ISSN 1346-7328 国総研資料 第1278号 令 和 6 年 3 月

国土技術政策総合研究所資料

TECHNICAL NOTE of National Institute for Land and Infrastructure Management

No. 1278

March 2024

GNSS鉛直測位による港湾工事における測深作業の効率化

~最低水面モデルの作成と海上地盤改良工における実地試験~

廣瀬大輔・川上司・辰巳大介 宮田正史・川原洋・瀬水幸治

GNSS Vertical Positioning for Efficient Bathymetric Work in Port and Harbour Construction ~Modelling of the Lowest Water Surface and Field Testing in Offshore Ground Improvement works~

> HIROSE Daisuke, KAWAKAMI Tsukasa, TATSUMI Daisuke MIYATA Masafumi, KAWAHARA Hiroshi, SEMIZU Koji

国土交通省 国土技術政策総合研究所

National Institute for Land and Infrastructure Management Ministry of Land, Infrastructure, Transport and Tourism, Japan GNSS鉛直測位による港湾工事における測深作業の効率化 ~最低水面モデルの作成と海上地盤改良工における実地試験~

廣瀬大輔*・川上司**・辰巳大介***・宮田正史***・川原洋****・瀬水幸治*****

要 旨

港湾の建設・改良・維持管理等の水深の基準である管理用基準面には、最低水面が用いられている. しかし、錘測・音響測深等で計測される水深は、現在の水面からの水深であり、最低水面からの水深 へ変換するためには、潮位による補正が必要である。補正に必要となる潮位は、近隣の検潮所で計測 される潮位を使用するが、事前のキャリブレーションが必要であり、また、近隣に検潮所が存在しな い場合の臨時検潮所の設置等が、現場の負担となっている.

本研究では、港湾工事における生産性向上の一環として、検潮所の潮位を使用せず、GNSS鉛直測位 によって取得可能な現在の水面の楕円体高と、予め作成した最低水面の楕円体高の差分から、最低水 面を基準とした水深を求める手法を検討した。始めに、GNSS鉛直測位の基準となるジオイド高につい て、国内のジオイド高の基盤である「日本のジオイド2011」を鹿島港・横浜港・四日市港に適用し、 港湾域における精度検証を行った。次に、日本のジオイド2011のジオイド高を元に、最低水面の楕円 体高である最低水面モデルを作成した。そして、マルチビーム測深と水中スタッフ測量を実施し、GNSS 鉛直測位を利用した水深と従来の潮位補正による水深の計測結果について比較・検証した。

さらに、作成した最低水面モデルを用いて、海上地盤改良工を対象にCDM作業船による実地試験を 行った.実地試験では、CDM船の深度管理の基準であるデッキ面高について、最低水面モデルを使用 したGNSS鉛直測位による測定と、潮位計と乾舷計を使用した従来の潮位補正による測定を行い、計測 結果の比較・検証を行った.実地試験の結果を踏まえ、港湾工事におけるGNSS鉛直測位活用にあたっ ての技術課題を整理し、GNSS鉛直測位活用時のキャリブレーション手法を提案した.

キーワード:最低水面,潮位補正,GNSS鉛直測位,楕円体高,ジオイド高,港湾工事

*	港湾情報化法	支援センター	港湾業績	务情報化研究室	を 交流研究員(若)	築建設株式会社	±)
* *	港湾情報化了	支援センター	港湾業務	务情報化研究室	E 主任研究官		
***	港湾情報化支	支援センター:	港湾業務情	青報化研究室	室長		
****	国土交通省	港湾局 技	術企画課	技術監理室	室長 (港湾・沿岸	幸海洋研究部	併任)
****	国土交通省	港湾局 技	術企画課	技術監理室	専門官		
*****	国土交通省	港湾局 技	術企画課	技術監理室	係長		
₹239-08	826 横須賀市·	長瀬3-1-1 国	土交通省	国土技術政策	総合研究所		
電話:04	46-844-5019	Fax:046-84	2-9265 e-	-mail : ysk.ni	il-46pr@gxb.mlit	.go.jp	

Technical Note of NILIM No. 1278 March 2024 (YSK-N-494)

GNSS Vertical Positioning for Efficient Bathymetric Work in Port and Harbor Construction ~Modelling of the Lowest Water Surface and Field Testing in Offshore Ground Improvement Works~

HIROSE Daisuke* KAWAKAMI Tsukasa** TATSUMI Daisuke*** MIYATA Masafumi**** KAWAHARA Hiroshi***** SEMIZU Koji*****

Synopsis

In this study, as part of productivity improvement in port and harbor construction, a method for determining the depth of the lowest water surface from the difference between the ellipsoid height of the current water surface and the ellipsoid height of the lowest water surface, which can be obtained by GNSS vertical positioning, as correction information to replace the tide level at tide stations, is investigated. First, the accuracy of the geoid height, which is the basis for GNSS vertical positioning, was confirmed in the port area of the Japanese geoid 2011, which is the basis for the geoid height in Japan. Then, a minimum water surface model was developed based on the Japanese geoid 2011, which is the basis for measuring the minimum water surface by GNSS vertical positioning.

Field tests were conducted on a CDM vessel using the minimum water surface model developed above. In the field test, the deck height, which is the standard for depth control of CDM vessels, was measured by GNSS vertical positioning using the minimum water surface model and by conventional tidal correction using a tide gauge and a fender bender, and the differences in the measurement results were verified. The results showed that GNSS vertical positioning was on average 8 cm higher, and that only the GNSS vertical results caused an instantaneous increase in displacement; the influence of the construction details of the CDM vessel was verified, and a calibration method during measurement necessary to identify the factors was proposed based on the verification results.

Key words: lowest water surface, tide level, GNSS, ellipsoid height, geoid height.

- * Guest Research Engineer, Port Advanced Information Technology Division, Support Center for Port and Harbor Advanced Information Technology (Wakachiku Construction Co., Ltd.).
- ** Senior Researcher, Port Advanced Information Technology Division, Support Center for Port and Harbor Advanced Information Technology
- *** Head, Port Advanced Information Technology Division, Support Center for Port and Harbor Advanced Information Technology
- **** Director of Engineering Administration Office, Engineering Planning Division,
- Ports and Harbours Bureau, MLIT (Port, Coastal and Marine Department, NILIM)
- ***** Special Assistant to the Director of Engineering Administration Office, Engineering Planning Division, Ports and Harbours Bureau, MLIT
- ****** Chief Official, Engineering Administration Office, Engineering Planning Division, Ports and Harbours Bureau, MLIT

Phone : +81-46-844-5019 Fax : +81-46-842-9265

e-mail : ysk.nil-kikaku@ml.mlit.go.jp

National Institute for Land and Infrastructure Management Ministry of Land, Infrastructure, Transport and Tourism

³⁻¹⁻¹ Nagase, Yokosuka, 239-0826 Japan

目 次

1. はじめに ·····	1
1.1 背景と目的 ····································	1
1 2 構成	1
	1
2. 測深作業の課題とGNSS鉛直測位技術の開発状況 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.1 測深の基準 2.1 測深の基準	1
2.2 GNSS測位の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2.3 GNSS鉛直測位の利用 ······	3
2.4 楕円体高基準水深測量に関する検討	5
2.5 まとめ ······	6
3. 最低水面モデルの作成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
3.1 港湾域における「日本のジオイド2011」の適用性の検証手順 ・・・・・・・・・・・・・・・	7
3.2 港湾ごとの「日本のジオイド2011」の適用性の検証結果 ・・・・・・・・・・・・・・・・・・・・	9
3.3 重力計測 ·····	17
3.4 最低水面モデルの作成手法	22
3.5 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
4. GNSS鉛直測位を利用したマルチビーム測深の実地試験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32
4.1 GNSS鉛直測位を利用したマルチビーム測深の精度検証 ・・・・・・・・・・・・・・・・・・	32
4.2 水中スタッフ測量とマルチビーム深浅測量の比較	34
4.3 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
5. 地盤改良工の施工現場におけるGNSS鉛直測位の実地試験 ・・・・・・・・・・・・・・・・・・・・・・・・	35
5.1 試験概要	35
5.2 試験結果	38
5.3 考察	39
5.4 実地試験結果を踏まえた今後の対応策の提案 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	41
5.5 まとめ	42
6. おわりに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
6.1 主要な結論 ····································	42
6.2 今後の課題	42
謝辞 · · · · · · · · · · · · · · · · · · ·	42
参考文献 · · · · · · · · · · · · · · · · · · ·	42

1. はじめに

1.1 背景と目的

国土交通省では、調査・測量から設計、施工、検査、 維持管理・更新までのあらゆる建設生産プロセスにおけ る、生産性を向上させるi-Constructionを平成27年から導 入した.i-Constructionの導入工種として、陸上分野で は、平成28年度からICT土工が開始され、順次対象工種 を拡大している.港湾分野では、平成29年度からICT浚 渫工が先行する形で開始され、令和2年度よりICT基礎 工、ICTブロック据付工等、順次対象工種を拡大すると ともに要領等の策定対象範囲も拡大されている.

港湾工事における測量や検査へのi-Constructionの導入 に当たり、設計・出来形管理の基準となる管理基準面は 最低水面となっている.しかし、最低水面からの水深を 直接計測する方法は、現在のところ存在しない、水深の 計測に用いられるレッドによる錘測,音響測深いずれの 手法も、計測できるのは現在の水面から計測対象までの 距離であるため、最低水面からの水深を計測するには、 測深後に同時刻の潮位による補正を加える必要があり, この作業を潮高改正という. なお、本資料では潮高改正 と潮位補正を同義として扱う.使用する潮位のデータ は,現場近隣の検潮所にて取得した潮位を使用するが, 現場とは地形,水深等条件が違う場合もあるため,使用 するには事前のキャリブレーションが必要となる.ま た,近隣に検潮所がない場合は,臨時検潮所を設置して データを取得するが、連続32日以上の事前計測が必要1) となる等設置の工数が多く、現場の負担になっている. さらに設置後も,維持管理の手間,盗難のリスク,荒天 等の影響により誤ったデータが取得されるリスクがある 等,現場の負担となっている.

そこで本資料では,港湾工事において検潮所の潮位に 代わる補正情報として,GNSS(Global Navigation Satellite System)鉛直測位によって取得可能な現在の水面 の楕円体高と予め測定した最低水面の楕円体高の差分を 使用する手法の検討を行う.すなわち船舶に取り付けた GNSSによって取得した現在位置の水面の楕円体高と, 予め測定された最低水面の楕円体高との差分から,最低 水面を基準とする水深を求める手法である.本資料で は,本手法に必要となる各港湾の最低水面モデルを試作 するとともに,作成した最低水面モデルを用いた実地運 用試験を行い,従来手法との比較を行う.さらに,実地 運用試験の結果をふまえ,GNSS鉛直測位を港湾工事に 導入する際の留意事項,今後の検討課題等を整理・分析 する.

1.2 構成

本稿の構成は以下の通りである. 第1章では,本検討 の背景・目的について記述し,第2章では港湾における 測深作業の計測手法と問題点,海上施工におけるGNSS 鉛直測位の現状と課題,関連する既往の研究に関して説 明する. 第3章ではGNSS鉛直測位に必要となる最低水面 モデルの作成方法を説明し,鹿島港・横浜港・四日市港 の3港湾を対象に,最低水面モデルを作成する. 第4章で は鹿島港,横浜港,四日市港の3港にてマルチビーム深 浅測量を行い,現行の潮位補正による水深と,GNSS鉛 直測位の活用による水深の計測結果を比較・検証する. 第5章では横浜港で作成した最低水面モデルを使用し て,海上地盤改良工のCDM船を対象とする実地試験を 行い,現行の潮位補正とGNSS鉛直測位の比較・検証を 行う. 第6章では,本資料の主要な結論と今後の課題を

測深作業の課題とGNSS鉛直測位技術の開発状況

GNSS鉛直測位を用いた測深作業の検討を行うにあた り,港湾における水深の基準及びGNSSを用いた測量に 関する既往の研究及び最近の動向について整理する.

2.1 測深の基準

とりまとめる.

港湾の建設・改良・維持管理等に用いられる水深の基準は、「港湾の施設の技術上の基準の細則を定める告示」(平成19年国土交通省告示第三百九十五号)において定められている.同告示第一条第十三項において,港湾管理用基準面は、技術基準対象施設を建設し、改良し、又は維持する場合において基準となる水面であって、最低水面とすることが定義されている.

最低水面の高さは、「水路業務法施行令」第一条によ り海上保安長官が公示することとされており、海上保安 庁告示第103号²⁾により海上保安庁ホームページにおい て公開されている.同告示の解説では、最低水面につい て、潮汐観測資料から調和分解によって潮汐調和定数を 求め、このうち主要四分潮(M2, S2, K1, 01)の振幅の 和だけ平均水面から下げた面としている.

その他,同告示の解説における各種水深と定義について**表-2.1**に示す.

表-2.1	海上保安庁	告示第103	3 号におけ	る各	小深の	定義
-------	-------	--------	--------	----	-----	----

分類	説明
平均水面	現地の長期間にわたる潮汐観測資料を平均して得ら れる水面
最低水面	潮汐観測資料から調和分解によって潮汐調和定数を 求め、このうちの主要四分潮(M2,S2,K1,01)の振幅 和だけ平均水面から下げた面
最高水面	平均水面より主要四分潮の振幅和だけ上げた面

港湾工事における水深の計測には通常,音響測深機が 使用されるが,係留船舶が密集している場合や,障害物 等により船舶での侵入が困難な場合には錘測(レッド測 深)にて水深を計測する場合もある.

測深のイメージ図を図-2.1に示す.

図-2.1 測深イメージ図

港湾工事で基準となるのは①の最低水面からの水深で ある.一方,音響測深,錘測で計測出来るのは,②の現 在の水面からの水深となる.このため,近隣の検潮所等 で計測した③潮位を用いて式(1)の通り潮位補正作業を 行う必要がある.

①最低水面からの水深=②計測値-③潮位 式(1)

潮位補正には近隣の常設検潮所で計測された潮位を用 いるが,近隣に検潮所が存在しない場合等において臨時 検潮所を設置し,潮位観測を行うこともある.

潮位記録を利用する場合には、検潮作業を行う前に、 予め機器の作動状況の点検、既往の平均水面、最低水面 の点検を、検潮後には、検潮記録の時刻補正を行い、デ ータ整理をする必要がある.さらに、近隣に検潮所が存 在しない場合には、臨時検潮所の設置・撤去等の費用・ 時間が必要となる.

検潮作業には,水圧式センサーの機器の不調,ドリフト,設置位置の変動及び設置場所の選定ミス等のリスク に加え,常設検潮所であっても,井戸詰まりや時刻遅延 等のリスクがあることが指摘されている³⁾.

こうした検潮に係るコストやリスクの低減には、検潮 所潮位を用いずに、最低水面から現在の水深を補正する ことが有効である。検潮所潮位による潮位補正以外で、 最低水面からの水深を算出する手法として、GNSS鉛直 測位を用いた楕円体高基準水深測量の技術開発が進めら れている。次節以降において検討状況等を整理する。

2.2 GNSS測位の概要

GNSS鉛直測位の利用を検討するにあたり, GNSS測 位の概要,測位方式,用語の説明を示す.

(1) GNSS測位とは⁴⁾

GNSSとはGlobal Navigation Satellite Systemの頭文字を とったものであり、測位衛星からの信号を用いて位置を 決定する衛星測位システムの総称をいう.衛星測位シス テムには、D-GPS、RTK-GNSS等があり、GNSS測量機 を用いてGNSS衛星からの電波を受信し、位相データ等 を記録する測量形式の事をGNSS測量という.

(2) 測位形式

現在使用されているGNSS測位には複数の測位形式が ある.各型式の測位方法及び測位精度を以下に示す.

a) GNSS単独測位

GNSS衛星より送信される衛星位置,送信時刻等の情報を測位点に設置された1台のGNSS受信機で受信する測位方法である.衛星から電波が発信されてから受信機に 到達するまでの時間から距離を算出し,同一時刻におけ る複数の衛星からの距離をもとに測位点の位置を計測す る.GNSS単独測位は衛星の位置誤差等を受けやすく, 測位精度としては約10m前後の精度とされる.

b) D-GPS測量

Differential-GPSの略称であり,GNSSの測位精度を向 上させる測位形式である.測位点とは別の座標既知点に てGNSS測位を行い,既知点座標と,計測した座標の差 を算出し,その差を補正情報として測位点の計測結果を 修正することで,単独測位よりも正確な位置情報を算出 する.一般的な測位精度としては,約1m前後の精度とさ れる.

c) RTK-GNSS測量

Real-Time Kinematic-GNSSの略称であり、**D-GPS**と同 様にGNSSの測位精度を向上させる測位形式である.座 標既知点に基準局を設置し、使用する複数の測位衛星からの位置情報、時刻を受信し、観測データを測位差で解 析することで測位点の位置をリアルタイムに求めている.海上でのRTK測位の概念図を図-2.2に示す.

受信データを解析中にGNSS機器が示す位置情報を Float解,距離が正確に定まった後の位置情報をFix解と いう.解析が完了して正確な位置情報を取得するまで時 間を要するため,計測時の留意点として,位置関係の悪 化等により取得していた衛星との通信が途絶すると再度 通信や解析を行うため,Float解状態となり位置情報の精 度が悪化する.

基準局からの観測点までの距離に応じて精度が低下す るため、一般的には基準局から10km以内での測位が推奨 される.一般的な測位精度は、Float解状態で数十cm~数 m、Fix解状態で約2cmとされる.

図-2.2 RTK 測位

d) VRS(ネットワーク型RTK-GNSS)測量

Virtual Reference Stationの略称であり、仮想基準点方 式と呼称される測位形式である.RTK-GNSSの基準局デ ータに代わり、ネットワークGNSS補正データ配信サー ビスを使用して、近隣の国土地理院電子基準点データよ り測位地点付近に仮想の基準点を作成する.作成した仮 想基準点を用いることで、RTK測位と同様に使用衛星ま での正確な距離を算出、観測を行う.VRS測位の概念図 を図-2.3に示す.

基準局を設置せずに高精度な測位を行える利点があ り、仮想の基準点を作成するため、RTKと違い基準局か らの距離を考慮する必要がない.また、Float解から解析 を完了してFix解へ移行するために必要な時間がRTKよ り短いとされる.

一般的な測位精度としてはRTK-GNSSとほぼ同等とされ、Fix解では精度約2cm~3cmとされる.

図-2.3 VRS 測位

e) スタティック測量

複数の測位点にGNSS測量機を設置し,同時に測位衛 星からの信号を受信し,それに基づく基線解析(観測点 間の位置関係を求める計算)を行い,基線ベクトル(即位 点間を結ぶ直線の距離と方向)を求める測位形式であ る.

複数の既知点と求めたい測位点にGNSS機器を設置 し、30分~120分の連続観測を行うことで高い精度の測 位が可能である.GNSS測量により1級~2級の基準点測 量を行う場合はスタティック測量を行う必要がある.

f) PPK

Post-Processing Kinematicの略称であり後処理キネマティック,後処理と呼称される測位形式である.

単独測位を行い,計測完了後に基準点,電子基準点よ りネットワークGNSS補正データ配信サービス等を通じ て取得した同時刻の後処理用補正データを使用し後処理 ソフトウェアを通じて計測記録の補正を行う.RTK, VRSの測位結果両方に適用可能であり,より高精度の位 置情報を取得することが可能とされている.

2.3 GNSS鉛直測位の利用

(1) GNSS測量機による水準測量について

現在行われているGNSS水準測量は,GNSS測量機に より計測した楕円体高からジオイド高を引くことで,当 該地点の標高を求める手法である.

ここで楕円体高とは、GNSS鉛直測位において計測される地球楕円体から地表までの高さである.

ジオイドは、地球の重力による位置エネルギーの等し い面(等ポテンシャル面)の一つであり、地球全体の平均 海面にもっともよく整合するものとして定義されている ⁵⁾.日本においては、測量法により東京湾平均海面を平 均海面と定め、標高の基準とするとともに、東京湾平均 海面に一致する等ポテンシャル面をジオイドと定めている.東京湾平均海面からの標高の計測概念図を図-2.4に示す.

図-2.4 標高の計測概念図

国土地理院において、重力測量や水準測量の結果等から、地球楕円体からジオイドまでの高さをジオイド高として決定し、楕円体高からジオイド高を引くことで、標高を求めることが可能である.楕円体高、ジオイド高、標高の関係を図-2.5に示す.

図-2.5 楕円体高,ジオイド高,標高の関係 5)

日本のジオイド2011⁶は,GNSS鉛直測位を用いて標 高を決定する基盤として,国土地理院が作成したジオイ ド・モデルである.ジオイド・モデルの作成方法は,① 重力ジオイド,②ハイブリッド・モデルの2つの方法が ある.

重力ジオイドは,様々な重力データ(衛星・地上・海上)を結合し,全球空間積分を行うことで,ジオイド起 伏を計算して作成したジオイド・モデルである.

一方, GNSS鉛直測位と水準測量により実測したジオ イド高に,重力ジオイドを合わせこみ作成したモデルを ハイブリッド・モデルという.日本のジオイド2011は, ハイブリット・モデルで作成されている.

なお、日本のジオイド2011は、公共測量における水準 測量(3級水準測量)でも利用されている一方で、沿岸 域については、作成時に良質な重力データを得ることが 困難といった理由などから,沿岸域のジオイドを精密に 決定することは極めて難しいとされているⁿ. このた め,港湾工事において日本のジオイド2011を用いた GNSS鉛直測位結果を活用するためには,港湾域におけ るジオイド・モデルの精度を確認する必要がある.

(2) GNSS標高測量と精密重力ジオイド・モデルの作成 ハイブリッド・モデルである日本のジオイド2011の課題として、維持管理に水準測量を必要とし、莫大な費用 と人員が常に必要となる点が挙げられる.また、地震に 伴い地殻変動が発生すると、再度使用可能とするには実 測ジオイド高の再測量(水準測量とGNSS測量)が必要 となる.再測量には莫大な時間と費用が必要となるため 迅速な標高の更新が困難であり、震災後の復旧・復興に 必要な測量作業に支障が生じる.例として東日本大地震 の際は改定までに7か月を要した.

平成29年度に開催された測量行政懇談会測位基盤検討 部会ⁿでは、こうした課題を踏まえ、GNSS鉛直測位を 活用した新たな標高体系の可能性について議論された. 同会議では、水準測量を必要とせず、巨大地震等に伴う 地殻変動に対しても安定な精密重力ジオイド・モデルを 基盤とした標高決定の重要性が示され、航空重力測量に よる高品質な重力データの整備が必要であると指摘され た.また、既存の重力データは、山岳部や沿岸海域にお けるデータ空白域の存在、重力点の位置情報の精度不足 等により、重力ジオイド・モデルの精度向上に必要な条 件を十分に満たしていないという課題も指摘された.

こうした背景を踏まえ,国土地理院では平成30年度から航空重力測量事業を開始し,国内の均質な重力データの整備及び重力ジオイド・モデルの高精度化により, GNSS鉛直測位を用いて信頼性の高い標高を利用できる 社会の実現を目指した取組を進めている.当該事業で は、日本全国を沖合約40kmまでを観測する計画が立てら れ、そのデータ等を利用して精度3cmの精密重力ジオイ ド・モデルの作成が予定されている.

実際の航空機による観測は令和元年7月から開始さ れ、栗原ら⁸⁾は観測が終了しているブロックの航空重力 データと地表重力データ(地上重力データ,船上重力デ ータ),衛星海面高度計重力データを用いて,先行して 精密重力ジオイド・モデルの試作を行った.栗原らは, 試作した精密重力ジオイド・モデルを用いて,電子基準 点の実測ジオイド高との較差の検証を行い,航空重力デ ータを含めることで,全点の較差の標準偏差が4.7cmか ら3.7cmに改善することを確認している.ただし,一部 の電子基準点では,航空重力データの有無にかかわらず 10cmを超える較差がみられたことから,既知とした水準 点の観測時期や周辺の地殻変動等について詳しく調べる 必要があることを指摘している.

なお、令和5年5月の国土地理院の発表⁹⁾では、それま での測定結果を用いて試作した標高基準で目標精度の 3cmを達成しており、令和5年度中の全国の標高基準の試 験公開が予定されている.

2.4 楕円体高基準水深測量に関する検討

前述の検潮作業のリスクを回避する水深測量の方法と して、大久保ら³⁰は楕円体高基準水深測量に注目し、現 行の潮位補正との比較により、当該測量手法の妥当性を 検証している.

楕円体高基準水深測量の概要を図-2.6に示す. 図中 の①は計測される現在の面から海底までの水深である. 従来の潮位補正では式(1)に示す通り,①から検潮機に よって計測した②の潮位を引くことで⑥の最低水面から の管理水深を算出する.楕円体高基準水深測量では,式 (2)に示す通り,②の潮位に代わる補正値として③GNSS 鉛直測位による海面の楕円体高と,④最低水面の楕円体 高の差分を潮位に代わる補正値「⑤GNSS 潮位」として 使用する.

現場の測量で得られる水深と同時刻の GNSS 鉛直測位 による楕円体高を組合わせることで,楕円体高基準の水

⑥最低水面からの管理水深

深を直接測定する.そして,データの処理時に,同一位 置の最低水面楕円体高(以下,「最低水面モデル」という.)を加えることにより,従来の手法による潮位補正 と同様の補正を行った最低水面からの管理水深(楕円体 高処理水深)に変換する方法である.

大久保ら³は,楕円体高基準水深測量の標準手順の確 立を目指す試行として,東京湾における既存データを用 いた楕円体高基準の測深データ処理と処理に必要となる 最低水面モデル作成を試行的に行っている.

大久保ら³⁾による最低水面モデルの作成手順は,以下 の通りである.

常設検潮所の平均水面の標高を算出

②平均水面の標高の TIN(Triangulated Irregular Network) を作成

③平均水面の標高グリッドとジオイド高の空間モデルの 和により、平均水面の楕円体高である平均水面モデルを 算出

④平均水面モデルから,主要四分潮の和Z₀を差引き, 最低水面の楕円体高である最低水面モデルを算出

東京湾において,最低水面モデルを用いた楕円体高処 理水深と,従来の潮位補正によって得られた潮高処理水 深を比較した結果,楕円体高処理水深が潮高処理水深よ り5cm~10cm程度浅くなった.この差は,水路測量の最 も厳しい基準である特級水域の精度を満たしていること

図-2.6 楕円体高基準測量概要図

から,楕円体高処理により妥当な水深が得られたとして いる. なお,水路測量における測定又は調査の方法に 関する告示(平成14年海上保安庁告示第102号)特級水 域の精度を**表-2.2**に示す.

表-2.2 特級の水域

重百	測定又は調査の方法			
ず供	項目	基準		
水深	深さの測定の 誤差の限度	次の計算式により計算した値(mを単位とする.)とする. $\sqrt{a^2 + (bd)^2}$ dは,水深(mを単位とする.)とする. a及びbは,次の数値とする. a = 0.25m b = 0.0075m		

大久保ら³⁾の検証は,不確定要素の少ない理想的な海 域で行われたことから,塩澤ら¹⁰⁾は,大久保ら³⁾の手法 を基本とし,東京湾に比べて平均水面及びジオイドの傾 斜,地盤変動並びに潮汐振幅の小さい日本海側を対象 に,異なる測深システムを用いて楕円体処理水深の精度 検証を行った.その結果,楕円体処理水深と潮高処理水 深の差は特級精度の基準を満たしたことから,最低水面

モデルがあれば楕円体処理により水深を導出可能として いる.ただし,外洋等の常設検潮所に囲まれていない海 域のうち,海域内での平均水面の標高やジオイドの変化 が大きい海域等では,最低水面モデルの作成に課題が残 されている.

2.5 まとめ

先行研究において,最低水面モデルを用いた楕円体高 処理水深は,水路測量の特級精度を満足する精度で,従 来の潮位補正による潮高処理水深と一致することが確か められている.また,楕円体処理の基準となるジオイ ド・モデルについては,現在国土地理院が,沖合40kmま でを対象に精密重力ジオイド・モデルの作成を進めてお り,港湾域においても利用可能となることが期待され る.

以上の通り,GNSS鉛直測位を用いた水深の計測環境 の整備が進められているので,次章以降で,港湾域にお ける最低水面モデルの作成,マルチビーム測深における 楕円体高処理水深の精度検証,海上地盤改良工のCDM 船を用いた実地試験を行う.

3. 最低水面モデルの作成

海上保安庁海洋情報部において検討が進められている 楕円体処理による水深計測は,GNSS鉛直測位によって 取得した現在水面の楕円体高と最低水面モデルの差分に より、潮位補正に必要な潮位(以下、「GNSS潮位」という)を算出する手法である. GNSS潮位を用いた最低水面からの水深計測のイメージを図-3.1に示す.

音響測深機で計測する水深は,現在の水面から水底ま での距離(図-3.1中の計測水深)であるが,施工管理,出 来形管理では,最低水面から水底までの距離(図-3.1中 の管理水深)を用いる.潮位補正では,この計測水深を 管理水深に変換するために検潮所にて計測した図-3.1② の潮位を使用している.その代用として楕円体高基準測 量では式(3)に示すように①計測水深から⑥GNSS潮位を 引くことで管理水深を求める.

⑥GNSS潮位

=①計測水深-⑥GNSS潮位

=③GNSS楕円体高 - ④最低水面楕円体高 - ⑤GNSSオフセット ⑦管理水深(楕円体高処理水深)

式(3)

現在水面の楕円体高は、GNSS鉛直測位によってリア ルタイムに計測可能なことから、同位置における最低水 面楕円体高がわかっていれば、GNSS鉛直測位と水深計 測結果から即座に潮位補正を行い、最低水面からの水深 を計測することが可能である.

ただし、水路測量に対して港湾工事の出来形計測では さらに高い精度が要求されることから、検証港にて最低 水面モデルの試作を行い、第5章に示す実地試験にて検 証を行う.

本資料では、大久保ら³⁾の手法に準じて最低水面モデ ルを作成する.最低水面モデルの作成及び検証フローを 図-3.2に示す.

図-3.2 検証フロー

最低水面モデル作成は、①港湾域における日本のジオ イド 2011 の利用可否の検証、②最低水面モデルの作成 の二段階で実施した.

なお、検証港として、ジオイド高の特徴や工事での実 証可能性等を勘案し、鹿島港、横浜港、四日市港の3つ の港湾で最低水面モデルの作成・検証を行った。検証港 の選定理由について**表-3**.1に示す。

表-3.1 検証港の選定理由

港名	選定理由
鹿島港	 ・ジオイド高の変化が激しく、 沖に向かって低くなる特徴的な海域 ・沖に開けている港で、 副振動の影響が把握できる
横浜港 本牧地区	・埋立工事等のICT施工が進められており、 工事での実証が可能 ・RTK-GNSS補正情報サービスがある
四日市港	 ・ジオイド高が沖に向かって 高くなる特徴的な海域 ・埋め立て工事等のICT施工が進められており、 工事での実証が可能 ・RTK-GNSS補正情報サービスがある

3.1 港湾域における「日本のジオイド 2011」の適用性 の検証手順

(1) 概要

ジオイド高,標高,最低水面モデルの関係図を図-3.3 に示す.

図-3.3 ジオイド高,標高,最低水面関係図

③平均水面楕円体高

=①平均水面ジオイド高+②平均水面標高式(4)

⑤最低水面楕円体高

=③平均水面楕円体高-④主要四分潮の和 Z₀ 式(5)

式(5)に示すように最低水面モデルの最低水面楕円体 高は平均水面楕円体高の TIN (平均水面モデル)より主要 四分潮の和 Z₀を引くことで作成する.

このため、最低水面モデルを作成するにはまず平均水 面楕円体高を算出する必要があり、式(4)に示すように 検潮機により計測する平均水面の T.P.0 基準の高さ(標 高)にジオイド高を合計し算出する.そのため、平均水 面モデル作成範囲のジオイド高が必要となるが、国土地 理院の整備する「日本のジオイド2011」における沿岸 部・港湾域のジオイドを利用できれば、T.P.基準の平均 水面高さ(標高)を計測することで平均水面モデルの算出 が可能となる.

一方,日本のジオイド2011 では港湾域の精度の確認 が必要とされていることから⁷⁰,はじめに検証港におい て,港湾域における日本のジオイド2011 の精度確認を 行う.

精度の確認のため、検証港において図-3.4 に示す通 り精密水準測量で標高を、GNSS水準測量で楕円体高を 計測し、式(6)にて実測ジオイド高を算出し、日本のジ オイド 2011 のジオイド高との比較を行う. 式(6)

図-3.4 実測ジオイド高算出

③実測ジオイド高=①楕円体高---②標高

測量及び比較手法の概要を次項に示す.

(2) 実測ジオイド高の計測・日本のジオイド 2011 との 比較検証

実測ジオイド高は、図-3.4、式(6)に示す通り楕円体 高から標高を差し引くことで算出する.対象港湾の基準 点設置個所で精密水準測量(標高)及びGNSS測量(楕円 体高)を行い、両者の測量結果から実測ジオイド高を算 出する.

作業項目, 数量, 設定根拠を表-3.2 に示す.

表−3.2 数量設定根拠

作業	項目	数量	設定根拠
精密 水準測量	基準点 設置個所	各港6点	沿岸域のジオイド分布状況 を把握するには2km間隔で10
	距離	鹿島:34.7km 横浜:25.2km 四日市:16.0km	Km以上の範囲を調査する必要があるため. 延長距離については、ジオ イドモデルの目標精度が3cm
GNSS 水準測量	基準点 設置個所	各港6カ所	であるため、1級水準測量を 実施して、測定誤差を小さ くし、電子基準点付属標を 経由することで国家水準点 の状態が判定できるため.

表-3.2 に示した条件に従い,鹿島港,横浜港,四日 市港の三港湾で精密水準測量,GNSS水準測量を実施 し,算出した実測ジオイド高を用いて「日本のジオイド 2011」との比較を以下の流れで行った. ①各港の同一座標におけるジオイド高比較 ②平面分布図の作成と差分図の作成 ③まとめと適用可否の判断

比較に使用する日本のジオイド 2011 は国土地理院ホ ームページより対象海域が含まれる地区「茨城県,千葉 県,東京都,神奈川県,愛知県,三重県」の GML 形式 データ(1分×1.5分メッシュを双一次補間した 250mメ ッシュデータ)を使用している.なお,双一次補間とは メッシュデータを拡大した際の空白データを存在する上 下左右のデータで線形補間を行うことを繰り返すことに より空白部分を補間する手法である.

a) 精密水準測量

対象港湾周辺の一等水準点,電子基準点を既知点とし て行う. 往復観測の較差許容範囲は「作業規程の準則 (平成 20 年国土交通省告示第 413 号)」¹¹⁾に従い,表-3.3 の範囲に定めた.

表-3.3 較差許容範囲

項目	1級水準測量
前回の高低差との較差	2.5mm√S
測量成果の高低差との較差	15mm√S
備考	Sは観測距離(片道, km単位) とする

b) GNSS 水準測量

精密水準測量を実施した三港湾の測定点において GNSS水準測量を実施した. 観測は,精密水準測量時に 設置した電子基準点を用いて,1級 GNSS 測量機を用い たスタティック方式による結合多角方式により実施し た.

本項で使用する用語の説明を表-3.4に、それに基づく観測条件を表-3.5に示す.

使用する既知点の緯度・経度及び楕円体高は,既知点 座標値を国土地理院が提供する地殻変動補正パラメータ で補正した今期座標で行った.電子基準点間の閉合差の 許容範囲,基線ベクトル較差の許容範囲は「電子基準点 のみを既知点とした基準点測量マニュアル」¹²⁾,

「GNSS 測量による標高の測量マニュアル」¹³⁾に従い, 表-3.6, 表-3.7 のように定めた.

表-3.4 GNSS 水準測量用語説明

項目	説明
基線ベクトル	複数のGNSSアンテナの位相中心をつな ぐ距離と方向
結合多角方式	3点以上の既知点を使用して,既知点と 新点を結ぶ路線である結合多角路線を使 用した測量方法

表-3.5 GNSS 水準測量観測条件

項目	諸条件	備考
観測種別	GNSS水準測量	
観測手法	スタティック方式	結合多角方式標準
観測時間	5時間以上	

表-3.6 電子基準点間の閉合差の許容範囲

	項目	許容範囲(mm)	備考
	水平(ΔN、ΔE)	60mm+20mm√ [−] N	N :辺数 AN:水平面の南北成分の開会美
結合多角 又は単路線	高さ(ΔU)	150mm+30mm√N	 Δ E : 水平面の東西成分の閉合差 Δ U : 高さ成分の閉合差

表−3./ 基線ベクトル	較差の許容範囲
--------------	---------

項目		許容範囲 (mm)	備考
基線ベクトルの	水平 (ΔN、ΔE)	20mm√N	
環閉合差	高さ (ΔU)	30mm√N	N :辺数 ΔN:水平面の南北成分の閉合差又は較差
重複する基線	水平 (ΔN、ΔE)	20mm	 Δ E:水平面の東西成分の閉合差又は較差 Δ U:高さ成分の閉合差又は較差
ベクトルの較差	高さ (ΔU)	40mm	

c) 実測ジオイド高の算出

a), b)の計測結果から各港の実測ジオイド高を算出した.実測ジオイド高は,以下の式(7)で算出する.

実測ジオイド高=GNSS 楕円体高-水準測量(標高) 式(7)

d) 各港の同一座標におけるジオイド高比較

対象とした3港湾の実測ジオイド高と日本のジオイド 2011のジオイド高を同一座標で比較した.

比較方法は,各港6点の計測位置における実測ジオイ ド高と,日本のジオイド2011のジオイド高の較差平均を 算出することで行った.

e) 平面分布図の作成と差分図の作成による比較検証

日本のジオイド 2011 については,GML 形式データの 250m メッシュの点群データから TIN を作成し、3 次元 モデル化を行った.また、実測ジオイド高についても、 対象港 6 点の計測結果を用いて TIN を作成し 3 次元モ デル化を行い、作成した TIN を基に各港の差分図を作 成し検証を行った.差分は以下の式(8)にて求めてい る. 差分図=

実測ジオイド高の TIN-日本のジオイド 2011 の TIN 式(8)

計測結果の較差及び実測ジオイド高と日本のジオイド 2011の勾配を比較することで、日本のジオイド 2011を 最低水面モデルの作成に使用可能かを判断した.

a)~e)の流れで鹿島港,横浜港,四日市港にて日本の ジオイド 2011 使用可否の検証を行った.

3.2 港湾ごとの「日本のジオイド 2011」の適用性の検 証結果

- (1) 鹿島港
- a) 精密水準測量

6 点の標準点(KM01~KM06)を設置した位置と,水準測 量路線を図-3.5 に示す.

図-3.5 鹿島港水準測量路線図

水準測量の既知点として使用する1等水準点3974は 千葉県側にあり、利根川を越える路線である.また、全 路線が既知点に回帰しない開放トラバース測量であるため、1等水準点3974の結果に依存することから隣接する1等水準点3975との検測も同時に行った.

計測結果を表-3.8,表-3.9,算出した標高を表-3.10 に示す. 往復差,較差ともに表-3.8,表-3.9 に示す許 容範囲に収まることを確認した.

表-3.8 水準測量観測結果(鹿島港)

路線	路線長(km)	往復差(mm)	許容範囲(mm)
(1)I 3974~KM05	18. 820	8.6	10. 8
(2) 交2~ II 93009A	0. 789	1.6	2. 2
(3) 交3~KM01	2. 472	2.4	3.9
(4) 交1~KM03	16. 109	5.0	10.0

表-3.9 既知点間検測結果(鹿島港)

路線	路線長(km)	往復差(mm)	許容範囲(mm)
(1) I 3974~ I 3975	1. 922	0.5	20. 0

表-3.10 水準測量結果(鹿島港)

標高値(m)
3.900
3.603
3.368
4. 138
2. 980
4. 902

b) GNSS 水準測量

図-3.6 に示す測量網図を設定し, GNSS 水準測量を実施した.電子基準点は鉾田 93004,茨城鹿島 93009,干 潟 93021 の 3 点を使用し,精密水準測量で計測した KM01~KM06 の 6 点の計測を行った.

図-3.6 鹿島港測量網図

基線ベクトルの較差を表-3.11,電子基準点間の閉合 差を表-3.12,GNSS水準測量結果を表-3.13に示す.な お,表-3.13の緯度・経度はそれぞれ「ddmmss.sss」,

「dddmmss.sss」表記であり、例えば 35 度 58 分 03 秒 512 は「355803.512」と表記している.

基線ベクトルの較差,閉合差ともに許容範囲内の結果 となっているが,許容閉合差 85mm に対して 82mm と,閉 合差が許容値に近い大きな値となっている.

表-3.11 基線ベクトルの較差(鹿島港)

基線	Δ N (mm)	∆E(mm)	∆ U (mm)
茨城鹿嶋~KMO4	-14.0	-6.0	35.0
KM02~KM01	1.0	0.0	1.0
KM04~KM02	4.0	0.0	12.0
KM04~KM03	-4.0	0.0	0.0
KM04~KM05	-4.0	3.0	-1.0
KM06~KM03	7.0	-3.0	-7.0
KM06~干潟	-15.0	-3.0	6.0
KM05~KM06	-8.0	1.0	9.0
KM01~鉾田	-20. 0	-1.0	37.0
KM03~KM01	10.0	0.0	-10.0

※許容範囲は、ΔN·ΔE が 20mm、ΔU が 40mm

表-3.12 電子基準点間の閉合差(鹿島港)

基線	路線長(km)	閉合差(mm)	許容範囲(mm)
茨城鹿島~鉾田	32. 723	82. 0	85. 0
茨城鹿島~干潟	22, 358	-59.0	70.0

表-3.13 GNSS 水準測量結果(鹿島港)

点名	緯度 (ddmmss.sss)	経度 (dddmmss.sss)	GNNS 楕円体高 (m)	GNSS 標高値(m)
KM01	355803. 512	1404139. 133	38. 732	3. 887
KM02	355743. 131	1404109. 783	38. 478	3. 599
KM03	355638.855	1404241.969	37. 844	3. 379
KM04	355646. 201	1404113.850	38. 874	4. 144
KM05	355606.370	1404139.861	37. 567	3.000
KM06	355439. 407	1404153.972	39. 268	4. 927

c) 実測ジオイド高の算出

a), b)の計測結果から算出した実測ジオイド高を表-3.14 に示す.

表-3.14 実測ジオイド高算出(鹿島港)

点名	GNNS 楕円体高(m)	精密水準測量 標高値(m)	実測 ジオイド高(m)
KM01	38. 732	3.900	34. 832
KM02	38. 478	3.603	34.876
KM03	37.844	3.368	34. 476
KM04	38.874	4. 138	34. 737
KM05	37.567	2.980	34. 587
KM06	39.268	4. 902	34. 366

d) 同一座標におけるジオイド高比較

実測ジオイド高と日本のジオイド 2011 の同一座標の ジオイド高との比較を行った.比較結果を表-3.15 に示 す.

点名	実測	日本のジオイ ド 2011 (m)	差 (cm)
1/110 /		2011(11)	1 000
KM01	34. 832	34.845	-1.300
KM02	34. 876	34.879	-0. 350
KM03	34. 476	34.465	1. 130
KM04	34. 737	34.730	0.650
KM05	34. 586	34. 567	1.960
KM06	34. 366	34. 341	2. 500
		平均值	0.765
		標準偏差	1. 421

表-3.15 ジオイド比較(鹿島港)

表-3.15 に示すように実測ジオイド高と日本のジオイド 2011 の差は平均約 0.8 cm,標準偏差約 1.4 cmである.日本のジオイド 2011 は,目標精度が実測ジオイド高との較差の標準編差 2 cmで作成されているため,目標精度の範囲内である.

e) 差分図の作成による比較検証

図-3.7に実測ジオイド高と日本のジオイド 2011 の差 分図を示す.

図-3.7 実測ジオイド高-日本のジオイド 2011 差分図(鹿島港)

鹿島港は、北西から南東方向に傾斜しており、傾斜角 度が急な地区となっている.実測ジオイド高は日本のジ オイド 2011 に比較して北側が低く、南側が高いという 結果となった.実測ジオイド高と日本のジオイド 2011 の比較を行うため、双方で断面を作成し比較を行った. 比較用断面図を図-3.8及び図-3.9に、断面勾配及び始 点終点差分を表-3.16 に示す.

表-3.16 断面勾配,始点終点差分(鹿島港)

						-
港	断面	種別	断面勾配 (cm/km)	勾配方向	始点差 (cm)	終点差 (cm)
	٨	日本のジオイド 2011	13.4	陸→海	-0 18	1 68
庙自洪	A	実測ジオイド高	12.9	PE 74	0.10	1.00
此句佗	田本の B 2	日本のジオイド 2011	8.0	≁→苺	-1 30	2 50
	D	実測ジオイド高	7.4		1.00	2.00

表-3.16の断面勾配が示す通り,断面Aは日本のジオ イド2011が13.4cm/km,実測ジオイド高が12.9 cm/ km,断面Bは日本のジオイド2011が8.0cm/km,実測ジ オイド高が7.4 cmと双方僅差であり、2 つのジオイドの 勾配はよく一致している. 図-3.8, 図-3.9 に示す断面 図からも、ジオイド高は日本のジオイド 2011,実測ジ オイド高共に陸側から海側へ、北側から南側へ向けて二 つの断面で同じ傾向で下がっていることがわかる.

以上により, 鹿島港は日本のジオイド 2011 をジオイド・モデルとして使用して問題ないと考えられる.

- (2) 横浜港
- a) 精密水準測量

6点の標準点(YH01~YH06)を設置した位置と,水準測 量路線を図-3.10に示す.既知点は1等水準点10832及 び015-028,電子基準点Ⅱ93009Aを使用した.計測結果 を表-3.17,表-3.18,算出した標高を表-3.19に示す. 往復差,閉合差ともに表-3.17,表-3.18に示す許容範 囲を満たしている.

図-3.10 横浜港水準測量路線図

路線	路線長(km)	往復差(mm)	許容範囲(mm)
(1) I 015-028~交1	7. 306	3.6	6. 7
(2) 交1~YH04	2. 046	3. 1	3. 5
(3) YH04~ I 10832	7. 549	0. 8	6.8
(4) 交2~ II 970804A	11. 194	0. 2	8.3
(5) 交1~YH01	2. 826	1. 2	4. 2
(6) YH04~YH05	1. 580	1. 2	3. 1

表-3.17 水準測量観測結果(橫浜港)

表-3.18 水準測量閉合差(横浜港)

路線	路線長(km)	閉合差(mm)	許容範囲(mm)
(1) I 015-028~ I 10832	16. 901	6.3	61.6

	表-3.19	水準測量結果	(横浜港
--	--------	--------	------

点名	標高値(m)
YH01	2. 791
YH02	3. 828
YH03	2. 689
YH04	2. 296
YH05	5. 117
YH06	1.684

b) GNSS 水準測量

図-3.11 に示す測量網図を設定し,GNSS 水準測量を 実施した.電子基準点は世田谷 950228,横浜泉 970804,横須賀 93067 の3 点を使用し,前述の水準測量 で測定した YH01~YH06 までの6 点の計測を行った.

図-3.11 横浜港測量網図

基線ベクトルの較差を表-3.20,電子基準点間の閉合 差を表-3.21, GNSS 水準測量結果を表-3.22 に示す.

基線ベクトルの較差,閉合差ともに許容範囲内の結 果となっており,世田谷~YH01間のΔUを除いて,差は -20mm~10mmの範囲に収まっている.世田谷~YH01間の ΔUのみ,許容40mmに対し38mmと許容値に近い大きな 値となっているが原因としては,双方の距離が25km離 れていることが考えられる.

表-3.20 ∄	基線ベク	トルの較差	(横浜港)
----------	------	-------	-------

基線	∆N (mm)	∆E(mm)	∆ U (mm)
横浜泉~YH06	10. 0	-4.0	8.0
YH01~世田谷	-11.0	9.0	38.0
YH03~YH01	2.0	0.0	3.0
YH04~YH05	2.0	-1.0	-1.0
YH02~YH01	6.0	10. 0	-10.0
YH06~YH02	0.0	-3.0	-18.0
YH06~YH04	1.0	-3.0	-12.0
YH06~YH03	0.0	1.0	-9.0
YH05~YH03	-4.0	5.0	3.0
YH05~ 構須賀	-5.0	-1.0	9.0

※許容範囲は、 ΔN·ΔE が 20mm、 ΔU が 40mm

表-3.21 電子基準点間の閉合差(横浜港)

基線	路線長(km)	閉合差(mm)	許容範囲(mm)
横浜泉~世田谷	42. 278	-46.0	97.0
横浜泉~横須賀	30. 543	-10.0	82. 0

表-3.22 GNSS 水準測量結果(横浜港)

点名	緯度 (ddmmss.sss)	経度 (dddmmss.sss)	GNNS 楕円体高 (m)	GNSS 標高値(m)
YH01	352621.022	1394125. 573	38.861	2.832
YH02	352625.879	1393930. 015	40.038	3. 847
YH03	352538.432	1394051.697	38. 790	2. 724
YH04	352451.873	1394013. 526	38. 431	2. 314
YH05	352419.863	1394101. 167	41.192	5.139
YH06	352507.362	1393840. 648	37.960	1.706

c) 実測ジオイド高の算出

a), b)の計測結果から算出した実測ジオイド高を表-3.23 に示す.

表-3.23 実測ジオイド高算出(横浜港)

上夕	GNNS	精密水準測量	実測
「泉石」	楕円体高(m)	標高値(m)	ジオイド高(m)
YH01	38.861	2. 791	36.070
YH02	40.038	3. 828	36. 210
YH03	38.790	2. 689	36. 101
YH04	38. 431	2. 296	36. 135
YH05	41. 192	5. 117	36.075
YH06	37.960	1.684	36.276

d) 同一座標におけるジオイド高比較

実測ジオイド高と日本のジオイド 2011 の同一座標の ジオイド高との比較を行った.比較結果を表-3.24 に示 す.

上夕	実測	日本のジオイド	差
「二日」	ジオイド高(m)	2011 (m)	(cm)
YH01	36.070	36. 029	4.110
YH02	36.210	36. 191	1.890
YH03	36. 101	36.066	3. 530
YH04	36.135	36. 117	1. 780
YH05	36.075	36.053	2. 220
YH06	36.276	36. 254	2. 230
		平均値	2. 627
		標準偏差	0. 959

表-3.24 ジオイド比較(横浜港)

表-3.24 に示すように,実測ジオイド高と日本のジオ イド 2011 の差は平均約 2.6 cm,標準偏差約 1.0 cmであ る.日本のジオイド 2011 は,目標精度が実測ジオイド 高との較差の標準編差 2 cmで作成されているため,目標 精度の範囲内である. e) 差分図の作成による比較検証

図-3.12 に実測ジオイド高と日本のジオイド 2011 の 差分図を示す.

横浜港では、日本のジオイド 2011 が西から東方向、 陸から海に向かって傾斜しており、傾斜角度は鹿島港に 比べ緩やかになっている.実測ジオイド高は日本のジオ イド 2011 に比較して、全体的に高い値となっている. 鹿島港と同様に、実測ジオイド高と日本のジオイド 2011 の断面を比較するために、日本のジオイド 2011 の 最大傾斜方向に断面を設定し、作成した断面図を図-3.13、図-3.14 に、断面勾配及び始点終点差分を表-3.25 に示す.

表-3.25 断面勾配,始点終点差分(横浜港)

	港	断面	種別	断面勾配 (cm/km)	勾配方向	始点差 (cm)	終点差 (cm)
	横浜港	A	日本のジオイド 2011	5.8	陸→海	2. 07	3. 70
			実測ジオイド高	5.3			
		В	日本のジオイド 2011	4.8	陸→海	2. 23	/ 11
			実測ジオイド高	4.3			4.11

表-3.25 の断面勾配が示す通り,断面Aは日本のジオ イド2011が5.8cm/km,実測ジオイド高が5.3 cm/km, 断面Bは日本のジオイド2011が4.8cm/km,実測ジオイ ド高が4.3 cm/kmと双方僅差であり,2つのジオイドの 勾配はよく一致していると言える.図-3.13,図-3.14 に示す断面からも,ジオイド高は日本のジオイド 2011,実測ジオイド高共に陸側から海側へ二つの断面で 同じ傾向で下がっていることがわかる.

以上より, 横浜港においては日本のジオイド 2011 を ジオイド・モデルとして用いても問題ないと考えられ る.

- (3) 四日市港
- a) 精密水準測量

6 点の標準点(YK01~YK06)を設置した位置と、水準測

量路線を図-3.15 に示す.

図-3.15 四日市港水準測量路線図

一等水準点 I 001-391, I 001-396, I 1461 の 3 点を 使用した.計測結果を表-3.26,表-3.27,算出した標高 を表-3.28 に示す.往復差,較差ともに,表-3.26,表-3.27 に示す許容範囲に収まることを確認した.閉合差 が許容 35~40 mm程度に対して最大約 8 mmと小さく,他 港湾よりも良好な値となった.

表-3.26 水準測量観測結果(四日市港)

路線	路線長(km)	往復差(mm)	許容範囲(mm)
(1) I 001-391~YK05	5.864	1.0	6.0
(2) I 1461~YK05	2.046	0. 9	3.5
(3) YK05~ I 001-396	3.456	1.4	3. 3
(4) 交1~YK01	3.043	2.7	4.3
(5) 交4~YK03	1.849	0.7	3. 3
(6) 交2~YK06	1.208	0.8	2.7
(7) 交3~II 950390A	5.180	0.3	5.6

表-3.27 水準測量閉合差(四日市港)

路線	路線長(km)	閉合差(mm)	許容範囲(mm)
I 001-391~ I 1461	7.910	-8.5	42. 1
I 1461~ I 001-396	5. 502	0.1	35. 1

表-3.28 水準測量結果(四日市港)

点名	標高値(m)
YK01	2. 706
YK02	2.805
YK03	3. 333
YK04	2. 740
YK05	1. 421
YK06	3. 305

b) GNSS 水準測量

図-3.16 に示す測量網図を設定成し,GNSS 水準測量 を実施した.電子基準点は桑名 960633,常滑 960632, 楠 950309 の 3 点を使用し,前述の水準測量で測定した YK01~YK06 までの 6 点の計測を行った.

図-3.16 四日市港測量網図

基線ベクトルの較差を表-3.29,電子基準点間の閉合 差を表-3.30, GNSS 水準測量結果を表-3.31 に示す. 基線ベクトルの較差,閉合差ともに許容範囲内の結果 となっている.

表-3.29 基線ベクトルの較差(四日市港)

基線	∆N (mm)	∆E(mm)	∆U(mm)
楠~YK06	-16.0	3.0	7.0
YK03~常滑 2	9.0	1.0	-9.0
YK03~YK06	-7.0	-1.0	18.0
YK03~YK01	2. 0	1.0	-1.0
YK01~桑名	13. 0	6.0	4.0
YK02~YK01	2. 0	2.0	-3.0
YK04~YK02	3. 0	2.0	-10. 0
YK04~YK03	4. 0	0.0	-10. 0
YK05~YK04	4. 0	2.0	-2.0
YK06~YK05	0. 0	0.0	-5.0

※許容範囲は、ΔN·ΔE が 20mm、ΔU が 40mm

表-3.30 電子基準点間の閉合差(四日市港)

基線	路線長(km)	閉合差(mm)	許容範囲(mm)
楠~常滑 2	25.5	35.0	75. 0
桑名~常滑2	24. 782	-15.0	74. 0

表-3.31 GNSS 水準測量結果(四日市港)

点名	緯度 (ddmmss.sss)	経度 (dddmmss.sss)	GNNS 楕円体高 (m)	GNSS 標高値(m)
YK01	350007.093	1364030. 889	39. 998	2. 73
YK02	345944. 263	1363944. 298	40. 093	2. 827
YK03	345856. 622	1364022.652	40. 649	3. 362
YK04	345840. 420	1363847.342	40. 038	2. 761
YK05	345738.063	1363817.695	38. 733	1. 434
YK06	345719. 219	1363843. 167	40. 637	3. 327

c) 実測ジオイド高の算出

a), b)の計測結果から算出した実測ジオイド高を表-3.32 に示す.

表-3.32 美	ミ測ジオイ	ド高算出((四日市港)
----------	-------	-------	--------

上夕	GNNS	精密水準測量	実測
品石	楕円体高(m)	標高値(m)	ジオイド高(m)
YK01	39.998	2. 706	37. 293
YK02	40.093	2.805	37. 288
YK03	40. 649	3. 333	37. 316
YK04	40.038	2. 740	37. 298
YK05	38. 733	1. 421	37. 312
YK06	40, 637	3, 305	37. 332

d) 同一座標におけるジオイド高比較

実測ジオイド高と日本のジオイド 2011 の同一位置の ジオイド高との比較を行った.比較結果を表-3.33 に示 す.

点名	実測	日本のジオイド	較差
	ジオイド高(m)	2011 (m)	(cm)
YK01	37. 293	37.268	2. 420
YK02	37. 288	37.266	2.230
YK03	37.316	37.287	2.920
YK04	37. 298	37. 277	2.110
YK05	37. 312	37.299	1.310
YK06	37. 332	37.310	2.230
		平均値	2.203
		標準偏差	0 523

表-3.33 ジオイド比較(四日市港)

表-3.33 に示すように,実測ジオイド高と日本のジオ イド 2011 の差は平均約 2.2 cm,標準偏差約 0.5 cmであ る.日本のジオイド 2011 は,目標精度が実測ジオイド 高との較差の標準編差 2 cmで作成されているため,目標 精度の範囲内である.

e) 差分図の作成による比較検証

図-3.17 に実測ジオイド高と日本のジオイド 2011 の 差分図を示す.

図-3.17 実測ジオイド高-日本のジオイド 2011 差分(四日市港)

四日市港では、日本のジオイド 2011 が南東から北西 方向、海から陸方向に傾斜しており、鹿島港や横浜港と は異なり、海側がジオイド高の高い地区である.日本の ジオイド 2011 の最大傾斜方向に断面を設定し作成した 断面図を図-3.18, 図-3.19 に,断面勾配及び始点終点 差分を表-3.34 に示す.

図-3.18 比較用断面図 断面A(四日市港)

図-3.19 比較用断面図 断面 B(四日市港)

表-3.34 断面勾配,始点終点差分(四日市港)

港	断面	種別	断面勾配 (cm/km)	勾配方向	始点差 (cm)	終点差 (cm)
四 A	日本のジオイド 2011	1.3	海→陡	2. 80	2. 32	
	実測ジオイド高	1.6	冲中			
市 港 B	R	日本のジオイド 2011	0.7	▲→+	2 23	2 42
	D	実測ジオイド高	0.7	H) /16	2.25	2.42

表-3.34の断面勾配が示す通り,断面Aは日本のジオ イド2011が1.3cm/km,実測ジオイド高が1.6cm/km, 断面Bは双方0.7cm/kmと両断面共に僅差であり,2つ のジオイドの勾配はよく一致している.図-3.18,図-3.19に示す断面も,ジオイド高は共に同様の傾向で推 移している.

以上より,四日市港においては日本のジオイド2011 をジオイド・モデルとして用いても問題ないと考えられる.

3.3 重力計測

ジオイドは重力起源の情報であるため、重力測定で観

測した結果と既存の重力図等を参照して、大きな勾配の 差が存在するかどうかの確認を行った.

表−3. 35 に計測の数量および根拠, **表−3**. 36 に使用重 力計の規格を示す.

表-3.35 作業項目に対する数量設定根拠

作業	項	i 🛙	数量	設定根拠
		鹿島	陸上:18点	対象港湾の沿岸域・海域の重
重力測定	設置個所	横浜	陸上:6点 海上:12点	カ分布を把握するには、1km四方 間隔で面的に調査する必要があ
		四日市	陸上:6点 海上:18点	るため

表-3.36 使用重力計規格・性能

種別	名称	型番	規格・性能
海底重力計	Scintrex社製 海底重力計	I NO system (#001)	測定分解能:0.001 mGal 測定レンジ:8000 mGal 再現性:標準偏差0.005 mGal 以内 自動模料補正:±200 arcsec 以内 パネ材質:溶融クォーツ レベリング範囲:水平から25° 以内 適用温度:1°C~30°C測定深度:600 m 以内 重量:186 kg (空中)、約80 kg (水中)
陸上重力計	Scintrex社製 サーボ制御型 重力計	CG-5 (#1052)	測定分解能:0.001 mGal 測定しンジ:8000 mGal 再現性:標準偏差 0.005 mGal 未満 傾斜補正節囲:±200 arcsec バネ材質:溶融クォーツ

計測した重力値は,一律高さに換算するため高度補正 とブーゲ補正を行った.

重力は地球の中心から離れる程距離に比例して減少す るため,高度補正(フリーエア補正)を行い,計測地点の 標高 1m につき重力値が 0.3086mgal 減少するとして,標 高 0m の値に換算する.

ブーゲ補正では,標高0(m)から標高h(m)までは平均 的な岩石(花崗岩:密度2.67g/cm3)が存在するとし,そ の引力を考慮して実測重力値を標高0mの値に換算す る.

補正後の重力値により TIN を作成することで重力分 布図を作成し,産業技術総合研究所が公開している重力 図(仮定密度2.67g/cm³)(一次メッシュ図郭:534000, 533900,523600)¹⁴⁾と比較し,局地的な重力異常がない か確認を行った.

(1) 鹿島港

a) 重力計測

測定作業中に波浪により,海底重力計が破損し測定不 可能となったため海底重力測定を中止した.

海底重力計の破損により海底重力が測定できなかった ため、陸上側の計測点を増やしてモデル作成を行った. 図-3.20に計測点を示す.計測は3.2(1)で実測ジオイド 高を計測した6地点と、新しく追加した12地点の合計 18地点で行った.

図-3.20 調査位置(鹿島港)

b) 重力計測結果

計測結果を表-3.37 に示す

表-3.37 重力計測結果(鹿島港)

測定点名	標高	絶対重力値	補正絶対重力値
	(m)	(mgal)	(mgal)
平泉多目的広場BS(陸上重力基点)	2.62	979879.45	979879.96
鹿島新港(調査船出港場所)	1.50	979887.16	979887.45
KM01	3.89	979884.63	979885.39
KM02	3.60	979883.10	979883.81
KM03	3.31	979876.97	979877.62
KM04	4.14	979878.29	979879.11
KM05	3.00	979876.38	979876.96
KM06	4.93	979874.79	979875.76
重01	3.65	979882.10	979882.82
重02	3.76	979886.18	979886.92
重03	5.32	979880.30	979881.34
重04	4.42	979878.83	979879.70
重05	5.01	979875.52	979876.50
重06	3.94	979874.52	979875.30
重07	5.43	979874.58	979875.64
重08	4.59	979873.66	979874.57
重09	3.68	979874.18	979874.90
重10	3.74	979881.87	979882.60
重11	2.68	979875.04	979875.57
重12	3.71	979875.29	979876.02

計測結果を基に重力値分布図を TIN により作成した.作成した分布図を図-3.21 に,重力分布断面図を図-3.22,産業技術総合研究所が公開している鹿島港の重力図を図-3.23 に示す.比較のため,重力分布断面図と同一位置の既存重力断面図を図-3.24 に示す.

図-3.21 重力分布図(鹿島港)

図-3.22 重力分布断面図(鹿島港)

図-3.23 既存重力図(鹿島港)

c) 解析結果まとめ

既存重力図では赤丸で示した鹿島港南防波堤付け根 付近に,最も重力値が低くなる部分が存在している. 今回の実測した重力値でも,同様の位置である重 06,重08が最低値となっており,図-3.22と図-3.24 の断面図の比較でも計測した重力値は同一位置の既存 重力図と同様の傾向で推移していることが確認でき る.

以上のとおり,鹿島港においては,重力測定の結果 と既存の重力図の空間的な分布傾向が一致しており, 重力測定の結果と同様な特徴を有する「日本のジオイ ド 2011」を用いても,大きな問題は生じないと考え られる.

- (2) 横浜港
- a) 重力測定

実測ジオイド高計測位置と同位置の陸上6地点,海上

12 地点の合計 18 地点にて重力計測を行った.計測位置 を図-3.25 に示す.

図-3.25 調査位置(横浜港)

b) 重力計測結果

計測結果を表-3.38 に示す.

測定点名	標高	絶対重力値	補正絶対重力値
	(m)	(mgal)	(mgal)
横浜BS(海底重力基点)	2.40	979766.18	979766.65
重01	-42.10	979753.04	979743.69
重02	-40.30	979752.29	979743.33
重03	-42.70	979753.17	979743.68
重04	-42.70	979752.93	979743.44
重05	-25.60	979749.43	979743.74
重06	-36.60	979751.85	979743.71
重07	-38.87	979752.79	979744.15
重08	-23.70	979748.95	979743.68
重09	-29.40	979750.47	979743.94
重10	-36.73	979752.31	979744.15
重11	-24.10	979749.13	979743.77
重12	-24.30	979749.33	979743.93
YH01	2.83	979743.84	979744.40
YH02	3.85	979742.14	979742.90
YH03	2.72	979743.74	979744.27
YH04	2.31	979743.91	979744.37
YH05	5.14	979743.66	979744.67
YH06	1.71	979743.13	979743.46

表-3.38 重力計測結果(横浜港)

計測結果を基に,重力値分布図を TIN により作成した.作成した分布図を図-3.26に,重力分布断面図を図-3.27に示す.比較のため,産業技術総合研究所が公開している横浜港の重力図を図-3.28、重力分布断面図と同一位置の既存重力断面図を図-3.29に示す.なお,横浜港は陸上での重力計測と,海上での重力計測結果が結合しなかったため,比較のために陸のみ,海のみで重力分布の再構成を行っている.断面線は日本のジオイド

2011の最大勾配の位置で設定している.

図-3.26 重力分布図(横浜港)

図-3.28 既存重力図(横浜港)

図-3.29 既存重力断面図(横浜港)

c) 解析結果まとめ

陸上重力の測定結果と海上重力の測定結果が接合しな かった.ただし、陸のみ、海のみで産業技術総合研究所 が公開している横浜港の重力図と比較すると、図-3.27、図-3.29に示すように重力値の差は僅差であり、 勾配も同様の傾向で推移していることが見て取れるた め、横浜港において日本のジオイド2011を使用しても 問題ないと考えられる.

- (3) 四日市港
- a) 重力測定

実測ジオイド高計測位置と同位置の陸上6地点,海上 18地点の合計24地点にて重力計測を行った.計測位置 を図-3.30に示す.

図-3.30 調査位置(四日市港)

b) 重力計測結果

計測結果を表-3.39に示す.

表-3.39 重力計測結果(四日市港)

	標高	絶対重力値	補正絶対重力値
測定点名			
	(m)	(mgal)	(mgal)
四日市BS(海底重力基点)	2.31	979693.77	979694.22
重01	-12.69	979698.05	979695.23
重02	-16.30	979699.24	979695.62
重03	-17.30	979698.51	979694.66
重04	-10.50	979696.72	979694.39
重05	-11.80	979696.66	979694.03
重06	-13.80	979697.08	979694.01
重07	-17.50	979697.99	979694.10
重08	-12.30	979696.14	979693.41
重09	-14.70	979696.57	979693.31
重10	-17.50	979697.36	979693.47
重11	-11.80	979695.84	979693.22
重12	-14.60	979696.26	979693.01
重13	-21.40	979698.83	979694.07
重14	-12.10	979696.13	979693.45
重15	-14.20	979696.52	979693.36
重16	-17.50	979697.86	979693.97
重17	-21.50	979699.22	979694.44
重18	-14.00	979696.86	979693.74
YK01	2.73	979694.53	979695.07
YK02	2.83	979695.06	979695.62
YK03	3.36	979693.67	979694.33
YK04	2.76	979695.44	979695.98
YK05	1.43	979694.55	979694.83
YK06	3.33	979693.85	979694.51

計測結果を基に重力値分布図を TIN により作成した. 作成した分布図を図-3.31 に,重力分布断面図を図-3.32 に示す. 比較のため,産業技術総合研究所が公開している四日市港の重力図を図-3.33,重力分布断面図と同一位置の既存重力断面図を図-3.34 に示す.

図-3.31 重力分布図(四日市港)

図-3.32 重力分布断面図(四日市港)

図-3.33 既存重力図(四日市港)

図-3.34 既存重力断面図(四日市港)

c) 解析結果まとめ

局地的な低重力のエリアが計測されたが、同海域の産 業技術総合研究所が公開している重力図にも同様の分布 が見られ、図-3.32と図-3.34の断面図も同様の傾向で 推移していることから、日本のジオイド2011を用いて も問題ないと考えられる.

3.4 最低水面モデルの作成手法

3.2, 3.3 にて、今回の検証港において日本のジオイド 2011を使用できることを確認したことから、日本のジオイド 2011 のジオイド面を用いて、各港の最低水面 モデルを作成する.

最低水面モデルは大久保ら3)の手法に準じ,以下の手

順で作成する.

①平均水面の標高及び主要四分潮の和 Z₀の計測
 ②平均水面から TIN を作成し平均水面分布を作成
 ③式(9)に示す日本のジオイド 2011 のジオイド高と、②
 で作成した平均水面標高を合計し、平均水面の楕円体高
 である平均水面モデルを算出(図-3.35)

④主要四分潮の和 Z₀から、TIN を作成し主要四分潮の和 Z₀の分布図を作成

⑤式(10)の通り③で算出した平均水面モデルから,④で 作成した主要四分潮の和 Z₀の分布図を差引き,最低水 面の楕円体高である最低水面モデルを算出(図-3.36) 平均水面モデル(平均水面楕円体高)

=実測平均水面標高+日本のジオイド 2011 ジオイド高 式(9)

最低水面モデル(最低水面楕円体高) =平均水面モデル - 実測主要四分潮の和Z₀

式(10)

上記①の平均水面及び主要四分潮を計測するため,各 検証港に臨時検潮所を設置し,潮位観測を行った. 観測 期間は「海洋調査技術マニュアル」¹⁾を参考に,潮汐の 影響を考慮して主要四分潮を算出するため,32日間と した.

臨時検潮所の設置位置は,表-3.40に示す条件を考慮

して各港4か所を選定した.

表-3.40 設置位置選定条件

	選定条件
1	ZOの空間的変化を把握できる
2	深浅測量区域を取り囲む
3	各常設検潮所と各臨時検潮所の間隔が可能な限 り等しくなる
4	ベンチマーク及び検潮所の設置許可が得られる
5	港湾利用者・工事関係者の支障とならない
6	釣り人等不特定の者の手を触れにくい
\bigcirc	波浪によって機材が流出しない

臨時検潮所での潮位測定は、岸壁に図-3.37 に示す水 圧式潮位計を設置して、水面の上下動を計測した.水圧 式潮位計付近にベンチマークを設置し、GNSS スタティ ック測量により楕円体高を計測した.潮位計は先端に水 圧式のセンサーを取り付けたものを使用した.

図-3.37 潮位計設置及び計測方法

臨時検潮所での平均水面を求める作業は,以下の手順 で行った.

①GNSS スタティック測量を実施して計測した検潮所ベンチマーク(以下 BM)の楕円体高より、日本のジオイド2011のジオイド高を差し引くことで検潮所 BM の標高を求めた. 検潮所 BM 標高を基にレベルにて量水標 TOP 位の標高を求め、量水標 TOP 位の標高より量水標の全長を引くことで量水標 0 位の標高を計測した.

②計測した潮位データ観測値を量水標の目視観測値と比

較し,量水標0位基準の潮位に換算した後,観測潮位に 依り短期平均水面を算出した.算出した短期平均水面と 常設検潮所の潮位と比較することにより,臨時検潮所の 量水標0位基準の平均水面を求めた.

③②で求めた量水標基準の平均水面を,①で計測した量水標0位の標高準拠で換算して平均水面の標高とする. ①~③の詳細な作業内容を表-3.41に示す.

表-3.41 作業手順

番号	作業内容
	GNSS·水準測量
1	GNSS水準測量でGNSS用BMの楕円体高を計測
2	日本のジオイド2011を用いてGNSS用BMのジオイド高を計測
3	1から2を差し引き、GNSS用BMの標高を求める GNSS用BM標高=GNSS用BM槽円体高-GNSS用BMジオイド高
4	レベル水準測量により検潮用BMを計測、量水標TOP位の標高を求 め、量水標TOP位より量水標長さを引くことで量水標0位標高を 求める
	潮位データの整理
5	計測した潮位データ観測地と同時刻の量水標の目視観測結果の 比較を行い潮位計の記録と量水標読み値の関係式を求める
6	5で求めた関係式により潮位計の記録を量水標0位基準の潮位に 換算する
7	6で求めた潮位記録を平均して短期平均水面を求める
8	7の短期平均水面を常設検潮所の5ヵ年平均水面との差分で補正 する
9	8を4の量水標0位の標高で換算しT.P. 基準の平均水面を算出する

表-3.41の8で行う補正は、常設検潮所での5ヵ年平 均と臨時検潮所の計測と同期間である32日間平均潮位 を比較し、その差分値を算出したものを臨時検潮所の計 測した平均水面に補正値として加えている.

最低水面モデル作成に必要となる主要四分潮の和 Z₀ は、臨時検潮所にて計測された潮位データを調和分解 (時系列の潮位データから潮汐由来の振動の振幅を算出 する解析)し、各検潮所ごとに算出する.

以下に鹿島港,横浜港,四日市港の検潮所計測結果, 平均水面モデル,最低水面モデルを示す.

(1) 鹿島港

鹿島港周辺に3地点,南側の波崎に1地点の臨時検潮 所を設置し,32日間の潮位観測を実施した.設置個所 及び試験時の計測範囲を図-3.38に示す.表-3.40の② に示したとおり,臨時検潮所は計測範囲を取り囲むよう に設置する必要があるが,鹿島灘は湾になっていないた め,計測範囲を完全に取り囲むようには臨時検潮所を設 置できなかった.そのため,臨時検潮所と常設検潮所だ けでは三角形を描くことが出来ず,TINを作成できない ことから,国立天文台が公開している海洋潮汐モデル 「NAO.99Jb」¹⁵⁾(人工衛星により観測した海面高度デー タと沿岸の検潮データを組み合わせて作成された経緯度 5'メッシュの海洋潮汐モデル)を用いて,沖合部の主要 四分潮の和 Z₀を取得した.

図-3.38 常設検潮所・臨時検潮所位置(鹿島灘)

a) 平均水面分布図の作成

4地点の臨時検潮所と1地点の常設検潮所の潮位デー タを用いて平均水面を算出した. 表-3.42 に量水標0位 標高と量水標基準及びT.P.基準の平均水面の計測結果, 常設検潮所の補正を加えた算出結果を示す.

表-3.42 T.F	. 基準の平均水	、面の算出
------------	----------	-------

短期平均水面									
検潮所種類	検潮所種類場所		量水標0位標高	計測結果					
			(T.P.基準)(m)	量水標基準 (m)	T. P. 基準 (m)				
臨時検潮所	臨①	平井漁港	-1.490	1. 374	-0.116				
	臨②	南防波堤	-1. 982	2. 319	0. 337				
	臨③	14m岸壁	-1.683	1.500	-0. 183				
	臨④	波崎漁港	-2. 003	1.955	-0. 048				
常設検潮所	常①	鹿島	-0. 910	0. 831	-0. 079				

検潮所補正								
	# ##	基準	平均水面					
場所	基 华 検潮所	5年平均 ①(m)	32日間平均 ②(m)	2-1 (m)	T. P. 基準 (m)			
平井漁港		0.814	0. 831	0.017	-0. 133			
南防波堤		0.814	0. 831	0.017	0.320			
14m岸壁	一屁局	0.814	0. 831	0.017	-0.200			
波崎漁港		0.814	0. 831	0.017	-0.065			
鹿島					-0.096			

算出した平均水面を基に各臨時検潮所,常設検潮所を 接続して TIN を作成し T.P.基準の平均水面分布を算定し た.図-3.39 に作成結果を示す.なお,南防波堤の値 は,周辺の値と明らかに整合しない異常値のため不採用 とした.また沖については NAO ファイルを用いるた め,平均水面は 0m として作成している.

b) 主要四分潮の和 Z₀分布図の作成

4 地点の臨時検潮所と1 地点の常設検潮所の潮位デー タを用いて 32 日間の潮汐調和分解を行い,各検潮所位 置での主要四分潮の和 Z₀を表-3.43 に示す.

表-3.43 主要四分潮振幅と四分潮和

場所							
		Hm (m)	HS (m)	H' (m)	Ho (m)	主要四分潮和 (m)	既存Z0(m)
鹿島(既存)		0.307	0.144	0. 239	0.192	0. 882	0.890
鹿島	常①	0.314	0.137	0.240	0.188	0. 879	
平井漁港	臨①	0.317	0.145	0. 242	0. 187	0. 891	
南防波堤	臨②	0.319	0.147	0. 245	0.188	0. 899	
14m岸壁	臨3	0.318	0.145	0. 243	0.188	0. 894	
波崎漁港	臨④	0.316	0.147	0.250	0.198	0.911	

表-3.43の鹿島(既存)データは気象庁「潮位表掲載地 点一覧表」¹⁶⁾における 2017 年~2021 年の5年間の長期 観測によるものだが,今回の一ヵ月の調査期間と比較す ると差は1 cm以内である.他の臨時検潮所と比べて鹿島 港から距離がある波崎漁港の臨時検潮所の91 cmを除い て,鹿島港,平井漁港,南防波堤,14m岸壁のいずれも 88 cm~90cmの範囲内で推移しているため,計測結果を 主要四分潮の和 Z₀として使用することとした.

図-3.40は、地図上に主要四分潮の和 Z₀を示したものである.

図-3.40 主要四分潮の和 Zo位置図(鹿島灘)

青色は常設検潮所,赤色は今回設置した臨時検潮所, オレンジ色は NAO によるものである.沿岸部分の NAO と検潮所の値に差がある部分は検潮所の値を採用し,沖 合に関しては NAO の値を採用した.各点をつないで作 成した TIN を作成し,分布図を作成した.作成結果を 図-3.41 に示す.また,比較のために,気象庁の長期平 均水面から算出されている Z₀の分布図を図-3.42 に示 す.

図-3.41 主要四分潮の和 Z₀分布図(鹿島灘)

図-3.42 主要四分潮の和 Zo分布図(長期平均水面)

図-3.42 は鹿島 Z₀と波崎 Z₀の2 点の値から外挿およ び内挿して作成したため NAO ファイルの値を使用した 図-3.41 とは沖合の分布の傾向が違っている.

c) 平均水面モデルの作成

国土地理院の日本のジオイド 2011 を使用して, T.P. 基準の平均水面を楕円体高に変換する. 日本のジオイド 2011 による鹿島灘のジオイド高分布図を図-3.43 に示 す.

図-3.43 ジオイド高分布(鹿島灘)

T.P.基準の平均水面分布をジオイド高に足し合わせ, 平均水面楕円体高の分布図である平均水面モデルを作成 した. 作成した平均水面モデルを図-3.44に示す.

図-3.44 鹿島灘平均水面モデル

d) 最低水面モデルの作成

c)で作成した平均水面モデルから,b)で作成した主要 四分潮の和 Z₀を差し引き,最低水面楕円体高の分布図 である最低水面モデルを作成した.実測した主要四分潮 の和 Z₀を使用した最低水面モデルを図-3.45 に,気象庁 の長期平均水面 Z₀を使用した最低水面モデルを図-3.46 に示す.

図-3.46 鹿島灘最低水面モデル(長期平均水面 Z₀)

今回の実測主要四分潮より作成した最低水面モデルと 気象庁の長期平均水面 Z₀より作成した最低水面モデル の差は5地点で平均1cmとなった.

(2) 横浜港

対象区域を取り囲む,川崎,大黒,南本牧,富津の4 地点に臨時検潮所を設け,同期間32日間の潮位観測を 実施した.設置個所及び試験時の計測範囲を図-3.47 に 示す.

図-3.47 常設検潮所・臨時検潮所位置(東京湾)

a) 平均水面分布図の作成

4 地点の臨時検潮所と2 地点の常設検潮所の潮位デー タを用いて,平均水面を算出した.表-3.44 に量水標0 位標高と量水標基準及び T.P.基準の平均水面の計測結 果,常設検潮所の補正を加えた算出結果を示す.

表-3.44 T.P. 基準の平均水面の算出(東京湾)

短期平均水面									
検潮所種類	場所		所種類 場所		量水標0位標高	計測	計測結果		
			(T.P.基準)(m)	量水標基準 (m)	T. P. 基準 (m)				
常設検潮所	常①	京浜港	-1.092	1. 152	0.060				
	常②	木更津	0.000	0. 022	0. 022				
臨時検潮所	臨①	川崎	-2.613	2. 702	0.089				
	臨②	大黒	-2.063	2.134	0. 071				
	臨3	本牧	-1.913	2. 020	0. 107				
	臨④	冨津	-2.714	2. 782	0.068				

検潮所補正								
	##	基	準検潮所計測結:	果	平均水面			
場所	^{委 平} 検潮所	5年平均 ① (m)	32日間平均 ②(m)	2-1 (m)	T.P.基準 (m)			
京浜港					0.056			
木更津	京浜港	1.148	1.152	0.004	0.018			
川崎		1.148	1. 152	0.004	0. 085			
大黒		1.148	1. 152	0.004	0.067			
本牧		1.148	1. 152	0.004	0.103			
冨津		1.148	1. 152	0.004	0.064			

算出した平均水面を基に各臨時検潮所,常設検潮所を 接続して TIN を作成し,T.P.基準の平均水面分布を算定 した.図-3.48 に作成結果を示す.

図-3.48 平均水面分布(東京湾)

b) 主要四分潮の和 Z₀分布図の作成

4 地点の臨時検潮所と2 地点の常設検潮所の潮位デー タを用いて一か月間の潮汐調和分解を行い,各検潮所位 置での主要四分潮の和 Z₀を算出した.**表-3.45** に示す.

表-3.45 主要四分潮振幅と四分潮和(東京湾)

場所							
		Hm (m)	HS (m)	H' (m)	Ho (m)	主要四分潮和 (m)	既存ZO(m)
京浜港	常①	0. 436	0. 211	0. 239	0. 189	1.075	1.15
木更津	常②	0. 441	0. 210	0. 237	0. 188	1.076	
川崎	臨①	0. 452	0. 232	0. 223	0. 186	1.093	
大黒	臨2	0.445	0. 217	0. 241	0.190	1.093	
本牧	臨3	0. 418	0. 230	0. 202	0. 199	1.049	
冨津	臨④	0. 441	0. 228	0. 233	0.198	1.100	

図-3.49は、地図上に実測した主要四分潮の和 Z₀の分 布及び海上保安庁海洋情報部 HP上記載の東京湾 Z₀区分 図²⁾を示したものである.

東京湾 Z₀区分図²⁾によると,潮位を観測した検潮所付 近の Z₀は1.15m であるが,本調査で実測した主要四分 潮の和 Z₀は1.05m~1.10m と若干小さい.近年東京湾は 埋め立てなどの影響で潮汐振幅が小さくなったとの指摘 がなされていたが¹⁷⁾,今回の調査でもすべての検潮所 で同様の傾向が確認されており,東京湾の潮汐振幅は Z₀ 設定時に比べて小さくなっている可能性がある.

図-3.49 主要四分潮の和 Z₀分布図(東京湾)

臨時検潮所,および常設検潮所の各点をつないで TIN を作成し最低水面分布図を作成した.作成結果を図-3.50 に示す.なお,既定の東京湾 Z₀分布も比較用に使 用する.

図-3.50 主要四分潮の和 Zo分布図(東京湾)

c) 平均水面モデルの作成

国土地理院の日本のジオイド 2011 を使用して, T.P. 基準の平均水面を楕円体高に変換する. 日本のジオイド 2011 による横浜港周辺のジオイド高分布図を図-3.51 に 示す.

T.P. 基準の平均水面分布をジオイド高に足し合わせ、 平均水面楕円体高の分布図である平均水面モデルを作成 した.図-3.52に作成した平均水面モデルを示す。

d) 最低水面モデルの作成

c)で作成した平均水面モデルからb)で作成した主要 四分潮の和 Z₀を差し引き,最低水面楕円体高の分布図 である最低水面モデルを作成した.実測した主要四分潮 の和 Z₀を使用した最低水面モデルを図-3.53 に,東京湾 既定の Z₀により作成した最低水面モデルを図-3.54 にそ れぞれ示す.

図-3.53 最低水面モデル(実測主要四分潮の和 Z₀)

今回実測した主要四分潮より作成された最低水面モデルと,既定の東京湾Zoから作成された最低水面モデル

との差は平均7cm,最大10cmであった.差の理由としては b)で示したように Z₀が設定当時より変化しているものと考えられる.

(3) 四日市港

対象区域を取り囲む霞(二),北ふ頭,富浜,新舞子の 4 地点に臨時検潮所を設け,同期間 32 日間の潮位観測 を実施した.設置個所及び試験時の計測範囲を図-3.55 に示す.

図-3.55 常設検潮所・臨時検潮所位置(伊勢湾)

a) 平均水面分布図の作成

4地点の臨時検潮所と2地点の常設検潮所の潮位デー タを用いて平均水面を算出した.表-3.46に量水標0位 基準及び T.P.基準の平均水面の計測結果,常設検潮所の 補正を加えた算出結果を示す.

表-3.46 T.P. 基準の平均水面の算出(伊勢湾)

短期平均水面								
検潮所種類		場所	量水標0位標高	計測	計測結果			
			(T.P.基準)(m)	量水標基準 (m)	T. P. 基準 (m)			
常設検潮所	常①	四日市	-1. 371	1.501	0. 130			
	常②	鬼崎	-2. 419	2. 508	0. 089			
臨時検潮所	臨①	霞(二)	0	0. 104	0. 104			
	臨②	北ふ頭	0	0. 086	0.086			
	臨3	富浜	0	0.093	0.093			
	臨④	新舞子	0	0.065	0.065			

検潮所補正								
	##	基道	準検潮所計測結	课	平均水面			
場所	基 华 検潮所	5年平均 ①(m)	32日間平均 ②(m)	2-1 (m)	T.P.基準 (m)			
四日市	四日市	0. 025	0. 130	0. 105	0. 025			
鬼崎	鬼崎	0. 059	0. 089	0. 030	0.059			
名古屋	名古屋	0. 110	0.114	0.004	0.110			
霞(二)	四日市	0. 025	0. 104	0. 105	-0. 001			
北ふ頭	四日市	0. 025	0. 086	0.105	-0. 019			
富浜	名古屋	0.110	0. 093	0.004	0.089			
新舞子	鬼崎	0, 059	0.065	0,030	0.035			

算出した平均水面を基に各臨時検潮所、常設検潮所を

接続して TIN を作成し, T.P.基準の平均水面分布を算定 した.図-3.56 に作成結果を示す.

図-3.56 平均水面分布(伊勢湾)

b) 主要四分潮の和 Z₀分布図の作成

4 地点の臨時検潮所と2 地点の常設検潮所の潮位デー タを用いて一か月間の潮汐調和分解を行い,各検潮所位 置で算出した主要四分潮の和 Z₀を表-3.47 に示す.

表-3.47 主要四分潮振幅と四分潮和(伊勢湾)

場所							
		Hm (m)	HS (m)	H' (m)	Ho (m)	主要四分潮和 (m)	既存ZO(m)
四日市	常①	0. 629	0. 285	0. 237	0.172	1. 323	1.30
鬼崎	常②	0.619	0. 281	0. 236	0.170	1. 306	1.30
名古屋		0.654	0. 309	0. 242	0. 184	1. 389	1.40
霞(二)	臨①	0.637	0. 289	0. 239	0.172	1. 337	1.30
北ふ頭	臨②	0.637	0. 290	0. 239	0.173	1. 339	1.30
富浜	臨3	0. 648	0. 295	0. 241	0.173	1.357	1.40
新舞子	臨④	0.616	0. 282	0. 231	0.167	1. 296	1.40

図-3.57 に主要四分潮の和 Z₀の値と伊勢湾 Z₀区分図 ²⁾を示す.

伊勢湾 Z₀区分図によると,四日市付近の Z₀は 1.30m,富浜・新舞子の Z₀は 1.40m となっている.各検 潮所で実測した主要四分潮の和 Z₀ との比較では平均 5.5cm の差が出たが,新舞子のみ,伊勢湾 Z₀ との差が 10 cmと大きくなっている.これは新舞子が,伊勢湾 Z₀ 区分の 1.40m と 1.30mの境界付近であること,新舞子 の実測した Z₀は伊勢湾 Z₀区分図の南側の Z₀1.30m と一 致していることから,区分体の境界付近のため発生した と考えられる.そのため,今回算出した主要四分潮の和 Z₀と既定の Z₀の関係は妥当と考えられる.

図-3.57 主要四分潮の和 Zo分布図(伊勢湾)

臨時検潮所,および常設検潮所の各点をつないで TIN を作成し主要四分潮の和 Z₀分布図を作成した.作成結 果を図-3.58 に示す.なお,既定の伊勢湾 Z₀分布も比較 用に使用する.

図-3.58 主要四分潮の和 Z₀分布図

c) 平均水面モデルの作成

国土地理院の日本のジオイド 2011 を使用して, T.P.基 準の平均水面を楕円体高に変換する.日本のジオイド 2011 による四日市港周辺のジオイド高分布図を図-3.59 に示す.

図-3.59 ジオイド高分布(伊勢湾)

T.P. 基準の平均水面分布をジオイド高に足し合わせ, 平均水面楕円体高の分布図である平均水面モデルを作成 した.図-3.60に作成した平均水面モデルを示す.

d) 最低水面モデルの作成

c) で作成した平均水面モデルから b) で作成した主要 四分潮の和 Z₀を差し引き,最低水面楕円体高の分布図 である最低水面モデルを作成した.実測した主要四分潮 の和 Z₀を使用した最低水面モデルを図-3.61 に,伊勢湾 既定 Z₀を使用して作成した最低水面モデルを図-3.62 に それぞれ示す.

図-3.61 最低水面モデル(実測主要四分潮の和 Z₀)

最低水面楕円体高がシームレスに変化する実測主要四 分潮の和 Z₀を使用した最低水面モデルに対して,伊勢 湾 Z₀は今回最低水面モデルを作成した範囲内に Z₀=1.30mから Z₀=1.40mへ変化する境界が存在するた め,使用した最低水面モデルも Z₀区分帯の境界で最大 10 cmの段差が発生している.この段差により,仮に Z0 区分帯の境界を跨ぐように施工範囲が設定された場合, 伊勢湾 Z0 による最低水面モデルを使用する,同一施工 範囲内に 10 cmの差を持つ 2 つの管理用基準面が存在す ることとなる.その場合,設計・施工・出来形管理が煩 雑になる可能性が考えられるため,今後最低水面モデル を設定する上では現地の設計・施工の実態を考慮する必 要があると考えられる.

3.5 まとめ

本章では、鹿島港・横浜港・四日市港を対象に、精密 水準測量・GNSS水準測量・重力測定を行い、港湾域に おける「日本のジオイド2011」のジオイド高の精度検 証を行った.そして、「日本のジオイド2011」の精度 が確認できたので、「日本のジオイド2011」を用い て、最低水面モデルの作成を実施した.最低水面モデル の試作に当たっては、臨時検潮所及び常設検潮所の潮汐 観測結果を用いて算出した平均水面及び主要四分潮の和 Z₀を、日本のジオイド 2011 に加えて最低水面モデルを 作成した.

GNSS鉛直測位を利用したマルチビーム測深の 実地試験

港湾における GNSS 鉛直測位を利用したマルチビーム 測深の精度確認を行うため,第3章で最低水面モデルを 作成した鹿島港,横浜港,四日市港を対象に,実地試験 を行った.実地試験では,GNSS 鉛直測位を利用したマ ルチビーム深浅測量と,現行の潮位補正による水中スタ ッフ測量の比較を実施した.

4.1 GNSS 鉛直測位を利用したマルチビーム測深の精度 検証

GNSS 鉛直測位の精度を検証するため,RTK 方式と VRS 方式の二つの測位方法を用いて,鹿島港,横浜 港,四日市港においてマルチビーム深浅測量を行った. ただし,鹿島港についてはRTK に用いる海上 GPS 利用 推進機構の基準局がないことから,VRS のみで実施す ることとした.また,GNSS 鉛直測位結果のリアルタイ ムキネマティック処理と後処理キネマティック処理の比 較も同時に行う.

マルチビーム深浅測量は「水路測量業務準則施行規 則」¹⁶⁾及び「マルチビームを用いた深浅測量マニュアル (浚渫工編)」¹⁷⁾に準じて実施し,GNSS鉛直測位の精 度検証のため,潮位補正による測深値も整理することと した.

潮位補正には, 鹿島港は鹿島常設検潮所の潮位デー タ, 横浜港は横浜常設検潮所の潮位データ(一部欠損期 間があったため, 欠損期間は山内常設検潮所の潮位デー タを使用),四日市港では四日市常設検潮所の潮位デー タを使用した.

表-4.1 に使用した GNSS 機器,図-4.1,図-4.2,図-4.3 に試験エリアを示す.

表_4 1	庙田	1.1-	GNSS	機哭
衣 ~ 4. Ⅰ	使用	UIC	GNOO	们这石户

機器名称	規格・性能
POS-MV Wave Master2 (慣性航法装置)	ロール精度:0.02° ピッチ精度:0.02° ヒーブ精度:2 cm or 2% 水平測位精度:± (8mm+1ppm+base line) 垂直装飾:± (15mm+1ppm+base line)

図-4.1 深浅測量範囲(鹿島港)

図-4.2 深浅測量範囲(横浜港)

図-4.3 深浅測量範囲(四日市港)

GNSS及び潮位による補正前の測深結果を図-4.4,図-4.5,図-4.6に示す.

図-4.4 マルチビーム測深結果(鹿島港)

図-4.5 マルチビーム測深結果(横浜港)

(1) GNSS 測位による補正と検潮所潮位補正との比較

GNSS 鉛直測位と潮位補正の2つの補正手法による測

深結果を比較する.比較項目を表-4.2に,補正手法に よる比較を表-4.3に示す.

表-4.2 比較項目

番号	GNSS 測位方式	測深結果 補正数値
1	VRS	潮位補正
2	VRS	GNSS補正
3	RTK	潮位補正
4	RTK	GNSS補正

表-4.3 GNSS 鉛直測位と検潮所潮位補正の比較

ᄔᅕ	止訪 羊 八		差分数值		
項目	港名	計算	平均値 (cm)	標準偏差 (cm)	
	鹿島港		3. 2	2. 1	
潮位補正	横浜港	期位補正 横浜港 潮位	潮位	4. 6	1.2
			-	4.4	2.3
GNSS補正	m n + :#	GNSS	-9. 1	1.5	
	四日市港		-7. 5	1.3	

潮位補正と GNSS 鉛直測位結果の比較では、横浜港では VRS 方式で 4.6cm, RTK 方式で 4.4cm の差分が生じ,四日市港では VRS 方式で-9.1cm, RTK 方式では-7.5cm の差分が生じた.

潮位補正と GNSS 鉛直測位の計測差の要因としては, 潮位補正で使用した検潮所の位置とマルチビーム測深の 計測位置が厳密には違うため,検潮所と計測場所の潮位 変動の違いが計測結果の違いとして生じた可能性があ る.

(2) RTK と VRS の比較

RTK と VRS で GNSS の測位形式による測深結果の比較を行う. 比較項目は表-4.2, 比較結果を表-4.4 に示す.

表-4.4 RTK と VRS の比較

나苏	Lk ##		差分数值	
項目	港名	一 左 分 計算	平均値 (cm)	標準偏差 (cm)
VRS	横浜港	2-4	0.1	2. 1
RTK	四日市港	2-4	3.0	1.6

RTK 方式と **VRS** 方式の比較(②-④)では横浜港で 0.1 cm,四日市港では 3.0 cmの差分が生じた.

四日市港での計測差の要因としては RTK の基準点と した海上 GPS 推進機構の基地局までの距離が横浜約 3 km に対して四日市は約 8 kmとなっている.一般に RTK-GNSS は、基地局から観測点までの距離が離れる程精度 が悪化する傾向があるため,表-4.1に示した使用 GNSS の垂直精度と合わせて生じた差である可能性がある.

(3) GNSS 鉛直測位におけるリアルタイム処理と後処理の比較

GNSS 衛星情報に基づくキネマティック処理の方法に ついて、(1)、(2)ではいずれも後処理を行った.ここで はキネマティックの後処理と放送歴によるリアルタイム 処理の比較・検証を行う.

RTK 及び VRS 方式それぞれの GNSS 鉛直測位結果に ついて,後処理とリアルタイム処理の比較結果を表-4.5 に示す.

나ホ	¥/)	关八	**	差分数值	
項目	港名	左方 計算	備報	平均値 (cm)	標準偏差 (cm)
	鹿島港		VRS	-0.6	0.5
リアル	+# \ C \#	リアル	VRS	-0. 3	1.8
タイム	慎 洪港	タイム	RTK	0. 3	1.5
後処理	四日市	後処理	VRS	-2. 2	1.3
	港		RTK	0. 7	1.8

表-4.5 計測結果(キネマティック別)

キネマティックのリアルタイム処理から後処理を引い た差分について, 鹿島港では VRS 方式で-0.6cm, 横浜 港では RTK 方式及び VRS 方式のいずれも-0.3cm, 四日 市港では RTK 方式で 0.7cm, VRS 方式で-2.2cm となっ た. 潮位補正と GNSS 鉛直測位における差分と比較する と, キネマティック処理手法の違いによる計測差への影 響は, 小さいことが確認された.

(4) 考察

RTK 方式と VRS 方式,キネマティック処理手法による計測差はいずれも潮位補正との計測差より小さくなった.マルチビーム測深時には GNSS を用いた測位・方位計測と慣性センサーを組み合わせたハイブリッド航法によって,高精度な測位・姿勢・方位データを計測するとともに,動揺データを GNSS 鉛直測位のデータで補正している.このような船舶の上下運動(ヒーブ)の補正処理により,GNSS 鉛直測位の方式やキネマティック処理による計測差が小さくなったことが想定される.

マルチビーム測深において, GNSS を用いた測位・方 位計測と慣性センサーを組み合わせた慣性航法装置を使 用した高精度な測位・姿勢・方位データの計測を行って いる.動揺データを GNSS の測位データで補完すること により,慣性センサーの誤差を解消しつつ,GNSSの測 位データの誤差も補間していることが考えられる.船舶 の上下運動の差が誤差として高精度に補正された結果, RTK 方式と VRS 方式,リアルタイムと後処理の計測差 は潮位補正と比較して小さくなったと考えられる.

4.2 水中スタッフ測量とマルチビーム深浅測量の比較

捨石マウンド部において,現行の出来形管理手法である水中スタッフによる直接測量と,RTK-GNSSによるマルチビーム測深の比較を行う.

水中スタッフによる測量は、四日市港の東防波堤で行った.水中スタッフによる計測位置(30か所)を図-4.7に示す.また、水中スタッフによる測量作業のイメ ージを図-4.8に示す.潜水士が計測位置にスタッフを あて、防波堤からトータルステーションにより、捨石マ ウンド天端までの水深を計測した.

図-4.8 水中スタッフ測量図

表−4.6	水中スタッフ測量とマルチビーム深浅
	測量との差分

地点	水中スタッフ	潮位補正	GNSS補正	①-②(m)	①-③(m)
番号	水深(1)(m)	(2)(m)	(3)(m)	0.001	0 100
1	5.835	0.090	0. UZ4	-0. 201	-0.189
2	5.915	5.832	5. /64	0.083	0. 151
3	6.635	6.359	6.291	0.276	0.344
4	6. 705	6.655	6.590	0.050	0.115
5	6.335	6.307	6.243	0.028	0.092
6	6. 595	6. UZI	5.957	0.5/4	0.638
/	6.4/5	5.950	5.880	0. 525	0.589
8	6.635	6. 182	6.115	0.453	0.520
9	6. 435	6.308	6.239	0.12/	0.196
10	6.605	6.334	6.261	0.2/1	0.344
11	6. 255	6.287	6.214	-0. 032	0.041
12	6.615	6.409	6.334	0.206	0. 281
13	6.665	6. 541	6.462	0. 124	0. 203
14	6. 135	6. 478	6.403	-0. 343	-0. 268
15	6. 195	5. 711	5.655	0. 484	0. 540
16	6. 615	5.703	5.646	0.912	0.969
17	6.485	5.753	5.696	0. 732	0. 789
18	6. 335	5.670	5.614	0.665	0. 721
19	6. 405	5.615	5.560	0. 790	0. 845
20	6. 335	5.697	5.638	0.638	0. 697
21	6. 405	5.554	5.488	0.851	0.917
22	6. 255	5.600	5. 536	0.655	0. 719
23	5.975	5.465	5.398	0.510	0.577
24	6. 595	6.001	5.941	0. 594	0.654
25	6. 782	6.025	5.965	0. 757	0.817
26	6. 672	6.160	6. 107	0. 512	0. 565
27	6. 992	5.966	5.911	1.026	1.081
28	6. 592	5.742	5.684	0.850	0. 908
29	6. 342	6.110	6.041	0. 232	0. 301
30	6. 302	6.323	6.247	-0. 021	0.055
		平均值(m)		0.409	0.474
		標準偏差	(m)	0.358	0.353

水中スタッフ測量結果と **RTK-GNSS**(後処理)によ るマルチビーム測深結果,また比較のため,検潮所潮位 補正によるマルチビーム測深結果を**表-4.6**に示す.水 中スタッフの測量結果との計測差は,**RTK-GNSS**(後処 理)で平均47.4cm,潮位補正で平均40.9cmと,水中ス タッフ測量の方が深い値を記録した.また水中スタッフ 測深結果と潮位補正,GNSS 補正の差分の標準偏差は RTK-GNSS(後処理)で35.3cm,潮位補正で35.8cmで あり,計測差のばらつきも大きくなった.原因として は、マウンド上に浮泥が堆積しており,水中スタッフで は浮泥の下のマウンド部分からの水深を計測するのに対 し、マルチビーム測深では浮泥層の上層からの水深を計 測していた可能性がある.なお,RTK-GNSSと潮位補正 の差の平均及び標準偏差は,表-4.4に示す四日市港の 結果と同程度となった.

今回の試験では、水中スタッフ測量とマルチビーム測 量そのものの数値が大きく違ってしまったため、比較検 証に十分なデータを得ることができなかった.今後、 GNSS 鉛直測位手法を行う上での比較検証用データとし てスタッフによる直接計測を用いる場合には、浮泥の少 ない新設のマウンド等にて試験を実施することが必要と 考えられる.

4.3 まとめ

GNSS 鉛直測位を利用したマルチビーム測深の精度を 検証するため, 第3章で最低水面モデルを作成した鹿島 港・横浜港・四日市港を対象に,マルチビーム深浅測量 を実施した. GNSS 鉛直測位の RTK 方式と VRS 方式の 差,また,GNSS 鉛直測位のキネマティックの後処理と リアルタイム処理の差は小さかった.一方,潮位補正と GNSS 鉛直測位の差として,鹿島港で平均約3 cm,横浜 で約4 cm,四日市で7 cm~9 cmの差が生じた.差の原因 としては,潮位補正に用いた検潮所とマルチビーム測深 の現場が離れていることから,検潮所と現地の潮位変動 の差があった可能性が考えられる.

5. 地盤改良工の施工現場におけるGNSS鉛直測位の 実地試験

港湾工事におけるGNSS鉛直測位による高さの情報の 活用にあたり、施工による影響を踏まえた計測手法や精 度を検証する必要がある.このため、施工中の作業船で GNSS鉛直測位による高さと、従来の手法である潮位補 正による高さを比較し、GNSS鉛直測位を利用する際の 留意事項や今後の検討課題について、整理・分析を行 う.

5.1 試験概要

(1) 調査海域

最低水面モデルを作成した鹿島港,横浜港,四日市港 の内,作業船による工事が行われていた横浜港新本牧地 区にて,実地試験を実施することとした.調査海域を図 -5.1に示す.

図-5.1 調查海域 (横浜港新本牧地区)

(2) 対象工種及び使用船舶

実地試験では、GNSS鉛直測位と潮位補正による高さ の比較を行うため、対象工種は高さ管理が重要となる工 種である必要がある.そこで、管理基準面からの深度管 理が施工上重要となる海上地盤改良を対象工種とし、横 浜港新本牧地区にて施工された深層混合処理杭地盤改良 (以下、「CDM(Cement Deep Mixing)」という)工事に て実地試験を行った.

使用船舶は,深層混合処理船(以下,「CDM船」という)「黄鶴」であり,全長70m,改良杭のタワーの高さ32mの作業船である.外観および主要な寸法を図-5.2 に示す.

図-5.2 深層混合処理船「黄鶴」外観及び主要寸法

CDM船「黄鶴」の地盤改良の深度管理は、最低水面

からデッキ面までの距離であるデッキ面高を基準として,以下の式(11)で実深度を算出している.

式(11)での(潮位+乾舷)は最低水面からデッキ面まで の高さを表している.この場合の潮位は最低水面から現 時刻の水面までの距離,乾舷は同時刻の水面からデッキ 面までの距離である.

GNSSでデッキ面の位置を測定することが出来れば, 深度管理において潮位計, 乾舷計の計測が不要となる. 図-5.3に高さ関係図を示す.

図-5.3 高さ関係図

CDM船「黄鶴」の翼深度管理位置は、乾舷計が設置 されている杭の打ち出しの位置である。今回の実地試験 では、船体とタワートップにGNSS機器が設置されてお り、GNSS鉛直測位による「翼深度-乾舷計」の一連の システムに潮位データを入力することで、最低水面から の翼深度管理を行っている。

なお、CDM船「黄鶴」の翼深度管理システムは外部 に計測データ出力することができなかったため、今回の 実地試験にあたっては、ブリッジ屋上にGNSS機器を設 置した.GNSS機器の設置位置を図-5.3に記載してい る.GNSS機器のアンテナ高およびデッキ面からのオフ セットは、停泊中にトータルステーションを用いて行っ た.デッキ面からのオフセット計測結果及び計測位置を 図-5.4に示す.

図-5.4 GNSS 測器オフセット結果

また, GNSSデータと同様に乾舷計データも出力する ことが出来なかったが,こちらは別途設置することも困 難であったため,計測結果のモニター表記を6時間ごと に目視で記録した.

(3) 使用したGNSS機器及び測位形式

GNSS鉛直測位はRTK-GNSS方式で行い,地上局の補 正情報は海上GPS推進機構の大黒局の補正データを利用 した.収録頻度は緯度,経度,楕円体高を1秒間隔で計 測・記録を行った.使用機器を表-5.1に示す.

表-5.1	使用機器
-------	------

機器	機種名
GNSS測量	Septentrio AsteR-U
テレメータ受信機	古野電機 GS-3005A
潮位計	OKE TWL-5000
PC(データ収録用)	Panasonic CF-SZ5

- (4) 記録データ
- a) GNSS

1秒に1度の周期で計測・記録した.測位ステータスが Fix解以外は欠測扱いとし,欠測部分の数値は欠測して ない前後のデータから線形補間することで算出した.ま た,GNSSの楕円体高からGNSSアンテナのオフセット 値14.022mを差引くことで,デッキ面の楕円体高を算出 した.デッキ面の楕円体高から最低水面の楕円体高を差 引くことで,最低水面からデッキ面までの距離を算出す る.

b) 最低水面モデル

最低水面モデルは,港内のZ₀を一定とした条件下で実 地試験を行うため,東京湾既定のZ₀を用いて作成したモ デルを使用した.

c) 潮位データ

新本牧航行安全管理事務所で計測している潮位データ を使用した.潮位計本体は新本牧航行安全管理事務所の ある横浜港シンボルタワー付近,現場から約600mの位 置に設置されており,2分間に1回の間隔で潮位データを 取得している.設置位置を図-5.5に示す.

図-5.5 潮位計位置図

なお,この潮位観測所の潮位関係の情報は, Y.P. (Yokohama Peil:横浜港最低水面)とT.P.の関係のみ で,検潮所の水準測量に使用したベンチマーク,観測基 準面(潮位=0mの面),平均水面,Y.P.の位置関係が不明 である.

d) 乾舷計データ

上記に記載したようにデジタル出力が不可能であった ため、6時間ごとに翼深度管理システムの表示データを 転記した.

e) データの整理方法

以上の条件で2023年4月13日から2023年4月19日までの 7日間,データの計測および記録を行った.

なお, GNSS機器, 潮位計, 乾舷計による計測間隔が 異なるため, 比較用に表-5.2に示すデータの整理を行 い, 1分単位のデータに変換することで条件を統一し た.

図-5.6 GNSS・潮位 比較グラフ(全体)

図-5.7 GNSS・潮位 比較グラフ(4月17日のみ)

表-5.2 各種データの補間方法

データ名	記録周期	比較用補正
デッキ面高	1秒間に1度	後方移動平均1/60sして1分間に1度のデータに変換
潮位	2分間に1度	空白部分を前後のデータで線形補完し1分間に1度の データに変換
乾舷	6時間に1度	空白部分を前後のデータで線形補完し1分間に1度の データに変換

GNSS鉛直測位によるデッキ面高は,60秒間で後方移 動平均することで1分単位のデータに変換し,潮位と乾 舷は式(12)で空白部分を線形補間し,1分単位のデッキ 面高を算出した.

$$h_t = h_0 + (h_1 - h_0) \frac{t - t_0}{t_1 - t_0}$$
 式(12)

 h_t は、データの取得されていない時刻tにおける高さである.ここで、 $t_0 < t < t_1$ であり、時刻 t_0 における高さ h_{t0} と、時刻 t_1 における高さ h_{t1} は、観測されているものとする.

5.2 試験結果

試験期間である2023年4月13日~2023年4月19日の GNSS鉛直測位によるデッキ面高と、従来手法である潮 位計と乾舷計から求めたデッキ面高を図-5.6に示す. 潮位を用いた計測手法に対して、GNSSを用いた計測 手法によるデッキ面高は平均8cm高い結果となった.また,詳細図として日,4月17日の1日分の計測結果を図-5.7に示す.

GNSSによる計測結果と潮位による計測結果には、以下の2つの特徴がみられる.

(1) GNSS鉛直測位と潮位計の長期的な変動

GNSS鉛直測位によるデッキ面高と潮位計・乾舷計に よるデッキ面高の計測結果は、平均して8cmの差が発生 している.4月13日AM10:00~4月19日AM10:00までの全 計測期間を通して、GNSS鉛直測位が潮位計を下回るこ とはなかった.GNSSを使用して取得したデータと潮位 を使用して取得したデータは、概ね同様の傾向で推移し ている.

(2) GNSS鉛直測位の短期的な変動

図-5.8に、4月17日0時~6時のデッキ面高の計測値を 示す.丸で囲った部分は、1時間に1~2回の周期で、 GNSS鉛直測位の計測結果のみデッキ面高が大きく上昇 していた.

この現象は,計測した4月13日~4月19日の作業期間全体で発生しており,GNSSの計測結果にのみ生じていた.

GNSS鉛直測位にのみ見られる短期的な変動は、以下のような特徴があった.

①一定周期で発生

②1回の変位は平均6cm前後

以上のように,GNSS鉛直測位によるデッキ面高と潮 位+乾舷によるデッキ面高の差には,規則性及び特徴的 な変位が見られるため,次節で考察を行う.

5.3 考察

GNSS鉛直測位によるデッキ面高と潮位+乾舷による デッキ面高の計測値は,差を生じてはいるが並行に同じ 傾向をもって推移していることから,生じた差は数値の ばらつきではなく,計測条件等の違いによる恒常的な理 由があると考えられる.

差の原因として想定されるものは以下のとおりであ り,各項目に関して検討を行った. ①使用機器によるもの ②計測条件の違いによるもの ③最低水面モデル由来によるもの ④CDM船の挙動に由来するもの

(1) 使用機器によるもの

使用した GNSS 機器のカタログ記載の精度を表-5.3 に示す. なお, RTK-GNSS の測位精度の+ppm(Pert Per Million (100 万分の 1))は, RTK-GNSS 機器から基準局 までの距離に応じて生じる誤差の事である. 今回使用し た海上 GPS 利用推進機構の大黒基準局は, 現場海域か ら約 3km 離れており, 1.0ppm に相当する 0.3 cm が垂直 精度の誤差に含まれる.

表-5.3 使用機器精度

炸在力	精度表 測位形式		
有度名	単独測位 (m)	RTK-GNSS (cm)	
水平精度	1.2	0.6+0.5ppm	
垂直精度	1.9	1.0+1.0ppm	

表-5.3 に示す通り,使用した RTK-GNSS の精度では 8 cmの差は発生しない. RTK-GNSS が単独測位となり, Float 状態になっていた場合は,垂直精度に 1.9m の誤差 が発生する可能性がある.しかし,今回は Float 状態を 除外し Fix 解のみを用いているため,GNSS 鉛直測位の 誤差による影響は小さいと考えられる.

(2) 計測条件の違いによるもの

各計測機器の計測条件は5.1(4)に記載のとおりであ る.特に計測間隔について,GNSSは船中央のブリッジ 屋上で記録されたもので1秒間隔,潮位は2分間隔,乾 舷は6時間間隔と記録条件が異なっている.本資料では GNSS 鉛直測位による計測結果,潮位計による計測結果 と乾舷計による計測結果を,1分単位のデータに補間し て比較を行ったため,差が生じた可能性がある.特に, 乾舷計のデータは6時間間隔で記録されたものを線形補 間して1分単位のデータとしたため、実際の船舶の動き を反映していない.また、潮位は船から約600m離れた 位置で計測しており、船と潮位計位置で潮位差が生じて いた可能性が考えられる.

以上により、計測条件の違いを十分に考慮できていないことが、GNSS 鉛直測位による計測結果と潮位による 計測結果の差の要因の一つであると考えられる.

(3) 最低水面モデル由来のもの

今回の現地試験では、新本牧航行安全管理事務所に設置している潮位計のデータを利用している.しかし、潮位計に関する楕円体高が不明のため、デッキ面高の算出の基準となる最低水面は、それぞれ以下を使用している.

①GNSS鉛直測位:最低水面モデルから取得した最低水面

②潮位+乾舷:Y.P.-0.03mとして推算した最低水面

しかし、デッキ面高の算出に用いた上記の最低水面は 一致していない可能性があり、使用した最低水面高さの 差が潮位補正とGNSS鉛直測位のデッキ面高の差につな がった可能性がある.

(4) CDM船の挙動に由来するもの

上記①~③は、潮位計から求めたデッキ面高とGNSS 鉛直測位から求めたデッキ面高の定常的な差を説明する ものであるが、GNSS鉛直測位にのみ見られる短期的な 変動を説明することはできない.

挙動の影響検証として, CDM船の移動による動揺を

原因とするものか,改良杭作成による動揺を原因とする ものかを判断するため,作業日報を基にCDM船の作業 タイムスケジュールを作成した.作成したタイムスケジ ュールを図-5.9に示す.

図-5.9 CDM 船タイムスケジュール(4/17 分を抜粋)

図中に緑で示した範囲はCDM船の改良杭造成作業中 の時間帯あり、以下の流れで作業が行われている. ①作業位置へ移動し改良杭造成の準備 ②攪拌翼先端より改良剤を噴出しつつ指定深度まで貫入

③貫入完了後先端にて攪拌しながら引き上げ,再度貫入 して攪拌

④攪拌しながら引き抜き次の位置へ移動

白で示した範囲は,移動・洗浄等を行っている時間帯 である.

CDM船のタイムスケジュールに,GNSSと潮位+乾舷 計の計測結果の差分図を当てはめたグラフを,図-5.10 に示す.

図-5.10では、一定のタイミングでパルスが生じているのが確認できる.パルスは、全体を通して移動・洗浄中を表す白色の部分では発生せず、CDM作業中である

図-5.10 計測結果差分(4/17 分を抜粋)

緑色の部分に集中して発生している.このことから, GNSS側の急激な変位の要因として,CDM船の移動の影響は小さく,改良杭造成作業が影響を与えていると考えられる.

パルスの発生タイミングを確認すると、改良杭造成作 業開始から概ね20~30分後に、パルスが発生している. このため、パルスの発生には特定の作業が影響している と考えられる.

作業開始後30分は、CDM船の改良杭造成作業の工程 の内,③の攪拌翼の貫入及び攪拌作業に相当する.③で は攪拌翼を上下動させることから,攪拌翼の上下動が CDM船の高さに影響を及ぼし、GNSSの変位として記録 されたことが考えられる.また、パルスは、改良杭1本 造成につき2回発生する場合があるが、③の作業では1度 攪拌しながら引き抜き、その後の再貫入が行われるた め、再貫入時に2回目のパルスが発生していると考えら れる.

また,施工に伴いCDM船に傾斜が生じた場合には, デッキ面船首部分に設置している乾舷計と中央部分に設 置したGNSS機器の高さが異なる.ただし,今回の検証 では傾斜計等を設置しなかったため,実際にCDM船に 傾斜が生じていたかを確認することができなかった.

5.4 実地試験結果を踏まえた今後の対応策の提案

今回の実地試験を踏まえ、今後GNSS鉛直測位を港湾 工事で利用するために必要な対応案を、以下のとおり整 理・提案する.

(1) データの計測条件

a) GNSS機器

GNSS機器を作業船中央のブリッジ屋上に設置した が,船首中央内部の乾舷計と距離があるため,作業船の 傾斜により両者の高さが異なっていた可能性がある.

改善案として、傾斜計を設置し、船の傾斜を記録する ことで、GNSS機器と乾舷計の高さ関係を正確に把握す ることが可能になると考えられる.

b) 乾舷計

作業船の施工管理システムとして実際に使用されてい る乾舷計を使用したが、乾舷計による計測結果を外部出 力することが不可能であったため、6時間おきに手動に て記録した.6時間間隔であるため、船舶の一時的な動 揺を反映できていない可能性がある.

改善案としては,船のシステムを利用する場合,事前 に計測結果を外部システムに出力可能なシステムに改良 することがあげられる.また、システムの改良が困難な 場合、実地試験用の乾舷計を設置する等により、計測間 隔が密なデータを取得することが望ましい.

c) 潮位計

今回は現地施工現場にて使用されている,横浜シンボ ルタワー横に設置された潮位計のデータを使用した. 5.1(4)に記載の通り,この検潮所は潮位0mに当たる潮位 基準面の高さが不明であるため,横浜検潮所の潮位計の データから潮位基準面の位置を推測して利用した.横浜 シンボルタワー横の潮位計と横浜検潮所の潮位計の潮位 基準面の高さが異なっていた場合,差の原因となった可 能性が考えられる.

改善案としては, 乾舷計と同様に実地試験時に臨時検 潮所を設置するか, 使用する検潮所のキャリブレーショ ンを正確に行っておく必要がある.

以上の通り、計測機器間の位置関係を正確に確認する こと、計測間隔を出来るだけ密な状態で統一すること で、GNSS鉛直測位による潮位補正と現行の潮位計によ る潮位補正の不一致の要因が特定される.そして、必要 な補正を行うことにより、GNSS鉛直測位を港湾工事に 導入できるようになるものと考えられる.

現行の潮位計による潮位補正とGNSS鉛直測位による 潮位補正の整合を確認するため、基準となる高さの差異 を確認するキャリブレーションが必要であると考えられ る.キャリブレーションで使用する、各種の高さの位置 関係を図-5.11に示す.

Δ-5. 11 イヤリノレーションで使用する各種間で 位置関係図

常設検潮所や臨時検潮所の位置が施工現場から距離が 離れている場合,施工現場で計測するGNSS鉛直測位結 果と潮位の変動条件等が異なることも考えられる.この ため、キャリブレーション作業は図に示す通り、検潮機 を設置した岸壁に作業船を停泊させ、潮位補正によるデ ッキ面高とGNSS鉛直測位のデッキ面高の差を計測し、 計測した差を補正値として使用することが考えられる.

5.5 まとめ

本章では、港湾分野におけるGNSS鉛直測位の導入に 向けて、実際の施工中の作業船のデッキ面高のデータを 取得し、潮位補正による結果との比較検証を行った.

潮位補正によるデッキ面高とGNSS鉛直測位によるデッキ面高では、GNSS鉛直測位結果の方が常に高い値となり、平均して8cmの差が生じた.また、GNSS鉛直測位結果にのみ、1時間に1~2回の瞬間的な上昇がみられた.

GNSS鉛直測位から求めたデッキ面高が潮位計による 潮位補正から求めたデッキ面高よりも常に高い要因の一 つとしては、潮位補正とGNSS鉛直測位のデッキ面高の 基準となる最低水面の高さに差が生じていた可能性が考 えられる.瞬間的な変位については、CDM船の施工に 伴う船舶の短時間の上下動や傾斜の影響が、計測間隔の 細かいGNSS鉛直測位にのみ計測された可能性が考えら れる.

今回の検証は1現場のみのデータに基づいて実施した ため、潮位補正とGNSS鉛直測位の差の要因の特定には 至らなかった.ただし、実地試験結果を踏まえ、今後 GNSS鉛直測位を港湾工事で利用するために必要な対応 案を整理・提案した.

6. おわりに

6.1 主要な結論

本資料では、港湾における測深作業の効率化に向け て、検潮作業が不要となる最低水面モデルを活用した GNSS鉛直測位手法について港湾分野への適用に関する 検証を行った.

鹿島港,横浜港,四日市港を対象に,港湾域の実測ジ オイド高を計測し,日本のジオイド2011の港湾域のジオ イド高の精度が確認できたことから,日本のジオイド 2011の楕円体高を用いて最低水面モデルを試作した.

また、GNSS鉛直測位手法による計測精度を検証する ため、マルチビーム測深を行い、RTK方式とVRS方式、 キネマティック処理(リアルタイム処理と後処理)、潮 位計による潮位補正との比較を行った.その結果、 GNSS鉛直測位と潮位計による潮位補正では、潮位計測 位置の違いによる潮位変動差が原因と考えられる差が生 じたが、RTK方式とVRS方式の違いやキネマティックの リアルタイム処理と後処理の違いによる計測差は小さか った.

GNSS鉛直測位の港湾分野への適用に向けて,施工中の作業船による計測結果への影響を検証するため,横浜

港において、CDM船の施工中のGNSS鉛直測位によるデ ッキ面高を取得し、潮位計の潮位補正によるデッキ面高 と比較した.その結果、GNSS鉛直測位結果は潮位計に よる潮位補正結果より常に高い値となり、平均8cmの差 が生じた.また、GNSS鉛直測位結果では、1時間に1~2 回程度のパルス状の短期的な変動が生じた.GNSS鉛直 測位と潮位計による潮位補正の間の定常的な差は、施工 現場と潮位計の位置が離れていること、潮位計の高さの 基準となる潮位基準面が正確に把握されていなかったこ と等が要因として考えられる.また、GNSS鉛直測位に のみ見られた短期的なパルス状の変動は、CDM船の攪 拌翼の上下動や、それに伴うCDM船の傾斜の影響等が 要因として考えられる.さらに、今回の実地試験を踏ま え、今後GNSS鉛直測位を港湾工事で利用するために必 要な対応案を整理・提案した.

6.2 今後の課題

本資料では, 鹿島港, 横浜港, 四日市港において最低 水面モデルを試作したが, 港湾工事での実用化のために は予め各港湾の最低水面モデルの整備が必要となる.

さらに、今回使用した日本のジオイド2011は巨大地震 等により地殻変動が生じた際には再計測が必要となるこ とから、最低水面モデルに使用するジオイドには精密重 カジオイド・モデルを反映することが望ましい.

また, GNSS鉛直測位による水深の計測は現行の潮位 補正とは計測手法が異なることから,港湾工事への実用 化に計測マニュアルや出来形管理要領類の検討が必要と なる.そのためには, GNSS鉛直測位と潮位補正の差の 要因の特定が必要であるが,今回の実地試験では,計測 条件の不一致等により要因の特定には至らなかった.

そのため、今後は本資料で提案した対応案に基づき統 一的な条件で実地試験を行い、GNSS鉛直測位と潮位補 正の計測差の要因を特定することが必要である.計測差 の要因を特定できれば、計測手法の有用性や計測精度の 確認することで、港湾工事への実用化に必要となる計測 マニュアルや出来形管理要領類の整備が可能となる.

謝辞

本資料をとりまとめるにあたり,現地試験では関東地 方整備局京浜港湾事務所,鹿島港湾・空港事務所及び中 部地方整備局四日市港湾事務所並びに施工業者の皆様に ご協力頂きました.ここに記し,感謝の意を表します.

参考文献

1) 一般社団法人海洋調查協会:海上保安庁海洋情報部

監修,水路測量関係規則集(平成 26 年 4 月第 8 版), 2014, p59.

- 海上保安庁 海洋情報部:平均水面,最高水面及び 最低水面の高さに関する告示,2023, <https://www1.kaiho.mlit.go.jp/TIDE/datum/>, (最終閲覧日 2024.2.14)
- 3) 大久保匡騎,住吉昌直,伊能康平,小林研太,土屋 主税,野澤理香,栗田洋和,小川遥,長野勝行,山 野寛之,吉澤信,熊谷卓也,安原徹:日本沿岸域に おける楕円体高基準水深測量の標準手順確立に向け て:測深データ処理の試行と水深データの検証(令和 4年3月),海洋情報部研究報告第60号,2022.
- 4) 国土交通省 国土地理院: GNSS 測位とは、
 https://www.gsi.go.jp/denshi/denshi_aboutGNS
 S. html>, (最終閲覧日 2024.2.14)
- 5) 国土交通省 国土地理院:重力・ジオイド,
 https://www.gsi.go.jp/buturisokuchi/grageo_g
 eoid.html>, (最終閲覧日 2024.2.14)
- 6) 国土交通省 国土地理院:ジオイドのモデリング, 日本のジオイド 2011,
 https://www.gsi.go.jp/buturisokuchi/grageo_g eoidmodeling.html>, (最終閲覧日 2024.2.14)
- 7) 国土交通省 国土地理院:第20回測量行政懇談会,
 2017,
 https://www.gsi.go.jp/seisakuchousei/seisaku

chousei41022.html>,(最終閲覧日 2024.2.14)8) 栗原忍,大森秀一,兒玉篤郎,畔柳将人,半田優

- 実,吉樂絵里香,飯尾研人,中島正寛,飯塚康裕: 精密重力ジオイド・モデル構築に向けた航空重力測 量(中間報告)-信頼性の高い標高を誰もが利用でき る社会を目指して(令和4年7月),2022.
- 9) 国土交通省 国土地理院:標高の測り方を一新して いきます―4年間にわたる国内初の全国の航空重力 測量が終了,2023,
 https://www.gsi.go.jp/buturisokuchi/buturisokuchi/buturisokuchi_202305.html>, (最終閲覧日 2024.2.14)
- 塩澤舞香,住吉昌尚,伊能康塀,鐘尾誠,山野寛 之,杉山伸二,長野勝行,瀬尾徳常,斎藤康仁,小 池未空時,吉澤信,豊鷲見淳史,高橋信介,栗田洋 和,小川遥,安原徹:日本海沿岸域における楕円体 高基準水深測量の標準手順確立に向けて,(令和5 年3月),海洋情報部研究報告第61号,2023.
- 11) 国土交通省 国土地理院:作業規定の準則(令和5 年3月改定版), 2023, p34.
- 12) 国土交通省 国土地理院:電子基準点のみを既知点

とした基準点測量マニュアル(平成27年7月改訂版), 2015, p8.

- 13) 国土交通省:国土地理院:GNSS 測量による標高の 測量マニュアル(平成31年4月改訂版),2019, p8.
- 14) 産業技術総合研究所:産総研地質調査総合センター ウェブサイト,重力データベース,2009、<
 https://gbank.gsj.jp/gravdb/>、(最終閲覧日 2024.2.14)
- 15)国立天文台:NAO.99b潮汐予測システム, NAO.99jb, 2004, <https://www.miz.nao.ac.jp/staffs/nao99/>, (最終閲覧日 2024.2.14)
- 16) 国土交通省 気象庁:潮位表掲載地点一覧表(2024年), 2024,
 https://www.data.jma.go.jp/gmd/kaiyou/db/tid
 e/suisan/station.php>, (最終閲覧日 2024.2.14)
- 17) 柳哲雄,大西和徳:埋立による東京湾の潮汐・潮流 と底質の変化,海の研究 vol. 8, No. 6, 1999, pp. 411-415.
- 18)水路測量業務準則施行細則(令和4年3月改訂版),
 2022,

<https://www1.kaiho.mlit.go.jp/suirosoku/koku ji/_userdata/saisoku.pdf >, (最終閲覧日 2024.2.14)

19) マルチビームを用いた深浅測量マニュアル(浚渫工編)(令和4年4月改訂版),2023,
https://www.mlit.go.jp/kowan/content/0014758
03.pdf>,(最終閲覧日2024.2.14)

(2024年2月14日受付)

国土技術政策総合研究所資料

TECHNICAL NOTE of NILIM

No. 1278 March 2024

編集·発行 ©国土技術政策総合研究所

本資料の転載・複写のお問い合わせは ^{〒239-0826} 神奈川県横須賀市長瀬 3-1-1 管理調整部企画調整課 電話:046-844-5019 E-mail:ysk.nil-46pr@gxb.mlit.go.jp

March 2024

~最低水面モデルの作成と海上地盤改良工における実地試験~GNSS鉛直測位による港湾工事における測深作業の効率化

国土技術政策総合研究所資料 No.1278