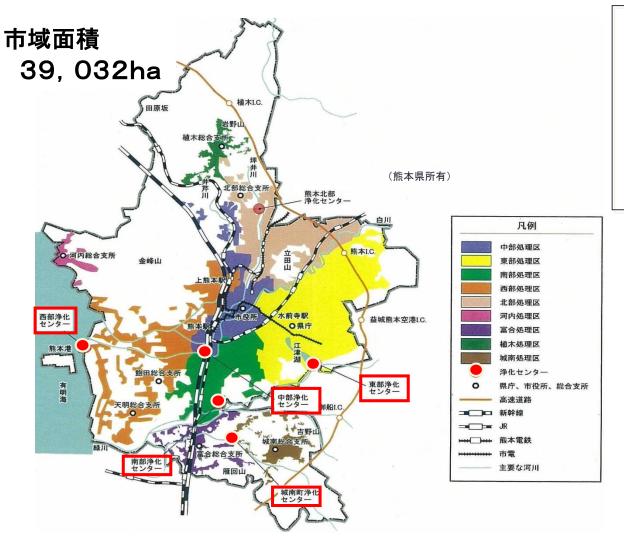
鋼板製消化槽の導入効果について


~バイオガスを活用した効果的な再生可能エネルギー生産システム~

熊本市上下水道局

目次

- 1. 熊本市下水道事業の概要
- 2. 導入経緯
- 3. 中部浄化センターの汚泥処理フロー
- 4. 導入した鋼板製消化槽の仕様
- 5. 導入したB-DASHプロジェクト
- 6. 鋼板製消化槽について
- 7. 施工状況
- 8. まとめ
- 9. 熊本市が取り組んでいる事の紹介

熊本市下水道事業の概要

【全体計画面積】 13, 724ha 【事業計画面積】 13, 026ha 【整備済面積】 11, 756ha

下水道普及率

89.7%

熊本市の浄化センター

処理場名	現有処理能力 (m3/day)	2018年度処理水量 (日平均 m3/day)
中部浄化センター	64,800	54, 265
東部浄化センター	138,300	110, 786
南部浄化センター	52,600	32, 341
西部浄化センター	23,600	14, 724
城南町浄化センター	4,700	2, 910
計	284,000	215,026

熊本市の浄化センター

中部浄化センター

B-DASHプロジェクトの技術を熊本市中部浄化センターに導入した。

現有処理能力	64,800 m3/day	
敷地面積	7.61ha	
処理方式	標準活性汚泥法	中部浄化センター
稼働年月日	昭和43年1月	

導入経緯

- 1. 既設消化槽の老朽化
 - ·経過年数55年(2017年度当時)
 - ・長寿命化計画に基づき更新 (健全度1.8<2.0)

- 2. 維持管理性を向上させたい
- 3. 建設コスト、維持管理費用を抑えたい
- 4. 地域バイオマスも受け入れられるようにしたい

新技術も含め、熊本市にメリットのある消化槽を検討した。

導入経緯

良い技術を幅広く募集する為に、入札方式を高度技術提案型総合評価方式とし、下記3方式の中から選択する事とした。

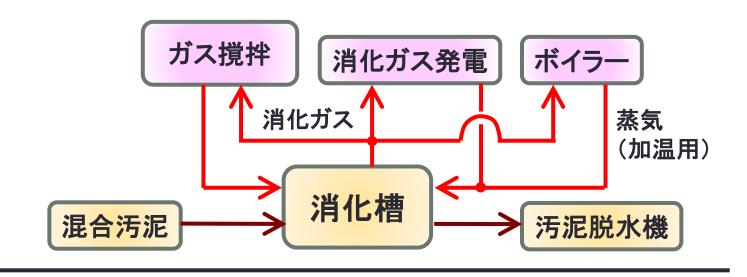
- •中温消化方式(鋼板製消化槽)
- •高温消化方式
- •高濃度消化方式

提案技術の評価項目(抜粋)

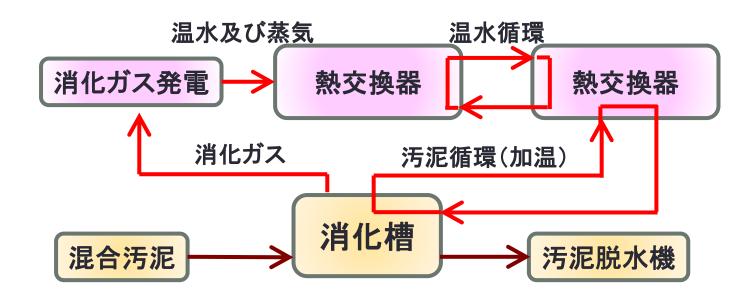
- 計画検討及び施工計画
- ・ 公的機関の技術評価
- 消化設備の性能と安定性
- 消化ガス発電機発電電力量
- 消化槽配置計画(専用面積)
- 異常発生の抑止、解消技術
- 維持管理性
- 温室効果ガス量

B-DASHプロジェクト等の公的機関による一定の評価を重要視。

導入経緯


技術とコストの総合点数が1番高かった鋼板製消化槽 (B-DASHプロジェクトの技術)を導入することが決まった。

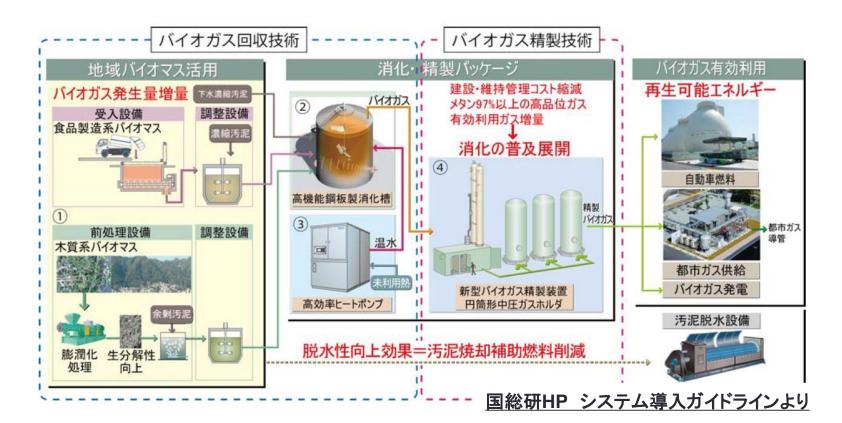
中部浄化センターの汚泥処理フロー


導入前

- ・コンクリート製
- •直接加温
- ・ガス撹拌

導入後

- 鋼板製
- -間接加温
- ・インペラ撹拌

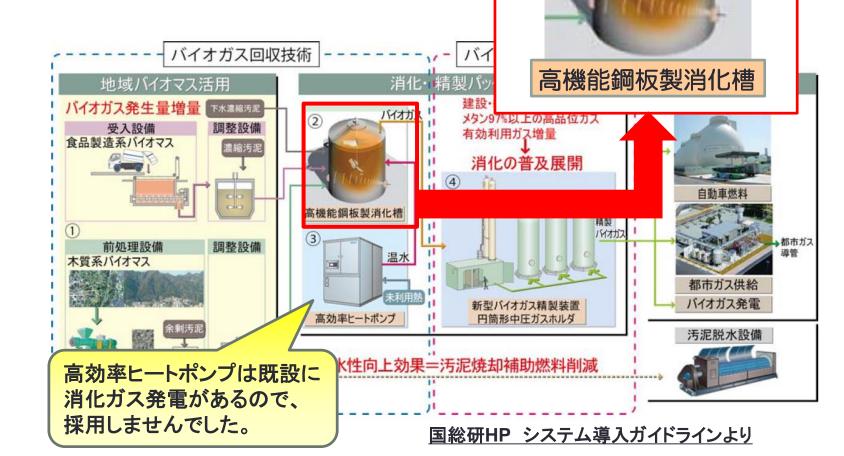

導入した鋼板製消化槽の仕様

項目	内容
対象汚泥	重力濃縮及び機械濃縮汚泥の混合汚泥
混合汚泥量	日最大:145m³、日平均:115m³
容量	3, 200m³(ϕ 16. 5m×高さ17. 4m)
消化方式	一段消化 / 中温
撹拌方式	機械撹拌(インペラ式)
加温方式	間接加温(熱源は消化ガス発電機の温水及び蒸気)
消化日数	20日~26日程度
消化率	50%以上
ガス発生量	500Nm³/t-VS以上

導入したB-DASHプロジェクト

B-DASHプロジェクト バイオガスを活用した効果的な再生可能エネルギー生産システム

下水処理場に地域バイオマスを受け入れ、下水汚泥と混合消化する事により、地域バイオマスから再生可能エネルギーであるバイオガスを生産するシステム。



2

1117

導入した技術

前頁のB-DASHプロジェクトのシステムの内、 高機能鋼板製消化槽の技術を導入。

鋼板製消化槽は下記の特徴をもっており、導入するメリットは大きい。

国総研 システム導入ガイドラインより

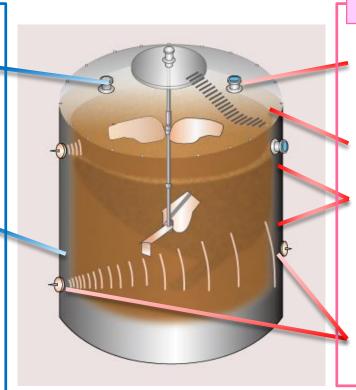
建設コスト	RC製よりも軽量であり、基礎コストの縮減が可能。 地上に設置可能で管廊工事も削減できる。
維持管理コスト	低動力攪拌機の採用。
現地工事期間	槽本体の現地組み立てが容易。 機械工事一括発注可能。
消化反応の維持	鋼板製の為、センサ類、覗き窓等の設置が容易で 自由度が高く、内部を可視化できる
堆積物対策	超音波発振器にて堆積物レベルの測定ができ、 攪拌機を逆回転させる事で効果的な排出が可能。
地域バイオマス	高濃度の汚泥への適応範囲が広い撹拌方式。 アンモニア濃度連続測定等が可能。

運転支援機能

ノズル配置の自由度が高い

最適配置

内部の状況 を的確に 把握


安定運転、トラブルの防止・解消

消化槽の健全性を確保

防食塗装サンプル ピースで防食状況 を確認

超音波での槽板厚 測定で腐食状況 を確認

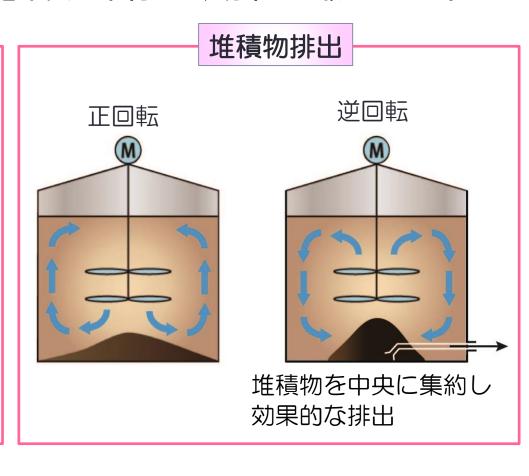
消化性能低下を未然防止

サイトグラスで撹拌、 発砲状況の確認

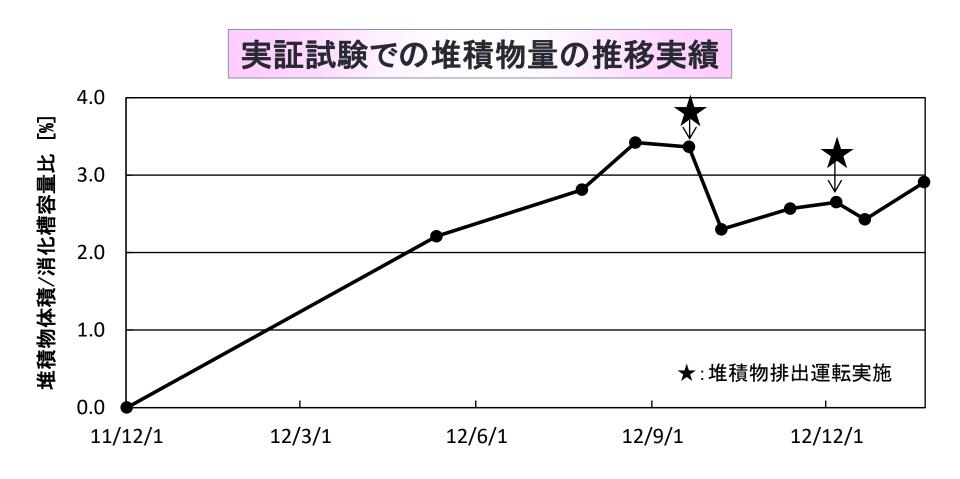
発泡検知器

温度センサで 撹拌ムラを確認

堆積物測定


鋼板製である事を生かし、超音波での堆積物高さの測定が可能。 インペラを逆回転する事で、堆積物を中央に集約でき、効果的に排出できる。

堆積物測定


<RC水槽>堆積物の定量的な確認は困難

<本技術>堆積物高さを定量的に測定

下表のとおり、実証試験では堆積物を効果的に排出できている。

施工状況

鋼板製消化槽が機械設備なので、杭等の土木工事も 機械工事での一括発注が可能

施工状況

高さが17.4mあることを生かし、近くを通る新幹線から 見えるように上下水道局のキャラクター「ウォッタくん」を載せた。

施工状況

製作・据付等はほぼ完了し、これから試運転を実施していく予定。

消化槽完成

まとめ

- 1. 軽量で地上設置の為、建設コストが抑えられる
- 2. 工期が短く、予定が組みやすい
- 3. 鋼板製であることを生かした維持管理(可視化等)が可能
- 4. 低動力インペラ撹拌の導入により、効果的な運転やコスト縮減が可能
- 5. 地域バイオマスを受け入れても適切な消化の維持が 可能となり、消化ガス発生量を増加させる事ができる。

熊本市が取り組んでいることの紹介

アナモックス技術の共同研究

日本下水道事業団、株式会社タクマと共同して、アナモックス技術(窒素除去技術)の実証事業に取り組んでいます。H24からH25年度にB-DASHプロジェクトとして実施し、現在も更なる研究をすすめています。

建設技術研究所、産業技術総合研究所、 熊本市等の共同研究体で、AIによる 音響データを用いた雨天時侵入水 検知技術(B-DASHプロジェクト)の 実証事業に取り組んでいます。

ご清聴ありがとうございました

