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Synopsis

The current report describes the general theory of Discrete Element Method (DEM) and, then, the
mathematical development of two-dimensional DEM with superquadric shaped particles and
three-dimensional DEM with ellipsoidal particles for analyzing systems of general shaped rigid particles.

We investigate the force support systems of particulate media by using the two DEMs to perform a
preliminary study concerning the support systems of a rubble rock foundation subjected to external
loadings. In the DEM simulations, rubble rocks are modeled by smooth frictional particles. The rocks are
then subject to a vertical loading of the weight of a caisson. DEM simulations performed in this report
are: a) uniaxial compression tests of particulate media using the superquadric DEM, and b) similar tests
using the ellipsoidal DEM. The simulation results have shown that contact  force amplitudes on the
loading and bottom plates have a wide range of distribution. This discrete and inhomogeneous force
support system generated by the particulate media system is very different from the assumed linearly
distributed reaction force between a rubble rock foundation and a bottom slab of a caisson, used in the
present design code.
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1. Introduction

Most of the Japanese breakwaters are of a composite
type with heavy caissons resting on rubble rock
foundations as shown in Figure 1. Expert divers
rearrange rubble rocks and prepare a smooth contacting
surface to avoid concentrated forces acting on the
bottom slab of a caisson. We call such a surface a
“smooth surface”. On the other hand, a “rough surface”
normally exists in the areas where a caisson does not
rest on the foundation. The Ministry of Land,
Infrastructure and Transport (MLIT) of Japan now
prepares for proposing to employ a rougher surface
instead of a “smooth surface” to shorten construction
periods and reduce the associated costs.

However, it is suspected that an increase in the
surface roughness might increase the moment on the
bottom slab of the caisson that would affect the caisson
design (Miyata et al. 1999), see Figure 2. However, to
date there is no experimental data or information on
how a caisson is actually supported by rubble rocks of
even a “smooth surface” foundation. According to the
Japanese Technical Standards for Port and Harbour
Facilities (1983), the bottom slab of a caisson is
assumed to be subject to a linearly distributed reaction
force from the foundation. However, in reality, the
foundation consists of discrete rubble rocks and that
will generate concentrated contact forces between the
caisson and foundation. At present no comprehensive
study exists that has examined the effects of the surface
roughness on the force support systems within rubble
rock foundations. Therefore, a more basic study on
force support systems of particulate media is required
for a better understanding of the support systems
generated by rubble rock foundations.

Discrete Element Methods (DEMs) are a family of
numerical simulation methods for simulating the
dynamic and pseudo static motions of a system of
interacting rigid bodies (particles). In order to
investigate force support systems of particulate media
like rubble rocks as described above, the DEM has been
chosen because it is capable of accessing
particle-particle contact forces and contact forces
between a particle and a plate.

The current report describes the general theory of
DEM and mathematical development of the
two-dimensional DEM with superquadric shaped
particles and the three-dimensional DEM with
ellipsoidal particles for analyzing systems of general
shaped rigid particles. We investigate the force support
systems of particulate media by using these two DEMs
for a preliminary study concerning the support systems
of a rubble rock foundation subjected to external
loadings. In the DEM simulations, rubble rocks are
modeled by smooth frictional particles. The rocks are

then subject to a vertical loading of the weight of a
caisson. DEM simulations performed in this report are:
a) uniaxial compression tests of particulate media using
the superquadric DEM, and b) similar tests using the
ellipsoidal DEM. In this report, we give some
preliminary observations and discussions on the force
support systems of particulate media.

2. Discrete Element Method (DEM)

This chapter provides a literature survey on the
developments of Discrete Element Methods and its
mathematical descriptions. In section 2.1, the literature
survey is provided. In section 2.2, the general theory for
two-dimensional circular shaped DEM, which is most
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Figure 2 Schematic view of force support
systems of a rubble rock foundation



Study of Force Support Systems of Particulate Media using Discrete Element Method / M. Miyata et al.

Figure 3 Example of DEM simulation

commonly used, is described. In sections 2.3 and 2.4,
we describe the mathematical developments for two
advanced DEMs, which employ an analytical particle
shape representation. These two DEMs are a
two-dimensional superquadric particle DEM and
three-dimensional ellipsoidal DEM.

2.1 Literature Survey

(1) Introduction

Discrete Element Methods (DEMs) are a family of
numerical simulation methods for simulating the
dynamic and pseudo static motions of a system of
interacting rigid bodies. Figure 3 shows a schematic
picture of simulation process by DEM (Mustoe and
Miyata, 2001). In this simulation, material flow of
particles in a rotating drum is simulated: As shown in
the figure, DEMs are capable of accessing accelerations,
velocities, displacements of particles and interacting
forces between particles in both dynamic and pseudo

(a) Sphere or circular particles

(b) Polygon shaped particles

COCD

(c) Ellipsoids and Superquadric particles

(d) Cluster particles

Figure 4 Particle shapes for DEM

static conditions. Compared with Finite Element
Methods, which are based on a continuum mechanics,
DEMs have the advantage to predict particulate level
information as described above.

An early computational method similar to modern
DEMs was originally introduced by Alder and
Wainwright (1956) to study molecular dynamics. Note,
DEMs were first developed to study stability of jointed
arbitrary shaped rock-masses, see Cundall (1971).
Subsequent DEMs have been developed and used to
solve a wide range of engineering problems, involving
the mechanical analysis of a system of interacting
bodies, see two special conference proceedings and a
special volume: “Proceedings of the 1" U.S. Conference
on Discrete Element Methods, Mustoe et al eds.(1989) ”,
“Proceedings of the 2" International Conference on
Discrete Element Methods, Williams and Mustoe
eds.(1993)”, and “Special Issue of J. Powder
Technology (Seville et al. editors (2000)). ”

(2) Shape representations of particle

In many DEMs cylindrical or spherical shaped
particles are usually employed because of the efficiency
afforded by the simple contact detection as shown in
Figure 4(a). However, in some physical situations,
more sophisticated DEM-based numerical models are
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required, which account for the shape and size
distributions of the system of bodies. A number of
DEMs for non-circular shaped bodies have been
recently developed and applied to different types of
engineering analyses. DEMs for general shaped bodies
may be categorized as follows: i) polygon shaped
bodies (Figure 4(b)), ii) algebraically defined surface
functions such as ellipsoids or superquadrics (Barr
(1981)) that define any point on the surface of the body
(Figure 4(c)), iii) clusters of rigidly or elastically
connected overlapping cylindrical or spherical bodies
(Figure 4(d)),.

Alternative DEMs with circular body geometry have
attempted to account for particle shape by inhibiting or
limiting the particle rotation. For example, Ting and
Corkum (1988), increased the polar moment of inertia
of the circular particles; Ng and Dobry (1992, 1994),
fixed the rotational motion completely; and, Iwashita
and Oda (1998), included rotational resistance between
cylindrical or spherical bodies.

Each of the above mentioned three DEMs, namely i),
ii) and iii), have been developed for different types of
analyses. Polygon shaped particle based DEMs, for
example, Cundall (1971, 1980), and Hocking (1978),

have been used to analyze the mechanical behavior of -

blocky rock masses in mining engineering, and
Hocking, Mustoe and Williams (1985,1987), and
Hocking (1992,1993) have applied DEMs to "arctic
engineering problems involving the determination of
ice forces on offshore structures and ships. The
superquadric DEM (see, Williams and Pentland 1989,
Mustoe and DePoorter 1993, Miyata et al. 2000,
Mustoe et al. 2000) and ellipsoid DEM (see,
Rothenburg and Bathurst 1991, Ting et al. 1993, Ng
and Lin 1993, Ng 1994, Sawada and Pradham 1994,
Lin et al. 1996, Lin and Ng 1997) are especially useful
for problems involving particulate media described by
continuous surface geometry. These particle shapes
have been mainly used for investigations on the effects
of particle shape on static deformation and strength
characteristics of particulate media such as sand like
materials. The rigid or flexible cluster based DEMs
(Walton and Braun 1993, Tsuchikura et al. 1995,
Mustoe and Griffiths 1998, Yamane et al. 1998, Itasca
Consulting Group 1999) are a simple adaptation of the
original circular disk and spherical DEMs developed to
assess the effect of non-circular shaped bodies.

2.2 General Theory for Two-dimensional Disc
Shaped DEM

A typical DEM has the following features: i) an
automatic contact detection algorithm involving a series
of sorting actions and geometry checks of increasing
complexity, ii) a contact force generation algorithm

Position update of bodies

v

Force calculations acting on bodies

v

Time integrations of bodies
(Motion calculations)

Figure 5 Flow diagram of explicit calculation
cycle in DEM

that can either compute total force or incremental force
updates, and iii) a time integration procedure which is
explicit involving a two step generalized velocity and
position update. For further details of the computational
algorithm for a typical DEM, see Cundall and Strack
(1979a, 1979b) for examples. Figure 5 shows flow
diagram of the explicit calculation cycle in DEM. In
this section, basic calculation scheme of circular shaped
DEM will be shown briefly.

(1) Basic equations of motion

According to the Newton's second low, the
translational equation of motion for the center of mass
of body i within the global system is written as:

mp, =Y F +mg (1)
k

where m; is mass of body i, ¥, is position vector of

f‘; is translational acceleration vector, E is

body i,

contact force vector on contact k, and g s

gravitational acceleration vector. Figure 6 shows a
schematic view for this.
Similarly, the rotational equation of motion is written

as:

16,=>"M, Q).
k

Note that I; is moment of inertia of body i respect to its
center of mass, 0 is angle of body # respect to its center

of mass, @, is angular acceleration and M, is

rotational moment acting body i.
(2) Time stepping scheme for particle motion update

a) Translational motion
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Explicit central difference velocity and position
update method is employed in particle motion
calculations. From the Newton’s second low as shown
in equation (1), translational acceleration at time step n
in the global system can be given by the following
equation:

. 2E+mg
m.

!

The acceleration and position are defined at time step

of n (n=1,2..), while translational velocity is defined at
the mid-intervals of (n+1/2) as shown in Figure 7.
The equation of motion, Eq.(3), is integrated using a
centered finite-difference procedure by the time step of
At. This means that a linear acceleration is supposed
between two neighboring time steps of acceleration and
position. Therefore, new velocity at time step of
(n+1/2) can be calculated by using velocity at time step
of (n-1/2) and the acceleration at time step » is given
as follows:

- Velocity update -

24 5L @)

Then, the new position of body / at time step n is
updated by the following equation:

- Position update-

1
—ntl _ =n , 23
ro=r"+r, At

).

b) Rotational motion

Similar to the above scheme, the new angle of the
body i at time step » can be updated by the three
following equations.

2.M,
k

0, =1 ©®)
- Angular velocity update -

9,."% = é,"‘% +6" At %
- Angle update -

o' =0 + 9',."+%At ®

From the above integration, new position is updated by the
time interval of A¢. Not described here, the time interval has
to be small enough to get the stable analyses.

—>» Contact force vector between i body and other bodies

..... p Gravitational force vector acting on the i" body :

Figure 6 Forces acting on the i body

At
M\
Acgeleration an:osition
At
snanagseasna@recnsapannsns@uunnnn ------‘-’
Velocity

n-1/ n+1/2

Figure 7 Time stepping scheme

(3) Contact force calculations

In DEM, although the particles are assumed to be
rigid for the purpose of particle shape definition, local
elastic deformation is allowed to take place at the
contacts. In order to calculate contact forces between
particles or between particle and wall, the two
processes are required; i) contact detection, ii)
constitutive model providing a relation between contact
- force and contact relative displacement in normal and
shear direction at contact. Here, the contact detection
for circular particles and the representative constitutive
models are described.

a) Contact detection and distance of penetration
For the calculation of contact forces between two
bodies i and j, firstly, the two bodies are checked
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whether they are or not in contact each other. In
no-contact conditions, contact forces are not developed
between the two bodies. For circular two bodies, a
contact can be identified by their center positions and
their radii R; and R;. Figure 8 shows a schematic view
of a contact between two circular bodies. Here, distance
of penetration 8, is defined as follows:

§n =Ri+Rj_'\/(xi _xj)z +(yi _yj)2

®

where R; and R; are radii of body / and body j, (x;, y:)
and (x;, y;) are center coordinates in the global system.,
Therefore, two circular bodies are recognized in contact
* when the penetration 'distance, 0, has a positive value
as shown below.
0, <0 (no-contact)
0,20 (in contact)

(10

This is the condition of contact between two circular
bodies. Between a body and a wall, the same contact
detection procedure can be used.

b) Relative velocity and displacements at contacts
Let’s suppose that two contacting circular bodies i

and j have translational velocities ¥, and V,, and

i
angular velocities @, and @ ;> respectively. Figure 9

shows a schematic view of the two bodies, whose radii
are R; and R; respectively, are in contact at point P.
Under this condition, velocity at the contact point P of

body i (176[) and that of body j (I;'cj) are given as the

following equations:

I7ci:I7i+a_.)iX’:;p (11a)
VC.=Vj+a)j><rjp (11b)

where f‘;p and fjp are branch vectors from each center

of the body to the contact point P.

Then, relative velocity at the contact P in the contact
normal (V,,) and tangential (V) directions with respect
to the contact plane can be defined as follows:

V=W, -V,)h (12a)

V=W, -V,)3 (12b)

where # is contact normal unit vector and § is

tangential (shear) direction unit vector at contact point
P. As described later, inter-particle forces are calculated
by using the penetration distance. The contact point is
usually defined at P in the figure. The point P is

Global axes (ﬁxed)>

Figure 8 Distance of penetration between two
circular bodies

Figure 9 Relative velocities at contact
point P

assigned at middle of the penetration.

Between particle and wall, the same contact
procedure can be used. In this case, relative velocities
are obtained by assuming body j is always at rest when
the wall is completely fixed. If the wall is moving or
rotating, the same procedure is applicable.

¢) Contact force model

There are various contact force models (constitutive
models), which determine forces generated between
two contacting/colliding bodies. The force models
provide a relation between contact force and relative
displacement in normal and shear direction at contacts.
In the procedures of DEM calculations, a contact force
model has an important role because inter-particle
forces determine the behavior of particle movements.
As for elastic contact force, contact force models used
for DEM may be categorized into, i) Linear stiffness
force model and ii) Hertz-Mindlin theory based force
model.

In this section, as a simple force model, the linear
stiffness force model with a velocity dependent dashpot
in normal direction, and linear stiffness force model
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with Coulomb's friction model in shear direction, are
introduced. Later, Hertz-Mindlin theory based force
model will be shown.

(DLinear stiffness model
- Normal direction -

Figure 10 shows a schematic view of this contact
model. Contact normal force generated between two
contacting bodies is determined by a combination of a
normal spring and a velocity dependent damping. The

elastic force vector ( F,, ) acting on body i is

determined by the following equation:

F:w = _kn§nﬁ
where %, is a spring constant.
For the absorbing energy of the system, a velocity
dependent dashpot is installed in this force model. The

(13)

normal damping force vector (Fnd ) acting on body i is

given as follows:

I:‘nd = cné‘nn

(14)
8, =(r,—r)h (15)

where ¢, is a damping coefficient. Therefore, the total
force vector in contact normal direction is calculated by
adding the elastic force and the damping force as shown
below:

F,=F,+F, (16).

In this model, damping coefficient ¢, can be
calculated by using mass of two contacting bodies (m,
and m,), the coefficient of restitution e and the normal
spring constant &, based on the following equation. The
equation is obtained by an analytical method as,

I k -m
c, =2-ln(—) ;——2— an
e 2 1
< +|In| ~
e
where m* is the effective mass as shown below;
* mm
m =—12- (18).
m, +m,

- Tangential direction -

The tangential (shear) force is determined by a
combination of an elastic shear spring and a frictional
slider in this contact model a$ shown in Figure 11. The
tangential contact force is computed in an incremental
fashion. When the contact is formed, the shear force is
initialized at zero. The incremental shear force within

time step At is calculated by the following equation.

Normal spring k,

Damping C,

Figure 10 Linear stiffness contact model with a
velocity dependent dashpot in
normal direction

Frictional slider

Shear spring k;

Figure 11 Linear stiffness contact model
with a friction slider in
tangential direction

A

N2

frictional slip

>

loading

unloading

o
>

Figure 12 Constitutive behavior in the tangential
direction at contact points

AF, = kA, (19)

where AJ, is an incremental shear displacement due

to the relative tangential velocity at contact. This 0,
is expressed as below:

AS, = (?j —F)§At (20).
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The new shear force is then calculated by adding each
incremental shear force to the current shear force as
shown below:

F,=F,+AF,

If the updated shear force exceeds its limit value
defined by the Coulomb limit, the new shear force is
given as its maximum value. The maximum value is
simply defined by the multiplying friction coefficient

(21).

# by the elastic normal force as shown below:

F, = sign(A3,) i |[F|> (yﬁ

F

uF,

(22).

Therefore, the shear force Vvs. relative
shear-displacement relationship is plotted as Figure 12.
Finally, the shear force vector can be calculated by the
following equation:

F =F3§ (23).

®@Hertz-Mindlin based contact models for DEM

In accrual contacts between two elastic bodies, the
contact force-displacement relation depends on the
material properties of the particles and the surface
conditions. Force-displacement relations in both normal
and tangential directions for two elastic spheres with
friction can be provided by theories of Hertz (see
Johnson, 1985), Mindlin(1949) and Mindlin &
Deresiewicz(1953). For further information about the
contact force theories, see the references shown above.

The most sophisticated contact model for DEM is the
use of the above contact theory. We call such contact
force models as “Hertz-Mindlin contact model”.
According to Dobry and Ng (1989), Hertz-Mindlin
contact force models for DEM can be categorized into
the following three models in the order of the
complexity of modeling. For further information about
the first model, see for example Seridi and Dobry
(1984), about the second, see for example Thornton and
Randall (1988).

- Complete Hertz-Mindlin model
- Simplified Hertz-Mindlin model
- Linear pressure dependent model

In the next session, we describe the linear pressure
dependent model for DEM (the third model) since we
choose this model for the three-dimensional ellipsoidal
DEM. Here we also describe the Hertz-Mindlin contact
theory.

- Normal direction -
The Hertz theory deals with a pair of homogenous,
isotropic, elastic solids in contact due to forces that are

e niormal contact force
- = = = normal contact stiffness

Normal contact force N & Nomnal contact stiffness &,
~,

Relative normal approach distance ¢a

Figure 13 Constitutive behavior of two identical
elastic spheres by
Hertz-contact theory

normal to their initial common tangent plane. From the
theory, we obtain a relationship between the normal
contact force N and the relative normal approach
displacement a,. The relationship between two
contacting spheres “/” and “2”, whose radii are R, and
R;, is given as,
4 .+ 32
N=2E(Rg,’) @)
3 n
where E” and R” are constants which are determined by

material properties such as radius, Young's modulus and
Poisson's ratio of each sphere. E" and R" are defined

as,
2 _ 2
1‘ _ A-v)) N (1-v,) 25)
E E, E,
and
R = 2R R, 26)
R +R,

where U and E are Poisson's ratio and Young's modulus

of each sphere. Figure 13 shows a schematic
relationship between the normal force and the relative
normal displacement. Note that the relation is not linear
between two elastic spheres.

The derivative of the equation (24) gives the normal
stiffness &, at contacts as follows:

k()= %: 2E'(R'a, )"

n

Q7).

We find that the normal stiffness is dependent on the
normal approach displacement. See Figure 13, we find
that the stiffness becomes greater as increasing of the
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normal approach displacement. Note that this relation is
also dependent on the material properties of the two
contacting particles. If we use a linear stiffness mode!
(k.=constant) for the normal contact calculation, we
cannot consider the effects of the particle stiffness.
Therefore, this normal contact model is required
especially for the situation where particles are
compressed at high pressures. Note that the normal
stiffness has to be calculated according to the two
materials' properties in contact and the current overlap
distance between the particles, which is resulting in
consuming much computational CPU time than the
liner stiffness model. Therefore, we choose this contact
model for the

- Tangential direction -

Closed form solutions for tangential contact stiffness
between two identical elastic spheres for a variety of
instantaneous rates of normal and tangential forces are
found in Mindlin & Deresiewicz (1953). In this theory,
the shear force parallel to the initial common tangent
plane of the contacting two solids is added to the
original Hertz theory. However, the tangent contact law
is more complicated than the Hertz theory in the
following points.

- There is a permanent tangential displacement due to
tangential loading and it results in non-linear

-relations  between the shear force and the
displacement with energy dissipation.

- The tangential stiffness is dependent on the normal
force. Therefore, a combination of the normal and
the tangential forces must be taken into account.

- The tangential stiffness is dependent on the full
loading history of both normal and tangential forces
and also on the current forces.

As mentioned before, there may be three levels of
Hertz-Mindlin contact model used for DEMs. The
linear pressure dependent model for the tangential
direction contact, which is the simplest model among
them, is described here.

The model is also based on the work by Mindlin
(1949) and it showed that the relation between relative
tangential displacement a, and tangential force S
between two spheres with friction coefficient u for a
constant normal force N under a monotonic increasing
loading condition. The relation is expressed as follows:

3uN

—( ) 1_(1—_§_j2/3
% =\16G'a LN

where a is the radius of the contact area between two
contacting spheres;

(28)

Linear pressure dependent model (Eq. (31))
\

1%} .

3 o

& AN

g 1

= 1

= I

g A . !

= Mindlin solution (Eq. (30)) |
i
| N
1
1
1
1
1
1
1
\Vi

Relative tangential displacement &

Figure 14 Tangential constitutive behavior of
two identical elastic spheres

INR' 173
a= < (293)
)
and G* is, _
%=(2_Ux)+(2—02) (29b)
G G G,

where G, is shear modulus. Therefore, the tangential
stiffness at contact is given by the derivative of the
equation (28) as follows:

1/3
k(N,S)=— =95 =8G‘a(1_i] (30).
da, " da, N
oS

As shown in the above equation, the tangential stiffness
is dependent on the current contact forces N and S. As
this tangential stiffness model still requires much
computer time, in the third model the stiffness at S=0 is
employed at any tangential force for simplicity.
Therefore, the tangential stiffness is expressed simply
as below:

\

AE

This tangential stiffness model is called as the
“Linear pressure dependent contact model” and the
stiffness is dependent only on the current normal
contact force. The tangential stiffness given by
equations (30) and (31) are plotted against the relative
tangential displacement a, in Figure 14.

«N\1/3
k(N,S=0)=8G"a= 8G'(3R‘) (N)% @3D.
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(4) Mechanical damping models

In the linear stiffness contact model, the kinetic
energy of the system is absorbed only by the normal
dashpot and the shear friction. In addition to these
dumping factors, there are several additional damping
models, which effectively absorb the kinetic energy of
the system. Here, two representative models, which
absorb kinetic energy in time stepping scheme, are
described.

a) Velocity and mass dependent damping

This damping system assumes that a moving body
always has force that is acting opposite to the body's
velocity direction. The damping force is dependent on
both mass and velocity of the body. A damping term is
added to the original equation of motions as follows:

m,F, =2Fk +m,.§-—a,m,.ri (32a)
k

16,=> M, -a,lf, (32b)
k
where @, is a proportionality constant for the global
translational dumping coefficient and «, is the same
constant for the global rotational damping coefficient.
With this damping model, the kinetic energy of the
system is absorbed at every time step of the motion
integration.

b) Local non-viscous damping

Local non-viscous damping is similar to that
described in Cundall (1987) and is used in a
commercial codes PFC2D and PFC3D (ltasca
Consulting Group, Inc., 1999). A damping term is
added to the original motion of equations as follows:

Ehemz-afys

ZMk -al, ZM/:
3 %

where o, is a damping constant for the global
translational motion and o', is for the global rotational
motion.

[

mr L tmg-a, sign(r)  (33a)

16 sign@)  (33b)

2.3 The Two-Dimensional Superquadric DEM

The most general of DEMs, are the polygon based
and cluster based DEMs since they can model arbitrary
shaped non-symmetrical particles/bodies. However, if
we want to investigate the effects of particle shape in a
parametric manner, it is advantageous for us to use
DEMs employing an analytical representation for the
particle shape. Here, we introduce a superquadic
representation of two-dimensional particle shape. In

y (cm)

015
1D

x (cm)

Figure 15 Shapes of the superquadric
shaped particles
( n: the exponent coefficient in equation (34) )

this section, 2.3, we only describe the characteristics of
the particle shape modeled by superquadric functions,
the contact detection algorithms and the contact force
determination for the two-dimensional superquadric
particles since the other calculation procedures remain
same as the above mentioned circular or sphere shaped
DEMs in 2.2.

(1) The superquadric function

In the superquadric DEM, the boundary geometry for
a body “” is defined with respect to the local centroidal
coordinates as follows:

fi(x,‘,y,')E(Ei_lJ | +["y_’|] | -1
a; b

where the point P(x; y) is: i) outside the body when
Ji(xi, y) >0, ii) inside the body when f; (x;, y;) <0 and
iii) on the surface when f;(x;, ;) =0. Note, @; and b, are
the semi axes of the superquadric that define the aspect
ratio of the bounding rectangle, and the exponent #; is a
real number that determines the shape of the
superquadric in terms of angularity. The term angularity
should be regarded as a measure of the maximum
curvature on the surface of a superquadric. Examples of
different superquadric shapes with the shape exponents
n= 14,17, 2.0, 3.0, 5.0 and 10.0 are illustrated in
Figure 15 for a fixed aspect ratio of 1.0. Note, from this
figure, we can conclude that superquadrics have sharp
corners with discontinuous tangent planes for two
limiting values of n. For n = 1, the superquadric is a -
parallelogram with corners on the local centroidal x and
y axes, and as n—> o, the superquadric becomes a
rectangle with sides of length 24 and 254, that are
parallel to the local centroidal x and y axes. In this work,

(34)
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we have limited our consideration to the superquadric
shaped bodies with smooth convex surface geometry,
where the shape exponent n is usually defined in the
range 1< <10. This choice of » allows a wide range
of non-circular shaped bodies to be modeled, and
avoids the inherent mathematical difficulties
encountered whenn >10 or n <1,

Figure 16 shows two superquadric shaped bodies “i .

and ‘5 defined by f (x;, y) = 0 and f (x, y) = 0
respectively. When the point P(x;, ;) is on the surface
of the body “/”, the local coordinates can be defined
with the two parametric equations:
. 2/n;
% (@) = asignicos@ eost@ )", o
yi(@,) = bsign(sin(a, ) sin(a, )"

where ¢ is a parametric angle.

(2) Contact detection between superquadric bodies

In the superquadric based DEM algorithm, contact
between two bodies “’ and “ is determined by
computing the minimum overlap distance with a
minimization procedure, which is based on a geometric
potential concept, in the following manner:

a) Find the point P; that is on the surface of the
body “/” and minimize the superquadric function for
body “/” as shown in Figure 17. Since the point P; is on
the surface of the body “/”, the coordinates of P; with
respect to the local centroidal axes of body “7 are
defined by the parametric equations (35) which depend
on the parameter ¢; In order to minimize f; (x;, y)
which is defined by:

" ()"
FiGyyp=| 2R+ B - (36),
a; bj

the coordinates of the point P; must be expressed with
respect to the local centroidal axes of body “/”. This is
accomplished with the coordinate transformation:

xj(@;)] [cos(d;-6,) -sin(g;-6,) [xi(ai) .\ xo]
yi(a)| |sin(6;-6,) cos(8-6,) |yi(a)]| |y,
(37

where (x,, V,) are the coordinates of the centroid of
body “j with respect to body “/” defined in the local
centroidal coordinate axes of body “i”, and &, and g, are
the angular coordinates defining the local x-directions
for body “7” and body “/” with respect to the global
x-direction respectively.

The location of the point P; is now determined by
minimizing the function f (x;(a), y;(;)) =0 with respect
to the parameter ;. The point P, that is on the surface
of the body “” which minimizes the superquadric

-10 -

Y
A
X
>
Figure 16 Two Superquadric Shaped
Bodies “i” and “j” in
Contact

Geometric potential of
body “"—> fi(x;y,)

Geometric potential of
body " — fi(x;y)

>

[

- -

* P; is on the surface of body “” and minimizes
the geometric potential of body “j”.
* P; is on the surface of body “/” and minimizes

e

the geometric potential of body “i

Figure 17 Contact detection of superquadric
particles based on geometric
potential

function for body “/” is determined in exactly the same
manner.

b) Determine the radii and centers of curvature at
the two contact points P; and P;. Firstly, note that the
radius of curvature py at the point Py is given by the
standard formula below for a curve defined by y =
o)

3/2

(38).

For a superquadric curve defined by fy (xy,yx)=0,
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equation (38) becomes:

(RN

Pie= 2 2 2 2 2
[é_f_(é’_J RYS RS Mt J

&, \ M iy G Ve &0\ &y
k=i j
(39).

The unit outward normal vector on the surface of
body “k” defined by a superquadric in the local
centroidal coordinate system for body “k” is given by:

nx P
ﬁkzvfk/lvfklzl:n } k=ij
k

y

(40).

The coordinates with respect to the centroidal local
axes of body “k” for the position of the center of
curvature C;, for the point P, is given by:

|:cx:| ~|:xk:| |:nx:| I
= ~Pr k=i
e Dx "y Je

¢) Compute the normal penetration distance between
the two contacting bodies “/” and *“/. If the contact
problem is reduced to contact between the two circles
of curvature shown in Figure 18, the normal overlap or
the penetration distance is defined by:

(41).

5,=p+p,~d @)

where d is the distance between the center of curvatures
Ciand C; Note that the contact between bodies “/” and

% exists when 5> 0.
The contact normal direction for bodies “” and “/” is

defined by a unit vector n,;

; directed along the center

of curvatures from C; to C; as shown in Figure 18. The
corresponding contact shear direction is defined by a

unit vector §,.j that is obtained with a counterclockwise

rotation of 90° of ﬁij. .

In the current DEM calculation, we have employed
the usual linear stiffness contact model with restitution
and the Coulomb friction model. In the present
algorithm, the Brent method (Brent 1971) is used to
perform the superquadric function minimizations. The
incremental iterative updates for calculation parameters
are used to improve the efficiency of the computation
as well. Look up tables are also used to decrease the
effort for the computation of power functions required
in the superquadric equations.

-1l -

s P; and P; are the two boundary points that minimize
the superquadric geometric potentials.

e G and C; are the center of curvatures at P; and P,
respectively.

Figure 18 Contact parameters for two contacting
superquadric shaped bodies

a3 —\
a X;
|

a

Yi

Figure 19 Definition of ellipsoidal particle

2.4 The Three-Dimensional Ellipsoid DEM

The three-dimensional ellipsoidal discrete element
model employed in this work, originated from the DEM
algorithm developed by Lin for studying soil behavior,
see Lin (1995), Lin, Nakagawa and Mustoe (1996), and
Lin and Ng (1995, 1997). The details of the dynamic
time stepping scheme and the ellipsoidal
particle-particle contact detection and force generation
algorithm are fully described in Lin (1995). In this
section, we briefly describe the contact detection and
contact laws of ellipsoidal particles. In addition to them,
we also describe the details of the contact detection
between an ellipsoidal particle and a triangular face
(Mustoe and Miyata, 2001).

(1) Contact detection between ellipsoidal particles
The three-dimensional ellipsoidal particle shapes are
defined by the semi-axis values a;, a, and a; as shown
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in Figure 19. Using local coordinate system, the
equation of the ellipsoid’s surface is expressed as /
follows: 4

2 2 2
f(xl,xz,x3)=[ﬁ] +(i‘lJ +("—3J ~1=0 (43).
al az a3

A wide range of different shaped particles can be
modeled with different values of a,, a, and a;. With the
equation (43), tablet, football and spherical shapes are
generated with (a;:a;:a;) ratios of (2:2:1), (2:1:1) and
(1:1:1) respectively.

Similar to the 2D model in the previous section, we
apply a contact detection algorithm based on the
geometric potential concept for the Ellipse 3D. A brief
description is given here (for more details, see Lin &
Ng (1995,1997). For the ellipsoidal particle, a

geometric potential is given as follows: Y
2 2 2
X X x
Sx,x,x,) = [a—l] +[;2'] +(j] -1 (44). Figure 20 Two ellipsoidal shaped bodies “i” and “j”
1 2 3

) : i in contact
By using geometric potentials, the points P; and P, are

obtained as shown in Figure 20. In the figure, solid line
is surface of ellipsoid and dotted line is geometric
potential.

The normal and tangential contact force laws
between ellipsoidal particles are slightly different from
those between spheres since the particle shape is
different. As illustrated in Figure 21, a small elliptic
contact interface in the contact tangent plane is
generally formed when two curve solid surfaces (solid
and dotted lines) are in contact. This elliptic contact
interface can be expressed by axes, u and v, as follows:

Au’ + Bv? =h 45)

where h is the initial separating distance of the two
curved surfaces on the elliptic interface. The positive
constants 4 and B are given from the following

relations:
11 1 1
A+B=— —’+—”+ 7 + " (463) - )
2{R R R, R Figure 21 Two ellipsoidal shaped bodies “i” and
“j” in contact
172
R e e e
v s A vORAR specified with R{, R/, R/, R) and f (Boresi and
. Sidebottom, 1984).
(46b) As a general form, the Hertzian normal contact law is
in which R/, R/, and R|, R] are the principal given as follows:
-- i 4 . /2
radii of curvature of the two solid surfaces at contact N=—_E ( Re an3)‘ l//( B/ A) @7)

point, and B is the angle between major principle
directions of curvature of the two surfaces as shown in
Figure 21. The angle # between axes u,; and u; can be

-12-
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where W (B/A) is an elliptic integral varying with

B/A, and R, is an equivalent radius of curvature, which
can be expressed as:

(48).

The elliptic integral (B/ A) is unity for the contact

between spheres and is decreasing slowly from unity
1
with increase of (B/ A)/2 (see, Johnson 1985).

Therefore, in the current model, w(B/ A) is given as

unity regardless of the principal radii of curvature of the
two ellipsoids at contact.
The major and minor principal radii of curvature at

any given point of an ellipsoidal surface, R’ and R”",

can be given by Lipschutz (1969).

Tangential contact force law for general curved solid
surfaces in contact is given by Mindlin (1949). The
tangential stiffness generally varies with the direction in
the contact tangent plane. However, the variation is
small. Therefore, for simplicity of the calculation, we
use a linear dependent stiffness model shown in the
equation (31) in all directions as follows:

1/3
k =8G'a= 8G'( 3Ri) (Y

(49).
4F

(2) Contact detection between ellipsoidal particle and
triangular face

The details of the contact detection between an
ellipsoidal particle and a triangular face are described
here. For the simplification of the development, the
equation of the ellipsoid’s surface and the equation of
the plane for the triangular face with nodes 7, J and K
are expressed with respect to the principal axes (x;, x;,
x3) of the ellipsoidal particle as shown in Figure 22.
The equation of the plane for the triangular face is
given as follows:

x|+ HyXy + h3xy —dy =0, (50)
1¥1 ¥ MyXy ¥ h3X3 — 4

where dj is the distance from the plane to the center of
the ellipsoid.

The two possible locations of the nearest point to the
plane on the ellipsoid are at P, and P, where the
outward normal direction of the ellipsoid and the unit

normal vector, 7, of the plane are parallel. This

condition is expressed by:

a
a, "

[

i=123 (D

-13-

Figure 22 Geometry of an ellipsoidal particle
and a triangular face IJK

K (xk, ¥x)
y
A
XQ» YQ)
X
—>
1(0,0) J(x;,0)

Figure 23 Definition of the two-dimensional
local face coordinate system

where 71, =(n,n,,ny) is the unit normal vector of the

plane written with respect to the principal axes of the

ellipsoid,
2 2 2 1/2
a=4( 2 (2] (2 , (52)
axl axZ 6)63
and ?—L=2—"2’, i=123 (53).

i a;
Combining equations

(51,

coordinates (x,”,x,”,x;”) of the points P, and P, are

(52) and (53), the

given by:

L =123 (54).

The normal distance &, , from the point P, (or P,) to
the plane is computed via: ‘

8, = nl(xl’ - ")+ ny(x, -7+ (%' - x57),  (55)

‘ !
where (x,”,x,”,x,") and (x/,x,’,x;') are the

coordinates of the point P, (or P,) and the point /
respectively. The point P which closest to the plane is
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either located at the point P; or P, and is determined
from the minimum value of the two possible values of

é

n-

The coordinates (x;7,x,7,x;7) of the normal

projected point Q from the closest point P on the
ellipsoid are given by:

X7 =2 4o, i-123 (56).

In order to determine whether the point Q on the plane
is inside or outside the triangular face, we compute the

triangular coordinates (L;,L;,Lg) of the point Q in

the following manner. In Figure 23, we view the

triangular face from the normal unit direction, 7, and

define the local two-dimensional face coordinate
system (x, y) as shown.

From Figure 23, we can also define the area of the
triangular face IJK, by 4, and the sub-areas 4, A; and
Ag as the areas of the triangles JKQ, KIQ and IJQ
respectively. These areas are computed by:

A =0.5(x”yK1 "yJ]xK]), (57)
A; =05(x;9¥ko ~ Y10%K0)
4, = O'S(xKQyIQ - yKQxIQ) (58)

Ag =0.5(x19Y 50 = Y19%10)
where x;; =x; —x;,etc...,and x; =y, =y; =0.

The triangular coordinates (L;,L;,Lg) of the point Q

are then defined by:
A A, A
Ly, Ly, L) =(~L,—L=% 59).
(LrLy, L) = (517K (59)

The conditions for the contact between the ellipsoidal
particle and the ftriangular plane IJK are that

6,>0 and all three triangular coordinates

(L;,L;,Lg) >0, otherwise there is no contact. Also,

because the triangular coordinates have the normalized
property: L, +L; +Lg =1, a small positive value of a

triangular coordinate indicates that the ellipsoid is close
to an edge or corner of the triangular face.

The normal and shear components of the contact
force can be then computed in the usual manner
employed in a standard DEM for either linear or
non-linear force laws.

-14 -

3. DEM Analyses on Force Support Systems of
Particulate Media

3.1 Introduction

As mentioned before, more basic studies on force
support systems of particulate media are required for a
better understanding on the support systems of rubble
rock foundations. In order to investigate the mechanical
behavior of the rubble rocks near the surface of the
foundation subject to vertical loading, we should
simulate the movement of the rubble rocks accurately.
Discrete Element Method (DEM) simulations are best
suited for this type of complex investigation since we
are able to trace the movement of each rubble rock and
estimate the magnitude of contact forces between the
rocks, and between the rocks and the bottom slab of a
caisson during loading.

In order to model the vertical loading history of the
foundation due to the weight of a caisson, a series of
uniaxial compression test simulations are conducted on
a system of both two-dimensional superquadric
particles and three-dimensional ellipsoidal particles. In
this chapter, the above two simulation results will be
presented.

3.2 Uniaxial Compression Test Simulations using
two-dimensional superquadric DEM

Circular, particles are usually used in DEM

" simulations, however, actual rubble rocks have very

irregular shapes, which affects the local rearrangement
of rubble rocks near the surface. In this study, we
employ a superquadrics representation of particle shape
in order to access particle shape effects in a simple way.

With using the two-dimensional superquadric DEM,
we investigate the effects of surface roughness and
particle shape on force system of the foundation subject
to vertical loading by a caisson. A series of uniaxial
compression test simulations are conducted on a system
of circular particles and a system of almost rectangular
particles. Based on the simulation results, some
preliminary observations and discussions on the effects
of the surface roughness and the particle shape on the
overall mechanical behavior of the foundation will be
given here.

(1) Simulation method

Figure 24 shows a procedure for simulating the
uniaxial compression test. In the simulation, mono-size
particles are inserted in a rectangular box where both
sides are periodic boundaries to minimize the boundary
effects (Figure 24 (a)). After the settlement of particles
by the gravity force within the box, the roughness of the
sample surface is varied. In the actual construction
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Table 1 Simulation cases

particle shape N

samp

CASE semi-axis | Surface zize

shape
lengths

s a=15cm | smooth 2 7m
circular (n=2) Lot
CR b= 15cm rough (height)

SS superquadric| @=19-5cm, | smooth 10m
SR | @9 | p=976cm | rougn | (¥idth)

where a smooth surface roughness of +5cm is required,
relatively large rocks are placed near the foundation
surface so that their flat surface face toward the bottom
slab of a caisson. In addition to rearranging the large
rocks, relatively small rocks are also used to fill in the
gaps between the large rocks so that the large rocks
cannot move or rofate. Because it was impossible for us
to reproduce the actual construction procedures to
control roughness in the current simulation, two
different types of surface roughness are defined. As
shown in Figure 24 (b), one is defined as a “smooth”
surface and the other is defined as a “rough” surface.
For the smooth surface, particles whose centers are
located higher than a certain height are removed.
Though some minor irregular roughness of the surface
still remains, we call this a smooth surface. For the
rough. surface, particles whose centers are located
higher than a given sinusoidal function are removed.
This surface is considered to have large-scale roughness.
After varying surface roughness, each sample is
allowed to settle again to reach it§ static equilibrium
(Figure 24(c)).

After settlement, a loading plate is placed at the
maximum height of the sample as shown in Figure
24(d). The plate remains horizontal and is lowered at a
constant velocity in the vertical direction. The velocity
is small enough for the system to maintain quasi-static
behavior of the particles. During calculations, the total
vertical load acting on the plate and settlement of the
plate are recorded. Contact conditions such as the
number, locations, force amplitude of contact points
between the loading plate and particles beneath the
plate are also recorded. Movements and rotations of all
the particles and contact force between particles are
also recorded.

(2) Calculation conditions

In the present study, four different samples are used
as shown in Table 1. In order to identify the effects of
non-circular particle shape, we use circular and almost

-15 -

Periodic ' ' Periodic

boundaryI

(b-1) Smooth surface

(b-2) Rough surface

(c) Settlement

Loading plate

(d) Placé a loading plate and move it
downward with constant velocity

Figure 24 A procedure for uniaxial compression
simulation

———Ellipse(a:b=2:1, n=2)
— Circle (a:b=1:1, n=2)
Superquadric (a:b=2:1, n=4)

Y (m)

-0.3

Figure 25 Supequadric representation of particle
shape

rectangular particles as shown in Figure 25. For the
circular particle, a radius of 0.15m is given. We employ
a ratio of 2 between major to minor axes for the
rectangular particles with the exponent #=4. The size of
the rectangular particle is set so that its mass is
equivalent to that of the circular particle.

Two different types of surface roughness are studied
as mentioned in the previous section. The sample height
is set at about 2.7m from the bottom plate in all the
cases. For the smooth surface cases, particles whose
centers are located higher than 2.7m, are removed. For
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the rough surface cases, particles whose centers are
located higher than the following sinusoidal function:

. 2mx
z(x)=z, +ax sm(T)

are removed. In equation (60), z is the height
determining the removals of particles, x is the distance
from the left boundary, z, is the sample height (2.7m), a
is the amplitude of the sine function and L is the
wavelength of the sine function. In the simulation, the
amplitude ¢=0.3m and the wavelength L=2m are
assigned.

Parameters used in the calculations are shown in
Table 2. Inter-particle friction is set for 0.51 except
when circular particles are randomly sedimented in
order to make disordered samples. In order to avoid
dynamic effects, the coefficient of restitution and
velocity of the loading plate are given a very small
value. Spring constants for wall-particle contact are set

(60)

to 10 times as large as those for particle-particle contact.

As cylinder shaped particles are assumed, all the
particles have unit in-plane depth.

(3) Simulation results

Figure 26 shows the settlement of the loading plate
with increasing vertical stress on the plate. From the
figure, in every case, there is a large settlement when
the vertical stress is small (0-50kPa). After this initial
settlement, the vertical stress starts to increase more
rapidly in response to the settlement of the plate
(50-250kPa). The stress-settlement relation becomes
almost linear for a stress level over 250kPa where
samples behave as a continuum material except for
some intermittent stress releases seen for the samples
consisting of circular particles. This result indicates that
a foundation consisting of circular particles seems less
stable than that consisting of rectangular particles when
they are subject to vertical loading. Circular particles
tend to rearrange more easily in response to a large
vertical loading. There is no stress release for samples
of rectangular particles. This is because rectangular
particles are lock up easily and become very difficult to
rearrange. Here, in this report, we identified three states
according to the characteristics of the stress-settlement
relations, i.e. the initial state (0-50kPa), the transition
state (50-250kPa) and the final state (over 250kPa).

The stress-settlement relation is also affected by
surface roughness. In the rough surface cases (CR, SR),
there is a large settlement during both the initial and
transition states simply because there is sufficient space
for the particles near the surface to rearrange. However,
the stress-settlement relations of both smooth and rough
surface are almost linear and parallel to each other in
the final state.

-16 -

Table 2 Calculation conditions
1650 (kg/m®)

Density

Normal spring constant 1.0¥10’ (N/m)

Tangential spring constant

%107
between particles 1.0%10° (N/m)

Normal spring constant between

8
particle and wall 110" (N/m)

Tangential spring constant

*108
between particle and wall LO*10° (N/m)

Coeflicient of restitution 0.01
Friction 0.51
Time step 0.00017078 (s)
Velocity of loading plate 0.01 (m/s)
———— CS8 (circular, smooth)
1200 4 = CR (circular, rough)
1100 { —{3J- SS (rectangular, smooth)
§ 1000 || —D—‘SR(rectangular, rough)
& 900 7a
©
s 800 . ij_‘
-]
E Vil s
£ 700
3 /-
o 600
& 500 L
L] /
3 400 lall's
0 gamgys
g 200 i
)
Z 100 /,/:p
0 Loien
0 10 20 30 40 50 60 70 80

Settlement of loading plate (cm)

Figure 26 Relationship between settlement of
loading plate and vertical stress on the
plate

Figure 27 shows contact force distributions between
particles for all cases. Each case includes snapshots of
samples at the end of the initial and final states. In
every case at the initial state, the number of contact
points supporting the loading plate is small, however,
there are some force chains which define force
transmission paths developed even at this early state. In
the transition state, although not shown here, the
number of contact points on the plate increases and new
force chains are created. In the final state, the surface
roughness has diminished and most of particles near the
surface are contacting the loading plate.

Comparing the two cases of a smooth surface, CS
(circular particles, smooth) and SS (rectangular
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Figure 27(a) Contact force distributions between particles (Vertical stress = 50kPa and 900kPa)

particles, smooth), we ca see that there is a difference in Figure 28 shows particle rotations between the initial
the evolution of the force chains from the initial to the unloaded state and after a loading of 50kPa vertical
final states. For rectangular particles, the force chains stress (initial state), and between 50kPa and 250kPa of
formed in the initial state tend to endure through to the the vertical stress for smooth roughness cases (CS, RS).
final state and continue to support the increasing load. The degree of the particle rotation is indicated by the
On the other hand, for circular particles, initial force darkness of the particle’s color. For example, the
chains change continually through to the final state. maximum degree of particle rotation is shown as black
This trend indicates that the force system within the _and zero rotation is shown as white in each figure. As
System of rectangular particles is much more stable seen in the figure, significant particle rotations occur

than that of a system of circular particles. near the surface in both systems of circular and

rectangular particles in the initial state and even in the

-17-
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Figure 27(b) Contact force distributions between particles (Vertical stress = 50kPa and 900kPa)

transition state. From a comparison between the
systems of circular and rectangular particles, we find
that the rotations of circular particles are much larger
than those of the rectangular particles.

As shown in the figure, we find that particle
rearrangement near the surface due to rotation is more
significant than that of a particle near the bottom. In the
figure, we also see that rectangular particles rearrange
significantly less than circular particles. The particles

- 18-

near the surface seem to play a significant role in
altering the force transmission paths, The degree of
surface rearrangement of particles may also explain the
occurrence of the sudden stress release predicted for a
system of circular particles and its absence in a
rectangular system of particles. A similar difference in
the stability of the force systems can also be seen
between the rough surface cases (CR and SR). However,
more changes in the force chains occur in the rough
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Figure 28 Particle rotations of Circular and Rectangular Particle Systems (CS, SS)

surface cases because there is more space available to
accommodate particle movement near the surface.
Figure 29 shows how the number of contact points
on the loading plate increases with the vertical stress.
The number of contacts is normalized to define the ratio

of the number of contact points on the loading plate to
that of the bottom plate. Since the number of contacts
on the bottom plate remains almost constant, we can
compare the changes in the contact number for all the
simulation cases on the same basis. In the figure, the

-19-
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number increases quickly at the initial state. In the
transition state, the number still increases, however, its
rate of increase becomes smaller than that of the initial
state. In the final state, the number increases even more
slowly and approaches a maximum. In the present
simulations, the effects of the particle shape on the
number of contact points are inconclusive. On the other
hand, the number of contacts for the rough surface
cases is smaller than that for the smooth surface cases
in the initial and transition states.

Figure 30 shows the percentage of the total load of
900kPa that is supported by the contacts formed in the
initial, transition and final states respectively. For
example, in the initial state, the first 40% of the contact
points newly created is included. Similarly, the contacts
formed between 40 and 70% and between 70 and 100%,
define the transition and final state, respectively.
Therefore, if every contact supported an equal amount
of the vertical load, the percentage of the supporting
load of each state should be 40% (initial), 30%
(transition) and 30% (final). Figure 30 illustrates that
the contacts formed in the initial and transition states
support over 70% of the total load. On the other hand,
the contacts formed in the final state only support 20%
or less of the total load. Therefore, we can conclude
that the core chains of the force transmission system are
most likely formed during the initial and transition
states. This trend is clearly shown in the rectangular
particle cases (SS, SR). The contacts formed in the
initial state support more than 50% of the total load. On
the other hand, the contacts formed in the final state
support less than 15% of the total load. When a rubble
rock foundation is constructed using non-spherical
rocks and is subjected to the weight of a caisson,
dominant persisting force chains may be created in the
early state of the loading.

3.3 Uniaxial Compression Test Simulations using
Three-dimensional Ellipsoidal DEM

We also conducted a similar uniaxial compression
test using three-dimensional ellipsoidal particles. In this
simulation, we focus our investigations on the
characteristics of contact force distributions on a plate
in a view of estimating bending moment acting on the
bottom slab of a caisson.

Based on the simulation results, some preliminary
observations and discussions are presented here on the
contact force distributions of particulate systems. The
effects of the surface roughness on the characteristics of
the force distributions are also shown.

(1) Simulation method and calculation conditions
In the simulation, 1500 mono-size particles are
inserted into a rectangular box (D=10mxW=10m)
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Figure 31 Simulation model

where all sides are periodic boundaries to minimize the
boundary effects as shown in Figure 31. The sample is
then allowed to settle and reach the static equilibrium
condition. After the settlement, particles, whose centers
are located at higher than 2.0m (31 particles), were
removed to obtain flatter surface of the sample. After
further settlement, a loading plate is placed at the
maximum height of the sample and is lowered at a



Technical Note of NILIM No.33

constant velocity in the vertical direction. The velocity
. is chosen small enough to maintain quasi-static
behavior of the particles. During calculations, the total
vertical load acting on the plate and settlement of the
plate are recorded. Contact conditions such as the
number of contact points, locations of the contacts,
force amplitudes of the contacts between the loading
plate and particles beneath the plate are monitored as
well. Movements and rotations of all the particles and
contact forces between particles are also recorded.

A rubble rock shape was modeled by an ellipsoid
with semi axes ratios of (1:0.7:0.49). These ratios were
determined based on the shape measurement results of
actual rubble rocks, which are used in ports of Japan
(Shoji 1983). In this simulation, these semi axis length
are given as 37.1, 26.0, 18.2cm respectively. The mass
of a single particle is about 191kg. Inter-particle and
wall-particle friction coefficients are set to the same
value of 0.6. In order to avoid dynamic effects, the
velocity of the loading plate is given a very small value
(2cm/s). Note, that the Hertz contact force law was
applied in these analyses. The Young's modulus and
Poisson's ratio are given as 70GPa and 0.2 respectively
for both of the particles and the loading plate. The time
step was defined as 6.86x10° second during the
compression process.

(2) Simulation resuits

Figure 32 shows the evolution of the vertical stress
on the loading plate with increasing vertical settlement
of the plate. From the figure, there is a large settlement
when the vertical stress is small (0-100kPa). After this
initial settlement, the vertical stress starts to increase
more rapidly in response to the settlement of the plate
(100-400kPa). The stress-settlement relation becomes
almost linear for the stress levels over 400kPa where
rubble rock samples behave as a continuum material.
Here, in this report, we identified three states according
to the characteristics of the stress-settlement relations,
i.e. the initial state (0-100kPa), the transitional state
(100-400kPa) and the final state (over 400kPa).

Figure 33 shows the evolution of the number of
contact points on the loading plate with increasing
vertical stress on the loading plate. The increase in the
number of contacts seems to be related to the
stress-settlement behavior. The number of contacts
increases quickly in the initial state. In the transitional
state, the number of contacts still increases, however, its
rate of increase versus the vertical stress becomes
smaller than that during the initial state. In the final
state, the rate of increase becomes even smaller still. On
the other hand, the number of contacts on the bottom
plate remains almost constant at about 257 during
compression since the particles generated in the box are
allowed to settle freely to the bottom plate and it made
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Figure 34 Contact force distributions
(Left: a) Loading plate, Right: b) Bottom plate)

more particles have contacts with the bottom plate.
Therefore, the top surface of the specimen may be
identified as a “smooth surface” and the bottom surface
may be identified as a “rough surface” in this
simulation.

Figure 34(a) shows the contact force distributions
between particles and the loading plate when the
vertical stress is 400kPa. The area of each circle
represents the force amplitude of each contact point on
the plate. As shown in the figure, the contact force has a
wide range of amplitude even in the final state where
the particles are compressed to a high vertical stress.
Figure 34(b) shows the contact forces acting on the
bottom plate. Though the number of contact points on
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the bottom plate is much greater than those acting on
the loading plate, the contact force amplitudes also have
a wide variation. It is also interesting to note that
primary force systems that support a large portion of
the total load are similar for both a “smooth surface”
(top surface) and a “rough surface” (bottom surface).

Figure 35 shows the probability density distributions
of normalized contact force amplitude f, on both the
loading and the bottom plates (shown by bars). The
normalized contact force is defined by dividing each
contact force by the average contact force on the plate
at each vertical stress level. Each distribution was
obtained by using ‘10 snapshots of contact forces
between 400kPa and 600kPa of the vertical stress. As
shown in the figure, we find that there is a difference in
the shape of distribution at /< 1.0 between the loading
and bottom plates. We also see that the amplitude of
contact force has a wide variation. From the figure we
can notice that most of the contacts generate relatively
small contact forces on both the plates.

In the figure, we also plotted two sets of probability
density functions. The thick line was obtained from a
series of uniaxial compression tests using glass bead
packs by Mueth et al. (1998). The function is
represented as follows:

P(f)=a-(1-b-e).e#, 61)

~ where f is normalized contact force. The three
parameters in the function are given as ¢=3, 5=0.75 and
B =1.5 respectively.

The dotted line is a theoretical model proposed by
Liu et al. (1995) and Coppersmith et al. (1996), which
has been named as “ q-model”. The q-model is a scalar
model which takes the normal component of force
determined by the weights of elements located in an
ordered lattice. For further details, see the references
above. This function is represented as follows:

P(f)=-2

(N—1)!fN_leNf

(62)

where N is the number of underlying neighbors in the
lattice. In this work, N=3 was used.

There is an exponential decay at large £>1.0 in both
the functions (61) and (62). Furthermore, aother
numerical simulation (Radjai, 1996) and experimental
results (Baxter 1997, Lovoll 1999) also have shown the
same exponential decay. Therefore, this exponential
decay seems to be one of the characteristics of a force
distribution within an assembly of particulate media.
On the other hand, however, there is no consensus on
the shape of the distribution for small forces f < 1.0.
Our simulation results show that the distribution on the
loading plate is a good fit to the function (62) predicted
by the q-model, and the distribution on the bottom plate
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Figure 35 Probability density distributions
of normalized contact force

is a good fit to the function (61) that was obtained by
experiment.

Our final goal is an estimation of the bending
moment of the bottom plate of a caisson, which is
subjected ‘to loading by distinct concentrated forces
from the rubble rocks. By using both the probability
density function of contact force amplitude and the
spatial distribution of contact points on the plate, we are
able to estimate the moment in a statistical manner
through Monte Carlo simulations (Miyata et al. 1999).
Figure 36 shows a flow diagram for estimating the
bending moment due to arbitrary contact forces by a
statistical way. From the point of view regarding the
estimation of moment, we are able to say that relatively
larger contact forces will dominate the fluctuation of
the maximum bending moment of the plate. On the
other hand, the effect of small contact forces, which are
located homogeneously in space, on the moment
fluctuation is most likely to be small.

Figure 37 shows a probability density distribution
that represents the percentage of the total load within



Technical Note of NILIM No.33

each class of the normalized force /. The thick line and
dotted line show the distributions for the loading plate
(“rough surface”) and the bottom plate (“smooth
surface”), respectively. As shown in the figure, small
contact forces (f < (.5) support a small portion of the
total load, while medium (0.5 < f < 2.0) and large
contact forces (f > 2.0) support a significantly larger
portion of the total load. The fluctuation of the moment
will be strongly affected by this load support
probability distribution rather than the contact force
distribution. Accordingly, the above results indicate that
the shape of the distribution function of contact force
for f> 0.5 is of considerable importance.

4 Concluding Remarks

(1) The current report describes the general theory of
the DEM and the mathematical development of a
two-dimensional  superquadric DEM and a
three-dimensional ellipsoidal DEM for analyzing
systems of general shaped rigid particles.

(2) We investigate the force support systems of
particulate media such as a rubble rock foundation by
using the two DEMs. In the DEM simulations, rubble
rocks are modeled by smooth frictional particles. The
rocks are then subject to a vertical loading of the weight
of a caisson. DEM simulations performed in this report
consisted of: a) uniaxial compression tests of particulate
media using the two-dimensional superquadric DEM,
and b) similar tests using the three-dimensional
ellipsoidal DEM. From these DEM simulations, the
following remarks were made.

a) Uniaxial Compression Test Simulations using
two-dimensional superquadric DEM

Based on the simulation results for the uniaxial
compression test using the superquadric DEM, it has
been shown that both surface roughness and particle
shape significantly affect the stress-settlement relation
of a particle assembly. A rough surface initially leads to
a large settlement in the compression process. Systems
of circular particles exhibit some intermittent stress
releases during the settlement while systems of
rectangular particles tend to form rigid stable force
chains that persist throughout the compressive loading.
The simulation results have also shown that the force
chains developed in the earlier stage of compaction
process, supports a larger proportion of the total load.
This trend is more apparent for the systems of
rectangular particles than for those of circular particles.
In the evolution of the force system, the differences
between circular and rectangular particles seem to
cause the differences in the local rearrangement of
particles near the surface of the particle assemblies.

l Probabilistic model for contact conditions |

i) Spatial distributions of contact points and the
number of contact points
ii) Contact force distributions

1L

Calculations of bending moment acting on a slab

in a statistical manner

Example method;
i) Monte Carlo simulation with using FEM
ii) Statistical Finite Element Method (SFEM)
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b) Uniaxial Compression Test Simulations using
Three-dimensional Ellipsoidal DEM

Based on the simulation results for the uniaxial
compression test using the three-dimensional ellipsoidal
DEM, it has been shown that stress-settlement relations
of an assembly of particulate media, which is subjected
to vertical loading, is related to the evolution of the
number of supporting contact points. The number of
contact points on the loading plate increases quickly
during an initial large settlement of the sample. After
the initial settlement, its rate of increase becomes much
slower and the stress-settlement relation becomes
almost linear as in a continuum material.

The simulation results have also shown that the
contact force amplitudes on the loading plate and the
bottom plate, which may be identified as a “rough
surface” and a “smooth surface” in this simulation
respectively, have a wide range of distribution. This
discrete and inhomogeneous force support system of
particulate media is apparently very different from the
linearly distributed reaction force between a rubble rock
foundation and a bottom slab of a caisson, which is
assumed in the present design code. Though more
studies are needed to clarify the differences in the force
support system between “smooth surface” and “rough
surface” of a rubble rock foundation, the simulation
results indicate that principal force support systems that
support a large portion of the total load are similar for
both a “smooth surface” and a “rough surface”. This
result suggests that we may be able to employ a rougher
rock rubble surface foundation instead of the smooth
rock rubble surface foundation used at present.

Characteristics of the  probability density
distributions of normalized contact force f, which is
defined by dividing each contact force by the average
contact force on the plate at each vertical stress level,
were investigated for both loading and bottom plates.
The results have shown that the amplitude of
normalized contact force f has a wide variation and the
shape of the distribution for large contact forces f> 7.0
decays exponentially as the normalized contact force f
increases. This work agreed with other studies
performed by DEM  simulations, theoretical
investigations and experiments which also showed the
presence of this exponential decay for larger contact
forces f > 1.0. Accordingly, this exponential decay
seems to be one of the characteristics of a force
distribution within an assembly of particulate media.
On the other hand, there is no consensus on the shape
of the distributions for small contact forces /' < 1.0.
However, the effects of the distributions shape near f
=0 on the fluctuations of bending moment on the
bottom plate of a caisson is considered to be small.
Therefore, with respect to the practical use of these
probability distributions, we should consider the load
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support distributions rather than contact force

amplitudes distributions.

(3) The present work using the DEM highlights the
applicability of DEM to the analysis of compaction
problems of particulate media and more particularly to
the port engineering problems. This report clearly
shows that the DEM can predict detailed particulate
level information, which is essential in the development
of new design guidelines for the bottom slab of a
caisson. (Received on February 14,2002)
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