ISSN 1346-7328 国総研資料 第658号 平 成 23 年 12月

国土技術政策総合研究所資料

TECHNICAL NOTE of National Institute for Land and Infrastructure Management

No.658

December 2011

2011年東北地方太平洋沖地震津波による 海岸保全施設の被害調査

熊谷兼太郎・渡邉祐二・長尾憲彦・鮎貝基和

Field Survey of the 2011 off the Pacific coast of Tohoku Earthquake and Tsunami on Shore Protection Facilities in Ports

Kentaro KUMAGAI, Yuji WATANABE, Norihiko NAGAO and Motokazu AYUGAI

National Institute for Land and Infrastructure Management Ministry of Land, Infrastructure, Transport and Tourism, Japan 国土技術政策総合研究所資料 No. 658 2011年12月 (YSK-N-240)

2011年東北地方太平洋沖地震津波による海岸保全施設の被害調査

熊谷兼太郎*·渡邉祐二**·長尾憲彦***·鮎貝基和****

要 旨

岩手県及び宮城県の7港20地区の海岸保全施設等を対象とした被害調査を行い,胸壁及び護岸を中 心とした被害状況を把握した.特に胸壁について,軽微な被害から比較的大きな被害までの被害の類 型を整理した.

胸壁について、「堤体の破壊」に関する被害の類型としては、1- クラック発生、1- 漂流物の衝 突による欠損、1- 打継ぎ面等での堤体上部の切断が生じていた. 「地盤の洗掘・堤体の変位」に関 する被害の類型としては、2- 前面または背面地盤の軽微な洗掘・舗装被害、2-②引波の流れによる 広範な地盤の洗掘、2-③波力、地盤洗掘等の複合的作用で堤体が倒壊、2- 地域全体の地盤沈下で嵩 上げが必要な状況の発生があった. 「運用上の機能不全」に関する被害の類型としては、3-①フラッ プゲートの開閉不全が生じていたのに加え、3- 陸閘が破損したことによる通行の阻害がある.

キーワード:2011年東北地方太平洋沖地震津波,海岸保全施設,胸壁,被害調査

〒239-0826 横須賀市長瀬3-1-1 国土交通省国土技術政策総合研究所

^{*}沿岸海洋研究部主任研究官

^{**}沿岸海洋研究部沿岸防災研究室研究員

^{***}国土交通省東北地方整備局釜石港湾事務所副所長

^{****}国土交通省東北地方整備局港湾空港部港湾計画課係長

電話:046-844-5024 Fax:046-844-5068 e-mail:kumagai-k27n@ysk.nilim.go.jp

Technical Note of NILIM No. 658 March 2012 (YSK-N-240)

Field Survey of the 2011 off the Pacific coast of Tohoku Earthquake and Tsunami on Shore Protection Facilities in Ports

Kentaro KUMAGAI* Yuji WATANABE** Norihiko NAGAO*** Motokazu AYUGAI****

Synopsis

Field surveys were conducted for the damages of the shore protection facilities in the 20 areas of 7 ports located in Iwate Prefecture and Miyagi Prefecture affected by the 2011 off the Pacific coast of Tohoku Earthquake and Tsunami.

Breast walls were affected or broken in the following three types, such as i) cracks on the body, ii) partially broken by drifting debris and iii) broken the upper part of the body. The base soil mechanical ground were scored in the four types, such as i) scored or broken the soil materials or apron in a small scale, ii) scored severely in a large scale including the soil materials lies under the body of the breast wall by the flow from landside to sea, iii) collapse the breast wall by multiple effects of wave force and the scoring and iv) subsidence damage. And the failure of the function of the breast wall caused by the tsunami was founded in this types, such as i) breakage of flap gate on the body of the breast walls, and ii) breakage of land rocks.

Key Words : the 2011 off the Pacific coast of Tohoku Earthquake Tsunami, shore protection facility, breast wall, field survey

^{*} Senior Researcher of Coastal and Marine Department

^{**} Research Engineer of Coastal Disaster Prevention Division, Coastal and Marine Department

^{***} Deputy Director of Kamaishi Port Office, Tohoku Regional Development Bureau , MLIT

^{****} Assistant Manager of Port and Airport Division, Tohoku Regional Development Bureau, MLIT 3-1-1 Nagase, Yokosuka, 239-0826 Japan

Phone : +81-46-844-5024 Fax : +81-46-844-5068 e-mail: kumagai-k27n@ysk.nilim.go.jp

目 次

1. はじめに	1
	1
2.1 対象とした た 港湾	1
2.2 行程	1
2.3 調査員	2
2.4 調査に用いた機材	2
3. 調査結果	2
3.1 概要	2
3.2 大船渡港	3
3.3 気仙沼港	10
3.4 雄勝港	16
3.5 女川港	24
3.6 荻浜港	29
3.7 石巻港	31
3.8 松島港	33
4. まとめ	34
5. おわりに	35
謝辞	36
参考文献	36
付録 - A	37
付録 -B.1	38
付録 -B.2	39

1. はじめに

平成23年(2011年)3月11日に発生した東北地方太平洋 沖地震及びそれに伴う津波による被害について,海岸保 全施設の被害状況を把握するとともに,被災原因につい て可能な限り究明し,その結果を基礎的な技術資料とし て蓄積しておく必要がある.

同地震及びそれに伴う津波の被害について,海岸保全 施設を含めた社会基盤施設の被害情報・現地調査報告と して主なものを挙げると,これまで公表されているもの のでは,国土交通省の災害情報(平成23年11月14日時点 で第99報)¹⁾,東北地方整備局の地震災害情報(同4月21 日時点で第66報)²⁾,土木学会東日本大震災特別委員会総 合調査団(日本地盤工学会及び日本都市計画学会も参加 した合同調査)の調査速報会報告(同4月8日)³⁾,独立行 政法人港湾空港技術研究所の調査速報(同4月29日)⁴⁾, 土木研究所を中心としたグループの調査速報(同7月)⁵⁾ 等がある.さらに今後,土木学会を含めた6学会(日本地 震工学会,日本建築学会,土木学会,地盤工学会,日本 機械学会及び日本地震学会)のシンポジウムでの報告が 平成24年3月に予定されている.

「海岸保全施設の技術上の基準・同解説」⁶は,海岸線 近傍の陸上に設置される海岸保全施設として,堤防,護 岸,胸壁等を挙げている.そのうち胸壁は,港湾区域ま たは漁港区域を中心に設置されているという特徴がある.

上で述べたような,港湾区域に設置された海岸保全施 設に注目して被害状況・被災原因を詳細にとりまとめた ものはないため,国土交通省港湾局所管の港湾区域に設 置された海岸保全施設の被害状況等について現地調査を 行い,それによって得た知見を基礎的な技術資料として とりまとめることとする.

2. 調査方法

2.1 対象とした港湾

青森県,岩手県及び宮城県の太平洋岸には,北から, むつ小川原港,八戸港(以上,青森県),八木港,久慈 港,小本港,宮古港,釜石港,大船渡港(以上,岩手県) 御崎港,気仙沼港,雄勝港,女川港,金華山港,表浜港, 荻浜港,石巻港,松島港及び仙台塩釜港(以上,宮城県) の18港がある.そのうち,比較的規模の大きい港湾であ る八戸港,久慈港,宮古港,釜石港及び仙台塩釜港の5 港については既に報告⁴⁾がなされているため,本資料では 重複して紹介しない.また,むつ小川原港,八木港,小 本港,御崎港,金華山港及び表浜港の6港については,国 土交通省の災害情報¹⁾において胸壁の大きな被害は報告 されておらず,調査の対象から除外した.

このようにして,大船渡港(岩手県),気仙沼港,雄 勝港,女川港, 荻浜港,石巻港及び松島港(以上,宮城 県)の7港20地区の海岸保全施設等を調査の対象とした. なお,このうち石巻港大曲地区の施設は海岸保全施設で はなく港湾施設であるが,海岸保全施設に機能が類似し ているため,対象として含めた.

図-2.1.1に、対象とした港湾の位置図を示す.

図-2.1.1 対象とした港湾の位置図

2.2 行程

(1) 大船渡港の調査

平成23年6月16日 (木)

・移動 横須賀市→北上市
 同6月17日(金)

- ・移動 北上市(8:00発)→大船渡市に調査団集合
- ・清水地区及び大船渡漁港蛸之浦地区の調査(10:40~ 12:20)
- ・永浜地区及び山口地区の調査(13:10~14:30)
- ・茶屋前地区の調査(14:40~16:50)
- ·移動 大船渡市→北上市→東京

(2) 気仙沼港の調査

平成23年7月19日(火)

移動 横須賀市→一関市

同7月20日 (水)

- ・移動 一関市(8:00発)→気仙沼市に到着,宮城県 気仙沼土木事務所(及川氏,菅原氏)と打合せ
- ・朝日地区の調査(11:00~13:30)
- ・小々汐地区の調査(14:00~15:00)
- ・梶ヶ浦地区の調査(15:00~16:00)
- ·移動 気仙沼市→一関市→東京

(3) 雄勝港・女川港・荻浜港・石巻港・松島港の調査平成23年8月30日(火)

・移動 横須賀市→仙台市,東北地方整備局港湾空港
 部にて打合せ

同8月31日 (水)

- ・移動 仙台市 (8:10発) →石巻市雄勝町
- ・雄勝港の調査(立浜地区,大浜地区,小島地区,伊 勢畑・明神地区,唐桑地区及び波板地区)(10:30~ 16:00)
- ・女川港の調査(大石原地区及び横浦地区)(16:30~ 18:20)
- 移動 女川市→仙台市
- 同9月1日(木)
 - ・移動 仙台市 (7:30発)→女川市
 - ・女川港の調査(横浦地区及び高白地区) (10:00~
 11:20)
 - ・ 荻浜港の調査(小積地区及び荻浜地区)(12:00~13:50)
 - ・石巻港の調査(大曲地区) (15:00~15:30)
 - ・松島港の調査(海岸前地区) (16:10~16:40)
 - ·移動 松島港→仙台市→東京

2.3 調査員

- ・国土交通省国土技術政策総合研究所沿岸海洋研究部主
 任研究官 熊谷兼太郎(2.2の全調査に参加)
- ・国土交通省国土技術政策総合研究所沿岸海洋研究部沿 岸防災研究室研究員 渡邉祐二(2.2の全調査に参加)
- ・国土交通省東北地方整備局釜石港湾事務所 副所長 長
 尾憲彦 (2.2(1)の調査に参加)
- ・国土交通省東北地方整備局港湾空港部港湾計画課係長 鮎貝基和(2.2(3)の調査に参加)

2.4 調査に用いた機材

- ・オートレベル(株式会社ニコン製AE-7C),三脚
- ・GPS測定機(Garmin製GPSmap 60CSxまたはeTrex H)
- ・スタッフ,ポール,巻き尺,コンベックス
- ・デジタルカメラ
- ・潮位表(海上保安庁⁷⁾及び気象庁⁸⁾の公表する天文潮位)

3. 調査結果

3.1 概要

岩手県及び宮城県の7港20地区の海岸保全施設等を対 象とした被害調査を行い,胸壁及び護岸を中心とした被 害状況を把握した.特に胸壁については,軽微な被害か ら比較的大きな被害までの被害の類型を整理した.ここ で,軽微な被害とは簡易な補修または補修なしで機能が 期待できると考えられる程度の被害,比較的大きな被害 とは修理・据え直し,断面設計の見直し等が必要と考え られる被害と考えている.

胸壁について、「堤体の破壊」に関する被害の類型と しては、1- クラック発生、1- 漂流物の衝突による欠 損,1- 打継ぎ面等での堤体上部の切断が生じていた. なお、ここでは軽微な被害から被害程度が大きくなる順 序で記述している.これは、本段落における以下の記述 も同様である、「地盤の洗掘・堤体の変位」に関する被 害の類型としては、2- 前面または背面地盤の軽微な洗 掘・舗装被害、2- 引波の流れによる広範な地盤流失、 2- 波力,地盤洗掘等の複合的作用で堤体が倒壊, 2-地域全体の地盤沈下で嵩上げが必要な状況の発生があっ た.「運用上の機能不全」に関する被害の類型としては、 3- フラップゲートの開閉不全等が生じていた. さらに, 今回の調査ではないが、既往の調査4)で久慈港において みられた胸壁の被害の形態のひとつとして、3- 陸閘破 損により通行が阻害される状況の発生が、挙げられる(表 -3.1.1).

大船渡港及びその周辺でみられた被害事例としては, 1-①,2-①,2-②,2-③及び2-に相当する被害がそれぞ れ生じていた.気仙沼港でみられた被害事例としては, 1-,2-②及び2-に相当する被害がそれぞれ生じてい た.宮城県の5港(雄勝港,女川港,荻浜港,石巻港及 び松島港)でみられた被害事例としては,1-,1-, 2-及び3-に相当する被害がそれぞれ生じていた.

被害程度	堤体の破壊	地盤の洗掘・堤体の変位	運用上の機能不全
軽微な被害 (簡易な補修 または補修なしで 機能確保	 1-① クラック発生 1-② 漂流物の 	 2-① 前面・背面地盤の 軽微な洗掘・舗装被害 目地開き (本調査では該当な」) 	船舶・ガレキ・土砂 等の堆積 (本調査では該当なし)
	衝突による欠損 1-③ 打継ぎ面等 での堤体上部の 切断	 (本調査では該当なじ) 越流した流れによる地盤の広範な洗掘 (本調査では該当なし) 2-2) 引波の流れによる地盤の広範な洗掘 	 トの開閉不全 3-② 陸開破損に より通行が阻害 (既往の調査の事例)
◆ 比較的大きな被害 (修理・据え直し、 断面設計見直し 等が必要	堤体の破壊 (本調査では該当なし)	 2-③ 波力,地盤洗掘 等の複合的作用で堤 体が倒壊 2-④ 地域全体の地盤 沈下で嵩上げが必要 	

表-3.1.1 被害程度で分類した胸壁の被害

また,各港で天端高さの測量を行った.これは,既往 の浸水高の調査結果(例えば,公益社団法人土木学会海 岸工学委員会・公益社団法人日本地球惑星科学連合の東 北地方太平洋沖地震津波合同調査グループ(The 2011 Tohoku Earthquake Joint Survey Group, TTJT)の調査結果 ⁹⁾) と比較することで, 天端上の越流水深を推定するため である.また, 元々の設計天端高さと比較をすることで 地震に伴う地盤沈下量を求めた.その結果, 大船渡港で は約 0.8~1.0m, 気仙沼港では約 0.7~0.9m, 雄勝港で 0.9~1.1m, 女川港で 1.0m, 荻浜港で 1.0m, 松島港で 0.6m の沈下がそれぞれ生じている結果となった.

以下,各港の調査結果の詳細を示す.

3.2 大船渡港

(1) 清水地区

図-3.2.1に、大船渡港の周辺図を示す.大船渡港では、清水地区、永浜地区、山口地区及び茶屋前地区と、 清水地区の南側に隣接した大船渡漁港蛸之浦地区で調査 を行った.図-3.2.2に、清水地区及び大船渡漁港蛸之浦 地区の周辺図を示す.

図中の地点1-aで,堤体にクラックが発生していた(写 真-3.2.1).クラックの大きさは,法線方向に約1cm, 法線直交方向に約3cmのずれである.図-3.2.3に,クラ ック発生位置の天端高さの測定結果を示す.天端高さの 実測値はT.P.+2.62mであった.設計天端高さはT.P.+3.50m なので,この場所では地震に伴い0.88mの沈下が生じたこ とになる.

地点1-bで,胸壁の陸側にある,水際線からの距離が約50mの場所に立地する家(写真-3.2.2の右端の黒屋根の家)の所有者に浸水状況のヒアリングを行った.それによると,建物2階に置いてあったたんすの下から2段目まで最大で浸水したとの証言が得られた.

地点1-cでは、基礎部分の海側法面の被覆材の一部が破壊されていた(写真-3.2.3(1)).破壊された被覆材は海側に流出していたので、引き波による被害と考えられる.また、堤体直下の基礎が吸い出されていて、堤体下面から地盤までの空洞の高さは0.83mであった(写真-3.2.3(2)).胸壁よりも陸側に広がっている水面は、胸壁よりも海側の水面の変動にあわせてゆっくりと振動している様子が観察されたので、堤体直下の基礎が失われて空洞が生じており、海側と陸側とが貫通していると考えられる.写真-3.2.4は、被災直後の状況を上空から撮影した写真である。胸壁の偶角部を中心として、引き波の流れにより地盤が洗掘されていることが分かる.

図-3.2.1 大船渡港

図-3.2.2 大船渡港清水地区·大船渡漁港蛸之浦地区

写真-3.2.1 堤体に発生したクラック(地点 1-a)

写真-3.2.2 浸水状況をヒアリングした場所 (右端の黒屋根の家) (地点 1-b)

(1) 海側から撮影

(2) 陸側から撮影 写真-3.2.3 基礎全体の流出(地点1-c)

写真-3.2.4 上空から撮影された写真(地点 1-c)

(2) 大船渡漁港蛸之浦地区

図-3.2.2の地点1-d及び1-eで、胸壁の堤体にクラックが発生していた(写真-3.2.5及び写真-3.2.6).

地点1-fで胸壁の法線は直角に曲がるが,堤体のすり合わせ部で開きが生じていた(写真-3.2.7).ただし,この開きを生じた原因が今回の地震であるかについては不明である.図-3.2.4に,地点1-f位置の天端高さの測定結果を示す.天端高さはT.P.+2.05mであった.

この他, 左岸側防波堤に幅1cm程度の目地開きが数か 所発生していた(写真-3.2.8及び写真-3.2.9).また, 地点1-gで「大船渡丸」及び「明和丸」の船舶2隻が胸壁 に乗り上げていた(写真-3.2.10).

写真-3.2.5 堤体に発生したクラック(地点1-d)

写真-3.2.6 堤体に発生したクラック(地点1-e)

写真-3.2.7 堤体のすり合わせ部の開き(地点1-f)

図-3.2.4 胸壁の天端高さ(地点1-f)

写真-3.2.8 防波堤の目地ずれ(左岸側防波堤)

写真-3.2.9 防波堤の目地ずれ(左岸側防波堤)

写真-3.2.10 胸壁に乗上げた船舶(地点 1-g)

(3) 永浜地区

図-3.2.5に、永浜地区の周辺図を示す.また、写真 -3.2.11にそのうち南側部分の状況を示す.地点1-hで、 引き波による被害が発生していた.永浜地区の胸壁は、 施設管理上の分類名称は「胸壁」であるが、構造形式は 堤防構造に類似している(図-3.2.6).すなわち、盛土 された堤体の表のり、天端及び裏のりをそれぞれ被覆工 で覆っている.この点は、大船渡港の他の地区の胸壁と は構造形式が異なるので、被災原因の検討にあたって注 意が必要である.

地点 1-h には,背後の集落から海に向かって流れ込む 排水路があり,その排水路を中心として海にむかって扇 形に地盤が流出し,堤防構造の堤体部分も流出していた. 表のり被覆工は海側に倒壊または散乱していた.

地点 1-i も, 背後の集落から海に向かって流れ込む排水 路排水路があり被害状況は地点 1-h と同様である(写真 -3.2.13).

写真-3.2.14は,地点1-j付近の状況で,水門の機械部 分の被害,堤体海側地盤の洗掘が生じていた.

地点 1-k では, 護岸の表のり被覆工が約 100m にわたり 海側に倒壊していた(写真-3.2.15 及び写真-3.2.16). 図-3.2.7 に, 残存部分の表のり被覆工の高さの測定結果 を示す.高さは, T.P.+2.14m であった.設計天端高さは T.P.+3.00m なので,この場所では地震に伴い 0.86m の沈 下が生じたことになる.

付近の住民の証言では、津波は岬の反対側からも岬の 低くなっている部分を乗り越え流れてきた(図-3.2.5の 矢印参照).また、同じ住民によると、そのときの水位 は**写真-3.2.17**に示す位置まで達し、**写真-3.2.18**に示す 建物2階の窓枠上側の桟まであと20cm程度の位置に達 したとのことである.

図-3.2.5 大船渡港永浜地区

図-3.2.6 堤防構造に類似した胸壁の構造

写真-3.2.11 永浜地区南側部分の状況

写真-3.2.12 堤防構造の被害(地点 1-h)

写真-3.2.13 堤防構造の被害(地点1-i)

写真-3.2.14 水門と付近の被害(矢印が水門,地点1-j)

写真-3.2.15 堤防構造の被害(地点1-k)

写真-3.2.16 空撮写真(地点1-k)

(2) 断面図 図-3.2.7 表のり被覆工の高さ(地点 1-k)

写真-3.2.17 地点 1-k 背後の状況

写真-3.2.18 地点1-k付近の建物

(4) 山口地区

図-3.2.8に、山口地区の周辺図を示す. 同地区の胸壁 の堤体は、倒壊、クラック発生等の被害はみられなかっ た.ただし、胸壁前面側の物揚場の舗装の被害が生じて いた(写真-3.2.19).図-3.2.9に、地点1-1の位置の天 端高さの測定結果を示す.天端高さはT.P.+2.20mで(写 真-3.2.20),設計天端高さはT.P.+3.00mなので、この場 所では地震に伴い0.80mの沈下が生じたことになる.

図-3.2.8 大船渡港山口地区

写真-3.2.19 物揚場の舗装の被害

図-3.2.9 胸壁の天端高さ(地点1-1)

写真-3.2.20 胸壁の周辺状況(地点1-1)

(5) 茶屋前地区

図-3.2.10に、茶屋前地区の周辺図を示す.地点1-m 付近は胸壁の被害はほとんどなかった(写真-3.2.21). 地点1-nは、前面側地盤が法線直交方向に数m程度の幅 で洗掘されていた.背面側の洗掘の被害は比較的小さい (写真-3.2.22及び写真-3.2.23).地点1-oは、前面側 地盤が洗掘され、背面側地盤も一部が洗掘されていた(写 真-3.2.24).同写真の奥に映る水門は、機械設備を納め た上屋等が被害を受けている.写真-3.2.25は、地点1-p から背面側の市街地の様子を写したものである.海岸保 全施設から陸側へむかって100~200m程度の範囲で、一 帯の家屋が基礎だけを残して流失するような被害が発生 している.地点1-qは、前面側地盤が洗掘されていた(写 真-3.2.26).その背面側地盤については、被害が生じた ようであるが、復旧活動で埋め戻しが行われていて被害 状況の詳細は不明である.

地点 1-r は,背面側地盤が流出し(写真-3.2.28),堤 体が延長約 100m にわたって背面側に倒壊していた(写 真-3.2.27).この区間は,L型堤体・鋼矢板式基礎の胸 壁である.一部の堤体は基礎の鋼矢板が折れていた(写 真-3.2.29).鋼矢板の折れた部分付近には錆が発生して いた.

背面側地盤が失われた原因として,空撮写真(写真 -3.2.30)を参考にすると,南側隣接部分の堤体が失われ, その破壊した箇所に水の流れが集中するような流れによ り当該地盤が広範に流出したことが考えられる.また, 堤体が倒壊した原因としては,鋼矢板の折れや,堤体が 概ね背面側に倒れこんでいる点から,背後地盤が失われ たあとに押し波による作用で倒壊した可能性があると考 えられる.また,鋼矢板の折れた部分付近に錆が発生し ていたことが注目される.錆による鋼矢板の腐食が及ぼ した影響についてはより詳細な検討が必要である.

天端高さは、未倒壊部分で T.P.+2.38m であった(図

-3.2.11). 設計天端高さは T.P.+3.40m なので,この場 所では地震に伴い 1.02m の沈下が生じたことになる.

倒壊部分について, 天端高さと法線直交方向の変位(胸 壁法線から前面側または背面側への出入りの大きさ)の 測量結果をそれぞれ示した(図-3.2.12(1)及び(2)).そ れによると, 延長方向には103mの長さで変位が生じてい た.また, 鉛直方向には, 天端高さの最も低い場所は T.P.+0.61mで, T.P.+2.38mと比較すると約1.8m変位してい ることが分かった.また, 法線から背面側に最大で約1.9m 変位していることが分かった.

図-3.2.10 大船渡港茶屋前地区

写真-3.2.21 被害のほとんどない胸壁(地点 1-m)

写真-3.2.22 前面側地盤の洗掘(地点1-n)

写真-3.2.23 背面側地盤の状況(地点1-n)

写真-3.2.24 前面側地盤の洗掘と水門の被害(地点1-o)

写真-3.2.25 背面側の市街地(地点1-p)

写真-3.2.26 前面側地盤の洗掘(地点 1-q)

写真-3.2.27 背後側に倒壊した堤体(地点1-r)

図-3.2.11 胸壁の天端高さ(地点1-rの未倒壊部分)

写真-3.2.28 背後側地盤の流出(地点1-r)

写真-3.2.29 鋼矢板折れ(地点1-r)

写真-3.2.30 上空から撮影した写真(地点1-r)

(6) 野々田地区

野々田地区は調査時間の制約により現地調査できな かった.東北地方整備局が集約した情報によると,水門1 基が損傷し,その上屋,電気設備及び開閉装置に被害が 発生しているとのことである.

3.3 気仙沼港

(1) 朝日地区

図-3.3.1に、気仙沼港の周辺図を示す.気仙沼港では、 朝日地区、小々汐地区、梶ヶ浦地区及び湾最奥部の気仙 沼漁港浜町地区で調査を行った.図-3.3.2に、朝日地区 の周辺図を示す.同地区には、図中に一点鎖線で示した とおり、北側部分に胸壁がある.また、点線で示したと おり、東側及び南側部分に護岸がある.

・胸壁の被害

図-3.3.2 の地点 2-a 付近では, 胸壁の堤体に被害はな く, クラックの発生もなかった(写真-3.3.1(1)).ただ し,陸閘の門扉及び付帯施設は被害を受けていた(写真 -3.3.1(2)).

地点2-bでは,胸壁の堤体に大きな被害はなかったが, 一部で欠損が発生していた(写真-3.3.2(1)及び(2)).欠 損は,2箇所とも平常時は門扉が収納されている場所の 背面側(陸側)に位置しており,海側から陸側にむかっ て削り取られるような形状であった(写真-3.3.2(3)及び (4)).地点2-b~2-cの区間では,胸壁の堤体には被害が なかった(写真-3.3.3).

地点2-cでは,胸壁の堤体の直下を含めて地盤が流出し ていた(写真-3.3.4(1)~(3)).写真-3.3.5は,同地点周 辺を上空から撮影した写真である.胸壁と護岸の接合部 である隅角部を中心に平面的に地盤が流出していて,引 き波による被害と考えられる.堤体は基礎杭に支えられ ており,基礎杭は露出していた(写真-3.3.4(4)).図 -3.3.3に,堤体の天端高さの測量結果を示す.天端高さ の実測値はT.P.+2.45mであった.設計天端高さは T.P.+3.19mなので,地点2-cでは地震に伴い0.74mの沈下が 生じたことになる.

・護岸の被害

地点2-dでは, 護岸の天端被覆工の一部が陥没していた (写真-3.3.6).

地点2-eでは,護岸の天端被覆工が地点2-dよりも広範 囲に陥没し,通行不能となっていた(写真-3.3.7).上 空から撮影した写真によれば,護岸の法線が海側に変形 している(写真-3.3.8).陥没した部分にできた水面は, 防潮堤の前面側の海面変動にあわせてゆっくりと変動し ていたので,地点2-eの護岸の背面側の陥没部分と前面側 の海面とはつながっていると考えられる.

地盤工学会¹⁰により,地点2-fでは,護岸の隅角部で堤 体が変位していることが報告されている.そのなかでは, 津波の引き波によって施設が海側に倒れこんでいること, 隅角部に近いほど倒れこみが著しいこと,背面地盤が流 出していること,前面側の矢板が海側に倒れこんでいる ことが報告されている. 写真-3.3.9(1)及び(2)に,被害状 況を示す. 同地点の被災状況を詳細に把握するために測 定を行った.まず,変位していない部分の天端高さは T.P.+2.29mであった(写真-3.3.9(3)及び(4)).設計天端 高さはT.P.+3.19mなので,地点2-cでは地震に伴い0.90m の沈下が生じたことになる.次に,写真-3.3.9(5)の点1 (変位していない部分)を基準にした点2(変位した部 分)の変位量を測定したところ,法線直交方向は海側に 2.39m,鉛直方向は約0.2m変位していることが分かった (写真-3.3.9(6)).

地点2-gでは, 護岸の背後側舗装の一部が陥没していた (写真-3.3.10).

地点2-hは,港湾区域と河川区域の境界付近の河川区域 側に位置するが,護岸に被害が発生し調査時点(平成23 年7月20日)で応急対策工が行われていた(写真-3.3.11).

図-3.3.1 気仙沼港

図-3.3.2 気仙沼港朝日地区

(1) 胸壁の堤体(被害なし)

(2)陸閘の付帯設備の被害写真-3.3.1 地点 2-a

(1) 陸閘付近の胸壁

(3) 欠損部分(西側)の拡大写真

(4) 欠損部分(東側)の拡大写真写真-3.3.2 地点2-b(つづき)

写真-3.3.3 地点 2-b~2-cの区間

(1) 地盤流出の状況

(2) 前面側(海側)からみた状況

(3) 背面側(陸側)からみた状況

(4) 露出している基礎杭 写真-3.3.4 地盤が流出した胸壁(地点 2-c)

写真-3.3.5 上空から撮影した写真(地点2-c)

図-3.3.3 胸壁の断面(地点2-c)

写真-3.3.6 天端被覆工の陥没(地点 2-d)

写真-3.3.7 天端被覆工の陥没(地点2-e)

写真-3.3.8 上空から撮影した写真(地点2-e)

(1) 被害の状況

(2) 上空から撮影した写真

(3) 倒壊していない部分の天端高さの測定 写真-3.3.9 地点 2-f

写真-3.3.11 流失した河川護岸(地点2-h)

(2) 気仙沼漁港浜町地区

図-3.3.4に、気仙沼湾最奥部の気仙沼漁港浜町地区の 周辺図を示す.地点2-x(図中に破線丸印で示した位置) の胸壁の堤体に被害はなかった(写真-3.3.12(1)).胸 壁の天端高さの測定結果は、T.P.+1.79mであった(写真 -3.3.12(2)).

図-3.3.4 気仙沼漁港浜町地区

(1) 被害のない胸壁

写真-3.3.12 気仙沼漁港浜町地区(地点 2-x)

(3) 小々汐地区

図-3.3.5に、小々汐地区の周辺図を示す. 図中の点線

部分に護岸がある.地点 2-iでは,堤体が海側に変位する とともに局所的に沈下していた(写真-3.3.13(1)).同 地点から北側に向かう方向に道路は上り勾配である.ま た,同地点から南側にむかう方向もほぼ平坦かやや上り 勾配となっていた.したがって,地点 2-i は周囲と比較し て地盤高が小さいので引き波が集中し,護岸の堤体が海 側に変位したことが考えられる.それに隣接する,変位 していない堤体の天端高さを測定すると T.P.+2.06m であ った(写真-3.3.13(2)及び(3)).設計天端高さは T.P.+2.80m なので,地点 2-i では地震に伴い 0.74m の沈下 が生じたことになる.

地点 2-j では,背後側の地盤の洗掘が生じていた(写真 -3.3.14).ただし,調査時点ですでに,道路通行を可能 にするため洗掘された部分の一部を土砂で埋戻す応急復 旧対策工が行われている.

地点 2-j よりも南側の護岸は、大きな被害はなかった.

図-3.3.5 気仙沼港小々汐地区

(1)前面側(海側)に変位した護岸写真-3.3.13 地点 2-i

(2) 天端高さの測定

写真-3.3.13 地点 2-i(つづき)

写真-3.3.14 背後側地盤の洗掘(地点 2-j)

(4) 梶ヶ浦地区

図-3.3.6に、梶ヶ浦地区の周辺図を示す.気仙沼漁港 梶ヶ浦地区内にある地点 2-k では、胸壁の堤体直下の地 盤が流出していた(写真-3.3.15(1)及び(2)).写真-3.3.16 に、同地点を上空から撮影した写真を示す.背面側(陸 側)から前面側(海側)に向かって地盤の流出した範囲 が扇型に広がっていて、引き波によって地盤が流出した ことが考えられる.

漁港よりも南側には、図-3.3.6の中に点線で示したとお り護岸がある.この護岸は被害がなかった.地点2-1で行 った天端高さの測量結果によると、T.P.+1.98mであった (写真-3.3.17).設計天端高さはT.P.+2.81mなので、地 点2-1では地震に伴い0.83mの沈下が生じたことになる.

図-3.3.6 気仙沼港梶ヶ浦地区

(1) 胸壁の堤体直下の地盤の流出

(2) 断面図 **写真-3.3.15** 地点 2-k

写真-3.3.16 上空から撮影した写真(地点 2-k)

写真-3.3.17 地点2-l

3.4 雄勝港

(1) 立浜地区

図-3.4.1に、雄勝港の周辺図を示す.雄勝港は、立浜地区、大浜地区、小島地区、伊勢畑・明神地区、唐桑地区、水浜地区及び波板地区の7地区がある.水浜地区には海岸保全施設がないため、今回の調査はそれを除く6地区で調査を行った.図-3.4.2に、立浜地区の周辺図を示す.同地区には、南側部分に胸壁が設けられるとともに、北端部に護岸が設けられている.

南側部分の胸壁の堤体には,被害は生じていなかった (地点 3-a, 写真-3.4.1(1)).ただし,地点 3-b の近くの 水門は,上部に設けられている操作施設が損壊する被害 を受けていた(写真-3.4.2(1)).また,同地点の胸壁前 面側(海側)は,岸壁が海側に変位するとともに舗装部 分が陥没していた(写真-3.4.2(2)).

北端部分の護岸は,地点 3-c で,堤体の海側への滑動 (写真-3.4.3(1)及び(2))及び堤体の一部が海側にむかっ て削りとられるように欠損が生じていた (写真 -3.4.3(3)).また,地点 3-d で,護岸の堤体が海側に変 位する被害があった (写真-3.4.4(1)及び(2)).

地点3-a及び3-dで堤体の天端高さの測量を行ったところ,天端高さの測定値はそれぞれ T.P.+2.01m 及び T.P.+2.09mであった(写真-3.4.1(3)及び写真-3.4.4(4)). 設計天端高さはどちらも T.P.+3.1m なので,同地区では地 震に伴い 1.0~1.1mの沈下が生じた結果となった.

図-3.4.2 雄勝港立浜地区

(1) 被害のなかった胸壁

(2)天端高さの測定 **写真-3.4.1** 地点3-a

写真-3.4.1 地点3-a (つづき)

(1) 水門の操作施設の損壊

(2) 岸壁の変位と舗装部分の陥没写真-3.4.2 地点 3-b

(1) 滑動した堤体(海側からみた状況) 写真-3.4.3 地点3-c

(2) 滑動した堤体(陸側からみた状況)

(3) 欠損している堤体 写真-3.4.3 地点3-c(つづき)

(1) 海側に変位した堤体

(2) 上空から撮影した写真 写真-3.4.4 地点 3-d

(3)天端高さの測定

(2) 大浜地区

図-3.4.3 に、大浜地区の周辺図を示す. 同地区には、 湾を囲むように胸壁及び護岸が設けられている.

東側の胸壁は,堤体に大きな被害は無かった(地点 3-e, 写真-3.4.5).

西側の胸壁は,地点 3-f で堤防構造の胸壁の堤体が延 長約 60m にわたって前面側(海側)にむかって倒壊して いた.(写真-3.4.6(1)及び(2)).背後側(陸側)の道路 面は地点 3-f から東にむかって,また,地点 3-f から西に むかって高くなっているため,地盤高さが相対的に低い 地点 3-f 付近に引き波が集中したようである(写真 -3.4.6(3)).

それよりも西側では、堤体に大きな被害は無かった. ただし、地点3-gで背面側地盤が洗掘され、調査時点でその部分に舗装が打ち直されていた.また、前面側の物揚 場は約0.7mの高さだけ応急的に嵩上げされていた(写真 -3.4.7(1)).堤体に設けられたフラップゲートは、完全 には閉まらない状態であった(写真-3.4.7(2)).原因は、 土砂の堆積、堤体と前面側地盤の鉛直方向の変位量が異 なったこと等によりゲート扉下部が引っかかり閉まらな くなったことが考えられる.

写真-3.4.5 ほとんど被害のなかった胸壁(地点 3-e)

(1) 倒壊した堤防構造の胸壁

(2)堤体の断面 写真-3.4.6 地点3-f

注:GoogleEarth で公開さ れている左の画像は,画面 中央の道路など一部が塗 りつぶし処理されている

(3) 上空から撮影した写真 写真-3.4.6 地点3-f(つづき)

(1)舗装打直しされた背面側地盤と嵩上げされた物揚場

(2)フラップゲート **写真-3.4.7** 地点3-g

(3) 小島地区

図-3.4.4 に、小島地区の周辺図を示す. 同地区には、 海岸線沿いに護岸が設けられている.

地点 3-h では, 護岸の堤体に大きな被害はなかったものの, 背後側(陸側)地盤の洗掘が生じていた(写真-3.4.8).

地点 3-i では, 護岸の表のりが海側に倒壊するとともに, 背後の地盤が流失していた(写真-3.4.9及び写真 -3.4.10).天端被覆板は,洗掘で失われた道路部分を埋 め立てるための基礎材料として応急復旧の際に使用され たようである(写真-3.4.9の左下の黒い土嚢の下の部分).

地点 3-j では, すなわち, 護岸の表のりが海側に倒壊す るとともに, 天端被覆板下の堤体土が流失して天端被覆 板がそのまま落下していた(写真-3.4.11(1)). 地点3-jの堤体の天端高さの測定値はT.P.+2.72mであった(写真-3.4.11(3)及び(4)).設計天端高さはT.P.+3.6m なので,同地点では地震に伴い0.9mの沈下が生じている結果となった.

図-3.4.4 雄勝港小島地区

写真-3.4.8 背後側地盤の洗掘(地点3-h)

写真-3.4.9 海側に倒壊した護岸(地点3-i)

写真-3.4.10 上空から撮影した写真(地点3-i)

(1) 海側に倒れた表のり(左)と落下した天端被覆板(右)

(2) 上空から撮影した写真

(3) 天端高さの測定

写真-3.4.11 地点 3-j

(4) 伊勢畑・明神地区

図-3.4.5 に伊勢畑・明神地区の周辺図を示す. 同地区 は海岸線沿いに護岸が設けられている.

地点 3-k よりも東側の区間では, 護岸に被害はなかった(写真-3.4.12). 地点 3-k では, 護岸の表のりが海側 に倒壊する被害が生じていた(写真-3.4.13 及び写真 -3.4.14).

地点 3-1の周辺では,護岸の表のりが長さ約 500m 連続 的に海側に倒壊していた(写真-3.4.15).

地点 3-k の堤体の天端高さの測定値は T.P.+3.15m であった(写真-3.4.13(4)). 設計天端高さは T.P.+4.1m なので,同地点では地震に伴い 1.0m の沈下が生じた結果となった.

図-3.4.5 雄勝港伊勢畑・明神地区

写真-3.4.12 被害のない護岸(地点 3-k よりも東側)

(1)海側に倒壊した表のり 写真-3.4.13 地点 3-k

(2) 堤体断面の拡大写真

(3) 天端高さの測定

(4) 断面図 写真-3.4.13 地点 3-k(つづき)

写真-3.4.14 上空から撮影した写真(地点 3-k)

(1)海側に倒壊した表のり

(2) 上空から撮影した写真写真-3.4.15 地点 3-*l*

(5) 唐桑地区

図-3.4.6に, 唐桑地区の周辺図を示す. 同地区は海岸 線沿いに護岸が設けられている. また, 南側の一部の区 間に胸壁が設けられている.

地点 3-m では,護岸の天端被覆板が 15cm 沈下していた(写真-3.4.16).

地点 3-n では,護岸の天端被覆板下の堤体土が吸い出 され,天端被覆板が落下・傾斜していた(写真 -3.4.17(1)). 表のりは倒壊していなかったが,法線直 行方向に出入りが発生しており,隣り合う堤体同士で法 線直行方向に最大 10cm 程度のずれが生じていた(写真 -3.4.17(2)). 法線方向の目地開きも発生しており,最 大 13cmの目地開きが生じていた(写真-3.4.17(3)).ま た,クラックが堤体に多数生じていた.

地点 3-o では,護岸が失われるとともに背後側の地盤 が流出していた(写真-3.4.18(1)及び(2)).また,同地 点を含めて同地点の北側約 100m の区間で護岸が倒壊し ている.

地点 3-p では,海岸沿いの地盤高の低い場所に位置し ていた家屋群を守るように護岸が設けられていたが,護 岸の流失または海側への倒壊が発生していた(写真 -3.4.19(1)).周囲よりも地盤高が相対的に低いため, 引波の流れが集中して地盤が流出したことが考えられる. 家屋は基礎だけを残してそれより上部は完全に失われて いた(写真-3.4.19(2)). 写真-3.4.19(3)に,上空から撮 影した写真を示す.また,同地点を含めて同地点の北側 約200mの区間で護岸が倒壊している.

写真-3.4.16 沈下した天端被覆板(地点 3-m)

(1) 法線が出入りした堤体と落下・傾斜した天端被覆板

(2) 目地開き写真-3.4.17 地点 3-n

(3) 目地開きの拡大写真(上からみた状況) 写真-3.4.17 地点 3-n(つづき)

(1) 流失した護岸及び地盤

(2) 上空から撮影した写真写真-3.4.18 地点 3-0

(1) 護岸の被害状況

(2) 基礎だけを残した家屋

(3)上空から撮影した写真 写真-3.4.19 地点 3-p

(6) 波板地区

図-3.4.7 に, 波板地区の周辺図を示す. 同地区は, 幅 20~40m 程度の砂浜の背後側(陸側)に胸壁が設けられ ている.

胸壁の被害はほとんど無かった(地点 3-q, 写真 -3.4.20(1)).ただし,地点 3-rに設けられている展望施 設の階段脇には幅約 4cm のひび割れが生じていた(写真 -3.4.21).また,同施設では転落防止柵が破壊される被 害も発生していた.

地点 3-s では、水門の上部に設けられた操作施設が損壊していた(写真-3.4.22).

地点 3-q の堤体の天端高さの測定値は T.P.+3.88m (写

真-3.4.20(3)),設計天端高さは T.P.+4.8m なので,同地 点では地震に伴い 0.9m の沈下が生じた結果となった.

図-3.4.7 雄勝港波板地区

(1) 被害がほとんど無い護岸

写真-3.4.21 クラックの発生(地点 3-r)

写真-3.4.22 損壊した水門の操作施設(地点 3-s)

3.5 女川港

(1) 大石原地区

図-3.5.1に、女川港の周辺図を示す.図-3.5.2に、そのうちの大石原地区の周辺図を示す.同地区には、幅25~35m程度の物揚場の陸側に胸壁が設けられている.

同地区の南側部分には, 胸壁の堤体に被害はみられな かった(地点 4-a, 写真-3.5.1). ただし, 地点 4-bの水 門の上部に設けられた操作施設の手すりが損壊していた.

北側部分では、地点 4-c で長さ 10m の区間で胸壁の上 部が折れていて、折れた部分は背後側に倒れていた(写 真-3.5.3(1)及び(2)).写真-3.5.3(3)に、切断面を示す. 切断の一因として施工時の打ち継ぎ面で切断されたこと が考えられるが、通常の施工では打ち継ぎ面を水平にす るが、折れた部分の切断面の高さは南端が天端下 0.78m、 北端が天端下 1.08m で北方向に次第に下がっていた(図 -3.5.3).従って、この可能性は小さいと考えられる. それ以外でこのような形状で切断が生じる原因としては、 1)漂流物が衝突した可能性、2)地震動または経年劣 化によりひび割れ等の弱面が存在していた可能性、3) 背面側で生じた土砂崩れと津波により作用した力との複 合的な影響等が考えられるが、詳細は不明である.なお、 折れた部分の前面側(海側)及び背面側(陸側)の地盤 の洗掘は生じていなかった. 地点 4-c で堤体の天端高さの測量を行ったところ,天 端高さの測定値は T.P.+2.95m であった(写真-3.5.3(5)). 設計天端高さは T.P.+3.97m なので,同地点では地震に伴 い 1.02m の沈下が生じたことになる.なお国土地理院の 暫定値¹¹⁾では,女川市中心部(大字女川浜字大原)の地 盤沈下量は 0.89m である.今回の測定値はこれに比べ沈 下量が約 0.13m 大きい結果となった.その原因として測 定地点の違い,調査時刻の潮位として天文潮位を用いた ことに伴う誤差等が考えられる.

図-3.5.1 女川港

図-3.5.2 女川港大石原地区

写真-3.5.1 被害のない胸壁(地点 4-a)

写真-3.5.2 水門の操作施設(地点 4-b)

(1) 海側からみた状況

(2) 陸側からみた状況

(3) 切断面 写真-3.5.3 上部が折れた堤体(地点 4-c)

(4) 天端高さの測定

図-3.5.3 折れた部分のスケッチ(地点 4-c)

(2) 橫浦地区

図-3.5.4 に, 横浦地区の周辺図を示す. 同地区は, 南 側部分は護岸があり, 北側部分は幅 30~35m 程度の物揚 場の陸側に胸壁が設けられている.

南側部分は,地点 4-d で,水門に隣接(陸から海にむ かって右側)する護岸の堤体が流失し海側に散乱してい た.また,背後側地盤が広範囲に流出していた(写真 -3.5.4(1)及び(2)).なお,水門には被害がなかったよう である.堤体の天端高さの測量を行ったところ,天端高 さの実測値は T.P.+3.03m であった(写真-3.5.4(3)及び (4)).設計天端高さは T.P.+4.0m なので,同地点では地 震に伴い 1.0m の沈下が生じたことになる.

同地区の北側部分は, 胸壁の堤体に被害は生じていな かった(地点 4-e, **写真-3.5.5**).

住民からのヒアリングによると,海岸近傍の山の斜面 に祀られた二渡神社(地点 4-f, 写真-3.5.6(1))に住民1 名が避難したとのことである.そして,海岸と神社とを つなぐ参道階段のうち上から三段を残して,津波により 浸水したとのことである.写真-3.5.6(2)で調査員の立つ 場所が,この証言の津波が最大で到達した場所(最大遡 上位置)である.調査時間の制約により水準測量を行う ことができず,以下のとおり概算の遡上高を推定した.

<概算の遡上高の推定> ・胸壁の天端高さは、参道階段の下から2段目の高さ(鳥

居の立つ面を0段目,そこから上に1段目,2段目・・・ と数える.以下同様とする.)とほぼ等しい(写真 -3.5.6(3)).

・参道階段の段数は79段である.津波が到達した上から 4段目(「上から三段を残」すことから)は76段目に相 当する.従って,津波が到達した高さは,胸壁の天端高 さに参道階段の74段分の高さを加えた値である.

 ・参道階段1段分の高さを求めるため、参道の下部(鳥居近く),中腹、上部(神社近く)の計3箇所で階段1 段の高さを測定した.その結果はいずれも0.19mであった.そこで、参道階段の平均的な高さを1段あたり0.19mとする.

・以上より,同地区の二渡神社(地点 4-f)の遡上高は次のように求まる.

胸壁の天端高さ[T.P.+3.03m] + 74 段×0.19m/段 = [T.P.+17.09m] (図-3.5.5).

東北地方太平洋沖地震津波合同調査グループの速報値⁹⁾によると、同地区では海岸保全施設背後の集落

(N38°24'21.94", E141°28'5.45", 位置は図-3.5.4 を参 照)で浸水高 T.P.+14.64m である. この値と比較すると, 上で推定した遡上高は 2.45m 大きいが, 浸水高と遡上高 とを比較すると通常は遡上高の方が大きくなることから, 両者の値は整合的な関係にある.

(1) 堤体及び背面側地盤が流出した護岸

(2) 上空から撮影した写真

(3) 天端高さの測定

(1) 海側からみた状況

(2) 陸側からみた状況 写真-3.5.5 被害がなかった胸壁(地点 4-e)

(1) 海岸近傍の山の神社と参道階段

(2) 津波の最大遡上位置(矢印位置)写真-3.5.6 地点 4-f

(3) 胸壁の天端と参道階段との比較

(4) 神社から鳥居を見下ろした状況 写真-3.5.6 地点 4-f (つづき)

(3) 高白地区

図-3.5.6に,高白地区の周辺図を示す.同地区は,幅 25~45m 程度の物揚場の陸側に湾を囲むように胸壁が設 けられている.

同地区の胸壁には被害がみられなかった(地点 4-g, 写 真-3.5.7). ただし,地点 4-h の胸壁下部のフラップゲ ートは,蓋下部付近に土砂が堆積し閉まっていなかった (写真-3.5.8).

地点 4-i の前面側の岸壁は, 法線がはらみだすとともに 舗装が陥没していた(写真-3.5.9(1)及び(3)). 堤体の天 端高さの測定値は T.P.+3.02m であった(写真-3.5.9(2) 及び(3)). 設計天端高さは T.P.+4.0m なので, 同地点で は地震に伴い 1.0m の沈下が生じたことになる.

図-3.5.6 女川港高白地区

写真-3.5.7 被害のなかった胸壁(地点 4-g)

写真-3.5.8 地点 4-h

(1) 陥没した舗装 写真-3.5.9 地点 4-i

3.6 荻浜港

(1) 小積地区

図-3.6.1に、荻浜港の周辺図を示す. 牡鹿半島の西側 のつけ根に位置し石巻湾に面する荻浜港には、小積地区、 有田浜地区及び荻浜地区の3地区がある. 有田浜地区に は海岸保全施設がないため、今回の調査は小積地区及び 荻浜地区を対象とした.図-3.6.2に、小積地区の周辺図 を拡大して示す. 同地区は、荻浜港の最奥部に位置して いる. 北側部分に南北方向に延びる護岸が設けられてい る. また、南側部分に東西方向に延びる胸壁が設けられ ている.

北側部分では、地点 5-a から地点 5-b の区間にかけて、 護岸の波返し工及び盛土部が失われていた(写真 -3.6.1(1)~(3)).最も湾奥の地点 5-a には背後の陸域か ら湾に注ぐ水路が設けられていたが、その南隣部分に引 き波の流れが集中し、護岸が破壊されたようである(写 真-3.6.1(5)).護岸の背後地盤は、流れで地盤が削り取 られ崖状となっていた(写真-3.6.1(4)).

地点 5-b では、台船が護岸に乗り上げていた(写真 -3.6.2).付近の道路沿いには 1933 年昭和三陸地震津波 について記録する石碑があった(写真-3.6.3).碑文の 内容は「地震があったら津波の用心 忘るな火の元の注 意 先に老幼続いて避難第一」である.

南側部分では,胸壁の堤体に被害はみられなかった(地 点 5-c,写真-3.6.4).

図-3.6.2 荻浜港小積地区

(1) 地点 5-a から 5-b をみた状況

(2) 傾いた天端被覆板写真-3.6.1 地点 5-a

(3) 地点 5-b から 5-a をみた状況

(4) 崖状になった背後地盤

(5)上空から撮影した写真 写真-3.6.1 地点 5-a (つづき)

写真-3.6.2 護岸に乗り上げた台船(地点 5-b)

写真-3.6.3 昭和三陸地震津波の石碑

写真-3.6.4 被害のなかった胸壁(地点 5-c)

(2) 荻浜地区

図-3.6.3に, 荻浜地区の周辺図を示す. 同地区は, 幅 30~55m 程度の港湾施設の陸側に胸壁が設けられている.

地点 5-d では, 胸壁に被害はなかった(写真-3.6.5).

地点 5-e では、9.82m の長さで胸壁の上部が折れていて、 折れた部分は前面側(海側)に落ちていた.折れた部分 は、ちょうど盛り土部分の天端より上にある部分である

(写真-3.6.6(1)及び(2)).また,胸壁の背後にあった家 屋群はほとんど全ての家屋が流失していた(写真 -3.6.6(4)).

地点 5-f では, 胸壁に被害はなかった(写真-3.6.7).

地点 3-e の護岸の天端高さの測定値は T.P.+3.48m であった(写真-3.6.6(3)). 設計天端高さは T.P.+4.5m なので,同地点では地震に伴い 1.0mの沈下が生じたことを示す結果になった.

図-3.6.3 荻浜港荻浜地区

写真-3.6.5 被害のなかった胸壁(地点 5-d)

(1) 上部が折れた堤体(前面側からみた状態)

(2) 天端高さの測定 写真-3.6.6 地点 5-e

(4) ほとんど全ての家屋が流失した胸壁の背後 写真-3.6.6 地点 5-e (つづき)

写真-3.6.7 被害のなかった胸壁(地点 5-f)

3.7 石巻港

図-3.7.1に、石巻港の周辺図を示す.石巻港には、大 曲地区、釜地区、内港地区及び雲雀野地区がある.今回 の調査は、胸壁構造の海岸保全施設の被害が報告されて いた大曲地区を対象とした.同地区の防潮施設は海岸保 全施設ではなく港湾施設であるが、海岸保全施設と構造 が類似して被害状況が参考となると考え調査した.図 -3.7.2 に、同地区の周辺図を拡大して示す.同地区は、 幅10~15m程度の港湾施設の陸側に胸壁が設けられてい る.

地点 6-a では,船舶が乗り上げていた場所の胸壁の堤 体が破壊されていた(写真-3.7.1(1)). 写真-3.7.1(2) に,船舶が撤去される前の乗り上げた状況を示す(この 写真の撮影日は平成 23 年 3 月 30 日とのことである). 同地点で護岸の天端高さの測量を行ったところ,天端高 さの測定値は T.P.+2.31m であった(写真-3.7.1(4)).

地点 6-b では, 胸壁の背後の天端被覆板とともに堤体 土が洗掘されていた(写真-3.7.2).

地点 6-c では, 胸壁の一部で欠損が生じていた(写真-3.7.3). なお, 地点 6-a と地点 6-b の天端高さはほぼ等しいが, 地点 6-b と地点 6-c の天端を比較すると地点 6-c は地点 6-b よりも 1m 程度低くなっている(写真-3.7.4).

地点 6-d では、水路沿いの地盤が流失して、水路の両 岸の地形が大きく変化していた(写真-3.7.5(1)及び(2)).

図-3.7.1 石巻港

(1) 破壊された胸壁(船舶は撤去済み)
 写真-3.7.1 地点 6-a

(2) 船舶の乗り上げ状況(撤去前)

(3) 天端高さの測定

(4) 断面図 写真-3.7.1 地点 6-a(つづき)

写真-3.7.2 天端被覆板の破壊(地点 6-b)

写真-3.7.3 胸壁の欠損(地点 6-c)

写真-3.7.4 地点 6-b の天端高さ(奥の矢印)と 6-c の天端高さ(手前矢印)との比較

(1) 向かって右側にあった水路沿い地盤が流失

(2) 上空から撮影した写真(矢印が(1)の視点)写真-3.7.5 地点 6-d

3.8 松島港

図-3.8.1 に、松島港の周辺図を示す. 松島港には、海 岸前地区、東浜地区及び福浦島がある. 海岸保全施設は 海岸前地区及び東浜地区にあるが、今回の調査では、胸 壁の被害が報告されていた海岸前地区を対象とした. 図 -3.8.2 に、同地区の一部を拡大して示す. 同地区は、幅 3~5m 程度の港湾施設の陸側に胸壁が設けられている.

地点 7-a では, 胸壁の表面に貼り付けられた厚さ約 8cm の化粧板が剥がれコンクリート製基部が一部で露出して いた(写真-3.8.1(1)).

地点 7-b では, 胸壁の堤体に空隙が生じていて応急的 に板があてられていた(写真-3.8.2).調査時刻(平成 23年9月1日16:15頃)は満潮に近く海面が比較的高か ったため,堤体に生じた空隙から海水が浸入し胸壁の背 後に広範囲に水溜りができていた.

地点7-a付近で胸壁の天端高さの測量を行った.なお, 上述のとおり胸壁の表面に貼り付けられた厚さ約8cmの 化粧板が一部で剥がれてコンクリート製基部が露出して いた.施設の元々の設計天端は,化粧板の上面ではなく コンクリート製基部の上面である.そこで,化粧板上面 の高さを測量し,その値から0.08mを差し引きコンクリ ート製基部上面の高さを求めた.その結果,同地点の護 岸の天端高さの測定値はT.P.+1.51mであった(写真 -3.8.1(3)).設計天端高さはT.P.+2.1mなので,同地点 では地震に伴い0.6mの沈下が生じたことを示す結果に なった.

図-3.8.1 松島港

写真-3.8.2 空隙のできた胸壁(地点 7-b)

(1) コンクリート製基部が一部で露出した胸壁

4. まとめ

岩手県及び宮城県の7港20地区の海岸保全施設等を対象 とした被害調査を行い,胸壁及び護岸を中心とした被害 状況を把握し,特に胸壁について,軽微な被害から比較 的大きな被害までの被害の状況を把握した.

胸壁について、「堤体の破壊」に関する被害の類型と しては、1-①クラック発生、1-②漂流物の衝突による欠 損、1-③打継ぎ面等での堤体上部の切断が生じていた. なお、ここでは軽微な被害から被害程度が大きくなる順 序で記述している.これは、本段落における以下の記述 も同様である.「地盤の洗掘・堤体の変位」に関する被 害の類型としては、2-①前面または背面地盤の軽微な洗 掘・舗装被害、2-②引波の流れによる広範な地盤流失、 2-③波力、地盤洗掘等の複合的作用で堤体が倒壊、2-地域全体の地盤沈下で嵩上げが必要な状況の発生があっ た.「運用上の機能不全」に関する被害の類型としては、 3-①フラップゲートの開閉不全等が生じていた.さらに、 今回の調査ではないが、既往の調査⁴⁾で久慈港においてみ られた胸壁の被害の形態のひとつとして、3-②陸開破損 により通行が阻害される状況の発生が、挙げられる

国土交通省が設置した「海岸における津波対策検討委 員会」第2回会合資料¹²⁾では,海岸堤防について比高と越 流水深の分布を整理して示している.そこでは,海岸堤 防は比高が相対的に大きくかつ越流水深が相対的に大き いものは半壊よりも全壊しているものが多くなる傾向が あり,その他は半壊にとどまっている傾向があるとして いる.また,八木¹³⁾は,速報的な検討結果としつつ,防 波堤について設計波高と津波の浸水高の分布を整理して 示している.そこでは,被災が比較的小さいグループと 被災が中程度から大きいグループの2つに区分すること により,その境界線である「被災発生限界」を示す試み を行っている.

そこで、今回の調査対象とした胸壁について、比高と 越流水深の分布を整理した.ここで、比高とは、地盤沈 下後すなわち調査時点の天端高と、胸壁の背後(陸側) の地盤高の差である.また、越流水深とは、地盤沈下後 すなわち調査時点の天端高と浸水高の差である(図 -4.1.1).なお、比高及び越流水深のこの定義は、「海 岸における津波対策検討委員会」第2回会合資料¹²⁾の定義 の方法を参考にした.今回の調査では浸水高を測定して いない.そこで、公益社団法人土木学会海岸工学委員会・ 公益社団法人日本地球惑星科学連合の東北地方太平洋沖 地震津波合同調査グループの調査結果⁹⁾のうち各胸壁の 最も近傍の点の浸水高の測定結果を、浸水高として与え た.

図-4.1.2に、その結果を示す. 図中に示した12の胸壁 の比高は0.76~2.10mの範囲で分布している. また,越流 水深は1.25~15.56mの範囲で分布している. 図中の黒丸 印の点は、堤体全体が倒壊する被害が生じた地点1-r (3.2(5)参照)の値を示していて、越流水深はそれほど 大きくないが、比高は最も大きい点であった. その他の 点は、倒壊する被害は生じなかった. 堤体全体が倒壊す る被害が生じた点は1点しかないため、この図をもとに八 木¹³⁾と同様な考え方で被災発生限界に関する検討を加え ることは難しい. また、被害の原因は背面側(陸側)の 地盤の洗掘等の影響も考慮して評価する必要がある. 今 回の調査対象以外の胸壁の事例を加えてより多数の事例 の分布を整理することでさらに詳細に分析できる可能性 があるので、その点は今後の課題である.

付録-B.1及び付録-B.2に、プロットした各点と調査地 点との対応関係、同図を作成するために用いた諸元等を 一覧にして示す.

図-4.1.1 比高及び越流水深の定義

図-4.1.2 胸壁の被害と比高・越流水深の関係

5. おわりに

ここでは,調査の実施にあたっての準備段階において 注意が必要であることが分かった点及び今後検討を加え る必要がある点について述べる.

まず,調査の実施にあたっての準備段階において,国 土交通省の災害情報¹⁾等より被害情報を収集したが,その なかで海岸保全施設として「防潮壁」という比較的広い 概念の用語が用いられている場合があり,胸壁,護岸ま たは堤防という「海岸保全施設の技術上の基準・同解説」 ⁶に基づいた施設種類に区分することが困難であった.

また,同じ作業において施設の被害状況が「沈下」と 表現されている場合があったが,地域全体の地盤沈下と, 不同沈下との可能性があり,判別が困難であった.

次に、今後検討を加える必要がある点について述べる. 対象とした海岸保全施設のなかで、施設管理上の名称が 「胸壁」となっていても構造形式は護岸構造である施設 があった.これは、建設当初は護岸(海岸線近傍に作ら れ前面の土地利用がない)であったが、その後、埋立て 等により前面側に物揚場等が設けられ、施設管理上の名 称が胸壁に変更された施設である.速報性の観点から現 時点では行っていないが、施設の構造的強度に着目して 被災原因をより詳細に分析するためには、元々の構造形 式に着目した整理・分析等を今後行う必要がある.

> (2011年11月15日受付) (2011年12月14日修正)

謝辞

大船渡港の調査では,東北地方整備局釜石港湾事務 所・村上明宏所長をはじめ関係各位にご協力をいただき ました.気仙沼港の調査では,宮城県気仙沼土木事務所 砂防班・及川進技術次長,菅原章仁技術主幹に被災直後 の被害状況写真等の情報のご提供,現地での調査へのご 協力,調査経路のアドバイス等を頂きお世話になるとと もに,宮城県土木部港湾課及び国土交通省東北地方整備 局港湾空港部港湾計画課の各位に調査計画・実施にあた りお世話になりました.また,雄勝港・女川港・荻浜港・ 石巻港・松島港の調査では,宮城県土木部港湾課及び国 土交通省東北地方整備局港湾空港部港湾計画課の各位に お世話になりました.

ここに記して、関係各位に御礼を申し上げます.

参考文献

 1) 国土交通省:東日本大震災第99報, http://www.mlit.go.jp/saigai/saigai_110311.html, 平成23年 11月14日時点.

2) 国土交通省東北地方整備局,東北地方整備局地震災害 情報第66報, http://www.thr.mlit.go.jp/bumon/kisya/saigai/ sback/zokuhou1110.htm,平成23年4月21日時点.

3) 土木学会:土木学会東日本大震災特別委員会総合調査 団調査速報会 映像記録, http://committees.jsce.or.jp/report/ node/41, 平成23年4月8日時点.

4) 高橋重雄他:2011年東日本大震災による港湾・海岸・ 空港の地震・津波被害に関する調査速報,港湾空港技術 研究所資料, No.1231, 200p, 2011.

5) 国土技術政策総合研究所・独立行政法人土木研究所: 平成 23 年(2011 年)東北地方太平洋沖地震土木施設災 害調査速報,国土技術政策総合研究所資料, No.646, 486p, 2011.

6) 海岸保全施設の技術上の基準・同解説,海岸保全施設 技術研究会編,2004.

7) 気象庁: 潮位表, http://www.data.kishou.go.jp/db/tide/ suisan/, 平成 23 年 8 月 30 日時点.

8) 海上保安庁: 潮汐推算, http://www1.kaiho.mlit.go.jp/ KANKYO/TIDE/tide_pred/index.htm, 平成 23 年 8 月 30 日 時点.

9) 公益社団法人土木学会海岸工学委員会・公益社団法人 日本地球惑星科学連合の東北地方太平洋沖地震津波合同 調査グループ(The 2011 Tohoku Earthquake Joint Survey Group, TTJT), http://www.coastal.jp/ttjt/, 平成23年10月 28日時点.

10) 地盤工学会東北支部·関西支部合同第一次調查団宮

城県北部担当B2班(飛田哲男・甲斐誠士):宮城県北部 の河川・港湾施設の被害状況,東北地方太平洋沖地震災 害調査報告会(第一回)資料,平成23年4月11日.

国土地理院: GPS 連続観測から得られた電子基準点の地殻変動・市町村ごとの地殻変動量(暫定),

http://www.gsi.go.jp/chibankansi/chikakukansi40005.html, 平成 23 年 10 月 3 日時点の情報.

12) 国土交通省:第2回海岸における津波対策検討委員会 資料 5・海岸堤防・護岸の復旧工法の検討について,平成23年6月27日.

13) 八木宏: 地震・津波による被災メカニズムと粘り強い 漁港施設づくりに向けて (1)津波被災,平成23年水産 工学関係研究開発推進会議(水産基盤部会)資料,独立 行政法人水産総合研究センター・水産工学研究所,平成 23年12月13日. 付録-A 調査地点の緯度・経度

港湾名 地区名 地点名 緯度(N) 経度(E)

大船渡港 清水地区	他 1	a 39°02′29.5	8″ 141°44′09.85″
<i>""""</i>	1-b	_	_
<i>)))</i>	1-c	_	_
<i>)))</i>	1-d	_	_
<i>)))</i>	1-e	_	_
// //	1 - f	39°02′07.21″	141°44′14.02″
<i>II II</i>	1-e	_	_
" 永浜地区	1 - h	39°03′04.56″	141°44′27.43″
]]]]	1-i	39°03'09.06"	141°44′27.37″
<i>II II</i>	1-j	_	_
<i>II II</i>	1 - k	_	_
" 山口地区	1 <i>-l</i>	39°03′50.04″	141°44′17.76″
" 茶屋前地区	1 - m	39°04′09.06″	141°43′32.05″
// //	1 - n	39°04′01.19″	141°43′21.01″
<i>II II</i>	1 - 0	39°03′57.63″	141°43′18.05″
// //	1 - p	_	_
// //	1 - q	-	_
// //	1-r	-	_
気仙沼港 朝日地区	2-a	38°53'29.2"	141°35′20.3″
Л Л	2-b	38°53′26.6″	141°35′25.6″
Л Л	2-c	38°53′21.7″	141°35′35.6″
11 11	2-d	38°53'17.0"	141°35′37.5″
Л Л	2-е	38°53'10.1"	141°35′38.4″
11 11	2-f	39°53′06.1″	141°35′36.4″
]]]]	2-g	38°53'12.0"	141°35′22.4″
// //	2-h	38°53'13.2"	141°35′17.7″
" 小々汐地区	2-i	38°53'32.2"	141°35′51.4″
// //	2-ј	38°53'30.2"	141°35′53.3″
// //	2-k	38°52′59.7″	141°36′13.6″
〃 梶ヶ浦地区	2- <i>l</i>	38°52′50.3″	141°36′15.7″
気仙沼漁港浜町地区	2-x	38°54'37.2"	141°34′54.4″
雄勝港 立浜地区	3-a	38°30'22.18"	141°30′58.83″
11 11	3-b	_	_
11 11	3-c	38°30'33.32"	141°30′51.58″
Л Л	3-d	38°30'34.96"	141°30′50.98″
" 大浜地区	3-е	38°30′46.93″	141°30′49.33″
11 11	3-f	38°30'48.67"	141°30′44.82″
// // 	3-g	38°30'47.90"	141°30′38.84″
" 小島地区	3-h	38°30′57.62″	141°29′09.90″
11 11	3-i	38°31′01.47″	141°29′05.78″
	3-j	38°31′03.80″	141°29′04.41″
〃 伊勢畑・明神地	四区 3.	-k 38°31′14.8	7" 141°28'39.03"
// //	3- <i>l</i>	38°31′15.41″	141°28′22.88″
" 唐桑地区	3-m	_	_

//	11	3-n	38°31′04.00″	141°28′29.64″
//]]	3-о	38°30′55.43″	141°28′38.04″
]]	11	3-р	38°30′47.93″	141°28′44.96″
//	波板地区	3-q	38°29′20.37″	141°29′26.60″
//	11	3-r	_	_
//]]	3-s	-	_
女川港	大石原地区	4-a	-	_
//]]	4 - b	-	_
//]]	4-c	38°24′01.37″	141°27′57.17″
]]	横浦地区	4-d	38°24′20.93″	141°28′10.69″
//]]	4-e	-	_
//]]	4 - f	38°24′25.53″	141°28′11.28″
]]	高白地区	4-g	_	_
//]]	4 - h	-	_
//]]	4-i	38°25′27.03″	141°27′47.01″
荻浜港	小積地区	5-a	-	_
//]]	5-b	38°22′21.71″	141°27′31.03″
//]]	5-c	-	_
//	荻浜地区	5-d	-	_
//]]	5-е	38°22'35.64″	141°26′51.53″
//]]	5-f	-	_
石巻港	大曲地区	6-a	38°24'39.57"	141°14′41.45″
]]]]	6-b	_	_
//]]	6-c	38°24′37.76″	141°14′38.19″
]]]]	6-d	-	_
松島港	海岸前地区	7-a	38°22′11.41″	141°03′47.97″
//]]	7-b	_	_

*大船渡港,雄勝港,女川港,荻浜港,石巻港及び松島港の各地 点の緯度及び経度は,GARMIN 製 GPSmap 60CSx を用いて測 定した.気仙沼港の緯度及び経度は GARMIN 製 eTrex H を用 いて測定した.いずれも,測定精度は 3~5m 程度である.

付録-B.1 胸壁の被害と比高・越流水深の関係

(1) プロットした点と地点名との対応関係 (図中の文字が本文と付録-B.2の地点名に対応している)

(図中の数字が付録-B.2の「天端の幅」欄の数字(単位:m)を示す)

付録−B.2 胸壁の諸元

No. ^{*1}	地区名	地点名	地盤沈下後の 天端高 (m,T.P.)	地盤沈下後の 前面側の地盤高 (m,T.P.)	地盤沈下後の 背面側の地盤高 ^{*3} (m.T.P.)	比高 (m)	前面側の地盤 からみた高さ (m)	地盤沈下前の 天端高 ^{*4} (m.T.P.)	沈下量 (m)	浸水 (TT. No.	高の参照先 IT ^{*5} の番号) ID	浸水高 (m,T.P.)	越流水深 (m)	岸壁法線から 胸壁までの距離 ^{*6} (m)	天端の幅 (m)	被害	海岸保全区域 台帳の図面番号
1	大船渡港清水地区	1-b	2.62	0.87	1.52	1.10	1.75	3.50	0.88	3931	IWTP-0717	9.14	6.52	30	0.50	no	B-3-40
x	大船渡港永浜地区	-															-
3	大船渡港山口地区	1 <i>-l</i>	2.20	0.35	0.45	1.75	1.85	3.10	0.90	3936	IWTP-0722	9.66	7.46	10	1.50	no	-
4	大船渡港茶屋前地区	1-r	2.38	0.28	0.28	2.10	2.10	3.40	1.02	4886	JMAH-0043	7.15	4.77	9	0.55	collapsed	B-8-1
15	大船渡港野々田地区	-															-
6	気仙沼港朝日地区*2	2-c	2.45	-	-	1.40	-	3.19	0.74	4450	NGKU-0004	9.41	6.96	56	0.50	no	-
7	気仙沼漁港浜町地区	2-x	1.79	-	0.66	1.13	-	-	-	2030	PARI-0014	6.92	5.13	20	0.50	no	-
8	雄勝港立浜地区	3-a	2.01	0.91	1.01	1.00	1.10	3.10	1.09	3150	YNUE-0028	14.12	12.11	40	0.40	no	B-1-(3/3)
~	雄勝港大浜地区	-															-
10	雄勝港唐桑地区	-															B-8-41
11	女川港大石原地区	4-c	2.95	0.93	1.47	1.48	2.02	3.97	1.02	1954	OSKU-0039	18.51	15.56	30	0.60	no	B-8-31-6
12	女川港横浦地区	4-e	3.03	-	1.52	1.51		4.23	1.20	1953	OSKU-0038	14.64	11.61	25	0.62	no	B-5-23
13	女川港高白地区	4-i	3.02	1.57	1.50	1.52	1.45	3.98	0.96	1952	OSKU-0037	15.66	12.64	33	0.50	no	B-8-11
14	荻浜港荻浜地区	5-e	3.48	1.34	2.50	0.98	2.14	4.46	0.98	1938	OSKU-0023	7.99	4.51	40	0.43	no	B-3-1-9
15	石巻港大曲地区	6-a	2.31	0.57	1.55	0.76	1.74	-	-	4870	JMAH-0027	5.53	3.22	11	0.40	no	-
16	松島港海岸前地区	7-b	1.51	0.48	0.66	0.85	1.03	2.09	0.58	2050	DPRI-0026	2.76	1.25	3	0.31	no	no number

*1 No.2, 5, 9及び10は未調査地点である.

*2 気仙沼港朝日地区の比高は,現地で撮影した写真より推定した.

*3 地盤沈下後の背面側の地盤高は、実測値のあるものはそれを用い、実測値のないものは海岸保全区域台帳から天端高と背面側の地盤高との差(地盤沈下前の比高)を求めその値を地盤沈下後の天端高から差し引くことにより求めた.

*4 地盤沈下前の天端高は、海岸保全区域台帳の図面から求めた.

*5 公益社団法人土木学会海岸工学委員会・公益社団法人日本地球惑星科学連合の東北地方太平洋沖地震津波合同調査グループ(The 2011 Tohoku Earthquake Joint Survey Group), http://www.coastal.jp/ttj/, 平成23年10月28日時点.

*6 岸壁法線から胸壁までの距離について、実測値のないものはGoogleEarthの距離測定機能を用いて求めた.

国土技術政策総合研究所資料

TECHNICAL NOTE of NILIM

No. 658 December 2011

編集·発行 ©国土技術政策総合研究所

本資料の転載·複写のお問い合わせは (〒239-0826 神奈川県横須賀市長瀬 3-1-1 管理調整部企画調整課 電話:046-844-5019