3章 マルチパス誤差低減処理

3-1 マルチパスの検出

マルチパスの検出処理内容を以下に示す。

(1) 機能

マルチパス誤差が含まれた GPS 衛星を特定する。

(2) アルゴリズム

一般に障害物によって反射・回折された GPS 信号(劣化信号)は、直接波と比較して信号 強度が低くなる傾向を持つ。この特徴を利用して劣化信号を特定し除去する。

具体的なアルゴリズムは、

 $SS_{obs}(t)$:移動局側で受信した衛星信号の信号強度の観測値

 $EV_{oba}(t)$:移動局側で受信した衛星の仰角の計算値

 $SS_{ref}(\theta)$:信号強度を衛星仰角 θ の変数として表した関数

とすると、

$$SS_{DIFF}(t) = SS_{ref}(EV_{oba}(t)) - SS_{oba}(t)$$
(3-1-1)

と表すことができる。

受信している各衛星に対して、1 エポック毎に、式(3-1-1) より $SS_{DIFF}(t)$) を計算し、その値があらかじめ定めた閾値によりも大きい場合は、その衛星の信号は劣化信号と判断して測位計算から除外する。劣化信号除去手法処理部の処理フローを図 3-1-1 に示す

ステップ1: 別の処理部から、信号強度・衛星仰角データ・衛星使用フラグを読み込む。

ステップ 2: 読み込んだ仰角データから $SS_{ref}(EV_{obs}(t))$ の値を計算する。

ステップ 3: $SS_{DIFF}(t)$) の値を計算する。

ステップ 4: $SS_{DIFF}(t)$) と設定した閾値とを比較し、閾値以上であれば衛星使用フラグを変

更し、測位計算に使用する衛星から取り除く。

ステップ5: 衛星使用フラグを測位計算ルーチンに渡す。

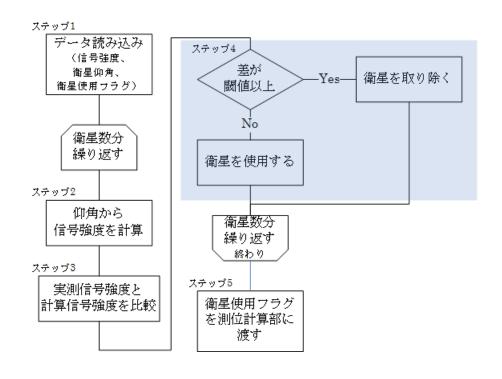


図 3-1-1 マルチパスデータ除去フロー

劣化信号除去手法処理部の外部インターフェースを表 3-1-1 に示す。

表 3-1-1 外部インターフェース

区分	項目	内容
入力	信号強度	受信機が出力する信号強度
入力	衛星仰角	衛星位置とアンテナ位置から計算することが出来る。
入力	衛星使用フラグ	劣化信号除去により衛星信号を除去するかのフラグ
出力	衛星使用フラグ	劣化信号除去により衛星信号を除去するかのフラグ