車両型地中レーダ探査装置と空洞判定AI を用いたスクリーニング技術の 実用化に向けた調査事業

川崎地質•日本下水道事業団共同研究体

R4.8.4 ガイドライン説明会

- 1. 革新的技術の概要と目的
- 2. 革新的技術の概要
- 3. 革新的技術の導入効果
- 4. 革新的技術の計画・設計、維持管理
- 5. 実証期間中に行った技術上の工夫・改善点
- 6. 問い合わせ先

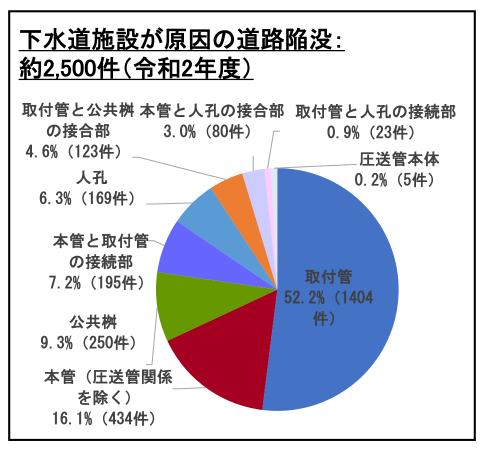
<u>1-1. 下水道事業が抱える課題</u>

- 膨大なストック:全国の下水道管路管理延長=約49万km(令和2年度末)
- 老朽化の進行:標準耐用年数50年経過した下水道管渠の急増
- 道路陥没:下水道管路の老朽化等を原因として、道路が陥没
- 適正な管理:限られた人員と予算での持続的な維持管理

<u>1-2. 下水道ビジョンとの関連</u>

■ 「循環のみち」実現のための3つの方針

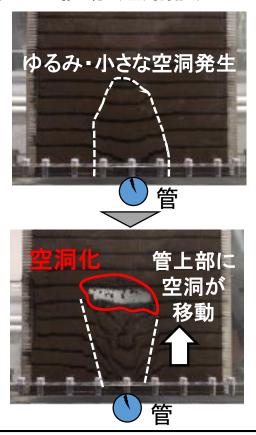
水のみち


資源のみち

施設再生

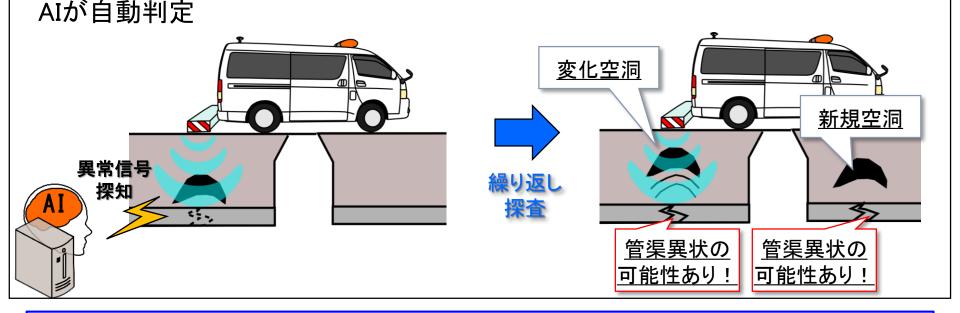
新たな社会ニーズに応えるサステナブル下水道の実現

<u>「発生対応型から予防保全型への転換」</u>


1-3. 革新的技術の特徴と課題解決のアプローチ

引用:国土技術政策総合研究所下水道研究部:国総研における下水道管路 ストックマネジメントに 関する調査研究,下水道協会誌, 2022/Vol.5 9/No.712(https://www.jswa.jp/wp2/wp-content/uploads/pdf/journal/20 22-02_No712.pdf)

<道路陥没プロセス>


- ①土砂を流出させるような埋設管の不具合
- ②空洞の発生・移動・道路陥没

H28年度B-DASH研究報告書(川崎地質・日本下水道事業団・船橋市共同研究体)の一部を引用・加筆

1-3. 革新的技術の特徴と課題解決のアプローチ

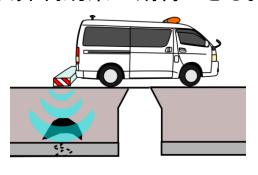
- ◆<u>車両型地中レーダ探査装置</u> 車両に搭載した地中レーダにより、道路下の空洞の変化を検知
- ◆空洞判定AI 車両型地中レーダ探査装置で取得したデータから、空洞の可能性がある場所を

①道路陥没を生じさせるような空洞の発見、②その原因となる重篤な異状がある下水道管路をスクリーニングするための技術

1-4. 革新的技術の普及対象範囲(ターゲット)

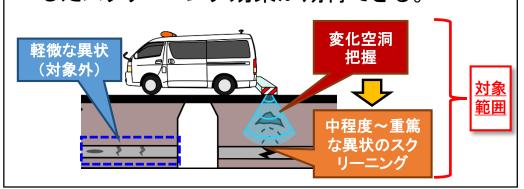
対象:探査車両が進入できる全ての下水道管路(本管、取付管、マンホール)

※ただし、変化した空洞を生じさせた管路のみ把握することが出来る


表. 革新的技術の適用範囲

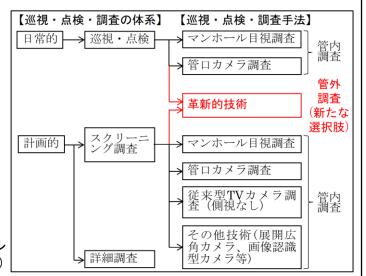
項目		内容
管路	管種、管径、土被り、 スパン長さ	道路上からの調査のため問わない。
	管路区別	本管、取付管の区別なく調査可能
	管路の状態	空洞発生に関わっている重篤な異状箇所(異状ランク、種別判定不可)
空洞	検出できる大きさ	長さ0.5m以上、幅0.5m以上、厚さ0.1m以上の大きさがあること
	検出できる深度	土被り2m程度まで

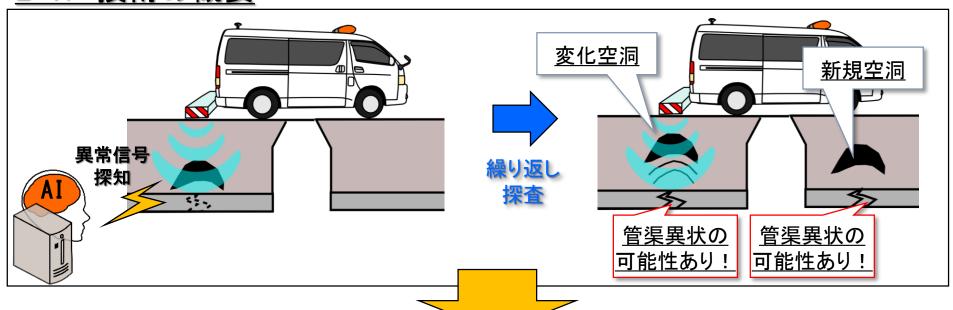
1-5. 革新的技術の導入により期待される効果


①道路陥没抑制効果

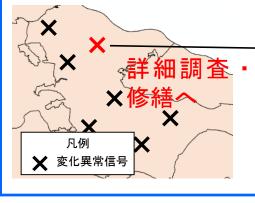
陥没前に空洞を発見できるため、 陥没抑制効果が期待できる。

②重篤な異状がある管路スクリーニング


空洞を生じさせるような管路異状を対象に したスクリーニング効果が期待できる。


③管路スクリーニングの新たな選択肢

事業体の施設・財政状況等に応じた 管路調査方針の新たな選択肢として 期待できる。


技術体系図(下水道管路施設の点検・調査マニュアル(案)(平成25年6月(公社)日本下水道協会を引用・編集)

2-1. 技術の概要

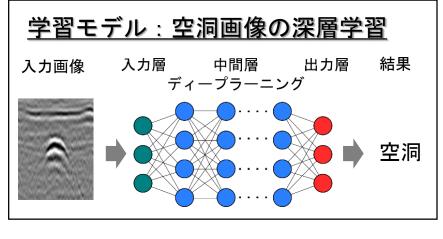
詳細調査等のスクリーニング技術として活用

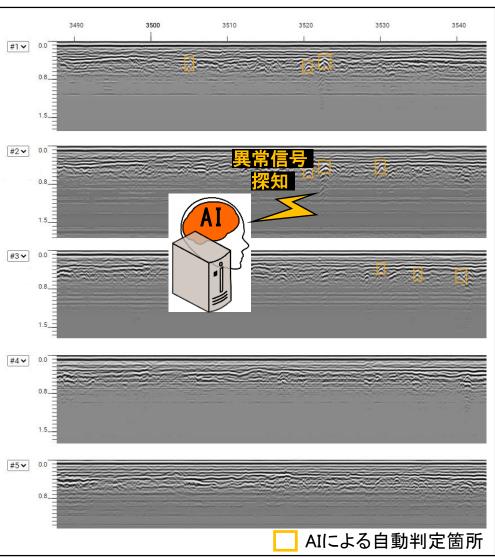
2-1. 技術の概要(車両型地中レーダ探査装置)

・車両で走行しながら、空洞が生じている可能性箇所(異常信号)のデータを取得

レーダアンテナ数:5 外観 •探杳幅:1.9m 概要 ・寸法:長さ5.3m×幅2.1m×高さ2.3m •検出可能空洞: 縱50cm×横50cm× 厚さ10cm以上 性能 ·探査可能最大深度:2m程度 ·最大走行速度:55km/h程度 •道路維持作業車登録 その他 普通運転免許で運転可能

2-1. 技術の概要(車両型地中レーダ探査装置)



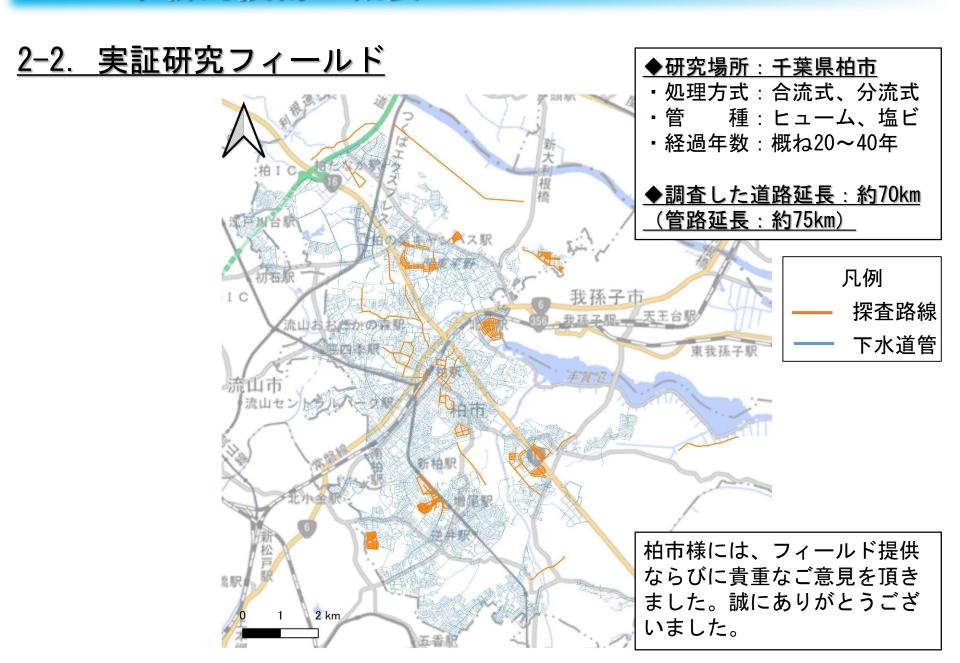

<u>2-1. 技術の概要(車両型地中レーダ探査装置)</u>

2-1. 技術の概要(空洞判定AI)

- ▶ 空洞データを深層学習したモデル
- ▶ 探査データをアップロードすることで、 自動的に空洞の可能性がある異常 信号を自動判定

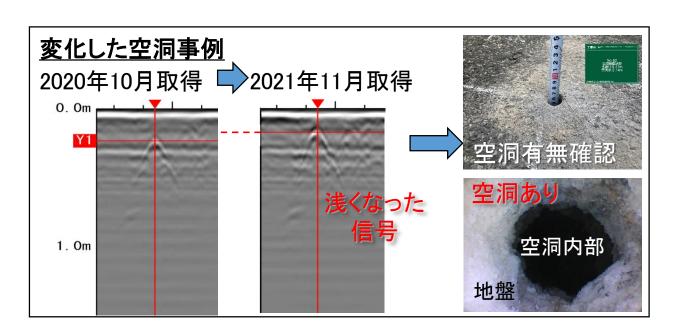
2-1. 技術の概要(技術の特徴)

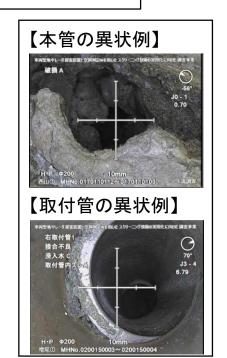
(1)管内を走行しない


- ▶ 道路上を走行し調査するため、土砂等の堆積有無等、管内の状況に調査可否が左右 されない。
- ▶ 管内を走行しないため、交通規制が不要で安全面で大きな利点。
- ▶ 交通の流れに沿って調査できるため、1日で広範囲の調査が可能。
- ▶ 警察協議等の特別な協議は必要なく、車両による走行のみの調査のため、巡視時などで活用可能。

(2)空洞解析の労力軽減

➤ AIにより空洞解析の労力を軽減。


(3) 道路陥没の抑制


▶ 道路陥没を発生させる空洞を陥没前に把握できるため、陥没件数の抑制に貢献可能。

<u>2-3. 実証研究成果①</u>

- ◆変化した空洞についての成果
 - ・変化した可能性がある: 0.03m/年以上で浅くなる(変化した空洞、注視)
 - ・変化した可能性が高い:0.06m/年以上で浅くなる(管内詳細調査対象)
- ◆ 対象施設:本管、取付管、マンホール
- ◆<u>調査頻度</u>: 年3回程度(秋、春~梅雨、夏)。さらに複数年のモニタリングが望ましい。
- ◆日進量:調査延長約20km、解析延長約160km

内容•目標値

技術者が抽出した空洞をAI

も80%以上抽出できる

2-3. 実証研究成果②

旦 L 売 泊 の 即 仮 し お 売 泊 で 虫 ス ー し

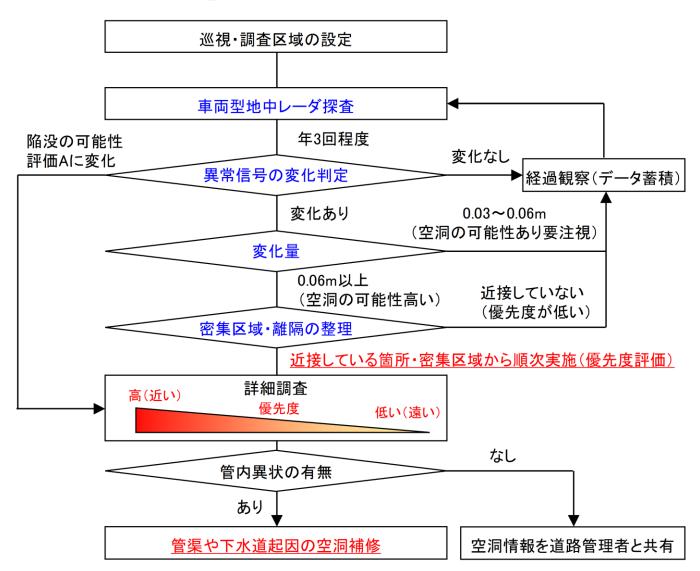
評価項目

AIの発見精度

号と空洞の関係	上が空洞であること	比率100%(達成)
(下水道管と変	変化した空洞周辺の管路に異状がある精度	・変化した空洞周辺で管内調査が実施できた箇所:19 ・上記のうち、実際に管内異状があった箇所:17 (中程度~重篤もしくは取付管関連:14) 管内異状正解精度:89%(中程度~重篤74%)
	全ての管内異状と変化し た空洞の観点から発見で きた管内異状の比率	・全ての管内異状:31 ・空洞変化により発見できた数:17・・・・比率55% ※空洞が変化すれば残り45%を発見できる可能性あり
	管内異状の程度詳細調査実施の判断材料	・土砂流入系の異状が多い・異状ランクa、b付近の空洞の変化が大きい。・異状がある管路の方が、無い場合と比べて空洞と近接。・変化量と離隔は詳細調査優先度(下水道起因で空洞が発生している箇所)の判断材料となる可能性あり。

LL 夜 1000/ ('去 라)

変化した異常信 変化した異常信号の80%以 確認した変化異常信号20箇所は、全て空洞あり


結果

技術者が抽出した数44、左記のうちAIも抽出した数:44

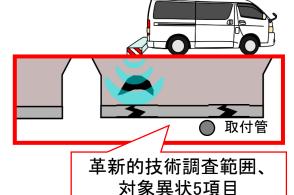
比率100%(達成)

2-3. 実証研究成果③

【本技術の活用フロー(案)】


2-4. 技術の適用条件・推奨条件

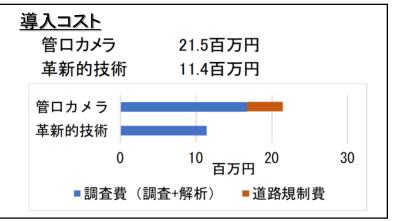
評価項目	現場諸元
適用·推奨条件	 探査位置:管渠直上あるいは周辺を探査できること。車道かつ有効幅員3.5m以上。 舗装・路面:鉄筋コンクリート舗装・敷き鉄板・水溜まりがないこと、車両が通行できること。アスファルト厚さ0.15m以下、路盤厚さ0.50m以下が望ましい。 交通量:問わない(ただし、路上駐車下の探査不可) 天候:雨天時、積雪時不可 調査頻度:雨季~冬季にかけて、年間3回程度の調査が望ましい(複数年のモニタリングが良い)。 土質条件:砂質土系の地盤、地下水位以浅。 AI:当探査装置のデータのみ適用可能。精度向上のため、取得データを用いて学習させていくことが望ましい。
専門技術性	免許:普通運転免許データ解析: AI解析後の異常信号比較には、専門技術者の判定が必要。


3. 革新的技術の導入効果

3-1. 導入コスト

項目従来技術(管口カメラ)革新的技術調査対象管内調査:本管(人孔周辺)管外調査:本管+取付管(車道全スパン)調査項目点検・調査マニュアル(案)の10項目土砂流入系の異状(破損、クラック、継手ズレ、浸入水、たるみ)+陥没の可能性のある空洞。ただし、変状状況は要詳細調査。

調査範囲、対象異状10項目



【革新的技術】

- ▶本技術と従来技術とは、調査対象や調査項目等が大きく異なる。
- ▶各々の導入効果やコスト、作業 日数等の得失に関して単純な比 較は困難(削減率については評 価していない)

項目		管ロカメラ	革新的技術
対象管路延長		80km (1スパン30m)	
道路種別		車道	
	調査	1, 200m	20, 000m
日進量	解析	900m	160,000m (+変化比較250箇所)
同一管路の調査回数		10	3回
交通誘導員		要2人	不要

- ・平成25年度B-DASH管ロカメラ単価210円/mを参考
- ・両技術:平成25年度労務単価を採用

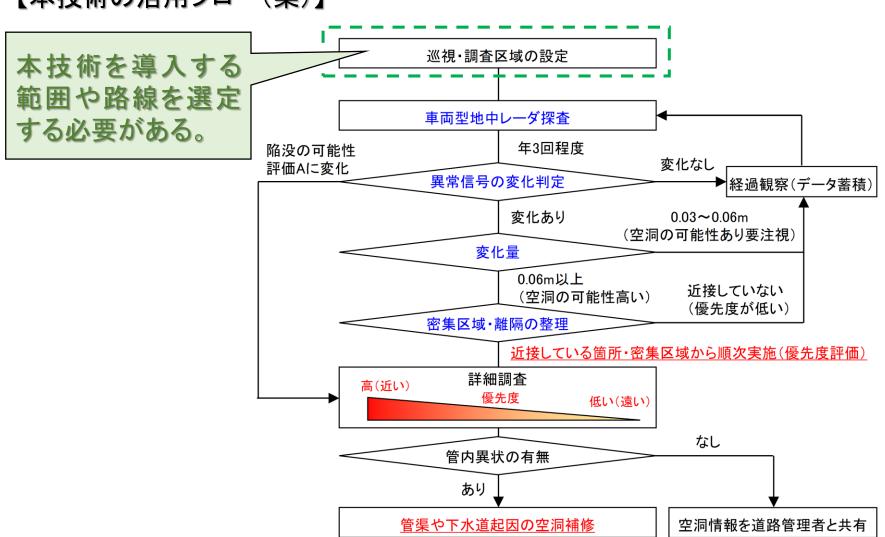
3. 革新的技術の導入効果

3-2. 陥没抑制効果

変化した空洞の発見

優先的な詳細調査の実施

空洞•管路補修

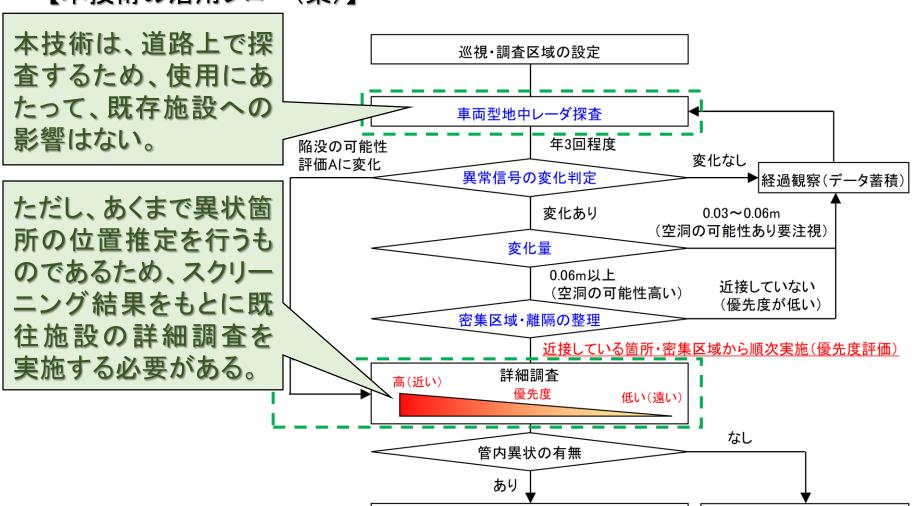


- ▶ 本研究で発見した陥没の可能性がある箇所は、迅速に空洞補修され、10 箇所以上の陥没を未然防止。
- > 下水道管路の修繕計画に貢献
- ▶ 下水道起因で発生する陥没の予防効果があることを確認
- ▶ 下水道起因でなくても、陥没により第三者への影響が生じる前に予防保全的な対応が可能(道路保全事業、住民の安心安全に寄与)

4. 革新的技術の計画・設計、維持管理

4-1. 計画・設計で考慮すべき事項

【本技術の活用フロー(案)】



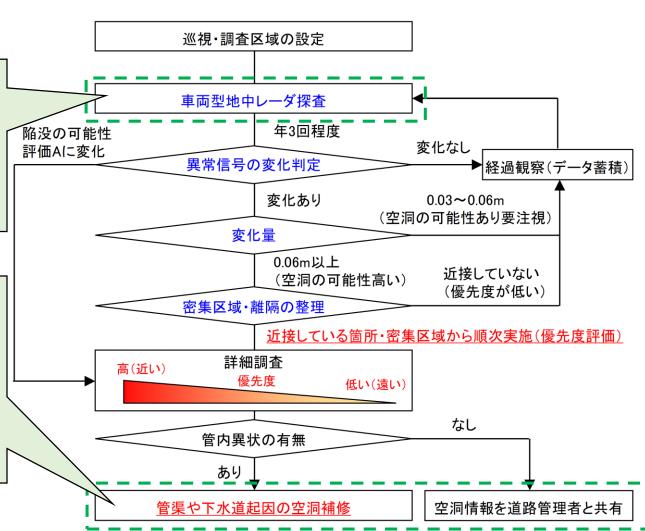
空洞情報を道路管理者と共有

4. 革新的技術の計画・設計、維持管理

4-2. 革新的技術の導入による既存施設への影響

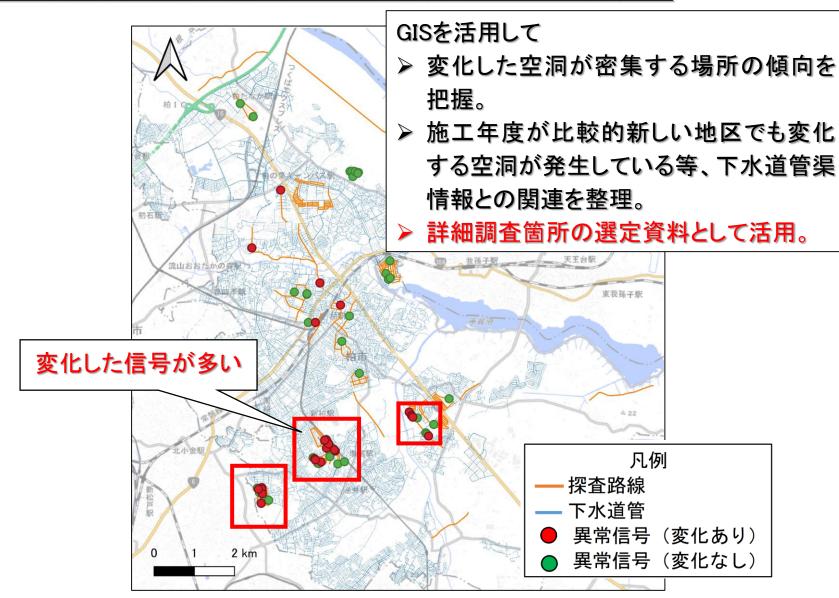
【本技術の活用フロー(案)】

管渠や下水道起因の空洞補修


4. 革新的技術の計画・設計、維持管理

4-3. 革新的技術の導入による既存維持管理への影響・留意点

【本技術の活用フロー(案)】


本技術は、川崎地質が 所有する探査装置であ るため、下水道事業者 によるメンテナンスは 不要。

ただし、詳細調査の結果をもとに、既往施設や空洞の補修検討、道路管理者との情報共有等が必要。

5. 実証期間中に行った技術上の工夫・改善点

GISによる空洞可能性箇所と下水道管路の重ね合わせ

6. 問い合わせ先

機関名	連絡先	
国土交通省 国土技術政策総合研究所	下水道研究部 下水道研究室 〒305-0804 茨城県つくば市旭1番地 TEL 029-864-3343 FAX 029-864-2817 URL http://www.nilim.go.jp	
≪問い合わせ窓口≫ 川崎地質株式会社	関東支社保全部 〒108-8337 東京都港区三田2-11-15 TEL 03-5445-2080 FAX 03-5445-2094 URL https://www.kge.co.jp/	
地方共同法人 日本下水道事業団	技術開発室 〒 113-0034 東京都文京区湯島2-31-27 TEL 03-6361-7849 FAX 03-5805-1806 URL https://www.jswa.go.jp/	

ご清聴ありがとうございました。