Source Water and Drinking Water Early Warning System Research 水道水源の早期警戒システムに関する研究

James Goodrich, U.S. EPA

米国環境保護庁 ジェームス・グッドリッチ

Research Model

Drinking Water Contaminant Management Framework

DESEARCH & DEVELOPMENT

Research Approach

- Develop an understanding of available continuous, automated water quality monitors
 - Water Awareness Technology Evaluation Research Security Center (WATERS)
 - · Physical/Chemical
 - Early Warning Systems Laboratory (EWSL)
 - Biological

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Evaluation Approach

- · Off-the- Shelf Sensors/Monitors
 - finished water technologies
 - source water technologies
 - bio-sentinel technologies
- Innovative technology
 - advancing technology/sensors

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions.

Research Purpose

- Provide a systematic approach for the monitoring, provision and maintenance of water resources for the protection of aquatic habitat and human health
 - Source water protection
 - Finished drinking water in the distribution system

Research Goals

- Evaluate various sensor technologies for their ability to detect changes in water quality in the source water and in a distribution system
- Develop guidance on development and implementation of Early Warning System (EWS) Networks

EPA's Water Assessment Treatment Evaluation Research and Security (WATERS) Laboratory/Center

Building a scientific foundation for sound environmental decision.

Evaluation Approach (continued)

- · Other media technology
 - agricultural & industrial
 - medical & pharmaceutical
 - chemical & manufacturing
 - academia to plumbing
- Technologies at the conceptual stage
 - research tasks can be completed concurrently

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decision

Finished/Treated Water Sensor - Monitors Multi-Parameter

- · Dascore Six-Cense
 - potentiometric (sensors on a chip)
- Hach Aqua Trend Panel
 - GLI pH, temperature, sp. conductance
 - Cl-17 free chlorine
 - Hach 1720D turbidity

Building a scientific foundation for sound environmental decisio

Process Monitors (Single-parameter)

- Hach Astro TOC
 - UV/persulfate method
- · ATI A15 free chlorine
 - membrane electrode method

Building a scientific foundation for sound environmental decisions

RESEARCH & DEVELOPMENT

Ruilding a scientific foundation for sound environmental decisions

Finished Water Monitors

- Chlorine colorimetric & membrane electrode method
- Temperature thermistor
- Dissolved Oxygen membrane electrode method
- ORP potentiometric
- pH glass bulb electrode
- Turbidity nephelometric (traditional & LED devices)
- Specific conductance conductivity cell method

Building a scientific foundation for sound environmental decisions

Source Water Monitoring Technologies (Multi-parameter Probes)

- · Hydrolab DataSonde 4a
- YSI 6600
- · Finished water parameters plus
 - Cl⁻, NO₃⁻ & NH₄⁺ ion-selective electrodes

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decision

RESEARCH & DEVELOPMENT

Ruilding a scientific foundation for sound environmental decisions

On-line Test Parameters

- pH, temperature
- · ORP, specific conductance
- · dissolved oxygen
- turbidity
- · free chlorine
- TOC
- ammonia (NH₄+-N)
- nitrate (NO₃-N)
- chloride (Cl-)

RESEARCH & DEVELOPMENT

Ruilding a scientific foundation for sound environmental decision

Project Objectives

- Qualitative
 - yes/no response for each contaminant and sensor
 - verify contaminant fate per known chemistry
- Quantitative
 - dose-response relationship
- Engineering
 - sensor placement / response time

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Quality Assurance Quality Control

- · Control Studies
 - loop water injection
 - no response noted on any sensors
- · Cocktail Studies
 - chemical soup designed to cause a sharp response from each sensor
 - all sensors respond
- · Dye Studies [75 seconds for Loop 6]

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Source Water Quality Bio-Sentinel Monitoring Systems

- · Canary in the Coal mine
- Responses of biological material used to evaluate water quality
- No machine or analytical approach exists to measure toxicity
 - Only an organism in its own environment can integrate all factors that contribute to stress
 - Tier 1 technology evaluation
 - · Based on changes in water quality

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Sensor Evaluation

- · Sensor performance documented via
 - calibration intervals (drift)
 - service requirements (failures)
 - matrix interference & false positive response
 - comparison to grab sample results

Watershed EWS

Critical Properties of a WQMS

- 1. Measure record, and telemeter water quality parameters
 - toxicity, pH, D.O., Temp. ...

(2)

- 2. Ability to detect known contaminants
- 3. Ability to detect unknown contaminants
- 4. Time-relevant data analysis

Building a scientific foundation for sound environmental decisions

U.S. EPA Early Warning Systems Laboratory (EWSL)

- U.S. EPA Testing and Evaluation Facility, Cincinnati, OH
- Supports development, testing, and evaluation of
 - biologically based water quality monitoring systems
 - physical/chemical sensors

RESEARCH & DEVELOPMENT

Ruilding a scientific foundation for sound environmental decisions

Daphnia Behavior

- DaphTox by BBE Moldaenke
- Uses Digital Camera technology to track movement of 48-144 hour old Daphnia Magna

RESEARCH & DEVELOPMENT

Ruilding a scientific foundation for sound environmental decisions

Watershed Early Warning System Paradigm

- 1. Biological or physical/chemical parameter indicating changing conditions
 - Collect water sample
- · 2. Verify water quality
 - Rapid toxicity assay (Daphnia IQ)
- 3. Determine toxicant using biologically directed chemistry (TIE)
- · 4. Take appropriate action

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Sensitivity Response Matrix

Acute sensitivities derived from single toxicant assays.

	Fish	Bivalve	Cladocera	Algae
Copper	+	++	++	+
Cadmium	+	++	++	+
Diazinon	++	+	+++	-
Atrazine	-	-	-	+++
Toluene	+	+	++	+
Cyanide	++	++	++	-

RESEARCH & DEVELOPMENT

Ruilding a scientific foundation for sound environmental decision

are marine

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decision

62.5 µg/L Copper

Building a scientific foundation for sound environmental decision

Algae Fluorescence

- BBE Moldaenke Algae Online Analyzer
- Pulsed Amplitude Modulation fluorescence
- Measure of photosynthetic efficiency

Bivalve Gape

- Bivalves can isolate themselves from the environment
- Acute response
 - Shell closure
- Chronic response
 - Change in periodicity

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Fish Ventilatory Response

- U.S. EPA U.S. Army Center for Environmental Health Research Interagency Agreement
- Received September 2003

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Sensitivity Response Matrix

Acute sensitivities derived from single toxicant assays.

	Fish	Bivalve	Cladocera	Algae
Copper	500µg/L	176µg/L	<62.5µg/L	500µg/L
Cadmium	+	++	++	+
Diazinon	++	+	+++	-
Atrazine	-	-	-	+++
Toluene	+	+	++	+
Cyanide	1mg/L	++	100µg/L	100µg/L

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

EWS Partners

- Thomas More College
 March and State
- Morehead State University
- Clermont County
- ORSANCO

Experimental Validation

- Correlate community and WQMS responses to sediment and toxicological challenges in stream mesocosms
- Work will be performed at the former P&G Experimental Stream Facility located on the FFI MR
- · Duration of each experiment will be one year
- Develop basis for correlation of in-stream behavioral and community responses

Summary

- On-going standardized evaluation of WQMSs
- Development of multi-species WQMS
- Validation of WQMSs
- Implementation of Watershed Management/Early Warning System

Online Monitoring

RESEARCH & DEVELOPMENT

Ruilding a scientific foundation for sound environmental decisions

Contact Information

- H. Joel Allen allen.joel@epa.gov
- Roy Haught haught.roy@epa.gov
- Jim Goodrich

RESEARCH & DEVELOPMENT

Experimental Stream Facility

(2)

Remote Monitoring and Control of Small Drinking Water Facilities

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Water Supply System Security

RESEARCH & DEVELOPMENT

Ruilding a scientific foundation for sound environmental decisions