

Figure 3-71 Roll-on/Roll-off Ship Loa-GT

Figure 3-72 Roll-on/Roll-off Ship B-GT

Figure 3-73 Roll-on/Roll-off Ship d-GT

Figure 3-74 Roll-on/Roll-off Ship (∼60,000GT) Loa-GT

Figure 3-75 Roll-on/Roll-off Ship (∼60,000GT) Lpp-GT

Figure 3-76 Roll-on/Roll-off Ship (∼60,000GT) B-GT

Figure 3-77 Roll-on/Roll-off Ship (∼60,000GT) d-GT

3.5 Pure Car Carrier(PCC)

Figure 3-78 to **Figure 3-80**show the results of analysis of Loa, B, and d for GT. And the following are the analysis method applied to each main dimension and the range of the ship classes to which each method was applied. **Table 3-11** shows the results of analysis of each main dimension according to the ship class that was set.

(1) Loa, Lpp (**Figure 3-81,82**)

The ships were divided into three classes with 30,000GT and 50,000GT as the boundaries. Less than 30,000GT was analyzed by the logarithmic regression analysis method, obtaining $R^2 = 0.775$ for Loa and $R^2 = 0.827$ for Lpp. 30,000GT or more and less than 50,000GT and 50,000GT or more were analyzed by the average value analysis method.

(2) B (Figure 3-83)

The ships were divided into three classes with 30,000GT and 50,000GT as the boundaries. Less than 30,000GT was analyzed by the logarithmic regression analysis method, obtaining $R^2 = 0.897$. 30,000GT or more and less than 50,000GT and 50,000GT or more were analyzed by the average value analysis method.

(3) d (Figure 3-84)

The ships were divided into three classes with 30,000GT and 50,000GT as the boundaries. Less than 30,000GT was analyzed by the logarithmic regression analysis method, obtaining $R^2=0.667$. 30,000GT or more and less than 50,000GT and 50,000GT or more were analyzed by the average value analysis method.

 Table 3-11
 The results of analysis of main dimensions (Pure Car Carrier)

Gross Tonnage (t)	Length Overall (m)	Length P.P. (m)	Breadth Molded (m)	Full Load Draft (m)
				, ,
3,000	89	72	16.1	4.7
5,000	104	88	18.0	5.4
12,000	135	123	21.8	6.8
20,000	158	150	24.4	7.9
30,000	179	175	26.7	8.8
40,000	185	175	31.9	9.3
60,000	203	194	32.3	10.4

Figure 3-78 Pure Car Carrier Loa-GT

Figure 3-79 Pure Car Carrier B-GT

Figure 3-80 Pure Car Carrier d-GT

Figure 3-81 Pure Car Carrier Loa-GT

Figure 3-82 Pure Car Carrier Lpp-GT

 $\cdot \sim$ 30,000GT $Y=\alpha \cdot X^{\beta}$

	50%	75%
α	2.6709	2.7742
β	0.2195	0.2195

		logY=a+l	log X	
($R^2 =$	0.897,	$\sigma = 0.024$.)
		50%	75%	
	a	0.4267	0.4431	
	b	0.2195	0.2195	

• Greater than $30{,}000{\sim}Less$ than $50{,}000GT$

$Y=a_0$		Average	75%
(σ= 1.596)	a_0	30.79	31.80

• 50,000GT∼

$Y=a_0$			
(o=	0.141)	

	Average	75%
a_0	32.21	32.31

Figure 3-83 Pure Car Carrier B-GT

 $\begin{array}{c} \boldsymbol{\cdot} \sim & 30,000 GT \\ Y = & \boldsymbol{\cdot} X^{\beta} \end{array}$

	50%	75%
α	0.4759	0.5329
β	0.2722	0.2722

		logY=a+b	ologX	
($R^2 =$	0.667,	$\sigma = 0.073$)
		50%	75%	
	a	-0.3225	-0.2733	
	b	0.2722	0.2722	

• Greater than $30,000 \sim Less$ than 50,000GT

$Y=a_0$		Average	75%
$(\sigma = 0.690)$	a_0	8.83	9.29

• 50,000GT∼

$Y=a_0$		
(o=	0.793)

	Average	75%
a_0	9.90	10.43

Figure 3-84 Pure Car Carrier d -GT