5.5 免震建築物

5.5.1 地震被災地域における現地調査

5.5.1.1 宮城·山形県内調査(H23.6.1~6.2 実施)

宮城県及びその周辺地域は被害地震をたびたび経験しており、地震に対する防災意識の高まりから、 免震構造を採用した建築物が多く存在している。これらについて、地震時の最大応答や免震層周囲の 状況、居住者・使用者の感覚や意識等を把握するために調査を実施した。

調査対象とした免震建築物の位置を図 5.5.1-1 に、規模等の概要を表 5.5.1-1 に、それぞれ示す。 これらのうち4棟(G・I・K及びO)については、2008 年岩手・宮城内陸地震において現地調査を 実施^{5.5-1)}している。

	田注		構造	舟 雲屋携卍*1	冲动左	記録の有無		最寄りの
	用述	形式	階数	光晨眉侢风 1	建取平	き書罹	加速度	震度
А	事務所	SRC	9	HRB	H21*2	0	0	6弱
В	倉庫	S	1	HRB	H8	0		6弱
С	共同住宅	RC	14	RB、LD、USD	H19			6弱
D	共同住宅	RC	12	LRB、 USD	H23			6弱
Е	共同住宅	RC	15	LRB、 ESB	H21	0		6弱
F	共同住宅	RC	10	HRB、 ESB	H21			6弱
G	救急施設	RC	6	LRB、 ESB	H13			6弱
Н	事務所	RC	18	RB, ESB	H11	0	0	6弱
Ι	宿泊施設	RC	12	RB、LD、LSD	H10			6強
J	救急施設	S	3	LRB、SB、OD	H18			6強
Κ	医療機関	RC	5	LRB、 RB、 OD	H14			6強
L	救急施設	RC	3	LRB、 ESB、 USD	H20	0		6弱~6強
Μ	医療機関	S	6	RB、RB+USD、USD、ESB	H18	0		5強
Ν	救急施設	RC	3	RB、ESB、OD	H19	0		6弱~5強
Ο	医療機関	RC	4	RB、LRB、ESB、LSD	H15			6弱
Р	医療機関	RC	10	RB、LD、LSD	H12		0	4
Q	医療機関	SRC	4	LRB、SB、OD	H14	0		5 強

表 5.5.1-1 調査対象の免震建築物概要

*1…B: 天然ゴム系積層ゴム、LRB:鉛プラグ入り積層ゴム、HRB:高減衰積層ゴム、ESB:弾性すべり支承、 SB:転がり支承、LD:鉛ダンパー、USD:U型鋼材ダンパー、LSD:ループ型鋼材ダンパー、OD:オイルダンパー

*2…新築年はS56。H21 にレトロフィット免震による改修工事を行った。

図 5.5.1-1 調査範囲

以下、調査建築物のうち、特に注目すべき被害等の見られた7棟の免震建築物(A、B、C、H、 I、L及びM建築物)について示す。

(1) A建築物(宮城県仙台市宮城野区)

A建築物は、昭和57年に建設された鉄骨鉄筋コンクリート造9階+地下2階の建築物である(写真 5.5.1-1)。その後平成21年に、地下1階の柱頭部において中間層免震とする耐震改修工事が行われて いる。建築物の平面形状は、東西方向を長辺とする26.4m×54.0mの矩形であり、免震層には、角形 の高減衰積層ゴム44基(□900×4基、□950×40基)が設置されている。

(a) 建築物外観

写真 5.5.1-1 A建築物 (SRC造9階)

担当者にヒアリングを行い、次のような状況の説明があった。

- a) 3月11日の本震時には外装材 (PC パネル)を含め、上部構造の損傷等は生じておらず、家具等の転倒もなかった。
- b) ただし、免震部分と非免震部分の境界部で、エキスパンションジョイント及びカバー、免震スリ ット部目地材等の損傷が見られた。(写真 5.5.1-2~写真 5.5.1-5)
- c) 通りを挟んで、同じ用途でほぼ同程度の規模・構造形式の非免震建物があり、そこでは、最上階 で耐震用頭つなぎを施した書棚の転倒等の大きな被害や、外装タイルの落下が見られた。

エキスパンションジョイント部などの被害の原因の可能性としては、可動部ディテールが地震時の 水平二方向入力における挙動(写真 5.5.1-6(a))に追従しきれなかったことや、鉛直クリアランス(設 計値 50mm)が地震時の上下動・免震部材の沈み込み等で不足したことなどが考えられる。その他、建 築物の周囲では、一部で最大 10cm 程度の地盤沈下が見られた。

写真5.5.1-2 衝突等によるカバーの破損

写真 5.5.1-3 天井カバーの脱落

写真 5.5.1-4 B1 階E V入口天井部での衝突痕 写真 5.5.1-5 免震スリット位置での内装の折れ

本建築物においては、地下2階、1階、9階(最上階)において加速度計が設置され、地下1階で は免震層の相対変位を罫書き式変位計によって記録していた。さらに、隣接する低層建屋の地下階に は、気象庁による地震計(JMA_E06、仙台宮城野区五輪)が設置されていた。担当者より入手した、3 月11日の本震の記録による各階の最大加速度の数値を表5.5.1-2に示す。罫書き式変位計の記録では、 交換済みで保存されていた罫書き板における3月11日の本震時の免震層の最大変位は18cm程度であ った。また、調査時には4月7日の余震時の応答として最大10cm程度の変位記録が確認できた。(写 真5.5.1-6)

位墨	方向					
1210.	NS [gal]	EW [gal]	UD [gal]			
周囲地盤 (気象庁による観測) 5.5-2)	409.9	317.9	251.4			
地下2階(免震層下)	289.0	250.8	234.9			
1階(免震層上)	120. 5	143. 7	373. 7			
9階(最上階)	141.7	169.9	523.9			

表 5.5.1-2 A建築物の応答値(最大加速度・絶対値)

(a) 3/11 本震時の応答

(b) 4/7 余震時の応答

写真 5.5.1-6 罫書き式変位計による記録

(2) B建築物(宮城県仙台市宮城野区)

B建築物は、平成8年に建設された鉄骨造の免震建築物である(写真5.5.1-7)。高さ30m程度であ るが、用途が倉庫であるので一般的な建築物と異なり多層の構造とはなっていない。建築物の平面形 状は、東西方向を長辺とする51.6m×31.7mの矩形であり、免震層には、高減衰積層ゴム(φ850× 20 基及びφ800×4 基)が設置されている。

図 5.5.1-7 B建築物 (鉄骨造)

本建築物は、仙台塩釜港の沿岸部に建設されており、津波により免震層が冠水する被害や、漂流物 による外装材の脱落・破損などの被害を受けた。津波に関しては、建物内の痕跡(写真 5.5.1-8)や、 周囲建築物の津波による被害がほぼ第1層部分までに集中していることから、浸水高さは地上約 4.0 mと考えられる。ただし、津波の方向性や、それによる衝撃力等の影響については、わからなかった。 担当者にヒアリングを行い、次のような状況の説明があった。

- a) 1995 年兵庫県南部地震の経験(教訓)を踏まえて、倉庫としての機能維持の観点から、免震構造 を採用した。地震直後に周囲の倉庫では荷崩れ等が発生したと聞いているが、本建築物では免震 効果を発揮し、そのようなことはなかった。
- b) ただし、低温貯蔵庫という用途のため、倉庫内部に流入した水が凍ってしまい、内外の出入りに 支障があった。
- c) 建築物の北東角部では敷地が広範囲に約1m程度えぐられる被害が生じている(写真 5.5.2-9) が、津波の際に建築物内部に生じた水流の出口付近であったことからその影響の可能性がある。
- d) 免震部材の冠水期間は16日間で、ポンプによる排水を行った。

写真 5.5.1-8 隣棟内部(1F)の浸水跡

写真 5.5.1-9 建築物周囲の地盤変状

免震層内の目視調査の結果、積層ゴムに有害な傷や異常な局部的膨らみは見られなかったが、積層 ゴムのフランジや取り付けボルトには錆がかなり発生していた(写真 5.5.1-10)。また、本建築物に 設置された罫書き式変位計において、3月11日の本震時の記録と思われる軌跡から、積層ゴムが東南 方向に最大約21cm変形したことが確認できた(写真 5.5.1-11)。

写真 5.5.1-10 高減衰積層ゴムの状況

写真 5.5.1-11 罫書き式変位計による記録

(3) C建築物 (宮城県仙台市宮城野区)

C建築物は鉄筋コンクリート造14階の免震建築物である(写真 5.5.1-12)。平面形状はコの字型 をしており、上部構造はそれぞれ矩形平面となるようエキスパンションジョイントで分割されている。 免震層には、積層ゴム、鉛ダンパーおよびU型鋼材ダンパーが設置されている。

(a) 建築物外観

(b) 免震表示(最大変位 45cm)

写真 5.5.1-12 C建築物(RC造14階)

担当者にヒアリングを行い、次のような状況の説明があった。

- a) 住人に確認したところ、家具等の転倒や内壁等の損傷はなかったが、2階以上のエキスパンショ ンジョイント部に損傷が生じた。
- b) 隣接する共同住宅は地震により大きく傾斜する被害を受け、今後撤去される予定である。

現地調査の結果、外装タイルの落下や、1階駐車場の壁の表面に少々のひび割れが見られた(写真 5.5.1-13、写真5.5.1-14)。また、建築物周囲の地盤の沈下が見られ、敷地北西部で最大10cm程度の 段差を生じていた。

写真 5.5.1-13 外装タイルの落下 **写真 5.5.1-14** 駐車場壁のひび割れ 免震層内の目視調査の結果、積層ゴムには変状は見られなかったが、U型鋼材ダンパーでは塗料の はがれ、鉛ダンパーの表面にはしわ・ひび割れなどの変状が見られた(写真 5.5.1-15、写真 5.5.1-16)。 特に、南東角部の鉛ダンパーでは、屈曲部に 5 mm 程度の大きなひび割れを生じていた(写真 5.5.1-17)。

写真5.5.1-15 積層ゴム

写真 5.5.1-16 U型鋼材ダンパーの塗料はがれ

(b) 屈曲部のひび割れの状況 写真 5.5.1-17 鉛ダンパーの変状

(4) H建築物(宮城県仙台市宮城野区)

H建築物は、平成11年に建設された鉄筋コンクリート造18階+地下2階の免震建築物である。免 震層は、1階の床下(1階と地下1階との間)に設けられている。平面形状は約40m×46mの矩形、 免震層には積層ゴム(φ1300)と弾性すべり支承が設置されている。

担当者にヒアリングを行い、次のような状況の説明があった。

- a) 3月11日の地震で、家具等の転倒はなかったが、内壁等のクラックが生じた。
- b) 本建築物には地震計と罫書き式変位計を設置して、地震時の挙動を観測している。 免震層内の目視調査では、罫書き式変位計において、最大約 23cm の変形を確認した。

担当者より入手した、3月11日の本震の記録による各階の最大加速度の数値を、表5.5.1-3に示す。 観測は免震層下部、1階、10階、18階(最上階)において行われていた。また、H建築物のXY 軸は厳密には方位と対応していないが、最寄りの気象庁による観測値は表5.5.1-2と同じ(JMA_E06、 仙台宮城野区五輪)となるので、周囲地盤の数値としてこれを再掲した。

位要	方向	
	X [gal]	Y [gal]
周囲地盤(気象庁による観測)	409.9	317.9
免震層下部	310.8	225.8
1階(免震層上)	173.0	142.9
10階	156.9	155.0
18階	193. 8	188.6

表5.5.1-3 Η建築物の応答値(最大加速度・絶対値)

(5) I 建築物(宮城県大崎市)

I 建築物は、平成 10 年に建設された、鉄筋コンクリート造12階の免震建築物である。平面形状は、 おおよそ東西約 15m×南北約 13mの矩形となっており、免震層には天然ゴム系積層ゴム(φ650)8 基、鉛ダンパー8基(型番U180)及び鋼棒ダンパー(φ70)2基が設置されている。

担当者にヒアリングを行い、次のような状況の説明があった。

- a) 3月11日の地震の際には、最初は東西方向の揺れが大きかったようである。
- b) 入口付近のスロープ兼エキスパンションジョイントのこすれ痕での最大変形は、南北及び西方向 に約 30cm 程度であった。
- c) 二車線道路を挟んで、建物正面側にある3階建て事務所ビルは地震被害を受け既に撤去された。
- d) 鉛ダンパーは、現在交換作業中である。

現地調査の結果、上部構造には損傷は見られなかったが、地盤の沈下が生じており、建物周囲の貯 水槽が 12/100 傾斜していた。最大の沈下は建物正面側で約 25cm 程度であった。また、周囲の建築物 の窓ガラスの破損等も見られた。

免震層内の目視調査では、鉛ダンパーの変状を確認した。部材によっては 3cm 程度の深さのあるひ び割れが生じていた。交換用の鉛ダンパーが免震層内に用意されており、一部は既に交換済みであっ た(写真 5.5.1-18)。鋼棒ダンパーは、塗装が剥がれ落ちていた(写真 5.5.1-19)。

写真 5.5.1-18 鉛ダンパーのひび割れ状況

写真 5.5.1-19 鋼棒ダンパーの塗装剥がれ

(6) L建築物(宮城県登米市)

L建築物は、平成20年に建設された鉄筋コンクリート造3階の免震建築物である(写真5.5.1-20)。

(a) 建築物外観

(b) 免震表示(最大変位 40 cm)

写真 5.5.1-20 L建築物 (RC造3階)

建築物の平面形状は、L字型をしており、外寸は東西約 61m×南北約 58mである。免震層には、 次の免震部材が設置されている。構造計算書によると、免震周期は 3.04 秒であった。

- ・鉛プラグ入り積層ゴム…34 基(φ650×6 基、φ700×28 基)
- ・弾性すべり支承…11 基 (ϕ 500×6 基、 ϕ 600×5 基)
- ・U型鋼材ダンパー…8 基

担当者にヒアリングを行い、次のような状況の説明があった。

- a) 地震時において、棚の転倒等、室内被害は生じなかった。
- b) 弾性すべり支承においては、すべり面に傷が生じていたもの(写真 5.5.1-23)が1台あったが、 地震後の専門業者による点検では、弾性すべり支承を構成するビスが緩み、これがすべり面に引 っ掻き傷を生じさせたとのことである。このすべり支承については交換を予定している。
- c) U型鋼材ダンパーにおいては固定用のボルトが緩んだため、地震後に締め直した。また、塗装が 剥がれ落ちたが、これも塗り直す予定である。

免震層内の目視調査では、罫書き式変位計で確認した最大変位は、片振幅で約 40cm (北方向)、両 振幅で約 70cm に達していた (写真 5.5.1-21)。変位は主として南北方向に生じており、屋外のエキス パンションジョイントの金具によると思われるすべり痕によっても確認できた。その他、U型鋼材ダ ンパーの表面塗装のはがれや鋼材のゆがみなどを確認した (写真 5.5.1-22)。

(a) 北方向(最大)約40cm (b) 東方向約 15cm、西方向約 22cm 写真 5.5.1-21 罫書き式変位計による記録

写真 5.5.1-22 U型鋼材ダンパーの変状 写真 5.5.1-23 すべり面に生じたきず

(7) M建築物(宮城県石巻市)

M建築物は、平成18年に建設された、鉄骨造6階+地下1階の免震建築物である(写真5.5.1-24)。

(a) 建築物外観

(b) 免震表示

写真5.5.1-24 M建築物(鉄骨造6階)

建築物の形状は、約 100m×100mの正方形の低層棟(2階)の中央に、東西約 100m×南北約 25 mの高層棟(6階)を配置したものとなっている。免震層には、次の免震部材が設置されている。 ・天然ゴム系積層ゴム…6基(φ1000)

- ・積層ゴム一体型U型鋼材ダンパー…16 基(φ1000、鋼材4本及び8本タイプ)
- ・U型鋼材ダンパー…16 基
- ・弾性すべり支承…74 基(φ400×30 基、φ600×25 基、φ800×11 基、φ900×8 基) 担当者にヒアリングを行い、次のような状況の説明があった。
- a) 水平方向の揺れとともに、上下に突き上げるような揺れを感じた。
- b) ある部署では、揺れを感じるとともに、ビデオ撮影を開始し、室内の揺れの状況を収録してテレ ビ局に情報を提供した。
- c) 室内の様相としては、以下のような事象が生じた。
 - (6階東側の職員詰所において:写真5.5.1-25)
 - ・冷蔵庫(H×D×B:118×49×48cm)の滑動
 - ・棚の頂部を壁に留め付けた金具の引き抜き
 - ・金庫の底部を床に頂部で留め付けた金具の引き抜き
 - ・キャスター付き棚のキャスター部分の破損(ストッパーをかけていた)
 - ・キャスター付き棚の滑動

(a) 滑動した冷蔵庫

(b) 転倒した棚①(キャスター部固定のため)

(c) 転倒した棚2) 写真 5.5.1-25 室内被害の概要(6階)

(d) 上部固定位置(拡大)

(6階東側の休憩室において:写真5.5.1-26)

・戸棚 (H×D×B:180×30×86cm) の転倒

(6階エレベータホール付近:写真5.5.1-27)

・防火扉が開いてしまい、これが上下に振れることで天井部分の蛍光灯カバーを破損 (4階より上の階)

・パソコンモニターの転倒

写真 5.5.1-26 転倒した棚(地震後横倒しで使用) **写真 5.5.1-27** 防火戸が接触した消火栓と蛍光灯 d) 6階より上の塔屋及び屋上では、以下のような事象が生じていた。

(塔屋)

・自家発電機の固定部分における防振ゴムのはみ出し(写真5.5.1-28)

(屋上)

・FRP 製高架水槽底部のボルト部分の損傷(水がにじみ出る程度。タンク内のスロッシングの 影響と考えられる。)(写真 5.5.1-29)

写真 5.5.1-28 自家発電機用防振ゴムのはみ出し

写真 5.5.1-29 底部のボルト部分が損傷した高 架水槽

免震層内の目視調査では、罫書き式変位計において片振幅で約25cmの最大変位(西方向)を確認した(写真 5.5.1-30)。弾性すべり支承の滑り面においても移動した痕跡が認められ、これによっても最大変位が約25cmであることが確認された。U型鋼材ダンパーについては塗装が剥がれ落ちており、 地震時に取付部のボルトが緩んだ(機能上は問題なし)とのことである(写真 5.5.1-31、写真 5.5.1-32)。 周辺地盤では、地盤がかなり変状した様相がみられ、免震建屋に対し、周辺地盤が約20cm沈下した箇 所も見られた。

(a) 設置状況

(b) 最大変形部分の挙動(点線で加筆)

写真 5.5.1-30 罫書き式変位計の記録(最大約 25cm)

写真 5.5.1-31 鋼材ダンパーのゆがみ・塗装剥がれ 写真 5.5.1-32 鋼材ダンパー基部のボルトの緩み

5.5.1.2 免震住宅被災状況調査(H23.7.8 実施)

被災地域である宮城県内には、5.5.1.1 項で示したような中規模〜大規模の免震建築物のほかに、 免震構造を採用する戸建て住宅(免震住宅)が多数存在している。これらのうち宮城県仙台市、塩釜 市及び多賀城市に存する免震住宅について、現地調査を行った。調査対象とした免震住宅を表5.5.1-4 及び図5.5.1-2 に示す。JD 邸については、2008 年岩手・宮城内陸地震において現地調査を実施^{5.5-1)} している。今回調査した免震住宅は、ほぼ同一の仕様及び設計条件にしたがって建設されたもので、 すべり支承(平面板+すべり材)及び天然ゴム系積層ゴムの組合せによる免震構造が採用されており、 原則として想定応答変位は35cmとなっている(免震表示として建物外構にプレートを設置)。調査住 宅のうち3棟は津波被災地域にあり、1階床上まで浸水したが、これらを含むすべての免震住宅にお いて、構造的な被害は見られなかった。

なお、調査にあたっては、設計・施工会社の協力を得た。特に、加速度記録の数値や免震層に設置 された罫書き式変位計による応答変位記録は、同社より提供を受けたものである。

	住所	建築年	地上 階数	建築面積 [m ²]	延べ面積 [m ²]	罫書き 記録	加速度 記録
JA	仙台市泉区明石南	2005	2	156.62	270.64	0	
JB	仙台市泉区みずほ台	2009	2	78.23	137.57	0	0
JC	仙台市泉区加茂	2004	2	101.55	148.33		
JD	仙台市宮城野区鶴ヶ谷	2006	2	94.62	158.49	0	
JE	塩釜市牛生町	2004	2	120.48	186.31	0	
JF	多賀城市桜木	2007	2	108.64	172.04		
JG	多賀城市桜木	2004	2	88.30	145.70		
JH	仙台市若林区伊在	2007	2	62.93	114.26		
JI	仙台市若林区伊在	2010	2	108.00	165.89	0	
JJ	仙台市若林区文化町	2004	2	77.17	127.69		

表 5.5.1-4 調査対象の免震住宅一覧

図 5.5.1-2 調査範囲

(1) JA 邸 (仙台市泉区明石南)

JA 邸は2005年に建設された免震住宅である。

外観目視による調査では、建築物の周囲の屋外給湯器や雨樋について、あらかじめ免震層の変位に 対応した構造が採用されていた。構造体の被害は見られなかったが、敷地周囲のブロック塀の脚部の 被害や、玄関口の非免震部分の損傷が見られた(写真 5.5.1-33、写真 5.5.1-34)。

写真 5.5.1-33 ブロック塀脚部の被害

写真 5.5.1-34 玄関口の損傷

図 5.5.1-3 罫書き式変位計の免震層変位記録(JA 邸、最大約 26cm)

(2) JB 邸(仙台市泉区みずほ台)

JB 邸は 2009 年に建設された 2 階建ての免震住宅で、外観目視では特に被害は見られなかった。 本建築物には罫書き式変位計のほか加速度計が設置されており、免震層上下における最大加速度は、 表 5.5.1-5 に示す通りであった。

	基礎上(免震層下部)	1 階床(免震層上部)
X 方向	508gal	185gal
Y 方向	481gal	212gal

表 5.5.1-5 JB 邸の免震層上下の加速度記録(最大値、設計・施工会社からの情報)

図 5.5.1-4 罫書き式変位計の免震層変位記録(JB 邸、最大約 16cm)

(3) JD 邸(仙台市宮城野区鶴ヶ谷)

JD 邸は 2006 年に建設された免震住宅で、構造被害は見られなかったが、建物の北西方向の外周部 の基礎立上り部分のブロックの被害(調査時点では修理済み。写真 5.5.1-35)があった。なお、この 被害は基礎の立上り部分を一体のコンクリート造としていないことから生じているが、今回調査した 免震住宅では、一般的な戸建て住宅と異なり上部構造の耐力壁を基礎に緊結する必要がなく、外周の 立上り部分は防水・防塵の必要上設けられている。したがって、安全上支障のある被害ではない。

建物使用者に対して被害状況や地震中の免震建築物の動きについてのヒアリングを行った。概要を 以下に示す。

・最初はカタカタと通常の揺れ。除々に大きくなり、長く揺れていた(5分程度に感じた)。揺れの様子は、最初はガタガタ、そのうち、「ガクッ」となった。

- ・地震の揺れの最中は、立っては歩けなかった。
- ・つり下げ型の電灯は、大きく揺れ、天井にぶつかりそうであった。
- ・仏壇の花瓶が落下。姿見の鏡(高さ140cm 程度)が倒れた(2階)。
- ・カーポート(非免震)の屋根を支える支柱が折れた。

写真 5.5.1-35 基礎立上り部のブロック:修理済み

(4) JE 邸 (塩釜市牛生町)

JE 邸は、2004年に建設された免震住宅で、塩釜港内の水路に近接した区画に建設されていることから、津波によって1階床レベルまで浸水する被害を受けた建築物である。建物外周の基礎立上り部分のブロックが津波により破損し、免震層が冠水する被害を受けた(写真 5.5.1-36、写真 5.5.1-37)。

建物使用者に対して被害状況についてのヒアリングを行った。概要を以下に示す。

・津波で浸水したが、窓からではなく、床下収納のための床やトイレから水が浸入した。1階床上に はあまり水が上がらず、電気製品等は無事であった。

・津波時には自宅周辺は水がよどんでおり、流された物はなかった。

- ・免震層に泥が堆積したため、乾燥後に使用者及び家族の二人で片付けた。
- ・自家用車が2台津波で流された。

写真 5.5.1-36 津波水面位置(地上約 85cm)

写真 5.5.1-37 基礎立上り部破損状況

図 5.5.1-5 罫書き式変位計の免震層変位記録(JE 邸、南東及び北西に最大約 10cm)

(5) JF 邸 (多賀城市桜木)

JF 邸は、2007年に建設された免震住宅で、砂押川付近の水路わきの区画に建設されていることから、 津波によって1階床より1m程度浸水する被害を受けた建築物である。JE 邸同様、建物周囲の基礎立 上り部の被害、免震層内に冠水する被害を受けた(写真 5.5.1-38~写真 5.5.1-40)。

写真 5.5.1-38 冠水後の免震層内(左からすべり支承、積層ゴム及び暴風時変位拘束用の ワイヤロープ。設計・施工会社からの提供)

建物使用者に対して被害状況や地震中の免震建築物の動きについてのヒアリングを行った。概要を 以下に示す。

・揺れている間も階段の上り下りは可能であった。免震構造は、恐怖感が無く、地震に遭遇しても、 安心している。

- ・室内では、何も転倒・落下する物はなかった。4月7日の地震でも被害はなかった。
- ・津波の浸水前に、避難した。3月11日から4月5日まで、実家に戻っていた。
- ・地盤面から浸水深は、約1.8mであり、台所のカウンター高さまで水に浸かった。
- ・玄関の左側の基礎立上り部分のブロックが津波により被害を受けた。

写真 5.5.1-39 JF 邸外観及び周囲水路の状況 写真 5.5.1-40

写真 5.5.1-40 JF 邸周囲の津波浸水跡

(6) JG 邸 (多賀城市桜木)

JG 邸は、2004年に建設された2階建ての免震住宅である。JF 邸の南西約 500m に位置し、JF 邸同様 に1階床から 10cm 程度(地盤面から約 81cm)まで浸水し、建物周囲の基礎立上り部の被害、免震層

が冠水する被害を受けた(写真 5.5.1-41、写真 5.5.1-42)。 免震層の最大変位については、津波の堆積物により、不明であった。 建物使用者に対して被害状況や免震挙動についてのヒアリングを行った。概要を以下に示す。

- ・3月11日の本震時には、家族全員が在宅していた。避難の5分後に津波が来た。
- ・ひな人形が落下。食器棚等の被害はない。
- ・床上に 10cm 程度浸水し、免震層には、ヘドロが 5~6cm 堆積した。乾燥後、除去・清掃した。
- ・4月7日の地震では、コップが1個倒れた。

写真 5.5.1-41 玄関周囲の津波跡

写真 5.5.1-42 基礎立上り部の補修跡

(7) JH 邸 (仙台市若林区伊在字土府)

JH 邸は、2007年に建設された免震住宅である。構造体の被害は見られなかったが、建築物周辺の敷 地内では、噴砂状の堆積物(写真 5.5.1-43)が見られた。また、玄関口の非免震(階段)部分の損傷 (写真 5.5.1-44)が見られた。

写真 5.5.1-43 噴砂状の堆積物

写真 5.5.1-44 玄関階段部分の損傷

(8) JI 邸 (仙台市若林区伊在)

JI 邸は、2010年に建設された免震住宅である。外観調査の結果、構造被害は見られなかったが、地 震時の建物移動(免震層の変位)に起因するものと思われる以下の損傷が見られた

・勝手口のパイプの手すりの被害(衝突した跡がある)(写真5.5.1-45)

・電線に取り付けたワイヤの引張りによる雨樋の損傷(写真5.5.1-46)

建物使用者に対して被害状況や地震中の免震建築物の動きについてのヒアリングを行った。概要を 以下に示す。

・本震時、前後左右にゆれ、身動きできなかった。これまでに経験したことのない大きな地震であった。2階の冷蔵庫が 2~3cm 移動した。

- ・重い物は何も落下・転倒はなかったが、食器棚のコップが落下。仏壇の小物が落下。
- ・サッシが動かなくなったが、戸車がずれていたことが原因であった。
- ・復旧には、電気で1週間、ガスは3週間かかった。水道は問題なかった。

写真5.5.1-45 勝手口の手すりの損傷

写真 5.5.1-46 雨樋の損傷

図5.5.1-6 罫書き式変位計の免震層変位記録(JI 邸、南東に最大約35cm)

5.5.1.3 関東地方免震建築物調査

東北地方太平洋沖地震においては、関東地方の免震建築物でも比較的大きな応答変位を観測している(5.5.2項参照)。また、5.5.1.1項で示した通り、いくつかの免震建築物においては、鉛ダンパーにひび割れを生ずる等の被害が見られている。そこで表 5.5.1-6 及び図 5.5.1-7 に示す関東地方における免震建築物 3 棟を対象として、免震層の現地調査を行った。

田冷		上部構造		在雪豆排止*1	7中3几/元	記録の有無		准步	
	用述	形式	階数	兄晨唐侢风 -	建設平	変位	加速度	加巧	
R	共同住宅	RC	36	RB、LRB、OD	H23	0	0	中間階免震(4F と 5F の間)	
S	事務所	SRC	11+2	RB、LRB、OD	$H14^{*2}$	0	0		
Т	共同住宅	RC	4	RB、LD、OD	H13	0	0		

表5.5.1-6 調査対象の免震建築物概要

*1…RB: 天然ゴム系積層ゴム、LRB: 鉛プラグ入り積層ゴム、LD: 鉛ダンパー、0D: オイルダンパー *2…H14 にレトロフィット免震による改修工事を行った。

図 5.5.1-7 調査範囲

(1) R建築物(東京都江東区、H23.7.4 実施)

R建築物は、地上4階と5階との間に免震層を設けた中間階免震による鉄筋コンクリート造(地上 36階建て)の共同住宅である。免震層には、角形の積層ゴム(天然ゴム系及び鉛プラグ入り)及びオ イルダンパーが設置されていた。

目視調査の結果、免震層内では鉛直方向のクリアランス部のシール材(ステンレスのプレート)が 若干はみ出している等の変状(写真 5.5.1-47)が見られたが、構造性能に影響はないものと考えられ る。また、オイルダンパーのシリンダ部に、地震時の免震層の変位によるものと思われる痕跡が 12cm 程度残っていた(写真 5.5.1-48)。

写真5.5.1-47 シール材のはみ出し

写真 5.5.1-48 オイルダンパーの変位跡

建物の維持管理会社職員(5名)に対して、被害状況や地震中の免震建築物の動きについてのヒア リングを行った。概要を以下に示す。

・建築物の被害はエキスパンションと防火戸の閉塞(作動)である。

・1階から3階のエキスパンション部(免震層が4階と5階との間であり、免震である上層階からエ レベーターのコア部分を吊り下げる形式となっているため、建物内にエキスパンションがある)の床 版が大きく移動し、隙間が残った。また、天井や壁のエキスパンション(写真 5.5.1-49、写真 5.5.1-50。 ただし調査時点で補修済み)も損傷した。エキスパンション部の不具合は、4月のはじめに修理した。

・本震の震動で防火戸を止め付ける金具が外れて閉まった(2F、3F、8F、13F、15F、25F の各階)も のがあり、元の状態に戻した。前震・余震でもすぐ金具が外れる防火戸があった。例えば、3月9日 の前震でも、15階の防火戸は閉まった。

 ・揺れの最中にギシギシという音が聞こえた。余震でも同じように、揺れと音が同時に聞こえた。 ・(エレベーター内で体験、36階) すぐセンサーが作動したと思われ、エレベーターが20階で停止し、 ドアが開いた。大きく円を描くような揺れであったが、歩けないほど激しくはなかった。

 防災センター(非免震部)にいた。警報装置のブザーが鳴り、それを止めた。何も落下していない。 スプリンクラー関連の警報も出ていたので、屋上(の操作盤)まで移動してブザーを止めた。

写真 5.5.1-49 1階エレベーター周囲の養生 写真 5.5.1-50 1階エレベーター周囲の天井部分 (補修後)

(補修後)

(2) S建築物(東京都千代田区、H23.7.4 実施)

S建築物は、地上11階+地下2階建てのSRC造事務所を2002年に免震レトロフィット改修した ものであり、免震層には積層ゴム(天然ゴム系及び鉛プラグ入り)及びオイルダンパーが設置されて いた。

目視調査の結果、免震層周囲のエキスパンション部でのカバープレートの移動跡などが見られたが、 構造性能には影響ないものと考えられる。免震層内には罫書き式の変位計も設置されており、最大変 位は約 6cm 程度であった(写真 5.5.1-51)。

写真 5.5.1-51 罫書き式変位計の免震層変位記録

建物の維持管理担当者に対して被害状況や地震中の免震建築物の動きについてのヒアリングを行った。概要を以下に示す。

- ・ものが落下するような被害はなかった。
- ・地下1階とその他の階で、窓ガラスのひび割れがあった。外側のタイルも割れた。
- ・防火戸が作動した箇所がある。
- ・免震層の応急点検はこれから行う予定である。
- ・エキスパンション部の被害はほとんど無い。ややカバーがずれている程度である。

(3) T建築物(神奈川県川崎市、H23.11.30 実施)

T建築物は、6階建ての基礎免震による鉄筋コンクリート造の共同住宅であり、免震層には積層ゴム、オイルダンパー及び鉛ダンパーが設置されていた。目視調査の結果、免震層内外には構造・非構造部分いずれについても変状は見られなかった。5.5.1.1 項の調査において、宮城県内の免震建築物においては鉛ダンパーの表面にひび割れが見られたことから、本建築物についても鉛ダンパーを重点的に調査したところ、主として屈曲部の表面に幅 1mm 以下程度の微細な亀裂が見られた(写真5.5.1-52)。このような亀裂は一つのダンパーに断続的に複数確認することができた。なお、深さについては確認できなかった。

写真 5.5.1-52 鉛ダンパー表面の微細な亀裂

5.5.2 免震建築物の挙動

ここでは、免震建築物で観測された地震動記録を用いて、免震建築物の応答性状や免震効果等について整理した結果を示す。

5.5.2.1 地震観測記録に基づく応答性状

表 5.5.2-1 に、対象とした 7 棟の免震建築物 KA~KG の概要を示す。ここで示した免震建築物では、 東北地方太平洋沖地震の本震で加速度記録が観測されている。表には、建設地、用途、建物概要、罫 書き記録の有無および建物基礎(免震層下部)等の計測震度が示してある。対象とした建築物は、仙 台市^{5.5-3)}、福島県^{5.5-4)}、つくば市^{5.5-5)}、東京都^{5.5-5)}、川崎市^{5.5-6)}に建てられており、震源に近い東北 から関東にかけての広い範囲の免震建築物を選択した。これらの中には、加速度計の設置に加えて、 免震層の変位軌跡を観測する目的で、免震層に罫書き変位計が設置された建築物が 2 棟あり、加速度 記録から計算した免震層の応答変位を検討に用いる上で、その妥当性の検証が可能となることから、 非常に貴重な記録である。

記号	建設地	用途	上部構造形式	罫書き記録	免震層下部(基礎・地下)
			及び階数	の有無	の計測震度
KA ^{5. 5-3)}	宮城県	事務所	SRC造9階	0	5.5
	仙台市		+B2階		5.6 隣接(JMA)
KB ^{5. 5-4)}	福島県	事務所	2階		6.1
KC ^{5. 5-4)}	同上	事務所	3階		5.3
KD ^{5. 5-5)}	茨城県	事務所	RC造7階		5.2
	つくば市				5.9(地表面·震度計)
KE ^{5. 5-5)}	東京都	文教施設	RC造3階+		4.5
	台東区		B1階		4.9 地表面
KF ^{5. 5–5)}	東京都	事務所	SRC造12	0	4.5
	千代田区		階+B2階		
KG ^{5. 5-6)}	神奈川県	宿舎	RC造6階		4.7
	川崎市				4.8 地表面

表 5.5.2-1 対象とした免震建築物

(1) 建築物への入力地震動

建築物KAでは震度6弱、建築物KBでは震度6強、建築物KDでは震度5強、建築物KE~KGでは、 震度5弱の地震動が観測されている。震度の数値については、福島県に存する建築物KBで最も大きく、 続いて仙台市、つくば市の順になっている。

図 5.5.2-1 に、免震層下部で観測された加速度記録から計算した、擬似速度応答スペクトル(減衰定数 5%)とエネルギースペクトル(減衰定数 10%)を示した。擬似速度応答スペクトルは、建築物 KA では、周期 0.5~2.0 秒で大きく、2.0 秒以上で一定値となる特性を示す。建築物 KB では、EW 方向の周期 1.0~2.0 秒で非常に大きな応答速度となり、計測震度が 6.1 と大きくなったことと対応している。 建築物 KD では、周期 2.0~3.0 秒付近で、応答速度がやや小さくなる。建築物 KE~KG では、応答速度は 50 cm/s 以下と小さくなり、1.0 秒を超える周期域では、周期に対して一定、またはやや増大する特性を有する。エネルギースペクトルにおいては、建築物 KB では、等価速度 300 cm/s を超える周期域が ある。建築物 KA、KC 及び KD では、等価速度はほぼ 200 cm/s 以下となる。建築物 KE、KF 及び KG では、 等価速度は 100 cm/s 以下となる。

エネルギースペクトル(1/2)

図 5.5.2-1 免震層下部における加速度記録の擬似速度応答スペクトルと エネルギースペクトル(2/2)

(2) 最大加速度応答

表 5.5.2-2 に、建築物の観測記録から得られた、免震層下部・上部および建物上階での最大加速度 を示す。また免震層下部の最大加速度に対する免震層上部と建物上階の最大加速度の比も示した。さ らに図 5.5.2-2 に、免震層下部と免震層上部および建物上階での最大加速度の関係を、図 5.5.2-3 に、 免震層下部の最大加速度に対する免震層上部と建物上階の最大加速度の比を描いた。

免震層下部の最大加速度は、建築物 KB で最も大きく、水平方向で 582gal 及び 756gal、上下方向で 446gal となっている。建築物 KA と建築物 KD での水平方向の最大加速度は 250gal~300gal 程度、建築物 KE~KG では 80gal~100gal 前後の値となっている。

図 5.5.2-3 の免震層下部に対する免震層上部と建物上階の水平方向の最大加速度比から、免震層より上部の階においては、1棟の建築物では建物上部で1.0を上回るが、その他の場合にはすべて比が1.0より小さくなっており、免震効果が確認できる。免震層下部の最大加速度が大きくなるにつれて、

最大加速度比は小さくなる傾向にあり、免震層下部の最大加速度が600gal程度より大きくなると、比 は、0.3を下回る結果となっている。一方、上下方向については、水平方向と比較して免震装置の性 能が発揮されずに一般建築物と同様の条件とみなせるため、最大加速度比は1.0を上回り、上層階の 方が比が大きくなる。上下加速度の増幅率は、免震層上部で1.0~1.5、建物上階で1.0~2.2となる。

冲给师	加油曲到台里	±1 ₽.	最大加速度(cm/s ²)			免震層下部に対する比		
建築物	加速度可见直	記万	Y	Х	Ζ	Y	Х	Ζ
	免震層下部	B1F	289	251	235	1.00	1.00	1.00
KA	免震層上部	01F	121	144	374	0.42	0.57	1.59
	建物上部	09F	142	170	524	0.49	0.68	2.23
	免震層下部	B1F	582	756	446	1.00	1.00	1.00
KB	免震層上部	01F	176	213	516	0.30	0.28	1.16
	建物上部	02F	155	185	621	0.27	0.24	1.39
	免震層下部	B1F	411	334	324	1.00	1.00	1.00
KC	免震層上部	01F	184	226	463	0.45	0.68	1.43
	建物上部	03F	154	157	581	0.37	0.47	1.79
	免震層下部	B1F	327	233	122	1.00	1.00	1.00
KD	免震層上部	01F	92	76	198	0.28	0.33	1.62
	建物上部	06F	126	91	243	0.39	0.39	1.99
	免震層下部	B1FW	100	79	84	1.00	1.00	1.00
KE	免震層上部	01FW	76	89	87	0.76	1.13	1.04
	建物上部	04F	100	77	90	1.00	0.97	1.07
	免震層下部	B3F	104	91	58	1.00	1.00	1.00
KF	免震層上部	B2F	55	41	62	0.53	0.45	1.07
	建物上部	12F	94	82	104	0.90	0.90	1.79
	免震層下部	BF	86	104	34	1.00	1.00	1.00
KG	免震層上部	1F	58	65	49	0.67	0.63	1.44
	建物上部	07F	63	68	55	0.73	0.65	1.62

表5.5.2-2 建築物各部の最大加速度および免震層下部に対する最大加速度の比

図5.5.2-2 免震層下部と免震層上部および建物頂部の最大加速度の関係

図5.5.2-3 免震層下部に対する免震層上部および建物頂部の最大加速度比

(3) 免震層の変位応答

観測された加速度記録を積分し、免震層の層間変位応答を求めた。図5.5.2-4 に、免震層の各方向の層間変位と累積変位の時刻歴波形および水平面内での変位の軌跡を示す。表5.5.2-3 に、免震層、上部構造の層間変位の最大値および免震層の層間変位の累積値をまとめ、図5.5.2-5 に、建設地(建築物)別の免震層の最大層間変位を描いた。建築物 KA では、X と Y 各方向で、約 14cm の最大層間変 位であり、円形に近い軌跡を描いている。建築物 KB の免震層変位は、東西方向で特に大きく、その最 大値は24.5cm となり、地震動の方向による揺れの違いが見られた。建築物 KC~KG における免震層の 最大層間変位は、3cm~6cm の範囲である。写真5.5.2-1 に、建築物 KA および建築物 KF での罫書き変 位計による免震層の変位軌跡を示すが、図5.5.2-4 の計算による変位軌跡とほぼ同様な結果が得られ た。

免震層下部の地震動の最大加速度および最大速度と免震層の水平各方向の最大層間変位との関係 を、図 5.5.2-6 に示す。最大加速度には線形的な関係は見られないが、最大速度では、線形的な特性 が見られる。また図 5.5.2-7 に、地震動の計測震度と免震層の面内の最大層間変位との関係を示す。 地震動の計測震度の大きさに対応して、免震層の最大層間変位が大きくなる関係が見られる。 図 5.5.2-8 に、建設地(建築物)別に免震層の累積変位を比較した。建築物 KB で 12.3m、建築物 KA で 10.9m と大きい値を示している。建築物 KB の場合、図 5.5.2-1 に示した擬似速度応答スペクト ルやエネルギースペクトルが大きいことから、最大層間変位が大きくなるとともに、大きな層間変位 が長時間続いたと考えられる。

図 5.5.2-4 免震層の各方向層間変位と累積変位の時刻歴波形および変位軌跡(1/2)

図 5.5.2-4 免震層の各方向層間変位と累積変位の時刻歴波形および変位軌跡(2/2)

建築物 KA 建築物 KF 写真 5.5.2-1 罫書き式変位計による免震層の変位軌跡

建築物			記号	Y	Х	ХҮ
	县十屆間亦位(am)	免震層	01F-B1F	13.49	14.42	15.7
KA	取入信间发位(CIII)	上部構造	09F-01F	2.63	1.69*	-
KA KB KC KD KE KF	累積変位(m)	免震層累積	01F-B1F		10.9	
	县十屆間亦位(am)	免震層	01F-B1F	8.02	24.45	24.6
KB	取八眉间发位(Clll)	上部構造	02F-01F	0.6	0.66	-
	累積変位(m)	免震層累積	01F-B1F		12.3	
	县十屆間亦位(am)	免震層	01F-B1F	4.24	4.34	5.81
КС	取入信间发位(Cm)	上部構造	03F-01F	0.94	0.69	-
	累積変位(m)	免震層累積	01F-B1F	7.79		
	县十屆間亦位(am)	免震層	01F-B1F	4.81	5.93	6.81
KD	取八眉间炙位(Clll)	上部構造	06F-01F	0.65	0.6	-
	累積変位(m)	免震層累積	01F-B1F	6.24		
	是十屆問亦位(am)	免震層	B1FW-01FW	3.66	4.12	4.21
KE	取八眉间发位(Clll)	上部構造	04F-01FW	0.48	0.66	-
	累積変位(m)	免震層累積	B1FW-01FW		5.76	
	县十屆間亦位(am)	免震層	B2F-B3F	5.05	3.7	5.1
KF	取入唐间爱位(CIII)	上部構造	12F-B2F	1.43	1.28	-
	累積変位(m)	免震層累積	B2F-B3F		4.30	
	是十屆問亦位(cm)	免震層	1F-BF	4.81	3.24	5.22
KG	取八/冒间发位(Cm)	上部構造	RF-1F	0.79	2.26*	-
	累積変位(m)	免震層累積	1F-BF			

表5.5.2-3 免震層の最大層間変位と累積変位

*ノイズあり

図5.5.2-6 地震動の最大値と免震層の各水平方向の最大層間変位の関係

図5.5.2-7 地震動の計測震度と免震層の最大面内層間変位の関係

図 5.5.2-8 建設地と免震層の累積変位

5.5.2.2 免震住宅における免震層変位性状

5.5.1.2項に示したように、免震住宅の多くに罫書き式変位計が取り付けられ、多くの地域で免震 層の層間変位の応答性状が確認できる^{5.5-7)}。ここでは、免震住宅が建設されている場所の近くで得ら れた地震動の計測震度の情報と免震層の最大層間変位の大きさの関係を整理する。

免震住宅の免震層の最大層間変位は、表 5.5.2-4 にまとめられる。各免震住宅で測定された最大変 位に加えて、最寄りの地震動観測点の計測震度、その距離を示している。最寄りの観測点の計測震度 と免震層の最大層間変位の関係は、図 5.5.2-9 となり、計測震度とともに、免震層の変位も大きくな ることが確認できる。計測震度が 5.5 程度を超えると、免震層にすべりが発生し、免震構造が機能す る。

図5.5.2-9 最寄りの計測震度と免震層・最大層間変位の関係

記号	住所	免震層最大 変位(cm)	計測 震度	観測点(*注)	距離 (km)	表 5.5.1-4 との対応
S1	遠田郡小牛田町	22	6.1	JMA 古川三日町	7	
S2	塩釜市牛生町	10	5.9	MYG012	2	JE
S4	黒川郡富谷町	10	5.9	震度計 (泉区)	5	
S5	石巻市蛇田	16	5.9	MYG010	1	
S6	仙台市若林区伊在	35.5	6.1	THU (23)	1	JI
S10	仙台市青葉区錦ヶ丘	1.5	5.5	TITAN (S8)	2	
S12	仙台市青葉区桜ヶ丘	15	5.8	TITAN (S14)	1	
S13	仙台市泉区加茂	19	5.8	TITAN (S14)	1	JC
S15	仙台市泉区紫山	12		-	-	
S23	亘理郡亘理町	12	5.9	MYG015	5	
M1	岩沼市松ヶ丘	9	5.9	MYG015	1	
M2	宮城郡松島町磯崎	12	5.7	JMA 松島町高城	0.5	
M4	古川市諏訪	25	6.2	MYG006	0, 5	
M7	仙台市宮城野区鶴ヶ谷	23	5.8	TITAN (S16)	0.5	JD
M8	仙台市宮城野区鶴ヶ谷	18	5.8	TITAN (S16)	0.5	
M9	仙台市若林区伊在	35	6.1	THU (23)	1	JH
M10	仙台市若林区文化町	17	5.6	JMA 宮城野区五輪	1.5	
M12	仙台市青葉区貝ヶ森	11	5.6	THU (05)	1	
M13	仙台市青葉区錦ヶ丘	4	5.5	TITAN (S8)	2	
M16	仙台市泉区上谷刈	16	5.8	TITAN (S14)	2	JB
M19	仙台市泉区明石南	24	5.9	震度計 (泉区)	1	
M20	仙台市泉区明石南	28	5.9	震度計 (泉区)	1	JA
M23	仙台市太白区泉崎	19	5.7	THU (22)	0.5	
M25	仙台市太白区大野田	17	5.7	THU (22)	1	
M27	仙台市太白区長町	19	5.6	TITAN (S10)	0.5	
M28	仙台市太白区富沢駅周辺	10	5.7	THU (22)	1	
M29	仙台市太白区富田	7	5.7	THU (22)	1.5	
M30	名取市みどり台	13	5.7	THU (22)	3	

表5.5.2-4 免震住宅の最大層間変位と周辺の計測震度(文献 5.5-7 から作成)

注)観測点の記号は、地震動の観測機関で用いられている記号である。記号と観測機関に対応は以下のようである。JMA は気象庁^{5,5-8)}、

MYGは(独)防災科学技術研究所 K-NET^{5.5-9}、震度計は宮城県^{5.5-10}、THU は東北大^{5.5-11}、TITAN は東北工大^{5.5-12}、の観測による結果である。

5.5.3 免震層およびその周囲の変状と対策

5.5.1 項に示した免震層とその周辺での現地調査結果から、免震部材およびエキスパンションジョ イント部の被害が確認された。免震建築物に設置されていたダンパーについては、地震後に取り外し て性能確認実験が行われ、鋼材ダンパーや鉛ダンパーの残余性能に対する検討や損傷発見のための維 持管理の提案、およびエキスパンションジョイント部の被害原因・対策に関する検討が、一般社団法 人日本免震構造協会の報告書としてまとめられた^{5.5-13)}。ここでは、本報告書を要約した内容を中心 に、免震部材の性能確認の方法・維持管理、およびエキスパンション部の被害軽減対策についてまと める。

5.5.3.1 ダンパーの残存性能の確認

(1) ダンパー被害の概要

a) 鋼材ダンパー

免震建築物に用いられている鋼材ダンパーには、写真 5.5.3-1 のように、ダンパーロッド部(免 震層の変形により鋼材が変形する部分)の形状によりループ状とU型の2種類のダンパーがある。 建設年代が比較的新しい建築物には、U型ダンパーが設置されている。

現地調査では、取り付けボルト(ダンパーロッド部の端部をフランジ(写真 5.5.3-1 の各ダンパーにおける上下の鋼板)に取り付けるボルト)のゆるみやダンパーロッド部の塗装のはがれが確認 された。地震後、ボルトが締め直されている例も確認された。

U型ダンパーには残留変形が確認されたが、地震時における免震層の層間変位が大きい(例えば、 最大層間変位約 40cm)場合には、より大きな残留変形が見られた。

(a) ループ状ダンパー
 (b) U型ダンパー
 写真 5.5.3-1 免震建築物に用いられている鋼材ダンパー

b) 鉛ダンパー

鉛ダンパーでは、その湾曲部の表面にしわや亀裂が発生する被害が見られた。宮城県内では、深 さ3cm程度の亀裂が確認されたが、関東地域では、大きな亀裂は確認できなかった。免震層の最大 層間変位が大きい建築物では、亀裂が大きいことから、免震層の応答変位の大きさと関係が深いと 考えられる。

(2) 鋼材ダンパーの対策・残存性能確認

2-1) 取り付けボルトのゆるみと塗装のはがれ

ダンパーロッド部の取付けボルトのゆるみについては、回転角が 60 度以下では、エネルギー吸収 量への影響は小さいが、ダンパーの1次剛性が低下することが確認された。地震後の点検や定期点検 時において、ボルトのゆるみが発見された場合には、ボルトを締め直す必要がある。回転角が 60 度を 超える場合には、大地震時にロッド端部のボルト孔部分が破損する可能性もある。

取り付けボルトのゆるみへの対策としては、ねじ部に接着材を塗布する(写真 5.5.3-2)ことにより、ボルトを回転しにくくする対策が考えられている。

写真 5.5.3-2 ボルト部への接着剤塗布状況 5.5-13)

ダンパーロッド部の塗装がはがれた場合には、ダンパーロッドの母材が露出することになるので、 腐食等の材料劣化を防ぐためには、再塗装が必要である。より変形追従性の良い塗装も開発されてい る(写真 5.5.3-3)ことから、ダンパーロッド部に改良された塗料を使用することが考えられる。

写真 5.5.3-3 塗装の種類による加力試験後の様子 5.5-13)

2-2) U型ダンパーの残存性能の確認

図 5.5.3-1 に、U型ダンパーの疲労特性曲線を示す。鋼材ダンパーには疲労特性があり、振幅(図 ではせん断変形角)と破断までの繰り返し回数の関係が示されている。せん断変形角 γ_t (ここでは、 全振幅をダンパーの高さで除した値)と破断回数 N_t の関係が下式で与えられている ^{5.5-13), 5.5-14)}。

 $\gamma_t = (35N_f^{-0.15} + 3620 N_f^{-0.80})$

(5.5.3-1)

図5.5.3-1 U型ダンパーの疲労特性曲線^{5.5-13)}

東北地方太平洋沖地震の地震動を受け、免震層の揺れによる比較的大きな変位履歴を経験したU型 ダンパー(NSUD50x8 タイプ、M 建築物)について、加力実験を通して、残存性能の検討が行われた。 地震動を受けたダンパーと無損傷状態のダンパーにおける、破断までの繰り返し回数の比較から、地 震動を受けたダンパーの累積損傷度が7%程度であることが確認されている。

2-3) 鋼材ダンパーの維持管理

鋼材ダンパーの維持管理フローを、図 5.5.3-2 に示す。一次判定のために免震建築物の点検技術者 による目視または計測点検を行う。一次判定において管理値を超えた場合には、二次判定において、 鋼材ダンパーの保有・残存性能を確認し、その交換の要否を検討する。

図5.5.3-2 鋼材ダンパーの維持管理フロー^{5.5-13)}

表 5.5.3-1 に、鋼材ダンパーの点検項目及び管理値を示す。

	点検項目	調査方法(箇所)	管理値	備考
	ボルトの回	マーキングのずれを目視確認(全	マーキングの	箇所を報告書に記載
	転	数)	ずれ (ボルトの	する
			回転)あり	
	表面亀裂発	塗装剥離部を中心に、亀裂有無を	亀裂有り	亀裂を撮影し、報告書
	生	目視確認(全数)		に添付する。(亀裂の
				生じたダンパーは、原
				則1セット全数を交
				換する)
	形状	U 型ダンパーロッドの高さ寸法測	変形最大寸法	管理値を超えた場合
		定 (全数)	(H´)/根元	の処置は、設計者の判
		_	寸法(H:設計	断による(二次判定)
			寸法) ≦1.1	
		н' н		
U				
型ダ		ループ状ダンパー先端位置の高さ		
ンパ		→法測定(全数)		
Î		S 社製:	S 社製:	
・ル			高さ変化量(δ	
ープ			v) /内法高さ	
状ダ			(H:設計寸法)	
ン			≤ 0.1	
		T 社製:		
			(高さ変化 z =	
		Zu	10mm 以下:管理	
		Zı	値は参考値と	
			し、累積損傷と	
		高さ変化 $z = 0.5 Z_U - Z_L $	ともに評価す	
			る)	
	ベースプレ	目視及び計測(全数)		変状がある場合は、寸
	ートと基礎		(報告後設計者	法を計測し、該当部の
	の接合部		の判断による)	写真を添付
	免震層の変	免震層内罫書き変位記録を写真撮		
	形(鋼材ダン	影または模写する。罫書き計の設		
	パー累積損	置のない場合は、エキスパンショ	—	
	傷確認用)	ンジョイント等可動部の痕跡によ		
		り、最大変位を確認する。		

表 5.5.3-1 鋼材ダンパーの点検項目と管理値(文献 5.5-13に加筆)

鋼材ダンパーの維持管理における目視・計測点検の主な項目として、以下のものがある。

i)ボルトのゆるみ

ii)塗装の剥がれ・亀裂

iii)ダンパーロッド部の形状

形状変化については、ダンパーロッド部の高さの変化に着目しており、高さや上下方向の位置が1 割を超えて変化した場合には、二次判定(保有・残存性能の確認)を行うことになる。今回の地震で は、ダンパーロッド部に亀裂が確認されたという報告はないが、ダンパーロッド部に疲労による亀裂 が確認される場合には、残存性能が少なくなっていると判断されるため、速やかに交換が必要である。

二次判定では、免震層の変位履歴から鋼材ダンパーの疲労損傷度を計算し、継続使用の可否を検討 する。鋼材ダンパーの疲労損傷度算定にはいくつかの手法が提案されており、下記に紹介する。 a) Miner 則による方法

変位履歴が判る場合は、変動振幅毎の繰返し数を計数し、疲労曲線から各振幅毎の疲労損傷度を算 出し、その総和を累積損傷度とするMiner則を用いる方法がある。Miner則は、鋼材の低サイクル疲労 評価法として一般的に用いられている。

b) エネルギー吸収率による方法

免震層の変位履歴からダンパーの累積吸収エネルギー量 W_{δ} を算出し、ダンパーの有する限界吸収 エネルギー量 W_{δ} に対する比率(エネルギー吸収率 $R = W_{\delta} / W_{\delta}$)を疲労損傷度として評価する手法で ある。

c)最大変位から簡易的に推定する方法

最大変位のみが判る場合の簡易的な疲労損傷度の推定法として、1回の地震入力エネルギーを最大 振幅に換算した繰返し回数で検討する手法である。1回の地震入力エネルギーが最大振幅の何回分に 相当するかについては、従来観測された地震波で概ね5回以下とあるが、今回のように継続時間の長 い地震動に対する指標が新たに提示される可能性もある。

(3) 鉛ダンパーの残存性能確認

3-1) 鉛ダンパーの多数回繰り返し 特性

鉛ダンパーは、従来、塑性変形を 受けても鉛が常温で再結晶する材料 であり、エネルギー吸収部材として 優れた特性を有していると考えられ ていた。そのため、これまでは地震 動を想定した比較的大きな振幅での 繰り返し特性のみを把握していたが、 近年微小振幅での繰り返し特性が明 らかにされ^{5.5-15)}、鉛ダンパーの亀 裂発生時および破断時の、加振振幅

図 5.5.3-3 鉛ダンパーの疲労試験結果 5.5-13)

と繰り返し回数の関係が、図 5.5.3-3 のように示されている。これによると振幅が小さい場合でも、 多数回の繰返しで亀裂が生じ、さらに変形を繰り返すことで破断に至る。亀裂の発生から破断までは、 30 倍~40 倍の繰返し数が必要となる。 3-2) 鉛ダンパーの残存性能の確認実 験

東北地方太平洋沖地震後、免震建築 物(I建築物)に設置されていた鉛ダ ンパーの加振実験が行われ、残存性能 が確認された。8体の鉛ダンパーの実 験が行われている。

i) 鉛ダンパーの地震後の形状

鉛ダンパーについては、まず実験前 の形状が計測され、地震後の状態を確 認している。図 5.5.3-4 に示すとおり、

(a)高さと直径 (b)湾曲部のズレ 図 5.5.3-4 鉛ダンパーの寸法計測箇所(文献 5.5-13に加筆)

全高さ、中央高さ、湾曲部の直径および湾曲部のズレ等が計測され、その結果が表 5.5.3-2 にまとめられている。

全高さは上下フランジ間の寸法で、924mmが規定値であるが、取り外す際に高さを縮めたために10mm ほど高さが小さくなっている。なお、実験時にはできるだけ高さを924mmに調整している。直径は上 端、中央、下端での直交2方向を計測した平均値である。直径180mmに対して、下端部は1.2倍ほど に拡張している。逆に中央部は数%程度細くなっている。上端部に比べ下端部の方が直径が大きいの は、塑性変形の繰返しによりダンパー軸部が垂れ下がったためと思われる。垂れ下がっている量は中 央高さに表れており、湾曲部の中央高さは462mmが規定値であるが、No.7では最大47mm下がってい る。湾曲部は地震時の2方向変形によりねじれている。中心方向へのズレはフランジ端部からダンパ ー軸部までの距離で、当初は10mmであったものが最大で60mm程度となっており、50mmほど中心部へ 移動していることを示している。また、水平方向のズレがねじれ分を示しており、特にNo.7とNo.8 において大きくねじれている。

計驗休	会直々	上端部	中央部	下端部	湾曲部の	湾曲部の水平面内のズレ		
时间央卫华	王向さ	直径	直径	直径	中央高さ	中心方向	左右方向	
No. 1	914.8	211.7	172.9	223.9	449	30	4	
No. 2	914.3	205.9	175.2	225.6	458	37	20	
No. 3	913.0	211.9	175.8	227.7	454	30	50	
No. 4	913.0	204.7	176.9	223.3	460	27	27	
No. 5	916.0	208.4	177.2	223.1	436	37	85	
No. 6	910.8	204.4	176.9	222.3	449	26	72	
No. 7	913.0	207.6	178.7	221.1	415	61	145	
No. 8	914.5	205.9	175.1	221.4	465	45	114	

表 5.5.3-2 試験体の寸法(単位:mm)^{5.5-13)}

ii) 鉛ダンパーの残存性能確認実験

鉛ダンパーを試験装置に固定し、上部フランジに固定された加力ビームをアクチュエータ(加振能 力±50ton、ストローク±150mm)に接続した状態で、表5.5.3-3に示すように、鉛ダンパーを一定振 幅の正弦波(周期3秒)で加振した。片振幅は50mm、100mm、150mmの3段階とし、降伏耐力が十分小 さくなるまで繰返し加振を行った。表5.5.3-3の中で、P方向は鉛ダンパーの湾曲部の面内方向、0 方向は湾曲部に直交する方向(図5.5.3-4参照)に加振したことを表している。 繰返し実験の前に、基本特性試験として、片振幅 50mm で5 サイクルの加振を行っている。回収した鉛ダンパーとの比較用として、新規品の U180 型鉛ダンパーの加振実験も行った。加振は 0 方向で片振幅 50mm→100mm→150mm で各5 サイクルを行い、さらに P 方向で片振幅 50mm→100mm で各5 サイクル を繰り返した後、片振幅 150mm で 100 サイクルの繰返しを実施した。

図 5.5.3-5 に、片振幅 150mm のケースにおける荷重 – 変形関係を示す。繰返しに伴い降伏耐力が低下していく様子がわかる。加振による発熱のため、鉛ダンパーの形状は大きく変化するものの、破断にまでは至っていない。P 方向加振に比べ、0 方向加振時の降伏荷重は若干小さくなる。

試験体	加振方向*	片振幅(mm)	繰返し数				
No.4		50	500				
No.2	D	100	200				
No.1	P	150	100				
No.8		150	100				
No.6		50	400				
No.5	0	100	200				
No.3		150	130				
No.7		130	80				

表 5.5.3-3 加振内容^{5.5-13)}

※P方向は鉛ダンパーの湾曲部の面内方向、0方向は湾曲部に直交する方向を指す

表 5.5.3-4 に、基本特性試験時の降伏荷重と出荷時試験(2001 年 10 月)の降伏荷重を示す。基本 特性試験の履歴面積は履歴曲線にノイズがあるため、降伏荷重は履歴面積から求めた等価降伏荷重と している。出荷時試験は片振幅50mmを5サイクル繰返しているが、降伏荷重は最大荷重をとっている。 5 サイクル目の等価降伏荷重は、出荷時試験の降伏荷重に対して 0.9~1.13 倍となっており、切片荷 重でみれば出荷時と同等かそれ以上の降伏荷重といえる。これは降伏荷重については初期性能を保有 していることを示している。ただし、地震動をうけてダンパーの形状が変化(可撓部直径の拡大、湾 曲率の低下など)したことにより降伏荷重が新規品よりも高くなった可能性がある。

図 5.5.3-6 に、1 サイクル毎の履歴面積(エネルギー吸収量)と履歴面積の総和(総エネルギー吸収量)を、No.1 試験体とNo.3 試験体について示す。1 サイクル毎の履歴面積は繰返し数が増えると減

少している。加力方向の違いによる差は顕著ではない。他の加振も含めて、総エネルギー吸収量は 3000kN・m 程度に達している。図 5.5.3-7 に、新規品の繰返し試験時のエネルギー吸収量を示す。新規 品の降伏荷重は低めであるものの、繰返しに伴うエネルギー吸収性能の低下の傾向はやや小さくなっ ている。

学校年	履歴面積(kN·cm)		等価降伏荷重(kN)		出荷時試験※
武阀火化	3サイクル	5サイクル	3サイクル	5サイクル	切片荷重(kN)
No. 1	1467.6	1554.6	73	78	69 (0)
No. 2	1439.1	1532.5	72	77	75 (P)
No. 3	1313.9	1401.7	66	70	76 (P)
No. 4	1368.3	1452.4	68	73	71 (0)
No. 5	1247.1	1339.8	62	67	72 (0)
No. 6	1302.4	1401.3	65	70	78 (P)
No. 7	1271.7	1356.2	64	68	75 (P)
No. 8	1317.5	1402.3	66	70	70 (0)

表 5.5.3-4 基本特性試験時の降伏荷重^{5.5-13)}

※出荷時試験の括弧内は試験時の加力方向を示す

図5.5.3-6 エネルギー吸収量の変化^{5.5-13)} 図5.5.3-7 エネルギー吸収量の変化(新規品)^{5.5-13)}

加振前後の鉛ダンパーの様子を、写真 5.5.3-4 に示す。新規品の加振前の形状は、写真(c)のよう に、0 方向では鉛ダンパーの可撓部は直線になるが、回収鉛ダンパーは、可撓部のねじれにより、湾 曲した形状となっている(写真(b))。加振終了時の鉛ダンパーの形状の多くは、可撓部上下端で大き く塑性化し、そこが塑性ヒンジのようになる。また繰返し変形を続けると発熱で柔らかくなった鉛が 下方に垂れ下がるダンパーもある(写真(b))。

iii) 鉛ダンパーの累積損傷度の確認

U180 型鉛ダンパーの限界性能試験から得られた限界性能曲線より、限界繰返し回数(N_d)と加振 片振幅(δ (mm))の関係が得られ、次式が示されている。

$$N_d = 1.38 \times 10^6 \cdot \delta^{-183} \tag{5.5.3-2}$$

Miner 則による累積損傷度(D値)は次式で求められる。

$$D = \frac{n}{N_d}$$
(5. 5. 3-3)

ここに、nは繰返し数である。鉛ダンパーのMiner 則によるD値の算定結果を表 5.5.3-5 に示す。地 震動の揺れと地震後の実験によるD値については以下のように算定する。実験によるD値は、加振の 片振幅とサイクル数により算定される。地震動の揺れによるD値は、最寄りの地震動を用いた免震建 築物の地震応答計算より求められた、免震層の累積塑性変形量(20m)が実験の片振幅で繰り返された と想定し、等価サイクル数が算定される。地震動の揺れによるD値は、0.2~0.3 程度と推定された。 地震時と実験時のD値を加えると、多くの試験体で1.0に近い値となり、ほぼ限界状態に到達してい たと考えることができる。

試験体	加振 方向	片振幅 (mm)	実験時の サイクル数	実験時 D 値	等価サイクル数 (累積変形 20m)	地震時 D値	D 値 総和
No. 4		50	500	0.466	100.0	0.0932	0.559
No. 2	р	100	200	0.662	50.0	0.1656	0.828
No. 1	r	150	100	0.696	33.3	0.2319	0.927
No. 8		150	100	0.696	33.3	0.2319	0.927
No. 6		50	400	0.373	100.0	0.0932	0.466
No. 5	0	100	200	0.662	50.0	0.1656	0.828
No. 3	0	150	130	0.904	33. 3	0.2319	1.136
No. 7		150	80	0.556	33.3	0.2319	0.788

表 5.5.3-5 Miner 則における D 値の推定^{5.5-13)}

加振前

加振後 (±150mm 100 サイクル) (a)No.1:P 方向

加振前

加振後 イクル) (±50mm 400 サイクル) (±150mm 向 (b)No.6:0方向 (c)新 写真 5.5.3-4 鉛ダンパーの加振前と加振後の形状^{5.5-13)}

加振前

加振後 (±150mm 100 サイクル) (c)新規品:P方向

3-3) 鉛ダンパーの維持管理と残存性能の算定法

鉛ダンパーの維持管理フローを、図 5.5.3-8 に示す。一次判定として免震建築物の点検技術者による目視・計測点検を行う。一次判定において管理値を超えた場合には、二次判定において保有・残存性能を確認し、その交換の要否を検討する。

図5.5.3-8 鉛ダンパーの維持管理フロー^{5.5-13)}

表 5.5.3-6 に、鉛ダンパーの点検項目及び管理値を示す。鉛ダンパーの維持管理については、以下のようになる。

1) 目視

鉛ダンパーの表面亀裂の発生状況や可撓部の形状変化の確認

2) 計測

鉛ダンパーの表面亀裂の深さ、幅、長さおよび可撓部の直径を計測する。その後の二次診断を必要とする管理値として、亀裂の深さ(U180型で10mm、U2426型で15mmを超える)や可撓部の直径の変化(U180型で200mm、U2426型で280mmを超える)が提案されている。これらの管理値は、亀裂深さ比が0.15以下(降伏荷重比では0.90以下)を満足する条件となっている。また過去に経験した振幅が大きい場合は、亀裂より形状変形に大きく影響することから、形状に関する管理値も提案されている。

一次判定において管理値を超える異常が確認された場合、より詳細な検討である二次判定を行う。 二次判定では、点検で測定した鉛ダンパーの亀裂の深さにより、鉛ダンパーの残存性能を予測し、継 続使用の可否を検討する。

亀裂深さ比 (ダンパーの半径に対する最大亀裂深さ) と降伏荷重比・エネルギー残存率の関係 ^{5.5-16)} を図 5.5.3-9 に示す。実線は降伏荷重比、破線はエネルギー残存率である。亀裂が発生した鉛ダンパ ーの亀裂深さ比から降伏荷重比 (r_y)およびエネルギー残存率 (W_c/W_t)を、式(5.5.3-4)及び式(5.5.3-5) により、推定することができる。

$$r_{y} = 1 - \frac{2}{3} \left(\frac{p}{R} \right) \tag{5. 5. 3-4}$$

ここに、Pは、最大亀裂深さ、Rは鉛ダンパーの半径である。

	点検項目	調査方法(箇所)	管理値	備考
	表面亀裂深さ	クラックテスター* ¹ 等	最大深さ	管理値を超えた場合の
		による測定(全数)	U180 型:10mm 以下	処置は、設計者の判断に
			U2426型:15mm以下	よる(二次判定)
	表面亀裂長さ	スケール等による測定		ダンパー毎に最大値を
	$*^2$	(全数)	_	報告書に記載する
	表面亀裂幅	クラックスケール等に		
		よる測定(全数)		H]_ <u>_</u>
	表面亀裂発生	目視確認(全数)、亀裂		亀裂を生じたダンパー
	状況	部をチョーク等でマー		について4方向から全
		キング及び写真撮影		体写真を撮影し、かつ深
		Ļ		さ管理値を超える全て
				の亀裂及び最大亀裂深
鉛				さ部位についてクロー
~		• •		ズアップ写真を撮影し、
		A		報告書に添付
	可とう部の軸	可とう部(フランジ外	直交する 2 方向の平均	管理値を超えた場合の
	径の変化	面から 180mm の位置)	値	処置は、設計者の判断に
		にて直交する2方向の	U180 型:200mm 以下	よる(二次判定)
		軸径を測定(全数)	U2426型:280mm以下	
	ベースプレー	目視及び計測(全数)	_	変状がある場合は、寸法
	トと基礎の接		(報告後設計者の判断に	を計測し、該当部の写真
	合部状況		よる)	を添付

表 5. 5. 3-6 鉛ダンパーの点検項目と管理値^{5.5-13)}

*1 クラックテスターによる測定

*2 亀裂長さの測定要領 (ダンパー本体に沿って実長を測定する)

$$\frac{W_c}{W_t} = 1 - \frac{3}{2} \left(1 - r_y \right) \tag{5. 5. 3-5}$$

調査した免震建築物の鉛ダンパーでは、亀裂深さ比が 0.33 となる鉛ダンパーが見られたが、これ らの式から、鉛ダンパーの降伏荷重比が 0.78、エネルギー残存率は 0.67 と推定される。

図 5.5.3-9 亀裂深さ比と降伏荷重比・エネルギー残存率の関係(文献 5.5.3-13 に加筆)

5.5.3.2 エキスパンション部周辺の被害概要と対策

(1) エキスパンション部の被害概要

免震部分と非免震部分の境界部では、エキスパンション部(エキスパンションジョイント及びカバー、免震スリットの目地材等)の損傷が見られた。表 5.5.3-7 に、5.5.1.1 項において現地調査を実施した免震建築物のエキスパンション部およびその周辺で確認された被害をまとめた。

記号*	用途	水平クリアランス	鉛直クリアランス	その他
А	事務所	壁面可動カバー破損・脱落	内装パネル折れ・落下	地盤変状(沈下・段差)
		天井可動カバー落下	目地充填材はみ出し	配管へのパネル衝突
		EV周辺のエキスパンション衝突	免震材料カバー破損・脱落	
В	倉庫			津波被害(冠水)あり
С	共同住宅			地盤変状 (沈下・段差)
D	共同住宅		ゴムカバー(ほこりよけ?)破損	
Е	共同住宅	鉄板製カバーゆがみ・破損		
		エキスパンション部コンクリ破損		
		エキスパンション部手すり段差		
F	共同住宅	配管用開口ゴムカバー破損・脱落	ゴムカバー(ほこりよけ?)はみ	地盤変状 (沈下・段差)
		通路部メッシュ手すりゆがみ	出し	
G	救急施設			
Н	事務所			
Ι	宿泊施設			地盤変状 (沈下・段差)
J	救急施設	カバー(鉄板)の衝突		地盤変状 (沈下・段差)
		エキスパンション部ずれ		
Κ	医療機関	エキスパンション部コンクリ破損	目地シール材はみ出し	地盤変状 (沈下・段差)
		エキスパンションカバー周囲のイ		配管カバーのずれ・脱
		ンターロッキング破損		落あり
L	救急施設			
М	医療機関	エキスパンション部手すり段差		地盤変状 (沈下・段差)
Ν	救急施設	壁面可動カバー脱落		地盤変状 (沈下・段差)
Ο	医療機関	カバーと地面との境界部分に亀裂		地盤変状 (沈下・段差)
		や浮き上がり等		
Р	医療機関	側溝の鉄製ふた破損		
Q	医療機関			
R	共同住宅	天井、壁面カバー損傷		
		エキスパンションカバーずれ		
S	事務所	エキスパンションカバーずれ		
Т	共同住宅			

表5.5.3-7 免震建築物のエキスパンション部及びその周辺での被害概要

*…記号A~Tは、表 5.5.1-1及び表 5.5.1-6に示す調査建築物に対応

(2) エキスパンション部の被害要因と対策

2-1)被害要因

エキスパンション部の損傷の原因の多くは、図面上は可動するように設計されていたが、実際の地 震動を受けた場合に、免震層の大きな水平変位や上下も含めた3方向の変位に追従できなかったため と考えられる。損傷の状況の原因は、以下の3タイプに分類できる。

①製品の機能的問題

②設置状況の問題

③維持管理の問題

a) 製品の機能的な問題

床、壁、天井ともレールでスライドする機構のものが多いが、レールが想定通りにスムーズに動 かなかったために、エキスパンションジョイントのパネルを破損させたり、レールが変形したり、 レールを固定していた下地材が破損したケースが非常に多い。また、ストッパーによりパネルの動 きを拘束して、レール部でスライドする機構のものも多いが、ストッパーが破損しているものが多 くあった。これは、ストッパーの強度不足が原因であるが、レールがスムーズに可動しなかったた めに、ストッパーに想定以上の荷重が作用したことが原因とも考えられる。

レールが動かなかった主な原因を列挙すると、以下となる。

- ・レールに水平方向以外の動きが発生
- ・レールの取付精度が悪い
- ・想定以上の重量が作用
- ・レールの変形
- ・レールにゴミなどの異物の挟まり
- ・ストッパーや取付部の強度不足
- ・動的な動きに対する作動不良
- b) 設置状況の問題
 - 1) 可動時に他の仕上げと接触

エキスパンションジョイントが動いた際に周辺の仕上げ材に接触や衝突して仕上げ材やエキス パンションジョイント自体を破損させた例が非常に多い。

2) エキスパンションジョイントの可動部に障害物

エキスパンションジョイントの可動範囲に設備ダクトを設けたり、後施工で手すりや柱が設置される場合があった。

3) エキスパンションジョイント隙間のシールが動きを阻害

エキスパンションジョイントの隙間にシールをしてしまったため動かなかった事例は多くあった。また、シールをパネル表面まで打ってしまったために、ヒンジ部の回転を阻害したものもあった。

c)維持管理の問題

可動部への障害物の設置や清掃不足による可動の阻害により発生した被害である。

2-2) 被害軽減のための対策

エキスパンションジョイント製造メーカーは、設計者から提示された設計可動変位まで損傷しない 製品を提供するため、実験により確認する必要がある。試験機の性能上の制限で実地震動ほどの速さ の実験はほとんど行われていない。今回の地震被害の中で、地震動の衝撃的な動きに追従出来ずに損 傷が生じたものが多く見られる。製品の製造上の問題は、動的な可動実験を十分におこなっていれば 防げたものが多く、基本的には、振動台等を用いた高速度の動的実験により、動作確認を行う必要で ある。特に X 方向と Y 方向の機構が異なるものは動きも複雑であり、2 方向同時加振で性能を確認す る必要がある。

設計者は、設計図書にエキスパンションジョイントの可動範囲を明記するとともに、可動範囲にその範囲に障害物を設置することのないよう、十分に施工者に伝達する必要がある。また設計者は施主 にエキスパンションジョイントの機能や可動範囲を十分に説明し、書類として渡す必要がある。清掃 や点検などの維持管理の必要性を伝達する必要がある。

5.5.4 免震・非免震建築物での居住者・使用者アンケート

免震構造の特性は、免震層で揺れを吸収することにより、免震層より上部での構造被害とともに、 家具の転倒等の室内被害を低減できることにあるとされる。東北地方太平洋沖地震において、このよ うな免震構造の特性が発揮されたかどうかを、居住者・使用者へのアンケート調査により検討した。

5.5.4.1 アンケート調査の概要

表 5.5.4-1 にアンケート調査対象とした免震建築物 8 棟、非免震建築物 1 棟を示す。表中の免震建築物の記号は、表 5.5.1-1 と同じである。

なお、免震建築物 A と H については、加速度記録が得られている。5.5.1 項の表 5.5.1-2 及び表 5.5.1-3 によると、いずれの免震建築物においても、水平方向において、免震層より上の階の最大加速度は、免震層より下の階での最大加速度を下回っており、上部構造の地震応答を低減するための免 震構造の特性が数値上は発揮されたことを示すものである。

免震構造の特性評価が発揮されたかどうかの評価を進めるため、床応答加速度の低減程度が、居住 者・使用者の揺れの感じ方や家具の転倒等に、どのように影響したか、また、室内被害の低減を図る 上で、効果を有するものであったかを把握する必要がある。このため、アンケート調査(表 5.5.4-2 にアンケート調査項目を示す)を通して、地震時の免震建築物と非免震建築物(以下、比較して記述す る場合には免震と非免震と省略して呼ぶ)との室内挙動を比較することとした。なお、非免震建築物 A-2 は、免震建築物Aに近接して立地している。

また、免震と非免震との間でアンケート調査結果に明確な違いが現れた家具の転倒を取り上げ、免 震層の構成等、条件が異なる免震建築物8棟のアンケート結果等を比較・検討する。

最後に、居住者・使用者による免震建築物の有効性評価についてアンケート調査結果をまとめると ともに、地震後における免震建築物での機能維持について検討する。

5.5.4.2 免震と非免震との比較

免震建築物Aと非免震建築物A-2の概要を表5.5.4-3に示す。

	、 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、						
No.	建築物 記号	階数	用途	建設地	回答数		
1	А	9 階+B2 階	事務所	宮城県仙台市宮城野区	61		
2	A-2	8 階+B2 階	事務所(※非免震)	宮城県仙台市宮城野区	84		
3	С	14 階	共同住宅	宮城県仙台市宮城野区	7		
4	G	6 階+B1 階	医療機関	宮城県仙台市宮城野区	15		
5	Н	18 階+B2 階	事務所	宮城県仙台市宮城野区	63		
6	J	3 階	救急施設	宮城県栗原市	18		
7	К	5 階	医療機関	宮城県栗原市	32		
8	L	3 階	救急施設	宮城県登米市	12		
9	М	6 階+B1 階	医療機関	宮城県石巻市	53		

表5.5.4-1 アンケートを実施した建築物と回答数

表5.5.4-2 アンケート調査項目

- I. 記入者情報
- (a) 性別
- (b) 年齢
- (c) 地震時にいた階
- Ⅱ. 地震時の揺れの状況
 - (a) 揺れの感じ方
 - 1)恐怖感
 - 2) 行動難度
 - (b) 家具等の状況
 - 1) 吊り下げ物の揺れ
 - 2) 食器等の落下
 - 3) 家具の転倒 (※転倒したものがあった場合は、寸法を記入)
 - 4) 家具のすべり
 - (c) ライフラインの状況
 - 1) ライフラインの被害 (※被害があった場合は状況を記入)
- Ⅲ. 免震建築物の有効性
 - (a) 耐震構造と比較した場合の有効性の有無
 - (b) 免震構造の有効性に関するコメント

表 5.5.4-3 建築物 A 及び A-2 の概要

		階数	用途	概要
А	免震	地下:2 地上:9	事務所	B1F 柱頭に免震支承を設置したレトロフィット 免震
A-2	非免震	地下:2 地上:8	事務所	鉄筋コンクリート造の耐震構造

	最大九 _{Af} (c	叩速度 m/s²)	最大速度 等価 $V_f(\text{cm/s})$ $F_e=A_f/(2)$		振動数 π <i>V_f</i>)(Hz)	
	NS	EW	NS	EW	NS	EW
B2F	289.0	250.8	36.3	47.9	1.27	0.83
1F	120.5	143.7	33.4	35.6	0.57	0.64
9F	141.7	169.9	35.5	37.9	0.64	0.71

表 5.5.4-4 建築物 A の観測値

表 5.5.4-4(表 5.5.1-2と対応)には、最大加速度と加速度記録を積分して得た最大速度を示す。また、表中の等価振動数は次項の検討で用いる。

なお、免震建築物 A 及び非免震建築物 A-2 とも、大きな構造被害は生じていないことを現地調査において確認している。

表 5.5.4-4 によれば、1F と 9F で、最大加速度に大きな差はない。実際、アンケートの回答を階別 に集計しても、結果に有意な差は現れなかった。そこで、以下では、アンケートの回答の集計を建築 物全体(免震については 1F 以上)で行って免震と非免震を比較した結果を示す。

図 5.5.4-1 は、揺れの感じ方に関する比較結果である。(a)の恐怖感については、非免震の場合、

「かなりあった」とする回答が最も多くなっているが、免震の場合は「すこしある」との回答が最も 多く、「かなりあった」とする回答は減少している。

図 5.5.4-1 揺れの感じ方(免震建築物 A 及び非免震建築物 A-2)

(b)の行動難度については、非免震の場合、「行動できない」とする回答が最も多いのに対し、免 震の場合は、「やや、乱れるが、滞りなく行動できる」が最も多くなっている。ただし、「かなり乱 れるが、滞りなく行動できない」という回答も、d と同じ程度となっており、a から e までの間で、回 答が分散する傾向が見られる。しかしながら、非免震と比較すると、「行動できない」とする回答が 低減しているのは明らかである。

図 5.5.4-2 は、吊り下げ物や家具等の状況に関するアンケート回答の比較結果である。(a)の吊り 下げ物は、主に壁に吊り下げられたパネル類を指すが、非免震の場合には「大きく揺れた」とする回 答が最も多く、「落下した」とする回答も多くなっている。免震の場合には「大きく揺れた」とする 回答は多いものの「落下した」とする回答はほとんどない。また「その他」とする回答が最も多くな

(c) 家具の転倒

(d) 家具のすべり

図5.5.4-2 家具の状況等(免震建築物A及び非免震建築物A-2)

っているが、吊り下げ物は、落下しない限り、地震後に元の状態に戻るため、揺れたかどうか回答者 の記憶に明確に残らなかったことが考えられる。

(b)の食器等の落下については、非免震の場合は、「かなり落ちた」とする回答が大部分を占める。 免震の場合は、「かなり落ちた」とする回答はほとんどなく、「音を立てた」とする回答が最も多く、 次いで「音もしない」とする回答も多い。(c)(d)の家具の転倒及びすべりについては、非免震の場合、

「かなりあった」とする回答が最も多くなっているのに対し、免震の場合、「なかった」とする回答 がほとんどである。

以上、家具の転倒及びすべりについては、免震と非免震で、明確な差が現れた。建築物管理者への ヒアリングによると、免震では家具の転倒等が無かったことにより、地震直後も、業務を継続して行 うことが可能であったのに対し、非免震では、家具の転倒等に伴い、物が散乱し足の踏み場もない状 態となり、また書類が逸散する等により、業務の遂行に支障を来たすこととなった。また、免震建築 物Aでは、部署によってはPCモニターの固定措置による落下対策が取られていた。このような措置に より地震直後においても建築物の機能性がより確実に維持されたと考えられる。

5.5.4.3 家具の転倒条件の検討

(1) 家具の転倒と最大床応答加速度との関係

家具の転倒について、文献 5.5-17)によると、床位置での最大加速度(最大床応答加速度)*A_f*が、式 (5.5.4-1)または式(5.5.4-2)による加速度*A_gを*上回る時、「転倒可能性が高い」と判定される。

$$F_{b} > F_{e} \mathcal{O} \geq \mathfrak{E}, \ A_{0} = \frac{b}{h} g$$
 (5.5.4-1)

$$F_b \leq F_e \mathcal{O} \geq \mathfrak{F}, \ A_0 = \frac{bF_e}{11\sqrt{h}} g \tag{5.5.4-2}$$

ここに、2h及び2bは、それぞれ家具の高さ及び奥行きを表わす。

また、 F_b 及び F_e (等価振動数)は以下による。

$$F_b = 11/\sqrt{h}$$
 (5.5.4-3) , $F_e = A_f/(2\pi V_f)$ (5.5.4-4)

式(5.5.4-4)において、Ar及び Vrは、それぞれ、床位置での最大加速度及び最大速度を表わす。

ここで、一例として高さ 180cm、奥行き 30cm 又は 45cm の家具を考える。それぞれの式(5.5.4-1)又は式(5.5.4-2)による加速度 A₀と振動数との関係を図 5.5.4-3 に示す。

図中には、表 5.5.4-4 の免震建築物 A の上部構造(IF 及び 9F)での最大加速度と等価振動数 F_e との 関係(\blacksquare 、 \blacktriangle)を示す。免震建築物 A の上部構造(IF 及び 9F)での最大加速度 A_F は、奥行き 45cm の家 具の場合の実線を明らかに下回る。これは、図 5.5.4-2(c)に示すとおり、家具の転倒はなかったとの 回答がほとんどであったアンケート結果と整合している。非免震建築物 A-2 では、加速度記録は観測 されていないが、1 次固有周期を 0.5s と見なし、建築物 A の地下 2 階の加速度記録を入力した場合の 1 自由度線形モデルの最大加速度と等価振動数 F_e との関係(固有周期 0.5s の \blacksquare 、 \checkmark)を図中に示す。 この場合には、奥行き 45cm の家具でも、転倒可能性がかなり高くなり、非免震の場合に「かなりあっ た」との回答が多くなった図 5.5.4-2(c)に示すアンケート結果と整合する。

なお、点線で示す奥行き30cmの家具の場合をみると、免震建築物Aの上部構造の場合(9F、EW方向の▲)でも転倒する可能性があることを示唆している。

図 5.5.4-3 加速度と家具の転倒可能性

(2) 家具の転倒に関するアンケート集計結果

図 5.5.4-4 は、全ての免震建築物について、家具の転倒に関するアンケート回答の集計結果を比較 している。

免震建築物Gにおいて、「すこしあった」とする回答が他より多く、免震建築物Mでは、「かなりあった」とする回答が多くなっている。

図 5.5.4-5 は、免震建築物 M の家具の転倒について、階数別に集計した結果である。4 階より上の 階で、「かなりあった」とする回答が見られる。表 5.5.1-1 によると、免震建築物 M の免震部材は、弾 性すべり支承を含む構成となっている。すべり支承の復元力特性は、初期剛性が非常に大きく、免震 作動時の剛性が非常に小さくなる特徴を有することから、すべりと止まりの切り替え時点で、上部構 造の上層階で比較的に応答が増幅されやすく、上層階で応答加速度が大きくなったことが原因と考え られる。

図 5.5.4-4 家具の転倒に関する比較

図 5.5.4-5 階数別の集計(免震建築物 M)

写真 5.5.4-1 免震建築物 M で転倒した棚(地 震後横倒しで使用)

免震建築物 M の室内被害の概要が、すでに写真 5.5.1-26~28 に示されている。転倒した家具のうち、比較的大きなものは写真 5.5.4-1 (写真 5.5.1-27 の再掲)に示す棚である。その寸法を表 5.5.4-5 に示す。また、免震建築物 G についても、転倒した家具の寸法は判明しており、この値も同表に示す。

記号	階	家具の高さ(cm)	家具の奥行き(cm)	式(5.5.4-1)による加速度 A ₀ (cm/s ²)			
G	4及び5	150	10	65.3			
М	6	180	30	163.3			

表 5.5.4-5 転倒した家具の寸法と式(5.5.4-1)による加速度 Aa

免震建築物 G の家具の場合は、奥行きが非常に小さいため、免震建築物であっても転倒する可能性 は高かったと言える。免震建築物 M の家具の場合は、加速度 A₀が、約 160 cm/s² であり、これを上回る 加速度が生じたものと考えられる。

5.5.4.4 居住者・使用者による免震建築物の有効性評価

アンケート調査対象としたすべての免震建築物についての有効性評価の集計結果を、図 5.5.4-6 に 示す。全ての免震建築物で「一般の建物と比較して耐震性に優れている」とする回答が、大部分を占 めている。

その理由としての回答者からの代表的なコメントを表 5.5.4-6 に示す。また、「一般の耐震建物と 比較してあまり変わらない」及び「今回の地震だけではよく分からない」とした理由についても、代 表的なコメントを合わせて示す。

「耐震性に優れている」とした評価の理由は、大きく2つの項目がある。免震建築物に特有の周期 の長い揺れを受け入れつつ、家具の転倒等が生じないことを評価するものと、他の非免震建築物と比 較した場合に被害が少ないことを評価するものである。一方、「あまり変わらない」「よく分からない」 とする意見の理由は、これらと裏返しの関係となる。免震での船酔いを感じるような揺れや縦揺れに 対する経験のみが強調されて、これを否定的に捉える場合や比較対象とする他の非免震建築物での経 験を見出せない場合には、「あまり変わらない」「よく分からない」と回答する傾向が見られる。「あま り変わらない」「よく分からない」とする場合でも、免震建築物での何らかの被害や不具合を理由とし ている訳ではないことに留意すべきであろう。

図5.5.4-6 免震建築物の有効性評価

表 5.5.4-6 免震建築物の有効性評価に関す.	る回答理由
---------------------------	-------

「一般の建物と比較して耐震性に優れている」
(免震の揺れを許容するコメント)
・左右に滑るように揺れ、物が倒れる又は落ちるという感じは無かった。(A, H, J, K, L, M)
・揺れの大きさや長さのため恐怖感はあったが、落下物や家具の転倒もなく身の危険は感じなかった。
(A, C)
・揺れ方の周期が長いため船酔いのような症状になるが、安全性には期待が持てる。(A, G, H, K, L)
(免震と他の建築物とを比較したコメント)
・隣接するマンション、周りの戸建と比較して、ほとんど被害がない。(C, G, H, J, K, L, M)
・12 階ながら本震・余震とも、TV やパソコンが転倒しなかった。棚の上に置いていた物が 2、3 個落ち
たのみ。他のマンションでは、3 階ながら TV が倒れていた場合もあった。(C)
・余震(震度5)は別の建物で経験したが、その時に免震での本震に比べて恐怖感を感じた(C,H,M)
 ・本震を一般の一戸建てで体験した。とにかく棚のもの全て落ち、ぐちゃぐちゃな状況を見ているので、
自宅(免震の共同住宅)もダメだろうと思ったが、キャスターの引き出しが、少し出ていただけで、
食器は一枚も割れず、その夜から布団を敷いて眠れたので助かった。翌日も片付け一つすることが無
かったので、気持ち的に苦痛を感じることがなかった。[※他に同様の体験記述有り] (A, C)
「一般の耐震建物と比較してあまり変わらない」
(免震の揺れに対し否定的なコメント)
・本震の時は免震であることがよく分からないくらいであった。ドンという音と共に縦に揺れた。(M)
・本震が大き過ぎて、免震の有効性など分からなかった。(M)
・船酔いのような揺れを感じ、気分が悪くなった。(M)
「今回の地震だけではよく分からない」
・耐震の建物でこの規模の地震の経験が無いため。(G,H,M)
・揺れを、大変、強く感じたため。(H,M)
・地震ではなく津波の影響で、家屋が崩れたため判断できない。(M)
・免震のほうが、ある程度、衝撃が押えられるのかもしれないが、揺れが長く、おさまらないのではな
いかと不安に思う。(M)

5.5.4.5 地震後における免震建築物での機能維持の検討

免震建築物においては、免震構造の効果によって、室内被害が抑制されるが、地震後の機能維持の ためには、さらに、電気、水等が建築物に継続して供給される必要がある。アンケート調査では、ラ イフラインについては、免震、非免震に係らず、全ての建築物で、「被害があり、復旧に時間がかかっ た」とする回答がほとんどとなった。これは、ライフラインの被害が、建築構造の特性とは関係のな い建築物周囲の敷地又は近隣での電力配線や地中埋設管等の被害であったことによる。そのため、地 震後の機能維持のためには、これらの被害に対応するための自家発電や非常給水の措置が必要と考え られる。

表 5.5.4-7 に各建築物のライフラインの被害と対応状況を示す。

調査した範囲では、ガスについては復旧までに1か月程度とやや長い期間を要しているが、電気、 水道は、概ね1週間以内に復旧している。この間、事務所、医療施設及び救急施設では、自家発電及 び貯水槽内の貯水でライフラインの被害に対応されており、最低限の機能性は維持されていたことが 分かる。

これらの免震建築物においては、免震効果によって室内被害が抑制された他、このような対応が取 られていたことによって地震直後から業務を継続して行うことが可能であったと言える。

なお、免震建築物 M では、写真 5.5.1-29 に示す通り、屋上に設置した高架水槽底部のボルト部分が 損傷している。屋上に高架水槽を設置する場合には、スロッシングの影響を検討しておく必要がある。

	電気	エレベーター	水道	ガス
A	自家発電で対応 2 日後に復旧(3/13:12 時10分)	2 日後、5 台のうち 4 台復 旧(3/13) 残り、1 台は 3/24 に復旧	貯水槽内の貯水で対応 埋設部分で漏れ、1 週間 〜半月で徐々に復旧	埋設部分で漏れ 約1か月後に復旧(4/14) 敷地内のガス管補修
С	6日間停電(3週間、程度 との記述もあり)	電気の復旧の後に、復旧	特に被害無し	特に被害無し
G	自家発電で対応 4日後に復旧	自主的に停止	貯水槽内の貯水で対応	約1か月後に復旧
Н	自家発電で対応 翌日の夕方から夜まで に復旧	数日間、停止	翌日の夕方から夜までに 復旧	約1か月後に復旧
J	自家発電で対応 約1週間後に復旧	約1週間後に復旧	貯水槽内の貯水で対応 約1週間後に復旧	特に被害無し
K	自家発電で対応(燃料が もつか不安に) 4日後に復旧	医療機械への電源供給を 優先させ停止 翌日に業務用1台復旧	貯水槽内の貯水で対応 (給水車による補給有り) 1週間後に復旧	当日に復旧(業者による 対応有り)
L	自家発電で対応 1週間後に復旧	自家発電で作動	貯水槽内の貯水で対応 1週間後に復旧	記述無し
М	自家発電で対応	停止 約1週間後に復旧	貯水槽内の貯水で対応 (給水車による補給有り)	かなりの期間停止(医療 機関のため優先的に復 旧)

表 5.5.4-7 ライフラインの被害と対応状況

5.5.5 まとめ

平成 23 年東北地方太平洋沖地震における被害状況について、宮城県、山形県及び関東地域におい て事務所や医療機関など中規模程度以上の一般の免震建築物の、また宮城県内の免震構造を採用した 小規模戸建て住宅(免震住宅)の、それぞれ現地調査や応答記録の整理を行った(5.5.1項及び5.5.2 項)。さらに、鋼材ダンパーや鉛ダンパーの残余性能に対する検討や損傷発見のための維持管理の提案、 及びエキスパンション部の被害原因・対策に関する検討が、一般社団法人日本免震構造協会の報告書 にまとめられていることから、今回の地震被害と対応する部分を、同報告書より引用する形で示した

(5.5.3 項)。また、免震建築物の地震に対する有効性を確認する目的で、免震建築物8棟及び非免震 建築物1棟の居住者・使用者を対象にアンケート調査を実施した(5.5.4 項)。これらの調査結果をま とめると、以下のようになる。

- (1) 宮城県内の16棟及び山形県内の1棟の免震建築物を対象とした現地調査の結果は、以下のとおりである。
 - ① 現地調査を実施した免震建築物は、建築基準法等に基づく大臣認定を取得したものと、告示(平成12年建設省告示第2009号)に基づき建築主事等の確認によるもの(いわゆる「告示免震」)と両方を対象としたが、いずれも構造躯体に損傷は生じておらず、震度6弱を超える大地震に対しても、免震構造として十分な性能を発揮したものと考えられる。

なお、調査対象のうち、ヒアリングやインターネット検索、入手資料等より大臣認定を取得 したものは11棟(A、B、G、H、I、K、M、N、O、P、Q)、告示免震は6棟(C、 D、E、F、J、L)と判断した。

- ② 地震時の免震層の変位を確認できるよう、罫書き式の変位計を設置したものが8棟あった。それらの多くで20cm程度の変形を確認したが、40cm程度の大きな変形を生じているものもあった。
- ③ エキスパンションジョイントや、その周辺のカバーの中には、地震時の免震層の水平変形に追 従できずに、破損や脱落を生じたものがあった。これらは、設計上想定した被害の範囲である 場合と、そうでない場合がある。
- ④ 地盤沈下によって免震建築物と周囲地盤との間に鉛直変位(段差)を生じたものもあった。
- ⑤ 免震部材のうち、特に鉛ダンパーにおいて、大きな断面欠損と見られるひび割れが生じており、 実際に交換されたものもあった。また、鋼材ダンパーにおいては、表面の塗装が剥がれ落ちたり、鋼材部分に残留変形が見られたものがあった。これらの変状は、3月11日の本震を含む 今回の一連の地震で生じたものと考えられる。
- ⑥ 一部の免震部材で、取付部等の表面にさびなどが生じているものがあった。また、津波被害を 受け免震層が冠水した建築物もあった。これらの建築物においては、免震性能が低下したとい う報告はなく、直ちに免震性能に影響はないものと思われるが、免震部材本体及び接合部の耐 久性を評価するための適切な維持管理が必要であると考えられる。
- (2) 宮城県内(仙台市、塩釜市及び多賀城市)の10棟の免震住宅を対象とした現地調査の結果は、 以下の通りである。
 - 現地調査を実施した免震住宅は、計測震度 5.5(6弱)~6.2(6強)となる範囲で、ほぼ同 一の設計条件によって建設されたものであったが、いずれも構造躯体に損傷は生じておらず、

免震構造として十分な性能を発揮したものと考えられる。

- ② 罫書き式の変位計が設置され、地震時の免震層の変位を確認できたものは5棟あった。その多くで最大変形は東南方向に生じており、数値は10cm程度のものから、35cm以上の軌跡を描いたものがあった。
- ③ 構造躯体以外に、玄関ロ周辺の階段部分の被害がみられた。また、地震の振動や津波の作用に よって建物外周の基礎立上り部分のブロックが破損したものがあった。
- ④ 建築物の外構部分で、免震層の応答に追随できない部分で被害を生じたものがあった。
- (3) 関東地方における免震建築物3棟を対象とした現地調査の結果は、以下の通りである。
 - ① 現地調査を実施した免震建築物の構造躯体には損傷が見られなかった。エキスパンションジョ イント周囲では、カバーのずれ、鉛直クリアランスのシール材のはみ出し等が見られた。
 - ② S建築物の免震層には罫書き式の変位計が設置されており、最大変位 6cm 程度の振幅が確認で きた。
 - ③ T建築物の鉛ダンパーの表面には、軽微なひび割れが見られた。
- (4) 免震建築物で実施されている地震観測及び罫書き式変位計等の記録に基づき、免震建築物の地震 時挙動を整理した。結果は、以下のとおりである。
 - 観測記録を整理した範囲では、免震層下部の最大加速度は、福島県の建築物で最も大きく、続いて、宮城県、茨城県の順となり、東京都や神奈川県では小さくなっていた。
 - ② 一般の免震建築物について、免震層下部に対する免震層上部と建物上階の水平方向の最大加速 度比を計算した結果、ほとんどの場合に比が1.0より小さくなっており、免震効果(応答加速 度の低減)が確認できた。免震層下部の最大加速度が大きくなるにつれて、これらの最大加速 度比は小さくなる傾向にあった。
 - ③ 加速度記録を用いて免震層の変位(水平方向の相対変位)を計算した。得られた軌跡は、宮城県では円形に近い形状を、福島県では東西方向で特に大きくなる形状を描いた。免震層の原点からの最大変位は、福島県の建築物で最も大きく、24.5cmであった。
 - ④ 今回調査した一般の免震建築物においては、地震計(加速度計)が設置されていない場合であっても、地震時の免震層の変位軌跡を確認できるよう、罫書き式変位計が設置されたものが多数あり、それらの多くで 20cm 程度の変位が確認できた。40cm 程度の大きな変位が記録されたものもあった。
 - ⑤ 今回調査した免震住宅においては、その多くで罫書き式変位計が設置されており、免震層の変位の大きさが確認できた。免震層の最大変位は、最寄りの地震観測記録の計測震度と良い相関が見られ、計測震度が大きくなると、免震層の最大変位も大きくなる傾向にある。
 - ⑥ 罫書き式変位計の設置は、免震層の応答性状を直接確認できるだけでなく、変位軌跡を解析結果と照合することで、解析の妥当性の検証にも利用することが可能であり、非常に有効である。
- (5) 免震層周辺及び免震部材において、地震後の現地調査等で被害が見られた部分のうち、免震部材 (ダンパー)及びエキスパンション部それぞれについての対策等が取りまとめられている。その結 果は以下のとおりである。
- ○免震層周辺での被害と対策

- 今回現地調査を実施した建築物の多くで、免震部分と非免震部分の境界部において、エキスパンション部(エキスパンションジョイント及びカバー、免震スリットの目地材等)の変状が見られた。損傷を生じているものもあった。
- ② エキスパンション部の損傷の多くは、図面上は可動するように設計されていたが、実際の地震動を受けた場合に、免震層の大きな水平変位や上下も含めた3方向の変位に追従できなかったためと考えられる。被害原因として、①製品の機能的問題、②設置状況の問題、③維持管理の問題の3タイプにまとめられる。
- ③ 試験機の性能上の制限で実地震動ほどの速さの実験はほとんど行われていないことから、地震動の動きに追従出来ずに損傷が生じたものが多く見られる。基本的には、振動台を用いた速い速度の動的実験により、動作確認を行う必要がある。特にX方向とY方向の機構が異なるものは動きも複雑であり、2方向同時加振で性能を確認する必要がある。
- ④ 設計者・施工者は施主にエキスパンションジョイントの機能や可動範囲を十分に説明し、書類 として渡す必要がある。清掃や点検などの維持管理が必要であることを伝達する必要がある。
 ○免震部材の被害と対策
 - ① 免震部材のうち、鋼材ダンパーにおいては、ダンパーの繰り返し変形に伴う、取り付けボルトのゆるみ、ダンパーロッドの表面の塗装の剥がれおよびダンパーロッドの残留変形が見られた。 また鉛ダンパーにおいては、断面欠損と見られるひび割れが生じていた。東北地方の免震建築物で、大きいひび割れが確認され、鉛ダンパーが交換されたものもあった。これらの変状は、3月11日の本震を含む今回の一連の地震で生じたものと考えられる。
 - ② 一部の免震部材で、取付部等の表面にさびなどが生じているものがあった。また、津波被害を 受け免震層が冠水した建築物もあった。これらは直ちに免震性能に影響はないものと思われる が、やはり適切な維持管理が必要であると考えられる。
 - ③ 鋼材ダンパーや鉛ダンパーにおいては、地震後の維持管理による損傷等の早期発見は重要であ り、その際の点検項目として、以下のものが挙げられる。
 - ・鋼材ダンパー
 - i)ボルトのゆるみ
 - ii)表面亀裂
 - iii)ダンパーロッド部の形状

形状変化については、ダンパーロッド部の高さの変化を確認し、変化が大きい場合には、 詳細な検討(累積損傷度の確認等)を行い、交換の要否を判断することになる。

- ・鉛ダンパー
 - i) 鉛ダンパーの表面亀裂
 - ii) 可撓部形状の変化

鉛ダンパーの亀裂や形状変化が見られる場合には、表面亀裂の深さ・長さ・幅および可撓 部の直径等を計測し、その大きさや変化の程度が大きい場合には、降伏荷重比やエネルギー 残存率を算定し、鉛ダンパーの状態を推定する必要がある。

- (6) 免震・非免震建築物での居住者・使用者アンケートの結果は、以下のとおりである。
 - ① 仙台市の免震と非免震の比較(免震建築物Aと非免震建築物A-2の比較)により、免震建築物では、揺れをやわらげる免震の効果が発揮され、建築物居住者・使用者の恐怖感が低減されたこ

とが確認された。ただし、揺れを感じる以上、免震においても、何らかの恐怖感、不快感はあることが確認された。行動難度については、免震では「行動できない」とする回答が低減した。

- ② 免震と非免震で、家具の状況等を比較した場合、免震では、明らかに食器等の落下、家具の転 倒等の室内被害が低減されたことが確認された。特に、免震効果(応答加速度を低減する効果) は、家具の転倒防止に寄与し、家具の転倒は「なかった」とする回答がほとんどであった。
- ③ 非免震と比較すれば、家具の転倒は抑制されるものの、すわりの悪い家具については免震建築 物においても転倒防止に留意する必要がある。
- ④ 免震建築物 M で家具の転倒が「かなりあった」とする回答が他より多くなった。転倒した家具の寸法から、転倒の可能性のある加速度を推定すると約 160cm/s²以上となった。免震建築物 M の免震部材は、弾性すべり支承を含む構成であり、すべり支承のすべりと止まりの切り替え時点で、上部構造の上層階で比較的応答が増幅されやすく、上層階で応答加速度が大きくなったことが原因と考えられる。
- ⑤ 免震建築物の有効性については、「一般の耐震建物と比較して耐震性に優れている」とする回答が大部分を占め、建築物の居住者・使用者において、非免震と比較した場合の免震建築物の 優位性が認識されたことを確認した。
- ⑥ 医療施設等では、ライフラインの被害に対して自家発電や非常給水による対応が取られており、 免震効果によって室内被害が抑制されていたことと合わせ、地震直後から業務を継続して行う ことが可能であったことを確認した。

参考文献

- 5.5-1) 建築研究所:平成20年(2008年) 岩手・宮城内陸地震建築物被害調査報告, http://www.ken ken.go.jp/japanese/contents/activities/other/disaster/jishin/2008iwate/houkokusho/2 0080904-1/index.html
- 5.5-2) 気象庁:強震波形(平成23年(2011年)東北地方太平洋沖地震), http://www.seisvol.kishou.
 go.jp/eq/kyoshin/jishin/110311_tohokuchiho-taiheiyouoki/index.html
- 5.5-3) 国土交通省東北地方整備局営繕部整備課の情報提供
- 5.5-4)日本地震工学会:平成23年3月11日に発生した東北地方太平洋沖地震においての福島第一原 子力発電所および福島第二原子力発電所で観測された強震記録等の強震データ記録, No. 10, 2 011
- 5.5-5) (独) 建築研究所, 強震観測ネットワークによる観測記録
- 5.5-6) (独)都市再生機構からの情報提供
- 5.5-7) 一条工務店グループからの情報提供
- 5.5-8) 気象庁の公開記録
- 5.5-9)防災科学技術研究所 K-NET の公開記録
- 5.5-10) 宮城県からの情報提供
- 5.5-11) 大野晋他:東北大学災害制御研究センターによる 2011 年東北地方太平洋沖地震の仙台市強 震記録(速報), 2011.3.31, http://www.dcrc.tohoku.ac.jp/surveys/20110311/shaking.htm
 1
- 5.5-12) 神山眞他:2011 年東北地方太平洋沖地震における東北工業大学アレー強震観測システム Sma 11- Titan による強震観測記録について(速報),2011.4.16,http://smweb.tohtech.ac.jp/s malltitan/japanese/Reference_paper/Strong-motion%20records%20furing%203.11Earthq_Ja panese.pdf
- 5.5-13) 日本免震構造協会: 東北地方太平洋沖地震に対する応答制御建築物調査報告会資料, 2012.1
- 5.5-14) 吉敷祥一ほか:免震構造用U字形鋼材ダンパーの繰り返し変形性能に関する研究,日本建築 学会構造系論文集,第73巻,第624号,pp.333-340,2008.2
- 5.5-15) 安永亮ほか: 鉛ダンパーの風応答に関する研究(その2) 微小変位での高サイクル疲労特性, 日本建築学会学術講演梗概集, pp. 289-290, 2010.9
- 5.5-16) 松下文明ほか: 鉛ダンパーの風応答に関する研究(その3) 亀裂発生時の保有性能および亀 裂補修法の評価,日本建築学会学術講演梗概集, pp.291-292, 2010.9
- 5.5-17)日本建築学会:非構造部材の耐震設計施工指針・同解説および耐震設計施工要領, 2003 年