目

次

1. は	じめに	1
1.1.	研究の背景	1
1.2.	課題	2
1.3.	研究の目的と目標	3
1.4.	研究内容	4
1.5.	研究の実施体制	4
1.6.	用語の定義	5
1.7.	管渠の異常の種類	6
1.8.	本研究の評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9

2. 管材の種類等に応じた点検・調査技術の選定手法の開発 ………… 11

2.1. 「下水道管きょ劣化データベース」の充実	11
2.1.1. 「下水道管きょ劣化データベース(分析用)」の作成	11
2.1.2. 「下水道管きょ劣化データベース(公開用)」の作成	13
2.1.3. 異常発生箇所データベースの作成	13
2.2. 「下水道管きょ健全率予測式」の作成	14
2.2.1. 健全率予測式作成の元となるデータの特性	14
2.2.2. 健全率予測式の作成方法	15
2.2.2.1. 健全率予測式の関数モデル	15
2.2.2.2. 管渠の残存率	18
2.2.2.3. 健全率予測式の読み方	22
2.2.3. 健全率予測式の作成結果	24
2.2.3.1. 全管種の健全率予測式	24
2.2.3.2. 鉄筋コンクリート管の健全率予測式	25
2.2.3.3. 陶管の健全率予測式	26
2.2.3.4. 塩化ビニル管の健全率予測式	27
2.3. 下水道管渠の劣化傾向の分析	28
2.3.1 鉄筋コンクリート管の劣化傾向	28
2.3.2. 陶管の劣化傾向	43
2.3.3. 塩化ビニル管の劣化傾向	56
2.4. 点検・調査技術の性能等の実態把握および体系化	71
2.5. 施設の重要度に応じた点検・調査頻度の設定方法の検討	75
2.6. 管種に応じた効率的な点検・調査技術の選定手法の検討	79
2.6.1. 点検・調査技術選定のフロー(案)	79
2.6.2 適用条件による点検・調査技術の絞り込み	80

2.6.3. スクリーニング調査の導入係る経済性評価の枠組み	80
2.6.4. 経済性評価の枠組みを用いた試算結果	81
2.6.5. 異常発見率を変化させた場合の感度分析	85
2.6.6. 経済性評価の枠組みの課題	86
2.7. ケーススタディによるスクリーニング調査導入効果・社会情勢変化の影響の評価・	86
2.7.1. ケーススタディの方法	86
2.7.2. モデル都市の概要	87
2.7.3. ケーススタディの試算結果	89
2.8. まとめ	95

3. 維持管理情報の活用による修繕・改築工法の選定手法の開発 …… 98

3.1. 修繕・改築工法の実態把握・工法選定に必要な情報の整理 ······· 98
3.1.1 修繕・改築工法の適用範囲等の整理
3.1.2. 地方公共団体における修繕・改築工法の選定に関する実態111
3.2. 維持管理情報に基づく修繕・改築工法の選定手法の検討
3.2.1 修繕・改築工法の選定フロー
3.2.2. 維持管理情報に基づく対象管渠の状況整理
3.2.3. 異常項目による絞り込み(一次選定)
3.2.4. 管渠条件及び施工条件による絞り込み(二次選定)
3.2.5. 経済性比較(LCC 比較) ······125
3.2.5.1. 経済性比較における着眼点
3.2.5.2. 経済性比較に必要な基本条件の設定
3.2.5.3. 経済性比較のケーススタディ
3.3. まとめ

4 . a	おわりに…	• • • • • • • • • • • • • • • • • • • •	•••••	 138
4.1	. まとめ			 138
4.2	、今後の課題	•••••		 144

参考資料

- 参考資料1 経済性評価の枠組みに係る異常発見率ß及び単価の設定
- 参考資料2部分更生工法に係る課題と考察
- 参考資料3維持管理情報を活用して修繕・改築・構造変更を行った好事例