Demonstration for introducing a microalgae cultivation system with carbon dioxide which captured from digestion gas in the sewage treatment plant

Members of Demonstration

Toshiba Corporation, euglena Co. Ltd., Nikkan Tokushu Co. Ltd., Nihon Suido Consultants Co. Ltd., Japan Sewage Works Agency, Saga City

Place of Demonstration

Saga City Sewage Treatment Center

Abstract of Demonstration

Separation and recovery of CO₂ from biogas, cultivation of microalgae (Euglena) using recovered CO₂ and filtrate to verify the following performance.

1. CO₂ separation and recovery, 2. Euglena production, 3. N&P removal from filtrate

OAbstract of proposed technology

Proposed technology consists of following main technologies.

- Separation and recovery of CH₄ and CO₂ from sewage biogas efficiently.
 ⇒Separation and recovery of CO₂ by PSA method (separate and recover CH₄ and CO₂ continuously by repeating pressurization and depressurization)
- 2. Cultivating *Euglena* efficiently by using recovered CO₂ and filtrate which contains nitrogen and phosphorus.
- 3. Solubilizing sludge to stabilize and enhance biogas generation.

OInnovations and merits of proposed technology

[Innovations]

- Separation and recovery of high concentration of not only CH₄ but also CO₂ from sewage biogas.
- Utilizing unused resources like CO₂ from sewage biogas, nitrogen and phosphorus in filtrate for *Euglena* cultivation.

[Merits]

- Separated and recovered CO₂ from sewage biogas could be placed in a new resources.
- High additional value resources such as feed and fertilizer could be produced from cultivated *Euglena*.
- Environmental load from discharge water could be reduced by removing nutrients (nitrogen, phosphorus) in filtrate.