1. はじめに

1995年兵庫県南部地震を契機とした土木学会の提言¹⁾ を踏まえて,港湾構造物の耐震設計²⁾においてもレベル1, レベル2地震動を対象とした2段階設計法が取り入れられ ている.このうちレベル2地震動に対する性能照査は,入 力地震動を時刻歴波形の形式で与え,2次元の動的解析に より構造物の応答を評価する手法が主流になりつつある. しかしながら,重力式および矢板式岸壁のレベル1地震動 に対する照査は,現時点では地域別震度・地盤種別係数・ 重要度係数の積で得られる設計震度を用いた震度法によ っている.

現在,性能設計体系への移行という流れを踏まえて,設計地震動は,土木学会地震工学委員会耐震基準小委員会が 策定した土木構造物の耐震設計ガイドライン(案)³⁾の考 え方に従い,レベル1地震動についても震源特性・伝播経 路特性・深層地盤による地震動増幅特性を考慮した確率論 的地震ハザード解析に基づいて算出される時刻歴波形と して与えることが検討されている⁴⁾.

また,耐震性能照査方法については,震度法は簡便であ るものの,基本的に加速度最大値をもとに震度に換算して 耐震性能を評価するものであるため,地震動の周波数特性 が岸壁の変形に与える影響を十分に考慮できているとは 言いがたいという問題がある.この問題点に関する研究事 例は幾つかあり,例えば野津らは,重力式岸壁を対象とし た地震応答解析をもとに,岸壁の変形量は入力地震動の周 波数特性と強い相関があり,概ね 2Hz 以上の高周波数成分 が変形に及ぼす影響は小さいことを示した⁵⁾⁶⁾.

さらに, 震度法については, 照査式と変形などの破壊メ カニズムとの調和性に関する問題が考えられる.例えば, 重力式岸壁については、外的安定条件として滑動・転倒・ 支持力の3つの破壊モードを想定する.このうち滑動モー ドについては,堤体に大きな慣性力が作用することにより 捨石マウンドとケーソンの間で滑動変形が生じる破壊モ ードを想定している.しかしながら、例えば 1995 年兵庫 県南部地震で破壊した神戸港の重力式岸壁については、1m 以上の大変形が認められたものの, 被災後の現地調査では ケーソン壁体と捨石マウンド間の相対的変形は生じてい なかった⁷⁾. このことは、関連して実施された有効応力解 析⁸⁾で確認されているほか,別の条件であるが,模型振動 実験⁹でも確認されている.また,重力式壁体に作用する 慣性力と壁体背後より作用する地震時土圧との位相差の 問題も指摘されている¹⁰⁾¹¹⁾. さらに, 矢板式岸壁について も,照査式は矢板等の応力度に関するものであるが,地震 応答解析の結果より, 岸壁が供用上の観点からの制限値で ある 20~30cm 変形時には断面力には余裕があり,構造部 材に降伏は生じておらず,控え直杭式矢板岸壁の破壊は変 形先行型であり,降伏先行型ではないことが指摘されてい る¹²⁾.

以上のような問題点を克服するために、重力式岸壁については、簡易に性能を照査する方法の検討がこれまでに行われてきた。例えば風間ら¹³⁾は、重力式岸壁を対象として2質点3ばねモデルによる壁体の滑動解析モデルを提示している。また、三浦ら¹⁴⁾は、重力式岸壁を対象に、質点にバネとダッシュポット、スライダーを組み合わせて壁体の地震時挙動を解析するモデルを提示している。さらに、有限要素法をもとにした地震応答解析における重力式岸壁の変形量の簡易推定法として、一井ら¹⁵⁾は、加速度最大値と地盤条件などをパラメータとしたチャートを提案している。

しかしながら、これら震度法の問題点を克服し、簡易に 岸壁の性能を照査する方法の検討対象は主に重力式岸壁 に対するものが多く、矢板式岸壁まで含めて統一的に照査 を行う方法が整備されているわけではない.

性能設計体系への移行を考慮すると、重力式および矢板 式岸壁については、具体的に変形量等の許容値を設定し、 レベル1地震動の作用に対して変形量等がそれを上回ら ないことを確認する性能照査体系の導入が必要である.

そのような体系に適合する手法として、2次元の有限要素法による地震応答解析¹⁶⁾がこれまでに提案されており、 解析で被災を説明できるという知見が蓄積されてきた.例 えば、重力式岸壁については、上述した一井ら⁸⁾の研究事 例があり、また、矢板式岸壁についても、小堤ら¹⁷⁾により まとめられているとおり、初期応力状態の評価法¹⁸⁾¹⁹²⁰⁾ など各種の改良が行われ、特に大変形時の被災事例などの 再現性が確認されている.被災事例の再現においては岸壁 の変形のみならず、矢板壁・控え直杭の断面力の面からも 被災の有無が定量的に表現されている²⁰⁾.

2次元の有限要素法による地震応答解析の実務への適用 を考えるとき、主な問題点は計算負荷にあるといえる.特 に、設定した照査断面が所要の性能を満足しない場合は断 面を変更して性能を満足するまで照査を行う必要がある が、有限要素法において断面変更~再照査は設計者に計算 負荷を強いることになる.従って、2次元の地震応答解析 において用いる照査用断面が、手戻りの少ない合理的なも のとして簡易に設定できることが望ましい.

以上の点を踏まえて,本研究では重力式岸壁および矢板 式岸壁のそれぞれについて,性能照査を最終的には2次元 有限要素法により行う場合を想定し,震度法を用いながら も,従来の方法よりも手戻りの少ない照査用断面を設定す るための震度の設定方法について検討する.

レベル1地震動の作用に対しては岸壁が引き続き供用で きることが求められることから、変形量は過去の地震被災 における供用制限の変形量などを考慮し、概ね 20cm 以下 となるような条件において検討を実施した.

また,港湾構造物の設計においては、レベル1地震動に 対しては液状化を許容しないことを基本としていること から、本研究においても液状化に対する安全性は確保され ているという前提で議論を進める.また、本研究では通常 岸壁が設計される地盤条件を対象としている.このため、 岩盤上に直接建設されるような岸壁については対象外で ある.

2. 岸壁の耐震性能照査体系

図-1 に性能設計体系における岸壁の耐震性能照査フロ ーを示す.基本的には2次元非線形地震応答計算などによ り耐震性能を照査する形態を想定する.ただし、設計実務 における計算負荷の軽減の観点から、1次元の地震応答計 算により得られる地表面の応答地震動をもとに照査用断 面決定のための震度を算出し, 震度法に基づいて照査用断 面を設定する.このとき、重力式岸壁、矢板式岸壁のいず れもレベル1 地震動の作用に対しては変形量が支配的な 要因となると考えられることから,変形量に対応した震度 が求められる必要が有る.特に、岸壁の重要度などに応じ てレベル1地震動に対する変形量許容値が変化する可能性 があることから,変形量許容値に応じて照査用震度が設定 できることが求められる. その際, 従来の方法では, 岸壁 の変形量に影響を及ぼす地震動の周波数特性や継続時間 の影響などが必ずしも十分に考慮されているとはいえな い可能性があり、かつ変形量に対応したものとはなってい ないことから、本研究においてこの方法を検討するもので ある.

2 次元の地震応答計算によって,性能が達成されていな いことが判明した場合は,何らかの方法で対処方法を考え る必要がある.しかしその場合,照査用震度を増加させて 断面諸元を変更する以外にも,地盤改良を検討する方法が ある.断面諸元の設定がある程度妥当なものであれば,断 面諸元を更に増加させるよりは地盤改良を検討する方が 合理的な結果が得られる場合があると考えられるが,地盤 改良の検討であれば2次元有限要素法における再照査は比 較的容易と考えられる.

図-1 耐震性能照査フロー

3. 岸壁の耐震性能照査用震度

3.1 検討条件

重力式岸壁,矢板式岸壁(控え直杭,控え組杭)につい て,**表-1**に示す条件で,現行設計法²⁾により断面を設定し た.水深は岸壁の標準的な水深の範囲から設定している. また,設計震度も標準的な設計震度の範囲から設定してい るが,以下の点を考慮している.まず,水深が深い条件ほ

ど岸壁の重要度が高く,大きな設計震度が採用される傾向 が強いことを考慮している.また,重力式岸壁の設計事例 は他の構造形式と比較して多いことから, 重力式岸壁の検 討条件を多く設定している. さらに, 矢板式岸壁のうち, 直杭式矢板は設計震度の比較的小さい場合に, 控え組杭式 矢板は設計震度の比較的高い場合に用いられることが多 いため、検討ケースにおいてもその点を考慮している。検 討モデル断面は図-2に示すとおりである.地盤条件は全国 の港湾の強震観測地点のS波速度構造から固有周期を整理 した結果に基づき、地盤の固有周期は緩い地盤で1.0~1.4 秒, 締まった地盤で 0.6 秒以下, その中間の地盤で 0.6~1.0 秒程度と考えられたため,固有周期として緩い地盤(第Ⅲ 種地盤相当)で1.2秒,締まった地盤(第I種地盤相当) で 0.6 秒, その中間の地盤(第Ⅱ種地盤相当)で 0.8 秒と 設定した. 矢板式岸壁の鋼材については, 矢板壁は水深 -7.5mの場合 SY295, その他の場合 SKY490 とした. 控え 直杭式の控え工には SHK490M, 控え組杭の控え工には SKK400とした. 控え組杭の控え工の組杭が鉛直となす角 は、イン・バター杭(陸側)およびアウト・バター杭(海 側)のいずれも実績の多い 20 度とした.

水深震度	-7.5m	-11.0m	-14.5m	-16.0m	
0.10	$\bigcirc \triangle$	OΔ	0		
0.15	$\Box \Delta O$	$\Box \Delta O$	0		
0.20	0	$\Box \Delta O$	$\Box \Delta O$		
0.25		0	$\Box \Delta O$		
0.27		0	\bigcirc	\bigcirc	

表-1 検討条件

注:○;重力式,△;控え直杭矢板,□;控え組杭矢板

3.2 検討方法

地震応答計算はマルチスプリング要素を採用した解析コ ード FLIP¹⁰を用いた.上記のとおり,重力式岸壁,矢板式 岸壁のいずれについても,被災事例の再現性の実績があり, 実務においても現在広く用いられている解析コードであ ることから対象とした.

解析手法は、矢板式岸壁については標準的な4段階解析 法(初期自重解析3段階+動解析)とし、構造部材のモデ ル化については、矢板壁はトリリニアモデルによる非線形 はり要素とした.矢板とその両側の地盤の節点を分離し、 同一座標上に3個の節点を配置する3重節点とした.控え 直杭も矢板壁と同じトリリニアモデルによる非線形はり 要素として扱った.組杭の控え工については、組杭に大き な軸力の発生が予想されるため現在FLIPで軸力を考慮す ることが可能なバイリニアモデルの非線形はり要素を用

いた. 地盤要素と節点を分離し、2 重節点とした. タイ材 は、非線形バネ要素とし引張には抵抗、圧縮には無抵抗と なるように設定した. 矢板壁,控え直杭との連結部は節点 を共有している. タイ材が軸力のみを負担するように、断 面 2 次モーメント、有効せん断面積率は 0 としている. 数 値解析の安定性の観点から与えるレーレー減衰は初期剛 性比例係数として与え、すべての検討断面を対象に背後地 盤の 1 次固有周期と 1 次減衰(ξ_1 =0.01 を仮定)より算出 した β の平均値より、 β =0.002 と設定した. 重力式岸壁に ついては、壁体底面と捨石マウンド上面の間にジョイント 要素を用いている.

地盤物性及び断面諸元は**表**-2~表-3 に示すとおりである. 表-3 では ϕ 材として設定しているが, FLIP においては、非線形特性は双曲線モデルを採用し、最大せん断強度は粘着力 c_u または内部摩擦角 ϕ を用いて σ_m 'sin ϕ (σ_m ': 有効拘束圧)により与える.後述するように、粘土層の場

表-2 断面諸元

	矢板式													
設計 水浴		深山的	重力式	矢板 タイ材			树	控え直杭			控え組杭			
	水深			販売二次							海側(out) 陸側		l(in)	
震度	(m)	坦益	堤体幅	一回山二八 モーメント	根入長	綱種	断面積	同国二の モーメント	杭長	断面二次	枯長	断面二次	枯長	
			(m)	. 4	(m)	如何重	. 2	. 4	(m)	モーメント	(m)	モーメント	(m)	
				(m ⁻ /m)	7.1	66400	(m ⁻ /m)	(m ⁻ /m)	16.2	(m /m)	()	(m /m)	()	
		case1	3.2	2.00E-04	/.1	55400	1.92E-03	4.04E-04	10.3					
	-7.5	case2		2.59E-04	6.9	SS400	1.92E-03	3.32E-04	13.9					
		case3		2.40E-04	0.3	SS400	1.92E-03	2.47E-04	11.3			_		
0.10	11.0	case1	5.4	1.41E-03	10.9	SS400	2.84E-03	8.19E-04	19.4					
0.10	-11.0	case2	5.4	7.82E-04	9.1	SS400	2.51E-03	6.01E-04	16.2					
		case3	───	7.56E-04	8.4	SS490	2.21E-03	4.63E-04	13.3					
	145	casel	2 7.8											
	-14.5	case2						-	_					
		cases		3 27E 04	75	\$\$400	2 21E 03	5 28E 04	17.3	3 00E 04	16.0	0 72E 04	23.7	
	75	case1	16	3.2712-04	7.3	SS400	2.21E-03	J.28E-04	17.5	9.54E 05	11.0	9.72E-04	17.6	
	-7.5	case2	4.0	2.02E.04	67	NILIT 400	2.21E-03	4.22E-04	14.7	5.06E.05	67	2.44E-04	14.0	
		cases		2.92E-04	12.1	NILIT 400	1.41E-03	3.20E-04	21.1	5.90E-03	19.7	3.90E-03	27.5	
0.15	11.0	case1	1 74	2.13E-03	12.1	NILIT 400	2.21E-03	1.14E-03	21.1	0.00E-04	10.7	3.37E-03	27.5	
0.15	-11.0	case2	7.4	2.08E-03	0.4	INFII-490	2.21E-03	9.07E-04	17.0	1.16E-04	13.4	3.90E-04	23.0	
		case3		1.16E-03	9.4	55490	2.51E-03	6.01E-04	14.0	8.54E-05	1.5	2.44E-04	10.5	
	14.5	case1	10.4					_	_					
	-14.5	case3												
		case1	1 2 3 7.2											
	-7.5	case2						-	_					
		case3												
		case1		3.27E-03	13.4	SS490	3.54E-03	1.54E-03	22.2	7.14E-04	20.9	5.20E-03	28.6	
0.20	-11.0	case2	se2 11.4 se3	3.16E-03	13.1	NHT-590	2.21E-03	1.30E-03	19.2	1.18E-04	16.6	3.90E-04	26.6	
		case3		1.71E-03	10.4	NHT-490	2.51E-03	8.37E-04	15.0	1.18E-04	6.6	3.90E-04	17.7	
		case1	case1 case2 15.4	5.32E-03	15.0	NHT-740	2.21E-03	2.86E-03	25.1	9.72E-04	22.3	1.04E-02	33.9	
	-14.5	case2		4.52E-03	14.1	NHT-740	2.21E-03	2.29E-03	21.3	1.18E-04	19.8	6.80E-04	29.6	
		case3	4.26E-03	13.0	NHT-740	2.21E-03	1.57E-03	17.7	1.18E-04	10.6	2.44E-04	25.6		
		case1	12.4							ļ				
	-11.0	case2	13.4	_										
		case3	13.2											
		case1	20.4 20.4	8.06E-03	16.6	NHT-740	2.84E-03	4.92E-03	28.0	1.02E-03	24.4	1.45E-02	35.2	
0.25	-14.5	case2		6.31E-03	15.3	NHT-690	3.18E-03	3.79E-03	23.4	2.44E-04	18.1	7.14E-04	34.6	
		case3	19.6	5.98E-03	14.1	NHT-740	2.51E-03	2.25E-03	18.3	1.18E-04	12.9	2.57E-04	27.8	
		case1	ase1 23.2	1.02E-02	17.6	NHT-740	3.18E-03	6.11E-03	29.4	1.52E-03	24.4	1.96E-02	37.4	
	-16.0	case2		8.88E-03	16.7	NHT-740	2.84E-03	4.83E-03	24.9	2.44E-04	19.8	9.72E-04	35.2	
		case3	22.4	8.52E-03	15.4	NHT-740	2.84E-03	2.96E-03	19.6	1.88E-04	11.9	6.80E-04	27.1	
		case1	15.2	-										
	-11.0	case2	13.2					-	_					
		case3	15.0											
		case1	el 22.8	8.81E-03	17.0	NHT-740	2.84E-03			1.02E-03	25.1	1.69E-02	35.2	
0.27	-14.5	case2	22.0	7.73E-03	16.1	NHT-740	2.84E-03			2.44E-04	18.7	9.72E-04	33.7	
		case3	22.2	7.32E-03	14.9	NHT-740	2.84E-03	_	_	1.18E-04	14.0	2.57E-04	28.4	
		case1	asel 26.2	1.21E-02	18.4	NHT-740	3.18E-03			1.60E-03	24.2	2.58E-02	36.5	
	-16.0	0 case2	se2 26.2	1.11E-02	17.6	NHT-740	3.18E-03			3.90E-04	20.5	1.34E-03	34.6	
	case3	25.4	1.02E-02	16.2	NHT-740	3.18E-03			1.88E-04	12.7	7.14E-04	28.0		

表-3 地盤物性

地盤	土層区分	土層区分	湿潤密度 (t/m ³)	基準有効 拘束圧 (kN/m ²)	基準初期せ ん断剛性 (kN/m ²)	基準初期体 積剛性 (kN/m ²)	粘着力 (kN/m²)	内部 摩擦角 (°)	最大減衰	S波速度 (m/s)
	埋土	上層(水面上) 上層(水面下)	1.8	89.8	25920	67595	0	37	0.24	120
case1		下層	2.0							
	原地盤	上層 下層	2.0	239.8	45000	117353	0	38	0.24	150
case2	埋土	上層(水面上)	1.8 2.0	89.8		152089	0			
		上層(水面下) 下層			58320			38	0.24	180
	原地盤	上層	2.0	198.5	72200	188286	0	38	0.24	190
		下層	2.0	279.2	125000	325980	0	39		250
case3	埋土	上層(水面上)	1.8	72.0	70380	79380 207011	0	28	0.24	210
		上層(水面下)	2.0	12.9	79380			58		210
		下層		142.3	125000	325980		39		250
	原地盤	上層	2.0	198.5	156800	408910	0	39	0.24	280
		下層		279.2	405000	1056176	0	44		450
共通 材料	基礎捨石 裏込石	基礎捨石 裏込石	2.0	98.0	180000	469412	0	40	0.24	300

3.3 周波数特性の影響の評価

以上述べた条件をもとに、まず周波数特性と岸壁変形量の相関を検討するため、正弦波を用いた検討を行った.正弦波は継続時間の影響の条件を揃えるために継続時間を40秒、主要動継続時間を5秒に調整して、主要動の前後はコサイン状のテーパーをかけた波形を用いた.用いた周波数は、0.2、0.3、0.4、0.6、0.8、1.0、1.5、2.0、3.0、4.0Hzの10種類とした.入力の振幅を調整して、岸壁の天端残留変形量が20cmとなる条件を探索した.この20cmは、レベル1地震動作用後の変形量として供用制限を行うことなく岸壁が引き続き供用できる値の上限に近い値として設定している.

重力式岸壁の設計震度が 0.10 の条件について,変形が 20cm となる条件について周波数ごとの地表面加速度最大 値を示したものが図-3 である.この加速度最大値は,照査 用震度が1次元の地震応答計算における地表面加速度をも とに設定されることを想定し,解析コード FLIP の自由地 盤部における1次元の応答結果をもとに評価している.従 って,本論文で述べる方法は,基本的に1次元の地震応答 計算もFLIPを用いて行う場合に適用可能であるといえる.

図より3つの特徴が指摘できる.まず,1Hz以上になる と壁体に変形を起こさせるためには非常に大きな入力地 震動が必要になる.また,1Hz以下の領域では基本的にほ ぼ同程度の入力地震動により等量の変形が発生する.さら に,水深が浅いほど同じ入力に対して変形が生じにくいこ とが分かる.これは,同じ設計震度で設計した断面であっ ても,壁高さが高いほど変形しやすいことを示している. 矢板式岸壁についても同様の傾向の結果が得られた.

以上の検討より、1Hz以下の領域でフラット、1Hz以上 で急激に減衰する値を持つフィルターを用いることによ り、地震動の周波数特性を考慮することとする.1次元地 震応答解析により得られる地表面加速度時刻歴を高速フ ーリエ変換したものにこのフィルターを乗じることによ り、一様変形スペクトルが得られることとなる.従って、 一様変形スペクトルをフーリエ逆変換することにより得 られる加速度最大値は岸壁の変形量に対応するといえる.

設計震度 0.10 の条件における結果であることを考慮して、フィルター処理後の加速度最大値が 100Gal となるよ

図-3 20cm 変形時の周波数と地表面加速度最大値の関係

うなフィルターを検討する.1Hz以下の応答値の代表値と して、0.8Hz 入力に対する値に対して、検討結果をもとに 壁高H,背後地盤(Vs≥300m/sの工学的基盤から背後地盤 の地表面まで)の固有周期 T_h, 壁体下の固有周期 T_uの 3 つのパラメータを用いて線形重回帰分析を行い 1Hz 以下 のフラットな部分の値(これを base 値の意味で b と呼ぶ) に対する回帰式を求めた.固有周期は1/4波長則により求 めるが,背後地盤の固有周期 T_hについては,裏込石を無視 し,重力式岸壁の壁体下の固有周期T"については壁体直下 の捨石は無視し、それぞれ原地盤として固有周期を算出し た. さらに 1Hz 以上については, 結果にフィットする関数 形を用いて、フィルターを作成した.その際、従来港湾構 造物の設計震度算出の際には SMAC 型強震計の特性に補 正するフィルター(以下 SMAC フィルターと呼ぶ)が用い られてきたことを考慮し, SMAC フィルターの関数を参考 にして設定している.

矢板式岸壁についても同様の検討を行った.控え直杭 式については重力式と同様に設計震度 0.10 の断面を対 象としたが,控え組杭式については設計震度 0.15 以上で 検討しているため,設計震度 0.15 の断面を対象とし,フ ィルター処理後の加速度最大値が 150Gal になるように 調整した.またその際,地盤固有周期に乗じる係数 *c*₃, *c*₄については,重力式と同じ値を用いることとし,それ 以外の係数に対する回帰とした.これは,矢板式岸壁の 検討ケース数が重力式と比較して少ないため,*c*₃,*c*₄を 含めた回帰結果をそのまま用いると地盤が軟弱なケース の方が地盤が良好なケースよりも震度が小さくなる場合 が生じることがわかったためである.

フィルターa(f)の関数を式(1)~式(3)に、参考として式(4) に SMAC フィルターS(f)の関数もあわせて示す. 地盤固有 周期については、背後地盤固有周期 T_bに対して負、海底面 下地盤固有周期 T_uに対して正の係数が得られている.これ は回帰によるものであり、背後地盤固有周期 T_bに対する係 数が負であることには物理的根拠はない. 従って、背後地 盤固有周期と海底面下地盤固有周期との相対関係が通常 と大きく異なる場合には、そのままの形では適用できない と考えられる. 例えば正規圧密粘土層を壁体直下のみ置換 砂などで改良した場合がこれにあたる. そのような場合の 取り扱いについては後に示す.

フィルター形状を図-4~図-6に示す. 図中, ◆のプロットが正弦波による地震応答計算結果に対応する値である. 矢板式控え組杭岸壁については,地盤ケース3の場合の一 致度がやや悪いが,矢板式控え組杭岸壁は主に地盤が軟弱 な場合に用いられることから大きな問題ではないと考え られる.

$$a(f) = \begin{cases} b & (f \le 1.0 \text{Hz}) \\ \frac{b}{1 - \{g(f)\}^2 + c_1 g(f)\}} & (f > 1.0 \text{Hz})^{(1)} \\ g(f) = 0.34(f - 1.0) & (2) \end{cases}$$

$$b = c_2 \frac{H}{H_R} - c_3 \frac{T_b}{T_{b_R}} + c_4 \frac{T_u}{T_{u_R}} - c_5$$
(3)

ここに,

f: 周波数 (Hz)

i:虚数単位

H:壁高(m)

H_R:基準壁高(=15.00m)

T_b:背後地盤の初期固有周期(s)

- *T_{b_R}*:背後地盤の基準初期固有周期(=0.80s)
- T_u:壁体下(重力式)または海底面下(矢板式)地 盤の初期固有周期(s)
- *T_{uR}*: 壁体下(重力式)または海底面下(矢板式)
 地盤の基準初期固有周期(=0.40s)

 $c_1 \sim c_5$: 定数で,以下のとおり

- c1=6.8 (重力式), 11.0 (矢板式)
- c2=1.05 (重力式), 2.25 (矢板式)
- $c_3 = 0.88, c_4 = 0.96$
- c₅=0.23(重力式),0.96(矢板控え直杭式),0.76 (矢板控え組杭式)

$$S(f) = \frac{1}{1 - \left(\frac{f}{7.14}\right)^2 + 2\left(\frac{f}{7.14}\right)i}$$
(4)

3.4 継続時間の影響の評価

正弦波の検討により周波数特性を考慮できることとな るが、この他に岸壁の変形に影響を及ぼす要素として地 震動の継続時間の影響の考慮を検討する.

検討条件は周波数特性の検討と同様に,重力式および矢 板控え直杭式は設計震度 0.10,矢板控え組杭式は設計震度 0.15 とした.周波数特性に偏りがないように,港湾等にお ける代表的な観測波形,鉄道構造物における設計波および 模擬地震動を 9 波形抽出した.用いた波形とその卓越周波 数を表-4 および図-7 に示す.

1.4

1.2

1.0

0.8

0.6

0.4

0.2 0.0

0.1

a(f)

1.1

1.0

f(Hz)

(a) 水深-7.5m, 地盤ケース1

10.0

図-4(b) 周波数特性考慮用フィルター(重力式)

図-5(a) 周波数特性考慮用フィルター(矢板控え直杭式)

- 9 -

図-6(b) 周波数特性考慮用フィルター(矢板控え組杭式)

表-4 検討対象波形

No.	名称	卓越周波数(Hz)
1	八戸波	0.39
2	神戸波	2.88
3	大船渡波	2.34
4	宮崎波	4.55
5	美都波	0.37
6	JR 波	1.34
7	Dip 波	0.68
8	Strike 波	1.66
9	Subduction 波	0.60

(b) No.2 (神戸波)

(c) No.3 (大船渡波)

図-7(a) 入力地震動

これら波形の採用理由は次の通りである.まず現在港 湾構造物の耐震設計に用いられる代表的な波形として, 内陸直下型地震では神戸波、海溝型地震では八戸波、大 船渡波を抽出した.この他の観測波形として宮崎波は 1996 年日向灘地震において港湾地域強震観測網²²⁾によ り観測された基盤波形,美都波は2001年芸予地震におい て基盤強震観測網(KiK-net)²³⁾により観測された基盤波 形である.なお、宮崎波については、1.0Hz にも強い成 分を有する.この他,内陸直下型横ずれ断層・逆断層, 海溝型低角逆断層の3つのタイプを考慮して、香川ら²⁴⁾ が作成した模擬地震動(それぞれ, Strike 波, Dip 波, Subduction 波)を採用している. さらに確認のために, 港湾とは異なる鉄道構造物の耐震設計で用いられる波形 である JR スペクトルⅡ適合波 ²⁵⁾を採用した. 模擬地震 動および JR スペクトル II 適合波はレベル 2 地震動とし て想定されているものであるが、ここでは模擬地震動を 検討に取りいれるため採用している.

以上の9波形を用いて、重力式岸壁について、入力振幅 を調整することにより、岸壁の残留変形量が20cmとなる 条件を探索した.設計震度0.10、水深-14.5m、地盤ケース 1の条件における自由地盤部の地表面加速度について上述 のフィルター処理後の加速度最大値 α_fを図-8 に示す.図 中の◇がフィルター処理を行った結果であるが、地震波形 によってかなりのばらつきがある.これは、入力波形の継 続時間の長短等の影響が考えられ、継続時間が短い地震動 ほど水平変位20cmを発生させる α_fは必然的に大きくなる ものと考えられる.

そこで継続時間に関するパラメータとして加速度最大 値 α_fで基準化したフィルター処理後の加速度の二乗和平 方根 Sを用いて補正を行う.図-9 および式(5)に S/α_fと低 減率 pの関係を示す.ここで,低減率 pとはフィルター処 理して得られた α_fを検討に用いた設計震度 0.10 相当の 100Galに対応させるために設定した値(=100/α_f)である. 図より,地盤ケースに関係なく S/α_fと低減率 pの間には 比較的高い相関があり,この関係を用いることで継続時間 の影響を考慮できると考えられる.式(5)に示す関係を用い て継続時間の影響を考慮した結果,図-8 の●で示す結果が 得られた.波形間のばらつきが適切に補正されていること が分かる.

矢板式岸壁についても同様の検討を行った.結果を図-9 ~図-11に示す.矢板式岸壁の結果は,ややばらつきが大 きいが,同様の補正を行うことにより継続時間の影響を考 慮できると考えられる.式(5)により得られる低減率 pを用 いて,周波数特性と継続時間の影響を考慮した補正加速度 最大値α_cは式(6)により得られる.なお,ここでは図-9~ 図-11に示したように低減率が 1.0以下の条件で検討して いるため,低減率の上限は 1.0 とする.

$$p = c_6 \ln\left(S \,/\, \alpha_f\right) - c_7 \tag{5}$$

ここに,

S: フィルター処理後の加速度自乗和平方根(Gal) $\alpha_f: フィルター処理後加速度最大値(Gal)$ $c_6 \sim c_7: 定数で、以下のとおり$ $c_6 = 0.36(重力式、矢板控え直杭式)、0.31(矢板$ 控え組杭式) $c_7 = 0.29(重力式), 0.20(矢板控え直杭式), 0.10$

$$\alpha_c = p \cdot \alpha_f \tag{6}$$

ここに,

 α_c : 補正加速度最大值(Gal)

(矢板控え組杭式)

3.5 照查用震度算出方法

以上の方法により,岸壁の許容変形量が 20cm の場合の 照査用震度を算出することが可能となるが,岸壁の許容変

図-11 低減率(矢板控え組杭式)

形量は岸壁の重要度や求められる機能などに応じて変化 するものである.岸壁の供用性を考慮すると、レベル1地 震動に対する変形量として 20cm は上限に近いと考えられ る. このため、20cm 以下の任意の変形量許容値に対して 照査用震度が適切に算定できるように、表-4に示した9波 形を用いて,残留変形量が 5,10,15cm となるように入力振 幅調整を行い,得られた条件における自由地盤部の地表面 加速度時刻歴をもとに補正加速度最大値α ε を算出した. 震度算出式は、現行設計震度に対して、岸壁変形量と補正 加速度最大値を重力加速度で除した値 a _/g を説明変量と した回帰分析により求めることとした.用いたデータ数は 重力式岸壁は 972, 矢板式岸壁はそれぞれ 648 である. た だし,単純な線形回帰は精度が悪く,かつ非線形の多項式 回帰を適用すると、α_/gのべき乗の値が1以上となり、そ の結果 a ./g の値が大きい場合に非常に大きな震度が算出 される場合があることがわかった. このため, α_{dg} につい ては1次の回帰関係を求める観点から以下のように設定し た.

まず,検討した変形量の範囲のうち平均的な 10cm 変形 の結果に対して,現行設計震度 k_h に対して α_c/g を説明変 量とした線形回帰 ($k_h = A \alpha_c/g + B$)により係数 A, Bを決定 した.次に,全ての結果を用いて,係数 Aに対して変形量 Dを基準変形量 D_r (=10cm)で除した値の回帰を求めた.以 上により,式(7)が各構造形式に対して得られた.

$$k_h = c_8 \left(\frac{D_a}{D_r}\right)^{c_9} \cdot \frac{\alpha_c}{g} + c_{10} \tag{7}$$

ここに,

k_h:照査用震度

$$D_a: 変形量許容値(cm)$$

 $D_r: 基準変形量(=10cm)$
 $\alpha_c: 補正加速度最大値(Gal)$
 $g: 重力加速度(=980Gal)$
 $c_8 \sim c_{10}: 定数で、以下のとおり$
 $c_8 = 1.78(重力式), 1.91(矢板控え直杭式), 1.32$
(矢板控え組杭式)
 $c_9 = -0.55(重力式), -0.69(矢板控え直杭式), -0.74$
(矢板控え組杭式)

c₁₀=0.04(重力式),0.03(矢板控え直杭式),0.05 (矢板控え組杭式)

式(7)では定数項 c₁₀が 0.03~0.05 となっているため,地 表面応答加速度がゼロであっても最低 0.03 の設計震度を 要求することになる.従って式(7)はあくまでレベル1地震 動のような,ある程度の振幅を有する地震動に限定して用 いることが適切である.なお,岸壁の設計では地震動に対 する安全性照査以外にも,永続作用に対しても安全性照査 が行われ,永続作用に対する安全率は地震動作用時の安全 率よりも大きく設定されている²⁾.従って,設計地震動の 非常に小さい地域においても最低設計震度 0.05 相当以上 の安全性は求められていると考えられ,式(7)の定数項は現 状と比較して不都合は生じないと考えられる.

式(7)による精度を,従来港湾構造物において用いられて きた野田らによる震度算出方法²⁶⁾と比較する.野田らによ る震度²⁶⁾は, SMAC フィルターを施した地表面加速度最大 値 *α*_{*s*} (以下, SMAC 加速度最大値と称する)をもとに, 式(8)により算出される.

 $k_{h} = \alpha_{S}/g \qquad : (\alpha_{S} \leq 200 \text{Gal})$ $k_{h} = 1/3 \cdot (\alpha_{S}/g)^{1/3} \quad : (\alpha_{S} > 200 \text{Gal}) \qquad (8)$ ここに、 $k_{h} : 震度$

α_s: SMAC フィルター処理後の加速度最大値 (Gal) g: 重力加速度 (=980Gal)

まず,各構造形式について,変形量ごとに設計震度 k_{hd} に対する補正加速度最大値 α_c と SMAC 加速度最大値 α_s の分布を図-12~図-14 に示す.補正加速度最大値 α_c はばらつきが少なく,設計震度の増加に対応して増加している. これに対して SMAC 加速度最大値 α_s はばらつきが大きく,かつ設計震度との相関が低い.また,上限値が設計震度の増加に伴って減少する場合があるのが特徴である.これは,設計震度の上昇に伴って耐震性能の高い断面を等量変形させるための基盤入力振幅が大きくなり,このために地盤

図-12 設計震度と加速度最大値の関係(重力式)

図-14 設計震度と加速度最大値の関係(矢板控え組杭式)

