Does Pathogen Monitoring Ensure Safe Drinking Water? 病原性微生物のモニタリングは飲料水の安全確保に有効か?

Martin J. Allen, Awwa Research Foundation, US 米国水道協会研究財団 マルティン・アレン

Waterborne Pathogens: Cryptosporidium, Giardia, Legionella, etc.

Aesthetic Effects - Taste & Odor, Color, Iron and Sulfur Bacteria, Algae,

Pathogen "Short List"

- Giardia
- Cryptosporidium
- Vibrio
- Salmonella
- Shigella
- Legionella
- Campylobacter
- Mycobacterium

Cultivatable viruses

Advocates of Pathogen Monitoring

- Regulatory/health agencies
- Elected officials
- Utility personnel
- Consumers
- Special interest groups
- Researchers

Awwa Research Foundation Commercial laboratories

© Copyright Awwa Research Foundation

Barriers to Pathogen Monitoring Technical issues

- Administrative issues
- Demographics
- Quality of data
- Representativeness of data

© Copyright Awwa Research Foundation 2003

What Makes Microbial Data Credible?

- Sensitivity
- Specificity
- Awwa Research Foundation
- Reproducibility

Technical Issues

- Low numbers of pathogens
- Pathogens difficult to detect
- Cannot determine viability
- Require large sample volumes
- Few labs equipped or staffed
- Days to weeks for results

© Copyright Awwa Research Foundation 20

Demographics

- In U.S.— >93 percent of public water systems serve populations <10,000
- In Canada— >75 percent of public water systems serve populations <10,000

© Copyright Awwa Research Foundation 20

No Pathogen Method Has
Acceptable Sensitivity,
Specificity, or
Reproducibility to Make
Timely Public Health
Decisions!

© Copyright Awwa Research Foundation 20

Utility	Water Production Data	Monitoring Program – Cryptosporidium/Giardia			
	L/Month	Volume of Sample (Treated Water)	Number of Samples/ Month	Total Volume Sampled/ Month	Percent Water Analyzed Month
Milwaukee, Wis. (2 plants)	1.44 x 10 ¹⁰	500L	4	2000L	0.000014
Ottawa-Carleton, Ontario (2 plants)	1.05 x 10 ¹⁰	1000L	2	2000L	0.000019
Calgary, Alberta (2 plants)	1.28 x 10 ¹⁰	1000L	2	2000L	0.000016
Denver, Colo. (3 plants)	1.83 x 10 ¹¹	88L avg.	4	351L	0.0000001
EPCOR, Alberta (Edmonton) (2 plants)	9.84 x 10°	1000L	2	2000L	0.000002
Windsor, Ont.	5.1 x 10°	1000L		1000L	0.000019
Fort Collins, Colo.	2.9 x 10°	3800L avg.	3 avg.	11,400L	0.00039

A Better Way to Protect Public Health

- NOT by pathogen monitoring
- Source water protection and monitoring
- Treatment process optimization and enhancements
- Storage and distribution system integrity

Process Optimization

- Improved instrumentation (on-line turbidimeters/disinfectant residual monitors, particle counters)
- Improved treatment operations & management
- Emerging affordable technologies (membranes, ultraviolet irradiation, ozone)

© Copyright Awwa Research Foundation

Source Water Monitoring

- Turbidity
- **■** Temperature
- Alkalinity
- Precipitation events
- Ha =

- Escherichia coli
- Conductivity

© Copyright Asswa Research Foundation

Emerging Drinking Water Treatment Technologies

- Suitable for large and small communities
- Validated by AwwaRF research
- Being widely applied

© Copyright Awwa Research Foundation

Future Directions

- Away from contaminant-bycontaminant approach—model other industries
- International efforts to explore alternatives to ensure public health
- The Bonn Workshops 2001 & 2004

