ライフサイクルコストを考慮した港湾構造物の信頼性設計

港湾施設研究室長

長尾 毅

ライフサイクルコストを考慮した港湾構造物の信頼性設計

港湾研究部港湾施設研究室長 長尾 毅

1. はじめに

ISO2394 (構造物の信頼性に関する一般原則)の制定などを契機として, 構造物の設計法への信頼性設計法の導入が期待されている¹⁾.港湾構造物に ついても,部分安全係数を用いるレベル1信頼性設計法を次期基準の標準的 な設計法とすべきであると考えられる²⁾.

信頼性設計法の適用においては、目標安全性水準をどのように定めるかが 重要である.その際の最も有力な方法のひとつは、過去の設計法における平 均的な安全性水準に一致させる方法である³⁾.ところで、港湾構造物の代表 的な施設であるケーソン式防波堤およびケーソン式岸壁の被災事例から推定 される破壊確率は、それぞれ 7×10⁻³ および 5×10⁻² であり^{4),5)}、1 オーダーの 違いがある.この安全性水準の違いは明瞭な意図のもとに設定されたもので はなく、実際のところはそれぞれ別個に工学的判断により定められてきた性 格が強い.このように、港湾基準⁶⁾の平均安全性水準が妥当であるか否かに ついては、十分な検証がなされてきたとは必ずしもいえない.

目標安全性水準の設定方法のひとつとして、初期建設費に、破壊確率と破 壊時の費用を乗じた値を加えた費用により定義されるライフサイクルコスト が最小となる安全性水準を目標水準とすべきという考え方がある³⁾.本研究 ではその考え方に立脚し、港湾構造物の主要な構造物である防波堤と岸壁に ついて、最適な目標安全性水準の検討を行うことを目的とする.ここで、レ ベル2以上の信頼性設計法を適用すれば、ライフサイクルコストの検討は可 能であるが、次世代の標準的な設計法として考えられているレベル1信頼性 設計法では,破壊確率の算出を行わないために,ライフサイクルコストの検 討を行うことが出来ない.しかしながら,あらかじめ構造形式や設計条件ご とに目標とする安全性水準を定めることが出来れば、レベル1信頼性設計法 によってもライフサイクルコストを考慮した合理的かつ経済的な設計を行う ことが可能となると考えられる.このため本研究では,各構造物の安全性に 関係するパラメータの従う確率分布を推定し, FORM (First-Order Reliability Method)により破壊確率の算定を行うとともに、ライフサイクルコストの検 討を行った⁷⁾.対象とした構造形式は,防波堤についてはケーソン式混成堤 (ケーソン前面に消波工のないタイプ)および消波ブロック被覆堤 (ケーソ ン前面に消波工を設置したタイプ)であり、岸壁はケーソン式岸壁と矢板式 岸壁である.

なお、本研究では、ライフサイクルコストの検討においては再現期間 25

年~数千年の荷重作用を考慮した.また、本研究ではコストを指標とした安 全性水準の検討を行うため、通常の防波堤および岸壁を対象としている.こ のため、津波発生時に背後圏の安全を確保することが求められる津波防波堤 や、L2 地震動発生後に緊急支援物資輸送の拠点としての機能が求められる耐 震強化岸壁は対象外とする.これら施設は、その目的から、通常の施設より も高い安全性が要求されるといえる.

2. 検討方法

2.1 破壊確率の算出方法

図-1 に、本研究で対象とする構造物の形式毎の荷重作用条件を示す.防 波堤については波浪作用条件,岸壁については地震動作用条件を対象とする.

(a)防波堤

(b)ケーソン式岸壁

(c) 矢板式岸壁

図-1 荷重作用条件

ここに,

W:壁体重量, B:浮力, P_H:水平波力, P_U:揚圧力, E_H:水平主働土圧,
 E_V:鉛直主働土圧, R:残留水圧, D:動水圧, q:上載荷重, k_h:震度, W.L.:
 前面水位, R.W.L.:残留水位, T:タイロッド張力, E_a:主働土圧, E_p:受働
 土圧

表-1 考慮する破壊モード

防波堤	滑動破壞, 転倒破壞
ケーソン式岸壁	滑動破壞, 転倒破壞
矢板式岸壁	矢板壁曲げ破壊,タイロッド破断

考慮する破壊モードは表-1 に示すとおりである.破壊確率算定に用いる性能関数および荷重算出方法は現行設計法によるものと基本的に同じとする.

矢板式岸壁のうち,控え工は本研究の対象外とする.

ライフサイクルコストを検討するためには、構造物をシステムとしてとら え、各破壊モードの破壊確率およびその相関を考慮することより、システム 破壊確率を算定する必要がある.各破壊モードそれぞれの破壊確率は、FORM (First-Order Reliability Method)を用いて、性能関数の破壊点における線形 化近似による安全性指標⁸⁾をもとに算出する.また、各破壊モードの相関を 考慮したシステム破壊確率は Madsen and Lind⁹⁾に従って算定する.

各構造形式の破壊モード別の性能関数は,式(1)~式(5)に示す通りである. 括弧内の記号は確率変数として扱うパラメータであることを示す.また, *a*₁ ~*a*₆は確定値扱いする.

- (ケーソン式防波堤・滑動破壊)
- (ケーソン式防波堤・転倒破壊)
- (ケーソン式岸壁・滑動破壊)

$$Z = f W - B(wl) - P_U \mathbf{Q} P_H \tag{1}$$

$$Z = a_1 W - a_2 B(wl) - a_3 P_U - a_4 P_H$$
(2)

$$Z = f W - B(R_{WL}) + E_V(k_h, ke, pd) \mathbf{Q}$$

- $k_h W - E_H(k_h, ke, pd) - R(R_{WL}, R_{RWL})$ (3)

(ケーソン式岸壁・転倒破壊)

$$Z = a_1 W - a_2 B(R_{WL}) + a_3 E_V(k_h, ke, pd) -a_4 k_h W - a_5 E_H(k_h, ke, pd) - a_6 R(R_{WL}, R_{RWL})$$
(4)

(矢板式岸壁・矢板壁曲げ破壊, タイロッド破断) $Z = E_v(f_v) - \sigma_s(k_h, ke, R_{WL}, R_{RWL}, mS)$ (5)

ここに,

f:堤体底面と基礎との摩擦係数,wl:潮位,R_{WL}:岸壁前面潮位比,R_{RWL}: 岸壁残留水位比,ke:土圧静的成分,pd:ケーソンの慣性力と土圧動的成分 の位相差,E_y:鋼材の強度,f_y:鋼材降伏応力度精度, σ_s:矢板壁及びタイ ロッド応力度,mS:矢板壁断面力及びタイロッド張力算定式精度,a₁~a₆: 各荷重のアーム長

上記確率変数の従う確率分布は表-2 の通りである.設計パラメータとその設計値の比は正規分布に従うと仮定しており,式(6)のように各変数の平均値とその設計値の比を *a*,各変数の変動係数を *V* と定義し,*a*および *V*の従う分布を表示している.ただし,ケーソンの慣性力と土圧動的成分の位相差 *pd*,岸壁前面潮位比 *R_{WL}*および岸壁残留水位比 *R_{RWL}*については,平均値を *a*,変動係数を *V* として表示している.

	α	V
波力 (P_H, P_U)		
沖波波高推定精度	1.00	0.10
波浪変形計算精度		
水深変化緩	0.97	0.04
水深変化鱼	1.06	0.08
办 油 恋 形 推 完 精 囲	0.87	0.00
	0.07	0.10
	0.01	0.10
	0.91	0.19
	0.84	0.12
潮位・水位		
防波堤前面潮位 wl	1.00	$0.20 \sim 0.40$
岸壁前面潮位比 R _{WL}	0.60	0.30
岸 壁 残 留 水 位 比 R _{RWL}		
ケ-ソン式 岸 壁	1.10	0.20
矢 板 式 岸 壁	1.00	0.38
摩擦係数 f	1.06	0.15
自 重 <i>W</i>		_
鉄筋コンクリート	0 98	0 02
毎筋コンクリート	1 02	0.02
中詰砂	1.02	0.04
	1 1 7	0.25
	1.1,	0.25
土 圧 静 的 成 分 <i>ke</i>	1.00	0.10
慣性力位相差 nd	-0.50	0.30
鋼材降伏応力度精度 f	1.20	0.065
	1.00	0.10
i () α · 平均値の偏り ()	工均值 /	設計用值)
$t t'$ $nd R_{WL} R_{D}$		いてけ亚均値

表-2 パラメータの従う確率分布

V:変動係数

$$\alpha = \frac{\mu_X}{X_d} \tag{6}$$

ここに,

μx:確率変数 Xの平均値, Xd:確率変数 Xの設計値

これらの確率分布の設定方法は次の通りである.まず,ケーソン式防波堤 関係⁴⁾のうち,波力関係パラメータは,沖波波高推定精度を除いては実験結 果をもとに設定されたものである.また,水深変化の緩/急の区分は,海底勾 配 1/30 未満/以上とする.

次に,岸壁関係のうち⁵⁾,設計震度は,震度算出に関係する不確定要素(距離減衰関係推定精度,極値統計解析精度,地震動増幅特性推定精度,震度算 定式精度)の精査をもとに設定したものである.なお,ここでは港湾基準³⁾ の分類で関東地区などの含まれるA地区(工学基盤の設計震度 0.15)を対象 にしており,地盤種別は平均的な第2種地盤である.岸壁の潮位及び残留水 位については,通常設計で考慮するのは堤体の安全性が最も低くなるとき(前 面潮位が朔望平均干潮面 L.W.L.) であるが,地震の発生は潮位変動とは相関 が無いと考えられることから,日本全国の潮位の確率分布や残留水位の実測 結果¹⁰⁾などをもとに定めている.岸壁前面潮位比 *R_{WL}*は潮位と朔望平均満潮 面 H.W.L.との比により定義されるパラメータである.残留水位比 *R_{RWL}* はケ ーソン式岸壁については残留水位 R.W.L.と潮位との比により定義されるパ ラメータである.

鋼材については, SM490 の降伏強度の保証降伏点に対する比の値¹¹⁾を用いた. 矢板断面力算定精度 *mS* については, 有効な情報が不足しているため, 0.1 の変動係数を有するものと想定した.

2.2 ライフサイクルコストの算出方法

ライフサイクルコストの算出においては、建設費、維持管理費、廃棄に要 する費用などの施設の設計供用期間中に発生するすべての費用を見積もる必 要がある.しかしながら、港湾構造物における維持管理費は初期建設費と比 較して非常に僅かである.また、設計供用期間を過ぎれば撤去されるもので もないため、建設費と被災時の費用が総費用を構成する主要な因子であると 考えてよい.港湾構造物は通常設計供用期間内に被災が生じた場合は直ちに 原型復旧される.このため、本研究では設計供用期間(50年)中に発生する 費用をライフサイクルコストと定義し、複数の被災可能性を考慮する.ライ フサイクルコストの期待値は式(7)により表現される.

$$ELC = C_i + \sum_{j=1}^{m} \frac{E_{jj}}{T} C_f R$$

$$R = \sum_{k=1}^{T} \frac{1}{(1+i)^{k-1}}$$
(8)

ここに,

ELC: ライフサイクルコストの期待値, C_i: 初期建設費, m: 対象とする荷
 重ランク数, T: 設計供用期間(50年), E_{fj}: 対象とする荷重による期待被
 災回数, C_f: 破壊時損失費, i: 社会的割引率

被災時の費用は,直接被害費用(物理的な復旧に要する費用)に加えて, 社会経済面における間接被害費用が存在する.間接被害費用は背後圏の状況 などの影響により複雑に変化する.このため,直接被害費用について,標準 的な額の最大3倍まで考慮することで,間接的費用が無視し得ない場合につ いても検討した.なお,港湾構造物に関する間接被害費用についての研究例 として,1993年釧路沖地震時の釧路港における検討によると¹²⁾,1 バー スあたり0.6億円程度である.この額は,地震被害発生直後より復旧工事完 了までの費用であり,直接被害費用の20%程度である.また,将来発生する 復旧費用は社会的割引率を用いて現在の費用に換算する.本研究では土木事 業における一般値として 4%を用いる. なお, インフレは経済評価において は考慮しないのが原則であるため, 対象外とする.

期待被災回数は長尾¹³による.荷重作用はポアソン過程に従うと仮定する と同じ強度を持つ荷重が複数回作用する場合,構造物が破壊する事象は各荷 重作用時で独立であると仮定する方法と,完全相関であると仮定する方法の 2 通りの方法があるが,両者は一致する.

ライフサイクルコストの検討条件を以下に示す.対象とする荷重の再現期間は防波堤については 25,50,75,100,200,1000,5000 年とした.岸壁については,L1 地震動と L2 地震動のそれぞれを考慮する観点から,L1 地震動は 25,50,75,100 年とし,L2 地震動はプレート境界型(200 年)とプレート内型(1000 年または 2000 年)とした.

ケーソン式防波堤に作用する再現期間毎の波高を図-2 に示す.これは, 日本全国をカバーする 18 地点の波浪統計データをもとに,再現期間毎の確率 波高を調査した結果を用いている.

図-3 再現期間別の作用

岸壁に作用する再現期間毎の作用震度を図-3に示す.再現期間 75年の設 計震度は港湾基準のA地区の地域別震度である 0.15 とし,日本全国をカバー する 280 地点の基盤加速度のデータをもとに再現期間に対する設計震度の変 化のレベルを考慮して再現期間毎の設計震度を設定した.なお,図には示し ていないが,レベル 2 地震動相当の作用震度としては,0.25 および 0.28 とし た.

検討ケースとしては、ケーソン式防波堤は、ケーソン式混成堤と消波ブロ ック被覆堤について、水深が異なる3ケースずつ設定した.ケーソン式岸壁 と矢板式岸壁については水深の異なる3ケース(-7.5, -11.0, -14.0m)を設定し た.上載荷重などの条件は標準的な値を用いた.

初期建設費および破壊時損失費は、日本の標準的な人件費、材料費、工事

の稼働率などを基に算出した.破壊時損失費の算出にあたっては,中規模被 害と大規模被害を想定し,それらの平均損失費を破壊時損失費としている.

図-4~図-5に初期建設費に対する標準的な被災時費用を示す.なお,以降に示す費用はすべて断面奥行き1m当たりの価格で,直接工事費用である. 図-4に示した防波堤のうち,実線はケーソン式混成堤,点線は消波ブロック被覆堤である.消波ブロック被覆堤の1例を除いて初期費用と被災時費用の関係はほぼ一定である.傾向が異なる1例は水深が-5.5mのケースである. 初期建設費用には、ケーソン費用のみならずマウンド構築費用も含まれているため、水深の浅い場合は初期建設費用に占めるケーソン費用の割合が相対的に小さくなる.しかしながら、被災時費用はほぼケーソンの規模に比例するため、水深の浅い-5.5mのケースはケーソン幅が増加しても初期建設費の増加程度は低く、被災時費用の増加程度は他のケースと同様であるためこのような結果となる.図-5に示した岸壁では、初期建設費用に対する被災時費用の割合が防波堤と比較して低い(図中の線の傾きが小さい)ことが特徴である.これは、岸壁の初期建設費用には上部工や裏込め工など、様々な費用が含まれているためである.

図 - 4 初期建設費と被災時費用の関係(防波堤)

図-5 初期建設費と被災時費用の関係(岸壁)

3. 検討結果

図-6~図-9に、構造形式別に初期建設費に対する各再現期間の荷重作用 に対する破壊確率を示す.各構造形式の3種類のうち水深が中間の場合を示 している.ここで、矢板式岸壁の場合のみ滑らかな曲線とならないが、これ は矢板壁およびタイロッドに用いるJIS規格の鋼材の断面係数が不連続であ ること、および鋼材の規格(例えば鋼管矢板の径と肉厚)の変化に対する破 壊確率と建設費用の変化の程度が一様ではないためである.また、初期建設 費用に対する破壊確率の関係はケーソン式岸壁を除いては上に凸の曲線とな るが、ケーソン式岸壁は下に凸の曲線形状を示す.

図-6 初期建設費と破壊確率の関係(ケーソン式混成堤)

図-7 初期建設費と破壊確率の関係(消波ブロック被覆堤)

図-8 初期建設費と破壊確率の関係(ケーソン式岸壁)

図-9 初期建設費と破壊確率の関係(矢板式岸壁)

図-10~13 にライフサイクルコストの算出結果を示す.水平軸はケーソン 幅や鋼矢板等の断面係数を変化させた場合のそれぞれ 2 つの破壊モードを考 慮したシステム破壊確率である.システム破壊確率は 50 年再現期間の荷重作 用に対する値としている.ここで岸壁については,L1 地震動では再現期間ご とに複数の作用震度を有し,かつ L2 地震動については複数の再現期間及び 作用震度を有するが,ここではそれらの平均を示している.矢板式岸壁につ いては,例えば水深-14mの破壊確率が 0.05%程度を境界にしての破壊確率の 変化に伴う初期建設費の変化の度合いが異なるが,これはその境界において 矢板壁の規格が鋼管矢板から鋼矢板へと変化することによる.

図-10 ライフサイクルコスト (ケーソン式混成堤)

図-13 ライフサイクルコスト (矢板式岸壁)

図中に◇を付してある破壊確率がライフサイクルコスト最小となる破壊確 率である.ライフサイクルコスト最小となる破壊確率は、ケーソン式混成防 波堤の場合 19.7-51.4% (標準的な被害費用の場合), 5.9-12% (被害費用が 標準の3倍の場合), 消波ブロック被覆堤の場合 1-21.9% (標準的な被害費 用の場合), 0.4-7.7% (被害費用が標準の3倍の場合), ケーソン式岸壁の 場合 20.2-40.4%(標準的な被害費用の場合),12-19.6%(被害費用が標準の 3 倍の場合),矢板式岸壁の場合 2.8-11%(標準的な被害費用の場合),0.1-0.4% (被害費用が標準の 3 倍の場合)である.このように,たとえ同じ荷重作用 条件においても,構造形式ごとにライフサイクルコスト最小となる破壊確率 は異なる.さらに,同じ構造形式の構造物であっても,条件(水深)毎にラ イフサイクルコスト最小となる破壊確率は異なる.

図中に□を付した破壊確率は現行設計法による安全性水準を示している. 構造形式別に差はあるものの,矢板式岸壁を除いては概ね現行設計法による 破壊確率はライフサイクルコスト最小となる破壊確率よりも小さく,ライフ サイクルコスト最小化の考え方に基づくと建設費用が縮減できる可能性が高 いことが分かる.ただし矢板式岸壁については,現行設計法の破壊確率と標 準的な被災時費用の場合のライフサイクルコスト最小の破壊確率は一致する 結果となった.また,現行設計法による破壊確率は,ライフサイクルコスト 最小化に対応する破壊確率と比較すると,構造形式別に水深の変化にかかわ らず大きな変化を示さないことも特徴である.

以上検討したように、同じ構造形式であっても条件ごとにライフサイクル コスト最小に対応する破壊確率は異なるため、ライフサイクルコスト最小化 を目標とした設計法を設計実務に適用するためには、レベル2以上の信頼性 設計法が必要である.

さらにその場合においても、再現期間の異なる複数の荷重を設定するなどの煩雑な手順が必要となる.また、安全性指標を算出しないレベル1信頼性設計法においては、基本的にこの方法の適用は困難である.しかしながら、設計手順の簡便さ、および ISO2394 などの国際標準への採用などの環境を考慮すると、レベル1信頼性設計法においてもライフサイクルコスト最小化に対応した設計法が用意されていることが望ましいことはいうまでもない.そこで、ライフサイクルコスト最小化に対応する目標破壊確率 P_{ft}を他の何らかの指標と関連付けることが出来れば、ライフサイクルコスト最小化に対応したレベル1信頼性設計法の構築が図れる可能性がある.このため以下では、ライフサイクルコスト最小化に対応する破壊確率を他の指標で推定することを試みる.

4. 最適安全性水準の検討

まず、断面諸元の変化に伴う初期建設費用と破壊確率の常用対数の変化度の比 *dC_i*/*d*log(*P_f*)を指標として、*P_{ft}*との関係を整理した.この比は負の値を取るが、比の値がゼロに近いほど初期建設費用は破壊確率に対して変化しないため、図-10~13に示したライフサイクルコストの関係において初期建設費用はフラットとなり、破壊確率を小さくした方が有利となる.

結果を図-14に示す.水平軸は費用と破壊確率の比であるが、対数軸で示 すために絶対値で整理している.なお、矢板式岸壁については図-13に示し たように、 $dC_i / d\log(P_i)$ の値が一定ではないため、以下ではライフサイクル コスト最小となる破壊確率近傍での値を整理している.構造形式を示す記号 は凡例に示したとおりであり、以降の記号も各構造形式に対して同じものを 用いている.図より、ケーソン式混成堤の一部を除いて、 $dC_i / d\log(P_i)$ の絶 対値の増加に伴って Pftが増加する傾向にあり,この指標をもとにしてライフ サイクルコスト最小化に対応した破壊確率目標値が推定できる可能性が高い ことが分かる.ところで、 $dC_i / d\log(P_i)$ の値を得るためには、信頼性理論を 用いて破壊確率を算出しなければならない.これを他の指標で推定できない か検討した.その結果,水深と $dC_i / d\log(P_f)$ の間の相関性が高いことが分か った.このため、水深 (depth) と P_{ft} の関係を示すと図-15 のようになり、 矢板式岸壁(□)ではややばらつきが大きいが,図中に示した関係を用いて, 水深別に破壊確率の目標値を設定できる可能性がある.ただしこの関係式は, 水深が14mまでの範囲に適用が限られることに注意が必要である.なお,矢 板式岸壁についてばらつきの大きい理由は、使用する鋼材の JIS 規格値の不 連続性のためであると考えられる.また、ケーソン式混成堤と消波ブロック 被覆堤で同じ防波堤であるにもかかわらず結果が異なるのは、消波ブロック 被覆堤では初期建設費に消波工が含まれるため、堤体幅の変化が初期建設費 の変化に及ぼす影響度合いがケーソン式混成堤と比較して異なるためである と考えられる.図中に示した関係式は次のとおりである.

 $= 14 \mid dC_i / d\log(P_f) \mid \geq P_{ft} \mathcal{O}$ 関係

ケーソン式混成堤 (×) ··········
$$P_{\theta} = 3 \cdot 10^{-3} \cdot depth^2$$
 (9)

消波ブロック被覆堤 (◇) —
$$P_{ft} = 1 \cdot 10^{-5} \cdot depth^4$$
 (10)

ケーソン式岸壁 (〇)----
$$P_{ft} = 10^{0.046 depth-1.04}$$
 (11)

矢板式岸壁 (□) -·····P_{ft} =
$$10^{0.046 depth-1.9}$$
 (12)

これまでは、被災時の費用が標準的な場合についての検討であった.以下 に, 被災時の間接被害費用を無視しえない場合について検討する. ライフサ イクルコスト最小化に対応する破壊確率は、被災時費用と初期建設費用の比 の値に依存することが考えられる. すなわち, 被災時費用が相対的に高いほ ど、被災を生じさせないことが有利となるため破壊確率は小さい方が有利と なると考えられる.このため、被災時費用と初期建設費用の比 C_f/C_i を指標 として P_{ft} との関係を整理した.ここで、 C_f/C_i はライフサイクルコスト最小 となる破壊確率の範囲を考慮して,破壊確率が 2×10⁻²~2×10⁻¹の範囲の平均 値とした. C_f/C_iは,通常の設計実務においても算出することは容易である と考えられる.破壊時の費用として通常のケースから3倍まで考慮したケー スについて、 $C_f / C_i \ge P_{ft}$ の関係を整理した.結果を図 – 16~17 に示す.基 本的な傾向として、 C_f / C_i の増加に伴って P_{ft} が減少する. 矢板式岸壁にお いてはばらつきが大きいが、構造形式ごとに C_f / C_i に対する P_{ft} の変化度は ほぼ一定であることが分かる.よって,図中に示した直線に従って, C_f / C_i の 値に応じて P_{tt}を補正することにより更に精度のよい目標破壊確率の推定が 可能であると考えられる.図中に示した関係式は次のとおりである.ここに, const.は構造形式ごとの定数である.

図 - 16

 $C_f \swarrow C_i \ge P_{ft}$ の関係(防波堤) 図 - 17 $C_f \swarrow C_i \ge P_{ft}$ の関係(岸壁)

防波堤 (×) -------および (◇) ------
$$P_{fi} = 10^{const.-0.55 \frac{C_f}{C_i}}$$
 (13)

ケーソン式岸壁 (〇)---- $P_{ft} = 10^{const.-0.21\frac{C_f}{C_i}}$ (14)

矢板式岸壁 (□) -·-·- $P_{ft} = 10^{const.-1.56\frac{C_f}{C_i}}$ (15)

以上により, $C_f / C_i \ge dC_i / d\log(P_f)$ の両方を指標とすることにより, P_{ft} を 推定できる可能性があることが示唆される.具体的には、まず図-15に示す 水深と P_{ft} の関係から P_{ft} を推定し、次に C_f / C_i の値に応じて P_{ft} を補正すれ ばよい.式(16)~(19)に推定式を示す.また、このようにして推定した破壊確 率目標値(Pft cal)と実際のライフサイクルコスト最小となる Pft の関係を図-18~図-19に示す.ケーソン式混成堤,消波ブロック被覆堤,ケーソン式岸 壁については目標破壊確率の推定精度は概ね良好である.しかしながら、矢 板式岸壁についてはややばらつきが大きい. さらに, このようにして設定し た目標破壊確率を用いた場合のライフサイクルコストと現行設計法の安全性 水準によるライフサイクルコストの比を水深別に整理すると図-20のよう になる.特に水深の深い場合に、本研究による目標破壊確率に基づくとライ フサイクルコストが縮減できる可能性が高いことが分かる.ただし、矢板式 岸壁については、目標破壊確率の推定精度が良好ではないために、ライフサ イクルコストの観点からも現行設計法と比較して優位を主張できないことが 分かる.以上の結果より、矢板式岸壁を除いては、ライフサイクルコスト最 小に対応したレベル1信頼性設計法の構築の可能性があると判断される.た だし今回は限られた検討ケース数であるため、今後ケース数を増やすことに より,さらに精度のよい Pftの算定方法について検討することが必要と考えら れる.

ケーソン式混成堤 $P_{ft} = 10^{2\log(depth) - 0.55 \frac{C_f}{C_i} - 2.22}$ (16)

消波ブロック被覆堤

ケーソン式岸壁

$$P_{ft} = 10^{4\log(depth) - 0.55 \frac{C_f}{C_i} - 4.73}$$
(17)

$$P_{ft} = 10^{0.046 \, depth - 0.21 \frac{C_f}{C_i} - 0.90} \tag{18}$$

矢板式岸壁
$$P_{ft} = 10^{0.046 depth - 1.56 \frac{C_f}{C_i} - 0.96}$$
 (19)

図-18 P_{ft}の推定精度(矢板式岸壁以外)

図-19 P_{ft} の推定精度(矢板式岸壁)

depth(m)

図-20 ライフサイクルコスト比(提案法/現行設計法)

5. まとめ

本研究では,港湾構造物の設計法に信頼性設計法を導入するにあたり適切 に設定する必要のある目標安全性水準について,ライフサイクルコスト最小 化の観点から検討した.

ライフサイクルコスト最小化に対応した目標安全性水準を簡易に推定する ことが出来れば、建設コストの縮減に寄与することができる.今回は限られ た検討ケースであったため、今後は検討ケースをさらに増やすとともに、特 に岸壁についてはレベル1地震動に対する設計震度の値を変化させた場合な どについて更に検討を行う必要があると考えられる.

参考文献

1) 国土交通省:土木・建築にかかる設計の基本, 2002.

- 2) 長尾 毅:港湾構造物の技術基準の改訂動向,鋼構造と橋に関するシンポジウム論文報告集, pp.9-20, 2002.
- 3) 星谷 勝, 石井 清:構造物の信頼性設計法, 鹿島出版会, 1986
- 4)長尾 毅,吉浪康行:信頼性解析によるケーソン式防波堤の外的安定性評価,構造工学論文集 Vol.47A, pp.305-312, 2001.
- 5) 長尾 毅,吉浪康行,佐貫哲朗,嘉門雅史:ケーソン式岸壁の外的安定に 関する信頼性設計法の適用,構造工学論文集 Vol.47A, pp.293-304, 2001.
- (6)運輸省港湾局監修、日本港湾協会:港湾の施設の技術上の基準・同解説、 1999.
- 7)長尾 毅,森屋陽一:港湾構造物の目標安全性水準に関する研究,構造工学論文集 Vol.50A, pp.187-197,2004
- Hasofer, A. M. and Lind, N. C. : Exact and Invariant Second moment Code Format, Journal of the Engineering Mechanics Division, ASCE, Vol.100, No.EM1, pp.111-121, 1974.
- 9) Madsen, H. O., Krenk, S., and Lind, N. C. : Methods of Structural Safety, Prentice-Hall, Englewood Cliffs, New Jersey, 1986.
- 10) 古土井光昭, 片山猛雄: 残留水位測定調查, 港湾技研資料, No.115, 1971
- 11) 土木学会:鋼構造シリーズ6,鋼構造物の終局強度と設計,1994
- 12) 上部達生, 佐野 透, 野津 厚:経済被害を考慮した港湾の液状化対策 工の費用便益分析,第23回地震工学研究発表会講演論文集,pp.687-690, 1995.
- 13) 長尾 毅:破壊確率を考慮した防波堤の期待総費用最小化に関する研究, 第4回構造物の安全性・信頼性に関する国内シンポジウム(JCOSSAR2000) 論文集, pp.441-448, 2000