6. 初期応力解析と固有値解析

作成された三次元ダムー基礎岩盤モデルを用い,2003年9月26日十勝沖地震時の水位状態にお けるダム・基礎岩盤の静的応力解析を行った。

6.1 初期応力解析

6.1.1 解析条件

(1)物性条件

ダムおよび基礎岩盤を線形弾性材料として、表 6-1 に示す物性値を用いた。

モデル	弹性係数 (MPa)	密度 (g/cm ³)	ポアソン比	
ダム堤体	33000.0^{*1}	2.44	0.20	
基礎岩盤	17000.0^{*2}	2.74	0.24	

表 6-1 初期応力解析に用いたダムおよび基礎岩盤の物性値

注:

*1: ダムコンクリートの静的弾性係数は動的弾性係数とほぼ同じ,または1割程度小さくなっているので,ここでは動的弾性係数より約6%と小さい値を用いた⁶⁾。

*2:2.3 物性値についての調査参照

(2) 境界条件

モデルの境界条件としては,基礎岩盤の底面では固定条件,側方境界では鉛直ローラー条件とした。

(3)荷重条件

静的荷重は、ダムおよび基礎岩盤の自重、湛水時の静水圧である。

ダムの静的応力解析において、従来の一轄して、堤体全体に重量を作用させる解析手法(フィル ダムの築堤解析のイメージになる。)によりダム天端のアバットメント付近で生じた不合理な引張応 力をなるべく抑制するために、堤体本体を7ステップ(基礎岩盤と合わせて8ステップ)に分けて、 逐次コンクリート打設過程のシミュレーションを実施した。図6-1に堤体の築堤ステップの分割を 示す。

なお、貯水池の地震時水位(水深 87.82m)の水圧荷重を与え、湛水状態の解析も行った。

(b) 下流側鳥瞰図

図 6-1 堤体の築造ステップ分けイメージ図

6.1.2 初期応力解析結果

表 6-2 に堤体の解析結果を示す。応力は、上流面、下流面および図 6-2 に示す断面に着目している。ダム軸方向応力、鉛直方向応力および湛水による変形について、解析結果を考察する。

空虚時の応力分布のコンター図を図 6-3~図 6-4 に, 湛水時の結果を図 6-5~図 6-6 に示す。なお, 湛水時,静水圧によるダムの変形を図 6-7 に示す。

(1) 応力結果について

ダム軸方向の最大引張応力は、空虚時および満水時においてそれぞれ 0.483Mpa と 0.513Mpa で ある。水位が低いため、湛水による軸方向の引張応力の変化は小さかった。鉛直方向の応力につい ては、空虚時の完全圧縮状態からわずかながら 0.018MPa に変化した。一方、ダム軸方向の最大圧 縮応力は空虚時の 0.493MPa から湛水時の 0.799MPa に増大しており、湛水による鉛直方向の圧縮 応力の変化はほとんどなかった。なお、これらの応力は滑らかな分布をしている。

また, 湛水時でも, 堤体の最大引張応力が約 0.513Mpa であったが, ダムコンクリートの引張強度には十分な余裕があると言える。

	方向	空虚	湛水	
最大引張応力	ダム軸	0.483	0.513	
(MPa)	鉛直		0.0177	
最大圧縮応力	ダム軸	-0.493	-0.799	
(MPa)	鉛直	-2.184	-2.122	
最大引張ひずみ	ダム軸	0.154	0.162	
(×10 ⁻⁴)	鉛直	0.00413	0.0087	
最大圧縮ひずみ	ダム軸	-0.0802	-0.110	
(×10 ⁻⁴)	鉛直	-0.580	-0.554	
最大変位 (cm)	上下流		0.232	

表 6-2 初期応力解析結果一覧

(2)変形結果について

貯水による堤体の上下流方向の最大変位は 0.232cm であり、大きな変形はなかった。

- 103 -

図 6-3(a) 空虚時ダム軸方向応カ分布(MPa) (鳥瞰図)

(上流面)

(下流面)

(上流面)

(下流面)

(縦断面)

図 6-4(e) 空虚時鉛直方向応力分布(MPa) (横断面)

図 6-5(a) 湛水時ダム軸方向応カ分布(MPa) (鳥瞰図)

V1 G3

- 112 -

図 6-6(a) 湛水時鉛直方向応力分布(MPa) (鳥瞰図)

(上流面)

図 6-6(c) 湛水時鉛直方向応力分布(MPa)

図 6-7(b) 湛水時変形図 (上流側鳥瞰図)

(上方から)

6.2 固有値解析

札内川ダムの振動特性を調べるために、同定された物性を用いて、固有値解析を実施した。

6.2.1 解析条件

表 6-3 には固有値解析に用いた物性値を示す。ダム堤体の固有値に着目しているので、基礎岩盤 のモードの影響を除くために、基礎岩盤の密度を0とした。

	弹性係数 (MPa)	密度 (g/cm ³)	ポアソン比	
ダム堤体	33000.00	2.44	0.20	
基礎岩盤	28520.00	0.00	0.24	

表 6-3 固有値解析に用いた物性値

6.2.2 固有值解析結果

表 6-4には固有値解析により得られたダム堤体の1次~10次の固有振動数および各モードの特徴 を示す。表 6-5 と表 6-6 には、それぞれ各モードの刺激係数および有効質量をまとめる。各次のモ ード図は図 6-8~図 6-17 に示す。

モード次数	振動数(Hz)	モード特徴
1	5.1395	上下流方向1次 対称
2	7.0468	上下流方向 2 次 逆対称
3	8.4549	上下流方向3次 対称
4	9.1134	ダム軸方向1次
5	9.6109	洪水吐ゲート操作室のダム軸周りの回転
6	10.2309	鉛直方向1次?
7	10.6326	上下流方向4次 逆対称
8	12.5763	鉛直方向2次 逆対称
9	12.6128	上下流方向5次 対称
10	13.4724	ダム軸方向と上下流方向の混合モード

表 6-4 札内川ダム固有振動数と固有振動モード一覧

固有値解析により、札内川ダムの固有振動特性を明らかにした。堤体の幾何的な非対称性の影響 を受け、固有振動モード、特に高次モードの形は不規則になっているが、基本的には最大横断面(洪 水吐操作室位置)を対称軸として、対称モード、または逆対称モードが表れている。

洪水吐操作室および付近の構造がダム軸周りの回転モードをしており, 札内川ダムの一つの特徴 であると考える。また, ダム全体のいずれのモードに伴って, オリフィスおよびゲート操作室の局 部的なモードが現れており, 場合によって, その付近のモード形の変化が大きく見受けられる。こ のような特徴から, オリフィスおよびゲート操作室が地震時激しく挙動することが推測できる。

モード	振動数		刺激係数				
次数 (Hz)	上下流方向	ダム軸方向	鉛直方向	X軸回転	Y軸回転	Z軸回転	
1	5.1395	3.440	0.014	0.832	0.008	1.939	-0.055
2	7.0468	0.040	0.129	0.016	0.532	0.172	-2.260
3	8.4549	1.550	-0.047	0.432	-0.090	1.023	0.374
4	9.1134	-0.038	2.159	0.126	-0.809	0.021	-0.652
5	9.6109	2.818	0.228	-2.235	0.019	-1.993	0.157
6	10.2309	0.197	-0.253	3.947	-0.084	-0.371	0.138
7	10.6326	0.091	-0.412	0.232	-0.346	-0.171	0.985
8	12.5763	-0.285	-0.755	-0.256	-2.173	0.199	-1.227
9	12.6128	-1.967	0.631	-0.783	1.536	0.648	1.312
10	13.4724	-0.258	0.454	-0.002	2.493	0.686	-2.512

表 6-5 固有振動モードの振動数と刺激係数

表 6-6 固有振動モード有効質量

モード	モード 振動数 次数 (Hz)	有効質量(ton)					
次数		上下流方向	ダム軸方向	鉛直方向	X軸回転	Y軸回転	Z軸回転
1	5.1395	859,890	13	50,303	6	351,920	279
2	7.0468	56	582	9	20,987	2,182	378,260
3	8.4549	65,772	60	5,099	385	50,296	6,723
4	9.1134	468	1,475,200	5,014	123,120	85	79,788
5	9.6109	435,470	2,851	273,810	17	184,050	1,138
6	10.2309	2,717	4,489	1,090,300	331	6,431	886
7	10.6326	167	3,416	1,082	4,393	1,068	35,589
8	12.5763	8,749	61,223	7,021	751,120	6,286	239,570
9	12.6128	75,795	7,800	12,020	76,339	13,603	55,728
10	13.4724	1,290	3,985	0	212,250	16,077	215,420

注) X 軸 一 上下流方向

Y 軸 ― ダム軸方向

Z 軸 — 鉛直方向

6.3まとめ

地震時貯水位におけるダム堤体の静的応力解析を行い,地震発生時のダムの初期応力状態を把握 することができた。初期状態では、ダムの応力レベルも変形レベルも低いものであり、弾性段階に ある。これにより、地震時のダムの応力状態を検討するにあたり、地震発生直前の応力状態を明ら かにした。

固有値解析により、札内川ダムの固有振動数および振動モードなどの固有振動特性を調べた。札 内川ダムの全体的な振動特性を明らかにした上、洪水吐およびゲート操作室などの局部的なモード も明確になった。ダム堤体の各次モードにおいて、ゲート操作室付近ではモード形の変化が大きく、 洪水吐付近は地震時は激しく挙動することが推測できる。

図 6-8(a) 札内川ダムの1次固有振動モード(5.1395Hz)

図 6-8(b) 札内川ダムの1次固有振動モード(5.1395Hz)

図 6-9(a) 札内川ダムの2次固有振動モード(7.0467Hz)

上方より

図 6-9(b) 札内川ダムの2次固有振動モード(7.0467Hz)

図 6-10(a) 札内川ダムの3次固有振動モード(8.4549Hz)

上方より

図 6-10(b) 札内川ダムの3次固有振動モード((8.4549Hz))

図 6-11(a) 札内川ダムの4次固有振動モード(9.1134Hz)

上方より

図 6-11(b) 札内川ダムの4次固有振動モード(9.1134Hz)

図 6-12(a) 札内川ダムの5次固有振動モード(9.6109Hz)

上方より

図 6-12(b) 札内川ダムの5次固有振動モード(9.6109Hz)

図 6-13(a) 札内川ダムの6次固有振動モード(10.231Hz)

上方より

図 6-13(b) 札内川ダムの6次固有振動モード(10.231Hz)

図 6-14(a) 札内川ダムの7次固有振動モード(10.633Hz)

上方より

図 6-14(b) 札内川ダムの7次固有振動モード(10.633Hz)

図 6-15(a) 札内川ダムの8次固有振動モード(12.576Hz)

上方より

図 6-15(b) 札内川ダムの8次固有振動モード(12.576Hz)

図 6-16(a) 札内川ダムの9次固有振動モード(12.613Hz)

上方より

図 6-16(b) 札内川ダムの9次固有振動モード(12.613Hz)

図 6-17(a) 札内川ダムの10次固有振動モード(13.472Hz)

上方より

図 6-17(b) 札内川ダムの10次固有振動モード(13.472Hz)