目 次

第1章 総 則

第1節目的	
§1 目 的······	1
第2節 適用範囲 §2 適用範囲 · · · · · · · · · · · · · · · · · · ·	6
第3節 用語の定義	
§3 用語の定義······	7

第2章 技術の概要

§4 システム全体の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	第	1節 システム全体の概要と特徴	
§5 システム全体の特徴・ 11 第2節 バイオガス回収技術の概要と特徴 §6 地域バイオマス受入・混合調整設備の概要・ 12 §7 地域バイオマス受入・混合調整設備の特徴・ 16 §8 高機能鋼板製消化槽の概要・ 17 §9 高機能鋼板製消化槽の特徴・ 19 §10 高効率ヒートポンプの概要・ 21 §11 高効率ヒートポンプの特徴・ 23	§ 4	システム全体の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
第2節 バイオガス回収技術の概要と特徴§6 地域バイオマス受入・混合調整設備の概要12§7 地域バイオマス受入・混合調整設備の特徴16§8 高機能鋼板製消化槽の概要17§9 高機能鋼板製消化槽の特徴19§10 高効率ヒートポンプの概要21§11 高効率ヒートポンプの特徴23	§ 5	システム全体の特徴・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
§6地域バイオマス受入・混合調整設備の概要12§7地域バイオマス受入・混合調整設備の特徴16§8高機能鋼板製消化槽の概要17§9高機能鋼板製消化槽の特徴19§10高効率ヒートポンプの概要21§11高効率ヒートポンプの特徴23	第	2節 バイオガス回収技術の概要と特徴	
§7地域バイオマス受入・混合調整設備の特徴・16§8高機能鋼板製消化槽の概要・17§9高機能鋼板製消化槽の特徴・19§10高効率ヒートポンプの概要・21§11高効率ヒートポンプの特徴・23	§ 6	地域バイオマス受入・混合調整設備の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
§8高機能鋼板製消化槽の概要・17§9高機能鋼板製消化槽の特徴・19§10高効率ヒートポンプの概要・21§11高効率ヒートポンプの特徴・23	§ 7	地域バイオマス受入・混合調整設備の特徴・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
§ 9 高機能鋼板製消化槽の特徴19§ 10 高効率ヒートポンプの概要21§ 11 高効率ヒートポンプの特徴23	§ 8	高機能鋼板製消化槽の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
§10 高効率ヒートポンプの概要 ······ 21 §11 高効率ヒートポンプの特徴 ····· 23	§ 9	高機能鋼板製消化槽の特徴・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
§ 11 高効率ヒートポンプの特徴 ······ 23	§ 10	高効率ヒートポンプの概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
	§ 11	高効率ヒートポンプの特徴・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23

第3節 バイオガス精製技術の概要と特徴

§ 12	「型バイオガス精製・貯留・圧送システムの概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	25
§ 13	f型バイオガス精製・貯留・圧送システムの特徴 · · · · · · · · · · · · · · · · · · ·	27

第3章 導入検討

	第1節	導入効果検討手法
--	-----	----------

§ 14	導入検討の考え方	29
§ 15	導入検討手順・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
§ 16	基礎調査 · · · · · · · · · · · · · · · · · · ·	33
§ 17	導入効果の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39

目 次

§ 18	導入の判断・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	40
第	2節 導入効果	
§ 19	導入効果 · · · · · · · · · · · · · · · · · · ·	41
§ 20	導入効果検討範囲の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	44
§ 21	建設コスト縮減効果の算定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	46
§ 22	維持管理コスト縮減効果の算定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	52
§ 23	温室効果ガス排出量削減効果の算定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	58
§ 24	個別技術における効果およびその他効果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	65

第4章 計画・設計

第	1節 基本計画	
§ 25	計画・設計手順・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	73
§ 26	物質・熱収支の算出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	74
§ 27	バイオガス発生量の算出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	78
§ 28	地域バイオマス前処理フローの検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	83
§ 29	適用法令の確認・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	86
§ 30	処理能力の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	88
§ 31	処理場全体プロセスへの影響検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	90
§ 32	建設コスト縮減率評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	91
§ 33	維持管理コスト縮減率評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	92
§ 34	ライフサイクルコスト縮減率評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	93
§ 35	温室効果ガス排出量削減率評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	94
笙	2節 全体システムの設計	
د م 36	全体システム設計の考え方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	95
5.00		00
第	3節 バイオガス回収技術の設計	
§ 37	設計手順 · · · · · · · · · · · · · · · · · · ·	96
§ 38	食品製造系バイオマス受入・混合調整設備 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	97
§ 39	木質系バイオマス受入・混合調整設備	98
§ 40	高機能鋼板製消化槽 · · · · · · · · · · · · · · · · · · ·	101
§ 41	高効率ヒートポンプ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	105

第	4節	バ・	イス	ナナ	ゴフ	、精	製	技	術	ග	訠	計	ł																	
§ 42	設計手	≦順·		• • •	••	• • • •	••		••	•••	••			•••	• •	•••	•••	•••	•••	 • •	•••	• •	 	 ••	•••	 •	•••	•••	 10	8

§ 43	新型バイオガス精製・	貯留・	圧送システム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	109
------	------------	-----	--	-----

第5章 維持管理

第1節 システム全体の管理	
§44 システム全体の維持管理の要点・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	113
第2節 バイオガス回収技術の管理	
§45 バイオガス回収技術の運転管理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	114
§46 バイオガス回収技術の保守点検・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	117
第3節 バイオガス精製技術の管理	
§47 バイオガス精製技術の運転管理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	121
§48 バイオガス精製技術の保守点検・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	123

資料編

1.	実証研究結果	125
2.	ケーススタディー	136
3.	従来技術との比較例	148
4.	参考文献	161
5.	問い合わせ先	162