1. はじめに

2007年に港湾の施設の技術上の基準が改定され、部分 係数を用いた信頼性設計法が本格的に導入された¹⁾.港 湾の主要な施設である係留施設のうち, 矢板式岸壁の主 たる設計状態として永続作用が支配的な状態(永続状 態)がある.この永続状態における部分係数は、被災時 費用に破壊確率を乗じた値と初期建設費の合計で得られ る期待総費用最小化に基づいて設定されている²⁾. 岸壁 の標準的な設計供用期間は50年であることから,部分係 数の設定時には 50 年間の矢板の腐食を考慮した断面係 数が用いられている.従って、期待総費用は1年間(設 計供用期間の最終年)に対するものであり,設計供用期 間全体を考慮したものではない. 最終的に採用された部 分係数は期待総費用最小化に基づく安全性水準を用いて 計算された値から0.05刻みで安全側に丸めて設定されて いるが、この部分係数は設計供用期間全体を考慮したラ イフサイクルコストの観点から判断した場合にも適切な のだろうかという疑問が生じる.

ただし、ライフサイクルコストの算出においては各年 の断面係数により変化する破壊確率と被災時費用を掛け 合わせたものを設計供用期間分足しあわせる必要があり、 この計算は簡単なものではない.この困難さは、被災後 の復旧により断面係数が初期値に戻る(矢板が新しくな る)ことによるものであり、50年の設計供用期間の破壊 確率を計算するためには約563兆ケースの事象を考慮す る必要がある.従って、設計実務においてライフサイク ルコストを正確に評価することは困難であると考えられ る.

このため、本研究では設計供用期間の破壊確率の正確 な評価結果を行うとともに、その簡易評価法について検 討した.提案する方法をもとにライフサイクルコストを 算出し、正確なライフサイクルコスト最小の破壊確率と 簡易推定法による破壊確率を比較してその精度を検証し た.さらに、1年間の期待総費用最小化に対する破壊確 率と、設計供用期間50年間のライフサイクルコスト最小 化に対する破壊確率について相互比較を行うとともに、 港湾技術基準における部分係数を用いた破壊確率との比 較検討を行った.

2. 破壊確率の評価

2.1 腐食を考慮した断面諸元

本研究では鋼材の腐食を1年ごとに考慮するため,各 年の矢板の断面係数やタイ材の断面積が変化し,これに 伴い破壊確率も変わることになる.

t年後の腐食量は、標準的な腐食環境における条件¹⁾ として腐食速度は海側で0.2mm/y,陸側で0.01mm/yとし、 電気防食効率90%で防食工は海側のみに設置する条件で 算出する.算出された腐食量をもとに、鋼矢板について は、各年の腐食を見込んだ断面係数を設定する.鋼管矢 板については、腐食量を考慮した断面において重心の位 置を算出し、不利な値となる断面係数を設定する.経年 による腐食に応じて断面係数は、ほぼ直線的に減少して いく結果となった.ここで、矢板の断面諸元の設定にあ たっては文献3)を参考にした.また、タイ材については、 腐食速度0.02(mm/y)として、t年後の腐食量を考慮し、断 面積を算出する.

2.2 矢板壁の曲げ降伏とタイ材の引張降伏による破壊確 率の算定

t年後の矢板の断面係数およびタイ材の断面積に対して, それぞれ土圧等の作用による矢板の曲げ破壊,タイ材の 引張降伏について一次信頼性解析 (FORM)⁴⁾を実施して 信頼性指標を算出し,破壊確率を算定する.断面諸元, 水深,初期建設費,復旧費,経済損失など検討条件は, 既往の研究²⁾と同じとする.

矢板の曲げ降伏,タイ材の引張降伏モードの性能関数 は,式(1)に示すとおりである.またパラメタの従う確率 分布は正規分布とし,平均値および標準偏差は表-1²⁾に 示す通りとする.

$$Z = E_{y}(f_{y}) - \sigma_{s}(ke, q, RWL, mS)$$
(1)

ここに, *E_y*:鋼材の強度, *f_y*:鋼材降伏応力度, *σ_s*: 矢板 壁及びタイ材応力度, *ke*:土圧静的成分, *q*:上載荷重, *RWL*:残留水位, *mS*:矢板壁断面力及びタイ材張力算定 式精度

表-1 パラメタの従う確率分布²⁾

	α	V
残留水位 RWL	1.00	0.05
土圧 ke	1.00	0.10
上載荷重 q	1.00	0.40
鋼材降伏応力度精度fy	1.20	0.06
		5
矢板断面力算定精度 mS	1.00	0.10

注) α: 平均値の偏り(平均値/特性値), V: 変動係数

矢板壁の曲げ降伏とタイロッドの降伏の2つの破壊モードを考慮したシステム破壊確率は,Owenの方法⁵⁾を用いて,モード間の相関係数,各モードの信頼性指標を元に算出する.

$$P_{fS} = \Phi(-\beta_p) + \Phi(-\beta_T) - \Phi(-\beta_p)\Phi(-\beta_T) - \int_{0}^{\rho} \frac{1}{2\pi\sqrt{1-t^2}} \exp\left\{-\frac{1}{2}\left(\frac{\beta_p^2 - 2t\beta_p\beta_T + \beta_T^2}{1-t^2}\right)\right\} dt$$
⁽²⁾

ここに、 Φ :標準正規確率分布関数、 ρ :モード間の相関係数である.また、添字 P、Tはそれぞれ矢板壁およびタイロッドの破壊モードに対応する.

2.3 設計供用期間中の破壊確率の算出

ライフサイクルコストの算出においては、土圧や残留 水圧等の作用により矢板およびタイロッドにおいて破壊 が生じる確率を検討開始時点から必要な年数にわたり評 価する必要がある.本研究の場合,設計供用期間 50 年間 にわたる評価が必要である.破壊確率の算出方法を以下 に示す.

上述の通り,電気防食により腐食速度は防食を行わない条件の10%に低下するが,腐食は毎年進行するため断面係数や断面積は毎年変化する.そこで,初期状態から t年後の断面に対象とする土圧等が作用した場合に破壊 する確率を P_tとすると,t年後に土圧等の作用により初 めて破壊する確率 P(t)は以下のように定義できる.

$$P(t) = \begin{cases} qP_t = P_t & t = 1\\ qP_t E = P_t E & t \ge 2 \end{cases}$$
(3)

$$E = \prod_{j=1}^{t-1} \left(1 - qP_j \right) = \prod_{j=1}^{t-1} \left(1 - P_j \right)$$
(4)

ここに, *P*(*t*): 土圧等の作用により*t* 年後に初めて破壊 する確率, *q*: 対象とする作用の年平均発生確率 (=1/*r*=1/1=1), *r*: 対象とする作用の再現期間(年)で, 永続 状態の場合=1, *E*: *t*-1 年後までに対象とする作用により 破壊しない確率, *t*: 初期断面からの経過年数(年)

一方,一度破壊が発生した場合,復旧断面は建設当初の諸元とすることが一般的であり,本研究でもその前提に従う.つまり,復旧直後の年の破壊確率は P₁に戻る. さらに,復旧工事は1年以内で完了すると仮定する.検 討期間 T 年間で毎年破壊が発生する場合,破壊確率は P₁^T である. 設計供用期間 50 年間の破壊確率は,供用開始から T 年間(T=1~50)に土圧等の作用により,1~複数回破壊する 確率を検討期間 50 年間分合計して求めることができる. ここで,1年の破壊回数は1回として,最大 50 回の破壊 回数を考慮する.

6年目までの1~複数回破壊する確率を例示すると表 -2のとおりである.破壊確率は1年目,2年目,n年 目の順に左から並べて示している.すなわち,例えば2 年目の列に例示した(1- P_1) P_2 は,1年目に破壊しなかった が2年目に破壊するケースであり, P_1P_1 は1年目に破壊 し,復旧したが2年目に再び破壊するケースである.こ こで,1年目の破壊による復旧のため2年目には建設当 初の断面諸元に戻っているために破壊確率としては P_1 となる.

3 年目以降, 異なるツリーであるが破壊確率としては 同じケースが生じる. 例えば 3 年目の場合, 1, 2, 3 年 目の順に,

①破壊せず,破壊,破壊のケース(表中,3年目の2列目)
 ②破壊,破壊せず,破壊のケース(表中,3年目の3列目)

である.同じケースが n 個ある場合は,破壊確率は n 倍 となる.このような同じ破壊確率のケースをカウントす るために,4年目以降は破壊確率を並べ替えて示してい る.

表に示したケース番号は、同じ破壊確率のケースをま とめたうえで、異なる破壊確率のケースが幾つ生じるか を示している.表-3には*T*=6の場合の*n*倍する際の係 数をあわせて示している.

これらの表の事象をまとめて各年のライフサイクルコ ストの計算式を定式化する必要があるが,表より以下の ことが明らかとなる.

a)*T*年目には 2^{*T*-1}通りの事象が生じる.また並べ替えて得られる係数の和は 2^{*T*-1}となる.

例えば, T=6 の場合, $2^{6-1}=32$, T=50 の場合, $2^{50-1}=562,949,953,421,312$ である.

b)式(4)で表される作用により破壊しない確率の項を無視 すれば, *T*年目の破壊確率のそれぞれの式において

$$\sum_{t=T} t = T$$
 である.
ここに, t: 初期断面からの経過年数(年)

- 2 -

表-2 6年目までの破壊確率

			_			
完成後 1年目	2年目	3年目	case No.	4年目	4年目の並べ替え	case No.
		$(1, \mathbf{D})(1, \mathbf{D})\mathbf{D}$		$(1-P_1)(1-P_2)(1-P_3)P_4$	$(1-P_1)(1-P_2)(1-P_3)P_4$	5
	(1 D)D	$(1-P_1)(1-P_2)P_3$	J	$(1-P_1)(1-P_2)P_3P_1$	$(1-P_1)(1-P_2)P_1P_3$	3
	$(1 - P_1)P_2$	(1 D) D D	0	$(1-P_1)P_2(1-P_1)P_2$	$(1-P_1)(1-P_1)P_2P_2$	4
D		$(1 - P_1)P_2P_1$	2	$(1-P_1)P_2P_1P_1$	$(1-P_1)P_1P_1P_2$	2
P_1		D(1,D)D	0	$P_1(1-P_1)(1-P_2)P_3$	$(1-P_1)(1-P_2)P_1P_3$	3
	ת ת	$P_1(1-P_1)P_2$	2	$P_1(1-P_1)P_2P_1$	$(1-P_1)P_1P_1P_2$	2
	P_1P_1	מממ		$P_1P_1(1-P_1)P_2$	$(1-P_1)P_1P_1P_2$	2
		$\boldsymbol{r}_1 \boldsymbol{r}_1 \boldsymbol{r}_1$	Û	$P_1P_1P_1P_1$	$P_1 P_1 P_1 P_1$	1
5 名	手目	5年目の並べ替え	case No.	6年目	6年目の並べ替え	case No.
$(1-P_1)(1-P_2)$	$(1-P_3)(1-P_4)$	$P(1-P_1)(1-P_2)(1-P_3)(1-P_4)P$	7	$(1-P_1)(1-P_2)(1-P_3)(1-P_4)(1-P_5)P_6$	$(1-P_1)(1-P_2)(1-P_3)(1-P_4)(1-P_5)P_6$	1
5		5		$(1-P_1)(1-P_2)(1-P_3)(1-P_4)P_5P_1$	$(1-P_1)(1-P_2)(1-P_3)(1-P_4)P_1P_5$	8
$(1 - P_1)(1 - P_2)$	$(1-P_2)P_2P_2$	$(1-P_1)(1-P_2)(1-P_2)P_1P_2$	(5)	$(1-P_1)(1-P_2)(1-P_3)P_4(1-P_1)P_2$	$(1-P_1)(1-P_1)(1-P_2)(1-P_3)P_2P_4$	9
(1-1)(1-1)(1-1)			0	$(1-P_1)(1-P_2)(1-P_3)P_4P_1P_1$	$(1-P_1)(1-P_2)(1-P_3)P_1P_1P_4$	5
$(1_{-}P_{-})(1_{-}P_{-})$	$P_{1}(1, P_{1})P_{1}$	(1 D)(1 D)(1 D)DD	ര	$(1-P_1)(1-P_2)P_3(1-P_1)(1-P_2)P_3$	$(1-P_1)(1-P_1)(1-P_2)(1-P_2)P_3P_3$	10
$(1-I_1)(1-I_2)$	1 ₃ (1-1 ₁)1 ₂	$(1-I_1)(1-I_1)(1-I_2)I_2I_3$		$(1-P_1)(1-P_2)P_3(1-P_1)P_2P_1$	$(1-P_1)(1-P_1)(1-P_2)P_1P_2P_3$	6
(1 D)(1 D)	DDD	ת ת ת (ת 1 / (ת 1 /	3	$(1-P_1)(1-P_2)P_3P_1(1-P_1)P_2$	$(1-P_1)(1-P_1)(1-P_2)P_1P_2P_3$	6
$(1-P_1)(1-P_2)P_3P_1P_1$		$(1-r_1)(1-r_2)r_1r_1r_3$	3	$(1-P_1)(1-P_2)P_3P_1P_1P_1$	$(1-P_1)(1-P_2)P_1P_1P_1P_3$	3
$(1-P_1)P_2(1-P_1)(1-P_2)P_3$		$(1-P_1)(1-P_1)(1-P_2)P_2P_3$	6	$(1-P_1)P_2(1-P_1)(1-P_2)(1-P_3)P_4$	$(1-P_1)(1-P_1)(1-P_2)(1-P_3)P_2P_4$	9
				$(1-P_1)P_2(1-P_1)(1-P_2)P_3P_1$	$(1-P_1)(1-P_1)(1-P_2)P_1P_2P_3$	6
(1 D)D(1)	ממונ	(1 D)(1 D)D D	\square	$(1-P_1)P_2(1-P_1)P_2(1-P_1)P_2$	$(1-P_1)(1-P_1)(1-P_1)P_2P_2P_2$	\bigcirc
$(1-I_1)I_2(1-I_1)I_2I_1$		(1-1)(1-1)(1-1)(1-1)(1-2)(1-2)	4	$(1-P_1)P_2(1-P_1)P_2P_1P_1$	$(1-P_1)(1-P_1)P_1P_1P_2P_2$	4
(1))) (1	מומ	(1 D)(1 D)D D		$(1-P_1)P_2P_1(1-P_1)(1-P_2)P_3$	$(1-P_1)(1-P_1)(1-P_2)P_1P_2P_3$	6
$(1 - P_1)P_2P_1(1 - P_1)P_2$ (1		$(1-P_1)(1-P_1)P_1P_2P_2$	4	$(1-P_1)P_2P_1(1-P_1)P_2P_1$	$(1-P_1)(1-P_1)P_1P_1P_2P_2$	4
(1	D	מ ת ת ת (ת 1	0	$(1-P_1)P_2P_1P_1(1-P_1)P_2$	$(1-P_1)(1-P_1)P_1P_1P_2P_2$	4
$(1 - P_1)P_2P_1P$	${}_{1}P_{1}$	$(1 - P_1)P_1P_1P_1P_2$	2	$(1-P_1)P_2P_1P_1P_1P_1$	$(1-P_1)P_1P_1P_1P_1P_2$	2
		$(1, \mathbf{D})(1, \mathbf{D})(1, \mathbf{D}) \mathbf{D}$	Ē	$P_1(1-P_1)(1-P_2)(1-P_3)(1-P_4)P_5$	$(1-P_1)(1-P_2)(1-P_3)(1-P_4)P_1P_5$	8
$P_1(1-P_1)(1-P_1)$	$P_2(1-P_3)P_4$	$(1-P_1)(1-P_2)(1-P_3)P_1P_4$	9	$P_1(1-P_1)(1-P_2)(1-P_3)P_4P_1$	$(1-P_1)(1-P_2)(1-P_3)P_1P_1P_4$	5
			0	$P_1(1-P_1)(1-P_2)P_3(1-P_1)P_2$	$(1-P_1)(1-P_1)(1-P_2)P_1P_2P_3$	6
$P_1(1-P_1)(1-P_1)$	$P_2)P_3P_1$	$(1-P_1)(1-P_2)P_1P_1P_3$	3	$P_1(1-P_1)(1-P_2)P_3P_1P_1$	$(1-P_1)(1-P_2)P_1P_1P_1P_3$	3
	מומ	$(1-P_1)(1-P_1)P_1P_2P_2$	4	$P_1(1-P_1)P_2(1-P_1)(1-P_2)P_3$	$(1-P_1)(1-P_1)(1-P_2)P_1P_2P_3$	6
$P_1(1-P_1)P_2(1)$	$(-P_1)P_2$			$P_1(1-P_1)P_2(1-P_1)P_2P_1$	$(1-P_1)(1-P_1)P_1P_1P_2P_2$	4
	D	(1		$P_1(1-P_1)P_2P_1(1-P_1)P_2$	$(1-P_1)(1-P_1)P_1P_1P_2P_2$	4
$P_1(1-P_1)P_2P$	$_{1}P_{1}$	$(1 - P_1)P_1P_1P_1P_2$	(2)	$P_1(1-P_1)P_2P_1P_1P_1$	$(1-P_1)P_1P_1P_1P_1P_2$	2
	מות		0	$P_1P_1(1-P_1)(1-P_2)(1-P_3)P_4$	$(1-P_1)(1-P_2)(1-P_3)P_1P_1P_4$	5
$P_1P_1(1-P_1)(1-P_2)P_3$		$(1-P_1)(1-P_2)P_1P_1P_3$	(3)	$P_1P_1(1-P_1)(1-P_2)P_3P_1$	$(1-P_1)(1-P_2)P_1P_1P_1P_3$	3
$P_1 P_1 (1 - P_1) P_2 P_1 \tag{1-P}$		$(1-P_1)P_1P_1P_1P_2$	2	$P_1P_1(1-P_1)P_2(1-P_1)P_2$	$(1-P_1)(1-P_1)P_1P_2P_2$	4
				$P_1P_1(1-P_1)P_2P_1P_1$	$(1-P_1)P_1P_1P_1P_1P_2$	2
D D D /1 D) D	$(1-P_1)P_1P_1P_1P_2$	2	$P_1P_1P_1(1-P_1)(1-P_2)P_3$	$(1-P_1)(1-P_2)P_1P_1P_1P_3$	3
$P_1 P_1 P_1 (1 - P_1)$	P_2			$P_1P_1P_1(1-P_1)P_2P_1$	$(1-P_1)P_1P_1P_1P_1P_2$	2
				$P_1P_1P_1P_1(1-P_1)P_2$	$(1-P_1)P_1P_1P_1P_1P_2$	(2)
$P_1P_1P_1P_1P_1$		$P_1P_1P_1P_1P_1$	U	$P_1P_1P_1P_1P_1P_1$	$P_1P_1P_1P_1P_1P_1$	(1)

例えば T=6の場合,表-2の $P_1P_1P_1P_1P_1P_1$ のケースで は $\sum t = 1 \times 6 = 6$, $P_1P_1P_1(1-P_1)P_2P_1$ のケースにおいて も $\sum t = 1 \times 4 + 2 = 6$ となる.ここで,(1- P_1)の項は破 壊しない年のものであるため総和の計算には反映されない.

c)式(4)で表される作用により破壊しない確率は t>1 の P_t

に対して、 $\prod_{j=1}^{t-1} (1 - P_j)$ をその前に伴う.これは、 P_t の定

義より明らかであろう.

d)T年目の破壊確率 P_{fT} の評価において考慮する必要のある破壊イベントは、破壊しない確率の項を無視すれば、T以下の数値を、重複を許容してT以下の個数並べる順列のうち、合計がTとなるケースである.

例えば、表-3に示す T=6の場合で、 $P_1P_1P_1P_1P_1P_1$ の ケースから $(1-P_1)(1-P_2)(1-P_3)(1-P_4)(1-P_5)P_6$ のケースまで となる.ここで、 P_1 が4回、 P_2 が1回生じるケースでは P_2 の発生時期により5通りのケースがある.同様に、 P_1 、 P_2 、 P_3 が各々1回生じるケースでは、3つの順列により6 通りのケースがある.

つまり、T年間で、破壊の生じる回数がN回 ($N \leq T$) あり、その中で $P_i, P_j, ..., P_k$ がa回、b回,...,c回重複してい れば、 $N!/a!/b!/\cdots/c!$ 通りとなる.

従って, **T=6**の場合を考慮すると表-4に示す組み合わ せが得られる.50年後において考慮すべきケース数は天 文学的な数字となる.これを一つ一つ評価していくこと は計算負荷の観点で大きく不利である.このため,計算 効率を高める観点から,本研究では以下のような処理を 行って破壊確率を評価した.

計算負荷の観点で問題となるのは T が大きくなった時 の破壊する確率の項の組み合わせ, すなわち, 異なる破 壊確率となるケースの数を得ることである. なお, 同じ 破壊確率となるケースの数については, 重複を許した順 列の数の問題として簡便に評価が可能である.

ここで、簡単のため、T=3の場合を考える. PCの演算 においては、表-4のパターンを下から順番に検索する ルゴリズムが簡便であるため、一般には表-5のような t=1~3でのループ処理を行う.これは考慮する年数Tが 変動していくことから、破壊回数としてT回から1回を 検索するよりも1回からT回を検索する方がコード化し やすいためである.また破壊回数をランダムに検索する 表-3 6年目の各ケース

破壊確率(6年目並べ替え)	case No.	係数 (=登場回数)
$P_1P_1P_1P_1P_1P_1$	1	1
$(1-P_1)P_1P_1P_1P_1P_2$	2	5
$(1-P_1)(1-P_2)P_1P_1P_1P_3$	3	4
$(1-P_1)(1-P_1)P_1P_1P_2P_2$	4	6
$(1-P_1)(1-P_2)(1-P_3)P_1P_1P_4$	5	3
$(1-P_1)(1-P_1)(1-P_2)P_1P_2P_3$	6	6
$(1-P_1)(1-P_1)(1-P_1)P_2P_2P_2$	\overline{O}	1
$(1-P_1)(1-P_2)(1-P_3)(1-P_4)P_1P_5$	8	2
$(1-P_1)(1-P_1)(1-P_2)(1-P_3)P_2P_4$	9	2
$(1-P_1)(1-P_1)(1-P_2)(1-P_2)P_3P_3$	10	1
$(1-P_1)(1-P_2)(1-P_3)(1-P_4)(1-P_5)P_6$	(1)	1
	Σ	32

表-4 T=6の場合の破壊が生じるパターンと登場回数

パターン					係数 (=登場回数)		
1	1	1	1	1	1	6!/6!=	1
1	1	1	1	2	-	5!/4!=	5
1	1	1	3	-	-	4!/3!=	4
1	1	2	2	-	-	4!/2!/2!=	6
1	1	4	-	-	-	3!/2!=	3
1	2	3	-	-	-	3!=	6
2	2	2	-	-	-	3!/3!=	1
1	5	-	-	-	-	2! =	2
2	4	-	-	-	-	2!=	2
3	3	-	-	-	-	2!/2!=	1
6	-	1	-	-	1	1!=	1
					1	系数の和=	32

ことはこの種の演算においては考えにくい.表-5より 破壊回数が2回以上となる場合に,上記b)の条件に適合 するものを検索した後,多数の無駄な検索が行われてい ることが分かる.なお,ここに示すT=3の場合について は,計算負荷は大きな問題にならないが,Tが大きくな るに従って,この方法では計算に莫大な時間を要するこ ととなる.

ここで,①前述した b)の条件に適合する必要があること,②検索すべきは組み合わせであって,順列ではないことをループ処理に反映させる.具体的には①の条件よ

破壊 回数	1回	2回	3回	Σt=Tの条件適合
	1	_	_	
1 回	2	_	—	
	3	_	_	0
	1	1	_	
	1	2	—	0
	1	3	_	
	2	1	_	(〇だが, 必要なし)
2回	2	2	_	
	2	3	_	
	3	1		
	3	2	_	
	3	3	_	
	1	1	1	0
	1	1	2	
	1	1	3	
	1	2	1	
	1	2	2	
	1	2	3	
	1	3	1	
	1	3	2	
	1	3	3	
	2	1	1	
	2	1	2	
	2	1	3	
	2	2	1	
3回	2	2	2	
	2	2	3	
	2	3	1	
	2	3	2	
	2	3	3	
	3	1	1	
	3	1	2	
	3	1	3	
	3	2	1	
	3	2	2	
	3	2	3	
	3	3	1	
	3	3	2	
	3	3	3	

表-5 一般的なアルゴリズムにより検索

表-6 短縮検索アルゴリズムによる検索

破壊 回数	1 回	2 回	3 回	Σ <i>t=T の</i> 条件適合
	$t_1 = 1 \sim 3$			
	1	_	_	
1回	2	—	—	
	3	-	_	0
	$t_1 = 1 \sim 3$	$t_2 = t_1 \sim 3 - t_1$		
2 🗖	1	1		
2日	1	2		0
			$t_3 = t_2 \sim 3 - t_2 - $	
	$t_1 = 1 \sim 3$	$t_2 = t_1 \sim 3 - t_1$	t_1	
3回	1	1	1	0

り、 Σt が *T*を超えるようなパターンは検索する必要がな く、例えば *T*=3 の場合では、2 回目以降のループ終端は 3 まではなく、"3- Σ (それ以前のループの *t*)"とすること ができる.また②の条件より、2 回目以降のループ開始 は1ではなく、"直前のループの *t*"とすることができる. 当然ループの開始が終端の値を超えるようなケースは省 略される.

これらの処理により表-5の検索は表-6のとおりとなり,検索回数が格段に減少していることが分かる.なお,表-6では上記の②の効果は明瞭ではないが,Tが大きくなれば非常に有効に機能する.

これにより検索に要する時間は格段に減少し, Intel 社 製 Xeon 3.60GHz プロセッサの PC において約 5 分間の計 算時間で *T*=50 までのパターンを検索することが可能と なった. なお, *T*=50 において考慮すべき組み合わせのパ ターン数は 204.226 である.

ここで、t年の各事象の破壊確率を足しあわせたものを $P_{f_{\Sigma t}}$ とすると、設計供用期間 50 年間に作用により破壊が 生起する確率 $P_{f_{\Sigma 50}}$ は、 P_{ft} を設計供用期間分($t=1\sim50$)足し 合わせて、式(5)の通りとなる.

$$P_{f\Sigma 50} = \sum_{t=1}^{50} P_{ft}$$
(5)

2.4 破壊確率の比較

検討断面は既往の研究²⁾と同じ条件とし,設計水深と して各構造形式について-7.5m,-11.0m,-14.0m とした. 潮位差,上載荷重の特性値については平均的な値を用いた.

用いる鋼材は鋼矢板については SY390,鋼管矢板は SKY490,鋼管杭は SKK490 とした.また,矢板式岸壁の タイロッド材は高張力鋼 740 とした.その他の条件も港 湾における標準的な条件としている.即ち,図-1 に示 すとおり矢板背後には裏込石を配し,裏込石の湿潤およ び水中単位体積重量はそれぞれ 18,10kN/m³,せん断抵 抗角は40度,また壁面摩擦角は15度としている.

なお、工業製品であるわが国の矢板の断面係数は、あ らかじめ鉄鋼会社により指定された値のもののみが用意 される.そして、矢板の規格は断面係数のピッチが密で はなく、ある特定の領域では断面係数の空白が生じてし まう.本研究では、この断面係数の刻み幅の不統一がLCC 最小化等の検討に及ぼす影響を低くするために、断面係 数の空白領域に仮想の矢板規格を設定した.この仮想の 規格は今後仮想A等と記す.

図-1 検討断面イメージ

結果の一例として,水深-11mの鋼材の腐食に伴うシス テム破壊確率の変化を図-2に示す.それぞれ矢板がIVL 型-タイ材径 42mm,矢板が II W型-タイ材径 36mmの 結果であり,水深-11mの条件では諸元の最も大きい場合 と最も小さい場合の組み合わせになる.

図より,片対数軸上で*P*_tは経過年に対してほぼ1次関数的に増加している.この理由について考察する.矢板の破壊とタイ材の破壊の相関係数は概ね0.95以上と非常に相関が高いことが分かった.この場合,システム破壊確率はエレメントの破壊確率のうち,破壊確率の大きい方にほぼ一致する.従って,2つの破壊モードのうち支配的なモードの信頼性指標によってシステム信頼性指標が評価できる.

限界状態関数は式(1)に示すとおりであり作用効果(鋼 材応力度)は関係する確率変数により構成される非線形 項であるが、いま矢板に関して強度 R,作用モーメント Mの2変数よりなる単純な線形の限界状態関数の場合に 置換えて議論すると、上述の通り断面係数は経過年に対 して1次関数的に減少することから、信頼性指標βは式(6) により評価できる.

ここに, Z: 断面係数初期値, t: 経過年, a: 断面係数減 少に関する係数である. また, μ, σはそれぞれ平均, 標 準偏差である.

図-2 鋼材の腐食に伴うシステム破壊確率の変化

図-3 破壊確率の経年変化試算結果

今 μ_R = 468000kN/m², μ_M = 313.402kN・m, σ_R = 30420kN/m², σ_M = 42.329kN・m, α = 0.00279, Z = 0.001097m³ の条件で計算してみると, 図-3 に示すよう に経過年に対して, 信頼性指標は普通軸で一次関数的に 減少し, 一方で破壊確率は対数軸で一次関数的に増加す る.

このような特徴が、後述するライフサイクルコスト算 出時の破壊確率の簡易評価に重要な意味を持つが、これ は信頼性指標及び破壊確率の変化度が比較的小さい領域 における議論であることが大きいといえる.

次に, P_{fSt} について検討する. ライフサイクルコスト の算出に必要な P_{fSt} は上述の通り破壊と復旧を考慮した 経過年までの破壊確率の和となるために簡単な評価はで きない.

しかし,表-2に示したように,例えば2年目までに ついては $P_{fS2}=P_1+P_2-P_1(P_2-P_1)$ であり,右辺第三項は 破壊確率の積となること,さらにカッコ内の P_2-P_1 は破 壊確率の経年変化が比較的少ないことからゼロに近い値 となることなどが期待できるため,近似的には $P_{fS2} \Rightarrow P_1$ + P_2 となることが想定される.3年目以降についても概 ね同様な議論が成立する.

そこで、式(7)に示すように、 P_{fSt} の簡易推定を行う. 式(7)では膨大なケースの組み合わせを考慮する必要が なく、ライフサイクルコストの評価に必要な P_{fSt} の評価 が比較的容易に行える.

$$P_{f\Sigma t_{est1}} = \sum_{k=1}^{t} P_k \tag{7}$$

さらに、 P_{fSt} のより簡易な評価方法として、上述の結 果を踏まえて片対数軸上で $P_t \varepsilon t$ に対して1次関数近似 を行い(式(8))、1年目と50年目の $P_1 \varepsilon P_{50}$ のみを用い て $P_t \varepsilon$ 推定し、さらに式(9)によって P_{fSt} を簡易推定する 方法を併せて検討する.この方法では破壊確率の評価を 1年目と50年目の2年分のみ行えばよいので、適用は非 常に容易に行える.

$$P_{t_est} = 10^{\frac{\log(P_{50}) - \log(P_1)}{50} \cdot t + \log(P_0)}$$
(8)

$$P_{f\Sigma t_est2} = \sum_{k=1}^{t} P_{k_est}$$
(9)

水深-11mの場合について,両推定法による *P*_{f 250}の推 定精度を図-4に示す.鉛直軸は *P*_{f 250}に対する各手法に よる推定値の比である.

図より,破壊確率が小さい領域では P_{f St_est1}の精度が高いことが分かる.破壊確率の大きな領域では誤差が大きく,破壊確率0.5程度の際には約30%の過大評価となる.しかしながら,通常ライフサイクルコストの評価で問題となる破壊確率の値は1%以下であることが想定されるため、ライフサイクルコストの評価に及ぼす影響は比較

的低いことが想定される.

破壊確率が大きい領域における過大評価はライフサイ クルコストカーヴにおけるライフサイクルコスト最小点 よりも破壊確率が大きい領域での過大評価となるため, ライフサイクルコスト最小のポイントは破壊確率が小さ い領域に移る傾向となり,結果としては安全側の評価と なる可能性が高いと考えられる.

一方, *P_{fSt_est2}*では破壊確率の小さい領域で 10%程度の 過少評価であった.ここで,破壊確率の非常に小さい領 域における破壊確率の過小評価はライフサイクルコスト カーヴへの影響は小さいことが想定される.

ただし、破壊確率の比較的大きな領域での過小評価は $P_{fSt est}$ とは逆に危険側の評価になる可能性がある.

以上述べた傾向は,他の水深においても概ね同様であった.本研究ではライフサイクルコストの評価を行うことを目的としており,破壊確率そのものの精密な評価が 主目的ではないため, $P_{fSLest2}$ の方法も適用性がある可能 性がある.具体的には次章で検討を行う.

なお、期待総費用で対象とする P_{50} とライフサイクル コストで対象とする $P_{f \Sigma 50}$ の比較を図-5 に示す. P_{50} に 対する $P_{f \Sigma 50}$ の比は 10.0~18.0 の範囲にあり、平均的には 13.5 である. なお、この比の値には $P_{f \Sigma 50}$ が 1.0 となるデ ータは除いている.

図-5 $P_{50} \ge P_{f \Sigma 50}$ の比較

3. ライフサイクルコストと期待総費用の比較検討

3.1 ライフサイクルコストと期待総費用の算出方法

ライフサイクルコストの評価にあたり,被災時の費用 には社会的割引率を考慮する考え方があるため,本研究 では社会的割引率を考慮する場合と考慮しない場合の2 ケースの検討を行う.社会的割引率とは,将来発生する 破壊により必要となる復旧の費用を現在の貨幣価値に換 算することで初期建設費などと同じ水準で比較できると いう考え方に基づくものである.

永続状態における検討であるため、考慮すべき作用は 永続作用であり、再現期間は1年と考えてよいことから、 社会的割引率を考慮する場合、考慮しない場合のライフ サイクルコストの期待値 ELC はそれぞれ式(10)、(11)に より得られる.ここで、社会的割引率 *i* としては、日本 での公共事業評価における標準値として *i*=0.04 を用いる ^の.

また,比較の対象となる期待総費用 *ETC* については式 (12)により得られる.

$$ELC = C_i + C_f \sum_{t=1}^{50} \frac{P_{ft}}{(1+i)^{t-1}}$$
(10)

$$ELC = C_i + C_f P_{f\Sigma50} \tag{11}$$

$$ETC = C_i + P_{50}C_f \tag{12}$$

ここに、*C_i*:初期建設費、*C_f*:被災時費用(復旧費+経 済損失),*i*:社会的割引率、*P*₅₀:対象とする土圧等が作 用した場合に破壊する確率(50 年後の腐食を見込んだ断 面に対応)

さらに、被災時費用の算出に用いる経済損失について は、被災に伴って生じる陸上・海上輸送における迂回に 伴う経済損失(輸送費用・輸送時間)、代替輸送による 費用の増加をモデル化した既往の研究の結果²⁾を用いた. また、既往の研究の結果により、経済損失の平均値 μ お よび標準偏差 σ を用いて、重要度の高い港湾の経済損失 を μ + σ 、重要度の特に高い港湾の経済損失を μ + 3σ と設定 した.

3.2 ライフサイクルコストカーヴと期待総費用カーヴ

本節ではライフサイクルコスト等の検討を行うが、本 研究では矢板とタイ材のシステム破壊確率を検討してい るため、矢板の断面係数とタイ材の断面積の組み合わせ 数は非常に多くなる.ただし、最終的にライフサイクル コスト等の議論において意味のある組み合わせは限られ たものとなる.

システム信頼性指標やシステム破壊確率は矢板とタイ 材の各々のエレメント信頼性指標により評価されるが,2 つのモード間に次の関係がある.即ち,矢板の信頼性指 標は断面係数の増加に伴って増加する.しかしながら, 矢板の断面係数を増加させることはタイ材取付け点にお ける支点反力の増加をもたらすためにタイ材の信頼性指 標の減少につながる.

このため、矢板の断面係数とタイ材の断面積に対する $P_{f \Sigma 50}$ の等高線を示すと図-6のようになり、システム破壊確率の等高線は図に示した座標軸において右下がりの傾向は示さない.

また,初期建設費の等高線は図-7 に示した関係にあり,建設費 C_iは矢板の規格に依存する傾向が強く,ほぼ 鉛直軸に平行な等高線を示す.

以上のことより, ライフサイクルコスト最小に対応す る断面諸元は図-6 および図-7 において○のマークを 付した条件となる.これらの図にはエレメント信頼性指 標がほぼ一致する条件を◇のマークで示したが, 両者は ほぼ一致していることが分かる.

図-6 システム破壊確率の等高線

図-7 初期建設費の等高線

ライフサイクルコストの検討を行う際, 矢板の断面係 数とタイ材の断面積をそれぞれ変化させて全ての組み合 わせに対して破壊確率を評価することが一般的と考えら れるが, 算出される組み合わせのうちライフサイクルコ ストの評価に必要なのはそのうちの僅かな条件でしかな い.

ここまでの議論より, ライフサイクルコストの検討に おけるシステム破壊確率の探索条件として, 以下の方法 が計算負荷の観点から推奨される.

- ①タイ材の断面積を一定値に仮定して、矢板の断面係数 を変化させて矢板の曲げに関する信頼性指標を評価す る.これは、矢板の信頼性指標はタイ材の断面積の影 響を受けないためである。
- ②ライフサイクルコストの検討において必要なシステム 信頼性指標は、概ね矢板の信頼性指標とタイ材の信頼 性指標が概ね一致する条件である.これより、各断面 係数における矢板の信頼性指標をもとにした部分係数 法によりタイ材の断面積を決定する.

部分係数は,文献 2)に示した感度係数と,ここで求め た信頼性指標などより求めることが出来る.求められ たタイ材断面積の前後数点の断面積を抽出し,システ ム破壊確率を評価する.

図-8には各手法によるライフサイクルコストカーヴ, 図-9には各手法による社会的割引率を考慮したライラ イフサイクルコストカーヴを示す.

比較のために期待総費用のカーヴを併せて示している. ここで, est1 は $P_{f \Sigma t_{est1}}$ を用いたライフサイクルコストであり, est2 は $P_{f \Sigma t_{est2}}$ を用いたライフサイクルコストである.

図より, 社会的割引率を考慮する場合, 水深-7.5m では 破壊確率の大きい領域で簡易法はライフサイクルコスト をやや過大に評価している. なお, 水深-7.5m で破壊確率 を過小評価する est2 によるカーヴが est1 によるカーヴを 上回るように見えるが, これは破壊確率が 0.05 付近で est2 のプロットが est1 のプロットの左下に位置し, その 右隣のプロットでは破壊確率が両者とも 1.0 となり, 同 じプロットになるためである. 従って est2 のライフサイ クルコストは est1 よりも小さい.

その他のケースでは、各簡易法によるカーヴは厳密法 によるものとほぼ一致している.このためにライフサイ クルコスト最小と判定される破壊確率もほぼ一致してい る.

これに対して期待総費用最小の破壊確率は、ライフサ イクルコスト最小の破壊確率よりも大きな破壊確率であ り、期待総費用最小化を厳密に適用するとライフサイク ルコスト最小化の観点からは危険側の評価となるといえ る.

3.3 各方法による安全性水準の比較

表-7 に各手法による矢板およびタイ材の断面諸元を 比較する.表には,港湾基準¹⁾に示される部分係数によ るレベル1信頼性設計を行った場合の断面とその破壊確 率についても示している.上述の通り,港湾基準におけ る部分係数は期待総費用最小化に対応する部分係数を 0.05 刻みで安全側に丸めたものである.なおここでは実 際の日本の規格に従って記しており,仮想の規格は除外 している.

表より,社会的割引率を考慮しない場合,簡易推定法 によるライフサイクルコスト最小化の破壊確率は,厳密 法と比較すると14%(est2)~1%(est1)程度の誤差となる. ただし,誤差の大きい est2 については安全側の評価とな っており,簡易法としては許容しうる範囲ではないかと 考えられる.

さらに、矢板およびタイ材の断面諸元は簡易推定法と 厳密法で一致する.従って、複雑な計算を必要とするラ イフサイクルコストを厳密に計算しなくとも、本研究に よる簡易推定法で十分な精度のライフサイクルコストカ ーヴが評価できると考えられる.

また,期待総費用最小化の破壊確率はライフサイクル コスト最小化の破壊確率に対して最大で2.0倍程度(P_{fS50} で評価)であり,断面諸元も小さく危険側となる.

一方港湾基準における規定では、期待総費用最小化を そのまま適用するよりもライフサイクルコスト最小化と の差は縮まり、水深-11m および-14m の経済損失µ+σ以 外の条件においては港湾基準による部分係数法の方が安 全側の結果となる.

次に社会的割引率を考慮する場合も,簡易推定法によ り社会的割引率を考慮しない場合とほぼ同じ結果が得ら れている.また,期待総費用最小に対応した断面諸元は 一部を除いてライフサイクルコスト最小となる断面より も危険側の設定となっているが,港湾基準に示される部 分係数は、ライフサイクルコスト最小に対応した断面諸 元と比較して同じか又は安全側の設定となっている.

よって、社会的割引率の適用が標準的という考え方に 立つとすれば、港湾基準による部分係数を用いることで ライフサイクルコスト最小にも対応していると見なすこ とができると言える.

5. まとめ

本研究では、矢板式岸壁を対象に、鋼材の腐食の進行 を考慮した矢板壁とタイ材のシステム破壊確率に基づく ライフサイクルコストについて検討した.本研究による 主要な結論は以下の通りである.

- ①設計供用期間が 50 年の場合、ライフサイクルコストの 正確な評価を行うためには、膨大なケースの破壊確率 の評価を行う必要がある.これは、経年劣化が進んだ 岸壁が破壊した場合は初期断面で復旧され、復旧後の 破壊確率は建設初年度の値に戻るためである.本研究 では同じ破壊パターンの数を効率よく数えるアルゴリ ズムを検討し、ライフサイクルコスト評価の効率化の 方法を示した.
- ②ライフサイクルコストの評価のためには、矢板の断面 係数とタイ材の断面積の組み合わせによるシステム破 壊確率を評価する必要があるが、全ての組み合わせを 検討することは計算負荷の問題がある.このためライ フサイクルコストの評価において必要となる条件を絞 り込み、評価の効率化を行う方法を示した.
- ③ライフサイクルコストの評価に必要な設計供用期間の 破壊確率の厳密評価法以外に,経年劣化の進行に伴う 単年度の破壊確率をもとに,設計供用期間の破壊確率 を簡易に評価する方法を提案した.簡易推定法による 破壊確率を用いた場合,ライフサイクルコストはほぼ 一致する結果となり,簡易推定法で十分な精度のライ フサイクルコストカーヴが評価できると考えられる.
- ④ライフサイクルコスト最小化の条件と期待総費用最小化の条件を比較するとともに、港湾基準における部分係数を用いた安全水準との相互比較を行った。その結果、社会的割引率を考慮する条件においては、港湾基準による部分係数を用いることでライフサイクルコスト最小化にも対応していることが分かった。

(平成 20 年 11 月 14 日受付)

水深	設計	ニンク	矢板	矢板 断声风数	タイロッドタ	D	D
]]]	規格	例 Ⅲ 休 致 m ³ /m	ロット住	P_{50}	$P_{f\Sigma50}$
			ΤA	0.00042	22	2 677E 02	2 670E 02
	厳密:LCC 最小	$\mu + \sigma$	IA	0.00043	32	2.077E-03	2.070E-02
	厳密・ICC 是小	μ+30	IA	0.00043	32	2.077E-03	2.070E-02
	服 鼠 鼠	$\mu + 0$	IA	0.00043	32	2.077E-03	2.070E-02
	化去印印列半海感	μ+30	IA	0.00043	32	2.077E-03	2.070E-02
	est1:LCC 最小	$\mu + 0$	IA	0.00043	32	2.077E-03	2.703E-02
	ast1:LCC 是小	$\mu \pm 50$	IA	0.00043	32	2.077E-03	2.703E-02
	社会的制引索老庸	$\mu + 0$	IA	0.00043	32	2.077E-03	2.703E-02
-7.5m		$\mu + \sigma$	ΙΔ	0.00043	32	2.077E-03	2.705E 02
	est2:LCC 最小	$\mu + 3\sigma$	I A	0.00043	32	2.677E-03	2.304E-02
	est2 · LCC 最小	$\mu + \sigma$	IA	0.00043	32	2.677E-03	2.304E-02
	社会的割引率考慮	$\mu + 3\sigma$	IA	0.00043	32	2.677E-03	2.304E-02
		$\mu + \sigma$	IA	0.00043	28	3.796E-03	5.212E-02
	ETC 最小	$\mu + 3\sigma$	IA	0.00043	28	3.796E-03	5.212E-02
	レベル1信頼性	β=2.7	ПА	0.00073	32	4.692E-06	5.103E-05
	設計	β=3.6	ΠA	0.00073	32	4.692E-06	5.103E-05
		$\mu + \sigma$	т	0.00119	38	5 697E-05	6.898F-04
	厳密:LCC 最小	$\mu + 3\sigma$	 	0.00119	38	5.697E-05	6.898E-04
	厳密:LCC 最小	$\mu + \sigma$		0.00119	38	5.697E-05	6.898E-04
	社会的割引率考慮	$\mu + 3\sigma$	Ш	0.00119	42	5.697E-05	6.898E-04
	est1:LCC最小	$\mu + \sigma$	Ш	0.00119	38	5.697E-05	6.900E-04
		$\mu + 3\sigma$	Ш	0.00119	38	5.697E-05	6.900E-04
	est1:LCC 最小	$\mu + \sigma$	Ш	0.00119	38	5.697E-05	6.900E-04
-11.0	社会的割引率考慮	$\mu + 3\sigma$	Ш	0.00119	42	5.697E-05	6.900E-04
m	est2:LCC 最小	$\mu + \sigma$	Ш	0.00119	38	5.697E-05	6.318E-04
		μ+3σ	Ш	0.00119	38	5.697E-05	6.318E-04
	est2:LCC 最小	$\mu + \sigma$	Ш	0.00119	38	5.697E-05	6.318E-04
	社会的割引率考慮	$\mu + 3\sigma$	Ш	0.00119	42	5.697E-05	6.318E-04
	ETC 县小	$\mu + \sigma$	Ш	0.00119	38	5.697E-05	6.898E-04
	EIC 取小	μ+3σ	Ш	0.00119	38	5.697E-05	6.898E-04
	レベル1信頼性	β=2.7	Ш	0.00119	38	<u>5.697E-05</u>	<u>6.898E-04</u>
	設計	<i>β</i> =3.6	ШA	0.00134	38	1.217E-05	1.628E-04
	厳密,I CC 是小	$\mu \!\!+\! \sigma$	IV	0.00204	44	7.951E-05	1.188E-03
	敵密:LCC 東小	μ+3 <i>σ</i>	IV	0.00204	44	7.951E-05	1.188E-03
	厳密:LCC 最小	$\mu \!\!+\! \sigma$	IVA	0.00203	42	1.386E-04	2.119E-03
	社会的割引率考慮	μ +3 σ	IV	0.00204	44	7.951E-05	1.188E-03
	est1:LCC 是小	$\mu \!$	IV	0.00204	44	7.951E-05	1.188E-03
	est1.LCC 取小	μ+3 <i>σ</i>	IV	0.00204	44	7.951E-05	1.188E-03
-14.0 m	est1:LCC 最小	$\mu \!\!+\! \sigma$	IVA	0.00203	42	1.386E-04	2.121E-03
	社会的割引率考慮	μ+3σ	IV	0.00204	44	7.951E-05	1.188E-03
	est2:I CC 量小	$\mu \!\!+\! \sigma$	IV	0.00204	44	7.951E-05	1.111E-03
	しるに2 . LCC 邦又 / 1、	μ+3 <i>σ</i>	IV	0.00204	44	7.951E-05	1.111E-03
	est2:LCC 最小	$\mu \!\!+\! \sigma$	IVA	0.00203	42	1.386E-04	1.996E-03
	社会的割引率考慮	μ+3 <i>σ</i>	IV	0.00204	44	7.951E-05	1.111E-03
	ETC 最小	$\mu \!\!+\! \sigma$	IVA	0.00203	42	1.386E-04	2.119E-03
		μ+3σ	IVA	0.00203	42	1.386E-04	2.119E-03
	レベル1信頼性	β=2.7	IVA	0.00203	42	<u>1.386E-04</u>	<u>2.119E-03</u>
	設計	$\beta=3.6$	IVW	0.00246	44	8.889E-06	1.346E-04

表-7 各手法による矢板およびタイ材の断面諸元

: ETC 最小≧LCC 最小となる破壊確率, ____: L1 設計≧LCC 最小となる破壊確率

太字:断面を決定した破壊確率

レベル1信頼性設計において、 β =2.7、3.6はそれぞれ μ + σ 、 μ +3 σ に相当

参考文献

- 国土交通省港湾局監修,(社)日本港湾協会:港湾の施設の技術上の基準・同解説,2007.
- 長尾 毅, 柴崎隆一, 尾崎竜三:経済損失を考慮した 期待総費用最小化のための岸壁の常時のレベル 1 信 頼性設計法,構造工学論文集 Vol.51A, pp.389-400, 2005.
- 3) 鋼管杭協会:鋼矢板,設計から施工まで,2000.
- Rackwitz, R. and Fiessler, B. : Structural Reliability under Combined Random Load Sequences, *Computers &*

Structures, Vol. 9, pp.489-494, 1978

5) Owen, D. B.: Tables for computing bivariate normal probabilities, *Ann, Math. Stat.*, Vol.27, pp. 1075-1090, 1956.

大釜達夫:事前評価はどこまで実施されているかー運 輸関係公共事業の場合-,土木学会誌, Vol.84, Feb., pp.30-31, 1999