ISSN 1346-7328 国総研資料 第310号 平成18年6月

# 国土技術政策総合研究所資料

TECHNICAL NOTE of National Institute for Land and Infrastructure Management

No. 310

June 2006

レベル1 地震動に対する重力式および矢板式岸壁の 耐震性能照査用震度の設定手法

長尾 毅·岩田 直樹·藤村 公宜·森下 倫明·佐藤 秀政·尾崎 竜三

Seismic Coefficients of Caisson Type and Sheet Pile Type Quay Walls against the Level-one Earthquake Ground Motion Takashi NAGAO,Naoki IWATA,Masaki FUJIMURA,Noriaki MORISHITA,Hidemasa SATO

and Ryuzo OZAKI



National Institute for Land and Infrastructure Management Ministry of Land, Infrastructure and Transport, Japan レベル1地震動に対する重力式および矢板式岸壁の

耐震性能照査用震度の設定手法

長尾 毅\*·岩田直樹\*\*·藤村公宜\*\*\*·森下倫明\*\*\*\*·佐藤秀政\*\*\*\*\*·尾崎竜三\*\*\*\*\*\*

要 旨

重力式および矢板式岸壁のレベル1地震動に対する耐震性能設計体系の構築に寄与する観点から, 耐震性能照査用震度の算出方法を検討した.レベル1地震動が時刻歴波形の形式で与えられ,かつ耐 震性能照査を2次元の動的解析により行う場合を想定し,計算負荷の軽減の観点から,震度法を用い ながらも,従来の方法よりも手戻りの少ない照査用断面を設定するための震度の設定方法を示してい る.提案する方法は,地震動の周波数特性などを考慮して,岸壁の許容変形量に応じた震度を算出す るものである.またさらに,重力式および矢板式岸壁のレベル1地震動に対する変形量の標準的な許 容値を示した.

キーワード:岸壁、レベル1地震動,耐震設計

\*港湾研究部港湾施設研究室 室長 \*\*前港湾研究部港湾施設研究室 研究員(現 中部地方整備局港湾空港部港湾計画課) \*\*\*港湾研究部港湾施設研究室 研究員 \*\*\*\*港湾研究部港湾施設研究室 交流研究員(復建調査設計株式会社) \*\*\*\*\*\*前港湾研究部港湾施設研究室 交流研究員(現 中央復建コンサルタンツ(株)) 〒239-0826 横須賀市長瀬3-1-1 国土交通省国土技術政策総合研究所 電話:046-844-5029 Fax:046-844-5081 e-mail: nagao-t92y2@ysk.nilim.go.jp

Technical Note of NILIM No. 310 June 2006 (YSK-N-110)

### Seismic Coefficients of Caisson Type and Sheet Pile Type Quay Walls against the Level-one Earthquake Ground Motion

**Takashi NAGAO\*** Naoki IWATA\*\* Masaki FUJIMURA\*\*\* Noriaki MORISHITA\*\*\*\* Hidemasa SATO\*\*\*\*\* Ryuzo OZAKI\*\*\*\*\*

#### **Synopsis**

This paper aims at proposing the method to evaluate the seismic coefficient of caisson type and sheet pile type quay walls against the level-one earthquake ground motion. The proposed method takes the frequency characteristic and the effect of duration time of earthquake motion into consideration. We conducted two-dimensional earthquake response analyses and showed that the proposed method well evaluates the seismic coefficients to be applied to the design of the quay walls within the displacement range of 5 to 20 cm. We also proposed the standard allowable displacement for the quay wall of each structural type against the level-one earthquake ground motion.

Key Words: quay wall, level-one earthquake ground motion, earthquake resistant design

<sup>\*</sup> Head of Port Facilities Division, Port and Harbor Department

<sup>\*\*</sup> Ex-Researcher of Port Facilities Division, Port and Harbor Department

<sup>\*\*\*</sup> Researcher of Port Facilities Division, Port and Harbor Department

<sup>\*\*\*\*</sup> Researcher of Port Facilities Division, Port and Harbor Department

<sup>\*\*\*\*\*</sup> Exchanging Researcher of Port Facilities Division, Port and Harbor Department

<sup>\*\*\*\*\*\*</sup> Ex-Exchanging Researcher of Port Facilities Division, Port and Harbor Department

<sup>3-1-1</sup> Nagase, Yokosuka, 239-0826 Japan

Phone: +81-46-844-5029 Fax: +81-46-844-5081 e-mail: nagao-t92y2@ysk.nilim.go.jp

## 目 次

| 1. はじめに                                             | <br>1  |
|-----------------------------------------------------|--------|
| 2. 性能設計体系における岸壁の耐震性能照査法                             | <br>2  |
| 3. 岸壁の耐震性能照査震度・・・・・                                 | <br>2  |
| 3.1 検討条件                                            | <br>2  |
| 3.2 検討方法                                            | <br>3  |
| 3.3 周波数特性の影響の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・  | <br>5  |
| 3.4 継続時間の影響の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | <br>6  |
| 4. 局部的な地盤改良がある場合等の評価                                | <br>16 |
| 5. フィルターの上下限値の検討                                    | <br>18 |
| 6. 岸壁の変形量許容値 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・   | <br>20 |
| 6.1 検討条件                                            | <br>20 |
| 6.2 検討結果                                            | <br>21 |
| 7. おわりに                                             | <br>25 |
| 謝辞                                                  | <br>25 |
| 参考文献 ·····                                          | <br>25 |

#### 1. はじめに

1995年兵庫県南部地震を契機とした土木学会の提言<sup>1)</sup> を踏まえて,港湾構造物の耐震設計<sup>2)</sup>においてもレベル1, レベル2地震動を対象とした2段階設計法が取り入れられ ている.このうちレベル2地震動に対する性能照査は,入 力地震動を時刻歴波形の形式で与え,2次元の動的解析に より構造物の応答を評価する手法が主流になりつつある. しかしながら,重力式および矢板式岸壁のレベル1地震動 に対する照査は,現時点では地域別震度・地盤種別係数・ 重要度係数の積で得られる設計震度を用いた震度法によ っている.

現在,性能設計体系への移行という流れを踏まえて,設計地震動は,土木学会地震工学委員会耐震基準小委員会が 策定した土木構造物の耐震設計ガイドライン(案)<sup>3)</sup>の考 え方に従い,レベル1地震動についても震源特性・伝播経 路特性・深層地盤による地震動増幅特性を考慮した確率論 的地震ハザード解析に基づいて算出される時刻歴波形と して与えることが検討されている<sup>4)</sup>.

また,耐震性能照査方法については,震度法は簡便であ るものの,基本的に加速度最大値をもとに震度に換算して 耐震性能を評価するものであるため,地震動の周波数特性 が岸壁の変形に与える影響を十分に考慮できているとは 言いがたいという問題がある.この問題点に関する研究事 例は幾つかあり,例えば野津らは,重力式岸壁を対象とし た地震応答解析をもとに,岸壁の変形量は入力地震動の周 波数特性と強い相関があり,概ね 2Hz 以上の高周波数成分 が変形に及ぼす影響は小さいことを示した<sup>5)6)</sup>.

さらに, 震度法については, 照査式と変形などの破壊メ カニズムとの調和性に関する問題が考えられる.例えば, 重力式岸壁については、外的安定条件として滑動・転倒・ 支持力の3つの破壊モードを想定する.このうち滑動モー ドについては,堤体に大きな慣性力が作用することにより 捨石マウンドとケーソンの間で滑動変形が生じる破壊モ ードを想定している.しかしながら、例えば 1995 年兵庫 県南部地震で破壊した神戸港の重力式岸壁については、1m 以上の大変形が認められたものの, 被災後の現地調査では ケーソン壁体と捨石マウンド間の相対的変形は生じてい なかった<sup>7)</sup>. このことは、関連して実施された有効応力解 析<sup>8)</sup>で確認されているほか,別の条件であるが,模型振動 実験<sup>9</sup>でも確認されている.また,重力式壁体に作用する 慣性力と壁体背後より作用する地震時土圧との位相差の 問題も指摘されている<sup>10)11)</sup>. さらに, 矢板式岸壁について も,照査式は矢板等の応力度に関するものであるが,地震 応答解析の結果より, 岸壁が供用上の観点からの制限値で ある 20~30cm 変形時には断面力には余裕があり,構造部 材に降伏は生じておらず,控え直杭式矢板岸壁の破壊は変 形先行型であり,降伏先行型ではないことが指摘されてい る<sup>12)</sup>.

以上のような問題点を克服するために、重力式岸壁については、簡易に性能を照査する方法の検討がこれまでに行われてきた。例えば風間ら<sup>13)</sup>は、重力式岸壁を対象として2質点3ばねモデルによる壁体の滑動解析モデルを提示している。また、三浦ら<sup>14)</sup>は、重力式岸壁を対象に、質点にバネとダッシュポット、スライダーを組み合わせて壁体の地震時挙動を解析するモデルを提示している。さらに、有限要素法をもとにした地震応答解析における重力式岸壁の変形量の簡易推定法として、一井ら<sup>15)</sup>は、加速度最大値と地盤条件などをパラメータとしたチャートを提案している。

しかしながら、これら震度法の問題点を克服し、簡易に 岸壁の性能を照査する方法の検討対象は主に重力式岸壁 に対するものが多く、矢板式岸壁まで含めて統一的に照査 を行う方法が整備されているわけではない.

性能設計体系への移行を考慮すると、重力式および矢板 式岸壁については、具体的に変形量等の許容値を設定し、 レベル1地震動の作用に対して変形量等がそれを上回ら ないことを確認する性能照査体系の導入が必要である.

そのような体系に適合する手法として、2次元の有限要素法による地震応答解析<sup>16)</sup>がこれまでに提案されており、 解析で被災を説明できるという知見が蓄積されてきた.例 えば、重力式岸壁については、上述した一井ら<sup>8)</sup>の研究事 例があり、また、矢板式岸壁についても、小堤ら<sup>17)</sup>により まとめられているとおり、初期応力状態の評価法<sup>18)1920)</sup> など各種の改良が行われ、特に大変形時の被災事例などの 再現性が確認されている.被災事例の再現においては岸壁 の変形のみならず、矢板壁・控え直杭の断面力の面からも 被災の有無が定量的に表現されている<sup>20)</sup>.

2次元の有限要素法による地震応答解析の実務への適用 を考えるとき、主な問題点は計算負荷にあるといえる.特 に、設定した照査断面が所要の性能を満足しない場合は断 面を変更して性能を満足するまで照査を行う必要がある が、有限要素法において断面変更~再照査は設計者に計算 負荷を強いることになる.従って、2次元の地震応答解析 において用いる照査用断面が、手戻りの少ない合理的なも のとして簡易に設定できることが望ましい.

以上の点を踏まえて,本研究では重力式岸壁および矢板 式岸壁のそれぞれについて,性能照査を最終的には2次元 有限要素法により行う場合を想定し,震度法を用いながら も,従来の方法よりも手戻りの少ない照査用断面を設定す るための震度の設定方法について検討する.

レベル1地震動の作用に対しては岸壁が引き続き供用で きることが求められることから、変形量は過去の地震被災 における供用制限の変形量などを考慮し、概ね 20cm 以下 となるような条件において検討を実施した.

また,港湾構造物の設計においては、レベル1地震動に 対しては液状化を許容しないことを基本としていること から、本研究においても液状化に対する安全性は確保され ているという前提で議論を進める.また、本研究では通常 岸壁が設計される地盤条件を対象としている.このため、 岩盤上に直接建設されるような岸壁については対象外で ある.

#### 2. 岸壁の耐震性能照査体系

図-1 に性能設計体系における岸壁の耐震性能照査フロ ーを示す.基本的には2次元非線形地震応答計算などによ り耐震性能を照査する形態を想定する.ただし、設計実務 における計算負荷の軽減の観点から、1次元の地震応答計 算により得られる地表面の応答地震動をもとに照査用断 面決定のための震度を算出し, 震度法に基づいて照査用断 面を設定する.このとき、重力式岸壁、矢板式岸壁のいず れもレベル1 地震動の作用に対しては変形量が支配的な 要因となると考えられることから,変形量に対応した震度 が求められる必要が有る.特に、岸壁の重要度などに応じ てレベル1地震動に対する変形量許容値が変化する可能性 があることから,変形量許容値に応じて照査用震度が設定 できることが求められる. その際, 従来の方法では, 岸壁 の変形量に影響を及ぼす地震動の周波数特性や継続時間 の影響などが必ずしも十分に考慮されているとはいえな い可能性があり、かつ変形量に対応したものとはなってい ないことから、本研究においてこの方法を検討するもので ある.

2 次元の地震応答計算によって,性能が達成されていな いことが判明した場合は,何らかの方法で対処方法を考え る必要がある.しかしその場合,照査用震度を増加させて 断面諸元を変更する以外にも,地盤改良を検討する方法が ある.断面諸元の設定がある程度妥当なものであれば,断 面諸元を更に増加させるよりは地盤改良を検討する方が 合理的な結果が得られる場合があると考えられるが,地盤 改良の検討であれば2次元有限要素法における再照査は比 較的容易と考えられる.



図-1 耐震性能照査フロー

#### 3. 岸壁の耐震性能照査用震度

#### 3.1 検討条件

重力式岸壁,矢板式岸壁(控え直杭,控え組杭)につい て,**表-1**に示す条件で,現行設計法<sup>2)</sup>により断面を設定し た.水深は岸壁の標準的な水深の範囲から設定している. また,設計震度も標準的な設計震度の範囲から設定してい るが,以下の点を考慮している.まず,水深が深い条件ほ

ど岸壁の重要度が高く,大きな設計震度が採用される傾向 が強いことを考慮している.また,重力式岸壁の設計事例 は他の構造形式と比較して多いことから, 重力式岸壁の検 討条件を多く設定している. さらに, 矢板式岸壁のうち, 直杭式矢板は設計震度の比較的小さい場合に, 控え組杭式 矢板は設計震度の比較的高い場合に用いられることが多 いため、検討ケースにおいてもその点を考慮している。検 討モデル断面は図-2に示すとおりである.地盤条件は全国 の港湾の強震観測地点のS波速度構造から固有周期を整理 した結果に基づき、地盤の固有周期は緩い地盤で1.0~1.4 秒, 締まった地盤で 0.6 秒以下, その中間の地盤で 0.6~1.0 秒程度と考えられたため,固有周期として緩い地盤(第Ⅲ 種地盤相当)で1.2秒,締まった地盤(第I種地盤相当) で 0.6 秒, その中間の地盤(第Ⅱ種地盤相当)で 0.8 秒と 設定した. 矢板式岸壁の鋼材については, 矢板壁は水深 -7.5mの場合 SY295, その他の場合 SKY490 とした. 控え 直杭式の控え工には SHK490M, 控え組杭の控え工には SKK400とした. 控え組杭の控え工の組杭が鉛直となす角 は、イン・バター杭(陸側)およびアウト・バター杭(海 側)のいずれも実績の多い 20 度とした.

| 水深震度 | -7.5m                | -11.0m          | -14.5m          | -16.0m     |
|------|----------------------|-----------------|-----------------|------------|
| 0.10 | $\bigcirc \triangle$ | OΔ              | 0               |            |
| 0.15 | $\Box \Delta O$      | $\Box \Delta O$ | 0               |            |
| 0.20 | 0                    | $\Box \Delta O$ | $\Box \Delta O$ |            |
| 0.25 |                      | 0               |                 |            |
| 0.27 |                      | 0               | $\bigcirc$      | $\bigcirc$ |

表-1 検討条件

注:○;重力式,△;控え直杭矢板,□;控え組杭矢板

#### 3.2 検討方法

地震応答計算はマルチスプリング要素を採用した解析コ ード FLIP<sup>10</sup>を用いた.上記のとおり,重力式岸壁,矢板式 岸壁のいずれについても,被災事例の再現性の実績があり, 実務においても現在広く用いられている解析コードであ ることから対象とした.

解析手法は、矢板式岸壁については標準的な4段階解析 法(初期自重解析3段階+動解析)とし、構造部材のモデ ル化については、矢板壁はトリリニアモデルによる非線形 はり要素とした.矢板とその両側の地盤の節点を分離し、 同一座標上に3個の節点を配置する3重節点とした.控え 直杭も矢板壁と同じトリリニアモデルによる非線形はり 要素として扱った.組杭の控え工については、組杭に大き な軸力の発生が予想されるため現在FLIPで軸力を考慮す ることが可能なバイリニアモデルの非線形はり要素を用









いた.地盤要素と節点を分離し、2 重節点とした.タイ材 は、非線形バネ要素とし引張には抵抗、圧縮には無抵抗と なるように設定した.矢板壁、控え直杭との連結部は節点 を共有している.タイ材が軸力のみを負担するように、断 面 2 次モーメント、有効せん断面積率は 0 としている.数 値解析の安定性の観点から与えるレーレー減衰は初期剛 性比例係数として与え、すべての検討断面を対象に背後地 盤の 1 次固有周期と 1 次減衰( $\xi_1$ =0.01 を仮定)より算出 した $\beta$ の平均値より、 $\beta$ =0.002 と設定した.重力式岸壁に ついては、壁体底面と捨石マウンド上面の間にジョイント 要素を用いている.

地盤物性及び断面諸元は**表**-2~表-3 に示すとおりである. 表-3 では $\phi$ 材として設定しているが, FLIP においては、非線形特性は双曲線モデルを採用し、最大せん断強度は粘着力  $c_u$ または内部摩擦角 $\phi$ を用いて $\sigma_m$ 'sin $\phi$  ( $\sigma_m$ ': 有効拘束圧)により与える.後述するように、粘土層の場

#### 表-2 断面諸元

|      |       |                   |      | 矢板式                 |      |           |                     |                     |      |          |       |          |       |
|------|-------|-------------------|------|---------------------|------|-----------|---------------------|---------------------|------|----------|-------|----------|-------|
|      |       |                   | 重力式  | 矢                   | 板    | <i>A</i>  | 树                   | 控え                  | 直杭   |          | 控え    | 組杭       |       |
| 設計   | 水深    | 扫描空               | 和海史  | 厳ロール                |      |           |                     | 上で                  |      | 海側       | (out) | 陸側       | l(in) |
| 震度   | (m)   | 地盆                | 堤体幅  | 一回山二八<br>モーメント      | 根入長  | 綱種        | 断面積                 | 同国二の<br>モーメント       | 杭長   | 断面二次     | 枯長    | 断面二次     | 枯長    |
|      |       |                   | (m)  | . 4                 | (m)  | 如何重       | . 2                 | . 4                 | (m)  | モーメント    | (m)   | モーメント    | (m)   |
|      |       |                   |      | (m <sup>-</sup> /m) | 7.1  | 66400     | (m <sup>-</sup> /m) | (m <sup>-</sup> /m) | 16.2 | (m /m)   | ()    | (m /m)   | ()    |
|      | 75    | case1             | 2.2  | 2.00E-04            | /.1  | 55400     | 1.92E-03            | 4.04E-04            | 10.3 |          |       |          |       |
|      | -7.5  | case2             | 3.2  | 2.59E-04            | 6.9  | SS400     | 1.92E-03            | 3.32E-04            | 13.9 |          |       |          |       |
|      |       | case3             |      | 2.40E-04            | 0.3  | SS400     | 1.92E-03            | 2.47E-04            | 11.3 |          |       | _        |       |
| 0.10 | 11.0  | case1             |      | 1.41E-03            | 10.9 | SS400     | 2.84E-03            | 8.19E-04            | 19.4 |          |       |          |       |
| 0.10 | -11.0 | case2             | 5.4  | 7.82E-04            | 9.1  | SS400     | 2.51E-03            | 6.01E-04            | 16.2 |          |       |          |       |
|      |       | case3             |      | 7.56E-04            | 8.4  | SS490     | 2.21E-03            | 4.63E-04            | 13.3 |          |       |          |       |
|      | 145   | casel             | 70   |                     |      |           |                     |                     |      |          |       |          |       |
|      | -14.5 | case2             | 7.8  |                     |      |           |                     | -                   | _    |          |       |          |       |
|      |       | case5             |      | 3 27E 04            | 75   | \$\$400   | 2 21E 03            | 5 28E 04            | 17.3 | 3 00E 04 | 16.0  | 0 72E 04 | 23.7  |
|      | 75    | case1             | 16   | 3.2712-04           | 7.3  | SS400     | 2.21E-03            | J.28E-04            | 17.5 | 9.54E 05 | 11.0  | 9.72E-04 | 17.6  |
|      | -7.5  | case2             | 4.0  | 2.02E.04            | 67   | NILIT 400 | 2.21E-03            | 4.22E-04            | 14.7 | 5.06E.05 | 67    | 2.44E-04 | 14.0  |
|      |       | cases             |      | 2.92E-04            | 12.1 | NILIT 400 | 1.41E-03            | 3.20E-04            | 21.1 | 5.90E-03 | 19.7  | 3.90E-03 | 27.5  |
| 0.15 | 11.0  | case1             | 74   | 2.13E-03            | 12.1 | NILIT 400 | 2.21E-03            | 1.14E-03            | 21.1 | 0.00E-04 | 10.7  | 3.37E-03 | 27.5  |
| 0.15 | -11.0 | case <sub>2</sub> | 7.4  | 2.08E-03            | 0.4  | INFII-490 | 2.21E-03            | 9.07E-04            | 17.0 | 1.16E-04 | 13.4  | 3.90E-04 | 23.0  |
|      |       | case3             |      | 1.16E-03            | 9.4  | 55490     | 2.51E-03            | 6.01E-04            | 14.0 | 8.54E-05 | 1.5   | 2.44E-04 | 10.5  |
|      | 14.5  | case1             | 10.4 |                     |      |           |                     | _                   | _    |          |       |          |       |
|      | -14.5 | case3             | 10.4 |                     |      |           |                     |                     |      |          |       |          |       |
|      |       | case1             |      |                     |      |           |                     |                     |      |          |       |          |       |
|      | -7.5  | case2             | 7.2  |                     |      |           |                     | -                   | _    |          |       |          |       |
|      | -     | case3             |      |                     |      |           |                     |                     |      |          |       |          |       |
|      |       | case1             |      | 3.27E-03            | 13.4 | SS490     | 3.54E-03            | 1.54E-03            | 22.2 | 7.14E-04 | 20.9  | 5.20E-03 | 28.6  |
| 0.20 | -11.0 | case2             | 11.4 | 3.16E-03            | 13.1 | NHT-590   | 2.21E-03            | 1.30E-03            | 19.2 | 1.18E-04 | 16.6  | 3.90E-04 | 26.6  |
|      |       | case3             |      | 1.71E-03            | 10.4 | NHT-490   | 2.51E-03            | 8.37E-04            | 15.0 | 1.18E-04 | 6.6   | 3.90E-04 | 17.7  |
|      |       | case1             |      | 5.32E-03            | 15.0 | NHT-740   | 2.21E-03            | 2.86E-03            | 25.1 | 9.72E-04 | 22.3  | 1.04E-02 | 33.9  |
|      | -14.5 | case2             | 15.4 | 4.52E-03            | 14.1 | NHT-740   | 2.21E-03            | 2.29E-03            | 21.3 | 1.18E-04 | 19.8  | 6.80E-04 | 29.6  |
|      |       | case3             |      | 4.26E-03            | 13.0 | NHT-740   | 2.21E-03            | 1.57E-03            | 17.7 | 1.18E-04 | 10.6  | 2.44E-04 | 25.6  |
|      |       | case1             | 12.4 |                     |      |           |                     |                     |      | ļ        |       |          |       |
|      | -11.0 | case2             | 13.4 |                     |      |           |                     | -                   | _    |          |       |          |       |
|      |       | case3             | 13.2 |                     |      |           |                     |                     |      |          |       |          |       |
|      |       | case1             | 20.4 | 8.06E-03            | 16.6 | NHT-740   | 2.84E-03            | 4.92E-03            | 28.0 | 1.02E-03 | 24.4  | 1.45E-02 | 35.2  |
| 0.25 | -14.5 | case2             | 20.4 | 6.31E-03            | 15.3 | NHT-690   | 3.18E-03            | 3.79E-03            | 23.4 | 2.44E-04 | 18.1  | 7.14E-04 | 34.6  |
|      |       | case3             | 19.6 | 5.98E-03            | 14.1 | NHT-740   | 2.51E-03            | 2.25E-03            | 18.3 | 1.18E-04 | 12.9  | 2.57E-04 | 27.8  |
|      |       | case1             | 22.2 | 1.02E-02            | 17.6 | NHT-740   | 3.18E-03            | 6.11E-03            | 29.4 | 1.52E-03 | 24.4  | 1.96E-02 | 37.4  |
|      | -16.0 | case2             | 23.2 | 8.88E-03            | 16.7 | NHT-740   | 2.84E-03            | 4.83E-03            | 24.9 | 2.44E-04 | 19.8  | 9.72E-04 | 35.2  |
|      |       | case3             | 22.4 | 8.52E-03            | 15.4 | NHT-740   | 2.84E-03            | 2.96E-03            | 19.6 | 1.88E-04 | 11.9  | 6.80E-04 | 27.1  |
|      |       | case1             | 15.2 | -                   |      |           |                     |                     |      |          |       |          |       |
|      | -11.0 | case2             | 13.2 |                     |      |           |                     | -                   | _    |          |       |          |       |
|      |       | case3             | 15.0 |                     |      |           |                     |                     |      |          |       |          | -     |
|      |       | case1             | 22.8 | 8.81E-03            | 17.0 | NHT-740   | 2.84E-03            |                     |      | 1.02E-03 | 25.1  | 1.69E-02 | 35.2  |
| 0.27 | -14.5 | case2             | 22.0 | 7.73E-03            | 16.1 | NHT-740   | 2.84E-03            |                     |      | 2.44E-04 | 18.7  | 9.72E-04 | 33.7  |
|      |       | case3             | 22.2 | 7.32E-03            | 14.9 | NHT-740   | 2.84E-03            | _                   | _    | 1.18E-04 | 14.0  | 2.57E-04 | 28.4  |
|      |       | case1             | 26.2 | 1.21E-02            | 18.4 | NHT-740   | 3.18E-03            |                     |      | 1.60E-03 | 24.2  | 2.58E-02 | 36.5  |
|      | -16.0 | case2             | 20.2 | 1.11E-02            | 17.6 | NHT-740   | 3.18E-03            |                     |      | 3.90E-04 | 20.5  | 1.34E-03 | 34.6  |
|      |       | case3             | 25.4 | 1.02E-02            | 16.2 | NHT-740   | 3.18E-03            |                     |      | 1.88E-04 | 12.7  | 7.14E-04 | 28.0  |

表-3 地盤物性

| 地盤       | 土層区分        | 土層区分               | 湿潤密度<br>(t/m <sup>3</sup> ) | 基準有効<br>拘束圧<br>(kN/m <sup>2</sup> ) | 基準初期せ<br>ん断剛性<br>(kN/m <sup>2</sup> ) | 基準初期体<br>積剛性<br>(kN/m <sup>2</sup> ) | 粘着力<br>(kN/m²) | 内部<br>摩擦角<br>(°) | 最大減衰 | S波速度<br>(m/s) |
|----------|-------------|--------------------|-----------------------------|-------------------------------------|---------------------------------------|--------------------------------------|----------------|------------------|------|---------------|
|          | 埋土          | 上層(水面上)<br>上層(水面下) | 1.8                         | 89.8                                | 25920                                 | 67595                                | 0              | 37               | 0.24 | 120           |
| case1    |             | 下層                 | 2.0                         |                                     |                                       |                                      |                |                  |      |               |
|          | 原地盤         | 上層<br>下層           | 2.0                         | 239.8                               | 45000                                 | 117353                               | 0              | 38               | 0.24 | 150           |
|          |             | 上層(水面上)            | 1.8                         |                                     |                                       |                                      |                |                  |      |               |
| case2    | 埋土          | 上層(水面下)<br>下層      | 2.0                         | 89.8                                | 58320                                 | 152089                               | 0              | 38               | 0.24 | 180           |
|          | 百事物         | 上層                 | 2.0                         | 198.5                               | 72200                                 | 188286                               | 0              | 38               | 0.24 | 190           |
|          | 历代中国企会      | 下層                 | 2.0                         | 279.2                               | 125000                                | 325980                               | 0              | 39               | 0.24 | 250           |
|          |             | 上層(水面上)            | 1.8                         | 72.0                                | 70380                                 | 207011                               |                | 28               |      | 210           |
|          | 埋土          | 上層(水面下)            | 2.0                         | 12.9                                | 79380                                 | 207011                               | 0              | 58               | 0.24 | 210           |
| case3    |             | 下層                 | 2.0                         | 142.3                               | 125000                                | 325980                               |                | 39               |      | 250           |
|          | 回知般         | 上層                 | 2.0                         | 198.5                               | 156800                                | 408910                               | 0              | 39               | 0.24 | 280           |
|          | /八、+巴岱金     | 下層                 | 2.0                         | 279.2                               | 405000                                | 1056176                              | U              | 44               | 0.24 | 450           |
| 共通<br>材料 | 基礎捨石<br>裏込石 | 基礎捨石<br>裏込石        | 2.0                         | 98.0                                | 180000                                | 469412                               | 0              | 40               | 0.24 | 300           |

#### 3.3 周波数特性の影響の評価

以上述べた条件をもとに、まず周波数特性と岸壁変形量の相関を検討するため、正弦波を用いた検討を行った.正弦波は継続時間の影響の条件を揃えるために継続時間を40秒、主要動継続時間を5秒に調整して、主要動の前後はコサイン状のテーパーをかけた波形を用いた.用いた周波数は、0.2、0.3、0.4、0.6、0.8、1.0、1.5、2.0、3.0、4.0Hzの10種類とした.入力の振幅を調整して、岸壁の天端残留変形量が20cmとなる条件を探索した.この20cmは、レベル1地震動作用後の変形量として供用制限を行うことなく岸壁が引き続き供用できる値の上限に近い値として設定している.

重力式岸壁の設計震度が 0.10 の条件について,変形が 20cm となる条件について周波数ごとの地表面加速度最大 値を示したものが図-3 である.この加速度最大値は,照査 用震度が1次元の地震応答計算における地表面加速度をも とに設定されることを想定し,解析コード FLIP の自由地 盤部における1次元の応答結果をもとに評価している.従 って,本論文で述べる方法は,基本的に1次元の地震応答 計算もFLIPを用いて行う場合に適用可能であるといえる.

図より3つの特徴が指摘できる.まず,1Hz以上になる と壁体に変形を起こさせるためには非常に大きな入力地 震動が必要になる.また,1Hz以下の領域では基本的にほ ぼ同程度の入力地震動により等量の変形が発生する.さら に,水深が浅いほど同じ入力に対して変形が生じにくいこ とが分かる.これは,同じ設計震度で設計した断面であっ ても,壁高さが高いほど変形しやすいことを示している. 矢板式岸壁についても同様の傾向の結果が得られた.

以上の検討より、1Hz以下の領域でフラット、1Hz以上 で急激に減衰する値を持つフィルターを用いることによ り、地震動の周波数特性を考慮することとする.1次元地 震応答解析により得られる地表面加速度時刻歴を高速フ ーリエ変換したものにこのフィルターを乗じることによ り、一様変形スペクトルが得られることとなる.従って、 一様変形スペクトルをフーリエ逆変換することにより得 られる加速度最大値は岸壁の変形量に対応するといえる.

設計震度 0.10 の条件における結果であることを考慮して、フィルター処理後の加速度最大値が 100Gal となるよ



図-3 20cm 変形時の周波数と地表面加速度最大値の関係

うなフィルターを検討する.1Hz以下の応答値の代表値と して、0.8Hz 入力に対する値に対して、検討結果をもとに 壁高H,背後地盤(Vs≥300m/sの工学的基盤から背後地盤 の地表面まで)の固有周期 T<sub>h</sub>, 壁体下の固有周期 T<sub>u</sub>の 3 つのパラメータを用いて線形重回帰分析を行い 1Hz 以下 のフラットな部分の値(これを base 値の意味で b と呼ぶ) に対する回帰式を求めた.固有周期は1/4波長則により求 めるが,背後地盤の固有周期 T<sub>h</sub>については,裏込石を無視 し,重力式岸壁の壁体下の固有周期T"については壁体直下 の捨石は無視し、それぞれ原地盤として固有周期を算出し た. さらに 1Hz 以上については, 結果にフィットする関数 形を用いて、フィルターを作成した.その際、従来港湾構 造物の設計震度算出の際には SMAC 型強震計の特性に補 正するフィルター(以下 SMAC フィルターと呼ぶ)が用い られてきたことを考慮し, SMAC フィルターの関数を参考 にして設定している.

矢板式岸壁についても同様の検討を行った.控え直杭 式については重力式と同様に設計震度 0.10 の断面を対 象としたが,控え組杭式については設計震度 0.15 以上で 検討しているため,設計震度 0.15 の断面を対象とし,フ ィルター処理後の加速度最大値が 150Gal になるように 調整した.またその際,地盤固有周期に乗じる係数 *c*<sub>3</sub>, *c*<sub>4</sub>については,重力式と同じ値を用いることとし,それ 以外の係数に対する回帰とした.これは,矢板式岸壁の 検討ケース数が重力式と比較して少ないため,*c*<sub>3</sub>,*c*<sub>4</sub>を 含めた回帰結果をそのまま用いると地盤が軟弱なケース の方が地盤が良好なケースよりも震度が小さくなる場合 が生じることがわかったためである.

フィルターa(f)の関数を式(1)~式(3)に、参考として式(4) に SMAC フィルターS(f)の関数もあわせて示す. 地盤固有 周期については、背後地盤固有周期 T<sub>b</sub>に対して負、海底面 下地盤固有周期 T<sub>u</sub>に対して正の係数が得られている.これ は回帰によるものであり、背後地盤固有周期 T<sub>b</sub>に対する係 数が負であることには物理的根拠はない. 従って、背後地 盤固有周期と海底面下地盤固有周期との相対関係が通常 と大きく異なる場合には、そのままの形では適用できない と考えられる. 例えば正規圧密粘土層を壁体直下のみ置換 砂などで改良した場合がこれにあたる. そのような場合の 取り扱いについては後に示す.

フィルター形状を図-4~図-6に示す. 図中, ◆のプロットが正弦波による地震応答計算結果に対応する値である. 矢板式控え組杭岸壁については,地盤ケース3の場合の一 致度がやや悪いが,矢板式控え組杭岸壁は主に地盤が軟弱 な場合に用いられることから大きな問題ではないと考え られる.

$$a(f) = \begin{cases} b & (f \le 1.0 \text{Hz}) \\ \frac{b}{1 - \{g(f)\}^2 + c_1 g(f)\}} & (f > 1.0 \text{Hz})^{(1)} \\ g(f) = 0.34(f - 1.0) & (2) \end{cases}$$

$$b = c_2 \frac{H}{H_R} - c_3 \frac{T_b}{T_{b_R}} + c_4 \frac{T_u}{T_{u_R}} - c_5$$
(3)

ここに,

f: 周波数 (Hz)

i:虚数単位

H:壁高(m)

H<sub>R</sub>:基準壁高(=15.00m)

*T<sub>b</sub>*:背後地盤の初期固有周期(s)

- *T<sub>b<sub>R</sub></sub>*:背後地盤の基準初期固有周期(=0.80s)
- T<sub>u</sub>:壁体下(重力式)または海底面下(矢板式)地 盤の初期固有周期(s)
- *T<sub>uR</sub>*: 壁体下(重力式)または海底面下(矢板式)
   地盤の基準初期固有周期(=0.40s)

 $c_1 \sim c_5$ : 定数で,以下のとおり

- c1=6.8 (重力式), 11.0 (矢板式)
- c2=1.05 (重力式), 2.25 (矢板式)
- $c_3 = 0.88, c_4 = 0.96$
- c<sub>5</sub>=0.23(重力式),0.96(矢板控え直杭式),0.76 (矢板控え組杭式)

$$S(f) = \frac{1}{1 - \left(\frac{f}{7.14}\right)^2 + 2\left(\frac{f}{7.14}\right)i}$$
(4)

#### 3.4 継続時間の影響の評価

正弦波の検討により周波数特性を考慮できることとな るが、この他に岸壁の変形に影響を及ぼす要素として地 震動の継続時間の影響の考慮を検討する.

検討条件は周波数特性の検討と同様に,重力式および矢 板控え直杭式は設計震度 0.10,矢板控え組杭式は設計震度 0.15 とした.周波数特性に偏りがないように,港湾等にお ける代表的な観測波形,鉄道構造物における設計波および 模擬地震動を 9 波形抽出した.用いた波形とその卓越周波 数を表-4 および図-7 に示す.





1.4

1.2

1.0

0.8

0.6

0.4

0.2 0.0

0.1

a(f)

1.1

1.0

f(Hz)

(a) 水深-7.5m, 地盤ケース1

10.0





図-4(b) 周波数特性考慮用フィルター(重力式)

図-5(a) 周波数特性考慮用フィルター(矢板控え直杭式)



- 9 -



図-6(b) 周波数特性考慮用フィルター(矢板控え組杭式)

表-4 検討対象波形

| No. | 名称           | 卓越周波数(Hz) |
|-----|--------------|-----------|
| 1   | 八戸波          | 0.39      |
| 2   | 神戸波          | 2.88      |
| 3   | 大船渡波         | 2.34      |
| 4   | 宮崎波          | 4.55      |
| 5   | 美都波          | 0.37      |
| 6   | JR 波         | 1.34      |
| 7   | Dip 波        | 0.68      |
| 8   | Strike 波     | 1.66      |
| 9   | Subduction 波 | 0.60      |





(b) No.2 (神戸波)



(c) No.3 (大船渡波)



図-7(a) 入力地震動



これら波形の採用理由は次の通りである.まず現在港 湾構造物の耐震設計に用いられる代表的な波形として, 内陸直下型地震では神戸波、海溝型地震では八戸波、大 船渡波を抽出した.この他の観測波形として宮崎波は 1996 年日向灘地震において港湾地域強震観測網<sup>22)</sup>によ り観測された基盤波形,美都波は2001年芸予地震におい て基盤強震観測網(KiK-net)<sup>23)</sup>により観測された基盤波 形である.なお、宮崎波については、1.0Hz にも強い成 分を有する.この他,内陸直下型横ずれ断層・逆断層, 海溝型低角逆断層の3つのタイプを考慮して、香川ら<sup>24)</sup> が作成した模擬地震動(それぞれ, Strike 波, Dip 波, Subduction 波)を採用している. さらに確認のために, 港湾とは異なる鉄道構造物の耐震設計で用いられる波形 である JR スペクトルⅡ適合波 <sup>25)</sup>を採用した. 模擬地震 動および JR スペクトル II 適合波はレベル 2 地震動とし て想定されているものであるが、ここでは模擬地震動を 検討に取りいれるため採用している.

以上の9波形を用いて、重力式岸壁について、入力振幅 を調整することにより、岸壁の残留変形量が20cmとなる 条件を探索した.設計震度0.10、水深-14.5m、地盤ケース 1の条件における自由地盤部の地表面加速度について上述 のフィルター処理後の加速度最大値α<sub>f</sub>を図-8に示す.図 中の◇がフィルター処理を行った結果であるが、地震波形 によってかなりのばらつきがある.これは、入力波形の継 続時間の長短等の影響が考えられ、継続時間が短い地震動 ほど水平変位20cmを発生させるα<sub>f</sub>は必然的に大きくなる ものと考えられる.

そこで継続時間に関するパラメータとして加速度最大 値 α<sub>f</sub>で基準化したフィルター処理後の加速度の二乗和平 方根 Sを用いて補正を行う.図-9 および式(5)に S/α<sub>f</sub>と低 減率 pの関係を示す.ここで,低減率 pとはフィルター処 理して得られた α<sub>f</sub>を検討に用いた設計震度 0.10 相当の 100Galに対応させるために設定した値(=100/α<sub>f</sub>)である. 図より,地盤ケースに関係なく S/α<sub>f</sub>と低減率 pの間には 比較的高い相関があり,この関係を用いることで継続時間 の影響を考慮できると考えられる.式(5)に示す関係を用い て継続時間の影響を考慮した結果,図-8 の●で示す結果が 得られた.波形間のばらつきが適切に補正されていること が分かる.

矢板式岸壁についても同様の検討を行った.結果を図-9 ~図-11に示す.矢板式岸壁の結果は,ややばらつきが大 きいが,同様の補正を行うことにより継続時間の影響を考 慮できると考えられる.式(5)により得られる低減率 pを用 いて,周波数特性と継続時間の影響を考慮した補正加速度 最大値α<sub>c</sub>は式(6)により得られる.なお,ここでは図-9~ 図-11に示したように低減率が 1.0以下の条件で検討して いるため,低減率の上限は 1.0 とする.

$$p = c_6 \ln \left( S / \alpha_f \right) - c_7 \tag{5}$$

ここに,

S: フィルター処理後の加速度自乗和平方根(Gal) $\alpha_f: フィルター処理後加速度最大値(Gal)$  $c_6 \sim c_7: 定数で、以下のとおり$  $c_6 = 0.36(重力式、矢板控え直杭式)、0.31(矢板$ 控え組杭式) $c_7 = 0.29(重力式), 0.20(矢板控え直杭式), 0.10$ 

$$\alpha_c = p \cdot \alpha_f \tag{6}$$

ここに,

 $\alpha_c$ : 補正加速度最大值(Gal)

(矢板控え組杭式)



3.5 照查用震度算出方法

以上の方法により,岸壁の許容変形量が 20cm の場合の 照査用震度を算出することが可能となるが,岸壁の許容変



図-11 低減率(矢板控え組杭式)

形量は岸壁の重要度や求められる機能などに応じて変化 するものである.岸壁の供用性を考慮すると、レベル1地 震動に対する変形量として 20cm は上限に近いと考えられ る. このため、20cm 以下の任意の変形量許容値に対して 照査用震度が適切に算定できるように、表-4に示した9波 形を用いて,残留変形量が 5,10,15cm となるように入力振 幅調整を行い,得られた条件における自由地盤部の地表面 加速度時刻歴をもとに補正加速度最大値α ε を算出した. 震度算出式は、現行設計震度に対して、岸壁変形量と補正 加速度最大値を重力加速度で除した値 a \_/g を説明変量と した回帰分析により求めることとした.用いたデータ数は 重力式岸壁は 972, 矢板式岸壁はそれぞれ 648 である. た だし,単純な線形回帰は精度が悪く,かつ非線形の多項式 回帰を適用すると、α\_/gのべき乗の値が1以上となり、そ の結果 a ./g の値が大きい場合に非常に大きな震度が算出 される場合があることがわかった. このため,  $\alpha_{dg}$ につい ては1次の回帰関係を求める観点から以下のように設定し た.

まず,検討した変形量の範囲のうち平均的な 10cm 変形 の結果に対して,現行設計震度  $k_h$ に対して $\alpha_c/g$ を説明変 量とした線形回帰 ( $k_h = A \alpha_c/g + B$ )により係数 A, Bを決定 した.次に,全ての結果を用いて,係数 Aに対して変形量 Dを基準変形量  $D_r$ (=10cm)で除した値の回帰を求めた.以 上により,式(7)が各構造形式に対して得られた.

$$k_h = c_8 \left(\frac{D_a}{D_r}\right)^{c_9} \cdot \frac{\alpha_c}{g} + c_{10} \tag{7}$$

ここに,

k<sub>h</sub>:照査用震度

$$D_a: 変形量許容値(cm)$$
  
 $D_r: 基準変形量(=10cm)$   
 $\alpha_c: 補正加速度最大値(Gal)$   
 $g: 重力加速度(=980Gal)$   
 $c_8 \sim c_{10}: 定数で、以下のとおり$   
 $c_8 = 1.78(重力式), 1.91(矢板控え直杭式), 1.32$   
(矢板控え組杭式)  
 $c_9 = -0.55(重力式), -0.69(矢板控え直杭式), -0.74$   
(矢板控え組杭式)

c<sub>10</sub>=0.04(重力式),0.03(矢板控え直杭式),0.05 (矢板控え組杭式)

式(7)では定数項 c<sub>10</sub>が 0.03~0.05 となっているため,地 表面応答加速度がゼロであっても最低 0.03 の設計震度を 要求することになる.従って式(7)はあくまでレベル1地震 動のような,ある程度の振幅を有する地震動に限定して用 いることが適切である.なお,岸壁の設計では地震動に対 する安全性照査以外にも,永続作用に対しても安全性照査 が行われ,永続作用に対する安全率は地震動作用時の安全 率よりも大きく設定されている<sup>2)</sup>.従って,設計地震動の 非常に小さい地域においても最低設計震度 0.05 相当以上 の安全性は求められていると考えられ,式(7)の定数項は現 状と比較して不都合は生じないと考えられる.

式(7)による精度を,従来港湾構造物において用いられて きた野田らによる震度算出方法<sup>26)</sup>と比較する.野田らによ る震度<sup>26)</sup>は, SMAC フィルターを施した地表面加速度最大 値 *α*<sub>*s*</sub> (以下, SMAC 加速度最大値と称する)をもとに, 式(8)により算出される.

 $k_{h} = \alpha_{S}/g \qquad : (\alpha_{S} \leq 200 \text{Gal})$   $k_{h} = 1/3 \cdot (\alpha_{S}/g)^{1/3} \quad : (\alpha_{S} > 200 \text{Gal}) \qquad (8)$ ここに、  $k_{h} : 震度$ 

α<sub>s</sub>: SMAC フィルター処理後の加速度最大値 (Gal) g: 重力加速度 (=980Gal)

まず,各構造形式について,変形量ごとに設計震度  $k_{hd}$ に対する補正加速度最大値 $\alpha_c$ と SMAC 加速度最大値 $\alpha_s$ の分布を図-12~図-14 に示す.補正加速度最大値 $\alpha_c$ はばらつきが少なく,設計震度の増加に対応して増加している. これに対して SMAC 加速度最大値 $\alpha_s$ はばらつきが大きく,かつ設計震度との相関が低い.また,上限値が設計震度の増加に伴って減少する場合があるのが特徴である.これは,設計震度の上昇に伴って耐震性能の高い断面を等量変形させるための基盤入力振幅が大きくなり,このために地盤



図-12 設計震度と加速度最大値の関係(重力式)







図-14 設計震度と加速度最大値の関係(矢板控え組杭式)









の非線形化の影響で地表面応答加速度が長周期化すると ともに加速度最大値としては減少しているためである. SMAC 加速度は図-4~図-6 に示したようにある程度周波 数特性を考慮するものとなっているが、それでも SMAC 加速度最大値からは岸壁の変形量は推定できない.

次に、本研究による照査用震度と野田らの式による震度 とを比較したものが図-15~図-17 である.鉛直軸の k<sub>h\_cal</sub> が各方法による照査用震度である.野田らによる式は変形 量に対応したものではないが、ここでは従来法との比較の ためにあえて比較している.野田らの式は SMAC 加速度最 大値が 200Gal 以上の領域で a<sub>s</sub>/gを 1/3 乗するために、0.20 以上の大きな震度が算出されにくい.加速度最大値の上限 のばらつきは抑えられているが、逆に大きな震度を必要と する場合にも小さな震度を算出してしまうことになる.ま た、設計震度の上昇に伴う算出震度は大きな変化は示さな い.本研究による震度は、ばらつきはあるものの、野田ら の方法によるよりも誤差は少なく、より合理的な震度を与 えると評価できると考えられる.

#### 4. 局部的な地盤改良がある場合等の評価

これまでは地盤条件が成層状態の検討であった.地盤に 軟弱な正規圧密粘土層が存在する場合,岸壁では沈下の問 題などがあるため砂置換等の方法により改良することが 多い.このような場合,地盤条件が成層状態でないため, これまで検討してきた手法の適用性を確認しておく必要 がある.このため,図-18に重力式岸壁を例にして示した ように,鉛直壁前後の正規圧密粘土層を砂置換により地盤 改良を局部的に行う場合について検討した.さらに,成層 状態で過圧密粘土層が存在する場合についても検討を行 った.

表-5 に検討条件を、物性値を表-6 に示す.粘土層の最 大せん断強度は内部摩擦角をもとに与えることとし、正規 圧密粘土では文献 21)に示されている標準値 30 度とした. また、過圧密粘土については 40 度とした.初期せん断弾 性係数などはこれらをもとに設定している.例えば、初期 せん断弾性係数  $G_0$ は、 $G_0$ =340  $\tau_{max}$  ( $\tau_{max}$ :最大せん断強度) により得られる.最大せん断強度  $\tau_{max}$  は前述のとおり  $\tau_{max}$ =  $\sigma_m$ 'sin  $\phi$  ( $\sigma_m$ ': 有効拘束圧) により求めている. これ は、正規圧密粘土においては埋め土による強度増加がある ことを考慮したもので、土質試験により得られる粘着力そ のものを用いているわけではないことに注意が必要であ る.置換砂の物性値については不明な点が多いため、ここ では兵庫県南部地震における神戸港の被災事例の再現研



図-18 重力式岸壁検討断面

究<sup>8)</sup>を参考に設定した.また,粘性土以外の地盤物性値は, 正規圧密粘土の砂置換断面については表-3の地盤ケース1 の値を,過圧密粘土の断面については同表の地盤ケース2 の値を用いた.検討はこれまでと同様に,FLIPにより表-4 に示す9波形の地震動で変形量が概ね20cm以下となるように振幅調整を行った.

検討の結果,まず正規圧密粘土層を砂置換により改良す る場合は,式(3)の T<sub>b</sub>と T<sub>u</sub>をそのまま用いると両者のバラ ンスが悪くなり,式(3)の b値が必要以上に低く算定される ことがわかった.この理由は,式(3)における T<sub>b</sub>と T<sub>u</sub>の係 数がそれぞれ負と正であるためである.検討の結果,壁体 下の固有周期 T<sub>u</sub>について,改良された条件の固有周期を用 いるのではなく,改良前の正規圧密粘土の状態で評価する ことがよいことが分かった.なおこれは,地盤改良が砂置 換により行われた場合の結果であることに注意が必要で ある.例えば,高置換のサンドコンパクション改良や深層 混合処理による改良が行われる場合は,砂置換の場合と比

表-5 検討条件

| 水深震度 | -7.5m  | -11.0m                       | -14.5m |
|------|--------|------------------------------|--------|
| 0.10 | 0      | 0                            |        |
| 0.15 | $\Box$ | $\bigcirc \triangle \square$ |        |
| 0.20 |        |                              | 0      |

注:○;重力式,△;控え直杭矢板,□;控え組杭矢板



図-19 算出震度の比較(重力式)

較して岸壁の対変形性能は高いと考えられるため,別途検 討が行われている.次に,過圧密地盤の場合は式(3)がその まま適用できることがわかった.以上の方法で算出した照 査用震度の分布を図-19~図-21に示す.

| 土層名       | 岸壁水深<br>(m)            | 土層区分 | 湿潤密度<br>(t/m <sup>3</sup> ) | 初期せん断<br>弾性係数<br>(kN/m <sup>2</sup> )      | 初期体積<br>弾性係数<br>(kN/m <sup>2</sup> )       | 粘着力<br>(kN/m <sup>2</sup> ) | 内部<br>摩擦角<br>(°) | 最大減衰 |
|-----------|------------------------|------|-----------------------------|--------------------------------------------|--------------------------------------------|-----------------------------|------------------|------|
| 原地盤       | -7.5                   | 上層   | 1.6                         | 25900                                      | 67400                                      | 0                           | 30               | 0.20 |
| (正規圧密粘土層) | -7.5                   | 下層   | 1.6                         | 31900                                      | 83100                                      | 0                           | 30               | 0.20 |
|           | 7.5                    | 上層   | 1.6                         | 28500                                      | 74300                                      | 0                           | 40               | 0.20 |
|           | -7.5                   | 下層   | 1.6                         | 39000                                      | 102000                                     | 0                           | 40               | 0.20 |
| 原地盤       | 11.0                   | 上層   | 1.6                         | 34200                                      | 89200                                      | 0                           | 40               | 0.20 |
| (過圧密粘土層)  | -11.0                  | 下層   | 1.6                         | 44800                                      | 117000                                     | 0                           | 40               | 0.20 |
|           | -14.5                  | 上層   | 1.6                         | 39900                                      | 104000                                     | 0                           | 40               | 0.20 |
|           |                        | 下層   | 1.6                         | 50500                                      | 132000                                     | 0                           | 40               | 0.20 |
| 置換砂       | -7.5<br>-11.0<br>-14.5 | 置换砂  | 1.8                         | 58300(σ <sub>m</sub> '/106) <sup>0.5</sup> | 15200(σ <sub>m</sub> '/106) <sup>0.5</sup> | 0                           | 37               | 0.24 |

表-6 物性值

※σ<sub>m</sub>'は, 有効拘束圧力(kN/m<sup>2</sup>)





図-21 算出震度の比較(矢板控え組杭式)

### 5. フィルターの上下限値の検討

本研究では、港湾地域における標準的な地盤条件につい て検討を行ってきた.しかしながら、これまで述べた方法 により照査用震度を算出する場合、地盤の固有周期が本研 究の対象範囲と比較して非常に長い場合または非常に短 い場合、あるいは壁高が非常に低い場合などに極端に大き いかまたは小さい照査用震度となる場合があることがわ かった.このため、照査用震度の算出時に用いるフィルタ ーのb値(式(3))に上下限を設けることによりそのような 問題の発生の回避を試みる.

検討断面を図-22に示す.重力式岸壁と控え直杭式矢板

岸壁の地盤条件が良い場合について検討する. 控え組杭式 矢板は非常に地盤条件の良い場合に用いられることは少 ないためここでは検討対象外としている.

まず重力式岸壁については,北海道開発局により実施さ れた釧路港試験重力式岸壁の 2003 年十勝沖地震における 変状調査結果<sup>27)28)29)</sup>をもとに検討する.図-22 に試験岸壁 の断面図を示す. 当該岸壁は地震動と岸壁の変形との相関 などを調査し、合理的な耐震設計法を提案することを目的 に設置されたもので,設計震度は通常の設計震度よりも小 さな 0.10 とされている. 2003 年十勝沖地震において自由 地盤部で法線直角方向に図-23 に示すように 160Gal 程度 の最大加速度を観測し, 裏埋め部分が未改良の試験岸壁で 約 20cm の変形が生じた. 地盤条件は図示したように良好 なもので、支持層の上にほぼ直接建設されている、固有周 期は T<sub>b</sub>=0.37s, T<sub>u</sub>=0.05s であり, 壁高は 10.44m であること から,式(3)の b 値は 0.21 となる.この値はこれまで検討 した b 値の下限値を下回るもので、このまま 20cm 変形に 対する震度を評価すると 0.07 と過小な値が得られた. この ため,設計震度相当の震度を与えるb値を検討したところ, 当該施設では 0.50 となった. なお,得られた加速度時刻歴 は基線のずれが認められ、そのままで継続時間の影響を考 慮すると式(5)の加速度自乗和平方根 S が過大に評価され ることになるため, ハイパスフィルターを用いてこれを補 正していることを付記しておく.

次に矢板式岸壁について検討する.事例岸壁は図-22(b) に示すように、支持層相当の土丹に根入れされており、さ らに埋土部分はサンドドレーン改良が施されている.設計 震度は 0.25、壁高は 14.2m である.固有周期は *T*<sub>b</sub>は未改 良埋土部分を評価して 0.23s、*T*<sub>u</sub> は海底面位置が矢板壁直 背後では支持層相当であるためゼロとなる.これにより base 値を算出すると 0.87 となり、これも検討してきた範囲 外の値である.

この断面について FLIP を用いて解析を行った.用いた 地震波形は矢板式控え直杭岸壁で平均的な結果を与えた JR2 波とし,変形量 15cm となる振幅を探索し,その結果 の自由地盤部地表面加速度時刻歴から本研究の方法で震 度を算出すると 0.24 となった.これはほぼ設計震度に近い 結果であったが,設計震度の 0.25 となる base 値を重力式 岸壁と同様に探索すると 0.92 となった.

以上の結果をこれまでの検討と対照する. 図-24 に, こ れまでの検討例(×), 5. での検討事例(○)を示す. 水平軸は壁高*H*(m), 鉛直軸はフィルター式(3)の b 値であ る. いずれの構造形式についても,これまでのモデル地盤 による検討結果は壁高に対するb値の関係として表示する と明瞭な比例関係が確認できる. このため, b 値の上限を















ここでは壁高との関係により表現することとする.

まず上限について検討する.いま,壁高に対するb値の 値として本研究の対象範囲以上の値となる場合は,地盤条 件がケース1以上に軟弱か,または工学的基盤が本研究で 想定した以上に深い場合である.このうち,地盤がケース 1以上に軟弱な場合は,通常地盤改良が行われると考えら れるためここでは検討から除外してよいと考えられる.次 に,工学的基盤が非常に深い場合であるが,深い地盤では 初期せん断応力の影響は相対的に小さく成層状態に近く なること,さらに深い地盤ほどS波速度に対する最大せん 断強度が相対的に高くなると考えられるため、固有周期の 増加に対する変形量の増加程度は低くなると考えられる. このためここでは、b値の上限をモデル地盤による結果の 上限値と考えると、図-24の凡例に示す結果が得られる.

次に下限値について検討する.重力式については釧路港 試験岸壁,矢板式岸壁については事例岸壁の結果を通るよ うに,上限値の壁高とb値の関係式の勾配を変えずに切片 を変化させることにより,下限値として図-24の凡例に示 す結果が得られる.ここで,矢板式岸壁控え組杭式につい ては検討例がないため,控え直杭式の結果をそのまま準用 している.この妥当性については今後の課題とする.

このように下限値を定めると、壁高が小さい物揚場の場 合に非常に小さなb値となる可能性がある.重力式岸壁の 壁高 5m に対する下限値は 0.28 となる. 壁高 5m は係船岸 として下限に近い値と考えられるため、この値を下限値と する.ただし、矢板式岸壁については、壁高 5m における 下限値は非常に小さな値となるため、下限値の式の壁高 5m の値を採用することは非常に小さな照査用震度を与え るため現実的ではない.とはいえ、ここで壁高が非常に低 い場合の構造形式別の耐震性能の比較を論じる余裕はな い. このため、便宜的に壁高 5m における重力式岸壁の b 値下限値による照査用震度と等価な矢板式岸壁の照査用 震度を与える b 値下限値を検討する. いま 1Hz 以下の正弦 波による地表面応答加速度最大値が100Galであった場合、 重力式岸壁はb値0.28のフィルター処理により28Galとな る.継続時間による低減率を無視すれば照査用震度は0.09 となる. 矢板式岸壁について同じ照査用震度を与える b 値 は0.41となる.このため、ここでは矢板式岸壁のb値下限 値は0.41とする.

以上により, 各構造形式の b 値の上下限は以下のとおり となる.

$$0.04H + 0.08 \le b \le 0.04H + 0.44 \tag{9}$$

 $0.28 \le b$ 

(矢板控え直杭)

$$0.12H - 0.78 \le b \le 0.12H - 0.24 \tag{10}$$

 $0.41 \le b$ 

$$0.12H - 0.78 \le b \le 0.12H - 0.04 \tag{11}$$
  
0.41 < b



#### 6. 岸壁の変形量許容値

#### 6.1 検討条件

確率論的地震ハザード解析<sup>4)</sup>により,全国40港湾を対象 にレベル1設計地震動を時刻歴波形として作成した.ここ で、レベル1地震動は、再現期間75年の信頼度50%とな る地震動とし、従来の地域別震度ブロックのうち、A~D 地区のそれぞれについて10波形を算出した.ここで、E 地区を対象に加えなかった理由は、E地区は地震動レベル が小さいため、永続作用の条件で断面が決定する可能性が あり、本研究で目的とする標準的な変形量許容値を算出す る観点からは適切ではない可能性があると判断したため である.

算出した波形を用いて、3. で述べた断面を対象に、FLIP を用いた変形照査を行った.対象とした構造物は地盤・設 計震度・水深などを変化させた 17 ケース(表-7 参照)と した.ここで、水深が深いほど岸壁の重要度係数が高く設 計震度が高く設定される傾向があること、矢板式岸壁の控 え組杭式は設計震度の小さい条件ではあまり用いられて いないことを考慮して条件を設定している.地盤条件は、 A地区については地盤ケース2,B~D地区については地盤 ケース1とした.ここで、地盤条件は、3. で述べたもの と同様である.解析ケース数は680である.表-8 に用いた レベル1地震動を示す.加速度最大値は、工学的基盤にお ける2E波としての値である.なおここでの地震波形は、 再現期間の長い海溝型地震等の影響を必ずしも十分に反 映したものではないため、最終的に提示されるレベル1地 震動とは加速度最大値等が異なる可能性がある.

 水深
 -7.5m
 -11.0m
 -14.5m

 夏度
 0.10
 ○△
 ○△□

 0.15
 ○△□
 ○△□
 ○△□

 0.20
 ○△□
 ○△□

 0.25
 ○△□

表-7 検討条件

注:○;重力式,△;控え直杭矢板,□;控え組杭矢板

地域別ブロック別のレベル1地震動の工学的基盤にお ける加速度最大値は、検討対象とした40波の範囲では、 A地区で88~391Gal, B地区109~648Gal, C地区54~367Gal, D地区38~152Galなどと広い範囲にばらついている.

以上の条件により FLIP を用いて変形量を評価したが, 港湾基準<sup>2)</sup>の考えに従って設計震度を算出すると,必ずし も本研究において設定した設計震度と一致しないため,以 下の考えで検討結果を内挿している.まず,水深-14.5mを 特定,水深-11mを重要度A級,水深-7.5mを重要度B級と 扱う.地盤条件をケース1で第Ⅲ種地盤,ケース2を第Ⅱ 種地盤とする.以上により地域別震度,地盤種別係数,重 要度係数の積により設計震度を求める.例えばA地区の第 Ⅱ種地盤の-14.5mの場合,0.15×1.0×1.5=0.225より設計震 度は0.23となる.このため,水深-14.5mの設計震度0.20 と0.25の結果を用いて,設計震度0.23相当の変形量を算 出する.ただし,矢板式岸壁の控え組杭式については設計 震度0.15が最低であるので,0.15以下の設計震度に対する 結果を0.15の断面の変形量で代表させてある.

| 地域   |                                      |             |
|------|--------------------------------------|-------------|
| ブロック | 港湾名                                  | 加速度最大值(Gal) |
|      | 釧路港                                  | 172.6       |
|      | 十勝港                                  | 391.0       |
|      | 木更津港                                 | 175.9       |
|      | 尾菅港                                  | 228.0       |
|      | 和歌山下津港                               | 284.5       |
| А    | 東京港                                  | 106.5       |
|      | 横須賀港                                 | 89.9        |
|      | 名古屋港                                 | 87.9        |
|      | <u></u> 清水港                          | 163.9       |
|      |                                      | 100.8       |
|      | 人 慈港                                 | 231.0       |
|      | 小名近港                                 | 389.7       |
|      |                                      | 267.3       |
|      |                                      | 182.2       |
|      | 后毛 法 法                               | 203.6       |
| В    | 公石法                                  | 109.3       |
|      |                                      | 133.6       |
|      | 日立进                                  | 284.1       |
|      | <u> </u>                             | 128.2       |
|      |                                      | 648.3       |
|      | 一 応 局 小 仏 局 径                        | 103.5       |
|      |                                      | 195.5       |
|      | 境位                                   | 256.7       |
|      | <br>加油港                              | 156.6       |
|      | ———————————————————————————————————— | 136.0       |
| С    |                                      | 101.7       |
|      |                                      | /3.9        |
|      | 工 尾 港                                | 54.0        |
|      | 新 為 港                                | 88.0        |
|      | <u> </u>                             | 366.7       |
|      | 別府港                                  | 106.7       |
|      | 石狩港                                  | 37.5        |
|      |                                      | 125.4       |
|      |                                      | 152.2       |
|      | 高松港                                  | 123.6       |
| D    |                                      | 66.5        |
| _    | 小樽港                                  | 118.6       |
|      | 水島港                                  | 64.6        |
|      | 浜田港                                  | 59.9        |
|      | 三隅港                                  | 96.8        |
|      | 坂出港                                  | 85.1        |

表-8 レベル1地震動

なお変形量については、実際の各港湾における地盤モデ ルを用いているわけではないので、あくまで仮想的な条件 での変形量であることに注意が必要である.

#### 6.2 検討結果

図-25 に地域ブロック別の変形量を示す.図-26 には構 造形式別の変形量の頻度分布を示す.各構造形式について, D地区を除いては変形量にばらつきが大きい.また,従来 地域別震度としては全国平均的な値であった C 地区につ いても,細島港波,松山港波については大きな変形量が算 出された.変形量が大きい理由としては,当該港湾のサイ ト特性の影響が考えられる.図-27 には松山港の強震観測 地点におけるサイト特性を示す.これは地震基盤から地表 面に至るサイト特性であるが,図より分かるように1Hzに 非常に鋭いピークを有する増幅特性となっている.このた め,松山港強震観測地点のレベル1地震動は岸壁の変形に 大きな影響を及ぼす 1Hz の成分が卓越する波形となって いる.加速度最大値が大きいのも基本的にはこの理由によ るものである.

また、これとは逆に、A地区でも変形量の小さい波形が あり、例えば十勝港波は加速度最大値が大きいものの変形 量は比較的小さい.これも十勝港におけるサイト特性の影 響であり、図-27に示すように、岸壁の変形に大きな影響 を及ぼす 2Hz 以下の増幅率が低いために岸壁の変形量は 小さい.B地区の徳島小松島港についても、3.6Hz が卓越 しているものの岸壁の変形に影響の強い成分の増幅率は 大きくなく、このため変形量はB地区の中で中位となって いる.このように岸壁の変形量は地震動の周波数特性との 相関が強く、このため図-28に示すように加速度最大値は 必ずしも変形量との相関は高くない.



○重力式 △控え直杭矢板 □控え組杭矢板 図-25(a) 地域ブロック別変形量











(d) D地区
 ○重力式 △控え直杭矢板 □控え組杭矢板
 図-25(b) 地域ブロック別変形量





(b) 控え直杭矢板



(c) 控え組杭矢板図-26 変形量頻度分布



○重力式 △控え直杭矢板 □控え組杭矢板 図-28(a) 入力加速度最大値と変形量の関係



(e) 水深-14.5m, *k<sub>h</sub>=*0.25

○重力式 △控え直杭矢板 □控え組杭矢板 図-28(b) 入力加速度最大値と変形量の関係

この他,変形量と設計震度の相関は低いことも特徴であ る.従来,設計震度においては重要度係数が考慮され,重 要度の高い岸壁ほど大きな設計震度が採用される傾向が あった.岸壁の重要度はこれまで水深に応じて定められて きたが,水深が深いほど岸壁は地震時に変形しやすい.こ のことが,変形量と設計震度(岸壁の重要度)の相関が低 い理由であると考えられる.

ここで,-11m 岸壁の場合について控え組杭式の矢板岸 壁の変形量と断面力余裕度について整理すると図-29 に 示すとおりである.鉛直軸は断面力を降伏値で除して正規 化している.変形量が15cm以下の範囲では断面力には余 裕がある場合がほとんどである.控え直杭式の場合<sup>12)</sup>と 同様に,この傾向は水深が深いほど顕著である.控え組杭 式矢板岸壁は水深の深い場合に用いられることが多いこ とから,控え組杭式矢板岸壁も控え直杭式と同様に,変形 量が15cm程度以下の場合は降伏先行型ではなく,基本的 に変形先行型であると考えられる.

表-9 に構造形式別の変形量を示す. レベル1地震動に 対する変形量の平均値は、概ね重力式岸壁で10cm、矢板 式岸壁で15cm程度であり、矢板式岸壁の方が変形量が大 きい結果となった.図-30には構造形式別の変形量の比較 を示した.これは、同じ設計震度で断面を設計しても、変 形性能としては構造形式によって差がある事を意味する. ただし、重力式岸壁は2次元有限要素解析におけるモデル 化の問題は少ないと考えられるのに対して,矢板式岸壁は 控え工の杭材を単位奥行きあたりの剛性の等価な矢板に 置き換えて解析しており、モデル化の問題がある.また、 現在 FLIP では、地盤と杭の3次元的な効果を考慮した地 盤バネを考慮できるようになっているが,本研究のような 変形の小さい範囲での適用性については不明な点が多い. このため本研究では控え工と地盤は多重接点として地盤 と同じ変形を与えている.このような矢板式岸壁の2次元 有限要素解析におけるモデル化の問題が,重力式と矢板式 岸壁の変形量平均値の差に影響を及ぼしている可能性も 否定できない.従って、本研究で対象とした変形量の範囲 において,重力式岸壁と矢板式岸壁の耐変形性能の差につ いては慎重な判断が必要と考えられる.

ただし、岸壁の供用上の変形量限界値は概ね 20~30cm 程度と考えられることから、重力式岸壁 10cm,矢板式岸 壁 15cm という平均的な変形量は、いずれも基本的に地震 動が作用した後も岸壁を引き続き供用するためには十分 に小さな値であると考えられる.ここで、上記平均変形量 は地震応答解析によるものであり、20~30cm という数値 は実際の変形量であるため、地震応答解析の誤差を考慮す る必要があると考えられることに注意が必要である.特に、





ここでは小さな変形量の議論を行っているため、地震応答 解析の誤差は無視できないといえる。例えば5. で述べた 釧路港の解析<sup>29)</sup>においても、実測と解析では20%程度の変 形量の差が認められている。構造物の設計においては必ず 安全性の余裕の考慮が求められる.このため実際の制限値 をそのまま設計上の許容値とすることは、一般的には適切 ではないと考えられる.このため、本研究では上記の平均 値をそのまま標準的な許容値とすることを提案する.なお、 矢板控え組杭式岸壁の水深-7.5mの結果はやや変形が小さ いが、水深-7.5mで組杭の例は少ないことから問題はない と判断される.

平均値を許容値と設定することにより,平均値よりも大 きな変形量が見込まれる港湾については従来よりも大き な設計震度を採用するか,または地盤改良を行うか,ある いはその両方を検討する必要がある.逆に,平均値よりも 変形の少ない港湾については,従来よりも設計震度を小さ くすることが可能になる.

なおこの許容値は、あくまで標準値として提案している ものであり、特別な理由がある場合には、岸壁に求められ る機能などに応じて変化させることも可能であると考え られる.

| 水深     | 重力式 | 矢板控え<br>直杭式 | 矢板控え<br>組杭式 |
|--------|-----|-------------|-------------|
| - 7.5m | 8.4 | 13.9        | 9.4         |
| -11.0m | 8.8 | 16.6        | 11.9        |
| -14.5m | 7.9 | 16.8        | 13.3        |

表-9 構造形式別変形量(単位:cm)

#### 7. おわりに

本研究では、通常岸壁が建設される地盤条件を対象に、 レベル1地震動が時刻歴波形により与えられる場合の重力 式および矢板式岸壁の耐震性能照査用震度算出方法につ いて検討した.本研究による主要な結論は以下のとおりで ある.

①地表面の加速度応答波形をもとに、地震動の周波数特性や継続時間の影響などを考慮した耐震性能照査用震度の 算出方法を提案した.提案方法は、岸壁の許容変形量に応じて震度を算定するもので、従来の震度算定方法よりも変 形量との対応がよい結果を与える。

②従来の地域別ブロック別のレベル1地震動の工学的基盤 における加速度最大値は、同一ブロック内でも広い範囲に ばらついている.また、この値は、従来想定していた加速 度最大値との違いが大きい.また、C地区の細島港波、松 山港波のように、従来地域別震度としては全国平均程度の レベルと見なされていた港湾の地震動に対して、変形量が 大きい結果が得られた.逆に、A地区の十勝港波のように、 変形量が小さいケースもあった.これは当該港湾のサイト 特性の影響によるものと考えられる.

従来,設計震度においては重要度係数が考慮され,重要 度の高い岸壁ほど大きな設計震度が採用されてきた.岸壁 の重要度はこれまで水深に応じて定められてきた傾向が 強いが,水深が深いほど岸壁は地震時に変形しやすい.こ のため,変形量は岸壁の重要度と相関が低いことがわかっ た.

レベル1地震動に対する変形量の平均値は、概ね重力式 岸壁で10cm,矢板式岸壁で15cm程度である.構造形式別 の変形量の差は、杭材を含む構造と含まない構造による地 震応答解析精度の差の影響も考えられるため、上記の値を そのまま標準的な許容値とすることを提案する.これら変 形量は、基本的に地震動が作用した後も岸壁を引き続き供 用するためには十分に小さな値であると考えられる.

#### 謝辞:

本研究のとりまとめにあたり,独立行政法人港湾空 港技術研究所・菅野高弘,菊池喜昭各室長,野津 厚, 一井康二(当時),小濱英司各主任研究官より貴重なご 意見を頂きましたことを感謝します.また,本研究で用 いた地震波の一つは防災科学技術研究所の基盤強震観測 網(KiK-net)によるものを,釧路港試験岸壁の波形は北 海道開発局の提供によるもの使用しました.ここに併せ て感謝します.

#### 参考文献

- 1) 土木学会: 耐震基準等に関する提言集, 1996
- 2)運輸省港湾局監修、日本港湾協会:港湾の施設の技術 上の基準・同解説、1999
- 3) 土木学会地震工学委員会耐震基準小委員会:土木構造物の耐震設計ガイドライン(案)ー耐震基準作成のための手引きー,2001
- 4)長尾 毅,山田雅行,野津 厚:フーリエ振幅と群遅
   延時間に着目した確率論的地震ハザード解析,土木学
   会論文集,No.801, I -73, pp.141-158, 2005
- 5) 野津 厚,井合 進,一井康二:岸壁の変形量と入力 地震動タイプに関する一考察,土構造物の耐震設計に 用いるレベル2地震動を考えるシンポジウム発表論文 集,pp.73-80,1998
- 6) 野津 厚,井合 進,一井康二,沼田淳紀:ケーソン 式岸壁の変形に寄与する地震動の振動数成分,レベル
   2 地震動に対する土構造物の耐震設計シンポジウム, pp.311-318,2000

- 7) 松永康男,及川 研,輪湖建雄:阪神・淡路大震災に よる重力式港湾構造物の基礎地盤部の変形,阪神・淡 路大震災に関する学術講演会論文集,pp.383-390,1996
- 一井康二,井合 進,森田年一:兵庫県南部地震におけるケーソン式岸壁の挙動の有効応力解析,港湾技術研究所報告,第36巻第2号, pp.41-86, 1997
- 9) Nakahara, T., E. kohama and T. Sugano: Model shake table test on the seismic performance of gravity type quay wall with different foundation ground properties, 13WCEE, CD-ROM, 2004
- 10)風間基樹, 稲富隆晶:ケーソンに作用する地震時土圧
   に関する模型振動実験,土木学会論文集,第 416 号, I-13, pp.419-428, 1990
- 11) Kohama, E., Miura, K., Yoshida, N., Otsuka, N. and Kurita,S.: Instability of Gravity Type Quay Wall Induced by Liquefaction of Backfill during Earthquakes, Soils and Foundations, Vol.38, No.4, pp.71-84, 1998
- 12) 長尾 毅, 尾崎竜三:控え直杭式矢板岸壁のレベル1 地震動に対する性能規定化に関する研究, 地震工学論 文集, CD-ROM, 2005
- 13) 風間基樹, 鈴木 崇, 小濱英司, 菅野高弘:初期土圧 を考慮した重力式ケーソン岸壁の滑動解析, 地震工学 論文集, CD-ROM, 2005
- 14) 三浦均也,小濱英司,吉田 望,渡邊潤平:すべり土 塊および抗土圧構造物の固有振動数を考慮した地震時 滑動量の推定法,地震工学論文集,CD-ROM,2005
- 15) Ichii, K., Iai, S., Sato, Y., and H. Liu : Seismic performance evaluation charts for gravity type quay walls, Structural Eng./Earthquake Eng., JSCE, Vol.19, No.1, pp.21-31, 2002
- 16) Iai, S., Matsunaga, Y. and Kameoka, T. : Strain Space Plasticity Model for Cyclic Mobility, Report of The Port and Harbour Research Institute, Vol.29, No.4, pp.27-56, 1990
- 17)小堤治、塩崎禎郎、一井康二、井合進、森玄:
   二次元有効応力解析法の解析精度向上に関する検討、
   海洋開発論文集、第20巻、pp.443-448、2004
- 18) 井合 進, 龍田昌毅, 小堤 治, 溜 幸生, 山本裕司, 森浩章:地盤の初期応力条件が矢板式岸壁の地震時挙 動に与える影響の解析的検討, 第26回地震工学研究発

表会, pp.809-812, 2001

- 19)岡 由剛,三輪 滋,石倉克真,平岡慎司,松田英一, 吉田 晃:鋼矢板岸壁の被災時例による有効応力解析 における初期応力状態のモデル化手法の検証,第26回 地震工学研究発表会,pp.813-816,2001
- 20) 三輪 滋,小堤 治,池田隆明,岡 由剛,井合 進: 初期応力状態を考慮した有効応力解析による鋼矢板岸 壁の地震被害の評価,構造工学論文集, Vol.49A, pp.369-380, 2003
- 21) 森田年一, 井合 進, H. Liu, 一井康二, 佐藤幸博: 液状化による構造物被害予測プログラム FLIP におい て必要な各種パラメタの簡易設定法, 港湾技研資料 No.869, 1997
- 22)深澤清尊,佐藤陽子,野津厚,菅野高弘:港湾地域強 震観測年報(2001),港湾空港技術研究所資料,No.1019, 2002 (http://www.eq.ysk.nilim.go.jp)
- 23) http://www.kik.bosai.go.jp
- 24) 香川敬生,江尻譲嗣:震源断層の破壊過程を考慮した 震源近傍地震動の試算,土構造物の耐震設計に用いる レベル 2 地震動を考えるシンポジウム発表論文集, pp.1-6, 1998
- 25)鉄道総合技術研究所編:鉄道構造物等設計標準・同解 説,耐震設計,丸善株式会社,1999
- 26)野田節男,上部達生,千葉忠樹:重力式岸壁の震度と 地盤加速度,港湾技術研究所報告,Vol.4,No.4, pp.67-111,1975
- 27)渥美洋一,石澤健志,笹島隆彦,三浦均也,大塚夏彦, 成田稔:2003十勝沖地震における釧路港試験重力式岸 壁の変形・変状調査,第 39回地盤工学研究発表会, CD-ROM, 2004
- 28) 笹島隆彦, 窪内 篤, 小濱英司, 三浦均也, 渡邊潤平, 大塚夏彦: 2003 十勝沖地震における釧路港試験重力式 岸壁の変位挙動, 第 39 回地盤工学研究発表会, CD-ROM, 2004
- 29) 笹島隆彦, 窪内 篤, 大塚夏彦, 森政信吾, 三浦均也:
   2003 十勝沖地震における釧路港試験重力式岸壁の2次元 FEM 解析, 第39回地盤工学研究発表会, CD-ROM,
   2004

## 国土技術政策総合研究所資料 TECHNICAL NOTE of NILIM No. 310 June 2006

編集·発行 ©国土技術政策総合研究所

本資料の転載・複写のお問い合わせは

〒239-0826 神奈川県横須賀市長瀬3-1-1管理調整部企画調整課 電話:046-844-5018