ISSN 1346-7328 国総研資料 第1292号 令 和 6 年 1 0 月

国土技術政策総合研究所資料

TECHNICAL NOTE of National Institute for Land and Infrastructure Management

No. 1292

October 2024

UAV・AIを活用した港湾等のインフラ維持管理に関する 点検診断システムの開発(その2)

~【UAV空撮画像により生成した港湾施設の3Dモデルの正確性】~

里村大樹

Development of Inspection and Diagnosis System for Infrastructure Maintenance of Port and Harbor Facilities Using UAVs and AI (Part 2) -Comparison of SfM processing results of port facility made by UAV photographs-

SATOMURA Daiki

国土交通省 国土技術政策総合研究所

National Institute for Land and Infrastructure Management Ministry of Land, Infrastructure, Transport and Tourism, Japan

UAV・AIを活用した港湾等のインフラ維持管理に関する

点検診断システムの開発(その2)

~【UAV空撮画像により生成した港湾施設の3Dモデルの正確性】~

里村大樹*

要 旨

日本では1960年代から2000年代に整備された港湾施設が多く、その老朽化が進行している. 2041年 には、建設後50年を超える岸壁の割合は70%程度に達すると見込まれている. その一方で日本全体の 人口は2008年の1.28億人をピークに減少に転じた. 特に土木関係においては有効求人倍率が5を超え るなど、人手不足が顕著である. そのような背景から、日本ではUAVなどの新技術を用いた港湾・沿 岸の施設点検の効率化が望まれている.

本研究では、港湾施設の点検の効率化・高度化を目的に、日本国内の3港でUAV(Unmanned Aerial Vehicle)空撮を行ってデータを取得し、UAV空撮やSfM(Structure from Motion)処理に関する条件が施設の三次元形状復元へ与える影響を調査した.具体的には、ジオリファレンス(地理情報の付与・参照)の方法、海面の有無、撮影高度を変化させて54ケースでSfM処理を行い、同処理の成否と検証点誤差でそれぞれの条件の結果への影響を評価した.ジオリファレンスの方法と撮影高度の影響は大きかったが、海面の有無の影響は比較的小さかった.

キーワード: SfM (Structure from Motion),三次元形状復元,海面推定・除去,ジオリファレンス,ド ーミング,UAV空撮

^{*}港湾情報化支援センター港湾業務情報化研究室 主任研究官

^{〒239-0826} 横須賀市長瀬3-1-1 国土交通省国土技術政策総合研究所

電話:046-844-5019 Fax:046-842-9265 e-mail:ysk.nil-46pr@gxb.mlit.go.jp

Technical Note of NILIM No. 1292 October 2024 (YSK-N-500)

Development of Inspection and Diagnosis System for Infrastructure Maintenance of Port and Harbor Facilities Using UAVs and AI (Part 2) -Comparison of SfM processing results of port facility made by UAV photographs-

SATOMURA Daiki*

Synopsis

In Japan, there are many port facilities constructed in 1960s to 2000 that are aging. The percentage of quays that are more than 50 years old is expected to reach about 70% by 2041. Meanwhile, Japan's overall population peaked at 128 million in 2008 and has since begun to decline. There is a marked shortage of labor, especially in the civil engineering field, with the jobs-to-applicants ratio exceeding five. Against this background, there is a need to improve the efficiency of facility inspection using new technologies such as UAVs.

In this study, I conducted UAV (unmanned aerial vehicle) aerial photography of 3 Japanese ports and investigated the effect of conditions of UAV aerial photography and Structure from Motion (SfM) processing on 3-dimensional shape restoration of facilities with the goal of improving the efficiency and quality of port facility inspection. The conditions were georeferencing method, presence/absence of the sea surface, and shooting altitude. The effect of the georeferencing method and shooting altitude was notable, while the effect of sea surface removal was relatively small.

Key Words: 3-dimensional (3D) shape restoration; sea surface removal; georeferencing; check point error; UAV photogrammetry; port facility; Structure from Motion (SfM)

National Institute for Land and Infrastructure Management

Ministry of Land, Infrastructure, Transport and Tourism

3-1-1 Nagase, Yokosuka, 239-0826 Japan

Phone: +81-46-844-5019 Fax: +81-46-842-9265 e-mail: ysk.nil-46pr@gxb.mlit.go.jp

^{*} Senior Researcher of Port Advanced Information Technology Division, Support Center for Port and Harbor Advanced Information Technology

目 次

1. はじ	こめに	1
1.1	背景と目的 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.2	構成 · · · · · · · · · · · · · · · · · · ·	1
2. UAV	点検診断システムの概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
3. デー	- 夕取得 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
3.1	使用UAV·····	3
3.2	調查対象港湾 ••••••••••••••••••••••••••••••••••••	3
3.3	対空標識のGNSS測位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
3.4	海面推定・除去	5
3.5	SfM処理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
4. UAV	空撮条件とSfM処理の条件が三次元形状復元に与える影響の分析 ·····	7
4.1	変化させた条件と分析の評価指標 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
4.2	ジオリファレンスの方法が三次元形状復元に与える影響 ・・・・・・・・・・・・・・・	9
4.3	海面の有無が三次元形状復元に与える影響 ・・・・・・・・・・・・・・・・・・・・・・・・	10
4.4	撮影高度が三次元形状復元に与える影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
4.5	調査場所(港)が三次元形状復元に与える影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
5. お≯	っりに	13
5.1	主要な結論 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
5.2	今後の課題 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
謝辞⋯		14
参考文	献	14
付録A	用語集・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
付録B	SfM処理結果 ····································	18

1. はじめに

1.1 背景と目的

港湾施設は主に陸と海の境界に設置されるため,腐食 や風化,浸食に対して厳しい自然環境に晒されることが あり,これからも港湾がその社会的使命を果たしていく ためには,港湾管理者等が適切に維持管理する必要があ る.

日本では高度経済成長期から港湾施設の整備が急速に 拡大し、1960年代から2000年代に建設された港湾施設が 多い.2041年には、建設後50年を超える岸壁の割合は約 7割に達すると見込まれており、維持・更新費用の増大が 見込まれている(日本港湾協会,2023).

その一方で日本全体の人口は2008年の1.28億人をピー クに減少に転じた(総務省統計局,2024).その影響も あり,建築・土木・測量技術者の有効求人倍率は2011年 から1を上回る状況が続いている(厚生労働省,2024). 特に2017年以降は5を上回っており,2023年は5.57である など人手不足が顕著である(図-1).人的資源・財源が 限られる中で,より効率的かつ的確な施設の維持管理の 実施が求められている状況である.

国土交通省では、ICTの活用等により調査・測量から設計,施工,検査,維持管理・更新までのあらゆる建設生産プロセスにおいて,抜本的な生産性向上を目指す「i-Construction」に取り組んでいる(国土交通省,2024). また,港湾の中長期政策「PORT 2030」(国土交通省港湾局,2018)において,「IoT・ロボットを活用したモニタリング等の点検業務の効率化・迅速化を進める等,官民連携により,維持管理業務における生産性の向上を推進する」ことが挙げられている.

このような背景から、日本ではUAVなどの新技術を用 いた施設点検の効率化が望まれており、港湾分野におい ても「港湾の施設の点検診断ガイドライン」(以下「ガ イドライン」という.)が2020年に改訂され、目視と同 等に変状把握・劣化度判定できる場合には、UAV等によ る点検も目視とみなすと明示された(国土交通省港湾局, 2021).

本研究分野の先行研究として、UAVを活用し、海岸の 砂浜の計測等の研究を行った事例は多くある(例えばLu and Chyi, 2020; Meinen and Robinson, 2020). しかし、港 湾の施設は海面と接することが多いため、UAV空撮を行 うと、施設だけでなく海面の写り込んだ写真になること が多い. 水面などの動くものが写り込んでいる場合や、 雪面や濃い影等の画像特徴点を得られない場合には、 SfM (Structure from Motion)処理ができないか精度が落ち ることが知られている(内山, 2020). 飛行高度やGCP (Ground Control Point;地上標定点)の数が三次元モデ ルの精度に与える影響についての論文はあるものの(川 ロら, 2019;小花和ら, 2021; James and Robson, 2014), 海面あるいは水面の写り込みが陸上施設・構造物のSfM 処理に与える影響に関する研究は多くない.神野ら(2019) が水の影響を検討しているが, CG空間でのシミュレーシ ョンであり,実測はしていない.

国土技術政策総合研究所(以下「国総研」という.)で はこれまでUAVを用いた港湾施設の点検効率化・高度化 について取り組んでおり,UAV空撮画像からひび割れや 段差等の変状を検出する「UAV・AIを活用した港湾施設 等の点検診断システム」(以下「UAV点検診断システム」 という.)を開発している.2020年の既報(里村ら,2020) では、UAV点検診断システムについて、開発中のシステ ムの概要、遠隔地画像伝送技術の開発状況、変状抽出シ ステムの開発状況を示した.その後の研究で、UAVを活 用することで現地調査時間が30%減少できることや、海 面推定の教師データ追加により海面推定精度の指標 mIoU (mean Intersection over Union)が85%以上になるなど の成果を得た(里村,2022a,2022b,2023; Satomura, 2023, 2024).

本資料では、港湾施設のUAVを用いた点検に関する基礎検討として、日本国内の3港でUAV空撮を行ってデータを取得し、UAV空撮やSfM処理の条件が三次元形状復元に与える影響を調査した.なお、本資料はSatomura (2024)を日本語にして追記・加筆したものである.

1.2 構成

本資料では、2. でUAV点検診断システムの概要について、3. で港湾におけるUAV空撮やSfM処理などのデータ

赤線が建築・土木・測量技術者,青線が全職業の数値. 厚生労働省(2024)を元に筆者作成.

図-1 有効求人倍率の推移

図-2 UAV 点検診断システムの概念図

取得について,4.でSfM処理の結果と分析結果について, 5.で本資料のまとめとして主要な結論と今後の課題について述べる.

2. UAV点検診断システムの概要

UAV点検診断システムの概念図を図-2に示す.当該シ ステムは遠隔地画像伝送システムと変状抽出システムか ら構成される.ガイドラインにおける一般定期点検診断 のうち,UAVにより空撮可能で目視により劣化度が判断 できる施設変状を対象とし,劣化度a,bに相当する施設 変状を自動抽出することを目標としている.

遠隔地画像伝送システムは、防波堤等の陸上から離れ た施設においても、安全性を確保し、かつリアルタイム で施設状況、異常箇所の確認・撮影を行うことで、効率 的に施設点検できることを目標としている.当該システ ムでは電波の中継局を搭載した中継UAVを使用すること で、構造物、船舶、海面等による電波の遮蔽や減衰等の 影響を回避・軽減し、円滑な画像伝送を行うことができ る.2021年に行った実証実験では、岸壁から高度3mを飛 行するカメラ搭載UAVから、高度40mでホバリングさせ た中継UAVを経由して、約5km離れた地上モニター局ま でフルHD (1920×1080pixel), 10 fpsの画像伝送を確認 した(里村, 2022a).

変状抽出システムでは、UAV空撮画像の入力から、海 面推定・除去, SfM処理によるオルソ画像・DSM (Digital Surface Model; 数値表層モデル) 画像の作成, 施設変状 の抽出を行う、海面推定・除去とは、取得したUAV空撮 画像をSfM処理する前に, AIを用いて画像データから海 面部を推定し除去(マスク)することをいう.また,施 設変状の抽出とは、三次元モデルから作成したオルソ画 像やDSMから, AIまたは一定のアルゴリズムによる計算 により施設変状を検出することをいう. UAV点検診断シ ステムの対象とする変状は、ひび割れ、段差、目地の開 き、欠損等である. UAV点検診断システム、特にひび割 れ抽出は, GSD (Ground Sampling Distance; 地上画素分 解能)=1mmで撮影することを前提としている.将来的 には、サイバーポートと連携したデータベースに点群デ ータやオルソ画像等を蓄積することで、サイバーポート 側からは情報閲覧できるようになり、UAV点検診断シス テム側は蓄積データによりAI(機械学習モデル等)の開 発や更新に利用することを想定している.

本資料は図-2に示したUAV点検診断システムによる港 湾施設の点検診断の工程のうち,UAV空撮から三次元化 までの知見をまとめたものである.

3. データ取得

3.1 使用UAV

空撮に使用した UAV は,回転翼機(マルチコプター) である.UAV の外観を図-3に、主な性能を表-1に示す (DJI, 2020).飛行では飛行高度やラップ率等を設定し たルートで自動航行させ,撮影を行った.10m,20m,30m の3種類の高度で飛行させた.高度とは,離陸地点から の対地高度である.

図-3 使用 UAV の外観.機体の白塗り箇所は登録番号を 表示している部分を加工

機体	
離陸重量	905 g
士 注	折り畳んだ状態: 214×91×84 mm
	展開状態: 322×242×84 mm
対角寸法	354 mm
最大速度	72 km/h (Sモード) (海抜 Om, 無風)
最大飛行時間	25分(通常の飛行で,残りのバッテリ 一残量は15%)
最大風速耐性	29-38 km/h
動作環境温度	-10°C - 40°C
GNSS	GPS, GLONASS
	垂直:±0.1 m,水平:±0.3 m (ビジョンポ
ホバリング精度	ジショニングがアクティブな場合)
範囲	垂直:±0.5 m, 水平:±1.5 m (GPS ポジシ
	ョニング使用時)
カメラ	
センサー	1/2.3 インチ CMOS
	有効画素数: 12 MP
	焦点距離 (35mm 判換算): 24-48 mm
レンズ	FOV:約83° (24 mm)-48° (48 mm)
	絞り: f/2.8(24 mm)-f/3.8(48 mm)
150 1/22	写真: 100-1600 (オート), 100-3200 (マ
150 0 0 0	ニュアル)
シャッター速度	電子シャッター8 - 1/8000 秒
静止画サイズ	4000×3000 pixels

表-1 使用 UAV(Mavic 2 Zoom)の主な性能

UAV 空撮における主な設定を表-2 に示す. 表中の GSD とは,隣り合う 2 つのピクセルの中心間の地表面上で測 定された距離をいう(Pix4D, 2024a). GSD が大きくな るほど画像の空間分解能が低くなり,詳細が見えにくく なる.同じカメラ,レンズであれば,飛行高度が高くな るほど GSD は大きくなる.GSD が小さい方がひび割れ のような変状は見やすくなるが,撮影に要する時間が増 えるため必要なバッテリーが多くなる.また,写真撮影 枚数が増えることで SfM 処理時間が長くなり,生成され る三次元モデル(点群データ,TIN等)のファイルサイ ズが大きくなる.

3.2 調査対象港湾

本研究では、地域・海域による差を検証するため、日本国内の3港(O港,S港,W港)においてUAV空撮を行った.データ取得した港(施設)のオルソ画像を図-4に示す.図中のGCPは地上標定点、CP(Check Point)は検証点を示す.標定点とは三次元形状復元計算に必要となる水平位置及び標高の基準となる点であり(国土交通省国土地理院,2017)、検証点は当該計算には用いられないが、既知の絶対座標を持っている地上点である(日本写真測量学会,2016).各港の施設の種類,おおよその撮影領域,対空標識の数と調査日を表-3に示す.対空標識とは、標定点などの位置が空中写真上で確認できるように、現地に設置する標識である(秋山,2001).

3.3 対空標識のGNSS測位

標定点および検証点は,撮影範囲の施設表面に設置した対空標識を用いた.対空標識は白黒市松模様で,大き さの異なる2種類,一辺20cmのもの10枚と,一辺30cm

表-2 UAV 空撮における主な設定

機体設定	
飛行高度と GSD(地	30 m (GSD 10.6 mm), 20 m (GSD
上画素分解能)	7.0 mm), 10m (GSD 3.5 mm)
操作	設定したルートを自動航行
ヨップ変	オーバーラップ 80 %, サイドラ
ノツノ竿	ップ 60%
ジンバル角度	-90°(鉛直下向き)
飛行速度	秒速 1.1 – 3 m
カメラ設定	
	焦点距離 (35mm 判換算): 24 mm
レンズ	FOV: 約 83°
	絞り: f/2.8
ISO 咸庄	自動 (メタデータによる記録:
150 密度	100-110)
シャッター速度(露	自動 (メタデータによる記録:
出時間)	1/30 s - 1/2000 s)
ホワイトバランス	自動

のもの8枚を使用した.使用した対空標識の外観を図-5 に示す.準備の都合で,O港では前者のみ使用した.

地上に配置した対空標識は、GNSS(Global Navigation Satellite System)ローバーにより位置座標の計測を行った. GNSSローバーの外観を図-6に,使用機材の主な仕様と観 測の設定を表-4に示す(Trimble, 2019).測位方法はVRS-RTK (Virtual Reference Station - Real Time Kinematic)であ る.VRS-RTKとはネットワーク型RTK-GNSS測量の一つ で,任意の場所に仮想基準点を作成し,配信事業者から 補正データを受信することで,観測に含まれる誤差をリ アルタイムで補正する方法である(国土交通省国土地理 院,2005,2024).

(c) W 港(防波堤)

撮影画像から作成したオルソ画像に GCP(地上標定点), CP(検証点)の位置を表示

図-4 データ取得した港(施設)

		表-3 調	査箇所	
港	施設の種類	撮影領域 (GCP の内側)	対空標識の数 (GCP + 検証点)	調査日
0	捨石式 傾斜護岸	150×50 m	6 + 4	2023/2/ 16-17
s	防砂堤	36×18	10 + 8	2023/11 /8
W	防波堤	62×16	10 + 8	2023/10 /24

図-5 対空標識. 左は一辺 20cm, 右は一辺 30cm.

図-6 使用した GNSS ローバーの外観

表- 4 使用した GNSS 受信機の主な仕様と主な観測の設 定

/ _	
機種名	Trimble R8s (Lite Bundle)
チャンネル数	440
補足衛星周波 数	GPS: L1C/A, L2C, L2E GLONASS: L1C/A, L1P, L2C/A, L2P Galileo: E1 QZSS: L1C, L2C, L5 SBAS: L1C/A
測位精度	ネットワーク型 RTK 水平精度:8mm+0.5ppm 垂直精度:15mm+0.5ppm
寸法	190×104 mm (φ×H) (本体) 2.1 m (ポール高さ)
質量	3.81 kg (三脚, コントローラを含む)
観測方法	ネットワーク型 RTK 法(仮想基準点 方式(VRS-RTK))
観測時間	10秒 (FIX 解を得てから 10 エポック のデータを取得)
データ取得間 隔	1秒

3.4 海面推定·除去

撮影した画像に水面が含まれると、SfM処理で不自然 な位置に点群が生成されることがある.施設(防波堤) の天端に海面の点群が生成された例を図-7に示す.1.で 述べたように、国総研では、AI(機械学習モデル)によ り海面や空を判定し、画像中から除去するソフトウェア を作成しており(里村、2023)、本研究でもこのソフト ウェアを用いて海面等を除去した画像を生成した.本研 究で使用した計算機で、画像サイズ4000×3000 pixelでは、 海面の推定に約8秒/枚、除去に約5秒/枚の処理時間であっ た.使用した計算機の主な仕様を表-5に、海面推定・除 去の例を図-8に示す.

3.5 SfM処理

本研究では、SfM-MVS (Multi View Stereo;多視点ステ レオ)を用いて複数の空撮画像から施設の三次元形状復 元を行った.SfMとは、移動するカメラから得られる画像 から形状を復元する技術であり、画像に映った対象物の 幾何学形状とカメラの動きを同時に復元する手法である (織田,2016).MVSとは、ステレオ画像間のマッチン グに基づく三次元形状復元を、3枚以上の画像を同時利用 するように拡張した技術である(布施、2016).SfMによ り画像間における特徴点の三次元座標が粗に得られ、 MVSによりSfMで得られた疎な点群から密な点群を得る ことができる(石塚ら、2018).SfM-MVSは単にSfMと 呼ばれることがあるため、特に断りのない限り本資料で もSfM-MVSをSfMと表記する.SfMの処理フローを図-9

図-7 施設の天端に重なって海の点群が生成された例

項目	仕様
OS	Windows 10 Pro for Workstations (22H2)
CPU	Intel Xeon W-11855M @ 3.20GHz
GPU	NVIDIA RTX A3000 Laptop GPU
メモリ	32 GB
SSD	1 TB

に示す(織田, 2016). SfM処理には市販のソフトウェア Pix4Dmapperを用いた. 当該ソフトウェアでは, SfM処理 はStep1~Step3の三段階で行われる(Pix4D, 2024b). Step1 では, 画像とGCPなどの情報を使用して, キーポイント (特徴点)の抽出, キーポイントのマッチング, カメラ モデルの最適化, GCPの配置を行う. キーポイントとは, 画像の色や形状に特徴がある点をいう(村木, 2021).

(a) 元画像

(b) 海面・陸の推定

(c)元画像から海面を除去 図-8 海面推定・除去の例(S港)

Step2では、Step1で生成されたタイポイント(対応点)を 基に、点群の高密度化、3Dテクスチャメッシュの生成を 行う.タイポイントとは、抽出された画像特徴点(キー ポイント)のうち、複数の画像上に写っている同じ地点 である(内山、2020).空中写真測量においては、同一 コースで連続する空中写真間を連結する点をパスポイン ト、隣接コースの空中写真間を連結する点をタイポイン トとして区別する(国土交通省国土地理院、2017)が、 SfMで用いられるバンドル調整では原理的にタイポイン トとパスポイントを区別することはなく同一の性質を持 つ座標として処理していることから(日本写真測量学会、 2016)、本資料においては単にタイポイントと表記する. バンドル調整とは、複数の写真で観測されたタイポイン トに関して共線条件を適用し、複数のカメラの位置と姿

> タイポイントの自動取得 ↓
> バンドル法によりカメラ位置 姿勢及びタイポイントの3次 元座標の算出 ↓

多視点画像計測による点群生成

自由表面形状モデリング

図-9 SfM 処理フロー

表-6 SfM 処理の主な計算条件

坐標糸	
画像の座標系	単位:m 測地系:WGS 84 (World Geodetic System 1984) 座標系: WGS 84 (EGM 96 Geoid)
出力/GCP座標系	単位:m 測地系: Japanese Geodetic Datum 2011 座標系: JGD 2011 / Japan Plane Rectangular Coordinate System
Step1. 初期処理	
キーポイント画像 スケール	フル(元の画像サイズ)
カメラの最適化	内部パラメータの最適化:全て 外部パラメータの最適化:全て
Step2. 点群およびメ	ッシュ
点群の緻密化	画像スケール:1(元の画像サイ ズ) 点密度:最適
3Dメッシュ構造	作成(高解像度)
Step3. DSM, オルン	/モザイクおよび指数
DSM およびオル ソモザイク	解像度:自動(1×GSD)

勢,および対応点の三次元座標を求める手法である(日本写真測量学会,2016). Step3では,DSM,オルソ画像の生成等を行う.SfM処理の主な計算条件を表-6に示す.SfM処理に使用した計算機は,3.4の海面推定・除去で使用したものと同じである.

GCPを用いた標定や検証点における誤差の計算のため には、GCPおよび検証点にマーキングを行う必要がある. マーキングは各GCP、検証点に対して最低2枚の画像で行 えば良い(Pix4D, 2024c)が、本研究では三次元形状復 元および検証点誤差計算の精度を高めるため、対空標識 が写っている全ての画像でマーキングを行った.対空標 識へのマーキングの例を図-10に示す.図中の黄色い十字 がマーキングを、緑の×印がマーキングにより推定され た3Dポイント(GCPおよび検証点)の再投影を、黄色い 円はマークした際のズームレベルを示している(Pix4D, 2024c).

本研究では, 表-6 (初期処理-カメラの最適化-内部パラ メータの最適化,外部パラメータの最適化)に示す通り, 撮影位置と姿勢の推定(外部標定)とカメラの内部パラ メータの推定(内部標定;カメラキャリブレーションと も言う)を同時に行った.これは「セルフキャリブレー ション付きバンドル調整」と呼ばれる手法であり(日本 写真測量学会,2016),UAV公共測量マニュアル(案) (国土交通省国土地理院,2017)において標準とされて

いる. なお, SfM処理は使用するソフトウェアによって結 果が異なることが知られており(北川ら, 2018),本資

図-10 対空標識のマーキング例

料は1つのソフトウェアでの例を示したものである.

UAV空撮条件とSfM処理の条件が三次元形状復元 に与える影響の分析

4.1 変化させた条件と分析の評価指標

3つの港で3種類の飛行高度で撮影した画像に対し, 海面除去の有無,ジオリファレンスの方法を変化させて, 54ケースでSfM処理を行った.3港×3高度×2(海面除去 の有無)×3(GCP,ジオタグ,GCP・ジオタグ併用)で 54ケースである.

ジオリファレンスとは、地理座標を持たない画像情報 に対して, 地理情報を与える作業や機能をいう(地理空 間情報技術ミュージアム、2024).ジオリファレンスの 方法は、GCPを使用する方法、ジオタグを使用する方法、 両方を使用する方法の3つとした.GCPとジオタグを両方 とも使用しない場合,生成された三次元モデルに地理情 報が付与されずに検証点誤差が計算できないため、分析 対象としなかった、ジオタグとは、写真などに付加でき る、地理情報を示すメタデータである(ESRIジャパン、 2024).本研究で使用したUAV空撮画像は,経緯度に加 えて高さの情報も持つ.ジオタグの例を図-11に示す.ジ オタグを使用しない計算では、画像を取り込んだ際に当 該データを消去してSfM処理を行った.また,GCPをジオ リファレンスに使用しない場合は、GCPを検証点として 扱い, 誤差の計算を行った. 撮影場所(港), 撮影高度, 画像枚数と平均SfM処理時間を表-7に、画像枚数とSfM処 理時間を図-12に、作成した各港の三次元モデルを図-13 に示す.

本資料では、UAV空撮の条件とSfM処理の計算条件が 三次元形状復元に与える影響を、検証点誤差とSfM処理 の成功率で評価した.検証点誤差eは、検証点において GNSSローバーを用いた測位した座標値と、SfM処理で計 算した座標値の差とした.

 $e = \hat{x} - x$

ここで、 **î**はGNSS測位した検証点の座標値, *x*はSfM処 理で計算された検証点の座標値である.

検証点誤差は、3方向(X,Y,Z)の平均、標準偏差,RMS (Root Mean Square:二乗平均平方根)の該当ケースの中 央値で評価した.各方向の誤差の平均(Mean),誤差の標 準偏差(Sigma), RMSE(RMS Error:二乗平均平方根誤差) は次式で定義される.

$$Mean = \mu = \frac{1}{N_{CP}} \sum_{k=1}^{N_{CP}} e_k \qquad (\vec{x}, 2)$$

Sigma =
$$\sqrt{\frac{1}{N_{CP}} \sum_{k=1}^{N_{CP}} (e_k - \mu)^2}$$
 (7)

$$RMSE = \sqrt{\frac{1}{N_{CP}} \sum_{k=1}^{N_{CP}} e_k^2} \qquad (\vec{x}, 4)$$

DJI_0047.JPGのプロパティ х 全般 セキュリティ 詳細 以前のバージョン プロパティ 値 彩度 標準 標準 鮮明度 ホワイトバランス 自動 光度測定解积 デジタル ズーム 1 EXIF バージョン 0230 GPS 38 57 2.4874000000457506 128 48 46.94039999999990103 経度 高度 21 ファイル DJI_0047.JPG 名前 項目の種類 JPG ファイル ファイルの場所 作成日時 2023/11/22 13:50 更新日時 2023/11/08 15:05 5.28 MB サイズ 属性 A 生きます。 プロパティや個人情報を削除 OK キャンセル 適用(A) GPS の項目で緯度,経度,高度が確認できる.撮影画像 のプロパティ画面を加工.

図-11 ジオタグの例

		1111					
港	撮影高 度(m)	画像枚 数	Step1	Step2	Step3	処理 時間計	
	10	658	0:32:31	11:07:33	2:44:45	14:24:50	
0	20	145	0:07:55	1:25:17	0:45:50	2:19:02	
	30	75	0:03:00	0:39:08	0:27:08	1:09:16	
	10	126	0:03:32	0:43:45	0:23:27	1:10:45	
S	20	53	0:00:58	0:14:47	0:05:58	0:21:43	
	30	33	0:00:34	0:08:16	0:05:07	0:13:57	
	10	234	0:08:49	1:48:05	0:37:51	2:34:45	
W	20	80	0:02:15	0:20:15	0:10:40	0:33:09	
	30	41	0:00:54	0:15:14	0:07:28	0:23:36	
1	12-四時期に しい どかって (台巻っ時期) へんしい						

表-7 撮影場所(港),撮影高度,画像枚数と平均 SfM 処理時間

処理時間にマーキング等の手作業の時間は含まない.

(式1)

のRMSを検証点RMSEと表記する. 平均誤差は,系統的誤 差(定誤差)を認識するのに役立つ(Pix4D, 2024d). 標準偏差は,分布が平均からどのくらいの幅にあるかを 示す目安である(薩摩, 1989). RMSEは系統的誤差を考 慮に入れ,平均誤差が0の場合,RMSEと誤差の標準偏差 は等しくなる(Pix4D, 2024d).

検証点誤差を各ケースの平均等の中央値で評価したの は、分析対象としている条件とは別の要因(条件)でモ デルの崩壊等が起こっていた場合、分析対象の条件の影 響を正しく評価できないと考えたためである.SfM処理 の全54ケースの結果は付録Bに示す.本研究においてSfM 処理が成功した場合の検証点誤差は数mm~数cmであっ たが、モデルの崩壊が起こると数m~数+mであった.以 降において特に記載のない場合、検証点誤差の平均、標 準偏差、RMSは、対象ケースの中央値を示す.

成功率が高いほど,処理条件を変更しての再計算,試 行錯誤が不要であり,作業効率が良くなる.成功率は次

(c)W港 図-13 調査した3港の三次元モデル

式で定義した.

成功率 = SfM処理成功ケース数 / 対象ケース数 (式5)

ここで、SfM処理成功とは、生成された三次元モデル全体において大きな歪みや不自然な位置での点群生成がなかったものである。三次元モデルの一部において不自然な位置に点群が生成されているが、概ね三次元形状が復元されているものは一部成功と分類した。三次元モデル全体が崩壊あるいはモデルに大きな歪みが発生したものは失敗と分類した。モデルの歪みとは、ドーミングや傾斜、伸張である。ドーミングとは、三次元モデル全体が 凸型(または凹型)に歪むことであり、傾斜はモデル全体が傾くこと、伸張はモデル全体が鉛直方向に引き延ばされることである。これらモデルの歪みは、ほぼ平行な撮像方向と放射状のレンズ歪みの不正確な補正の組合せによって生じる(小花和、2021; James and Robson, 2014)。 三次元形状復元失敗の例を図-14に示す。

UAV空撮条件, SfM処理条件とSfM処理の成否ケース 数,成功率を表-8に示す.本研究でSfM処理を行った全54 ケースに対し,48.1%(26ケース)で成功,16.7%(9ケー ス)で一部成功,35.2%(19ケース)で失敗となった.成 功率は50%未満であり,SfM処理を成功させるためには UAV空撮の方法やSfM処理の計算条件等を適切に設定す る必要があることが示唆された.

(c)不自然な位置の点群生成(赤丸部分) 図-14 三次元形状復元の失敗例

4.2 ジオリファレンスの方法が三次元形状復元に与える 影響

ジオリファレンスにGCPを使用する方法をGCPケース, ジオタグを使用する方法をGeotagケース、両方を使用す る方法をGCP + Geotagケースと表記する.

成功率を比較すると、Geotagケースでは成功率は0% (0/18)であった一方で、GCPケースは66.7 % (12/18)、 Geotag + GCPケースでは77.8% (14/18)であった. ジオリ ファレンスの方法と失敗のモードを表-9に、検証点誤差 の各方向の平均,標準偏差,RMSの中央値を表-10に示す. 全体的に,水平方向(X,Y)に比べて鉛直方向(Z)の誤差が 大きかった.これは他の条件での結果でも同様の傾向だ った.

Geotagケースは成功率0%であったが、失敗の大部分は ドーミングなどのモデルの歪みであった.本研究ではオ ルソ画像の品質を考慮して鉛直下向きでUAV空撮を行っ たが、この方法では不正確なカメラモデルになりドーミ ングなどのモデルの歪みが発生しやすいことが指摘され ている (James and Robson, 2014). また, 地上(施設) 側の座標の初期値がないため,他のケースに比べて歪み が発生しやすかったと考えられる.検証点RMSEを見る と、Geotagケースは他と比較してかなり大きかった.本 研究で使用した空撮画像の位置情報(ジオタグ)は, UAV 機体から付加されたものである. UAVの測位は機体の GNSS測量器のみを使ったものであることから,測位方式 は単独測位である.この測位方法は10mほどの誤差があ る(国土交通省国土地理院, 2024). そのため, Geotagケ ースではmオーダーの検証点RMSEになった.

GCPケースでは空撮画像位置の初期値がないため, GCP + GeotagケースよりSfM処理の失敗が多くなったと 考えられる. GCPケースとGCP + Geotagケースで検証点 RMSEを比較すると、同じ値となったY方向以外でGeotag

表-	8	UAV 空撮条件,	SfM 処理条件と	SfM 処理の成否
		ケース数,成功	率	

		成功	一部 成功	失敗	計	成功率 (%)
	Geotag	0	4	14	18	0
ジオリファレ	GCP	12	2	4	18	66.7
ンス	Geotag + GCP	14	3	1	18	77.8
	除去	13	3	11	27	48.1
伊田	有	13	6	8	27	48.1
	10 m	6	8	4	18	33.3
撮影高度	20 m	11	1	6	18	61.1
	30 m	9	0	9	18	50.0
	0	9	3	6	18	50.0
港	S	9	4	5	18	50.0
	W	8	2	8	18	44.4

+GCPケースの方が低かった.GCPケースではSfM処理の 失敗,特にモデルの崩壊が起こったことから検証点 RMSEの中央値がやや大きくなったと考えられる.

GCP + Geotagケースはカメラ位置の初期値としてジオ タグの座標値を使うことで、GCPだけを使うGCPケース より成功率が向上したと考えられる.ジオタグの座標値 は誤差が大きいが、GCPが映り込んでいない画像に初期 値を与えた効果が大きかったと考えられる.また,成功 率の向上により検証点RMSEが減少したと考えられる.

ジオリファレンスの方法はSfM処理の成功率,三次元 形状復元の精度に大きな影響があった.本研究で計算し た中では、GCP + Geotagケースで最も成功率が高く、検 証点RMSEも小さかった. 平均誤差, 誤差の標準偏差, RMSEを見ると、Geotagケース以外では数mm~数cmのオ ーダーであった.現在のガイドラインでは絶対的な座標 は点検項目に含まれておらず、段差や目地の開き等の相 対的な変位・変状を確認できれば良いため、上述の範囲

表- 9	ジオリファ	レンスの	方法と失	敗のモ-	ード
				C C D	

	GCP	Geotag	GCP + Geotag	計
モデルの崩壊	3	0	0	3
モデルの歪み(ドーミン グ,傾斜,伸張)	1	14	1	16
不自然な位置の点群生成	2	4	3	9
計	6	18	4	28

表-10 ジオリファレンスの方法と検証点誤差の平均, 標準偏差, RMS(該当ケースの中央値)(単位: m)

		平均		榠	標準偏差	差	RMS			
	Х	Y	Z	Х	Y	Z	Х	Y	Z	
Geotag	-0.992	-1.138	1.355	0.211	0.159	0.314	2.189	1.555	3.904	
GCP	0.002	-0.003	-0.002	0.009	0.007	0.024	0.012	0.010	0.032	
Geotag + GCP	0.003	-0.006	-0.001	0.007	0.008	0.016	0.008	0.010	0.019	
全体	0.002	-0.007	0.002	0.016	0.015	0.040	0.020	0.018	0.041	

表-11 海面の有無と失敗のモード

	海面除去	海面有り	計
モデルの崩壊	2	1	3
モデルの歪み(ドーミン グ,傾斜,伸張)	9	7	16
不自然な位置の点群生成	3	6	9
計	14	14	28

表-12 海面有無と検証点誤差の平均,標準偏差, RMS (該当ケースの中央値) (単位:m)

海面		平均		榠	標準偏差	坒	RMS			
伊田	Х	Y	Ζ	Х	Y	Ζ	Х	Y	Z	
除去	0.002	-0.007	0.005	0.022	0.016	0.048	0.023	0.021	0.049	
有り	0.002	-0.007	-0.001	0.011	0.009	0.034	0.012	0.014	0.035	
全体	0.002	-0.007	0.002	0.016	0.015	0.040	0.020	0.018	0.041	

であれば問題ないと考えられる.

4.3 海面の有無が三次元形状復元に与える影響

海面の有無と失敗のモードを**表-11**に,検証点誤差の各 方向の平均,標準偏差,RMSの中央値を**表-12**に示す.

海面を除去した場合の成功率は48.1%(13/27)で,除去しなかった場合も同じ値であった.海面を除去すること

(a)O港(中央の浸透防止シートが海と推定されて除去)

(b)S港(左上の施設天端が除去)

(c)W港(下部の海の一部が陸判定で残った)図-15 不完全な海面推定・除去の例

で不自然な位置の点群生成は減ったが,モデル歪みや崩 壊が増えたことで,成功率は向上しなかった.また,XYZ の全方向で,海面除去しなかった方が検証点RMSEは小 さかった.ただし,その差はX,Y,Zの各方向で0.011 m, 0.007 m,0.014 mであり,他の要因と比較して大きくなか った.

これらの結果は海面(水面)があるとSfMの精度が低下 するという知見(神野ら,2019;内山,2020)に反する が,海面推定・除去が不完全であったことが原因と考え られる.不完全な海面推定・除去例を図-15に示す.海面 の推定に関する正解率(mIoU)は85%程度であり(里村, 2022b),除去すべきで無い陸上部分を除去したり,逆に 除去すべき海面が残ったりした.これにより,三次元形 状の復元精度が下がったと考えられる.

4.4 撮影高度が三次元形状復元に与える影響

撮影高度と失敗のモードを表-13に,検証点誤差の各方向の平均,標準偏差,RMSの中央値を表-14に示す.

成功率は高度10mで最も低く33.3%(6/18),高度20mで 最も高く61.1%(11/18)であった.高度10mではモデル全体 の崩壊や不自然な位置の点群生成が多かった.特に不自 然な位置の点群生成は8ケースであり,全体(9ケース) の88.9%であった.また,高度が高くなるほどモデルの 歪みによる失敗が多かった.

表-13 撮影高度と失敗のモード

	10 m	20 m	30 m	盂
モデルの崩壊	2	0	1	3
モデルの歪み(ドーミン グ, 傾斜, 伸張)	2	6	8	16
不自然な位置の点群生成	8	1	0	9
計	12	7	9	28

表-14 撮影高度と検証点誤差の平均,標準偏差,RMS (該当ケースの中央値) (単位:m)

		平均		楞	標準偏差	山타	RMS			
	X Y Z X		Y	Ζ	Х	Y	Ζ			
10 m	-0.001	-0.005	0.007	0.010	0.010	0.051	0.014	0.013	0.106	
20 m	0.002	-0.007	-0.001	0.011	0.008	0.028	0.012	0.010	0.032	
30 m	0.003	-0.011	-0.001	0.020	0.017	0.060	0.023	0.022	0.165	
全体	0.002	-0.007	0.002	0.016	0.015	0.040	0.020	0.018	0.041	

図-16 低高度(設定飛行高度10m)での高度低下の例

検証点RMSEで比較すると、全ての方向で撮影高度20 mが最も小さい値となり、撮影高度30 mが最も大きな値であった.両者の差はX,Y,Zの各方向で0.011 m, 0.012 m, 0.133 mであり、水平(XY)に比べて鉛直(Z)方向が1桁大きかった.SfM処理の失敗により、Z方向に比較的大きく歪んだことを示している.

高度10 mで成功率が低かったのは、使用したUAVの特 性により飛行高度を一定に保てず、その結果ラップ率が 十分でなかったことが原因と考えられる.使用したUAV が水面上を飛行する場合、GPSによるポジショニング及 び気圧による高度測定のみが行われる(DJI, 2024).本 研究のUAV空撮において海の上を飛行する際に、高度が 不安定になって急降下する場面があったが、これは飛行 中の気圧変化や風で高度測定に誤差が生じたことが原因 と考えられる.低高度(高度10m)での高度低下の例(三 次元モデル)を図-16に示す.図中の丸は撮影位置を示す. 海上を飛行した一番手前のラインでは、陸上を飛行した 他のラインより下がっていることがわかる. 低空である ほど高度の変動がラップ率に影響を与え、また、海面で はキーポイント(画像特徴点)がマッチングできないた め、成功率が下がったと考えられる. このように、低高 度での飛行では、飛行高度が安定しないという問題があ った. なお、これは機体下方のカメラを用いた障害物検 知・飛行位置保持機能を持つ機体特性によるものであり、 当該機能をoffにすることで改善すると思われる.

また,高高度での撮影では海面の写り込む割合が高く なり,相対的に明度が高い施設表面では白飛びが起こる ことがあった.撮影高度による海面と施設の写り方の違 いの例を図-17に示す.写真を撮影する際に,画面全体で のバランスで露出が調整されるため,施設表面と比較し て暗い海面が画面の多くを占めると,シャッター速度が 下がったりISO感度が上がったりする.その結果,施設表

(a) 撮影高度 30 m (海の割合が大きい)

(c) (a)の赤枠内拡大 図-17

(b) 撮影高度 10 m (海の割合が小さい)

-内拡大 (d) (b)の赤枠内拡大((c)と同じ消波ブロック) 図-17 撮影高度による海面と施設の写り方の違いの例 面が露出過多となり白飛びが起こることがある. 白飛び が起こるとキーポイントが検出されにくくなるため, SfM処理がうまくいかなくなり,成功率や検証点RMSE低 下の要因になった可能性がある. 白飛びの対策としては, シャッタースピードやISO感度を調整した上で固定する 手法がある. 施設表面が適正露出で写る設定では,海は 露出不足となる可能性が高いが,海はモデリングする必 要がないため大きな問題はない.

4.5 調査場所(港)が三次元形状復元に与える影響

撮影場所(港)と失敗のモードを表-15に,検証点誤差の各方向の平均,標準偏差,RMSの中央値を表-16に示す.

成功率はO港とS港が50.0% (9/18)で最も高く,W港は 44.4%(8/18)であった.検証点RMSEはO港で最大となり, W港で最小であった.

成功率に大きな差はなかった一方で、検証点RMSEは 他の要因に比較して差が大きかった.O港は最も広い領 域に対してGCPが最少だったため(表-3),三次元形状 復元の精度が低くなったと考えられる.

本資料では、海面の条件の異なる3港を対象として分析 を行った.海面が概ね半分程度で撮影高度10 mの撮影画 像とAIによる海面推定・除去の結果の例を、図-18にO港、 図-19にS港、図-20にW港をそれぞれ示す.地域・海域あ るいは撮影時間や天候(日照状況)などにより海面の色 は異なるが、当初予想されたほど大きく変わらず、AIに よる海面推定の精度はさほど変わらないように見える. これは、海面推定AIの開発時に全国33港でデータ収集し て学習させた(里村、2022b)ことで、これらの条件の違 いにある程度対応できるためである.また、比較的風の 穏やかな日に調査できたことから、海面の状況(波の立 ち方)が大きく変わらなかった.これらにより、地域・ 海域による差は大きくならなかったと思われる.

表-15 調査場所(港)の有無と失敗のモード

	0	S	W	計
モデルの崩壊	2	1	0	3
モデルの歪み(ドーミン グ,傾斜,伸張)	4	4	8	16
不自然な位置の点群生成	3	4	2	9
計	9	9	10	28

表-16 調査場所(港)と検証点誤差の平均,標準偏差, RMS(該当ケースの中央値)(単位:m)

	10110	(P/) -	4 /				<u> </u> • m/			
		平均		桪	標準偏差	差	RMS			
	Х	Y	Z	Х	Y	Z	Х	Y	Z	
0	-0.010	-0.009	0.024	0.019	0.018	0.082	0.024	0.021	0.113	
S	0.007	-0.007	-0.002	0.010	0.008	0.034	0.014	0.014	0.034	
W	0.002	-0.001	-0.009	0.007	0.003	0.009	0.007	0.003	0.019	
全体	0.002	-0.007	0.002	0.016	0.015	0.040	0.020	0.018	0.041	

図-18 O港での撮影画像と海面推定・除去結果例

図-19 S港での撮影画像と海面推定・除去結果例

5. おわりに

本研究では、UAVを用いることによる、港湾の施設点 検の効率性向上を目的に、日本国内の3港においてUAV 空撮を行い、UAV空撮やSfM処理の条件が三次元形状復 元に与える影響を調査した.

本資料は図-2に示したUAV点検診断システムの全体像の中で、UAV空撮から三次元化までの知見をまとめたものである.これはUAV点検診断システムによる変状抽出を実現する上で基礎的な部分であるため、この段階で整理し公表することに意義があると考える.

UAVを用いた空撮を行うことで、施設の現況、大きな 変状を把握することはある程度可能である.研究全体と しては、AI等による自動での変状抽出を目指しており、 そちらの実現のためにはさらなる検証やシステムの改良 が必要となる.詳細は今後の課題に記載している.

5.1 主要な結論

ジオリファレンスの方法では、GCPとジオタグを両方 使用したケースが最も成功率が高く、検証点RMSEが小 さくなった.ジオタグのみでジオリファレンスしたケー スでは、成功率は0%であり、検証点RMSEは数mと大き かった.GCPのみでジオリファレンスしたケースでは、 GCPが写っていない画像の初期位置がなかったため、成 功率が下がり、検証点RMSEがやや大きくなった.

海面を除去した場合と残した場合での成功率はともに 48%であり,差はなかった.検証点RMSEは,海面を除去 した方が0.014m大きかった.海面の推定・除去が不完全 であったことが原因で,三次元形状復元の精度が下がっ たと考えられる.

撮影高度は20 mが最も成功率が高く、検証点RMSEも 小さかった.撮影高度が高いほど、モデルの歪みが起こ りやすかった.撮影高度10 mでは、機体の特性で飛行高 度が安定せず、ラップ率が確保できずにSfM処理に失敗 するケースがあった.

調査場所(港)については、成功率に大きな差はなかった.検証点RMSEは、O港が最も大きかった.領域の広さに対してGCPの数が十分でなかったためと考えられる.

5.2 今後の課題

本研究ではオルソ画像の品質を考慮して鉛直下向きで UAV空撮を行った.しかしこの方法では不正確なカメラ モデルになることが指摘されており,斜め方向の画像を 加えることでドーミングが大幅に抑制されると指摘され ている (James and Robson, 2014).一方で,斜め画像を

図-20 W港での撮影画像と海面推定・除去結果例

用いると、オルソ画像の品質が低下する.本研究におい ては三次元形状復元への影響を評価したが、三次元化は 施設の変状抽出の工程の一部である.筆者はオルソ画像 やDSMを用いてこれを行うシステムを開発しているが, 本研究でのアウトプットを用いた解析は行っていない. ひび割れなどのオルソ画像を用いて抽出を行う変状の抽 出精度はGSDが大きく影響し、DSMを用いて検出を行う 変状(段差など)の抽出精度は、三次元形状の復元精度 が大きく影響すると考えられる.また,高度20mで最も 成功率が高く検証点RMSEも小さかったが、この高度で はGSDが7.0 mmとやや大きい.過去に開発した変状抽出 システムのうち、ひび割れ抽出ではGSD1mmを前提にし ており(里村ら, 2020; Satomura, 2023), GSD 7.0 mm で幅3 mmのひび割れが抽出できるか未検証である.幅3 mm以上のひび割れは、ガイドラインにおいてエプロンの 劣化度aの判定基準の一つになっている (国土交通省港湾 局,2021). 今後は斜め画像を加えることでオルソ画像 がどのように変化するか、得られたオルソ画像からの変 状の抽出にどのように影響を与えるか、変状抽出に必要 となるGSDなどについて検証が必要である.

本研究のSfM処理では、外部標定と内部標定を同時に 行った(表-6).本資料では示していないが、モデルが 崩壊したケースの1つで内部パラメータを強制的に初期 値に近づける「All Prior」という設定で処理を行うと、モ デルは崩壊しなかった.ただし、UAVに使用される小型 カメラは、温度や振動に非常に敏感であるため、内部パ ラメータの最適化が推奨されている(Pix4D, 2024e). この設定での成功率、検証点誤差は未確認であるため、 検証が必要である.

(2024年8月27日受付)

謝辞

本研究の実施に際しては、国土交通省の関係地方整備 局や事務所、港湾管理者にご協力いただいた.また、多 くの方々にご協力を得ることによって本資料をとりまと めることが出来た.ここに深く感謝の意を表します.

参考文献

秋山実(2001):写真測量,山海堂.

- 石塚直樹・岩崎亘典・坂本利弘(2018):マルチコプタ 型UAVによる熊本地震被災水田の不陸計測と不陸 発生の素因究明,システム農学,34巻2号,pp.41-47.
- 内山庄一郎(2020):新版必携ドローン活用ガイド―災 害対応実践編―,東京法令出版.
- 織田和夫(2016): 解説: Structure from Motion (SfM)第
 一回 SfMの概要とバンドル調整; 写真測量とリモートセンシング, Vol. 55, No. 3, pp. 206-209.
- 小花和宏之・早川裕弌・坂上清一(2021): RTK-UAV 測量において3次元モデルのDoming を低減する方法 -GCP を使用せずにcm レベルの精度を実現する撮影・データ処理-,システム農学,37巻2号,pp.29 -38.
- 川口真吾・鶴田修己・髙阪雄一・岡崎裕・朝比翔太・酒 井和也・鈴木高二郎(2019): UAVを用いた港湾構 造物の計測技術に関する検討,土木学会論文集B3 (海洋開発), Vol. 75, No. 2, I 121-I 126.
- 神野有生・八田滉平・福元和真・田村尚也・宮崎真弘・ 米原千絵・浦川貴季・清水隆博・炭田英俊(2019): UAV 写真測量のSfM における斜め撮影の効率的配 置,標定点の省略可能性,水の影響と対策に関する 検討,日本写真測量学会令和元年度年次学術講演会 発表論文集, pp.5-8.
- 北川悦司・村木広和・吉永京平・山岸潤紀・津村拓実 (2018): UAV空撮画像における3次元モデリング (SfM/MVS)ソフトウェアの形状特性比較に関する研

究, 土木学会論文集F3(土木情報学), 74巻2号, pp. II 143-II 148.

- 厚生労働省(2024):一般職業紹介状況(職業安定業務 統計).
- 国土交通省(2024):令和6年版国土交通白書.
- 国土交通省港湾局(2018):港湾の中長期政策「PORT 2030」.
- 国土交通省港湾局(2021):港湾の施設の点検診断ガイ ドライン(令和3年3月一部変更).
- 国土交通省(2023):作業規程の準則(令和5年3月31日 一部改正).
- 国土交通省国土地理院 (2005): ネットワーク型RTK-GPS を利用する公共測量作業マニュアル(案).
- 国土交通省国土地理院(2017): UAVを用いた公共測量 マニュアル(案)(平成29年3月改正).
- 国土交通省国土地理院(2024):GNSSを使用した測量の いろいろ,2024年8月20日閲覧,

https://www.gsi.go.jp/denshi/denshi45009.html

- 薩摩順吉(1989):確率・統計[理工系の数学入門コー ス7],岩波書店.
- 里村大樹・辻澤伊吹・山本康太(2020): UAV・AIを活 用した港湾等のインフラ維持管理に関する点検診断 システム開発(その1),国土技術政策総合研究所 資料, No. 1135.
- 里村大樹(2022a):UAVとAIを活用した港湾の施設の点 検診断の効率化,港湾,Vol.99,No.8,(公社)日 本港湾協会.
- 里村大樹(2022b): AIによる海面等の推定と錆汁・鉄筋 露出の検出―港湾の施設の点検診断効率化を目指し て―, AI・データサイエンス論文集, 3巻J2号, pp. 360 - 371.
- 里村大樹(2023): YOLOによる岸壁・防波堤等のコンク リート表面の錆汁・鉄筋露出の検出, AI・データサ イエンス論文集, 4巻3号, pp. 873-881.
- 地理空間情報技術ミュージアム(2024):ジオリファレンス, 2024年8月9日閲覧,
 https://www.ittleba.go.ic/www.i/d0-421/1-0216-4-12

https://mogist.kkc.co.jp/word/d0a4316d-031f-4a13a6ec-49c95cd4327c.html

- 日本港湾協会(2023):2023年版数字で見る港湾.
- 日本写真測量学会(2016):三次元画像計測の基礎-バ ンドル調整の理論と実践-,東京電機大学出版局.
- 布施孝志(2016): 解説: Structure from Motion (SfM) 第
 二回 SfMと多視点ステレオ; 写真測量とリモートセンシング, Vol. 55, No. 4, pp. 259-262.

村木広和(2021): 3. UAVを用いた公共測量における

SfM/MVSを適用する場合の整理,写真測量とリモートセンシング,60巻3号, pp.100-103.

- DJI (2020) : MAVIC 2 PRO/ZOOM User manual v2.2.
- DJI (2024): Support for Mavic 2>FAQ>ビジョンシステム>Mavic 2使用時,水面上をフライトさせることはできますか?,2024年8月20日閲覧,

https://www.dji.com/jp/support/product/mavic-2.

- ESRIジャパン(2024):ジオタグとは、2024年8月20日閲 覧, https://www.esrij.com/gis-guide/gis-other/geotag/
- James MR and Robson S (2014) : Mitigating systematic error in topographic models derived from UAV and groundbased image networks, *Earth Surf. Process. Landforms*, 39, 1413-1420.
- Lu, CH and Chyi, SJ (2020) : Using UAV-SfM to monitor the dynamic evolution of a beach on Penghu Islands, *Terr. Atmos. Ocean. Sci.*, 31, 3, 283-293.
- Meinen, BU and Robinson, DT (2020) : Mapping erosion and deposition in an agricultural landscape: Optimization of UAV image acquisition schemes for SfM-MVS, *Remote Sensing of Environment*, 239.
- Pix4D (2024a) :地上解像度(GSD) (Pix4Dサポートライ ブラリー>一般>フォトグラメトリ(SfM)の知識), 2024年8月15日閲覧,

https://support.pix4d.com/ja/hc/articles/202559809

- Pix4D (2024b):処理手順(Pix4Dサポートライブラリー >PIX4Dmapper>はじめに), 2024年8月14日閲覧, https://support.pix4d.com/ja/hc/articles/115002472186
- Pix4D(2024c):マニュアルタイポイント(MTPs)のイン ポートとマーキング方法(Pix4Dサポートライブラリ ー>PIX4Dmapper>操作手順),2024年8月14日閲覧, https://support.pix4d.com/ja/hc/articles/360000395103
- Pix4D (2024d) : How are tie points errors defined Mean, Sigma, RMS? (Pix4D Documentation > General > Photogrammetry knowledge), 2024年10月3日閲覧, https://support.pix4d.com/hc/en-us/articles/203604125
- Pix4D (2024e) : Menu Process > Processing Options... > 1. Initial Processing > Calibration - PIX4Dmapper (Pix4D Documentation > PIX4Dmapper > Manual), 2024年8月 20日 閲 覧 , https://support.pix4d.com/hc/enus/articles/205327965
- Satomura, D (2023) : Improvement of Efficiency of Infrastructure Maintenance of Port and Harbor Facilities by Using UAVs, Proceedings of the 33rd International Ocean and Polar Engineering Conference, ISOPE, pp.2857-2863.

Satomura, D (2024) : Accuracy of 3D models of coastal facilities created from aerial photographs captured by UAVs, Proceedings of the Thirty-fourth International Ocean and Polar Engineering Conference, ISOPE, pp. 2971-2977.

Trimble (2019) : Trimble GNSS solutions.

付録 A: 用語集

本編に詳細を記載できなかった用語について,以下に 簡単な解説を記載する.

オルソ画像(国土交通省国土地理院, 2024a)

写真上の像の位置ズレをなくし、空中写真を地図と同 じく、真上から見たような傾きのない、正しい大きさと 位置に表示される画像に変換(「正射変換」)したもの. 正射投影画像.空中写真からは撮影した枚数分の正射画 像がそれぞれ作成されるので、これらをつなぎ目が目立 たないよう接合(モザイク)し、統合した一枚のオルソ 画像を作成する.そのため、オルソモザイク画像ともい う.

オルソ画像は、写された像の形状が正しく、位置も正 しく配置されているため、地理情報システム(GIS)など において、画像上で位置、面積及び距離などを正確に計 測することが可能で、地図データなどと重ね合わせて利 用することができる地理空間情報である.

図-A.1 空中写真とオルソ画像

誤差(斎藤, 1966; 丸安, 1977)

観測に伴う誤差を大きく区別すると、定誤差(系統的 誤差,規則的誤差とも言われる)と不定誤差(偶然誤差, 不定期的誤差とも言われる)がある.定誤差は一定の条 件のもとでは常に同じ方向に、また同じ大きさで生ずる 誤差で、一定の法則に従って生ずる.個人的定誤差,器 械的定誤差,物理的定誤差に分けられる.不定誤差は、 定誤差のように一定値ではなく、偶然的または不規則的 に、常にばらばらな値として現れる誤差である.

バンドル調整(日本写真測量学会,2016;秋山,2001)

バンドル調整とは、共線条件を非線形最小二乗法によって解く手法.投影中心と対応点の三次元位置を結ぶ直線(光線)が、投影中心において束(バンドル)になるためバンドル調整と呼ばれる.共線条件とは、観測される写真上の点と、その地上点および投影中心が一直線上に並ぶという条件であり、写真測量の基本原理である. バンドル調整では主に以下の3つを出力できる.

- (1) 各写真の撮影した位置と姿勢(外部標定要素)
- (2) 対応点 (タイポイント)の三次元位置

(3) カメラの内部標定要素(画面距離, ピクセルサイズ, レンズ歪み)

画面距離とは、レンズ中心から光の結像する面までの 鉛直距離.無限遠の被写体を写した場合には、画面距離 と焦点距離は同じとなる.内部標定を行うことをカメラ キャリブレーションといい、カメラキャリブレーション をバンドル調整の際に行うことをセルフキャリブレーシ ョン付きバンドル調整という.空中三角測量方式には他 に多項式法や独立モデル法があるが、セルフキャリブレ

GNSS(国土交通省,2023;国土交通省国土地理院,2024b; 久保,2018;西,2016;土屋ら,2001)

GNSS (Global Navigation Satellite System)は、人工衛星 からの信号を用いて位置を決定する衛星測位システムの 総称をいい、GPS、準天頂衛星システム、GLONASS、 Galileo 等がある.衛星測位の手法は単独測位と相対測位 に分けられる.単独測位とは、測位衛星からの情報だけ を用いて、受信機単独で測位することで、周囲の開けた 環境で数 mの精度である.相対測位とは、近接の基準局 (固定局)の精密位置と観測データを得て、精度を向上 させるものである.RTK (Real Time Kinematic) -GNSS は 相対測位の一種で、基準局の観測データを利用して位置 を求める方法で、1 cm 程度の精度である.この際に移動 する観測点(移動局)をローバー点という.基線長(基 準局から移動局までの距離)が10 kmを超えると精度が 下がる.

ネットワーク型 RTK-GNSS 測位は, 観測に含まれる誤 差を複数(3点以上)の電子基準点のリアルタイム観測デ ータ等を利用して補正する方法である. RTK-GNSS では 苦手とされる長距離基線の測量を可能とするとともに, 短距離基線のRTK-GNSSと同程度の測位精度が期待でき る.

RTK で衛星からの搬送波位相を解析する際には,搬送 波位相の整数の曖昧さ(整数値アンビギュイティ)を正 しく解く必要がある.アンビギュイティが小数点付きの 実数(浮動小数点数: Float)の段階の解を FLOAT 解といい, アンビギュイティが全て整数値に固定(FIX)された解を FIX 解という.

マルチコプター (内山, 2020)

回転翼航空機のうち、4~8のローターを持つ機体. 1 つのメインローターとテイルローターを持つ機体はヘリ コプター.回転翼機の特徴として、垂直方向の離着陸及 び空中でのホバリングが可能であり、狭い場所でも運用 しやすい.

DSM (Digital Surface Model:数値表層モデル) (国土交 通省国土地理院, 2024c; esri ジャパン, 2024)

木や建物を含む最も高い地点(表層)の高さのデータ のこと.これにフィルタリング処理を施し、木や建物を 除いた地表面だけの高さのデータを DEM (Digital Elevation Model:数値標高モデル)という.DEMと類義 語として DTM (Digital Terrain Model:数値地形モデル) があるが,DEM が標高データを包括的に表す用語である 一方,DTM は地表面のみの標高であることを強調する用 語として使用される場合がある.

参考文献

- 秋山実(2001):写真測量,山海堂.
- 内山庄一郎(2020):新版必携ドローン活用ガイド―災 害対応実践編―,東京法令出版.
- 久保信明(2018):図解よくわかる衛星測位と位置情報, 日刊工業新聞社.
- 国土交通省(2023):作業規程の準則(令和5年3月31日 一部改正).
- 国土交通省国土地理院(2024a):オルソ画像について, 2024年10月3日閲覧,

https://www.gsi.go.jp/gazochosa/gazochosa40002.html

国土交通省国土地理院(2024b): GNSSを使用した測量 のいろいろ, 2024年8月20日閲覧,

https://www.gsi.go.jp/denshi/denshi45009.html

- 国土交通省国土地理院(2024c):企画展「地図と測量の 新時代〜新たな技術が国土を拓く〜」展示パネルー 覧 データ1 広がる地図の世界,2024年10月4日閲覧, https://www.gsi.go.jp/MUSEUM/SOUGO/kohokocho01 4.html
- 斎藤暢夫(1966):測量誤差の処理法,公益社団法人日 本測量協会.
- 土屋淳・辻宏道(2001):新・やさしいGPS測量,社団法 人日本測量協会.

- 西修二郎(2016):衛星測位入門-GNSS測位のしくみ-, 技報堂出版.
- 日本写真測量学会(2016):三次元画像計測の基礎-バ ンドル調整の理論と実践-,東京電機大学出版局.
- 丸安隆和(1977):新版測量学(上)(増補),コロナ 社.
- esriジャパン(2024):標高データ(GIS基礎解説>その 他のデータ/データモデル関連>標高データ), 2024 年10月4日閲覧, https://www.esrij.com/gis-guide/otherdataformat/elevation-data/

付録 B SfM 処理結果

ジオリフ	流而	45	洪	SfM	生時	ज्य ।	の検証占証	1 1/ //	检証占	記主の博	淮佢主	/ 检	訂占 DMG	E
シネリノ	伊田	1取彩	伦	加珊	大奴	v	初便証息的	·左 7	便証息 V	設定の係	毕禰左 7	· (映 V	証示 KMC	
7022		向皮		大ビル主	モート	Λ	Ŷ	L	Λ	Y	L	Λ	Ŷ	L
			O 港	- m - 中	小日公	-0.881	-3.659	3.294	0.085	0.150	0.216	0.885	3.662	3.301
		10		成切	な品群									
		10m	S 港	- = ==================================	个日然	-2.712	1.158	3.867	0.204	0.074	0.086	2.720	1.160	3.868
			XXX MIL	成切	な尽辞	0.555	0.000	5.010	0.015	0.004	0.624	0.007	0.022	=
			W 港	大敗	金み	-0.777	-0.828	-7.213	0.217	0.084	0.634	0.807	0.832	7.241
	有り	• •	0港	矢敗	金み	-1.070	-4.676	1.301	0.037	0.239	0.575	1.070	4.682	1.422
		20m	S 港	矢敗	金み	-3.404	-0.869	3.047	0.066	0.164	0.234	3.404	0.884	3.056
			W 港	失敗	金み	1.081	-0.959	-5.903	0.029	0.119	0.241	1.082	0.967	5.908
			0港	失敗	金み	-2.213	-5.344	-0.478	1.952	1.858	1.324	2.951	5.658	1.408
		30m	S 港	失敗	金み	-3.664	-1.647	-3.939	0.171	0.106	0.067	3.668	1.650	3.940
Geotag	-		W 港	失敗	歪み	1.468	0.723	-6.614	0.273	0.356	0.198	1.493	0.806	6.617
6			0港	一 部成功	不自然な点群	-0.914	-3.873	0.792	0.067	0.099	0.319	0.917	3.874	0.854
		10m	S 港	一 部成功	不自然 な点群	-2.665	1.213	2.845	0.245	0.140	0.067	2.676	1.221	2.846
			W 港	失敗	歪み	-0.863	-0.732	-7.461	0.183	0.086	0.632	0.883	0.737	7.488
	除去		0港	失敗	歪み	-0.265	-2.770	8.350	1.680	1.613	1.515	1.701	3.206	8.486
		20m	S 港	失敗	歪み	-3.888	-0.892	5.194	0.069	0.154	0.297	3.889	0.905	5.202
			W 港	失敗	歪み	0.720	-1.316	-1.416	0.658	0.631	0.622	0.975	1.460	1.547
			0港	失敗	歪み	-2.218	-5.328	1.410	2.204	2.099	1.452	3.127	5.727	2.024
		30m	S 港	失敗	歪み	-4.666	-2.724	33.617	3.602	1.389	0.308	5.895	3.058	33.619
			W 港	失敗	歪み	0.729	5.403	20.894	3.917	4.013	0.843	3.984	6.731	20.911
			0港	失敗	崩壞	-0.011	0.009	0.329	0.024	0.092	0.112	0.026	0.092	0.348
		10m	S 港	成功	-	0.002	-0.001	-0.018	0.004	0.002	0.008	0.004	0.002	0.019
		10111	W 港	一 部成功	不自然 な点群	0.008	-0.005	-0.001	0.009	0.007	0.034	0.012	0.008	0.034
			0港	成功	-	0.000	0.002	0.026	0.011	0.008	0.015	0.011	0.008	0.030
	有り	20	S 港	成功	-	0.002	-0.001	-0.009	0.007	0.003	0.005	0.008	0.003	0.011
		20m	W 港	一 部成功	不自然 な点群	0.006	-0.007	-0.006	0.005	0.006	0.033	0.008	0.010	0.034
			0港	成功	-	0.012	-0.008	0.006	0.016	0.017	0.053	0.020	0.019	0.053
CCD		30m	S 港	成功	-	0.003	0.000	-0.009	0.003	0.003	0.006	0.004	0.003	0.011
GCP			W 港	成功	-	0.003	-0.011	0.004	0.007	0.009	0.007	0.008	0.014	0.008
			0港	失敗	崩壊	-0.497	0.048	0.837	0.176	0.115	0.150	0.527	0.125	0.850
		10m	S 港	成功	-	0.001	-0.001	-0.017	0.004	0.002	0.009	0.004	0.002	0.019
			W 港	成功	-	0.009	-0.006	0.007	0.009	0.007	0.009	0.012	0.010	0.011
			0港	成功	-	-0.010	0.002	-0.009	0.016	0.007	0.048	0.019	0.007	0.049
	除去	20m	S 港	成功	-	0.002	-0.001	-0.009	0.006	0.003	0.005	0.006	0.003	0.011
			W 港	成功	-	0.006	-0.007	0.003	0.007	0.007	0.010	0.009	0.010	0.010
			0港	成功	-	0.017	-0.011	0.012	0.016	0.019	0.036	0.023	0.022	0.038
		30m	S 港	失敗	崩壊	4.307	-0.646	-0.003	6.731	3.798	0.278	7.991	3.852	0.278
			W 港	失敗	歪み	0.002	-0.019	-0.066	0.023	0.010	0.304	0.023	0.021	0.312
			O 港	一 部成功	不自然 な点群	-0.001	-0.006	0.073	0.005	0.007	0.158	0.005	0.009	0.174
		10m	S 港	一 部成功	不自然 な点群	0.001	-0.001	-0.026	0.007	0.002	0.022	0.007	0.002	0.034
			W 港	成功	-	0.009	-0.007	-0.003	0.011	0.008	0.019	0.014	0.011	0.019
	有り		0港	成功	-	0.005	0.001	0.021	0.011	0.013	0.029	0.012	0.013	0.035
Geotag +		20m	S 港	成功	-	0.003	0.000	-0.009	0.007	0.005	0.006	0.007	0.005	0.010
UCP			W 港	成功	-	0.006	-0.007	0.005	0.004	0.006	0.010	0.007	0.009	0.011
			0港	成功	-	0.013	-0.009	0.012	0.016	0.017	0.043	0.021	0.020	0.045
		30m	S 港	成功	-	0.002	0.000	-0.008	0.004	0.002	0.005	0.004	0.002	0.010
			W 港	成功	-	0.003	-0.011	0.001	0.007	0.008	0.012	0.007	0.014	0.012
	r人 ユ・	10	0港	成功	-	0.003	-0.009	0.022	0.007	0.012	0.030	0.008	0.015	0.037
	际士	10m	S 港	一部	不自然	0.000	0.000	-0.016	0.005	0.003	0.009	0.005	0.003	0.019

表-B.1 UAV 空撮・SfM 処理の条件とSfM 処理結果.各計算ケースの検証点(O港は4点,S港とW港は8点)における SfM 処理の成否と失敗モード、検証点誤差の各方向の平均、標準偏差,RMS.(単位:m)

				成功	な点群									
			W 港	成功	-	0.009	-0.006	0.007	0.010	0.008	0.007	0.013	0.010	0.010
			0港	成功	-	-0.012	0.002	-0.006	0.022	0.016	0.028	0.025	0.016	0.029
		20m	S 港	成功	-	0.002	-0.001	-0.009	0.006	0.003	0.005	0.006	0.003	0.010
			W 港	成功	-	0.006	-0.007	0.005	0.008	0.008	0.010	0.010	0.011	0.011
			0港	成功	-	0.014	-0.011	0.017	0.014	0.016	0.031	0.020	0.020	0.035
		30m	S 港	成功	-	0.003	0.000	-0.009	0.005	0.003	0.006	0.006	0.003	0.010
			W 港	失敗	歪み	0.012	-0.026	-0.126	0.037	0.017	0.426	0.038	0.031	0.444

表-B.2 UAV 空撮・SfM 処理の条件と SfM 処理結果の統計量. 検証点誤差の平均,標準偏差, RMS の, 各条件での平均 値, 中央値, 標準偏差, 最大値, 最小値. (単位:m)

			革	均検証点誤	差	検証点	気誤差の標準	售偏差	Ŕ	魚証点 RMS	Е
			x	V	7	X	V	7	x	V	7
		亚均值	-0.412	-0.516	0.974	0 424	0.327	0.215	0.946	0.956	2 274
		中均值	-0.412	-0.510	0.002	0.016	0.015	0.215	0.020	0.018	0.041
<u>^ -</u>		中天祖	0.002	-0.007	5.021	0.010	0.013	0.040	0.020	0.018	0.041
全ケ	-X	標準偏差	1.403	1.6//	5.931	1.199	0.846	0.359	1.689	1.725	5.572
		最大値	4.307	5.403	33.617	6.731	4.013	1.515	7.991	6.731	33.619
		最小値	-4.666	-5.344	-7.461	0.003	0.002	0.005	0.004	0.002	0.008
		平均值	-1.456	-1.507	2.866	0.870	0.743	0.535	2.340	2.623	6.652
		中央値	-0.992	-1.138	1.355	0.211	0.159	0.314	2.189	1.555	3.904
全ケース ジオリ ファレ ンス Geol +Geol	Geotag	標準偏差	1.824	2.680	10.195	1.259	1.065	0.469	1.469	2.005	8.143
	8	最大値	1.468	5,403	33.617	3.917	4.013	1.515	5,895	6.731	33,619
		最小値	-4 666	-5 344	-7 461	0.029	0.074	0.067	0.807	0.737	0.854
		- 取力値	0.215	0.037	0.060	0.02)	0.220	0.067	0.007	0.737	0.118
22-11		平均恒	0.213	-0.037	0.000	0.393	0.229	0.002	0.484	0.234	0.118
シオリ	GGD	中央値	0.002	-0.003	-0.002	0.009	0.007	0.024	0.012	0.010	0.032
シアレ	GCP	標準偏差	1.028	0.153	0.210	1.582	0.891	0.092	1.8//	0.904	0.214
ンス		最大値	4.307	0.048	0.837	6.731	3.798	0.304	7.991	3.852	0.850
		最小値	-0.497	-0.646	-0.066	0.003	0.002	0.005	0.004	0.002	0.008
		平均值	0.004	-0.006	-0.003	0.010	0.009	0.048	0.012	0.011	0.053
		中央値	0.003	-0.006	-0.001	0.007	0.008	0.016	0.008	0.010	0.019
	Geotag	標準偏差	0.006	0.007	0.037	0.008	0.005	0.101	0.009	0.008	0.105
	+ GCP	最大値	0.014	0.002	0.073	0.037	0.017	0.426	0.038	0.031	0.444
		最小値	-0.012	-0.026	-0.126	0.004	0.002	0.005	0.004	0.002	0.010
		取 小 恒 亚 均 姑	-0.012	-0.020	-0.120	0.004	0.002	0.005	0.004	0.002	0.010
		中均恒	-0.448	-0.399	-0.434	0.118	0.123	0.134	0.731	0.329	0.270
		甲央恒	0.002	-0.007	-0.001	0.011	0.009	0.034	0.022	0.016	0.048
	有り	標準偏差	1.204	1.533	2.614	0.374	0.357	0.284	1.611	1.116	0.417
		最大値	1.468	1.158	3.867	1.952	1.858	1.324	3.668	5.658	7.241
海面		最小值	-3.664	-5.344	-7.213	0.003	0.002	0.005	0.004	0.002	0.008
1時四		平均值	-0.376	-0.434	2.402	0.677	0.761	1.395	1.215	1.151	3.154
海面 -		中央値	0.002	-0.007	0.005	0.012	0.014	0.035	0.023	0.021	0.049
	除去	標準偏差	1.600	1.835	7.787	1.156	1.504	2.266	2.080	1.929	7.520
		最大値	4.307	5.403	33.617	6.731	4.013	1.515	7.991	6.731	33.619
海面 海面 除 10 撮影 20		最小値	-4.666	-5.328	-7.461	0.004	0.002	0.005	0.004	0.002	0.010
		平均値	-0.515	-0.373	-0.149	0.071	0.050	0.140	0.529	0.654	1.510
		中央値	-0.001	-0.005	0.007	0.010	0.010	0.051	0.014	0.013	0.106
	10m	標准偏差	0.871	1.327	2.897	0.090	0.054	0.199	0.869	1.208	2.462
	10111	最大值	0.009	1 213	3 867	0.245	0.150	0.634	2 720	3 874	7 488
		最小値	2 712	3 873	7.461	0.004	0.002	0.007	0.004	0.002	0.010
			0.278	-5.675	-7.401	0.147	0.002	0.007	0.604	0.002	1 427
		中均恒	-0.378	-0.039	0.387	0.147	0.107	0.203	0.081	0.078	0.022
撮影	20	中犬祖	0.002	-0.007	-0.001	0.011	0.008	0.028	0.012	0.010	0.032
高度	20m	標準偏差	1.201	1.246	2.852	0.412	0.393	0.381	1.201	1.297	2.550
		最大値	1.081	0.002	8.350	1.680	1.613	1.515	3.889	4.682	8.486
		最小值	-3.888	-4.676	-5.903	0.004	0.003	0.005	0.006	0.003	0.010
		平均值	-0.343	-0.537	2.484	1.055	0.763	0.300	1.627	1.536	3.876
		中央値	0.003	-0.011	-0.001	0.020	0.017	0.060	0.023	0.022	0.165
	30m	標準偏差	1.942	2.327	9.447	1.915	1.328	0.450	2.438	2.366	8.953
		最大値	4.307	5.403	33.617	6.731	4.013	1.452	7.991	6.731	33.619
		最小値	-4.666	-5.344	-6.614	0.003	0.002	0.005	0.004	0.002	0.008
		平均值	-0.446	-1.424	0.889	0.353	0.355	0.341	0.632	1.510	1.068
		中央値	-0.010	-0.009	0.024	0.019	0.018	0.082	0.024	0.021	0.113
	○法	一一人也	0.740	2 147	2 054	0.739	0.699	0.521	1.007	2 228	2 060
	012	际 中 洲 左 	0.017	2.147	2.054 8.250	2 204	2,000	1 515	2 1 2 7	5 727	2.000
		取八個	0.017	0.048	8.330	2.204	2.099	1.313	5.127	5.727	0.400
		東 小値 玉広佐	-2.218	-5.344	-0.478	0.005	0.007	0.015	0.005	0.007	0.029
		半均值	-0.926	-0.245	2.472	0.619	0.325	0.079	1.684	0.709	2.943
港 5		中央値	0.002	-0.001	-0.009	0.007	0.003	0.009	0.007	0.003	0.019
	S 港	標準偏差	2.162	0.902	8.026	1.741	0.925	0.114	2.453	1.145	7.857
		最大値	4.307	1.213	33.617	6.731	3.798	0.308	7.991	3.852	33.619
		最小值	-4.666	-2.724	-3.939	0.003	0.002	0.005	0.004	0.002	0.010
		平均値	0.135	0.121	-0.438	0.301	0.299	0.225	0.521	0.649	2.813
		中央値	0.007	-0.007	-0.002	0.010	0.008	0.034	0.014	0.014	0.034
	W 港	標準偏差	0.563	1.400	6.046	0.917	0.941	0.283	0.993	1.584	5.340
		最大値	1.468	5.403	20.894	3.917	4.013	0.843	3.984	6.731	20.911
		最小値	-0.863	-1.316	-7.461	0.004	0.006	0.007	0.007	0.008	0.008
		CIA 14 1175	0.000								

図 B. 1~B. 4 は UAV 空撮方法・SfM 処理の条件と SfM 処理結果の箱ひげ図.×印は平均値を表す.各方法・条件の左から X(青色), Y(オレンジ色), Z(緑色)方向を示す.

UAV・AIを活用した港湾等のインフラ維持管理に関する点検診断システムの開発(その2) ~【UAV 空撮画像により生成した港湾施設の3Dモデルの正確性】~/里村大樹

国土技術政策総合研究所資料

TECHNICAL NOTE of NILIM

No. 1292 October 2024

編集·発行 ©国土技術政策総合研究所

本資料の転載・複写のお問い合わせは ^{〒239-0826} 神奈川県横須賀市長瀬 3-1-1 管理調整部企画調整課 電話:046-844-5019 E-mail:ysk.nil-46pr@gxb.mlit.go.jp

UAV・AIを活用した港湾等のインフラ維持管理に関する点検診断システムの開発 (その2)~【UAV空撮画像により生成した港湾施設の3Dモデルの正確性】~ October 2024

国土技術政策総合研究所資料 No.1292