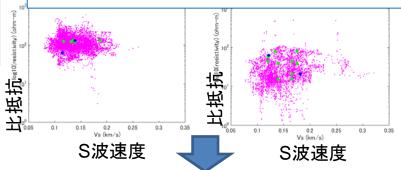

詳細な情報(粒度分布など)→評価に利用


→物理探査結果の解釈の精度向上


物理探査の適用範囲、適用方法に関する検討を実施

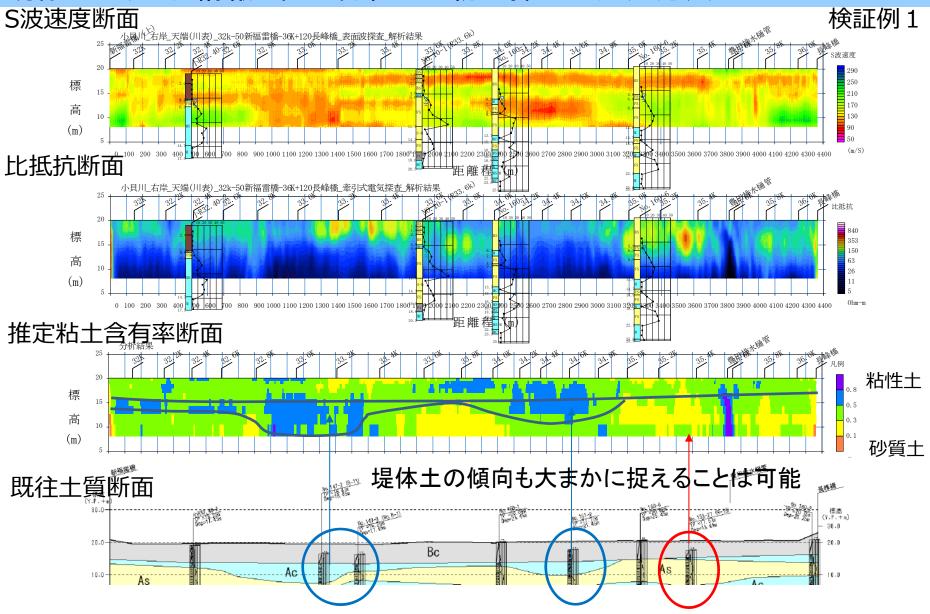
(1-4)物理探査による堤防の縦断的な異常部検出方法の検討既存ボーリング情報と組み合わせた物理探査の適用方法

物理探査結果とボーリング情報を集約

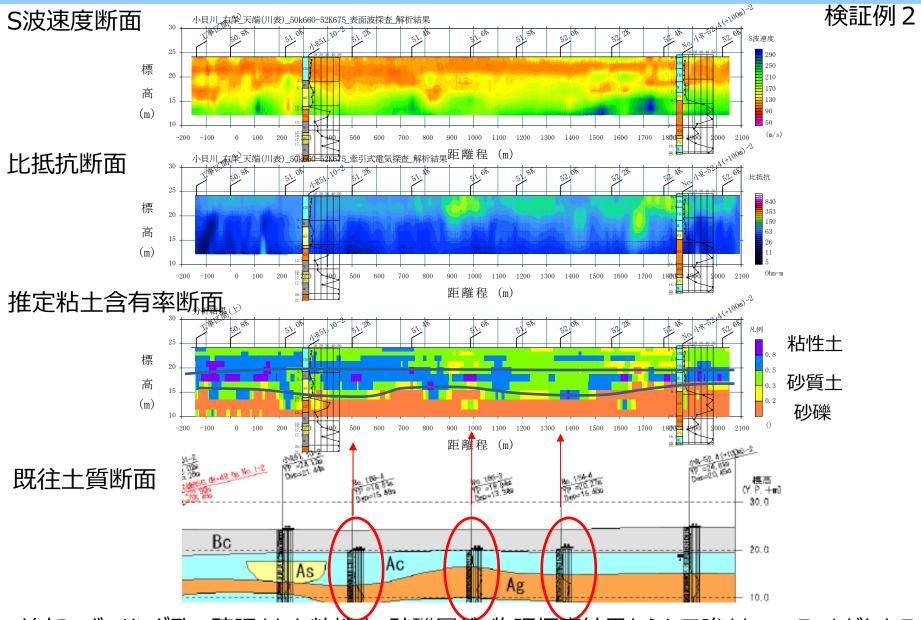


地下水位と土質の情報を得る

地下水位以浅、以深それぞれにクロス プロット図を作成


下記情報を基に物理モデルを選択

- ・ボーリング位置での土質を反映させる
- ・地下水の影響度を反映させる
- ・技術者の判断も含む


物理モデルのパラメータ入力 (地下水の比抵抗,粘土の比抵抗, 拘束圧,飽和度,etc.)

(1-4)物理探査による堤防の縦断的な異常部検出方法の検討既存ボーリング情報と組み合わせた物理探査の適用方法

追加のボーリング孔で確認された粘性土・砂質土層が、物理探査結果からも示唆されていることがわかる。17

(1-4)物理探査による堤防の縦断的な異常部検出方法の検討既存ボーリング情報と組み合わせた物理探査の適用方法

追加のボーリング孔で確認された粘性土・砂礫層が、物理探査結果からも示唆されていることがわかる。18

(1-4)物理探査による堤防の縦断的な異常部検出方法の検討 既存ボーリング情報と組み合わせた物理探査の適用方法。 S波速度断面 検証例3 S波速度 290 標 230 170 高 110 (m)比抵抗断面 比抵抗 標 297 高 (m) 粘性土がやや過剰に現れている (緩い砂層を粘 推定粘土含有率断面 土層と区分している可能性あり) 粘性土を検出でき (地下水優勢比抵抗モデル) 分優器果 ている 粘性土 標 0.3 高 0.1 (m)距離程 (m) 下部に表れる砂質土~砂礫が検出できている 既往土質断面 2003001 Y. P (m) 探査の対象 10 必須 範囲 標 0 As 高 -10 D s (m) 19

(2)コンクリート部材の致命傷に繋がる劣化状況の明確化

措置段階

研究の目的

河川用コンクリート構造物、 部材の点検・診断手法は、体 系化されておらず、点検や診 断を行う技術者の主観に大き く左右される状況

現場技術者が活用できる構造物、部材の点検・診断手法 が求められている。

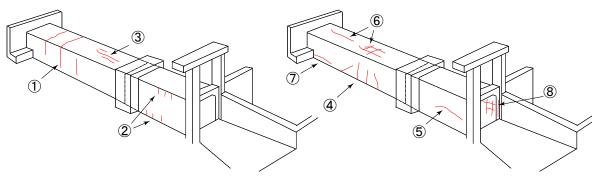
点検方法は、「樋門・樋管点 検結果評価要領(案)(H27年3 月,水管理・国土保全局)」に て示されたが、情報量は限ら れている。

実際には種々のクラック(ひび割れ)がある。 経験の浅い点検者にとっては、耐久性に影響があるかの判断は必ずしも容易ではない

典型例, 考え方を示すことで, 点検の精度向上をはかる

(2)コンクリート部材の致命傷に繋がる劣化状況の明確化検討内容

H25, 26の検討

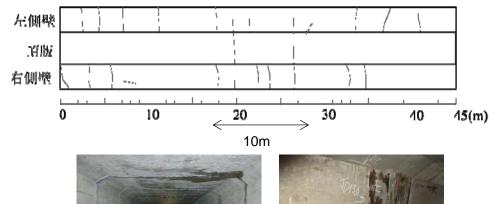

既存の点検データ、補修構造物のデータを分析 函体のひび割れに対する補修事例が多い

→ ひび割れには種々の原因があるが、原因を追求せず補修している場合が多く改善の余地がある

既存の補修構造物のデータ等から、函体に生じるひび割れを類型化を提案

H27

類型化の妥当性を, さらに多くの点検データで確認 具体例を示し, 健全度評価の目安や補修方法等, 点検者が参考にできるガイドライン(案)を作成(作業中)



- ①函軸直角方向輪切り状ひび割れ
- ②鉄筋に沿ったひび割れ、コンクリートの剥離
- ③函軸方向のひび割れ(頂版中央付近)
- ④函軸直角方向・壁面斜め方向のひび割れ
- ⑤側壁函軸方向ひび割れ(コールドジョイント)
- ⑥頂版の不規則なひび割れ
- ⑦側壁函軸方向水面付近の変状(ひび割れ, 剥離)
- ⑧呑口・吐口部の網目状ひび割れ

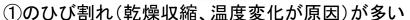
函体に生じるひび割れの類型化

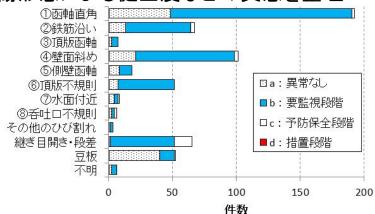
(2)コンクリート部材の致命傷に繋がる劣化状況の明確化変状事例の特徴・具体的事例を収集・整理中

- できるだけ多くのデータを用いて損傷形態の分類(妥当性の確認)
- 使いやすいガイドラインのための事例に応じたスケッチ・写真等の収集

乾燥収縮、温度変化による損傷例(①)

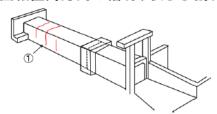

右側壁 頂版 左側壁 0 10 10m

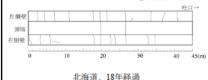


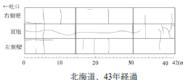


不同沈下による損傷例(④) 継ぎ目の開き、段差が生じる例もあり

■ 確認される損傷形態の頻度、ひび割れ幅や損傷形態による健全度などの実態を整理




損傷を受けた構造物の大部分がb(要監視段階)

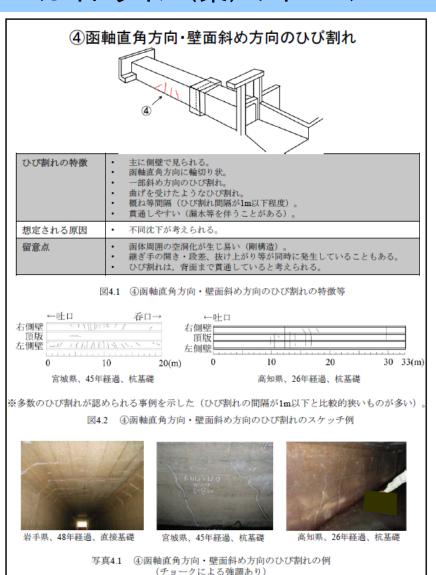

①函軸直角方向の輪切り状ひび割れ

ひび割れ等の 特徴	側壁や頂版で見られる。 函軸直角方向に輪切り状。 概ね等間隔(ひび割れ間隔が数m以上と比較的広い)。
想定される原因	 温度変化や乾燥収縮等の影響により生じた寸法変化が拘束されたことが考えられる。
留意点	 内部の鋼材(鉄筋)が腐食するまでは性能への影響は大きくない。 温度変化や乾燥収縮等の影響は、長期的(約5年後~)には収束が予想される。

図1.1 ①函軸直角方向の輪切り状ひび割れの特徴等

※多数のひび割れが認められる事例を示した(ひび割れの間隔が数m以上と比較的広い)。 図1.2 ①函軸直角方向の輪切り状ひび割れのスケッチ例

山梨県、46年経過 秋田県、68年経過


写真1.1 ①函軸直角方向の輪切り状ひび割れの例

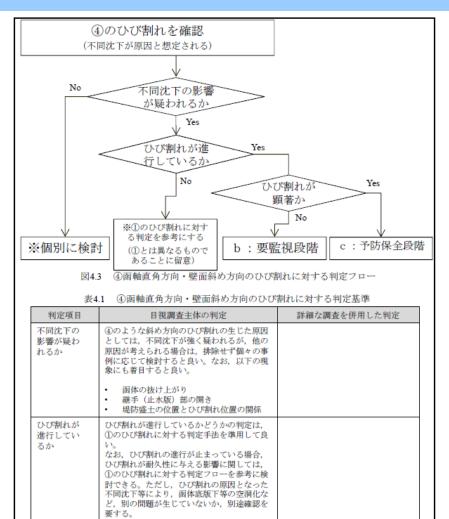

①のひび割れを確認 (温度変化・乾燥収縮等が原因と想定される) ひび割れが 顕著か されるひび割れの例 No ひび割れが進 行しているか 類されるひび割れの例 No 鋼材の腐食 「b. 要監視段階」に分類 が顕著か Yes a:異常なし b:要監視段階 c:予防保全段階

図1.3 ①函軸直角方向の輪切り状ひび割れに対する判定フロー 表1.1 ①函軸直角方向の輪切り状ひび割れに対する判定基準

判定項目	目視調査主体の判定	詳細な調査を併用した判定
ひび割れが 顕著か	以下のいずれかの条件に合致する場合 は、ひび割れは顕著と判定する。なお、 以下のいずれかの条件に合致する場合で も、該当する箇所が極めて限定されてい る場合は、顕著でないと判断しても良い。 ・ ひび割れ幅が大きい (0.3mm以上)。 ・ ひび割れ部に漏水 (跡) が認められ る。 ・ ひび割れ部に補物が認められる。	
ひび割れが 進行している か	以下の条件に合致する場合は、ひび割れが進行していると判定して良い。 ・ 過年度の点検結果等と比較して、ひび割れが進展(長さ,幅、数)。 ※ひび割れ幅は、季節で変動する場合があるため、ひび割れ幅の変化を評価する際は調査時期に注意が必要。	
鋼材の腐食が 顕著か	以下の条件に合致する場合は、コンク リート中の鋼材(鉄筋)の腐食が顕著と 判定して良い。 ・ 複数箇所のひび割れ部にさび汁と疑 われる析出物が認められる。 ※鋼材の腐食箇所が限定的であれば、 「要監視段階」に分類される。 ※目視調査で鉄筋の腐食状態を精度良く 把握することは困難であり、詳細な調 査を行うことが推奨される。	以下の条件に合致する場合は、コンクリート中の鋼材(鉄筋)の腐食が顕著と判定して良い。 ・ はつり出した鋼材に断面欠損を伴う腐食が認められる。 ※鋼材の腐食が表面さび程度であれば、「要監視段階」に分類される。 ※調査の結果、びび割れが表面的なものであった場合、「ひび割れが顕著か」の判断に戻って顕著でないと再判断して良い。

損傷状況の典型例ごとに、特徴や健全度判定の目安、損傷事例、補修方法などを整理。①の場合。

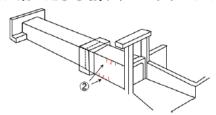
不同沈下による影響が進行しつつある段階に

おいては、目視調査のみでは評価が困難であ

り、詳細な検討を行うまでは、予防保全段階

と判定する。

損傷状況の典型例ごとに、特徴や健全度判定の目安、 損傷事例、補修方法などを整理。④の場合。


ひび割れが

顕著か

③のひび割れで荷重の影響につい

て総合判断する際の考え方を参考

②鉄筋に沿ったひび割れ、コンクリートの剥離

ひび割れ等の 特徴	側壁や頂板で見られる。 概ね等間隔(配筋ビッチによるが,ひび割れ間隔は数10cm程度)。 鋼材(鉄筋)のかぶりが小さい。 鋼材(鉄筋)が露出していることが多い。
想定される原因	鋼材(鉄筋)の腐食。
留意点	腐食した鋼材(鉄筋)の腐食程度や範囲に留意が必要。 腐食原因(中性化,塩害)を明確にすることが必要。 鉄筋の配置が不適切でかぶりが小さかったため、中性化,塩害が生じてい

図2.1 ②鉄筋に沿ったひび割れ、コンクリートの剥離の特徴等

群馬県、37年経過 河口より143km

鳥取県、40年経過 河口より18.9km

長野県、81年経過 河口より53km

写真2.1 ②鉄筋に沿ったひび割れ、コンクリートの剥離の例

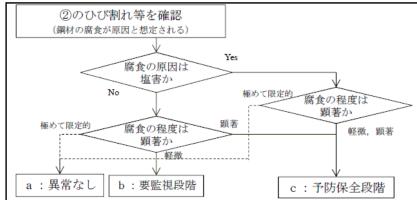


図2.3 ②鉄筋に沿ったひび割れ、コンクリートの剥離に対する判定フロー

表2.1 ②鉄筋に沿ったひび割れ、コンクリートの剥離に対する判定基準

判定項目	目視調査主体の判定	詳細な調査を併用した判定
腐食の原因は塩害か	以下のいずれかの条件に合致する場合は、 塩害と判定し、それ以外は塩害でないと 判定して良い。ただし、正確を期するため詳細な調査を行うのが望ましい。 ・ 道路橋示方書・同解説に示される塩 害の影響地域に該当。 ・ 河口に近く禘水の週上が疑われる。 ※過去に建設された構造物の中には、建 設当初からコンクリート中の塩化物イ オン量が多く、鋼材腐食の原因になっ ているものがある。これは、目視調査 では明らかにできない。	以下のいずれかの条件に合致する場合は、 塩害と判定し、それ以外は塩害でないと 判定して良い。 ・ 鉄筋近傍のコンクリート中に 0.6kg/m³程度以上の塩化物イオンが 含まれている。 ※塩化物イオン量の測定は、JISA 1154による。 ※腐食を発生させる塩化物イオン量 としては、一般に1.2kg/m³程度と 考えられる場合が多いが、測定誤 差も考慮し、安全側に関値を提案 した。関値にこだわらず総合的に 評価することが望ましい。
鋼材の腐食が 顕著か	次の条件に合致する場合は、コンクリート中の鋼材(鉄筋)の腐食が顕著と判定して良い。 ・ 複数箇所のひび割れ部にさび汁と疑われる析出物が認められる。 ※何らかの理由で、コンクリート表面付近に、構造上必要でない鋼材(鉄筋)が局所的に存在し、腐食ひび割れが生じている場合もある。この場合「極めて限定的な腐食」として、構造物の健全度評価上は無視しても良い。ただし、美観や第三者被書等については、適切に配慮しなければならない。	以下の条件に合致する場合は、コンク リート中の鋼材(鉄筋)の腐食が顕著と 判定して良い。 ・ はつり出した(露出した)鋼材に 断面欠損を伴う腐食が認められる。

損傷状況の典型例ごとに、特徴や健全度判定の目安、損傷事例、補修方法などを整理。②の場合。

⑥頂版の不規則なひび割れ

ひび割れの特徴	頂版で見られるひび割れで、函軸方向や網目状の不規則なひび割れ ひび割れ幅が比較的小さい(0.3mm以下程度)ものが多い
想定される原因	コンクリートの表層と内部の乾燥収縮量の差 荷重の影響(③参照) アルカリシリカ反応(⑧参照) 軽微なひび割れの原因特定は、困難
留意点	内部の鉄筋が腐食するまでは性能への影響は大きくない。

図6.1 ⑥頂版函軸方向・不規則網目状ひび割れの特徴等

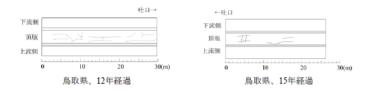


図6.2 ⑥頂版函軸方向・不規則網目状ひび割れのスケッチ例

高知県、31年経過

鳥取県、12年経過

鳥取県、15年経過

写真6.1 ⑥頂版函軸方向・不規則網目状ひび割れの例 (チョークによる強調あり)

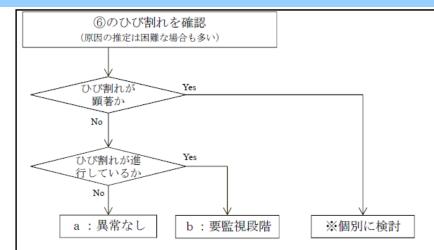


図6.3 ⑥頂版函軸方向・不規則網目状ひび割れに対する判定フロー

表6.1 ⑥頂版函軸方向・不規則網目状ひび割れに対する判定基準

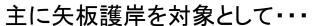
判定項目	目視調査主体の判定	詳細な調査を併用した判定
ひび割れが 顕著か	ひび割れが顕著かどうかの判定は、① のひび割れに対する判定手法を準用し て良い。 ひび割れが顕著な場合は、その原因を 個別に検討するのが良い。	
ひび割れが 進行している か	ひび割れが進行しているかどうかの判定は、①のひび割れに対する判定手法を準用して良い。 顕著でないひ割れについては、一般にすぐに耐荷力等に影響を与えることは考えにくいが、進行性がある(疑われる)場合は、観察箇所を決めて経過を観察するのが良い。	ひび割れが存在しても顕著でない程度の 場合は、調査によって原因を明らかにす ることが困難であることが予想される。 また、ただちに耐荷力等への影響が生じ ることも考えにくいので、当面は経過観 察とするのがよい。 ※短期間のうちに顕著なひび割れの進行 が見られた場合は、c:予防保全段階 と判定する。

損傷状況の典型例ごとに、特徴や健全度判定の目安、損傷事例、補修方法などを整理。⑥の場合。

樋門・樋管と矢板護岸等の鋼材の、致命傷に繋がる劣化状況の明確化と既存非破壊検査技術

概要

担当:土木研究所材料資源研究グループ 西崎・冨山, 京都大学 杉浦


樋門・樋管と矢板護岸等の鋼構造物 ⇒ 適切な防食が必要

- ▶ 樋門・樋管⇒防食塗料等が確立されている。
- ➤ 矢板護岸 ⇒無塗装鋼矢板も多い。点検が困難。

腐食などの実態把握が必要

本研究では

- (1) 腐食・劣化状況の調査・把握を図る。
 - ⇒ 特に致命的な損傷につながる劣化の把握手法を検討する。
- 河川護岸鋼矢板の腐食劣化事例に関する情報収集
- ・腐食劣化事例の形態による分類・整理

- ·河川護岸鋼矢板の腐食劣化事例に関する情報収集の継続
- ・腐食による鋼材減量などに関する詳 細調査

- ・河川護岸鋼矢板の腐食劣化事例に関する情報収集の継続
- ・護岸構造体としての残存性能の評価
- ・劣化の深刻度による分類・着目点の整理
- (2) 効率的な致命的劣化把握手法の可能性を調査する。
 - ⇒ 鋼矢板の致命的劣化検出への非破壊検査手法の適用性を検討する。
- ・河川護岸鋼矢板の腐食劣化程度の 把握に適用可能と思われる非破壊 検査方法に関する文献・情報の収集
- ・非破壊検査技術の絞り込みと河川護 岸鋼矢板への適用性調査

・非破壊検査技術の絞り込みと、室内実験 による河川護岸鋼矢板への適用性調査

- ・現場試験による各種非破壊検査技術の 適用性の検証
- ・各種非破壊検査技術の、河川護岸鋼矢板・鋼管矢板の効果的な点検への適用 可能性のとりまとめ

腐食・劣化状況の調査・把握

- ① 河川護岸鋼矢板の点検・調査事例に関する情報収集
 - 1. 鋼矢板護岸の点検・調査事例について関東地方整備局、大阪府、埼玉県の担当者 に聞き取りを実施。
 - 2. 直轄河川における集中点検結果などとともに、情報を整理。

- ② 典型的腐食劣化事例における調査方法検討のための現地調査
 - 1. 鋼矢板護岸の典型的な腐食劣化事例として、関東地方整備局、大阪府、埼玉県管内の汽水・淡水域河川で現地調査を実施。
 - 2. 汽水・淡水域における鋼矢板の腐食劣化の特徴を把握するとともに、腐食による板 厚減少量などに関する詳細調査、残存耐力の評価方法の検討等を実施。

船上からの目視(概略)調査

船により近接できる限界からの視点 (干潮時、遠望)

船により近接できる限界からの視点 (満潮時、近接)

コンクリートの剥落・割れや、矢板 の漏水のような大きな変状は把握 することができる

汚れや貝類の付着等により、腐食の判別はし難い。

板厚方向への腐食の進行は、目視では把握できない。

干潮時⇒矢板護岸への近接不可 満潮時⇒矢板の没水により船上 からの目視不可

- 感潮域では水位を考慮した 調査時期の設定が重要
- 鋼矢板の「腐食」については、
 10年おき程度の「近接による詳細調査」が必要

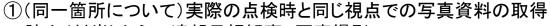
近接による腐食状況の詳細調査

①荒川下流河川事務所管内(荒川)調査日:平成28年1月22日

②埼玉県越谷県土整備事務所管内(伝右川)

調査日:平成28年2月8日

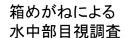
③大阪府西大阪治水事務所管内(六軒家川、平野川)


調査日:平成28年2月10日

④埼玉県朝霞県土整備事務所管内(越戸川、黒目川)

調查日: 平成28年2月12日

⑤埼玉県さいたま県土整備事務所管内(竪川、緑川、藤右衛門川)


調査日:平成28年2月19日

- ・陸上(対岸)からの遠望目視観察、写真撮影
- ・近接写真撮影(脚立、胴長、自撮棒、水中メガネ、水中カメラ等の活用)
- ②近接調査
 - ・層状さび発生箇所について、さびを除去後、超音波厚さ計による残 存肉厚の計測
 - ・上記計測結果と写真資料(見た目)との関連付け
- ③分析調査
 - ・現地で採取した錆および水の分析(後日、実験室で)
 - ・腐食機構に関する検討

自撮り棒による 陸上からの写真撮影

調査結果①(遠望からの目視では腐食が把握しにくい事例)

対岸からの遠望写真

近接写真

日常点検において「汚泥の付着」と誤認されていた水際腐食の事例

除去前

除去後

フジツボの付着により鋼材面の状況が把握できない事例

調査結果②(鋼矢板護岸で見られた主な変状)

傾き

傾きによるジョイント部の開き

背面土砂の流出

はらみ出し

ジョイントからの漏水による腐食

笠コンクリート目地部からの 漏水による腐食 32

調査結果③(腐食による損傷が顕著な箇所(1))

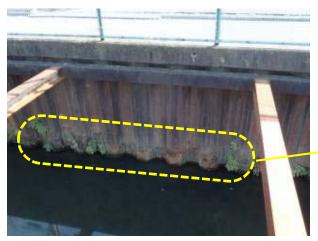
ジョイント部(漏水による腐食)

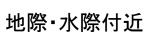
排水管の下部(排水や雨だれによる腐食)

ジョイント部(干満部の隙間腐食)

開孔部の下部(漏水による腐食)

調査結果④(腐食による損傷が顕著な箇所(2))



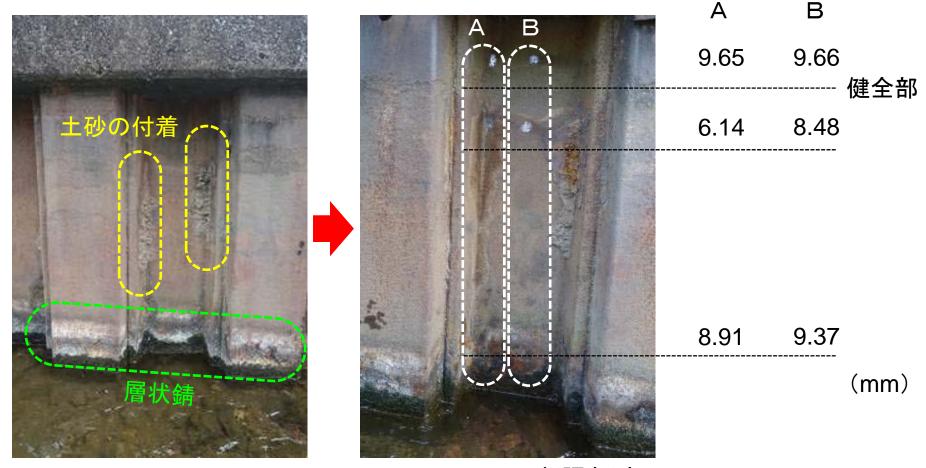

落差工付近(飛沫による腐食)



落差工付近(飛沫による腐食)

調査結果⑤(腐食による損傷が顕著な箇所(3))

水際付近から成長した層状錆



層状錆の剥落により外観上は健全に見えるが、 実際には板厚が減少している

目視点検のみで腐食による損傷程度を確実に把握することは困難

調査結果⑥(板厚測定結果の例)

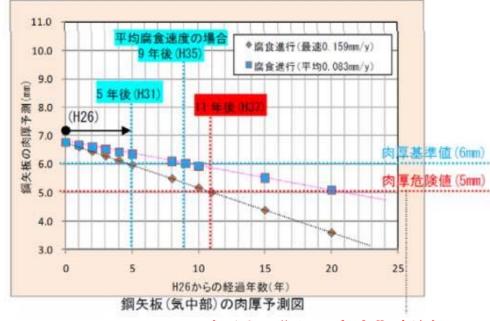
A:フランジ(隅角)部

B: ウェブ部

- 土砂が付着した隅角部の減肉が最も大きかった(約36%の板厚減)
- ウェブ部では層状錆の剥離あとの減肉が最も大きかった(約12%の板厚減)
- 河川環境(淡水域)における鋼材の腐食は緩やかに進行するものと考えられる。 36

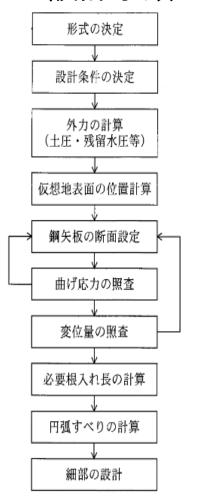
腐食による鋼材減量の詳細調査

鋼矢板調査状況

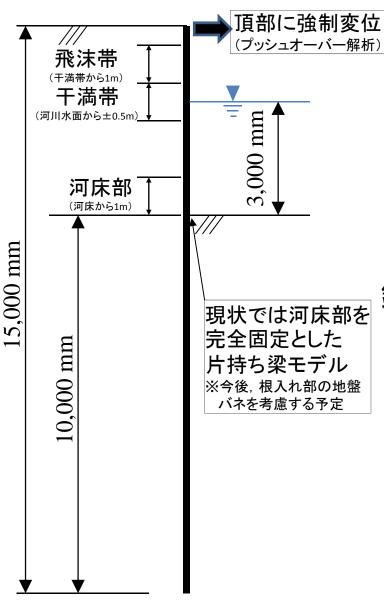


さびの回収

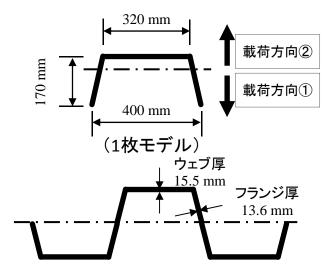
■ 残存板厚の計測値に基づく腐食速度の推定



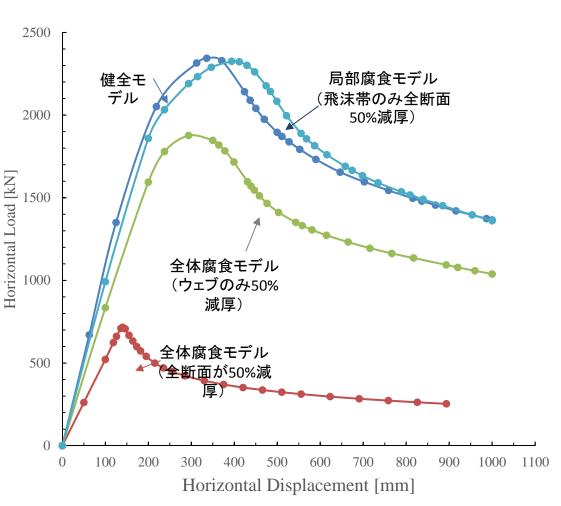
※あくまで"均一腐食"が前提

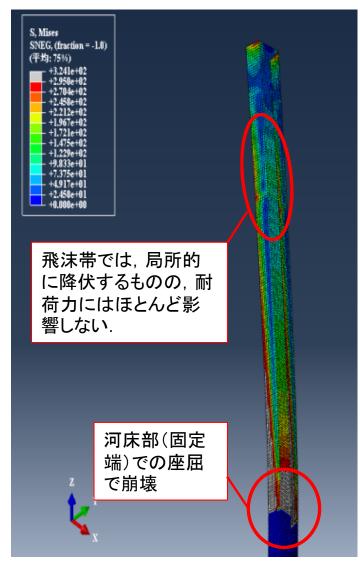

- 均一腐食を前提とした、残存板厚による余寿命の概算が可能
- ただし、局部的な腐食の進行による孔あき、漏水等に配慮する必要がある

残存耐力評価の一例


鋼矢板護岸 の設計手順

※腐食代表裏合わせ て2mm


解析対象の概要



(3枚モデル) 鋼矢板断面形状(U-IV型) 解析ケース

	腐食位置		腐	食減肉	量
	高さ方向	断面内		%	
Case1	_	_		0	
Case2		全体	30	50	95
Case3	全体	Webのみ	30	50	95
Case4		Flangeのみ	30	50	95
Case5		全体	30	50	95
Case6	飛沫帯	Webのみ	30	50	95
Case7		Flangeのみ	30	50	95
Case8		全体	30	50	95
Case9	干満帯	Webのみ	30	50	95
Case10		Flangeのみ	30	50	95
Case11		全体	30	50	95
Case12	河床部	Webのみ	30	50	95
Case13		Flangeのみ	30	50	95

解析結果の一例(鋼矢板1枚モデル, 載荷方向①)

飛沫帯腐食モデルの応力分布 (最大荷重時)

現地調査結果等より明らかとなった鋼矢板の変状把握の着目点

変状	懸念すべき影響	推定される主な原因	
広範囲にわたる ほぼ均一なさび	板厚減(軽度)	大気環境で生じる一般的な腐食	
水際, 地際付近等の 局所的なさび(軽度なもの)	板厚減 局所的な環境の違いや乾湿繰り 局部・集中腐食への進行 よる集中腐食		
層状さび	板厚減 板厚減による孔あき	局所的な環境の違いや乾湿繰り返し等に よる集中腐食 塩分の影響等による異常腐食	
孔あき、漏水	漏水, 背面土砂の流失	局所的な環境の違い等による集中腐食 変形など	
変形、われ、はらみ出し	構造耐力の低下	腐食の末期的な状態 地盤の変化など	

現地調査結果等に基づく鋼矢板護岸の健全度評価基準(暫定案)

	外観変状のグレーディング(案) ~ 腐食 ~						
外観変状の グレード	異状なし	グレード I	グレードⅡ	グレードⅢ			
典型的な 劣化写真							
着眼点	全面に均一な腐食	不均一な腐食 (地際・水際など)	鋼材表面の層状な 腐食生成物	顕著な層状腐食 孔あき			
	——————— 外観変状	: のグレーディング(案)					
外観変状の グレード	異状なし	グレード I	グレードⅡ	グレードⅢ			
典型的な 劣化写真							
着眼点	漏水なし	嵌合部からの軽微 な漏水	嵌合部からの 顕著な漏水	漏水による嵌合部 の顕著な腐食			

効率的な致命的劣化把握手法の可能性の調査

- ① 河川護岸鋼矢板の腐食劣化状況の把握に適用可能と考えられる非破壊検査 方法に関する情報収集
 - 1. 既存の非破壊検査機器を用いた、鋼構造物の腐食劣化診断に関する研究事例や適用事例について、学術論文を中心に文献調査を実施

- ② 非破壊検査技術の絞り込みと、室内実験・現場実験による河川護岸鋼矢板への 適用性調査
 - 1. 検査精度、現場作業性、遠隔操作性、汎用性、作業効率等の項目により適用性を評価
 - 2. 適用性が高い技術について、試験体を用いた室内検証実験や、矢板護岸の現場にお ける検証実験を実施
 - 3. 構造解析による鋼矢板の残存耐力評価手法を検討

代表的な非破壊検査技術の特長と課題

	非破壊検査技術	技術の概要	特長	課題
詳細調査への適用を想定	超音波厚さ計による板厚計測	超音波探触子を対象物の表面に密 着させ、超音波が表面から裏面まで 伝播する時間と、鋼材中の音速から 板厚が得られる。	鋼構造物の点検診断の一手法としてよく用いられている。確実かつ高精度な計測が可能。水中での計測も可。	 測定箇所に付着している生物等を除去した後、表面を平滑にする前処理が必要。 ⇒ 非接触での超音波計測技術も実用化されつつある。
	渦流探傷装置による 板厚計測	励磁コイルで誘起された渦電流が鋼 材中を浸透し、鋼材裏面で急激に減 衰するまでの渦電流持続時間から、 健全部に対する相対的な板厚が求め られる。	化学プラントや港湾構造物などの探傷用途で実績がある。非接触での測定が可能であり、被覆や生物等を除去せずに測定可能。	• 水中での計測は <mark>特殊な治具</mark> が必要。
	自然電位、分極抵抗 法	対象物の電位や、微弱な電流又は電 位差を負荷したときに生じる電位変 化量または電流変化量を測定する。	 鋼材の腐食傾向を直接的に把握 することができる。 	測定箇所に付着している生物等を除去した後、表面を平滑にする前処理が必要。波浪による影響を受けやすい
の適用を想え	赤外線法	対象物から出ている赤外線放射エネ ルギーを検出し、見かけの温度に変 換して、温度分布を画像表示する。	面の温度分布として捉え、可視化情報として表示できる。対象物から離れたところから、非接触で温度測定ができる。	水中部への適用が困難表面付着物、背面土砂等の 影響を受けやすい
概略調査への	衝撃弾性波法	鋼球などのインパクターによる打撃に よって生じる弾性波をセンサーで検知 し弾性波の伝搬速度、反射時間など から対象物の欠陥等を把握する	 測定が迅速である。 遠隔操作が可能。 波浪による影響を受けにくい	• ジョイント部の影響が不明

まとめ(1)

- (1-1~3)樋門・樋管周り等の空洞化に関する堤防機能低下過程の解明
- ①スクリーニング法の提案
 - ・抜け上がり量および函体直下の基礎地盤の土質により空洞出現率が異なり、砂地盤 において抜け上がり量が少なくても空洞が発生しやすい傾向
 - ・スクリーニング手法として、抜け上がり量+基礎地盤の土質による判断基準を提案
- ②非破壊検査技術による空洞の確認方法の提案 市販のGPR探査器(400MHz,800MHz等)について
 - 空洞の有無であれば、探査可能。
 - ・鉄筋コンクリートの場合、適用できる厚さの限界は50~60cm程度まで
 - ・空洞の厚さを把握することは困難。掘孔による確認が必要
- ③空洞による堤防の安全性への影響を踏まえた対策優先度の提案
 - ・空洞の影響, 連通試験の結果を利用した止水矢板の機能を考慮した堤防の安全性評価手法を提案
 - ・周辺堤防との安全性の比較等による対策優先度の設定に活用
- (1-4)物理探査による堤防の縦断的な異常部検出方法の検討
 - ・物理探査結果について、物理モデルを介して既存ボーリングデータを活用しサイト毎に キャリブレーションを行うことで、ボーリング間の土質構造を精度よく推定する手法を提 案
 - ボーリング間の土層構造の推定,特異箇所の有無の確認に活用の可能性

まとめ2

- (2)コンクリート部材の致命傷に繋がる劣化状況の明確化
 - ・既存の補修構造物のデータ等から、函体に生じるひび割れを類型化を提案
 - ・ひび割れ形態毎に具体例を示し、ひび割れの原因、程度、進行性の有無等に応じた健 全度評価の目安や補修方法等を整理
- (3) 樋門・樋管と矢板護岸等の鋼材の、致命傷に繋がる劣化状況の明確化と既存非破壊検査技術の適用性の把握
 - ・河川護岸鋼矢板の腐食劣化事例に関する情報を収集整理し、腐食形態、劣化の深刻 度による健全度の分類・点検における着目点を整理
 - ・各種非破壊技術について、検査精度、現場作業性、遠隔操作性、汎用性、作業効率等の項目により適用性、適用にあたっての課題等を整理