# 第2章 建築物のライフサイクルに おける CO<sub>2</sub> と廃棄物の排出量 算出・評価手法の開発



# 第2章 建築物のライフサイクルにおける CO<sub>2</sub> と廃棄物の排出量算出・評価手法の開発

# 2.1 設備を中心とした LCCO2 算出手法の開発

# 2.1.1 LCCO<sub>2</sub> 算出の考え方と運用時エネルギー消費量の予測手法の概要

地球温暖化問題は、一般メディアでも最近大きく取り上げられるようになったが、それを持ち出すまでもなく、環境問題において最も影響が大きく且つ効果的対策が難しい問題である。現代文明の根幹に関わる問題と言える。建築分野においても、CO<sub>2</sub> 排出に関わる研究は盛んであり、研究文献は枚挙に暇がないほど多い。しかし、こうした研究で行われている LCCO<sub>2</sub> 評価は、建築の企画・設計・建設などの実務において浸透しているわけではなくその基準値などは提示されていない。

本検討では、このような状況を受け止め、建築の実務においても LCCO $_2$  評価が普及することを目指して、建築の LCCO $_2$  評価を比較的簡易に実施できる手法の開発を目標に検討を行った。このプロジェクトで開発した推計・評価手法においては、建築物の CO $_2$  排出量を、既往の手法と同様に、製造、建設、運用、解体・除却の4段階において推計し、それらを集計して求める。既述のように、建築物の LCCO $_2$  評価に関してはすでに多くの研究やデータがあるので、本プロジェクトでは、こうした既往の成果やデータをできるだけ活用し、欠けている手法やデータの開発・整備を行うという方針が採られた。図 2.1.1に、建築物の LCCO $_2$  評価の流れと、本プロジェクトにおける検討・開発の対象を示す。なお、本プロジェクトでは建築用途としては、事務所ビルを主な対象として開発を行ったが、商業施設や病院などホテルなどについて実績データが得られたものについてその解析も行った。



図 2.1.1 LCCO<sub>2</sub>算定の全貌と主な検討対象

### 2.1.2 空気調和設備・換気設備

### (1) 空気調和設備

# (1.1) 空調のエネルギー消費量の算定方法

建築物の運用時において空調が消費するエネルギー (1次) およびその結果に基づく  $CO_2$  排出量の予測計算法については多くの既往の成果がある。空調システムシミュレーションが最も精緻な予測法であるが、建築物の省エネルギー基準において用いられている全負荷相当運転時間法などの、いわゆる手計算レベルの計算法も存在する。しかし、本検討では、建築や空調システムの詳細が定まっていない企画や基本設計の段階において、 $LCCO_2$  の推計を行うことを対象としたため、全負荷相当運転時間法などよりも簡便な手法が望ましい。そこで、本検討においては、CEC/AC(省エネルギー基準で用いられている空調のエネルギー消費係数)の目標値を設定して、それを利用してエネルギー消費量を算定し、その消費量に基づいて  $CO_2$  排出量をも算定する方法を提案した。以下に空調のエネルギー消費量と $CO_2$  排出量の算定手順を示す。

STEP-1 導入する空調システムを想定し、その特性や性能に見合った「CEC/AC の目標値」を設定する。

STEP-2 本稿で示す計算法(後述)を用いて、当該建物の内部発熱や空調時間の影響を適切に反映した年間空調負荷を算定する。この負荷は、CEC/AC の計算で定義されている「仮想空調負荷」と同様な趣旨で計算されるものであるが、内部発熱や空調時間を変数として想定している点が「仮想空調負荷」と異なる。本研究においては、特に注意がない限り、この負荷を「年間空調負荷」と呼ぶことにする。こうして算定された年間空調負荷にSTEP-1のCEC/AC目標値を乗じて、空調の1次エネルギー消費量とする。その際、パラメーターに応じた補正が必要であれば、補正を行う。

STEP-3 得られた空調のエネルギー消費量をエネルギー種別(電力、ガス、・・)に分解し、エネルギー種別ごとにそれぞれの  $CO_2$  換算係数を乗じて、 $CO_2$  排出量を算定する。

STEP-4 STEP-3 のエネルギー種別ごとの  $CO_2$  排出量を合計して、空調設備から排出される年間の  $CO_2$  排出量とする。

本来の CEC/AC と上記で目標値を設定している CEC/AC とでは、厳密な意味で定義が異なることに注意しなければならない。もちろん、両者とも、空調の1次エネルギー消費量を年間空調負荷で除した値で定義されるが、その分母と分子を計算するときの内部発熱量と空調時間が、両者においては必ずしも同一ではないのである。前者では、省エネルギー基準で定められた条件が用いられるのに対して、後者では当該建物において想定される内部発熱量と空調時間を用いる。つまり、本来(省エネルギー基準)の CEC/AC を

 $CEC/AC = E \div L \qquad \cdots (1)$ 

とすれば、本研究のそれは、

$$CEC/AC* = E* \div L* \qquad \cdots (2)$$

と定義される。ここで、E=空調の1次エネルギー消費量[MJ/年]、L=年間空調負荷[MJ/年]であり、\*が付いていないものは、内部発熱量と空調時間について省エネルギー基準で定められた条件で算定されたものを意味し、\*が付いているものは任意の条件で算定されたものを意味する。本検討においては、

$$CEC/AC* = CEC/AC$$
 ...(3)

を仮定すれば、式(2)と式(3)から得られる式(4)が空調エネルギーの算定に用いられる基礎 式となる。

$$E*=L*\times CEC/AC$$
 ...(4)

上記の STEP-2 で述べたように、式(4)において、CEC/AC の値としてその目標値を与え、L \*を後述する簡易計算法から算定すれば、両者の積で、任意の内部発熱と空調時間における空調の1次エネルギー消費量である E\*が算定される。式(4)に従って算定した E\*の例や、式(4)の補正、および、STEP-3 と 4 で示した CO $_2$  排出量への換算については、後述する。

### (1.2) 年間空調負荷の簡易予測法

### (1.2.1) 熱負荷シミュレーションとその結果の整理

表 2.1.1 熱負荷シミュレーションにおける変動因子と設定の詳細

| 変動因子          | レベル設定の詳細 |                      |               |                |                       |           |
|---------------|----------|----------------------|---------------|----------------|-----------------------|-----------|
| ①建物形状         | レベル      | 延床面積                 | 延床面積 基準階面積 階数 |                | 数                     |           |
| (図2参照)        | 0        | 15,000m²             | 1,396         | m <sup>2</sup> | 88                    | 皆         |
| (B29m)        | 1        | 3,000m <sup>2</sup>  | 799r          | 'n             | 48                    | 皆         |
|               | レベル      | 地域                   | 冷房期           | 中              | 間期                    | 暖房期       |
| ②地域と季         | 0        | 東京                   | 6~9月          | 4,5,1          | 10,11月                | 12~3月     |
| 節             | 1        | 旭川                   | 7~9月          | 5,6            | 5,10月                 | 12~4月     |
|               | 2        | 那覇                   | 5~10月         | 4,1            | 1,12月                 | 1~3月      |
|               | レベル      |                      | 窓面種           | 責比             |                       |           |
|               | 0        |                      | 5%            |                |                       |           |
| ③窓の大きさ        | 1        |                      | 209           | 6              |                       |           |
| の形の人とと        | 2        |                      | 409           | 6              |                       |           |
|               | 3        |                      | 609           | 6              |                       |           |
|               | 4        |                      | 809           | 6              |                       |           |
|               | レベル      | 断熱                   | 机材            |                | 熱貫                    | <b></b>   |
| ④外壁の          | 0        |                      | :L            |                | 2.5W/                 |           |
| 断熱仕様          | 1        | 発泡ポリスチレン20mm         |               |                | 1.0W/m <sup>2</sup> K |           |
|               | 2        | 発泡ポリスチレン45mm         |               |                | 0.5W/m <sup>2</sup> K |           |
|               | レベル      |                      |               |                | 熱貫流率                  | 日射侵入率     |
|               | 0        | 透明単板ガラス              |               |                | 6.0W/m <sup>2</sup> K | 0.8       |
| ⑤窓の仕様         | 1        | 透明単板ガラス-             |               |                | 4.5W/m <sup>3</sup> K | 0.5       |
|               | 2        | 透明複層ガラス-             |               |                | 3.0W/m²K              | 0.5       |
|               | 3        | 熱反複層ガラス+             |               |                | 2.5W/m <sup>2</sup> K | 0.2       |
|               | 4        | 低放射複層ガラス             |               |                | 1.5W/m <sup>3</sup> K | 0.4       |
| @ <b></b>     | レベル      |                      | 中間            |                | 暖房                    |           |
| ⑥空調の          | 0        | 26°C,50% (10.5g/kg') |               |                |                       |           |
| 設定温湿度         | 1        | 24°C,50% (9.3g/kg')  |               |                |                       |           |
|               | 2        | 28°C,50% (11.9g/kg') |               |                | 20°C,40%              | (5.8g/kg) |
| ⑦空調の          |          | 1日あたりの運転時間           |               |                | ヴュール<br>(スま) 4 Pt 88  |           |
| 運転時間          | 0        | 9時間                  |               |                | <u>(予熱1時間</u>         |           |
| 建松时间          | 1        | 12時間                 |               |                | (予熱1時間                |           |
|               | 2        | 15時間                 |               |                | (予熱2時間                |           |
| @ ch +1124 ±+ | レベル      | 照明発熱                 | 在室人           |                | 機器                    |           |
| 8内部発熱<br>密度   | 0        | 25W/m²               | 0.2人          |                | 30W                   |           |
| 省及            | 1        | 25W/m²<br>15W/m²     | 0.2人          |                | 20W/<br>15W/          |           |
| <u> </u>      | 2        | 131/4461             | 0.1           | m              | I DW/                 | 111       |

年間空調負荷の簡易予測式は、多数の熱負荷シミュレーションを行ってサンプルデータとし、それらのデータをよく近似する重回帰式を求める手法によって作成した。この熱負荷シミュレーションは、表 2.1.1に示すように、建物規模など、8 つの変動因子を想定し、それぞれの因子に対して  $2\sim5$  ケースのレベルを設定して行った。その結果、シミュレーションの総ケース数は、 $2\times3\times5\times3\times5\times3\times3\times3=12,150$  となった。また、シミュレーションプログラムには"NewHASP"を用いた。

空調負荷シミュレーションは、建物モデルの基準階(図 2.1.2参照)のみを対象とし、空調 ゾーンを方位別のペリメータゾーン(外皮から 5m の範囲のゾーン)とインテリアゾーン(ペリメ ーター以外のゾーン)に分けて行った。本研究において算定すべき年間空調負荷は、既述 のように「仮想空調負荷」であるので、外気導入による室冷房負荷の軽減は行わない。また、 同時刻に異なるゾーンで冷房負荷と暖房負荷が発生しても、両者の混合利得は考慮しない。 それゆえ、毎時の各ゾーンの熱負荷計算結果を、a)冷房の室負荷、b)暖房の室負荷、c)冷 房の外気負荷、d)暖房の外気負荷の4種類に分類し、それぞれの年間積算値を求めた。

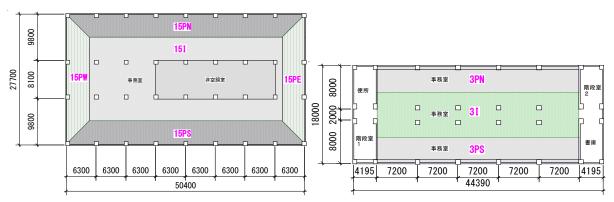



図 2.1.2 熱負荷シミュレーションにおける建物モデルの基準階平面 (左:15,000㎡モデル、右:3,000㎡モデル)

上記の年間積算値は、さらに、インテリアゾーンとペリメータゾーン別に、冷房は冷房、暖房は暖房どうしで、室負荷と外気負荷を合算し(つまり、a)+c)、および、b)+d)をつくる)、予測すべき年間空調負荷とした。結局、本研究における年間空調負荷(ゾーン床面積あたりの数値で表すことにする)は、以下の 4 種類に絞込み、これらに対して空調負荷の簡易な予測式を策定することとした

- ①LC, I=インテリアゾーンの年間冷房負荷[kWh/(㎡・年)]
- ②LH, I=インテリアゾーンの年間暖房負荷[kWh/(m²・年)]
- ③LC, P=ペリメータゾーンの年間冷房負荷[kWh/(m<sup>2</sup>・年)]
- ④LH, P=ペリメータゾーンの年間暖房負荷[kWh/(m²・年)]

# (1.2.2) 重回帰分析による年間空調負荷の簡易予測式の策定

上記の①~④のそれぞれのシミュレーションデータに対して、地域別に重回帰分析を適用し、重回帰式を求め、相関が強い説明変数のみをピックアップして簡易予測式を策定した。以下に、その予測式を示す。説明変数  $X_i$  の名称は表 2.1.2に、偏回帰係数  $A_i$ ,  $B_i$ ,  $C_i$ ,  $D_i$ 

の数値(地域別)は表 2.1.3に示す。

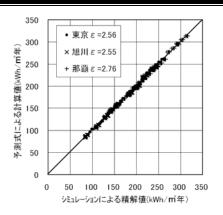
$$L_{C, I} = A_0 + A_1 X_1 + A_2 X_2 + A_3 X_3$$
 (5)

$$L_{H, I} = B_0 + B_1 X_1 + B_2 X_2 + B_3 X_3$$
 (6)

$$L_{C,P} = C_0 + C_1 X_1 + C_2 X_2 + C_3 X_3 + C_4 X_4 + C_5 X_5 + C_6 X_6$$
 (7)

$$L_{H-P} = D_0 + D_1 X_1 + D_2 X_2 + D_3 X_3 + D_7 X_7$$
(8)

このような予測式から得られる計算値 (予測値)と元々のシミュレーションによる計算結果 (精解値)との比較を、式別に図 2.1.3~図 2.1.6に示す。これらの図には予測値の平均絶 対誤差  $\epsilon$  [kWh/(㎡・年)] も示した。ペリメータでは誤差がやや大きくなるが、簡易法として は満足できるのではなかろうか。なお、予測式の負荷の単位には kWh を用いているので、予測式から与えられる計算値を式(4)の L\*に適用するためには、下式のように単位を MJ に変換し、さらにペリメータの面積、AI[㎡]、とインテリアの面積、AP[㎡]、を勘案しなければならない。


$$L^* = 3.6 \times \{L_{C,I} + L_{H,I}\} + A_P(L_{C,P} + L_{H,P})\}$$
(9)

| 変数 | 変数の内容                    | 単位                |
|----|--------------------------|-------------------|
| X1 | 1日の空調時間                  | h                 |
| X2 | 1日の内部発熱量                 | Wh/m <sup>2</sup> |
| Х3 | 空調時の設定温度(暖房:22℃、冷房℃からの差) | $^{\circ}$ C      |
| X4 | 外壁の熱貫流率                  | $W/(m^2K)$        |
| Х5 | 窓の熱貫流率                   | $W/(m^2K)$        |
| X6 | 窓面積比                     | _                 |
| Х7 | 外皮の平均熱貫流率                | $W/(m^2K)$        |

表 2.1.2 予測式の説明変数

| 表 | 2. | 1. | 3 | 偏回帰係数の一 | 睯 |
|---|----|----|---|---------|---|
|   |    |    |   |         |   |

| 負荷の種類         | 係数    | 東京        | 旭川        | 那覇        |
|---------------|-------|-----------|-----------|-----------|
|               | $A_0$ | 1.24E+01  | 1.16E+01  | 1.61E+01  |
| ①インテリアの       | $A_1$ | 3.28E-01  | -5.34E-01 | 3.24E+00  |
| 冷房負荷          | $A_2$ | 2.25E-01  | 2.25E-01  | 2.25E-01  |
|               | $A_3$ | -2.95E+00 | -1.46E+00 | -4.30E+00 |
|               | $B_0$ | -4.39E+00 | -1.16E+01 | -1.77E+00 |
| ②インテリアの       | $B_1$ | 4.33E+00  | 8.28E+00  | 8.16E-01  |
| 暖房負荷          | $B_2$ | -1.70E-04 | -1.70E-04 | -1.70E-04 |
|               | $B_3$ | 1.98E+00  | 1.72E+00  | 6.35E-01  |
|               | $C_0$ | 3.65E+01  | 3.23E+01  | 1.89E+01  |
|               | $C_1$ | 6.81E-01  | -5.71E-01 | 4.12E+00  |
| ③ペリメータ        | $C_2$ | 1.83E-01  | 1.53E-01  | 2.15E-01  |
| の冷房負荷         | $C_3$ | -4.70E+00 | -2.17E+00 | -5.71E+00 |
| 少刊 万 县 刊      | $C_4$ | -1.54E+01 | -1.25E+01 | -4.53E+00 |
|               | $C_5$ | -6.99E+00 | -5.84E+00 | -1.28E+00 |
|               | $C_6$ | 3.75E+01  | 6.28E+00  | 4.06E+01  |
|               | $D_0$ | -1.00E+01 | -2.55E+01 | -2.01E+00 |
| ④ペリメータ        | $D_1$ | 5.48E+00  | 1.08E+01  | 9.00E-01  |
| の暖房負荷         | $D_2$ | -2.75E-02 | -4.46E-02 | -2.72E-03 |
| <b>少股历</b> 只们 | $D_3$ | 3.58E+00  | 3.54E+00  | 9.03E-01  |
|               | $D_7$ | 1.10E+01  | 2.07E+01  | 8.53E-01  |



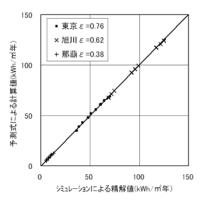
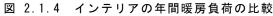
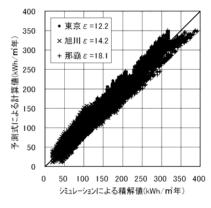





図 2.1.3 インテリアの年間冷房負荷の比較





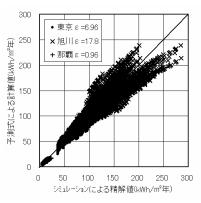



図 2.1.5 ペリメータの年間冷房負荷の比較

図 2.1.6 ペリメータの年間暖房負荷の比較

### (1.2.3) 年間熱負荷の簡易予測式の応用性に関する検証

上記の予測式は、図 2.1.2に示すように、基準階の平面が長方形の建物モデルを想定し、その建物における様々な熱負荷が予測されるように策定されている。しかし、現実には様々な平面形状の建物が存在し、ペリメータ負荷とインテリア負荷の重みもモデルとして想定した建物のそれとは異なることが予想される。このような懸念を勘案して、この予測式の応用性を検証する意味で、一例ではあるが、平面形状が L 字型である I ビル (図 2.1.7参照)を用いて、基準階における本予測式による計算値とシミュレーションによる精解値を比較した。図 2.1.8と図 2.1.9に比較結果を示すように、予測値は冷房でやや大きめに計算されるが、全体としては満足できる精度と考える。

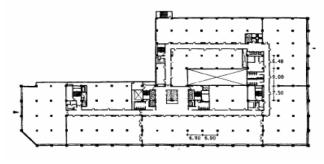
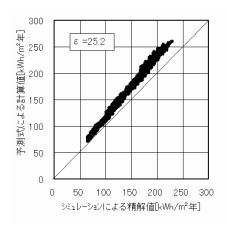




図 2.1.7 平面がL字型の建物モデル (Iビル)



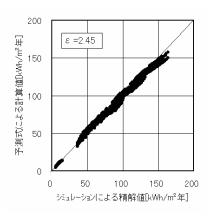



図 2.1.8 【ビルにおける年間冷房負荷の比較

図 2.1.9 【ビルにおける年間暖房負荷の比較

# (1.3) エネルギー消費量の計算法とその妥当性の検討

### (1.3.1) 検討概要

STEP-2 で示したように、本計算法においては、「CEC/AC 目標値」を設定することで空調のエネルギー量を求めようというものであり、この値を適切に設定することが精度の向上には必要である。本研究では、「デザイン BECS for Windows Ver.3.3.20061205(1)」(以下、dBECS)を用い、各種省エネ手法を導入した空調システム毎の CEC/AC 値の試算を行った。なお CEC/AC は本来、省エネ基準で定められた内部発熱量と空調時間の下で算定される数値であるから、本計算法のように内部発熱密度や空調時間を延長した条件で算定される CEC/AC と一致しない可能性があり補正値に関しての検討を行った。

# (1.3.2) モデルビルを用いたCEC/ACに関する検討の概要

表 2.1.4に示すモデルビルを対象に、表 2.1.5に示す各種省エネ手法を採用した空調システムの各種省エネ手法に対応する CEC/AC 値を得た。図 2.1.10にその計算結果を示す。

表 2.1.4 モデルビル概要

| Ī | 用途·建設地 | 事務所・東京                                     |
|---|--------|--------------------------------------------|
| ſ | 規模     | 延床10,126.58m <sup>2</sup> 、地上11F 地下1F PH1F |

表 2.1.5 検討ケース計算条件

| ケース | 名 称     | 概要                     |
|-----|---------|------------------------|
| 基準  | CAV,CWV | ガス:冷温水発生機、電気:ヒートポンプチラー |
| 1   | 外気カット   | 基準ケース+外気カット(立ち上り1時間)   |
| 2   | 外気冷房    | 基準ケース+外気冷房             |
| 3   | 全熱交換機   | 基準ケース+全熱交換器(ファン追加)     |
| 4   | VAV,VWV | 基準ケース+ VAV,VWV         |
| 5   | 全省エネ    | 1+2+3+4(熱源機器容量の適正化)    |

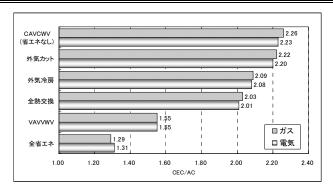



図 2.1.10 モデルビルにおけるCEC/ACの計算値

### (1.3.3) 内部発熱密度及び空調時間を変化させた場合の検討

次に、内部発熱密度と空調時間を変化させた場合の CEC/AC 値について検討を行った。

本来 CEC/AC 値は、省エネ法によって定められた条件(表 2.1.6、No.4)によって算出される値である。一方、任意に内部発熱密度及び空調時間を設定できる本計算法に対し、固定条件(省エネ法条件)で算出された CEC/AC 値を自由な内部使用条件によって算出したCEC/AC\*(変動条件) にどのような差異が生ずるか確認した。

変化させる内部発熱密度と空調時間の計算バリエーションを表 2.1.6に示す。

| No | 空調時間       | 寺間 内部発熱密度 | 内部発熱密度の内訳           |                   |                     |
|----|------------|-----------|---------------------|-------------------|---------------------|
| NO | 至前时间       | 四部先然名及    | 照明                  | 人                 | 機器                  |
| 1  | 10時間(8-18) |           |                     |                   |                     |
| 2  | 13時間(8-21) | 高         | $25 \mathrm{W/m^2}$ | $0.2$ 人 $/$ $m^2$ | $30 \mathrm{W/m^2}$ |
| 3  | 16時間(8-24) |           |                     |                   |                     |
| 4  | 10時間(8-18) |           |                     |                   |                     |
| 5  | 13時間(8-21) | 中         | $25 \mathrm{W/m^2}$ | $0.2$ 人 $/$ $m^2$ | $20 \mathrm{W/m^2}$ |
| 6  | 16時間(8-24) |           |                     |                   |                     |
| 7  | 10時間(8-18) |           |                     |                   |                     |
| 8  | 13時間(8-21) | 低         | $15 \mathrm{W/m^2}$ | 0.1人/m²           | $15 \mathrm{W/m^2}$ |
| 9  | 16時間(8-24) |           |                     |                   |                     |

表 2.1.6 内部使用条件 ※人の発熱量:119W/人(作業指数3)

図 2.1.11に内部発熱密度・空調時間の変更と CEC/AC 値の関係を示す。結果を要約すると以下のようになる。

- ① CEC/AC は、内部発熱密度の高低と空調時間の長短に影響を受ける。
- ② 内部発熱密度が同一の場合、空調時間の延長に伴い CEC/AC 値が増加する。
- ③ 空調時間が同一の場合、内部発熱密度の低下に伴い CEC/AC 値は増加する。

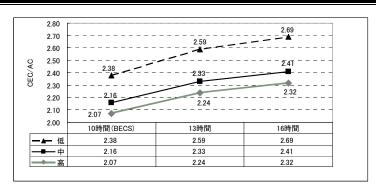



図 2.1.11 内部発熱密度・空調時間の変更がCEC/ACに及ぼす影響

## (1.3.4) CEC/ACの補正方法の検討

前述のように、CEC/AC 値は内部発熱密度の高低と空調時間の長短に影響を受ける。

従って、本計算法に用いる CEC/AC 値は、これらのパラメーターによる何らかの補正が必要であり、本検討では以下の式に基づく検討を行った。

 $CEC/AC*=CEC/AC \times \alpha \times \beta$  (式 10)

ここに、

 $CEC/AC^*=E^*/L^*$ 

E\*=内部使用条件を任意に設定した場合のエネルギー消費量

L\*=内部使用条件を任意に設定した場合の仮想空調負荷

CEC/AC : 省エネ法固定条件によるCEC/AC値

α : 空調時間の補正係数 (表 2.1.7)β : 内部発熱密度の補正係数 (表 2.1.8)

表 2.1.7 空調時間の補正係数

表 2.1.8 内部発熱密度の補係数

|         | 空調時間       |      |      |  |  |
|---------|------------|------|------|--|--|
| 内部発熱密度  | 10時間(BECS) | 13時間 | 16時間 |  |  |
| 高       | 1.00       | 1.08 | 1.12 |  |  |
| 中(BECS) | 1.00       | 1.08 | 1.12 |  |  |
| 低       | 1.00       | 1.09 | 1.13 |  |  |
| 補正係数    | 1.00       | 1.08 | 1.12 |  |  |

|         | 空調制        |      |      |      |  |
|---------|------------|------|------|------|--|
| 内部発熱密度  | 10時間(BECS) | 13時間 | 16時間 | 補正係数 |  |
| 高       | 0.96       | 0.96 | 0.96 | 0.96 |  |
| 中(BECS) | 1.00       | 1.00 | 1.00 | 1.00 |  |
| 低       | 1.10       | 1.11 | 1.12 | 1.11 |  |

補正法に基づいた CEC/AC\*の比較を表 2.1.9に示す。

表 2.1.9 CEC/ACの精算値と補正法による推定値の比較

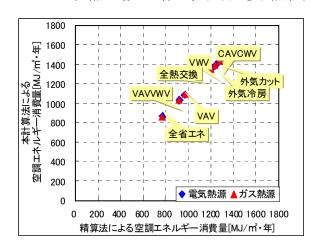
| No. | 内部発熱密度 | 空調時間 | dBECSによる<br>CEC/AC* | 補正法による<br>CEC/AC* |
|-----|--------|------|---------------------|-------------------|
| 1   |        | 10時間 | 2.07                | 2.074             |
| 2   | 高      | 13時間 | 2.24                | 2.239             |
| 3   |        | 16時間 | 2.32                | 2.322             |
| 4   |        | 10時間 | 2.16                | 2.160             |
| 5   | 中      | 13時間 | 2.33                | 2.333             |
| 6   |        | 16時間 | 2.41                | 2.419             |
| 7   |        | 10時間 | 2.38                | 2.398             |
| 8   | 低      | 13時間 | 2.59                | 2.589             |
| 9   |        | 16時間 | 2.69                | 2.685             |

### (1.3.5) 年間エネルギー消費量に関する検討

本計算法によって空調のエネルギー消費量を算出し、以下の検討を行った。

検討①: 基準条件下(10 時間、中密度)における省エネ手法毎の dBECS 計算結果(精算値)と本計算法の結果(概算値)の比較による計算精度の確認

検討②: 基準空調システムに対して dBECS 計算結果(精算値)と内部発熱密度及び空調時間を変更して試算した本計算法の結果(概算値)との比較による計算精度の確認


# i)検討①の結果

本計算法による結果(図 2.1.12)は、電気・ガス両方式ともに 10%程度過大に算出され、 結果は安全側の評価であると言える。

# ii)検討②の結果

本計算法によって算出した空調のエネルギー消費量(概算値)及び同条件でdBECSにより算出した精算値を図 2.1.13に示す。

本計算法による結果は、精算値と比較して空調時間 (10 時間) で非常に良い一致をみた。また、13 時間、16 時間についても、内部発熱(低)条件では概ね精算値に一致するが、内部発熱の増加に伴い、やや大きな結果 (10%  $\sim$  20%) となった。



| 2400 | 2200 | 2200 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000

図 2.1.12 省エネ手法毎の精算値と概算値との 比較

図 2.1.13 年間空調消費エネルギーの概算値と 精算値の比較

# (1.4) CO<sub>2</sub>排出量の計算手法の検討

### (1.4.1) 計算式

本計算法における一次エネルギー量を CO<sub>2</sub> 排出量に換算する方法を以下に示す。

<電気熱源の場合>

 $C = E \times a \times c1 \tag{\tag{11}}$ 

<ガス熱源の場合>

 $C = b \times E \times a \times c1 + (1 - b)E \times c2 \qquad (\vec{x} 12)$ 

ただし、C:CO<sub>2</sub>排出量[kgCO<sub>2</sub>/m・年]

E: 一次エネルギー消費量[MJ/㎡・年]

a:電気換算係数 0.1[kWh/MJ]

※省エネ法昼間:9.97[MJ/kWh]の逆数

b:ガス熱源の場合の電気の使用比率

c1:電気のCO<sub>2</sub>排出係数

c2:ガスのCO<sub>2</sub>排出係数

電気熱源の場合は、(式 11)に示すとおり、算出された一次エネルギー消費量を二次エネルギー換算した後、 $CO_2$  排出係数を乗ずればよいが、ガス熱源の場合(式 12)は、一次エネルギー量を二次エネルギー量に変換する際に、電気(ポンプや送風機など)とガス(熱源機器)のエネルギー消費量を分離する必要がある。

図 2.1.14は図 2.1.11の計算結果をもとにガス熱源方式における電気とガスの使用比率を示した結果である。図 2.1.14から搬送動力の少ない VAV、VWV 方式を採用した条件ではガス消費の割合がやや増加するものの、ガスの使用比率:電気の使用比率はほぼ 1:1 となり式(12)中の b は約 0.5 を示すこととなる。この事例は、他の事務所ビル一般を代表する結果ではなく、より多くの実績データの解析や計算結果の精査により b の値を決定するべきであるが、以下本稿ではこの事例に基づき仮に b=0.5 の値を採用した場合の結果を示す。

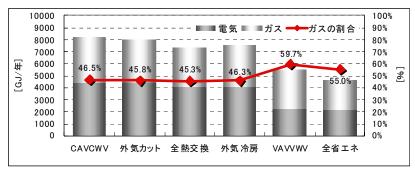



図 2.1.14 ガス熱源の場合の、一次エネルギー量に占めるガスの割合

### (1.4.2) CO<sub>2</sub>排出量のオーダーチェック

以下の方法により、本計算法によって算出される  $CO_2$  排出量のオーダーチェックを行った。

検討①:「本計算法(概算値)」と「dBECS(精算値)」との比較

|検討②|:「本計算法(概算値)」と「実在建物の実績値」との比較

なお、ここでは特定の電気事業者をモデルとしていないため、環境省・経済産業省の「温室効果ガス排出量算定・報告マニュアル(平成 18 年 11 月)」に示された  $CO_2$  排出係数  $(0.555[kg-CO_2/kWh]$ を使用して各試算を行った。また、平成 19 年 3 月 23 日付けで発表 された環境省報道発表資料「平成 17 年度の電気事業者別排出係数の公表について」では、一般電気事業者及び特定規模電気事業者ごとの排出係数が示されており、本計算法はこれに対応する  $CO_2$  排出量の算定も可能である。

# i) 検討①の結果

電気熱源、ガス熱源方式ともに、本計算法による結果は精算値に比して 10%程度過大な結果となったが、概算法の精度としては概ね良好な結果といえよう。

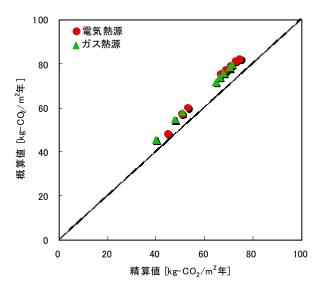



図 2.1.15 「概算値」と「精算値」との比較

# ii) 検討②の結果

北海道、東京、沖縄に実在する建物の空調のエネルギー消費量実績値から換算した CO<sub>2</sub> 排出量を基に、本計算法による CO<sub>2</sub> 排出量のオーダーチェックを行った。

本計算法に用いた CEC/AC 目標値には各建物の設計値を採用し、空調時間も実情報に基づいているが、その他の建築情報については詳細が不明のため、表 2.1.10に示す通りそれぞれ妥当と思われる数値を設定した。

|                | 北海道Aビル      | 東京都Bビル      | 沖縄県Cビル  |
|----------------|-------------|-------------|---------|
| 外壁熱通過率[W/K·㎡]  | 0.5         | 0.5         | 1.5     |
| 窓壁熱通過率[W/K·m²] | 1.7(複@12mm) | 1.7(複@12mm) | 5.0(単版) |
| 窓面積比[%]        | 40%         | 40%         | 40%     |
| 内部発熱密度[W/m²]   | 標準条件        | 標準条件        | 標準条件    |
| 空調時間[h](実績)    | 10.5        | 11.0        | 8.5     |
| 空調設定温度[℃]      | 標準条件        | 標準条件        | 標準条件    |
| CEC/AC目標値(設計値) | 0.47        | 0.89        | 1.14    |

表 2.1.10 計算に用いた試算条件

結果を図 2.1.16に示す。いずれの地域・建物においても、本計算法による CO<sub>2</sub> 排出量のオーダーに大きな問題はないといえよう。

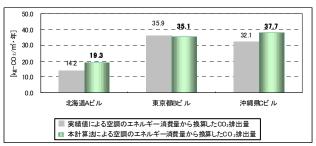



図 2.1.16 「概算値」と「実績値」との比較

# (1.5) まとめ

建築物の企画段階や基本設計段階において LCCO $_2$  評価を行うことを想定して、空調エネルギー消費量を簡易予測する手法を提案し、そのための年間空調負荷 (仮想空調負荷)の簡易予測式について検討した。この予測式は、最上階の予測式の作成や地域の数を増大させるなどの課題が残っているが、一定精度を有していることが分かった。また CEC/AC を目標値に設定してエネルギー消費量及び CO $_2$ 排出量を簡易に算出する手法を提案した。本計算法による計算結果は、精算法よりもやや過大に算出されるが  $(10\sim20\%程度)$ 、計算結果は安全側の評価となり、計算手法の簡便性を考慮すれば十分に意義のある手法であると考えられる。

今後の課題として、内部発熱密度や空調時間などの使用条件に係る自由度を増すことや多様な空調システム、建物用途にも対応可能とすることなどがあげられる。

【註】「デザイン BECS for Windows Ver.3.3.20061205(1)」とは、BECS の固定条件(運転時間、内部発熱スケジュール、設定室温等を変更できる空調システムシミュレーションシステムである。

### 【参考文献】

- 1)空気調和・衛生設備の環境負荷削減対策マニュアル,空衛学会,2001.
- 2)長井達夫ほか、熱負荷空調ソフトウエアの現状と将来(F),空衛学会,2006
- 3)環境省・経済産業省:「温室効果ガス排出算定・報告マニュアル Ver.1.1」平成 18 年 11 月
- 4)(財)建築環境・省エネルギー機構:「建築物の省エネルギー基準と計算の手引き(平成 18 年度省エネ基 準対応)平成 18 年 9 月 20 日
- 5)田辺新一、梅主洋一郎他:空調設備におけるファクター4の研究(その2)機器性能向上による環境負荷削減効果の検討、平成17年度空気調和・衛生工学会講演論文集C-64

### (2) 換気設備

ここでは、空気調和設備以外の換気設備の年間エネルギー量の算定方法について示す。

### (2.1) 算定式の構造

予測式は、空気調和設備以外の換気設備ごとに入力電力と稼働時間を掛け合わせる形とする。 算定式は以下となる。

$$E_{VT} = \sum_{i=1}^{n} I_{V_i} \times T_i \qquad \cdots (\vec{x}_1)$$

ここで

EVT : 空気調和設備以外の換気設備の総年間消費電力量 kWh/年

IVi : 換気設備iの入力電力 kW

Ti : 換気設備iの年間駆動時間 h/年

i : 算定対象の換気設備 n : 算定対象の換気設備の数

### (2.2) デフォルト値に関する検討

ここでは、事務所を対象として、実績データの解析に基づいて換気設備のデフォルト値を用意する。デフォルト値は詳細な設計検討が出来ない場合に用いる目的で設定するもので、若干大きめの値となるようにしている。

図 2.1.17に A~D の4つの事務所ビルの空気調和設備以外の換気設備の年間消費電力量 7 サンプルを延べ床面積で除した消費電力量 EV を示す。換気設備は、機械室や駐車場に設置されているため、空調面積よりも延べ床面積との相関が高いと判断し、分母に設定した。また C ビルについては 3 年分、D ビルについては 2 年分のデータがあり、C-1、D-1 のように分類して図中に示した。少ないサンプルではあるが、B ビルは他のビルに比較して消費エネルギー量が小さく、他のビルでは、ビル間で大きな差異は出ていない結果となっている。これらデータの平均値は 9.5kWh/m2 で、標準偏差は 4.5 を示している。

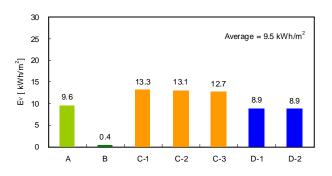



図 2.1.17 事務所ビルの年間消費電力量を延べ床面積で除した値(4ビル、7サンプル)

図 2.1.18に上記ビルの CEC/V の値を示す。B ビルは CEC/V の値も小さくなっており、省エネルギー型の設計に十分な注力がなされていると考えられる。これら平均は 0.52 であり、基準値の 1.0 と比較して小さい値を示している。これは B 以外のサンプルの母集団が省エネルギーに対し、一定の配慮を行っているからである。

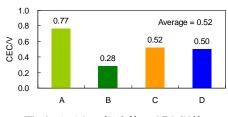



図 2.1.18 各建築のCEC/V値

図 2.1.19に図 2.1.17の結果を用いて CEC/V=1.0 相当に割り戻した各ビルの年間消費電力量 EV を示す。CEC/V=1.0 相当に割り戻すことで、一般的なビル (CEC/V=1.0 程度となると考えられる)の年間消費電力量程度になると想定した。これらデータの平均値 17.8 をデフォルト値として設定する。この値は、既往の研究と比較してオーダーが同じで、かつ若干大きめとなっている。なお、標準偏差は 10.6 と大きく、ばらつきには B ビルの影響が強い。

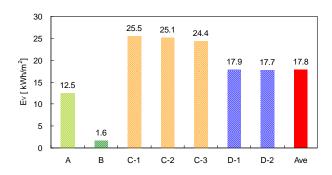



図 2.1.19 CEC/V=1.0相当の年間消費電力量を延べ床面積で除した値

## (2.3) まとめ

本節において換気設備を対象として、年間エネルギー消費量の算定式を示し、また事務所ビルの実績データに基づいて、詳細な設計検討が出来ない場合のデフォルト値として 17.8kW h/m² 年を示した。本検討においてデフォルト値には、単相電力で稼働する換気設備のデータが取得されていないが、三相稼働の換気設備と比較するとその値は小さいと考えられる。しかしながら、サンプル数が決して多くないため今後の実績データの蓄積と解析およびその精査が望まれる。

# 2.1.3 給水設備・給湯設備

### (1) 給湯設備

### (1.1) ホテルにおける実測データに基づく解析

### (1.1.1) CEC/HWの計算結果

東京都に建つホテルについて、給湯設備の消費エネルギーの試算例とする。計算方法は、 既存の CEC/HW による方法を採用し、実測例と比較する。(一次エネルギー換算係数は 9760 kJ/kWh)

### i.計算条件

- ・室条件:全396室・シングル198室、ツイン198室、全客数594名。
- ・共用系統:Wホテル新館系統に共用系統は含まれていない。
- ・先止配管は 30A が 1m、25A が 1m、20A が 3m とする。捨て湯回数を 2 回/日とする(配管の保温が高くないことと客の回転が早いことより)。
- ・貯湯槽は5 m<sup>3</sup>×2 基と4 m<sup>3</sup>×2 基で合計 18 m<sup>3</sup>。
- ・仮想熱源として貯湯槽加熱能力より、132,000×2+110,300×2 kcal/h=合計 563 kW
- ・往き蒸気温度 120℃、還り水は 85℃と設定。
- ・配管は全て機械室やパイプシャフトにあるものとし、ゾーン3を選択。
- ・配管は全て保温仕様3とし、バルブ・フランジは省略する。
- ・貯湯槽周囲や熱源周りの配管は不明なので、100Aが 100m×2とする。
- ・ボイラー効率:ガス焚蒸気ボイラー・定格効率 0.79、熱交換器効率は 1.0 とする。
- •CEC/HW 基準値: Ix=15.4 より基準値は 1.7 となる。
- ・循環ポンプ動力:機器表より高層階 0.25kW、低層階 0.25kW である。

### ii.CEC/HW の計算結果

表 2.1.11 CEC/HW計算結果 [GJ/年]

| 給湯負荷    | 3,531 |
|---------|-------|
| 給湯配管損失  | 609   |
| 先止配管損失  | 106   |
| 一次側配管損失 | 304   |
| 貯湯槽損失   | 7     |
| ポンプ動力負荷 | 58    |
| ボイラー損失  | 1,211 |
| 合計      | 5,827 |



### (1.1.2) 実測結果との比較

配管系統はWホテルと同等とし、CEC/HW 計算法に則って、2004年メータ推移値を用いて、表 2.1.12に示すような設定により各月の計算を行った。

| 給水温·給湯温 | 給水温・給湯温の表より10日・20日・月末の平均値を各月で設定                        |
|---------|--------------------------------------------------------|
| 給湯量     | 推移表よりW103とW123の合計                                      |
| 日給湯熱量   | 4.2*給湯量*(給湯温-給水温)で計算                                   |
| 消費蒸気量   | 推移表よりS101とS105の合計                                      |
| 供給熱量    | 蒸気消費量に2 kgf/cm <sup>2</sup> の飽和蒸気の潜熱2,202 kJ/kgfを乗じて計算 |
| 日数      | 2004年は閏年なので2月は29日まである                                  |
| 月平均外気温  | アメダス電子閲覧室より東京2003、2004年の各月平均値を入力                       |
| 空調室内気温  | CEC/HW計算のデフォルト設定:6~9月は26℃、他は22℃を採用                     |
| 機械室等気温  | 外気温と空調室気温との算術平均                                        |
| 先止配管損失  | CEC/HW計算表より係数を参照し、日数と温度差を乗じる                           |
| 給湯配管損失  | CEC/HW計算表より係数を参照し、日数と温度差を乗じる                           |
| 一次側配管損失 | CEC/HW計算表より係数を参照し、日数と温度差を乗じる                           |
| 貯湯槽損失   | CEC/HW計算表より係数を参照し、日数と温度差を乗じる                           |
| ポンプ消費   | メータ推移表よりE313とE317の高層・低層貯湯槽動力の合計に、一次エネルギー               |
|         | 換算係数9,760 kJ/kWhを乗じて求める                                |

表 2.1.12 実測結果とCEC/HW計算との整合

### i.実測結果に基づく計算結果(2004年)

図 2.1.21に、消費蒸気量から換算した供給熱量と CEC/HW の計算による消費量、供給熱量に対する計算による消費量の比を示す。概ね計算による消費量の方が数  $0\sim17\%$ 大きい。年合計では、蒸気消費量による供給熱量は 2,270 GJ/年、CEC/HW 計算では 2,359 GJ/年となり 4%程度計算のほうが大きい結果となった。

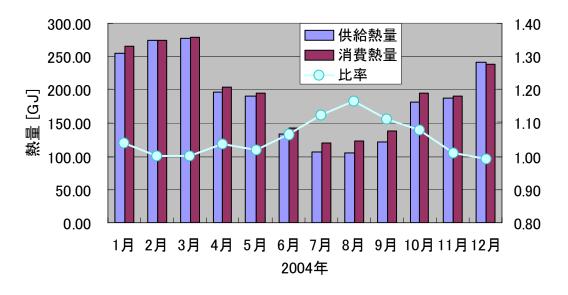



図 2.1.21 2004年のWホテル供給熱量とCEC/HW計算結果

このとき、計算結果に基づいて、ボイラー効率を 0.79 とした場合の CEC/HW=2.27 となる。表 2.1.11と上記計算結果の年合計を比較すると、給湯温、給水温が CEC/HW の設定値と異なるため多少の差異が見られるが、計算法は同等であるため、給湯負荷以外は概ね一致している。

### ii. 実測結果に基づく計算結果(2003年)

2004 年の場合と同様に、消費蒸気量から換算した実消費熱量と CEC/HW の計算消費量、実消費量に対する計算消費量の比を求めると、概ね±10%程度の誤差となっている。2003 年合計では、蒸気消費量による実消費熱量は 2,444 GJ/年、CEC/HW 計算では2,507 GJ/年となり3%程度計算のほうが大きい結果となった。

### (1.1.3) 結論

以上より得られた知見を下にまとめる。

- ①CEC/HW 計算法に則って実測値による貯湯槽供給熱量と比較すると、年間 4%程度、月別では 2004 年では  $0\sim17\%$ 、2003 年では $-10\sim10\%$ の誤差で求められ、給湯システムの消費エネルギーや LCCO $_2$  評価の際に、CEC/HW 計算法は十分な精度をもつことを確認できた。
- ②Wホテルの CEC/HW 値は、標準設定による計算では1.65(基準合格)、実測給湯量から43℃換算給湯量換算による計算では2.17、給湯温・給水温を実測結果から引用すると2.27、となった。CEC/HW の基準合否には給湯負荷が大きな影響を持つが、消費エネルギーは給湯量が大きくなると当然大きくなる。

### (1.2) 給湯消費エネルギー詳細計算の試算

(1.1)より CEC/HW を用いて、給湯設備による消費エネルギーを妥当に推定できることがわかったので、詳細計算の試算に CEC/HW 計算を用いて検討する。

# (1.2.1) 循環配管・一次側配管の保温強化

CEC/HW における保温仕様  $1\sim3$  の保温厚さとその出典を表-3 に示す。保温仕様 2 と保温仕様 3 は保温厚に大きな差はないが、保温仕様 1 は保温強化の場合である。

| 呼び径   | 4      | 0 :  | 50     | 125    |                                       |
|-------|--------|------|--------|--------|---------------------------------------|
| 保温仕様1 | 30mm以上 | 40 m | m以上    | 50mm以上 | 空気調和・衛生工学会 建築・設備の省エネルギー技術指針           |
| 保温仕様2 | 25mm以上 |      | 25mm以上 | 30mm以上 | 空 気 調 和・衛 生 工 学 会 規 格<br>HASS010-2000 |
| 保温仕様3 | 20mm以上 |      |        | 25mm以上 | 建設大臣官房官庁営繕部監修の機械<br>設備工事共通仕様書(平成5年版)  |

表 2.1.13 保温仕様1~3の詳細

(注)保温材は、熱伝導率0.044 W/(m·K) 以下の材とする。

# (1.2.2) 熱源の効率向上

熱源の定格効率向上の影響について、同様に試算を行った結果、熱源の定格効率を 5% 変化させた場合、各保温仕様においても 5% 以上の消費エネルギー低減になった。 CEC/HW の計算式からもうかがわれるが、熱源効率を N%向上すると消費エネルギーは N%以上低減することになる。

# (1.3) 給湯システムによる年間消費エネルギーの簡易推定法

### (1.3.1) 中央熱源方式の場合

### ア CEC/HW 基準値

CEC/HW 基準の算定方法を図示すると、図 2.1.22のようになる。

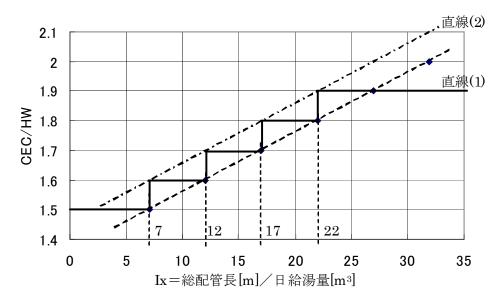



図 2.1.22 Ixを用いてCEC/HWの基準値を求める

# イ CEC/HW による給湯用途消費エネルギーの試算法

CEC/HW は消費エネルギーを仮想給湯負荷で除したものであり、CEC/HW 値に仮想給 湯負荷を乗じると消費エネルギーになる。上式で CEC/HW を概算し、仮想給湯負荷を乗じ ることで消費エネルギーを概算できることになる。手順としては次の通りとなる。

- (1)循環配管、一次側配管の長さを合計して  $\Sigma L$  [m]を求める。
- (2)日給湯量「m³]を求める。
- (3)Ix=日給湯量/ $\Sigma$ LよりCEC/HW=0.02Ix+1.36で求める。
- (4)日給湯量×(43-年間平均給水温)×4.2×365 [kJ/年]で仮想給湯負荷とする。
- (5) CEC/HW×仮想給湯負荷で年間消費エネルギー [kJ/年]を概算できる。

### ウ 設計仕様による消費エネルギー算定式の作成

表 2.1.11に示すビジネスホテルの計算例及びこれまでの計算事例から、給湯消費エネルギーは主として配管の保温仕様と熱源機器効率によって定まることが分かっている。詳細は CEC/HW 計算法に任せ、その方がわずかでも算定式より小さくなるように、上記の算定式を修正する。

CEC/HW は Ix の線形式で近似できることが知られているので、(1.1)のビジネスホテルを対象に、給湯配管長を事例通り(Ix=11.94)とその 2 倍 (Ix=22.61) にした場合を計算する。保温仕様  $1\sim3$  および熱源定格効率  $\eta=0.78$ 、0.83、0.88 の合計 18 通りの計算解より、各設計条件において、CEC/HW を Ix の直線式で記すと表 2.1.14のようになる。

| 表 | 2.1.14 | ビジネスホテルを対象としたIxとCEC | /HWの関係式 |
|---|--------|---------------------|---------|
|---|--------|---------------------|---------|

| 仕様 | $\eta = 0.78$       |         | $\eta = 0.83$        |         | $\eta = 0.88$       |         |
|----|---------------------|---------|----------------------|---------|---------------------|---------|
| 1  | $=0.0105 \times Ix$ | +1.3447 | $= 0.0099 \times Ix$ | +1.2644 | $=0.0094 \times Ix$ | +1.1941 |
| 2  | $=0.0147 \times Ix$ | +1.3485 | $= 0.0139 \times Ix$ | +1.2684 | $=0.0130\times Ix$  | +1.1995 |
| 3  | $=0.0154 \times Ix$ | +1.3465 | $=0.0144 \times Ix$  | +1.2677 | $=0.0136 \times Ix$ | +1.1977 |

CEC/HW= $(a \times Ix + C)$ / $\eta$  の形に近似できることがわかる。このとき C は保温仕様によらずほぼ一定と想定できる。さらに W ホテルの事例についても同様の計算を行い、上記の算定式を求めた。算定式のほうが大きくなるように、多少の係数調整を行い、次式を提案する。

$$CEC/HW = \frac{a \cdot Ix + 1.06}{\eta} \dots (1)$$

ここで、a は保温仕様 1 で 0.011、保温仕様 2・3 で 0.016 となる。

### ェ 給湯システムの運転時間による検討

保温仕様が仕様 1 の場合は a=0.011、 $2\cdot 3$  の場合は a=0.016 とおき、熱源の定格効率  $\eta$  を用いて CEC/HW の簡易算定式は、

$$CEC/HW = \frac{a \cdot Ix + 1.06}{\eta} \qquad \dots (2)$$

である。これに仮想給湯負荷を乗じると給湯による年間消費エネルギーとなる。

ホテルや病院では給湯設備は 24 時間運転となる場合が多いが、物販店舗や飲食店では 夜間に停止する場合もあり、消費エネルギーを妥当に評価するには上式に運転時間の影響 を加味する必要がある。そこで、「建築物の省エネルギー基準と計算の手引き」による店舗の 計算例で検討する。運転時間を 24、21、18、15、12 時間の 5 通り、Ix=8.34、15.64(計算例)、30.25、44.85の4通り、熱源効率  $\eta=0.78$ 、0.83、0.88の3通りについて、CEC/HW の試算を行った。この結果より、例えば停止時間比をrとおいて、表 2.1.11にある CEC/HW の比率との関係を図示すると、図 2.1.23のようになる。Ix によって縦軸の比率は大きく異なることがわかる。

図 2.1.23には各点を 2 次関数による近似式を示している。すなわち、

$$CEC/HW = f \times \frac{a \cdot Ix + 1.06}{\eta} \quad \cdots (3)$$

とおいて、係数 f を停止時間比 r の 2 次関数とし、r=0 のとき f=1 を考慮して、次式で近似する。

$$f = p \cdot r^2 + q \cdot r + 1.000 \quad \cdot \cdot \cdot \cdot (4)$$

各係数 p, q を表 2.1.15に示す。  $R^2$  値も大きいので、十分な近似式と思われる。

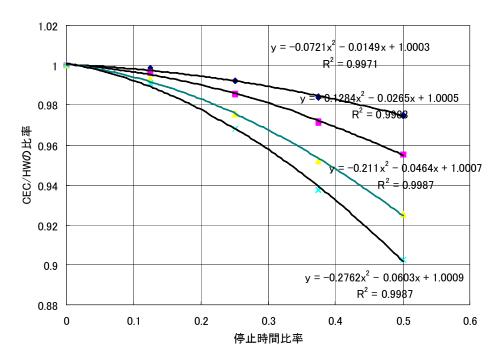



図 2.1.23 停止時間比とCEC/HWの比率

15.64 Ιx 8.34 30.25 44.85 2次項の係数p 0.0721 0.1284 0.2110 0.2762 1次項の係数q 0.0265 0.0603 0.0149 0.0464 R<sup>2</sup>値 0.9971 0.9983 0.9987 0.9987

表 2.1.15 CEC/HWの比率の近似式



図 2.1.24 Ixと係数p、qの関係

$$p = 6.54596 \times 10^{-5} \cdot Ix^{2} - 0.00906757 \cdot Ix \qquad (R^{2} = 0.9991)$$

$$q = 1.23068 \times 10^{-5} \cdot Ix^{2} - 0.00189831 \cdot Ix \qquad (R^{2} = 0.9999)$$

すなわち、停止時間がある場合は、Ix より上式から p、q を求めて(4)式に代入して f 値を定め、さらに(3)式から CEC/HW を求めればよい。

### オ CEC/HW の計算精度

- (3)~(5)式による CEC/HW の近似値と相対誤差を計算すると、相対誤差は 0.0009~ 0.31%となった。
- カ CEC/HW による簡易推定の手順

以上の検討を元に、給湯用途に関わる消費エネルギーの算定手順を示す。

- (1) 簡易計算の適用条件
  - •Ix が 5~30 程度の通常の配管計画であること
  - ・保温仕様 1~3 に該当する妥当な保温がなされていること
  - ・年間を通して熱源効率が大きく変化しない熱源設備であること(ヒートポンプ系の熱源では困難であろう)
- (2) 43℃換算の日給湯量 M[m³/日]を求める。
- (3) 総配管長(先止配管を除く) ΣL[m]を求める。
- (4) 設計仕様より保温仕様  $1\sim3$  を選択する。保温仕様 1 の場合は a=0.011、保温仕様 2・ 3 の場合は a=0.016 とおく。
- (5) 年間平均水温 tw より、年間の仮想給湯負荷を次式で算定する。

$$QHS = 4.2 \times 365 \times M \times (43 - tw)$$

【補足】年間平均水温は「建築物の省エネルギー基準と計算の手引き」に計算方法が記されているので、それを参照する。また簡易な方法ではあるが、年間平均水温は建物計画地の年間平均気温とおよそ等しいので、気象庁の電子閲覧室で近隣のアメダス観測点を選定し、10年程度の年間平均気温の平均を求めて代用してもよい。

(6) 指標  $Ix = \Sigma L / M$  より求める。

【補足】用途別の Ix の参考値としては、2002 年度の届出実績やケーススタディの範囲内では、概ねホテルでは  $5\sim13$ 、病院では  $20\sim27$ 、店舗では夜間停止を行うシステムとして、 Ix は病院と同等である。

- (7) 給湯システムの運転スケジュールを設定する。
  - ・24 時間運転を基本として年間のシステム停止日数が 10 日程度以下の場合は、連続運転として CEC/HW の補正係数f=1.0 とおく。
  - ・1日のうち給湯システムを停止する時刻を設定する場合は、年間のシステム停止日数が何日であっても停止時間比r=停止時間[時間]/24時間を求めて補正係数fを計算する。まず(6)で求めた Ix を用いて次式で係数p、qを求める。

$$\begin{cases} p = 6.546 \times 10^{-5} \cdot Ix^2 - 0.009068 \cdot Ix \\ q = 1.231 \times 10^{-5} \cdot Ix^2 - 0.001898 \cdot Ix \end{cases}$$

停止時間比rを用いて次式で補正係数fを決定する。

$$f = p \cdot r^2 + q \cdot r + 1.000$$

(8) 熱源定格効率 $\eta$ より、次式からCEC/HWを求める。

$$CEC/HW = f \times \frac{a \cdot Ix + 1.06}{\eta}$$

- (9) 年間の給湯用途に関わる消費エネルギーは、QHS×CEC/HW[kJ/年]で求められる。
- キ 建物用途別 Ix の参考値
- a 省エネルギー計画書による実態調査結果

2002 年度に提出された省エネルギー計画書より、建物用途別 CEC/HW 値のデータを抜粋すると表 2.1.16のようになる。

| 用途  | 件数  | およその範囲  | 最頻値  | 平均値  | 基準値(当時) |
|-----|-----|---------|------|------|---------|
| 事務所 | なし  | _       | _    |      | _       |
| 店舗  | 4件  | 1.3~1.5 | 1.35 | 1.38 | 1.7     |
| ホテル | 24件 | 1.2~1.6 | 1.45 | 1.37 | 1.5     |
| 病院  | 55件 | 1.3~1.7 | 1.65 | 1.54 | 1.7     |
| 学校  | なし  | _       | _    | _    |         |

表 2.1.16 用途別のCEC/HW値

排熱回収やコジェネレーションなどの熱源効率を向上させる工夫により、CEC/HW 値がかなり小さくなって、基準値を下回っている物件もある。特に店舗では夜間停止の影響により、CEC/HW はかなり小さくなる。

# b 用途別の Ix の推奨値

上記の資料では物件の詳細がわからないので、安易に CEC/HW 値から Ix を推定想定できないが、平均値でみると、事務所・学校を除いて、前述の直線(1)CEC/HW = 0.02Ix + 1.36 より、店舗 Ix = 1.0、ホテルで 0.5、病院で 9 となってしまう。最頻値を用いると、表 2.1.17の通りである。

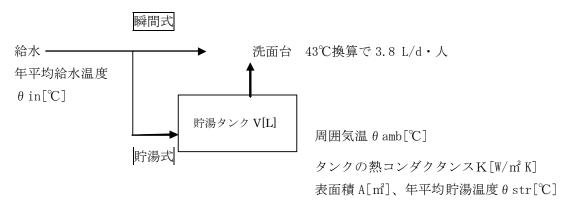

| 用途  | 最頻値の範囲             | 直線(1)による                 | 簡易計算式(a=0.011·η=0.8) |
|-----|--------------------|--------------------------|----------------------|
| 店舗  | 1.3 < CEC/HW < 1.4 | Ix=2程度                   | Ix=5程度               |
| ホテル | 1.4 < CEC/HW < 1.5 | $I_X = 2 \sim 7$         | $I_{X}=5\sim13$      |
| 病院  | 1.6 < CEC/HW < 1.7 | $I_{\rm X} = 12 \sim 17$ | $I_{x}=20\sim27$     |

表 2.1.17 用途別Ixの範囲

店舗では夜間停止を行うことで Ix が大きくても消費エネルギーを抑えることができる。また、ホテルでは 10 以下、病院では  $12\sim17$  程度が望ましいことがわかる。用途別の Ix の参考値としては、2002 年度の届出実績やケーススタディの範囲内では、概ねホテルでは  $5\sim13$ 、病

院では 20~27、店舗では夜間停止を行うシステムとして、Ix は病院と同等と考えてよい。

### (1.3.2) 局所給湯方式の場合



### ア. 瞬間式の場合

43℃の湯をつくる電気ヒーター(効率 100%)の消費電力を求める。 消費エネルギーE(電力二次エネルギー)=3.8×利用人数×(43-θin)×4.2×365 kJ/年

### イ. 貯湯式の場合

ア. に貯湯タンクからの熱損失を加算する。

タンクからの熱損失=タンク個数 $n \times KA(\theta str - \theta amb) \times 365 \times 86400$  秒÷1000 kJ/年

### (2) 給水設備·排水設備

### (2.1) 給水設備に関する消費エネルギーの予測

給水設備によるエネルギー消費はひとえに給水のためのポンプ動力であり、給水方式によって異なる。設備設計によって消費電力等は求められるが、ここでは高置タンク方式を用いた場合が最大消費電力となると仮定する。日給水量を V L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d・L/d L/d L/d

電力消費  $E=0.001 \times V \times$  利用人数÷Q×W×365=0.365×V×利用人数×10H/ $\eta$ 

### (2.2) 排水設備に関する消費エネルギーの予測

通常は重力排水となるので電力消費は不要であるが、地下階や1階の排水を排水ポンプで 揚水する場合は考慮する必要がある。日給水量のr倍を揚水量とし、揚程を上記 H のq倍とす ると、消費電力は給水量と揚程に比例するためrqEと書ける。

### (2.3) 雨水利用設備、排水再利用設備の場合

雨水利用、排水再利用がある場合は揚水量としては基本的に上記(1)と変わらない。雨水利用設備、排水再利用設備に搬送する場合の動力分と排水再利用に使われるブロアー動力が加算される。給水量の φ % が雨水・排水再利用等でまかなわれるなどと設定し、揚程を適切

に仮定すれば搬送分は(1)と同様の式で求められる。ブロアー分は排水再利用設備の仕様から設定することとなる。

# (3) 二酸化炭素排出量への換算手法

算出された二次エネルギー消費量を二酸化炭素排出量に換算する手法を以下に示す。

ここでは便宜上、環境省・経済産業省の「温室効果ガス排出量算定・報告マニュアル」に示された二酸化炭素排出係数を使用して各試算を行っているが、「他人から供給された電気の使用」に関しては、同マニュアルに記されている、「個別事業者ごとに公表されるものについては、当該排出係数を用いて算定を行いて算定」を否定しているものではない。

### 都市ガスの場合

 $\cdot C = E \times c1 \cdot \cdot \cdot (6)$ 

### 電気(買電)の場合

 $\cdot C = E \times c2 \cdot \cdot \cdot (7)$ 

ただし、C:CO<sub>2</sub>排出量[kgCO<sub>2</sub>/年]

### (注)二酸化炭素排出係数

都市ガス使用の場合 : 0.0506[kg-CO2/MJ]

他人から供給された電気使用の場合 : 0.555[kg-CO2/kWh]

出典:平成18年11月 環境省 経済産業省 温室効果ガス排出算定・報告マニュアル

### 2.1.4 照明・コンセント・輸送設備と変圧器損失

本項では、事務所ビル・商業施設における、照明・コンセント・輸送設備(エレベータ(以降「E V」)・エスカレータ)の年間のエネルギー消費量と、変圧器損失の予測方法を示す。

上記のエネルギー使用先のうち、照明とコンセントは、建物全体のエネルギー消費量に占める割合が大きいにもかかわらず、従来、消費実態の詳細が明らかでなかった。その理由の一つは、照明とコンセントのエネルギー消費量を分離して計測することが非常に困難なためである。公開されている資料・文献等のなかには、建物全体のエネルギー消費量に対する、照明とコンセントの占有率を報告しているもの参考文献1)もあるが、照明のエネルギー消費量は照明方式や設計照度などによる影響が、コンセントのエネルギー消費量は OA 機器などの設置密度による影響が大きいため、単一の占有率を一律に適用することは妥当でないと考える。

従前の、エネルギー消費量を予測するために既に開発・公開されているツール<sup>参考文献 2)</sup> には、空調の年間エネルギー消費量は、各地の気象データを使って熱負荷計算を行い、詳細にシミュレーションして予測しているものの、照明とコンセントのエネルギー消費は、かなり簡易な方法を採用しているものが多い。このため、空調のエネルギー消費量の予測には、シミュレーションベースで詳細な予測ロジックが構築されてきたのに対し、照明とコンセントのエネルギー消費量の予測が、この域に達していないことが、エネルギー消費量予測システム(ツール)構築上の課題の一つであった。

また、コンセントは3段階の負荷密度(W/m³)を設定し、これを用いる方法を検討した。

なお、照明とコンセントについては、汎用表計算ソフトを使用する、エネルギー消費量計算ツール の開発を試みた。

EV のエネルギー消費量の予測方法は、EV のエネルギー消費量が単独で計測された実績データと、省エネ法の「エレベータエネルギー消費係数 (CEC/EV  $^{\delta \neq \chi k(3)}$ )」の計算法を利用し、EV の利用頻度や負荷率を考慮する方法を検討した。

エスカレータは、エスカレータのエネルギー消費量が単独で計測されたデータが入手できなかったため、メーカーへのヒアリング結果と(財)省エネルギーセンターの報告書<sup>参考文献 4)</sup>を参考に、EV と同様の方法を検討した。

その他、照明・コンセント・EF・エスカレータ以外に、年間のエネルギー消費量が比較的多いと考えられる変圧器の損失に着目し、その予測方法を検討した。

以下に各々の検討の概要を示す。

### (1) 照明・コンセント

ここでは、事務所ビルと商業施設における照明とコンセントのエネルギー消費実績データの取得と、これらに基づく予測方法の概要を示す。

なお、予測方法は照明については CEC/L の算定構造( $\Sigma$  各照明区画の照明機器の入力電力×年間点灯時間×採用している照明制御等による補正係数)を利用することとしたため、照明の制御方法ごとの省エネ効果率が必要になる。そこで今回、より実情に近い省エネ効果率を把握するため、既存の文献等を調査した。コンセントについては、3 段階の負荷密度(W/m)を設定し、これを用いる方法を検討した。

また、検討した予測方法を検証するため、汎用表計算ツールを使用した計算ツールを開発したので概要を示す。当該ツールは、事務所の場合、全般照明方式とタスク・アンビエント照明方式について、商業施設の場合はベース照明方式について適用できる。このツールでは、照明の主要区画は光束法による簡易な照明設計を行うが、その他の区画については個別に原単位で積み上げる方法と、レンタブル比の統計値から簡易に計算する方法のどちらかを選択できるようにしている。

なお、計算結果から  $CO_2$  排出量を求めるときは、電気の  $CO_2$  排出原単位 (たとえば環境省の原単位 0.5555 kg-  $CO_2$ /kWh) を乗じることで可能となる。

# (1.1) 照明・コンセントエネルギー消費実績データの収集及び分析

以下、照明・コンセントのエネルギー消費実績データの収集(1.1.1)とその消費構造の分析(1.1.2)、並びに併せて実施した照明制御手法の省エネ効果率調査(1.1.3)について述べる。

# (1.1.1) 事務所ビル及び商業施設の照明・コンセント実績データの収集

実績データは、新たに取得可能なデータの取得と既存の公表データの収集を行った。事務所ビルについては、未公表データを含めたデータとして、建築・環境省エネルギー機構 (IBEC) の近年の省エネ建築賞受賞物件 10 件の中から、照明・コンセントの電力消費量データを有する 5 物件の詳細情報を取得した。このうち、照明・コンセントが分離できているデータは 3 件である。分離されていないデータについては、上記の残り 2 件に加え、N 社のテナントオフィスビルの 150 件のデータを得た。その他、既存の公表データとして、省エネルギーセンターのデータを収集した。商業施設については、新たに実績データは得られなかったが、スポットライトなど売り場における演出照明の消費量に占める割合に関して、予測法構築に際し不可欠な情報であるため、ベース照明・演出照明(スポット照明)に関する目視及び写真による実態調査を百貨店・スーパーマーケット、量販店の計10店舗を対象に実施した。

### (1.1.2) 事務所ビル及び商業施設の照明・コンセント消費構造の分析

事務所ビルについて、上記(1.1.1)により得られたデータを総合して解析を行った。図 2.1.25は、事務所ビルの延べ床面積と[照明+コンセント]年間電力消費量との関係である。

これより、事務所ビルの[照明+コンセント]電力消費量に総量については、述べ床面積と

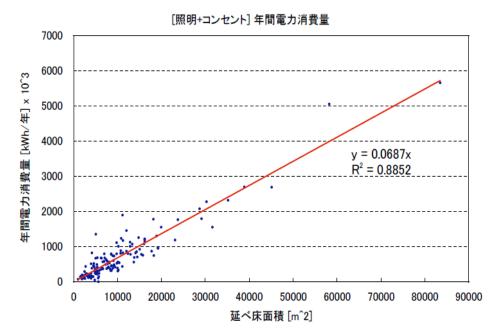



図 2.1.25 事務所ビルの延べ床面積と[照明+コンセント]年間電力消費量との関係の相関が高いことがわかる。

図 2.1.26は、[照明]電力消費量と[コンセント]電力消費量の関係である。これより、事務所においては、照明電力消費量とコンセント電力消費量がほぼ同程度であることがわかる。既往の結果<sup>参考文献 1)</sup>に比べ、コンセントの割合が大きくなっているのは、省エネ建築賞という対象建物の性格から、省エネ照明手法を多く採用していることとや、CEC/L の届出の効果により光源の効率化が進んで近々の建物は照明の消費効率が上がっていること等が理由であると考えられる。その他、OA機器についての密度の違いの影響があると推察されたが、これについては明確な根拠は得られていない。

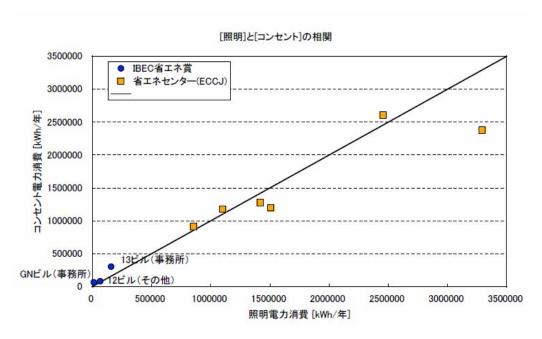



図 2.1.26 事務所ビルの[照明]電力消費量と[コンセント]電力消費量の関係

商業施設にについては、実態調査で得られた 10 施設の写真からベース照明と演出照明 のそれぞれの消費電力密度 $(W/m^2)$ を、推定した。表 2.1.18は、ある施設の調査結果の集 計例である。表中の基準面積(㎡)とは、システム天井における1グリッドの面積に相当するも ので、今回の商業施設の実態調査では、写真から全体の消費電力を推定する必要があった ため、このような考え方を用いている。

店舗名 B百貨店 、一ス照明 寅出照明 トータル 基準面積 照明1 雷力 照明1 照明2 照明2 雷力 照明3 照明3 照明4 照明4 基準面積 雷力 フロア (W/台) (W/台) (W/台) (W/m2)(W/台) (W/m2)R1F 160 60 13 338 60 75 13 150 488 200 60 13 35.4 60 0 0 13 4.6 40.0 2F 60 13 277 60 2 0 0 13 92 369 120 60 0 3F 100 13 24.6 60 0 13 13.8 38.5 **1**E 100 60 13 24.6 60 3 n 0 13 13.8 38.5 0 5F 60 13 n 160 60 2 13 338 92 431 0 60 13 n 6F 100 60 3 13 138 385 246 7F 100 60 13 60 3 0 0 13 13.8 38.5 24.6 8F 100 60 13 24.6 60 3 0 0 13 13.8 38.5 9F 90 13.8 60 0 0 13 9.2 23.1 亚长 268 117 38.4

表 2.1.18 商業施設実態調査からの消費電力密度の推定例

商業施設のコンセント電力( $W/m^2$ )については、既往の文献<sup>参考文献4)</sup>に示された百貨店の 照明・コンセント一体の電力 $(W/m^2)$ と上記照明の推定値を元に値を導いた。

### (1.1.3) 照明設備の省エネ手法効果率調査

主要部位の省エネ照明制御の補正係数については、CEC/L で設定されている補正係数 献をレビューして得られた省エネ効果率に関する値の比較により現実的な値を検討した。調

種別 導入手法 実績値 削減分 削減率 物件 CEC/L 出典 宝績 現行 [%] 補正係数「 W/m2W/m2 補正係 数[-] Hビル 事務所 初期照度補正 望月、迫、樋口、渡邊、伊藤、田辺:昼光 導入空間におけ 18.6 5.9 31.7% 0.76 0.85 る視的・熱的快適性及び省エネルギー性に関する研究 (その8)、ガラス建築オフィス Hビルにおけるブラインド操 ブラインド、照 度センサー調光 作時の照明電力消費量、日本建築学会大会学術講演梗概集(北海道)、pp. 383-384、2004年8月。 ブラインドなし 9.6 3.1 32.3% 0.76 0.90 水平 9.8 2.9 29.6% 0.77 0.90 30° 10.0 2.7 27.0% 0.79 0.90 55° 1.7 15.5% 0.87 0.90 遮蔽 11.8 0.9 7.6% 0.93 0.90 (夜間) 0.0% 0.0 1.00 0.90 ハウス食品東 事務所 初期照度 補正 25 0% 0.75 瀬戸、川合、中右、堀田:ハウス食品東京本社ビルにお 0.61 ペステ、ハロ、ヤロ、ペロ:ハンス 食品果 京本社 ビルにおける 照明制御システム、平成10年度 照明学会第31回全国大会、p. 174、1998 京本社 昼光利用 在室検知 岩淵、河野ほか:東京電力技術開発センターにおける照 東京電力技 術 研究所 初期照度 補正 0.77 23.5% 開発センタ 明制御システムの効果その2、平成10年度照明学会第 31回全国大会、pp. 175-176、1998 昼光利用 奈良岡、鈴木、河野ほか:東京電力技術開発センターに おける照明制御システムの効果 第14報、空気調和「衛 生工学会大会学術故縁論文集[2005.89~11(札幌])、pp. 2109-2112,2005年。 初期照度 補正 22.0% 0.78 0.77 昼休み・残業時一斉消灯 大竹、根岸:「石川県庁舎」における省エネ実験(その2)、 石川県庁舎 庁舎 昼光利用 0.90 平成14年照明学会第35回全国大会、p. 147、2002 ※Hビルの削減率=削減分÷実 結値

表 2.1.19 既存の照明省エネ手法効果率に関する調査

※Hビルの実績補正係数=[実績値]÷([実績値]+[削減分])

※CEC/L現行補正係数: CEC/Lに示されている補正係数

※Hビル以外の実績補正係数=100%-削減率%

査の結果、表 2.1.19のように、調査した実際の省エネ効果率にはかなりばらつきがあるため、事務所ビルについては現行の CEC/L の照明省エネ手法の補正係数のままが望ましく、商業施設については、実態をより反映していると考えられる執務時間外のタイムスケジュール調光制御について補正係数を追加して使用することが望ましいと考えられた。

### (1.2) 照明・コンセントエネルギー消費量の予測法の概要

以下、照明・コンセントエネルギー消費量の予測法の概要を、事務所ビル(1.2.1)、商業施設(1.2.2)のそれぞれについて述べる。

# (1.2.1) 事務所ビルの照明・コンセントエネルギー消費量の予測法概要

予測法構築にあたって、まず、メーカーの照明器具台数の算定法を入手した。これを元に、事務所ビルの照明消費の予測は、主要な部位(執務室)については、空間の寸法及び設計照度、4種類の照明器具選択に応じ、光束法により導いた全般照明/アンビエント照明の照明器具台数とタスク照明の在席率に基づき、任意の年間点灯時間、省エネ照明制御の補正係数を勘案して算定し、共用部については、照明のレベルにより電力(W/m²)を3段階で選択して平均年間点灯率を乗じ、何らかの制御を採用した場合、一定の省エネ補正係数を乗じることとした。事務所ビルのコンセント消費の予測については、主要な部位(執務室)のみとし、OA機器の設置密度(W/m²)を3段階で選択できるようにし、それぞれの段階に対応したコンセント使用率を乗じることとした。

### (1.2.2) 商業施設の照明・コンセントエネルギー消費量の予測法概要

商業施設の照明消費の予測は、事務所ビルと同様に、空間の寸法及び設計照度、4種類の照明器具選択に応じ、光東法により導いたベース照明の照明器具台数と演出照明のグレードに基づき、任意の年間点灯時間、省エネ照明制御の補正係数を勘案して算定し、共用部については、照明のレベルにより電力(W/m²)を3段階で選択して平均年間点灯率を乗じ、何らかの制御を採用した場合、一定の省エネ補正係数を乗じることとした。商業施設のコンセント消費の予測については、これも事務所ビルと同様に主要な部位(売り場)のみとし、3段階のコンセント負荷密度(W/m²)で選択できるようにし、それぞれの段階に対応したコンセント使用率を乗じることとした。ただし、商業施設の場合はOA機器に対する使用は想定していない。

### (1.3) 事務所ビル・商業施設の照明・コンセント消費詳細予測プログラムソフト作成

上記(1.2)の計算アルゴリズムに基づき、照明・コンセント専用消費量予測ツールのインターフェースを試作した。このツールでは、汎用表計算ソフトを使用し、CEC/L の構造に近い枠組みを採用しつつ積み上げ方式による簡易計算を行うことができる。事務所ビルのタスク・アンビエント照明の場合の計算フローを図 2.1.27、画面イメージを図 2.1.28に、商業施設の場合の計算フローを図 2.1.29、画面イメージを図 2.1.30に示す。

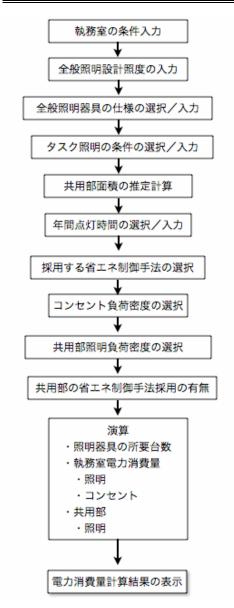



図 2.1.27 事務所ビル用照明・コンセント計算フロー

|                                                                                                                                                                               | 務所ビル(T                                                             | &A照明)版                                                                                                                         | t算シート<br>i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| □ の部分を入力する。                                                                                                                                                                   |                                                                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |
| 斜体数 値の部 分は自 動入力 または自動 計算される<br>執務 室条件                                                                                                                                         | 記号                                                                 |                                                                                                                                | 単位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 備考                                                                                                                                                                                |
| 間 ロ<br>奧 行き                                                                                                                                                                   | X L<br>Y L                                                         | 8                                                                                                                              | m<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                   |
| 天 井高さ作 業面高さ                                                                                                                                                                   | HC<br>VPI                                                          | 2.4                                                                                                                            | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                   |
| 室内反射率                                                                                                                                                                         | VPL                                                                | 0.7                                                                                                                            | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                   |
| 天井面 80% 🖛                                                                                                                                                                     | ref_1                                                              | 0.8                                                                                                                            | [?]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                   |
| 70%                                                                                                                                                                           |                                                                    |                                                                                                                                | 503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                   |
| 壁面 20% 〒                                                                                                                                                                      | ref_2                                                              | 0.7                                                                                                                            | [?]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                   |
| 床面 30%                                                                                                                                                                        | ref_3                                                              | 0.3                                                                                                                            | [?]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                   |
| 照明 設計条 件<br>アンビエント照 明設計 照度                                                                                                                                                    |                                                                    | 20.0                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |
|                                                                                                                                                                               | Es                                                                 | 30 0                                                                                                                           | lx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                   |
| アンビエント照明器 具条件                                                                                                                                                                 |                                                                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |
| 電圧<br>●100 V                                                                                                                                                                  |                                                                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·1 00V か200V か どちら かを選択す                                                                                                                                                          |
| ○200 V                                                                                                                                                                        | _                                                                  |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |
| FHF(H) 32 2灯 🔽 ランブ光束                                                                                                                                                          | F Imp                                                              | 6720                                                                                                                           | lm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                   |
| 器具の 消費電 カ                                                                                                                                                                     | Whp                                                                | 71                                                                                                                             | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                   |
| 器具の種類下面開放型                                                                                                                                                                    |                                                                    |                                                                                                                                | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                   |
| 保守率                                                                                                                                                                           | Mmp                                                                | 0. 69                                                                                                                          | [?]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                   |
| 照 明器具 取り付 け高さ(床面から)                                                                                                                                                           | Hlmp                                                               | 2.4                                                                                                                            | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                   |
| マスク照明の 条件                                                                                                                                                                     |                                                                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·初 期値(24N)                                                                                                                                                                        |
| 机 上スタンドの消 費電力                                                                                                                                                                 | W dskImp                                                           | 24.0                                                                                                                           | [W]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul><li>全般照明の場合は0を入れる。</li></ul>                                                                                                                                                  |
| 机 ひとつ当 たりの床 面積<br>左 産室 研究所(高しベル)                                                                                                                                              | m dsk                                                              |                                                                                                                                | [m 2/人]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·初 期値( /15.3[ m2/人])                                                                                                                                                              |
| 在席率 研究所高ペル)                                                                                                                                                                   | p sn                                                               | 70                                                                                                                             | [%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                   |
| 纨務 室・共用 部の面 積推定<br>執 務室の 室数                                                                                                                                                   | 6.                                                                 |                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                   |
| 執 務室の 室数<br>執 務室の 床面積 合計                                                                                                                                                      | Nrom<br>A of fice                                                  | 1 0<br>6 40                                                                                                                    | 室<br>m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                   |
| レンラブル比                                                                                                                                                                        | Rntrate                                                            | 0. 61                                                                                                                          | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =有 効執務 室面積 /延べ 床面積                                                                                                                                                                |
| 延 ベ床面 積推定 値                                                                                                                                                                   | Atotal                                                             | 1 049 .2                                                                                                                       | m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                   |
| 共 用部面 積推定 値                                                                                                                                                                   | A com                                                              | 409.2                                                                                                                          | m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                   |
| 照明 電力消 費量(執 務室) 計算の 条件                                                                                                                                                        |                                                                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |
| 年間点灯時間の設定<br>●自動設定(初期値)                                                                                                                                                       |                                                                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |
| ○就業日数、一日の就業時間を手入力                                                                                                                                                             |                                                                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |
| 年 間の就 業日数                                                                                                                                                                     | Nwdys                                                              | 248                                                                                                                            | 日/年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                   |
| ±日祝日休み  ▼                                                                                                                                                                     |                                                                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ・自 動設定 の場合 は入力しない                                                                                                                                                                 |
| 一 日の就 業時間 数                                                                                                                                                                   | Nwhrs                                                              | 14                                                                                                                             | 時間/日                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ・自 動設定 の場合 は入力 しない                                                                                                                                                                |
| 年 間の点 灯時間                                                                                                                                                                     | -                                                                  |                                                                                                                                | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                   |
| 執務室                                                                                                                                                                           | N of chrs                                                          |                                                                                                                                | 時間/年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                   |
|                                                                                                                                                                               | N co mhrs                                                          | 30 00                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |
| 照 明設備 の制御 による補 正係数                                                                                                                                                            | Fcoef                                                              | 0.54<br>0.80                                                                                                                   | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ・採 用した制 御手法 にチェックを入                                                                                                                                                               |
| ✓ カード・センサー等による在室検知制  ✓ 明るさ検知による自動点灯制御                                                                                                                                         |                                                                    | 0.80                                                                                                                           | [-]<br>[-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·複 数選択 可。                                                                                                                                                                         |
| ✓ 適正照度制御<br>タイムスケジュール制御                                                                                                                                                       |                                                                    | 0.00                                                                                                                           | [-J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                   |
| 歴光利用制御<br>ゾーニング制御                                                                                                                                                             |                                                                    |                                                                                                                                | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                   |
| 局所制御                                                                                                                                                                          |                                                                    | 1.00                                                                                                                           | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                   |
| ✓その他                                                                                                                                                                          |                                                                    | 1.00                                                                                                                           | [-J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                   |
| 対務 室のコンセント電力 消費量 計算の 条件     コンセント 毎 奈 密度                                                                                                                                      |                                                                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |
| コンセント負荷密度高密度                                                                                                                                                                  |                                                                    | ~ -                                                                                                                            | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                   |
|                                                                                                                                                                               | Ctap                                                               | 20.0                                                                                                                           | [W/m 2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                   |
| コンセント年平 均使用 率                                                                                                                                                                 | ftap                                                               | 40 .0                                                                                                                          | [%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                   |
|                                                                                                                                                                               |                                                                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                 |
| 共用 部の照 明用電 力消費 計算の 冬件                                                                                                                                                         |                                                                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |
|                                                                                                                                                                               |                                                                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |
| 共用部の照明用電力消費計算の条件<br>照明グレード<br>テナントリン(組・ベル)                                                                                                                                    | Winner                                                             | 10.0                                                                                                                           | [W/m 2 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                   |
| 照明グレード デナントゼル(個/ベル)                                                                                                                                                           | W m pcom                                                           | 10.0                                                                                                                           | [W/m 2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                   |
| 照明グレード<br>デナナイヴレ(個レベル)<br>共 用部の 照明設 備制御 による補 正係数                                                                                                                              |                                                                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |
| 照明グレード デナントゼル(他/ベル)                                                                                                                                                           | W Im pcom                                                          | 10.0                                                                                                                           | [W/m 2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ・探り入れていればチェックを入れ                                                                                                                                                                  |
| 照 朝グレード<br>テナントゼル(組/ベル)<br>共 用部の 照明設 信制御 による補 正係数<br>【2】阿らかの省エネ手法を提り入れている                                                                                                     |                                                                    | 0.90                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ・探り入れていればチェックを入れ                                                                                                                                                                  |
| 照 明グレード  テナントじい(組べい)  共 用部の 照明設 傷制御による補 正係数  【ご同らかの客エネ手法を振り入れている                                                                                                              | F cmsp<br>計算結                                                      | 0.90                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ・採り入れていればチェックを入れ                                                                                                                                                                  |
| 服 明グレード  テナントゼル(組へない)  共 用部の 照明設 備制御 による補 正係数  「一回らかの名エネ手法を提り入れている  銀明 器具所 要合数 計算 室 指数                                                                                        | F cmsp<br>計算結<br>Kr                                                | 0.90<br>果<br>2.35                                                                                                              | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                   |
| 照明グレード  テナントゼル(組へない)  共用部の 照明設 備制御による補 正係数  【三回らかの名エネ手法を振り入れている                                                                                                               | F cmsp<br>計算結<br>Kr<br>U                                           | 0.90<br>果<br>2.35<br>0.785<br>5.3                                                                                              | [-]<br>[-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ・探り入れ ていればチェックを入れ<br>・照 明率表 より                                                                                                                                                    |
| 照 明グレード テナントゼル(組/ベル)  共 用部の 照明股 傷制御 による補 正係数  「河らかの省エネ手法を提り入れている  説明 器具所 要合数 計算 重 指数  照 明率                                                                                    | F cmsp<br>計算結<br>Kr<br>U                                           | 0.90<br>果<br>2.35<br>0.785                                                                                                     | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                   |
| 照 明ゲレード  デナントゼル(組/ベル)  共 用部の 照明股 無制御 による補 正係数  【夕阿らかの省エネ手法を提り入れている  現明 器具所 要合数 計算  産 指数  服 明年  所 要合数  「配 電力消費量計算                                                              | F cmsp<br>計算結<br>Kr<br>U                                           | 0.90<br>果<br>2.35<br>0.785<br>5.3                                                                                              | [-]<br>  <br>  <br>  <br>  <br>  <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                   |
| 照 明ゲレード  デナントゼル(組ペル)  共 用部の 照明設 備制御 による補 正係数  【一向らかの省エネ手法を提り入れている  聖明 森具所 要合数計算  童 指数 服 明率 所 要合数                                                                              | F cmsp<br>計算結<br>Kr<br>U                                           | 9.90<br>里<br>2.35<br>0.785<br>5.3<br>6                                                                                         | [-]<br>台台<br>松 h/年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ・展明率表より                                                                                                                                                                           |
| 照 明ゲレード  デナントゼル(組ペル)  共 用部の 照明段 情制御 による補 正係教  【 同らかの省エネ手法を採り入れている  聖明 露具所 妄合数 計算  星 指数  服 明率  所 要合数  【 間 電力消 要載計 第                                                            | Fcmsp<br>計算結<br>Kr<br>U<br>Ns<br>Nss                               | 0.90<br>注集<br>2.35<br>0.785<br>5.3<br>6<br>7.0<br>25.0                                                                         | [-]<br>合合<br>合<br>GJ/年<br>10 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ・照明年表より                                                                                                                                                                           |
| 照明ゲレード  デナントゼル(組べい)  共用部の照明設備制御による補正係数  【夕何らかの省エネ手法を提り入れている  影明 器具所 要合数計算  室 指数  照明率  所 要合数  『 観力消費量計算  『 秋内空 アンピュント照明 電力消費量権 定値  『 秋野室 オック照明 電力消費量権 定値                       | Fcmsp<br>計算結<br>Kr<br>U<br>Ns<br>Nss                               | 2.35<br>0.785<br>5.3<br>6<br>7.0<br>250                                                                                        | [-]<br>台台<br>10 <sup>3</sup><br>kW h/年<br>GJ/年<br>10 3<br>kW h/年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ・展明率表より                                                                                                                                                                           |
| 照明ゲレード  デナンドゼル(総ペル)  共用部の照明設備制御による補正係数  「一回らかの名エネ手法を提り入れている  野 器具所 要合数計算  董 指数  照明率  所 要合数  「                                                                                 | F cmsp  Rr  Kr  U  Ns  Nss  Nss  E lclmp                           | 2.35<br>0.785<br>5.3<br>6<br>7.0<br>25.0<br>21<br>7.6                                                                          | [-]<br>合合<br>合<br>10 <sup>3</sup><br>kW h/年<br>GJ/年<br>10 3<br>kW h/年<br>GJ/年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ・照明年表より  ・照明のみ。 ・執務室のみ(共用部は含まず)。  ・コンセントのみ。                                                                                                                                       |
| 照明ゲレード  デナントゼル(組べい)  共用部の照明設備制御による補正係数  【夕回らかの省エ本手法を提り入れている  影明 器具所 要合数 計算  室 指数  照明率  所 要合数  「取合数  「取合数  「取合数  「取ん数  「取ん数  「取ん数  「なんが、現金が、現金が、現金が、現金が、現金が、現金が、現金が、現金が、現金が、現金 | F cmsp<br>計算結<br>Kr<br>U<br>Ns<br>Nss                              | 2.35<br>2.785<br>5.33<br>6<br>7.00<br>25.0<br>21<br>7.66                                                                       | [-]<br>台台<br>台<br>10 <sup>3</sup><br>kW h/年<br>GJ/年<br>10 <sup>3</sup><br>kW h/年<br>GJ/年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ・照明年表より ・原明のみ。 ・検務室のみ(共用部は含まず)。 ・コンセンへのみ。 ・検務室のみ(共用部は含まず)。                                                                                                                        |
| 照明ゲレード  テナンドじル(銀ペル)  共用部の 照明股 傷制御 による補 正係数  【7回らかの省エネ手法を提り入れている  説明 器具所 要合数 計算  重 指数  照明率  所 要合数  「配 表別室 アンピエント照明 電力消 費量権 定値  「                                               | F cmsp  Kr  U  Ns  Nss  Nss  E leImp  E ledimp                     | 2.35<br>0.785<br>5.3<br>6<br>7.0<br>25.0<br>2.1<br>7.6<br>15.4<br>13.82                                                        | [-]<br>合合<br>10 <sup>3</sup><br>kW h/年<br>GJ/年<br>10 <sup>3</sup><br>kW h/年<br>GJ/年<br>10 <sup>3</sup><br>kW h/年<br>GJ/年<br>10 <sup>3</sup><br>kW h/年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ・照明年表より ・照明のみ。 ・執務室のみ(共用部は含まず)。 ・コンセンのみ。 ・執務室のみ(共用部は含まず)。・コンセンを対し使用率を考慮 ・「照明・コンセントの合計値。                                                                                           |
| 照明ゲレード  デナンドゼル(総ペル)  共用部の 照明設 備制御 による権 正係数  【 何らかの名エネ手法を採り入れている  那明 器具所 要合数 計算  室 指数                                                                                          | F cmsp  Rr  Kr  U  Ns  Nss  Nss  E lclmp                           | 2.35<br>0.785<br>5.33<br>6<br>7.0<br>25.0<br>21.766<br>15.4<br>138.2                                                           | [-]<br>台台<br>台<br>(GJ/年<br>10 3<br>kW h/年<br>GJ/年<br>10 3<br>kW h/年<br>GJ/年<br>10 3<br>kW h/年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ・照明年表より ・照明のみ。 ・執務室のみ(共用部は含まず)。 ・コンセンのみ。 ・執務室のみ(共用部は含まず)。・コンセンを対し使用率を考慮 ・「照明・コンセントの合計値。                                                                                           |
| 照明ゲレード  デナンドゼル(総ペル)  共用部の照明設備制御による補正係数  「夕何らかの名エネ手法を採り入れている  理明 器具所 要合数 計算  室 指数                                                                                              | F cmsp<br>計算結<br>Kr<br>U<br>Ns<br>Ns<br>Nss<br>E lcImp<br>E lcdImp | 2.35<br>0.785<br>5.3<br>6<br>7.0<br>25.0<br>25.0<br>21.7<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 | [-]<br>合合<br>合<br>MW h/年<br>GJ/年<br>10 3<br>kW h/年<br>GJ/年<br>10 3<br>kW h/年<br>GJ/年<br>10 3<br>kW h/年<br>GJ/年<br>10 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ・服明率表より  ・服明のみ。 ・執務室のみ(共用部は含まず)。 ・執務室のみ(共用部は含まず)。 ・対務室のみ(共用部は含まず)。 ・対数室のみ(共用部は含まず)。 ・対数室のが(共用部は含まず)。 ・検務室の人共用部は含まず)。                                                              |
| 題 明ゲレード  デナンドゼル(総ペル)  共 用部の 照明設 備制御 による権 正係数  「                                                                                                                               | F cmsp  Kr  U  Ns  Nss  Nss  E leImp  E ledimp                     | 2.35<br>0.785<br>5.3<br>6<br>7.0<br>25.0<br>25.0<br>21.7<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 | [-]<br>合合<br>10 '3<br>kW h/年<br>GJ/年<br>10 3<br>kW h/年<br>GJ/年<br>10 3<br>kW h/年<br>GJ/年<br>10 3<br>kW h/年<br>GJ/年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ・照明年表より  ・照明のみ。 ・執務室のみ(共用部は含まず)。 ・執務室のみ(共用部は含まず)。 ・執務室のみ(共用部は含まず)。 ・(照明 +コンセントの合計程。 ・執務室のみ(共用部は含まず)。 ・省エネ手法の有無を青電(ロパ)・平均年間点灯率の8と考慮 ・プロセトは含まず。                                     |
| テナントじん(他へい)  共用部の 照明設 傷制御による補 正係数  「Z回らかの省エネ手法を提り入れている  「製明 器具所 要合数 計算  室 指数                                                                                                  | F cmsp<br>計算結<br>Kr<br>U<br>Ns<br>Ns<br>Nss<br>E lcImp<br>E lcdImp | 2.35<br>0.785<br>5.3<br>6<br>7.0<br>25.0<br>21<br>7.6<br>15.4<br>138.2<br>24<br>87.9                                           | [-]<br>6<br>6<br>6<br>10 '3<br>kW h/4<br>GJ/4<br>10 '3<br>kW h/4<br>GJ/4<br>10 '3<br>kW h/4<br>GJ/4<br>10 '3<br>kW h/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4<br>GJ/4 | ・照明率表より  ・照明のみ。 ・快 落室のみ(共用部は含まず)。 ・                                                                                                                                               |
| 題 明ゲレード  デナンドゼル(総ペル)  共 用部の 照明設 備制御 による権 正係数  「                                                                                                                               | F cmsp<br>計算結<br>Kr<br>U<br>Ns<br>Ns<br>Nss<br>E lcImp<br>E lcdImp | 2.35<br>0.785<br>5.3<br>6<br>7.0<br>25.0<br>21<br>7.6<br>15.4<br>138.2<br>24<br>87.9                                           | [-]<br>合合<br>10 '3<br>kW h/年<br>GJ/年<br>10 3<br>kW h/年<br>GJ/年<br>10 3<br>kW h/年<br>GJ/年<br>10 3<br>kW h/年<br>GJ/年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ・照明平表より  ・照明のみ。・飲務室のみ(共用部は含まず)。 ・飲務室のみ(共用部は含まず)。 ・飲務室のみ(共用部は含まず)。 ・飲務室のみ(共用部は含まず)。 ・ (照明 +コンセントの合計程。 ・ (報明 +コンセントの合計程。 ・ (者エネ手法の有無と考慮(3/1) 平均年間点灯率 0.86考慮 ・ コンセントは含まず ・ コンセントは含まず |

図 2.1.28 事務所ビル用画面イメージ

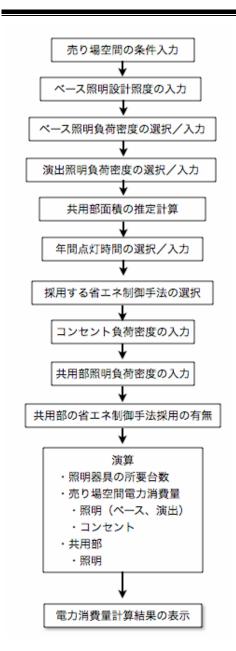



図 2.1.29 商業施設用照明・コンセン ト計算フロー

|         | 照明・コンセ                                       |                     | 版?            |                                     |                                                            |
|---------|----------------------------------------------|---------------------|---------------|-------------------------------------|------------------------------------------------------------|
|         | 4 体数値の部分は自動入力または自動計算される<br>り場空間の条件           | 記号                  |               | 単位                                  | 備者                                                         |
|         | 奥行き                                          | XL<br>YL            | 8             | m<br>m                              |                                                            |
|         | 天井高さ                                         | HC                  | 2. 4          | m                                   |                                                            |
|         | 作業 面高さ<br>室内 反射率                             | VPL                 | 0. 7          | m                                   |                                                            |
|         | 天 井面 80% -                                   | ref_1               | 0.8           | [?]                                 |                                                            |
|         | 壁面 70% =                                     | ref_2               | 0.7           | [?]                                 |                                                            |
|         | 床面 30% -                                     | ref_3               | 0.3           | [?]                                 |                                                            |
| べ-      | ース照明設 計設計 照度                                 |                     |               |                                     |                                                            |
|         | 照明 設計照 度                                     | Es                  | 30 0          | lx                                  |                                                            |
| べ-      | ース照明用 器具条 件                                  |                     |               |                                     |                                                            |
|         | 電圧<br>©100 V                                 |                     |               |                                     | ・100Vか20 0Vかどちらかを選 択す                                      |
|         | O200 V                                       |                     |               |                                     |                                                            |
|         | FHF(Hf) 32 45W 2KT                           |                     |               |                                     |                                                            |
|         | ランプ光 東<br>器 具の消 費電力                          | Flmp<br>Wlmp        | 946 0<br>9 5  | lm<br>W                             |                                                            |
|         | 器具の種類鏡面ルーバ付き                                 |                     |               |                                     |                                                            |
|         | 保守 率<br>照明 器具取り付け 高さ(床 面から)                  | MImp<br>Hm p        | 0.69<br>2.4   | [?]<br>m                            |                                                            |
| - Volle |                                              | 1                   |               |                                     |                                                            |
| 7,英     | 出照明の条件 専門店売り場(高レベル) ・                        | Sp tlmp             | 20            | [W/m2]                              |                                                            |
|         | <u> </u>                                     | 7,,                 |               |                                     |                                                            |
| 売       | り場空間・共 用部の 面積 推定<br>売り 場のある階 数               | IN rom              | 10            | 階                                   |                                                            |
|         | 売り場の床 面積合 計                                  | A offic e           | 640           | m2                                  |                                                            |
|         | レンラブル比<br>延べ 床面積                             | Rntrate<br>A tot al | 0.61          | [-]<br>m2                           | = 売り場 床面積 /延べ 床面積                                          |
|         | 共用 部面積 推定 値                                  | Acom                | 4 09 .2       | m2                                  |                                                            |
| 照       | 明電力 消費 量(売り場空間)計算 の条 件                       |                     |               |                                     |                                                            |
|         | - 営業時間の段定方法                                  |                     |               |                                     |                                                            |
|         | 自動 設定                                        |                     |               |                                     |                                                            |
|         | ○複合施設(駅ビルなど)                                 |                     |               |                                     |                                                            |
|         | ○営業の日数・時間を手入力                                |                     |               |                                     |                                                            |
|         | 年間の就業日数                                      | N wd ys             | 310           | 日/年                                 |                                                            |
|         | 週1日休み 🔻                                      |                     |               |                                     |                                                            |
|         | 一日 の就業 時間 数                                  | Nwhrs               | 12            | 時間/日                                |                                                            |
|         | Language Sales and Dr.                       |                     |               |                                     |                                                            |
|         | 年間 の点灯 時間<br>売り 場空間                          | Nstrhrs             | 430 0         | 時間/年                                |                                                            |
|         | 共用 部                                         | Ncomhrs             | 430 0         | 時間/年                                |                                                            |
|         | 照明 設備の 制御による補 正係数                            | Fco ef              | 0.90          | [-]                                 |                                                            |
|         | カード・センサー等による在室検知制 明るさ検知による自動点灯制御             |                     |               | [-]                                 | <ul><li>・採用した制御手 法にチェックを入</li><li>・複数選 択可。</li></ul>       |
|         | 適正照度制御                                       |                     | 0.90          | [-]<br>[-]                          | 15.500± 21.70                                              |
|         | タイムスケジュール制御                                  |                     | 0.90          | [-]                                 | A / L m L 3° is designed 1 day 1 day                       |
|         | ●営業時間内のみ                                     |                     |               |                                     | ← タイム スケ ジュール 制御をしない ま                                     |
|         | ○営業時間外も調光制御                                  |                     |               |                                     | <ul><li>一営業時間内のみ調光制御する場</li><li>一営業時間外(従業員のみの時間者</li></ul> |
|         | C strain delice                              |                     |               | [-]                                 | も制御 する場合                                                   |
|         | 屋光利用制御<br>ゾーニング制御                            |                     |               | [-]                                 |                                                            |
|         | 局所制御<br>その他                                  |                     |               | [-]                                 |                                                            |
| 771.4   | _                                            |                     |               |                                     |                                                            |
| ; Y 1   | 場空間 のコンセント電力 消費量 計算 の条件<br>コンセント負荷密度         |                     |               |                                     |                                                            |
|         | スーパーマーケットなど(高レペル)                            | Ctap                | 2 5. 0        | [W/m2]                              |                                                            |
|         | コンセント年平均 使用 率                                | ftap                | 4 0. 0        | [%]                                 |                                                            |
| 1#      | 用部の 照明 用電力 消費密 度                             |                     |               |                                     |                                                            |
| 大.      | 用部の 照明 用電刀 消費管 度<br>照明 グレード                  |                     |               |                                     |                                                            |
|         | 複合商業施設(高レベル)                                 | Wimpc om            | 2 0. 0        | [W/m2]                              |                                                            |
|         | <b>サロ かの辺 印象 注射処 し 7 47 マ</b> タギ             | $\perp$             |               |                                     |                                                            |
|         | 共用 部の照 明設 備制御 による補 正係数<br>「何らかの省エネ手法を採り入れている | Fcm sp              | 0. 9          | [-]                                 | ・採り入 れている場合 にチェックす                                         |
|         |                                              |                     |               |                                     |                                                            |
| 照       | 明器具 所要 台数計 算                                 | 計算結                 | 果             |                                     |                                                            |
|         | 室指 数<br>照明 率                                 | Kr<br>U             | 2.35<br>0.580 | [-]                                 | ・照明率表より                                                    |
|         | 所要 台数                                        | Ns                  | 5.1           | 台                                   |                                                            |
| _       |                                              | ⇒ Nss               | 6             | 台                                   |                                                            |
| 年       | 間電力 消費 量計算<br>■売り場空 間                        |                     |               | 10 3                                | ・ベース照明 のみ。                                                 |
|         | ベース照明 電力 消費量 推定値                             | ElcImp              | 22.1          | kWh /年                              | ・共用部は含まず。                                                  |
| **      | ■売り場空間                                       | +                   | 79.4          | GJ/年<br>10 <sup>3</sup>             |                                                            |
| 売り      | 演出 照明電 力消費 量推 定値                             | Elcd in p           | 47.6<br>51.2  | kWh /年<br>GJ /年                     | ・演出照 明のみ。                                                  |
| 場空      | ■売り場空間                                       | -                   |               | 10^3                                | ・コンセントのみ。                                                  |
| 間       | コンセント電力消 費量 推定値                              | Elctap              | 27.5<br>214.3 | kWh /年<br>GJ /年                     | ・共用部 は含まず                                                  |
|         | ■売り場空間<br>[ベース+演出 照明+コンセント]電力 消費量            | Elcwrksp            |               | 10 3<br>kWh /年                      |                                                            |
|         | N 一 人 十 演                                    | LIGHTESP            | 97.2<br>349.9 | GJ/年                                |                                                            |
|         |                                              |                     |               | 10^3                                |                                                            |
| 共用      | ■共 用部                                        | Elcc msn            | 25.3          |                                     |                                                            |
| 共用部     | ■共用部<br> 照明 電力消費量<br> ■建物全体                  | Elcc msp            | 25.3<br>91.2  | kWh /年<br>GJ/年<br>10 <sup>°</sup> 3 | ※コンセントは含まず                                                 |

図 2.1.30 商業施設用画面イメージ

### (2) 輸送設備 (EV・エスカレータ)

輸送設備(EV・エスカレータ)で対象とした建物用途は、EV については事務所ビル及び商業施設、エスカレータについては殆どが商業施設であることから、商業施設のみとした。

以下、エレベータとエスカレータのエネルギー消費量に関する検討結果及び予測方法を示す。

### (2.1) エネルギー消費量の計算法とその妥当性の検討

EV については、単独でエネルギー消費量が測定されている事例を収集し、これに基づき、省エネ法で定義されている「エレベータエネルギー消費係数」(CEC/EV)の分子(「エレベータ消費エネルギー量」)の算定式をベースとすることとした<sup>参考文献 3)。</sup>

エスカレータについては、エスカレータ単独のエネルギー消費量を計量したデータが入手できなかったため、メーカーで使用されている駆動電動機の必要出力算定式と、既存の研究における予測法を参考に予測式を検討した。

### (2.2) EV・エスカレータエネルギー消費量予測法の概要

ベースとした EV の CEC/L 算定式を全ての建物に一律に適用することができるかどうかを検証するため、エレベータのエネルギー消費量が単独で計量されている建物について、CEC/E V の分子の算定値と実際のエレベータのエネルギー消費量の照合を行い、その結果より 3 段階の利用頻度の違いで補正係数を付与することとした。

これより、事務所ビルの EV の消費量については、

事務所ビルの消費量 $[kWh/年] = \Sigma$  積載質量 $[kg] \times$  定格速度 $[m/分] \times$  速度制御方式係数(1/40) × 2000 $[h] \times$  利用頻度係数 × 電力回生係数 とした。

商業施設については、EV の消費量の単独測定データが入手できなかったため、(財)省エネルギーセンターの研究報告書<sup>参考文献4)</sup>を参考に、

商業施設の EV の消費量[kWh/年] = Σ 積載質量[kg]×定格速度[m/分]×10-4×年間運転時間[h/年]×エレベータ巻上機用電動機の年間平均負荷率 とした。

ここでの補正係数(年間平均負荷率)は、利用頻度で3段階に設定している。

エスカレータについては、EV の商業施設の場合と同様、消費量の単独測定データが得られなかっため、メーカーへのヒアリングにより得られた、メーカーで使用されている駆動電動機の必要出力算定式と、(財)省エネルギーセンターの研究報告書<sup>参考文献4)</sup>を参考に、

商業施設のエスカレータの消費量 $[kW/4\pi] = \Sigma$  階高 $[m] \times (1.3 \times$  乗客荷重 $[kg] \times$  定格速度  $[m/3] \times 10-4+0.21) \times$  年間運転時間 $[h/4\pi] \times$  エスカレータ駆動用電動機の年間平均負荷率

とした。ここでの補正係数(年間平均負荷率)も、利用頻度で3段階に設定している。

### (3) その他設備に関する消費の状況

上述の設備以外のその他電気設備に関するエネルギー消費の実態を検討したところ、変圧器の損失の考慮は行うべきだが、それ以外については殆ど必要がないことがわかった。そこで、予測式を検討する対象は、変圧器の損失のみとした。また、今後設置される変圧器はすべて"トップランナー変圧器"とみなすこととした。予測式についての概要はここでは割愛する。

# (4) 実績データと試算結果の比較による予測法の検証

事務所ビルについて、実際にエネルギー消費量が本項で対象とする照明、コンセント、EV の各用途別に単独で正確に計量されている建物をケーススタディの対象とし、上述の予測法のうち、照明、コンセント、EV の検証を行った。その結果、照明については共用部の照明の使用率、コンセントの使用率等を検討することで、精度良く一致することがわかった。また、EV については精度良く予測値と実績値が一致することがわかった。

# (5) 本項のまとめと今後の課題

本項では、事務所ビル及び商業施設を対象に、ある程度の精度を有し、かつ簡易な計算が可能な計算法として、照明・コンセント電力消費量の予測法構築及びその詳細計算ツールの作成、EV・エスカレータ電力消費量の予測法、変圧器損失の予測法の構築を行い、ある事務所を対象に、ケーススタディを実施してそれら予測法の検証を行った。

今後の課題としては、複数のケーススタディを試行して、様々なパラメーターを適正な形に収 束させていくことが挙げられる。

### 【参考文献】

- 1) 白井・小峰・早川:業務用建築物におけるエネルギー消費と管理に関する研究 その2「熱源」「熱搬送動力」「照明」「コンセント」の消費先別エネルギー消費量の推定式、建築学会大会学術講演梗概集,2004
- 2) http://www.eccj.or.jp/audit/esumt/index.html
- 3) 建築物の省エネルギー基準と計算の手引 性能基準(PAL/CEC)、IBEC,2004
- 4) 平成16年度 ビルの省エネルギー対策検討委員会報告書、(財)省エネルギーセンター、2005
- 5) 平成15年度 建築物エネルギー消費報告書、日本ビルエネルギー総合管理技術者協会、2003

# 2.1.5 設備に係るエンボディド CO<sub>2</sub>の推定法

2.1.1~2.1.4では、事務所ビルを対象とした LCCO $_2$  算定方法に関する研究の一貫として、運用 段階でのエネルギー量と、それに伴う CO $_2$  の排出量の推定方法を示した。これと共に、ライフサイクル CO $_2$  の評価のためには、建設段階などにおける設備資機材の製造に係る CO $_2$  排出量(以降、エンボディド CO $_2$ 、embodied CO $_2$ と略す)も評価する必要がある。本項では、設計の初期段階でエンボディド CO $_2$ を簡易に推定する方法を簡潔にまとめて報告する。

## (1) 既往の研究と本研究の位置付け

建築全体の LCCO₂ に関して、これまで、独立行政法人 建築研究所や日本建築学会などによる LCAの研究成果 $^{1)2)$  ほか が公開されているが、設備エンボディドCO₂ に関しては、LCCO₂ 全体に占める割合が小さいことから、詳細な取り扱いを行っていない。これに対して、空気調和・衛生工学会による空調・衛生設備や、電気設備学会による電気設備の LCCO₂ に関する研究が行われ、主要な設備機器や資材のエンボディド CO₂ を計算することができる。しかし、設備容量や資機材数量などの詳細なデータを入力しなければ、答えを得ることができなかった。これに対して、本研究では、これまでの既往の研究を活用しながら、設計初期段階の少ない情報を基に、設計の選択枝の違いにより LCCO₂の増減が評価できる簡易評価手法の開発を目指している。

# (2) エンボディド CO<sub>2</sub> 排出量の算定手順

エンボディド分の環境負荷 ( $CO_2$  排出量、一次エネルギー消費) の算定フローを、空調設備を例にとり、図 2.1.31に示す。このフローに示す主要な手順を以下に示す。

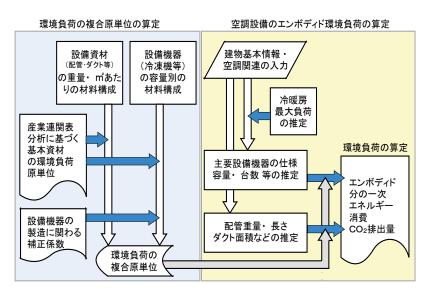



図 2.1.31 空調設備のエンボディド環境負荷の算定フロー

# (2.1) 建物基本情報と設備関連の入力

建物の基本情報と空調設備の機器容量などを推定するための入力を表 2.1.20に示す。熱源方 式として表 2.1.20に示す中央熱源の①電気方式、②ガス方式と③個別方式(AHP・GHP)の3つの 方式、空調方式として、(a)~(f)に示す 6 つの方式の組み合わせによる選択を可能とした。

表 2.1.20 建物基本情報と空調設備関連の入力(抜粋)

| 区分          | 項目                      | 記号       | 単位                | 備考                                             |
|-------------|-------------------------|----------|-------------------|------------------------------------------------|
| 建物          | 地域                      | Dist     | -                 | 寒冷地(旭川)、温暖地(東京)、(沖縄)より選択                       |
|             | 延床面積                    | Af       | m²                | (11/10/00/10/10/10/10/10/10/10/10/10/10/1      |
| 情報          | インテリア空調面積               | Ai       | m²                |                                                |
| 1111111     | ペリメータ空調面積               | Ap       | m²                | 概ね奥行5mをペリメータと考える。                              |
|             | 駐車場面積                   | Apark    | m²                |                                                |
|             | 地上階階数                   | Nf       | 階                 |                                                |
|             | 地下階階数                   | Nb       | 階                 |                                                |
|             | エレベーター台数                | Nelv     | 台                 |                                                |
| 空調          | コア配置                    | -        | -                 | センターコア、サイドコアのどちらかを選択                           |
| 負荷          | 主方位                     | -        | _                 | O°:南-北、45°:南西-北東、90°:西-東、135°:北西-南東            |
| 算定          | 外壁熱貫流率                  | Kk       |                   | 0.5~2.5 の範囲で近似式を作成                             |
| のた          | 窓熱貫流率                   | Km       | $W/(m^2 \cdot K)$ | 1.5~6.0 の範囲で近似式を作成                             |
| めの          | 窓面積比                    | Rm       | -                 | 0.05~0.8 の範囲で近似式を作成                            |
| 情報          | 冷房ピーク負荷算定               |          |                   |                                                |
|             | 1日の空調時間                 | Hc       | h                 | 10~16 (CECの条件は10)                              |
|             | 1日の内部発熱量                | Gc       | Wh/               | 人体、照明、機器の一日の発熱量の積算値                            |
|             |                         |          | (m²·day)          | 360.5~1050.05 (CECの条件は600)                     |
|             | 設定温度                    | Тс       | K                 | 夏期26℃からの偏差 (-2~+2 CECの条件は0)                    |
|             | 暖房ピーク負荷算定               |          |                   |                                                |
|             | 1日の空調時間                 | Hh       | h                 | 10~16 (CECの条件は10)                              |
|             | 1日の内部発熱量                | Gh       | Wh/               | 人体、照明、機器の一日の発熱量の積算値                            |
|             |                         |          | (m²·day)          | 360.5~1050.05 (CECの条件は600)                     |
| 4.1.3       | 設定温度                    | Th       | K                 | 冬期22℃からの偏差 (-2~+2 CECの条件は0)                    |
| 熱源          | 熱源種別比率                  |          |                   | 3方式の合計で1とする                                    |
| 設備          | <ul><li>①電気方式</li></ul> | Relc     | -                 | 電気方式は空冷チラーポンプを仮定、旭川は温                          |
| 条件          | ②ガス方式                   | Rgas     | -                 | 水ボイラー併用とするがここでは省略。ガス方式                         |
|             | ③個別方式                   | Runit    | _                 | は冷温水発生機を仮定。                                    |
| 空調          | 空調方式比率                  |          |                   | 6方式の合計で1とする                                    |
| 設備          | (a)AHU                  | Ra       | _                 | オールエア方式 熱源は①②に対応                               |
| 条件          | (b)AHU+FCU              | Rb       |                   | インテリア:AHU、ペリメータ:FCU、熱源は①②に対応                   |
|             | (c)AHU+マルチAHP           | Rc<br>Rd |                   | インテリア:AHU、ペリメータ:マルチAHP、熱源は①②に対応                |
|             | (d)AHP                  |          |                   | ダクトタイプHPパッケージ、熱源は③に対応                          |
|             | (e)マルチAHP               | Re<br>Rf | _                 | 電気マルチ型HPパッケージ、熱源は③に対応<br>ガスマルチ型HPパッケージ、熱源は③に対応 |
| <b>油に</b> 仕 | (f)マルチGHP               | Kl       | _                 | カスマルナ空HPハックーン、熱源は③に対応                          |
| 衛生          | 給水設備                    | Tank     |                   | FRP単板、FRP複板、SUSパネル単板より選択                       |
| 設備条件        | 受水槽方式<br>消火設備           | I alik   |                   | FRF 早似、FRF 後似、SUSハイル早似より選択                     |
| 米什          | 用八畝畑<br>スプリンクラー対象面積     | Asp      | m²                |                                                |
| 電気          | 受変電設備容量                 | Asp      | 111               |                                                |
| 設備          | 受変電設備容量                 | Cv       | kVA               | 入力が無ければ、延床面積より概算する                             |
| 条件          | 文変単設備谷里<br>その他          | CV       | K V A             | ハノル・ボリ4いは、                                     |
| 未件          | 太陽電池                    | PV       | kW                |                                                |
|             | <b>八</b> 物电化            | ۲V       | KVV               |                                                |

表 2.1.21 建物基本情報と空調設備関連の入力(抜粋)

| 空調方式          |          |         | 源方式   | ③個別熱 | 热源方式 |  |  |  |  |  |
|---------------|----------|---------|-------|------|------|--|--|--|--|--|
| 至嗣万氏          |          | ①電気方式※3 | ②ガス方式 | 電気方式 | ガス方式 |  |  |  |  |  |
| (a)AHU        | Ra       | ○*1     | 0     |      |      |  |  |  |  |  |
| (b)AHU+FCU    | Rb       | 0       | 0     |      |      |  |  |  |  |  |
| (c)AHU+マルチAHP | Rc       | △**2    | Δ     | Δ    |      |  |  |  |  |  |
| (d)AHP        | Rd       |         |       | 0    |      |  |  |  |  |  |
| (e)マルチAHP     | Re       |         |       | 0    |      |  |  |  |  |  |
| (f)マルチGHP     | Rf       |         |       |      | 0    |  |  |  |  |  |
|               | <b>A</b> | Relc    | Rgas  | Ru   | ınit |  |  |  |  |  |
| 空調ス           |          |         | 熱源    |      |      |  |  |  |  |  |

- ※1 ○は、空調と熱源の組み合わせを示す。※2 △は、熱源方式の併用を示す。※3 地域:旭川の場合の①電気方式は、温水ボイラを併用する。

## (2.2) 冷暖房最大負荷の推定

表 2.1.20に示した空調負荷算定のための情報を基に、表 2.1.22に示した推定式、表 2.1.23 -1~表 2.1.23-3に示した係数を用いて、建物全体の冷暖房最大負荷(Cmax、Hmax)を推定する。なお、気候の差違を反映するために、寒冷地の代表として旭川、温暖地の代表として東京、亜熱帯地域の代表として那覇の3地域に対する推定式を作成した。

なお、冷房ピーク負荷は建物方位により影響を受けるため、図 2.1.32に示す建物方位による 補正係数 Kdir を導入している。

この推定された冷暖房最大負荷を基に、熱源設備の容量が算定される。

表 2.1.22 冷暖房の最大負荷の推定式

| 冷房最大負荷      | $Cmax[W] = Ap \times Cmaxp \times Kdir + Ai \times Cmaxi$                                          |
|-------------|----------------------------------------------------------------------------------------------------|
| ペリメータ冷房最大負荷 | $Cmaxp[W] = a + b \times Kk + c \times Km + d \times Rm + e \times Hc + f \times Gc + g \times Tc$ |
| インテリア冷房最大負荷 | $Cmaxi[W] = a + e \times Hc + f \times Gc + g \times Tc$                                           |
| 暖房最大負荷      | $Hmax[W] = Ap \times Hmaxp + Ai \times Hmaxi$                                                      |
| ペリメータ暖房最大負荷 | $Hmaxp[W] = a + b \times Kk + e \times Hc + f \times Gc + g \times Tc$                             |
| インテリア暖房最大負荷 | $H_{maxi}[W] = a + e \times H_{c} + f \times G_{c} + g \times T_{c}$                               |

表 2.1.23-1 冷暖房最大負荷を求める回帰式の一次近似係数 (旭川)

|            |           | 冷房負荷       |           | 暖房負荷      |           |           |  |
|------------|-----------|------------|-----------|-----------|-----------|-----------|--|
| 地域         | ペリン       | <b>メータ</b> |           | ペリ        | メータ       |           |  |
| 東京         | サイドコア     | センターコア     | インテリア     | サイドコア     | センターコア    | インテリア     |  |
| a:切片       | 5.25E+01  | 4.60E+01   | 1.26E+02  | -1.53E+02 | -1.62E+02 | -8.57E+01 |  |
| b:外壁熱貫流率   | -6.32E+00 | -5.03E+00  |           | -9.26E+00 | -7.04E+00 |           |  |
| c:窓熱貫流率    | -2.29E+00 | -1.52E+00  |           |           |           |           |  |
| d:窓面積比     | 9.04E+01  | 9.95E+01   |           |           |           |           |  |
| e:1日の空調時間  | -2.62E+00 | -2.42E+00  | -3.91E+00 | -5.89E-01 | -5.63E-01 | -1.55E+00 |  |
| f:1日の内部発熱量 | 5.96E-02  | 5.34E-02   | 6.28E-02  | 1.50E-02  | 1.37E-02  | 2.47E-02  |  |
| g:設定温度     | -3.43E+00 | -4.48E+00  | 1.57E+01  | 1.52E-01  | 6.20E-01  | 4.33E+00  |  |

表 2.1.23-2 冷暖房最大負荷を求める回帰式の一次近似係数 (東京)

|            |           | 冷房負荷        |           | 暖房負荷      |             |           |  |
|------------|-----------|-------------|-----------|-----------|-------------|-----------|--|
| 地域         | ペリン       | <b>/</b> ―タ |           | ペリ        | <b>メ</b> ータ |           |  |
| 東京         | サイドコア     | センターコア      | インテリア     | サイドコア     | センターコア      | インテリア     |  |
| a:切片       | 8.32E+01  | 8.41E+01    | 1.31E+02  | -1.10E+02 | -1.22E+02   | -6.78E+01 |  |
| b:外壁熱貫流率   | -4.40E+00 | -3.48E+00   |           | -1.52E+01 | -1.26E+01   |           |  |
| c:窓熱貫流率    | -1.14E+00 | -4.63E-01   |           |           |             |           |  |
| d:窓面積比     | 6.97E+01  | 7.09E+01    |           |           |             |           |  |
| e:1日の空調時間  | -2.49E+00 | -2.27E+00   | -4.02E+00 | -1.21E+00 | -1.08E+00   | -1.67E+00 |  |
| f:1日の内部発熱量 | 5.08E-02  | 4.38E-02    | 6.29E-02  | 2.87E-02  | 2.45E-02    | 2.47E-02  |  |
| g:設定温度     | -1.75E+00 | -2.76E+00   | 1.25E+01  | 6.50E+00  | 6.62E+00    | 9.53E+00  |  |

表 2.1.23-3 冷暖房最大負荷を求める回帰式の一次近似係数 (那覇)

|            |           | 冷房負荷        |           | 暖房負荷      |           |           |  |
|------------|-----------|-------------|-----------|-----------|-----------|-----------|--|
| 地域         | ペリン       | <b>ノ</b> ータ |           | ペリン       | •         |           |  |
| 東京         | サイドコア     | センターコア      | インテリア     | サイドコア     | センターコア    | インテリア     |  |
| a:切片       | 9.53E+01  | 1.01E+02    | 1.33E+02  | -3.46E+01 | -3.86E+01 | -3.79E+01 |  |
| b:外壁熱貫流率   | -1.93E+00 | -2.14E+00   |           | -1.17E+01 | -1.17E+01 |           |  |
| c:窓熱貫流率    | -6.52E-02 | 3.28E-01    |           |           |           |           |  |
| d:窓面積比     | 7.66E+01  | 7.27E+01    |           |           |           |           |  |
| e:1日の空調時間  | -2.57E+00 | -2.23E+00   | -3.77E+00 | -1.40E+00 | -1.27E+00 | -1.55E+00 |  |
| f:1日の内部発熱量 | 4.67E-02  | 3.97E-02    | 6.09E-02  | 2.87E-02  | 2.80E-02  | 2.47E-02  |  |
| g:設定温度     | -1.43E+00 | -2.53E+00   | 9.61E+00  | 2.15E+00  | -1.06E+00 | 6.75E+00  |  |

|        | 基準0° | $45^{\circ}$ | 90°  | 135° |
|--------|------|--------------|------|------|
| サイドコア  |      | $\Diamond$   |      |      |
| 冷房補正係数 | 1.00 | 1.04         | 1.07 | 1.04 |
| センターコア |      |              |      |      |
| 冷房補正係数 | 1.00 | 1.02         | 1.04 | 1.02 |

注) 暖房ピークは、方位による補正は行わない

図 2.1.32 建物方位による補正係数 Kdir

# (2.3)機器容量・台数等の簡易推定

(2.2)で算定した冷暖房最大負荷(Cmax、Hmax)を基に「①:電気方式」、「②:ガス方式」の 熱源は2台分割として熱源容量を求め、それに付属する熱源補機を自動算定する。「③:個別 熱源方式」については、冷房能力28kWの屋外機を仮定して、台数を算定している。概算式を 表2.1.24に示す。

表 2.1.24 空調設備関連の機器容量・台数等の簡易推定

| 区分      | 項目                                        | 記号     | 単位        | パラメータ     | 概算式                                                                                               | 備考                          | コード                |
|---------|-------------------------------------------|--------|-----------|-----------|---------------------------------------------------------------------------------------------------|-----------------------------|--------------------|
| 熱源      | 建物全体の冷熱源容量                                | Ces    | kW        | 床面積       | Ces=Cmax × 1.1/1000                                                                               | 余裕率1.1                      |                    |
| 7111031 | 建物全体の温熱源容量                                |        | kW        | 最大負荷      | Hes=Hmax × 1.1/1000                                                                               | 個別方式を含む                     |                    |
|         | 大口 11 11 11 11 11 11 11 11 11 11 11 11 11 | 1105   | 1111      | 2000      | 1100 1111101 111/1000                                                                             |                             |                    |
|         | ①電気方式 注1)                                 |        |           |           |                                                                                                   |                             |                    |
|         | 空冷チラーポンプ 容量                               | Chp    | kW        | 熱源方式      | ●冷房負荷で決まる場合                                                                                       | ×2台                         |                    |
|         | 至川テク かとう 谷重                               | Clip   | IV A A    | 比率 Relc   | (判定条件: Ces/3.5≧Hes/4.0)                                                                           | 冷房COP=3.5                   |                    |
|         |                                           |        |           | PL-+ Reic |                                                                                                   |                             | 1 0001             |
|         |                                           |        |           |           | Chp=Ces×Relc/2                                                                                    | 暖房COP=4.0                   | →1-0201            |
|         |                                           |        |           |           | ●暖房負荷で決まる場合(上記以外)                                                                                 | を仮定                         |                    |
|         |                                           |        |           |           | $Chp = Hes \times Relc \times (3.5/4.0) / 2$                                                      |                             | →1-0201            |
|         | 冷水1次ポンプ 流量                                | -      | L/min     |           | $Q1c1 = Chp \times (860/60/5) / 2$                                                                | ×2台                         | →1-0601            |
|         | 温水1次ポンプ 流量                                | Q1h1   |           |           | $Q1h1 = Chp \times (860/60/5) / 2$                                                                | ×2台                         | →1-0601            |
|         | 冷水2次ポンプ 流量                                | Q1c2   | L/min     |           | $Q1c2 = Chp \times (860/60/5) / 3$                                                                | ×3台                         | →1-0601            |
|         | 温水2次ポンプ 流量                                | Q1h2   | L/min     |           | $Q1h2 = Chp \times (860/60/5) / 3$                                                                | ×3台                         | →1-0601            |
|         |                                           |        |           |           | ⊿T=5Kとする                                                                                          |                             |                    |
|         | ②ガス方式                                     |        |           |           |                                                                                                   |                             |                    |
|         | 吸収冷温水発生機 容量                               | Cabs   | kW        | 熱源方式      | ●冷房負荷で決まる場合                                                                                       | ×2台                         |                    |
|         | 3(7),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,  |        |           | 比率 Rgas   | (判定条件:Ces/1.3≧Hes/0.87)                                                                           | 冷房COP=1.3                   |                    |
| 1       |                                           |        |           |           | Cabs=Ces×Rgas/Nabs                                                                                | 暖房COP=0.87                  | →1-0203            |
| 1       |                                           |        |           |           | ●暖房負荷で決まる場合(上記以外)                                                                                 |                             | , 0200             |
|         |                                           |        |           |           | で現所負荷で次まる場合(工能以外)<br>Chp=Hes×Rgas×(1.3/0.87)/Nabs                                                 | CIXXE                       | →1-0203            |
|         | 冷却塔 流量                                    | Ont    | L/min     |           | $Cnp = Hes \times Rgas \times (1.3/0.87) / Nabs$<br>$Qct = Chp \times (16.6 \times 860/3024) / 2$ | ×2台                         | →1-0203<br>→1-0301 |
| 1       | 111分4元 (小里                                | Qct    | اللللا /ت |           | 公式                                                                                                | ^4□                         | → 1-0301           |
| 1       | With the state                            | 0.     | т / •     |           |                                                                                                   | V 0 4                       | . 1 0001           |
|         | 冷却水ポンプ 流量                                 | Qcwp   |           |           | Qcwp=Qct                                                                                          | ×2台                         | →1-0201            |
| 1       | 冷水1次ポンプ 流量                                | -      | L/min     |           | $Q2c1 = Cabs \times (860/60/5) / 2$                                                               | ×2台                         | →1-0601            |
|         | 温水1次ポンプ 流量                                | Q2h1   |           |           | $Q2h1 = Cabs \times (860/60/5) / 2$                                                               | ×2台                         | →1-0601            |
|         | 冷水2次ポンプ 流量                                | Q2c2   |           |           | $Q2c2 = Cabs \times (860/60/5) / 3$                                                               | ×3台                         | →1-0601            |
|         | 温水2次ポンプ 流量                                | Q2h2   | L/min     |           | $Q2h2 = Cabs \times (860/60/5) / 3$                                                               | ×3台                         | →1-0601            |
|         | ③個別方式                                     |        |           |           |                                                                                                   |                             |                    |
|         | トータル冷房容量                                  | Cunit  |           | 熱源方式      | Cunit=Ces×Runit                                                                                   |                             |                    |
| 1       | トータル暖房容量                                  | Hunit  | kW        | 比率 Runit  | Hunit=Hes×Runit                                                                                   |                             |                    |
|         |                                           |        |           | 空調方式比     |                                                                                                   |                             |                    |
|         | (d)AHP必要容量                                | Cunit1 | kW        | Rd        | $Cunit1 = Cunit \times Rd/(Rd + Re + Rf)$                                                         |                             |                    |
|         |                                           | Hunit1 | kW        |           | $Hunit1 = Hunit \times Rd/(Rd + Re + Rf)$                                                         |                             |                    |
|         | (e)マルチAHP必要容                              |        |           | Re        | Cunit2=Cunit $\times$ Re/(Rd+Re+Rf)                                                               |                             |                    |
|         |                                           | Hunit2 |           |           | $Hunit2 = Hunit \times Re/(Rd + Re + Rf)$                                                         |                             |                    |
|         | (f)マルチGHP必要容                              | Cunit3 |           | Rf        | Cunit3=Cunit $\times$ Rf/(Rd+Re+Rf)                                                               |                             |                    |
|         | ., .,                                     | Hunit3 |           |           | Hunit2=Hunit $\times$ Rf/(Rd+Re+Rf)                                                               |                             |                    |
| 空調      |                                           |        | <u> </u>  |           |                                                                                                   |                             |                    |
|         | 空調対象階数                                    | Nt     | 階         | 地上陸数 Nf   | Nb≧2の場合、Nt=Nf+Nb-1                                                                                |                             |                    |
| 1       |                                           | 1.0    | l         |           | その他の場合、Nt=Nf                                                                                      |                             |                    |
|         | 空調対象面積                                    | At     | m²        | Ai, Ap    | At=Ai+Ap                                                                                          |                             |                    |
|         | 空調対象国債<br>(a)AHU                          |        | 111       | 211, 71p  | 230 231 23p                                                                                       | AHUは各階1台                    |                    |
|         | (a)AHU<br>AHU台数                           | Na     | 台         | 空調方式比     | No-Nt                                                                                             | AHUは各階1日<br>天井高さ2.6m        |                    |
|         |                                           |        |           |           |                                                                                                   |                             | →1-0401            |
|         | AHU風量                                     | Qa     | m3/h      | Ra        | $Qa=At\times Ra\times 2.6m\times 11\Box/h/Na$                                                     | 換気回数11回/h                   |                    |
|         | (b)AHU+FCU                                | NTI =  | 4         |           | NII 1 NI                                                                                          | AHUは各階1台                    |                    |
|         | AHU台数                                     | Nb1    | 台         | 空調方式比     | Nb1=Nt                                                                                            | 天井高さ2.6m                    | →1-0401            |
|         | AHU風量                                     | Qb1    | m3/h      | 率         | Qb1=At×Rb×2.6m×9回/h/Na                                                                            |                             |                    |
|         | FCU台数                                     | Nb2    | 台         | Rb        | Nb2=Ap $\times$ Rb $/$ (5 $\times$ 6)                                                             | 奥行5m×幅6mに一台                 | →1-0501            |
|         | FCU容量                                     | Cb2    | kW        |           | Cb2=5.64 (#600を仮定)                                                                                |                             |                    |
|         | (c)AHU+マルチAHP                             |        | ١.        |           |                                                                                                   |                             |                    |
|         | AHU台数                                     |        | 台         | 空調方式比     |                                                                                                   | 天井高さ2.6m                    | →1-0401            |
|         | AHU風量                                     | Qc1    | m3/h      | 空嗣刀式儿 率   | $Qc1=At\times Rc\times 2.6m\times 9\Box/h/Na$                                                     | 換気回数9回/h                    | 1 0401             |
|         | マルチAHP容量                                  | Nc2    | 台数        | Rc        | $Nc2=Ap \times Rb / (5 \times 6 \times 10)$                                                       | 奥行5m×幅6m×10スパン              | →1-0403            |
|         | マルチAHP容量                                  | Cc2    | kW        | 100       | Cc2=28kW (10馬力を仮定)                                                                                | 毎に屋外機10馬力を想定                | 1 0403             |
|         | (d)AHP容量                                  |        |           |           |                                                                                                   | 冷房能力50kW,                   |                    |
|         |                                           | Cd     | kW        |           | Cd=50                                                                                             | 暖房能力60kwを仮定                 | 1_0400             |
|         |                                           | Nd     | 台         |           | Nd=(Cunit1/50とHunit1/60の大きい方)                                                                     | 台数は切上げ整数値                   | →1-0402            |
|         | (e)マルチAHP容量                               |        |           |           |                                                                                                   | (冷房能力28kW,                  |                    |
|         | ., . ,                                    | Се     | kW        |           | Ce=28                                                                                             | 暖房能力31.5kwを仮定               | ,                  |
|         |                                           | Ne     | 台         |           | Ne=(Cunit2/28とHunit2/31.5の大きい方)                                                                   | 台数は切上げ整数値                   | →1-0403            |
|         | (f)マルチGHP容量                               |        |           |           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                     | (冷房能力28kW,                  |                    |
|         | (-, /. / O.H./II =E                       | Cf     | kW        |           | Cf=28                                                                                             | (円房能力20kW,<br>暖房能力31.5kwを仮定 |                    |
|         |                                           | Nf     | 台         |           | Nf=(Cunit2/28とHunit2/31.5の大きい方)                                                                   | 台数は切上げ整数値                   | →1-0404            |
|         |                                           | 1 11   | Ц         | ·         | 111 (Cumt2/20C11umt2/31.3V/八さい))                                                                  |                             |                    |

換気・衛生・消火・受変電・照明の設備機器容量・台数などの推定方法を表 2.1.25に示す。

換気設備は、比較的大量な換気が必要な諸室の面積を、延床面積に対する概略比率により 簡易に推定することにより、換気風量を求めている。

衛生・消火・受変電設備は、延床面積より自動的に推定する方法により簡略化している。ただし、受変電設備容量が他の資料から推定できる場合には、直接、受変電容量を指定することも可能としており、これにより、電気設備関連の資機材量の推定精度が向上する。

照明の蛍光灯の本数に関しては、水銀の適正処理の観点から、LCW 評価で蛍光灯の本数を積算して評価できる仕組みを検討しており、LCCO2の観点とは別に、蛍光灯の本数を積算することを可能とした。具体的には、運用段階における照明設備のエネルギー消費量を求めるために入力されている情報から、蛍光灯の本数を求める。

表 2.1.25 その他の設備関連の機器容量・台数等の簡易推定

| 区分      | 項目         | 記号    | 単位    | パラメータ               | 概算式                                      | 備考                                     | コード     |
|---------|------------|-------|-------|---------------------|------------------------------------------|----------------------------------------|---------|
| 換気      | 駐車場の換気風量   | Vpark | m3/h  | 駐車場面積<br>Apark (m2) | 地下室がある場合のみ算定<br>Vpark=Apark×天井高6m×10回/h  | 自走式駐車場を想定<br>×2台(一種換気)                 | →1-0701 |
|         | 機械室の換気風量   | Vmac  | m3/h  |                     | 地下室がある場合のみ算定<br>Vmac=Af×3%×天井高6m×5回/h    | 延べ床面積の3%と仮定                            | →1-0701 |
|         | 電気室の換気風量   | Velc  | m3/h  | 延床面積<br>Af (㎡)      | 地下室がある場合のみ算定<br>Velc=Af×1%×天井高6m×5回/h    | 延べ床面積の1%と仮定<br>×2台(一種換気)               | →1-0701 |
|         | 倉庫等の換気風量   | Vstr  | m3/h  |                     | 地下室がある場合のみ算定<br>Vstr=Af×0.3%×天井高4m×3回/h  |                                        | →1-0701 |
| 衛生      | 一日給水量      | Qday  | L/day | 延床面積<br>Af (㎡)      | Qday=Af×65%×0.2人/㎡×100L/<br>人            | レンタブル比65%、人員密度0.2<br>人/㎡、給水量100L/人・day |         |
|         | 毎時最大給水量    | Qup   | L/h   |                     | Qup = Qday/8*3.0                         | 3.0 は瞬時最大係数                            |         |
|         | 受水槽容量      | Vtank | m3/h  | Qday                | Vtank=(Qday×貯水係数0.4+Qctw)                | FRP単板                                  | →2-0101 |
|         |            |       |       | Qctw                | /1000                                    | FRP複板                                  | →2-0102 |
|         |            |       |       | -                   |                                          | SUSパネル単板                               | →2-0104 |
|         | 揚水ポンプ 容量   | Qpup  | L/min |                     | $Qpup = (Qup + Qctw) / (60min \times 3)$ | ×3台                                    | →2-0301 |
|         | 汚水ポンプ      | _     | -     | 내는 그 만난 부스          | 150L/min×2台                              |                                        | →2-0303 |
|         | 雑用水ポンプ     | -     | -     | 地下階数                | 100L/min×2台                              |                                        | →2-0303 |
|         | 湧水ポンプ      | -     | -     | Nb>0の場合             | 100L/min×2台                              |                                        | →2-0304 |
|         | 便器         | Nwc   | 個     | 延床面積                | $Nwc = 0.00381 \times Af + 22.3$         | <b>※</b> 1                             | →2-0511 |
|         | 洗面器        | Nwb   | 個     | Af (m²)             | $Nwb = 0.00296 \times Af + 20.6$         | *1                                     | →2-0531 |
|         | 給水箇所数      | New   | 箇所    | Nwc,Nwb             | Ncw=Nwc+Nwb                              |                                        |         |
|         | 給湯箇所数      | Nhw   | 箇所    | Nwb                 | Ncw=Nwb                                  |                                        |         |
|         | 排水箇所数      | Ndr   | 箇所    | Nwc,Nwb             | Ndr=Nwc+Nwb                              |                                        |         |
| 消火      | 屋内消火栓      | Nih   | 箇所    | 延床面積                | Af<3000の時、Nih=0                          | 耐火構造を仮定                                |         |
|         |            |       | 100   | Af (m²)             | Af≥3000の時かつAf/Nf≥2000の時                  | Nih=3 × Nf                             |         |
|         |            |       |       |                     | Af ≥ 3000の時かつ2000 > Af / Nf ≥ 75         |                                        | →2-0601 |
|         |            |       |       | - Land 300 111      | Af≧3000の時かつ750>Afの時、Nih=                 |                                        |         |
|         | 屋内消火栓ポンプ   | -     | -     | Npih                | Nih>0の時 300L/min×1台                      | 111                                    | →2-0305 |
|         | スプリンクラーポンプ | -     | -     |                     | Asp>0の時 600L/min×1台                      |                                        | →2-0305 |
| 受変<br>電 | 受変電設備容量    | Cv    | kVA   | 延床面積<br>Af (㎡)      | $C_V=0.1233\times Af$                    | 既知であれば入<br>カデータを用いる ※5                 |         |
| 照明      | 蛍光灯本数      | Ntlit | 本     | -                   | 室数×[台数/室]×[蛍光灯本数/台]                      | 照明の運用エネルギー<br>算定ロジックより                 |         |

# (2.4) 配管・ダクト等の設備関連資材の簡易推定

文献3を基に、空調方式毎の延床面積あたりの配管重量やダクト面積の推定式を表 2.1.26 のように定めた。既存の BEAT-OFFICE<sup>1)</sup>および文献5を基に、給水箇所数あたりの給水管、受変電容量あたりの電気設備関連の資機材料の推定式を表 2.1.27に定めた。

表 2.1.26 空調設備関連の資材量の簡易推定

| 区分        | 項目                                                                        | 記号    | 単位     | パラメータ                                       | 概算式                                                                                                                                                                                                                                                                                                                                                  | 備考                                                  | コード     |
|-----------|---------------------------------------------------------------------------|-------|--------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------|
| 空調ダクト     | (a)AHU<br>(b)AHU+FCU<br>(c)AHU+マルチAHP<br>(d)AHP<br>(e)マルチAHP<br>(f)マルチGHP | Adct  | m²-ダクト | 延床面積<br>Af (m2)<br>空調方式<br>の比率<br>Ra~Rf     | Adct=0.56 × Af × Ra<br>Adct=0.42 × Af × Rb<br>Adct=0.42 × Af × Rc<br>Adct=0.56 × Af × Rd<br>Adct=0.29 × Af × Re<br>Adct=0.29 × Af × Rf                                                                                                                                                                                                               | *2、 <b>*</b> 4                                      | →1-0901 |
| 換気ダクト     | 一般換気<br>(機械室・電気室・倉庫                                                       | Avd1  | m²-ダクト | 延床面積<br>Af (m2)                             | $Avd1 = 0.1 \times Af$                                                                                                                                                                                                                                                                                                                               | ※2を基に単純<br>化、※4                                     | →1-0902 |
|           | 駐車場換気                                                                     | Avd2  | m²-ダクト | 駐車場の<br>換気風量<br>Vpark (m3/h)                | $Avd2 = 0.01(m2/(m3/h)) \times Vpark$                                                                                                                                                                                                                                                                                                                | モデル試算<br>による<br><b>※</b> 4                          | →1-0902 |
| 排煙<br>ダクト |                                                                           | Asmk  | m²-ダクト | 延床面積<br>Af (m2)                             | $Asmk = 0.1 \times Af$                                                                                                                                                                                                                                                                                                                               | ※2を基に単純<br>化、※4                                     | →1-0903 |
| 空調配管      | 冷温水配管(SGP) (a)AUH (b)AHU+FCU (c)AHU+AHP (d)空冷パッケージ (e)マルチAHP (f)マルチGHP    | Wpac' | kg-配管  | 延床面積<br>Af (m2)<br>空調方式別の<br>床面積比率<br>Ra~Rf | Wpac'=2.13×Af×Ra<br>Wpac'=2.54×Af×Rb<br>Wpac'=1.96×Af×Rc<br>Wpac'=0<br>Wpac'=0<br>Wpac'=0                                                                                                                                                                                                                                                            |                                                     | →1-1001 |
|           | 冷却水配管(VLP)                                                                |       |        |                                             | •                                                                                                                                                                                                                                                                                                                                                    |                                                     | →1-1002 |
|           | ①空冷HP<br>②吸収冷温水発生機<br>③個別方式                                               | Wpct' | kg-配管  | 延床面積<br>Af (m2)<br>熱源方式の<br>比率 Rabs         | Wpct'=0 $Wpct' = (1.04 \times 1.41) \times Af \times Rabs$ $Wpct' = 0$                                                                                                                                                                                                                                                                               | 1.04はSGPの<br>場合、1.41は<br>VLPとした場合<br>の補正係数<br>※2、※3 |         |
|           | ドレン管 (SGP)                                                                |       |        |                                             |                                                                                                                                                                                                                                                                                                                                                      |                                                     | →1-1003 |
|           | (a)AHU<br>(b)AHU+FCU<br>(c)AHU+マルチAHP<br>(d)AHP<br>(e)マルチAHP<br>(f)マルチGHP | Wpdr' | kg-配管  | 延床面積<br>Af (m2)<br>空調方式の<br>比率Ra~Rf         | $\begin{array}{l} \text{Wpdr'}{=}0.30\times\text{Af}\times\text{Ra}\\ \text{Wpdr'}{=}0.60\times\text{Af}\times\text{Rb}\\ \text{Wpdr'}{=}0.60\times\text{Af}\times\text{Rc}\\ \text{Wpdr'}{=}0.30\times\text{Af}\times\text{Rd}\\ \text{Wpdr'}{=}0.86\times\text{Af}\times\text{Re}\\ \text{Wpdr'}{=}0.86\times\text{Af}\times\text{Rf} \end{array}$ | - <b>%</b> 2 <b>,%</b> 3                            |         |
|           | 冷媒管(SGP)                                                                  |       |        | 延床面積                                        |                                                                                                                                                                                                                                                                                                                                                      |                                                     | →1-1004 |
|           | (c)AHU+マルチAHP<br>(d)AHP<br>(e)マルチAHP<br>(f)マルチGHP                         | Wpdr' | kg-配管  | Af (m2)<br>空調方式の<br>比率Ra~Rf                 | Wpdr'=0.4×Af×Rc×50%<br>Wpdr'=0.15×Af×Rd<br>Wpdr'=0.4×Af×Re<br>Wpdr'=0.4×Af×Rf                                                                                                                                                                                                                                                                        | (c)については<br>ペリメーターを<br>50%と仮定<br>※2、※3              |         |
| 自動制御      |                                                                           | Abms  | m²-延床  | 延床面積<br>Af (m2)                             | Abms=Af×Rbms •Rbms=1.0:大規模建物(10000≦Af) •Rbms=0.7:中規模建物(5000≦Af<10000) •Rbms=0.4:小規模建物(Af<5000)                                                                                                                                                                                                                                                       | Rbms は建物<br>規模に応じた<br>補正係数、※2                       | →1-1101 |

<sup>※1</sup> BEAT-OFFICEによる推定式(衛生設備で利用)

<sup>※2</sup> 文献3による

<sup>※3</sup> この値は直管部の重量であり、この重量よりバルブなどの付属品や支持材を含めた重量や環境負荷を推定する原単位を別途整備。

<sup>%4</sup> この値はダクト面積であり、この面積よりダクトと共にダンパなどの付属品や支持材を含めた重量や環境負荷を推定する原単位を別途整備。

表 2.1.27 その他の設備関連の資材量の簡易推定

| 区分       | 項目                                       | 記号    | 単位    | パラメータ              | 概算式                                                                                                                                                                                                      | 備考                                   | コード                                      |
|----------|------------------------------------------|-------|-------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------|
| 衛生<br>配管 | 給水管(VLP管)                                | Wpcw' | kg-配管 | 給水箇所数<br>Ncw       | Wpcw'=26.1×Ncw                                                                                                                                                                                           | <b>%</b> 2 <b>,%</b> 3               | →2-0801                                  |
|          | 給湯管(銅管)                                  | Wphw' | kg-配管 | 給湯箇所数<br>Nhw       | Wphw'=3.8×Nhw                                                                                                                                                                                            | <b>%</b> 2 <b>, %</b> 3              | →2-0802                                  |
|          | 排水通気管                                    |       |       |                    |                                                                                                                                                                                                          |                                      |                                          |
|          | 排水用鋳鉄管<br>鉛管<br>配管用炭素鋼鋼管<br>硬質塩化ビニル管(VP) | Wppd' | kg-配管 | 排水箇所数<br>Ndr       | $ \begin{aligned} & \text{Wppd'} = 10.0 \times \text{Ndr} \\ & \text{Wppd'} = 5.9 \times \text{Ndr} \\ & \text{Wppd'} = 20.2 \times \text{Ndr} \\ & \text{Wppd'} = 9.2 \times \text{Ndr} \end{aligned} $ | %2, %3<br>%2, %3<br>%2, %3<br>%2, %3 | →2-0803<br>→2-0804<br>→2-0805<br>→2-0806 |
| 消火<br>配管 | 屋内消火栓配管<br>配管用炭素鋼鋼管                      | Wpih' | kg-配管 | 屋内消火栓箇所数<br>Npih   | Wpih'=150×Nih                                                                                                                                                                                            | <b>%</b> 1 <b>, %</b> 3              | →2-0807                                  |
|          | スプリンクラー配管<br>スケジュール管                     | Wpsp' | kg-配管 | スプリンクラー対象面積<br>Asp | Wpsp'=2.5×Asp                                                                                                                                                                                            | <b>%</b> 3                           | →2-0808                                  |

| 区分     | 項目             | 記号     | 単位 | パラメータ                 | 概算式                                            | 備考           | コード     |
|--------|----------------|--------|----|-----------------------|------------------------------------------------|--------------|---------|
| 受変     | キュービクル         | Wcv1   |    |                       | $Wcv1 = 1114.5 \times Ln(Cv) - 5021.6$         |              | →3-0101 |
| 電      | キュービクル基礎       | Wcb1   |    |                       | $Wcb1 = 694.79 \times Ln(Cv) - 2717.6$         |              | →3-0102 |
| 設備     | 3相トランス         | Wtrt1  |    | 巫亦電                   | Wtrt1=1.2309×Cv                                |              | →3-0103 |
|        | 単相トランス         | Wtrs1  | 1  | 受変電                   | Wtrs1=1.9424×Cv                                | \ <b>Y</b> 4 | →3-0103 |
|        | コンデンサー         | Wcond1 | kg | 設備容量<br>Cv (kVA)      | $W$ cnd1=0.0575 $\times$ Cv                    | <b>※</b> 4   | →3-0104 |
|        | 電線管            | Wpip1  |    | CV (KVA)              | $Wpip1 = 222.04 \times Ln(Cv) - 834.59$        |              | →3-0105 |
|        | ハンドホール         | Whdh1  |    |                       | Whdh1= $0.4926 \times \text{Cv}  \hat{1}.2271$ |              | →3-0106 |
|        | 受変電設備その他       | Wetc1  |    |                       | Wetc1=(Wcv1~Whdh1の合計)×10%                      |              | →3-0109 |
| 幹線     | 動力盤            | Web2   |    |                       | Web2=1.7561 $\times$ Cv                        |              | →3-0201 |
| 動力     | 電線管            | Wpip2  | kg |                       | $Wpip2 = 827.67 \times Ln(Cv) - 3958.9$        | <b>※</b> 4   | →3-0202 |
| 設備     | 電線・ケーブル        | Wcab2  | ĸg | 量Cv (kVA)             | $Wcab2 = 0.6117 \times Cv$                     | ₩4           | →3-0203 |
|        | 幹線動力設備その他      | Wetc2  |    |                       | $Wetc2 = (Web2 + Wpip2 + Wcab2) \times 10\%$   |              | →3-0209 |
| 電灯     | 盤類             | Web3   |    | 受変電設備容<br>量Cv (kVA)   | $Web3 = 2.3493 \times Cv$                      |              | →3-0301 |
| コン     | 電線管            | Wpip3  |    |                       | $Wpip3 = 3.0534 \times Cv$                     | <b>※</b> 4   | →3-0302 |
| セント    |                | Wvp3   | kg |                       |                                                |              | →3-0303 |
| 設備     | ハンドホール         | Whdh3  | 8  |                       | Whdh3= $0.7351 \times \text{Cv}$               |              | →3-0304 |
|        | 電線・ケーブル        | Wcab3  |    |                       | Wcab3=3.5492×Cv                                |              | →3-0305 |
| 077 HC | 電灯・コンセント設備のその他 |        |    |                       | Wetc3 = (Web3~Wcab3)×10%                       |              | →3-0309 |
| 照明     | 蛍光灯器具          | Wlit1  | 1  | 受変電設備容                | Wlit1=12.711×Cv                                | N*/ 4        | →3-0401 |
| 設備     | 蛍光灯            | Wlit2  | kg | 量Cv (kVA)             | Wlit2=Ntlit×0.185[kg/本]                        | <b>※</b> 4   | →3-0402 |
|        | 照明設備その他        |        |    |                       | $Wetc4 = (Wlit1 + Wlit2) \times 10\%$          |              | →3-0409 |
| 電話     | 端子盤            | Wtb5   |    |                       | Wtb5= $5.5182 \times Cv$                       |              | →3-0501 |
| 設備     | 電線管            | Wpip5  |    | 或 本 <b>云</b> 和 (#. c) | Wpip5=4.337×Cv                                 |              | →3-0502 |
|        | ケーブルラック        | Wcl5   | kg |                       | Wcl5=0.6383×Cv                                 | <b>※</b> 4   | →3-0503 |
|        | ハンドホール         | Whdh5  | J  | 量Cv (kVA)             | Whdh5=2.5199×Cv                                |              | →3-0504 |
|        | 電線+呼び線         | Wcab5  |    |                       | $Wcab5 = 0.6783 \times Cv$                     |              | →3-0505 |
| 目1岁    | 電話設備その他        | Wetc3  | 1  | 目皮操力料                 | Wetc4=(Wtb5 $\sim$ Wcab5) $\times$ 10%         | <b>V</b> 4   | →3-0509 |
| 昇降     | 昇降機設備          | Welv   | kg | 昇降機台数                 | Welv=Nelv×2,900[kg/台]                          | <b>※</b> 4   | →3-1400 |
| 設備     |                |        |    | Nelv(台)               | (積載重量750kg-11人乗相当)                             |              |         |

- ※1 BEAT-OFFICEによる推定式
- ※2 文献3による
- ※3 この値は直管部の重量であり、この重量よりバルブなどの付属品や支持材を含めた重量や環境負荷を推定する原単位を別途整備。
- ※4 文献5を基に推定式を作成
- ※5 その他の電気設備として、拡声放送、インターホン、テレビ共聴、火災報知、防排煙、機械警備、避雷針などがあるが、設備資材としての割合が低いことから省略した。

表 2.1.28 建築設備のエンボディド分の環境負荷算定データベース

|                  |                                      |                    | ライ                                               | プサイクル    | 設定        |                  | a•X+b)             |                    | エンボデイ               |                    |            |
|------------------|--------------------------------------|--------------------|--------------------------------------------------|----------|-----------|------------------|--------------------|--------------------|---------------------|--------------------|------------|
|                  | T                                    |                    | 端材率                                              | 更新周期     | 修繕率       | -                | g                  | エネル                | ギー MJ               | kg-                | CO2        |
| コード              | 評価項目                                 | 変数(X)<br>の<br>単位   | %<br>R1                                          | 年<br>N   | %/年<br>R2 | 係数<br>a          | 定数<br>b            | 係数<br>a            | 定数<br>b             | 係数<br>a            | 定数<br>b    |
|                  | 空調設備・換気設備                            |                    |                                                  |          |           |                  |                    |                    |                     |                    |            |
| 1-0101           | 温水ボイラ+架台+基礎                          | kW                 |                                                  | 15       | 2         | 4.09             | 1198.86            | 51.47              | 13705.87            | 4.352              | 1167.      |
| 1-0201           | 空冷HP+架台+基礎                           | kW                 |                                                  | 15       | 2         | 23.66            | 574.41             | 499.81             | 3581.51             | 41.439             | 328.       |
| -0203            | 吸収冷温水発生機+架台+基礎                       | kW                 |                                                  | 20       | 2         | 11.31            | 3031.92            | 229.52             | 35050.69            | 18.992             | 2999       |
| -0301            | 角型冷却塔+架台+基礎                          | L/min              |                                                  | 15       | 2         | 0.95             | 2853.81            | 10.34              | 9994.48             | 0.854              | 985        |
| -0401<br>-0402   | AHU+架台+基礎<br>  空冷HPパッケージ+架台+基 礎      | m3/h<br>kW         |                                                  | 15<br>15 | 2         | 0.20<br>42.90    | 1574.85<br>196.22  | 2.69<br>511.61     | 8441.15<br>873.11   | 0.227<br>43.710    | 787<br>79  |
| -0403            | マルチ型AHP+架台+基礎                        | kW                 |                                                  | 15       | 2         | 37.21            | 130.22             | 669.12             | 070.11              | 55.282             | 73         |
| -0404            | マルチ型GHP+架台+基礎                        | kW                 |                                                  | 15       | 2         | 32.89            | 247.91             | 550.24             | 12494.64            | 46.027             | 1007       |
| -0501            | FCU(床置)                              | kW                 |                                                  | 15       | 2         | 3.23             | 10.00              | 118.34             | 294.60              | 9.507              | 15         |
| -0601            | 空調用ポンプ+架台+基礎                         | L/min              |                                                  | 15       | 2         | 0.19             | 486.16             | 1.74               | 3085.82             | 0.152              | 279        |
| -0701            | 送風機システム(床置)                          | m3/h               |                                                  | 20       | 2         | 0.26             | 49.00              | 0.61               | 127.47              | 0.068              | 13         |
| -0901<br>-0902   | <u>空調ダクト</u><br>換気ダクト                | m2-ダクト<br>m2-ダクト   | -                                                | 30<br>30 | 2         | 11.39<br>9.76    |                    | 171.67<br>133.77   |                     | 13.683<br>10.817   |            |
| -0902            | 探気ダクト                                | m2-3 7h<br>m2-5 7h |                                                  | 30       | 2         | 13.65            |                    | 177.01             |                     | 14.384             |            |
| I-1001           | 空調配管(冷温水配管SGP)                       | kg-配管              | 5                                                | 20       | 2         | 1.77             |                    | 41.81              |                     | 3.363              |            |
| -1002            | 冷却水配管                                | kg-配管              | 5                                                | 30       | 2         | 1.34             |                    | 25.89              |                     | 2.103              |            |
| -1003            | ドレン管 (排水管(SGP))                      | kg-配管              | 5                                                | 20       | 2         | 1.33             |                    | 22.51              |                     | 1.815              |            |
| 1-1004           | 冷媒管 (冷媒管(CUP))                       | kg-配管              | 5                                                | 30       | 2         | 1.63             |                    | 66.65              |                     | 5.436              |            |
| 1-1101           | 自動制御(高グレード)                          | 延㎡                 |                                                  | 10       | 2         | 1.83             |                    | 32.13              |                     | 2.610              |            |
| 0101             | 衛生設備<br>                             |                    |                                                  | 20       | 0         | 044.00           | 1040.01            | 2000 40            | 0100 55             | 226.040            | 475        |
| 2-0101<br>2-0102 | 受水槽(FRP単板)+架台+基礎<br>受水槽(FRP複板)+架台+基礎 | m3<br>m3           | 1                                                | 20       | 2         | 944.82<br>948.12 | 1246.01<br>1207.56 | 2009.40<br>2176.19 | 8129.55<br>10071.88 | 226.048<br>237.912 | 475<br>613 |
| 2-0102           | 受水槽(SUSパネル単板)+架台+基礎                  | m3<br>m3           | 1                                                | 20       | 2         | 948.12           | 1365.97            | 2185.07            | 7679.04             | 247.573            | 517        |
| 2-0301           | 加圧給水ポンプユニット+架台+基礎                    | L/min              |                                                  | 15       | 2         | 0.48             | 1013.61            | 4.61               | 6781.47             | 0.399              | 610        |
| 2-0303           | 汚水ポンプ+着脱装置                           | L/min              |                                                  | 10       | 2         | 0.09             | 19.08              | 2.01               | 322.28              | 0.165              | 26         |
| 2-0304           | 衛生ポンプ+架台+基礎                          | L/min              |                                                  | 15       | 2         | 0.64             | 809.21             | 11.40              | 9251.67             | 0.946              | 790        |
| 2-0305           | 消火ポンプユニット+基礎                         | L/min              |                                                  | 20       | 2         | 0.19             | 486.16             | 1.74               | 3085.82             | 0.152              | 279        |
| 2-0511           | 大便器(C:サ/ホンZ+FV)                      | 箇所                 |                                                  |          |           | 28.90            |                    | 625.44             |                     | 45.080             |            |
| 2-0531<br>2-0601 | 手洗い器(L:はめ込み大型+金具)<br>屋内消火栓(1号)単独型    | <u>箇所</u><br>箇所    |                                                  |          |           | 18.60<br>57.38   |                    | 576.74<br>1033.94  |                     | 43.946<br>83.405   |            |
| 2-0801           | 全内有久性(1号)単独至<br>  給水管(VLP)           | kg-配管              | 5                                                | 20       | 2         | 1.44             |                    | 28.34              |                     | 2.282              |            |
| 2-0802           | 給湯管 (CP)                             | kg-配管              | 5                                                | 20       |           | 2.67             |                    | 98.78              |                     | 8.006              |            |
| 2-0803           | 排水管 (鋳鉄)                             | kg-配管              | 5                                                | 20       |           | 1.27             |                    | 47.95              |                     | 3.919              |            |
| 2-0804           | 排水管(鉛)                               | kg-配管              | 5                                                | 20       |           | 1.29             |                    | 33.45              |                     | 2.647              |            |
| 2-0805           | 排水管 (SGP)                            | kg-配管              | 5                                                | 20       |           | 1.33             |                    | 22.51              |                     | 1.815              |            |
| 2-0806           | 排水管 (VP)                             | kg-配管              | 5                                                | 20       |           | 2.75             |                    | 37.57              |                     | 2.920              |            |
| 2-0807<br>2-0808 | 消火栓配管(屋内消火栓)<br>  消火栓配管(スプリンクラー)     | kg-配管<br>kg-配管     | 5<br>5                                           | 20<br>20 |           | 1.49<br>1.29     |                    | 31.50<br>27.30     |                     | 2.564<br>2.220     |            |
| 2 0000           | 電気設備                                 | Ng HU E            | , i                                              | 20       |           | 1.23             |                    | 27.00              |                     | 2.220              |            |
|                  | 受変電設備                                |                    |                                                  |          |           |                  |                    |                    |                     |                    |            |
| 3-0101           | キュービクル                               | kg                 |                                                  | 25       | 2         | 1.00             |                    | 47.51              |                     | 3.548              |            |
| 3-0102           | キュービクル基礎                             | kg                 |                                                  | 25       | 2         | 1.00             |                    | 1.08               |                     | 0.163              |            |
| 3-0103           | 変圧器                                  | kg                 |                                                  | 25       | 2         | 1.00             |                    | 28.62              |                     | 2.160              |            |
| 3-0104<br>3-0105 | <u>コンデンサ</u><br>■ 電線管                | kg<br>kg           | 5                                                | 25<br>25 | 2         | 1.00             |                    | 44.14<br>13.42     |                     | 3.237<br>1.099     |            |
| 3-0105<br>3-0106 | ・ RME ハンドホール                         | kg                 | 3                                                | 25       |           | 1.00             |                    | 2.05               |                     | 0.276              |            |
| 3-0100           | その他                                  | - Ng               |                                                  | 25       | 2         | 1.00             |                    | 2.00               |                     | 0.270              |            |
| 0.00             | 幹線動力設備                               |                    |                                                  |          | _         |                  |                    |                    |                     |                    |            |
| 3-0201           | 動力盤                                  | kg                 |                                                  | 25       | 2         | 1.00             |                    | 47.51              |                     | 3.548              |            |
| 3-0202           | 電線管                                  | kg                 | 5                                                | 25       |           | 1.00             |                    | 13.42              |                     | 1.099              |            |
| 3-0203           | 電線・ケーブル                              | kg                 | 5                                                | 25       | 2         | 1.00             |                    | 36.74              |                     | 2.770              |            |
| 3-0209           | その他                                  |                    |                                                  | 25       | 2         |                  |                    |                    |                     |                    |            |
| 3-0301           | 電灯コンセント設備<br>  盤類(電灯動力盤+分電盤)         | kg                 |                                                  | 20       | 2         | 1.00             |                    | 47.51              |                     | 3.548              |            |
| 3-0301<br>3-0302 | <u> </u>                             | kg                 | 5                                                | 20       |           | 1.00             |                    | 13.42              |                     | 1.099              |            |
| 3-0303           | 合成樹脂管                                | kg                 | 5                                                | 20       |           | 1.00             |                    | 15.71              |                     | 1.193              |            |
| 3-0304           | ハンドホール                               | kg                 |                                                  | 20       |           | 1.00             |                    | 2.05               |                     | 0.276              |            |
| 3-0305           | 電線・ケーブル                              | kg                 | 5                                                | 20       | 2         | 1.00             |                    | 36.74              |                     | 2.770              |            |
| 3-0309           | その他                                  |                    |                                                  | 20       | 2         |                  |                    |                    |                     |                    |            |
| 2_0401           | 照明設備 学业作品目                           | 1                  |                                                  | 20       | 2         | 1.00             |                    | 20.47              |                     | 0.051              |            |
| 3-0401<br>3-0402 | │ 蛍光灯器具<br>│ 蛍光灯 (照明CECのロジックより算定)    | kg<br>kg           |                                                  | 20<br>3  | 2         | 1.00             |                    | 39.47<br>74.07     |                     | 2.851<br>5.121     |            |
| 3-0409           | その他                                  | - Ng               |                                                  | 20       | 2         | 1.00             |                    | 74.07              |                     | J.121              |            |
|                  | 電話設備                                 |                    |                                                  |          |           |                  |                    |                    |                     |                    |            |
| -0501            | 端子盤                                  | kg                 |                                                  | 15       | 2         | 1.00             |                    | 47.51              |                     | 3.548              |            |
| 3-0502           | 電線管                                  | kg                 | 5                                                | 15       |           | 1.00             |                    | 13.42              |                     | 1.099              |            |
| 3-0503           | ケーブルラック                              | kg                 | <b>-</b>                                         | 15       |           | 1.00             |                    | 29.52              |                     | 2.253              |            |
| 3-0504<br>3-0505 | │ ハンドホール<br>│ 電線+呼び線 (電線・ケーブルとする)    | kg<br>kg           | 5                                                | 15<br>15 | 2         | 1.00             |                    | 2.05<br>2.77       |                     | 0.276<br>36.736    |            |
| 3-0505<br>3-0509 | 電線+呼び線 (電線・ケーブルとする)<br>  その他         | kg<br>-            | ٥                                                | 15       | 2         | 1.00             |                    | 2.11               |                     | 30./30             |            |
| 3-0600           | 拡声放送設備                               | kg                 |                                                  | 15       | 2         | 1.00             |                    | 58.03              |                     | 4.147              |            |
| 3-0700           | インターホン設備                             | kg                 |                                                  | 15       | 2         | 1.00             |                    | 81.33              |                     | 5.791              |            |
| 3-0800           | テレビ共聴設備                              | kg                 |                                                  | 15       | 2         | 1.00             |                    | 81.33              |                     | 5.791              |            |
| 3-0900           | 火災報知設備                               | kg                 |                                                  | 15       | 2         | 1.00             |                    | 75.94              |                     | 5.376              |            |
| 3-1000           | 防排煙連動設備                              | kg                 |                                                  | 15       | 2         | 1.00             |                    | 75.94              |                     | 5.376              |            |
| 3-1100           | 機械警備設備                               | kg                 | <u> </u>                                         | 15       | 2         | 1.00             |                    | 75.94              |                     | 5.376              |            |
| 3-1200           | 遊雷針設備<br>  中中監視記憶                    | kg                 | 1                                                | 15       | 2         | 1.00             |                    | 36.74              |                     | 2.770              |            |
| 3-1300           | 中央監視設備 昇降機設備                         | kg<br>kg           | <del>                                     </del> | 15<br>25 | 2         | 1.00             |                    | 93.12<br>28.21     |                     | 6.564<br>2.129     |            |
| 3-1400           |                                      |                    |                                                  | 1 20     |           | 1.00             |                    | 20.21              |                     | 2.129              |            |

<sup>※1</sup> 資材量,エンボディドー次エネルギー,エンボディド $CO_2$ をYとすると,設備容量Xに対応したYは,表の係数aと定数bを用いて,Y=aX+bとして推定できる。

<sup>※2</sup> 初期建設分のエンボディ $CO_2$ を $Y[kg-CO_2]$ 、,更新周期をN[年]、修繕率をR2とすると、ライフサイクル(建設・更新・修繕)でのエンボディー分の $LCCO_2$ は、 $LCCO2=Y\times(1/N+R2)$  [ $kg-CO_2$ /年] で計算される。

<sup>※3</sup> 端材率R1は,廃棄物評価LCWの算定に用いる。

<sup>※4</sup> 太陽電池のエンボディドエネルギー、エンボディド $CO_2$ は、太陽電池のエネルギーペイバック年数の試算値を基に、太陽電池の定格容量kWあたり、エンボディドエネルギー=5040MJ/kW、エンボディドCO2=702kg-CO2/kWとした。

## (2.5) 初期建設に関わるエンボディ分の環境負荷算定

文献3と同様な方法で、環境負荷の複合原単位を整備した。この際、図 2.1.31に示す、「産業連関表分析に基づく基本資材の環境負荷原単位」として、文献4の値を用いた。

表 2.1.24~表 2.1.27に従って算定された資機材量を基に、各表の右列に記載したコードに従い、表 2.1.28の係数・定数を用いて、エンボディド CO2 に換算する。

具体的には、資材量,エンボディドー次エネルギー,エンボディド $CO_2$ をYとすると、設備容量 Xに対応したYは,表の係数aと定数bを用いて、Y=aX+bとして推定できる。

エンボディ分のライフサイクル環境負荷

初期建設分のエンボディ $CO_2$ を $Y[kg-CO_2]$ 、更新周期を N[年]、修繕率をR2とすると、ライフサイクル(建設・更新・修繕)での環境負荷: $LCCO_2$ は、下式で計算される。また、ライフサイクルエネルギー消費量も同様に算定できる。

 $LCCO_2 = Y \times (1/N + R2)$  [kg-CO<sub>2</sub>/年]············ (式 2. 3. 5. 1)

## 【参考文献】

- 1) 小玉,澤地,中島:建築のライフサイクルエネルギー算出プログラムマニュアル,建設省建築研究所,1997.1
- 2) 日本建築学会:建物の LCA 指針,日本建築学会, 2006.11
- 3)(社)空気調和・衛生工学会:空気調和・衛生設備の環境負荷削減対策マニュアル pp285~287,丸善,200 1.3
- 4) 横山, 横尾, 岡:2000 年産業連関表によるエネルギー消費量・二酸化炭素排出量原単位の算出と建物評価,日本建築学会 環境系論文集 No.589 P.75,2005.03
- 5) 西 師和:「事務所ビルにおける LCCO<sub>2</sub>の研究」、早稲田大学卒業論文、1996 年度

# 2.2 建築物の資源投入量の把握による廃棄物排出量の算出手法の開発

## 2.2.1 研究開発の背景及び目的

建築業界においては多大な資源消費量、廃棄物発生量に加え、最終処分場の残余量の不足等の理由から、建設廃棄物の発生削減、リサイクル等の対策が求められている。このため、平成 12 年に建設リサイクル法が施行され分別解体等及び再資源化等の義務付けがなされるなど、具体的施策が推進されている。建設廃棄物の再資源化等率等の目標値の達成等の観点からは一定の成果が得られているといえるが、個別の建築物において、資源消費や廃棄物削減のための評価手法の整備や方策は現状で十分ではない。

本研究では、企画・計画、設計・積算といった建築ワークフローの上流段階において資材投入量を推計・把握し、当該建築物から将来排出される廃棄物量を精度よく算出・評価するために、標準的で汎用性のある「積算標準書式ベースのライフサイクルにおける廃棄物量(以下、LCW)算出ツール」を開発することを目的としている。

既往の検討で、(社)建築業協会による資材投入量及び廃棄物排出量の評価<sup>1)</sup>や、日本建築学会の建物のLCA指針<sup>2)</sup>等でLCW算出ツールが提案されている。これらの研究では、建築物の投入資材のうち主要な資材について、整備されたデータ群から選択しLCWを算出するものであるが、主要でない資材は検討の対象外であること、評価に労力を要することなどの課題がある。

本プロジェクトで開発する算出ツールは、コスト積算のプロセスと連動して投入資材を把握可能な ツールを開発するものであり、評価において新たな資材把握の検討が不要であること、資材の正確 な把握が可能なことが既往の研究とは異なる利点である。

# 2.2.2 LCW 算出ツール (プロトタイプ) の概要

#### (1) 適用範囲

本手法の適用範囲は以下とする。

- ·評価対象:建築物単体
- •算出值:資材投入量、発生廃棄物量

ただし、廃棄物量は建設(または解体)現場において排出される建設廃棄物(固体に限る)とする。 また、本研究では、以下の範囲に限定して開発を行い、プロトタイプとして提示することとした。

- ·用途:集合住宅、事務所
- ・建築工事で取り扱う建築資材(設備工事で取り扱う資材、梱包材等の副資材は対象外)

## (2) LCW 算出ツール (プロトタイプ) の構成

LCW 算出ツール(プロトタイプ)は、主として以下の要素で構成される。

#### ・データシート

建築工事の工事種別毎に、仕様名を見出しとし、構成資材、資材量算出、廃棄物量算出に関するデータを収集・整理し、データシートとしてとりまとめた。

#### ・修繕・更新に係る算出ルール

供用年数(年)、部分別の計画更新年数(年)の設定により、講じた対策の効果を検討可能とした(自己設定値)。また、対策の効果を比較する際の基準とするため、"供用年数 65 年、計画更新無し"の仮定条件を設定し、比較検討に供することとした(基準値)。

## ・廃棄物分類と分別・再資源化シナリオ

廃棄物分類は、廃棄物処理法の分類を基に、建設廃棄物処理の現状を鑑みて作成した。さらに、分別、処理において講じた対策を検討可能なよう、分別、処理の程度が異なる 4 段階のシナリオを設定した。

## (3) LCWの算出フロー

図 2.2.1に LCW の算出フローを示す。

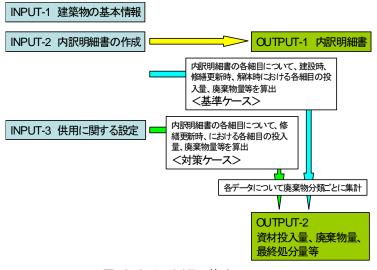



図 2.2.1 LCWの算出フロー

ツールのユーザーは、LCWの 算出にあたり、以下を入力する。

- ① 「建築物の基本情報(図 2.2.1 の INPUT-1)
  - 建築物の名称、延床面積、階 数等
- ②<sub>「</sub>内訳明細書の記載事項の入 力(図 2.2.1の INPUT-2)

コスト積算で行う内訳明細書作成と同様に、建築物の設計内容に従い、データシートの一覧から仕様を選択し、各仕様の使用数量を入力する。

#### ③供用に関する設定(図 2.2.1の INPUT-3)

建築物の修繕・更新において対策を講じた場合の LCW 算出に必要な、供用年数(年)、部分別の計画更新年数(年)を設定する。

②の入力内容に基づき、内訳明細書が作成される(図 2.2.1の OUTPUT-1)。また、①から③の入力内容に基づき、各仕様の各ライフサイクル段階の投入量、廃棄物量等を算出し、廃棄物分類ごとに集計を行う(図 2.2.1の OUTPUT-2)。

各出力項目は、廃棄物分類毎の内訳及び小計、合計で示される。なお、これらは検討の目的に応じ、総量及び年あたり、年、単位面積あたりの値で示されるものとする。

# 2.2.3 LCW 算出に用いるデータシートの概要

# (1) LCW 算出に用いるデータシートの概要

本プロジェクトで整備した、LCW 算出に用いるデータシートの例を表 2.2.1と表 2.2.2に示す。

LCW 算出に必要なデータとして、表で例示するように、①から⑨のグループにデータを分類し、整備した。「仕様(表の④)」が見出しとなり、関連するデータが整理されている。

以降、各グループのデータ構成と、その設定経緯を述べる。

## (2) データシートのデータ構成及び設定経緯

#### ①コード

仕様の整理のため、コード番号を付した。コードはローマ字1桁と数字5桁で構成され、ローマ字は仕様を抽出した資料の由来を示し、数字5桁は整理番号である。

#### ②部分別分類

使用部位が異なる同一の仕様については、仕様の一覧を作成する作業において集約を行った。 このため、使用が想定される建築物の部分(部位)にマークを付した。具体的には1または2の 数字を記入しているが、部分により「⑦修繕・更新」で用いるデータが異なるため、記入された 数字により「⑦修繕・更新」のデータを識別する。

#### ③寸法

寸法、形状が異なる同様の仕様については、仕様の一覧を作成する作業において集約を行った。資材量、廃棄物量の算出において寸法は重要な要素であるため、一覧に掲載された仕様の寸法をデフォルト値とし、必要とする資材がデフォルト値と異なる場合は、寸法差などの補正値を算定して対応することが可能と考えられる。このため、「③寸法」では、長さ、幅、厚さ、直径などのディメンション情報を登録しており、実際に使用される資材との対比ができるよう配慮

|         |        | 衣 Z.Z.I LUW异口                           | 11-1      | # いの                | , –             | · '> '                                               | /                       | יפן כט           | J                      |                 |                 |             |                |                                                 |
|---------|--------|-----------------------------------------|-----------|---------------------|-----------------|------------------------------------------------------|-------------------------|------------------|------------------------|-----------------|-----------------|-------------|----------------|-------------------------------------------------|
| ①コ-     | ②部分別分類 | ④仕様                                     | ⑤施工<br>単位 | 材料名                 | 数量              | 単位                                                   | 換算係数                    | ⑥材料<br>質量<br>換算値 | 学<br>質量量位              | 廃棄物<br>分類       | (廃棄物<br>分類)     | 廃棄物<br>発生段階 | ロス率            | ①要管理物質<br><b>③再生資源</b><br><b>⑥回収率</b><br>⑦修繕·更新 |
| K11 101 |        | 床タイル張り 磁器質タイル 無釉100角 圧着張り 塗り目地          | mî        | タイル<br>モルタル         | 1 02<br>0.00 50 | 枚/㎡<br>m3/ ㎡                                         | 0.077<br>0.077          | 0.26<br>1800     | kg/枚<br>kg/m3          | D-2<br>B-1      | D-2<br>D-2      | 1<br>1      | 4%<br>4%       |                                                 |
| K11 102 | 2      | 床タイル張り モザイクタイル(磁器質)無釉25角 圧着張り 塗り目地      | mî        | タイル<br>モルタル         | 11.5<br>0.0050  | 枚/㎡<br>m3/㎡                                          | 0.1 11<br>0.1 11        |                  | kg/枚<br>kg/m3          | D-2<br>B-1      | D-2<br>D-2      | 1<br>1      | 4%<br>4%       |                                                 |
| K11 103 | 3      | 床タイル張り せっ器質タイル 無釉100角 圧着張り 塗り目地         | mî        | タイル<br>モルタル         | 11.2<br>0.0050  | 枚/㎡<br>m3/㎡                                          | 0.091<br>0.091          |                  | kg/枚<br>kg/m3          | D-2<br>B-1      | D-2<br>D-2      | 1<br>1      | 4%<br>4%       |                                                 |
| K11 104 |        | 床タイル張り せっ器賞タイル 無釉100角 圧着張り 1本目地         | mî        | タイル<br>モルタル         | 11.2<br>0.0050  | 枚/m <sup>*</sup><br>m3/ m <sup>*</sup>               | 0.091<br>0.091          | 1.71<br>1800     | kg/枚<br>kg/m3          | D-2<br>B-1      | D-2<br>D-2      | 1<br>1      | 4%<br>4%       |                                                 |
| K11 105 | 5      | 内装壁タイル張り 内装タイル(陶器質) 施釉100角(目地共サイズ)接着剤張り | mî        | タイル<br>接着剤<br>白セメント | - 1             | 枚/m <sup>*</sup><br>m <sup>*</sup><br>m <sup>*</sup> | 0.167<br>0.167<br>0.167 | 0.8              | ke/枚<br>kg/mi<br>kg/mi | D-2<br>E-6<br>A | D-2<br>D-2<br>A | 1<br>1<br>1 | 4%<br>0%<br>0% |                                                 |
| K11 106 | 5      | 内装壁タイル張り モザイクタイル(磁器質) 施糖の角(目地共サイズ) マスク張 | m         | タイル<br>モルタル         | 11.5<br>0.0035  | 枚/㎡<br>m3/㎡                                          | 0.143<br>0.143          |                  | kg/枚<br>kg/m3          | D-2<br>B-1      | D-2<br>D-2      | 1<br>1      | 4%<br>5%       |                                                 |
|         |        |                                         |           |                     |                 |                                                      |                         |                  |                        |                 |                 |             |                |                                                 |

表 2.2.1 LCW算出に用いるデータシートの例

した。

## ④仕様

仕様は、建築工事及び建設資材の価格情報誌 3)、4)に掲載されている細目(1 万数千項目) から、仕様を集約し、千項目程度を一覧にした。

価格情報誌は、価格算定を目的としているため、色、テクスチャ等、価格に影響する差異があれば異なる仕様として整理されている。本ツールでは、投入資材の種類と量、建設時、解体時の廃棄物の種類、及びその量を把握するためのツールであるため、色、テクスチャ、寸法、形状、使用部位だけが異なる仕様については集約した。なお、寸法については資材量、廃棄物量に影響するため「③寸法」で管理している。

なお、材料の種類、施工の仕様が異なる場合は選択可能なよう、別の仕様として整理した。 ここで、資材の投入及び排出のない、作業のみの仕様は除いた。

これらの項目を検討したところ、通常の積算行為においては見積もりの取得により積算が行われている仕様やユニットを扱っていないなどの理由から、補完が必要であることがわかった。このため、モデル建築物 2 例の LCW 試算 (SRC 造の事務所、RC 造の集合住宅、2.3.7 で詳述)の資材量算出のケーススタディにおける工法・仕様等から数百項目を追加した。

#### ⑤単位

コスト積算における取扱単位(施工面積、質量等)を記入した。

## ⑥材料

各仕様を構成材料に分解し、投入資材量、廃棄物発生量算出に必要なデータを整理した。詳細は以下に示す。

#### •材料名

各仕様を構成資材に分解した。本ツールで管理する資材は、原則として標準歩掛りで把握できる資材名、あるいは現場搬入時の荷姿までとした。

|                       | 衣 Z.Z.Z LUW 昇                             | - ш (- /                   | 13 C     | · つ             | , – | - > -                                  | / — I    | . 0)  | ניכו         |                   |                   |                   |                   |                   |                   |                   |            |      |
|-----------------------|-------------------------------------------|----------------------------|----------|-----------------|-----|----------------------------------------|----------|-------|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|------|
| ① <b>□</b> — <b>ド</b> | ④仕様                                       | 6材料材料名                     | 計画新年数(年) | 修繕<br>周期<br>(年) | 再新  | ⑦修繕・9 修繕 (1 当り 係 の 係 数 回 ) (1 当り 係 数 ) |          | (1回当り | 修係(1当の数)     | I                 | I                 | ш                 | IV                | 収率<br>I           | п                 | ш                 | IV         | 要管理物 |
| K11 101               | 床タイル張り 磁器質タイル 無釉100角 圧着張り 塗り目地            | タイル<br>モルタル                |          | 10<br>10        |     | 0.0 2<br>0.0 2                         | 10       |       | 0.01<br>0.01 | 0.9               | 0.9               | 0.9               | 0.9<br>0.9        | 0.5<br>0.5        | 0.5<br>0.5        | 0.5<br>0.5        | 0.5<br>0.5 |      |
| K11 102               | 床タイル張り モザイクタイル(磁器質) 無釉25角 圧着張り 塗り目地       | タイル<br>モルタル                |          | 10<br>10        |     | 0.0 2<br>0.0 2                         | 10<br>10 |       | 0.01<br>0.01 | 0.9<br>0.9        | 0.9<br>0.9        | 0.9<br>0.9        | 0.9<br>0.9        | 0.5<br>0.5        | 0.5<br>0.5        | 0.5<br>0.5        | 0.5<br>0.5 |      |
| K11 103               | 床タイル張り せっ器質タイル 無釉100角 圧着張り 塗り目地           | タイル<br>モルタル                |          | 10<br>10        |     | 0.0 2<br>0.0 2                         | 10<br>10 |       | 0.01<br>0.01 | 0.9<br>0.9        | 0.9<br>0.9        | 0.9<br>0.9        | 0.9<br>0.9        | 0.5<br>0.5        | 0.5<br>0.5        | 0.5<br>0.5        | 0.5<br>0.5 |      |
| K11 104               | 床タイル張り せっ器質タイル 無釉100角 圧着張り 1本目地           | タイル<br>モルタル                |          | 10<br>10        |     | 0.0 2<br>0.0 2                         | 10       |       | 0.01<br>0.01 | 0.9<br>0.9        | 0.9<br>0.9        | 0.9<br>0.9        | 0.9<br>0.9        | 0.5<br>0.5        | 0.5<br>0.5        | 0.5<br>0.5        | 0.5<br>0.5 |      |
| K11 105               | 内装壁タイル張り 内装タイル (陶器質) 施釉100角(目地共サイズ) 接着刺張り | J タイル<br>接着剤<br>白セメント      |          | 10<br>10<br>10  |     | 0.0 1<br>0.0 1<br>0.0 1                |          |       |              | 0.9<br>0.9<br>0.9 | 0.9<br>0.9<br>0.9 | 0.9<br>0.9<br>0.9 | 0.9<br>0.9<br>0.9 | 0.5<br>0.5<br>0.5 | 0.5<br>0.5<br>0.5 | 0.5<br>0.5<br>0.5 | 0.5        |      |
| K11 106               | 内装壁タイル張り モザイクタイル(磁器質) 施釉50角(目地共サイズ) マスク張  | l <sup>l</sup> タイル<br>モルタル |          | 10<br>10        |     | 0.0 1<br>0.0 1                         |          |       |              | 0.9<br>0.9        | 0.9<br>0.9        | 0.9<br>0.9        | 0.9<br>0.9        | 0.5<br>0.5        | 0.5<br>0.5        | 0.5<br>0.5        | 0.5<br>0.5 |      |

表 2.2.2 LCW算出に用いるデータシートの例

#### ・数量及び単位

各材料の「⑤単位」に記入された単位あたりの投入数量及び単位。歩掛りや仕様書、カタログを基に記入されている。仕様書やカタログで値が把握出来ない場合は、Zeroemiツールの値を代用した。

#### •換算係数

「③寸法」で述べたように、本ツールでは、管理する仕様数を絞り込むためにデフォルトの寸法を定め、検討対象となる材料の寸法を入力するものとした。

ここでは、各資材の入力された寸法における投入資材量算出のための、デフォルト値に対する補正係数が記入されている。

#### 質量換算値及び質量単位

「数量及び単位」で示した各材料の単位あたりの数量及び単位は、"枚"や"個"など質量以外の単位であることも多い。このため、仕様書、カタログ、比重推計等から資材の単位当たりの重量を算出した値が記入されている。仕様書やカタログで値が把握出来ない場合は、Zeroemiツールの値を代用した。

#### •廃棄物分類

廃棄物分類は、建設時や修繕更新時の投入資材の端材等で発生する未使用材の廃棄物の場合の分類を"廃棄物分類"に、供用後に解体された際の廃棄物の分類が"(廃棄物分類)"に記入されている。供用後の廃棄物については現状の分別状況を考慮し、分別されずに他の廃棄物に混入(もしくは付着)したまま排出される場合は混入(もしくは付着)する相手の材料の廃棄物分類が記入されている。例えば、タイルの施工に用いられたモルタルは、単体では廃棄物分類は"B-1"であるが、解体後はタイルとともに排出されるため"D-2"とした。

なお、解体後の廃棄物分類は、解体現場での状況に即した分類であるが、中間処理場等、解体現場から搬送された後の段階で再資源化等のために分別されることが明らかな場合がある。例えば、コンクリート中の鉄筋は、解体現場からはコンクリートに混入した状態で搬出されると想定した分類としているが、中間処理場では鉄筋は分別・回収される場合がほとんどであると想定される。このような場合は、"搬出時の分類(中間処理後の分類)"のようにさらなる資源回収の可能性を検証できるよう配慮されている。

ここでの廃棄物分類の記入は、現状で一般的と考えられる分類状況を想定して記入されたものであり、異なる分別を行っている場合もありうる。このため、本ツールは、あくまでも一定の想定のもとに廃棄物を算出するものである。また、今後再資源化技術の進歩や施工内容の変化等により分別状況が大きく変わる場合が考えられる。その場合は、データの更新等の見直しが必要である。

# 廃棄物発生段階

施工用の補助材等、施工時のみに廃棄物が発生する場合は"0"を記入した(この場合は投入資材量は無し)。それ以外の場合は"1"を記入した(この場合は施工時に端材が発生すると共に、投入された資材と同量の廃棄物が解体時に発生する)。

## ・ロス率

数量積算基準や標準歩掛り等で設定されている施工上必要な端材等の率をロス率とした。ロス率は、物量換算値とは分離して管理することとした。

例: "ロス率"が"2%"の場合、投入量 100 に対してロスは 2。施工時に必要な資材量(発注量)は102 である。

なお、積算基準類で許容しているロス率は、生産者が個々に想定した考えとは異なる場合がある。また、ロス率はあくまで端材等として発生する率をさし、梱包材や仮設材等による発生物は対象外とした。

#### ⑦修繕・更新

修繕・更新における資材投入量、廃棄物発生量の算出においては、ライフサイクルコスト算出の考え方に従い、基本的には材料の修繕率と更新年数によって置換回数を定めることとした。 修繕率、更新周期の定義は以下とする。

- ・修繕率(%):定期的に材料の定率(修繕率)分が置換
- ・更新周期(年):当該材料の寿命によって置換

修繕率、更新周期の個々のデータは、「建築物のライフサイクルコスト」((財)建築保全センター、以降、「建築物の LCC」)に掲載されているデータベースの値を適用することとした。具体的には、表 2.2.2中の計画更新年数、修繕周期、更新係数、修繕係数である。

「建築物のLCC」では、建築物に用いられる仕様について、LCC算出に必要なデータをまとめている。本研究では、各仕様に含まれる建材ごとにLCW算出に必要なデータを整理しているが、「建築物のLCC」では、仕様ごとにデータが設定されており、仕様に用いられる材料ごとのデータに分解することは、各仕様のデータの設定根拠に遡らなければ困難である。このため、「建築物のLCC」で設定された仕様毎のデータを、本研究のデータベースの類似の仕様の各材料の値にあてはめて代用することとした。この結果、本研究のデータベースでは、一つの仕様に使用される各材料の修繕率及び更新周期は同一となる。

躯体に使用される仕様を中心に、「建築のLCC」では、使用年数 65 年とし、修繕、更新は発生しないとするデータについては、本ツールにおいても修繕、更新は行わないものとした。評価対象となる建築物の供用期間が 65 年を超えた場合には、修繕、更新はこの限りではないが、現状ではデータがないため同様の方針とする。

なお、修繕、更新の周期や係数は、同一の仕様でも部位によって異なる。このため、本ツールでは複数の部位等に使用される仕様については、部位により異なるデータを使用することとした。ただし、本ツールでは全ての部位にそれぞれの場合に適当な修繕、更新に関するデータを収集することは出来なかったため、躯体、外部、内部等の使用場所毎に同一のデータを使用することとした。「②部分別分類」の欄に記入された数字(1または2)は、「⑦修繕・更新」で用意された修繕・更新に関するデータ(計画更新年数、修繕周期、更新係数、修繕係数の4つの値のセット)に対応する。

本ツールで扱う仕様について、「建築物の LCC」に掲載されたデータで対応できないものも 多数あったが、仮の値を用い、計算に供することとした。仮のデータを用いた仕様については、 今後データを検討し、精度を向上させる必要がある。

#### ⑧回収率

建設時や修繕更新時の投入資材の端材等で発生する未使用材の回収率(発生量に対する回収量、回収されない量は、分別不能で混合廃棄物として排出と想定)を"(未使用)廃棄物回収率"、供用後に解体された廃棄物の回収率を"(使用済)廃棄物回収率"に記入した。

回収率については、十分な検証がなされておらず、データの入手が困難であったため、本ツールでは、(未使用)廃棄物回収率を 0.9(ただし、鉄筋についてはさらに高率で回収されていると想定されるため 0.99 とした)、(使用済)廃棄物回収率を 0.5(湿式工法で他の材料と結合され、解体時に破損する部分が多いと想定される場合、分別回収が義務づけられている特定建設資材廃棄物、有価物であるため回収が期待できる鉄筋を除く)、または 0.8(それ以外の場合)とした。

あくまで仮のデータであり、今後データが蓄積された場合には見直しが必要となる。

## ⑨再生資源

"再生原料カテゴリー"は、各材料の原料に再生資源を用いている場合は○を記入する。躯体に使用される仕様については"躯体"に、仕上に使用される仕様については"仕上"に記入するものである。現状では、再生原料の使用の有無が材料名だけでは判断できないため、将来の検討に備え枠組みのみ構築し、データは記入していない。今後、再生資源の利用が進み、データが整備された場合にデータを更新する必要がある。

また、木材及び主として木で構成される材料について"再生可能森林資源"に〇を記入した。

さらに、グリーン購入法における環境配慮物品に該当する場合は"環境配慮"に"G"を、廃棄物処理法の特例における広域再生認定品に該当する場合は"広域認定品"にそれぞれ〇を記入した。

#### ⑩要管理物質

「⑩要管理物質」は、ツールの使用者の記入のために設けた欄であり、データは記入されていない。

PRTR 関連の資料を入手した場合、特別管理産業廃棄物が含まれることを確認した場合等に、使用者や作業従事者の安全管理、資源利用における安全管理等の観点から記録を残すことが可能なよう設けた欄である。

## (3) 新規のデータの追加

本ツールでは、一般的に用いられている建築仕様について、資源投入量と廃棄物量を算出するデータを収集・整理する目的でデータを整備した。本ツールのユーザーが一覧にない仕様を用いた計画を実施し、資源投入量や廃棄物発生量を算出、検討する場合には、同様のデータを収集・整理すれば、本ツールで提案した方法により同様の検討を行うことが可能である。

# (4) 展望

本ツールでは、一般的に用いられている建築仕様について、資源投入量と廃棄物量を算出するデータを収集・整理したが、本検討では、一通りの計算が可能となるよう、データを揃えることを優先したため、データの一般性、信頼性が低いものも含まれている。このため、データの根拠をデータと共に記録し、データの精度を確認できるようにしたが、今後、データの更新等により、精度の向上を図る必要がある。

また、環境負荷の低い仕様や材料等は、本ツールには含まれていない。これらの仕様のデータ収集は今後の課題とする。

# 2.2.4 廃棄物分類と分別・再資源化シナリオの概要

# (1) 検討内容

本ツールにおいて建設廃棄物の標準的な取り扱い方を定める「分別・再資源化シナリオ(案)」の策定に必要となる建築資材毎の個別のケース(要素ケース)について、建築資材毎に異なる処理フロー、マテリアルバランスに関する調査結果を元に、建設廃棄物の現場での分別、現場からの排出、中間処理、再資源化に至る一般的なケースを提案する。

また、中間処理、再資源化に関する再資源化率等の固有の数値、あるいは、小口回収のような新しい廃棄物物流方策等、既往の調査・研究成果で不足する情報に関しては、新たに調査する。

# (1.1) 廃棄物分類の検討

建設廃棄物は、安定型廃棄物と管理型廃棄物に分類される。

各性状ごとの廃棄物分類に対し、実際の新築、解体工事現場においては、分別解体等に係る制度、新築時、解体時などによる対応の相違、リサイクルの推進、さらに、メーカーなどによる製品ごとのリサイクルルートへの搬出(広域再生利用指定、広域認定)などを背景として、様々な分別排出が行われている。ここでは、建設廃棄物の現場での分別、現場からの排出、中間処理、再資源化に至る一般的なケースの提案が求められる。

そこで、そうした状況を考慮した上で、実際の排出状況などを踏まえた分類として、下記の方法に基づく廃棄物分類を行うこととした。

- ① 安定型産業廃棄物と管理型産業廃棄物での区分を行う。枝番の設定は、広域認定、先進例などを示すこととした。(梱包などは含めない)
- ② 新築工事、解体工事の別に廃棄物の分別方法の対応が異なることを考慮した区分を行う。 (未使用・使用済の別と表現)廃棄物分類(種目)が同じでも、処理方法が異なる場合は枝番を付して分類(内容)を追加。
- ③どの程度までのリサイクル化の取組を行うかによっても分別解体等の程度が異なることを考

慮した区分を行う。

安定型産業廃棄物としては、表 2.2.3に示す、がれき類(4分類)、ガラス・陶磁器くず(8分類)、廃プラスチック類(7分類)、金属くず(6分類)、ゴムくず、その他、混合廃棄物の計7種類、28分類を行った。

なお、非飛散性アスベスト製品は種目から削除し、要管理物質(データシートの項目)での対応とする。

管理型産業廃棄物としては、 表 2.2.4に示す汚泥、ガラス・ 陶磁器くず及びがれき(3 分 類)、

廃プラスチック類(2分類)、 金属くず、木くず(3分類)、 紙くず、繊維くず(3分類)、 廃油、その他(3分類)、 混合廃棄物の計 10種類、19 分類を行った。

また、建設発生土について も分類に含めた。

# (2) 分別・再資源化シナリオの検討

表 2.2.3 安定型廃棄物の分類

| 廃棄物分類        |               |          |                                       |                               |
|--------------|---------------|----------|---------------------------------------|-------------------------------|
| 区分           | 種目            | 記号       |                                       | 内容                            |
| 安定型産業<br>廃棄物 | がれき類1         | Α        |                                       | コンクリート塊                       |
|              | がれき類2         | B-0      |                                       | がれき類2                         |
|              |               |          |                                       | レンガくず、石くず、瓦くず<br>瓦くず(陶器瓦、粘土瓦) |
|              | A A Laborer - |          | -z                                    | アスファルトコンクリート塊、                |
|              | がれき類3         | С        |                                       | アスファルト塊                       |
|              | ガラス・陶磁器くず     | D-0      | -                                     | ガラス・陶磁器くず                     |
|              |               | D        | -1                                    | ガラスくず<br>ALCくず、タイルくず、衛生陶      |
|              |               | D        | -2                                    | 器くず                           |
|              |               |          |                                       | グラスウール製品                      |
|              |               |          |                                       | けい酸カルシウム製品                    |
|              |               |          |                                       | タイル、ブロック、衛生陶器                 |
|              |               |          |                                       | ロックウール製品<br>ALC               |
|              |               | SSS 7753 | · · · · · · · · · · · · · · · · · · · | 窯業系サイディング等                    |
|              | 廃プラスチック類1     | E-0      |                                       | 廃プラスチック類1                     |
|              |               | Е        | -1                                    | 塩ビ管・継手                        |
|              |               | E        | -2                                    | 床タイル (ポリオレフィン系床<br>材)         |
|              |               | Е        | -3                                    | タイルカーペット等塩化ビニ<br>ル製品          |
|              |               | E        | -4                                    | FRP製品                         |
|              |               | E        | -5                                    | 熱可塑性樹脂製品(廃発泡<br>スチロール、廃ビニール等) |
|              |               | -        |                                       | 熱硬化性樹脂製品(ウレタ                  |
|              |               |          | −6                                    | ン、フェノール等)                     |
|              | A = / 15 /    | 100000   | -7                                    | 押出発泡ポリスチレン製品                  |
|              | 金属くず1         | F-0      |                                       | 金属くず1<br>鉄骨鉄筋くず、金属加工くず        |
|              |               | F        | -1                                    | (躯体に用いられるもの)                  |
|              |               | F        | -2                                    | 鉄骨鉄筋くず、金属加工くず                 |
|              |               |          | -3                                    | 鉄混合製品                         |
|              | 金属くず2         | G-0      |                                       | 金属くず2                         |
|              |               |          |                                       | アルミくず                         |
|              |               |          |                                       | 電線くず<br>ステンレス系、その他金属類         |
|              | ゴムくず          | H        |                                       | 天然ゴムくず                        |
|              | その他1          | I        |                                       | 金属樹脂複合板                       |
|              | 混合廃棄物1        | J        |                                       | A~Hの混合廃棄物                     |
| 網掛けは広域       | <b>韧宁军劫</b> 戊 |          |                                       |                               |

網掛けは広域認定等対応

分別・再資源化シナリオは対策のレベルの異なる4段階を設定した。

各シナリオの設定方針を以下に示す。

- ・シナリオ I:建設リサイクル法に対応する程度の分別
- ・シナリオ II:シナリオ I+有価物の分別及び通常行われている程度の分別
- ・シナリオⅢ(未使用材):シナリオⅡ+広域認定の資材を分別
- ・シナリオⅢ(解体材):シナリオⅡ+現状の先進的な処理がされている資材を分別
- ・シナリオIV:完全分別(未普及技術の処理施設が整備された場合を想定)

なお、廃棄物の発生段階は、新築工事、解体工事で対応が大きく異なるため、それぞれ未使 用廃棄時、使用済み廃棄時として2種類に区分し、それぞれ廃棄物分類として相当するものにつ いて分類を行った。 廃棄物分類及び分別シナリオは、下記に示す廃棄物分類ごとの処理・利用方法の現状を踏まえて整理を行う必要がある。その結果、現場における分別シナリオは、表 2.2.5に示すように考えられる。さらに、対応する処理方法を表 2.2.6に示す。

表 2.2.4 管理型廃棄物の分類

| 廃棄物分類        |                     |     |          |                              |
|--------------|---------------------|-----|----------|------------------------------|
| 区分           | 種目                  | 記   | .号       | 内容                           |
| 管理型産業<br>廃棄物 | 汚 泥                 | I   | K        | 掘削工事から生じる泥場の<br>掘削物および泥水(建設汚 |
|              | がラス・陶磁器くず<br>及びがれき1 | L   |          | 廃石膏ボード                       |
|              |                     | L   | -2       | 木毛セメント板                      |
|              | ガラス・陶磁器くず<br>及びがれき2 | Ī   | VI       | 有機性のものが付着・混入し<br>たガラス・陶磁器くず  |
|              | 廃プラスチック類2           |     | -1       | 壁紙くず等(塩化ビニル製                 |
|              |                     | N   | -2       | 木粉入樹脂成形材                     |
|              | 金属くず3               | (   | )        | 鉛管、有機性のものが付着・<br>混入した金属くず    |
|              | 木くず                 | P-0 |          | 木くず                          |
|              |                     |     | P-1      | 木くず(木材)                      |
|              |                     |     | P-2      | 木くず(合板類)                     |
|              |                     |     | P-3      | パーティクルボード                    |
|              | 紙くず                 |     | 3        | 壁紙くず、障子                      |
|              | 繊維くず                |     | -1       | 稲藁畳                          |
|              |                     |     | -2       | 建材畳(化学畳等)                    |
|              |                     |     | -3       | その他                          |
|              | 廃 油                 |     | S        | 機械重油                         |
|              | その他2                | T.  | -1       | 蛍光ランプ、水銀ランプ                  |
|              |                     | T   | -2       | 冷凍・空調機器(メーカー再<br>生・EPR)      |
|              |                     | Т   | -3       | ユニットもの(バス、キッチン<br>など)        |
|              | 混合廃棄物2              | ı   | J        | J~Sの混合廃棄物                    |
| その他          | 建設発生土               | ,   | <b>V</b> | 土砂及び専ら土地造成の目<br>的となる土砂に準ずるもの |

網掛けは広域認定等対応

表 2.2.5 廃棄物分類及びシナリオ

| 廃棄物分類                 |             |     |                |                             | 分別• 再  | 資源化シ | ナリオ        |            |            |            |            |            |
|-----------------------|-------------|-----|----------------|-----------------------------|--------|------|------------|------------|------------|------------|------------|------------|
| 区分                    | 種目          | 記   | ]号             | 内容                          |        |      |            | I          |            | П          | Γ          |            |
|                       | 181 187 -   |     |                |                             |        | 使用済  | _          |            |            |            | 未使用        |            |
| 安定型産業                 |             | B-0 | Α              | コンクリート塊<br>がれき類2            | A      | Α    | Α          | A          | A          | Α          | Α          | Α          |
| 廃棄物                   | がれき類2       | B-0 | D_1            | ルンガくず、石くず、瓦くず               | J      | J    | B-0        | B-0        | B-0        | B-0        | B-1        | B-1        |
|                       |             |     |                | 瓦くず(陶器瓦、粘土瓦)                | J      | J    | B-0        | B-0        | B-0<br>B-2 | B-0        | B-2        | B-1        |
|                       | がれき類3       |     |                | アスファルトコンクリート塊、              |        |      |            |            |            |            |            |            |
|                       | 75 10C X2C  | l ' | С              | アスファルト塊                     | С      | С    | С          | С          | С          | С          | С          | С          |
|                       | ガラス·陶磁器くず   | D-0 |                | カラス・陶磁器くず                   | _      | _    | _          | _          | _          | _          | _          | _          |
|                       |             |     | D-1            | ガラスくず                       | J      | J    | D-0        | D-0        | D-0        | D-0        | D-1        | D-1        |
|                       |             |     | D-2            | ALCくず、タイルくず、衛生陶<br>器くず      | J      | J    | D-0        | D-0        | D-0        | D-0        | D-2        | D-2        |
|                       |             |     |                |                             |        |      |            |            |            |            |            |            |
|                       |             |     |                | グラスウール製品                    | J      | J    | J          | J          | D-3        | J          | D-3        | D-3        |
|                       |             |     |                | けい酸カルシウム製品                  | J      | J    | D-0        | D-0        | D-4        | D-0        | D-4        | D-4        |
|                       |             |     |                | タイル、ブロック、衛生陶器 ロックウール製品      | J<br>J | J    | D-0<br>J   | D-0<br>J   | D-5        | D-0<br>J   | D-5<br>D-6 | D-5<br>D-6 |
|                       |             |     |                | ALC                         | J      | J    | D-0        | D-0        | D-6<br>D-7 | D-0        | D-6<br>D-7 | D-6<br>D-7 |
|                       |             |     |                | 窓業系サイディング等                  | J      | J    | D-0<br>D-0 | D-0<br>D-0 | D-8        | D-0<br>D-0 | D-8        |            |
|                       | 廃プラスチック類1   | E-0 | D-0            | 悪未ポリイナイング 寺<br> 廃プラス チック類 1 | _      | J    | D-0        | D-0        | D-0        | D-0        | D-9        | D-8        |
|                       | 元ノハハハス      | E-0 | F-1            | 佐ビ告・継毛                      | J      | J    | E-0        | J          | E-1        | E-1        | E-1        | E-1        |
|                       | 1           | 1   | F-2            | 塩ビ管・継手 体ダイル(ホリオレフィン赤体       | J      | J    | E-0        | J          | E-2        | E-5        | E-2        | E-5        |
|                       | 1           | 1   |                | タイルカーペット等塩化ビニ               |        |      |            |            |            |            |            |            |
|                       |             |     | E-3            | ル製品                         | J      | J    | E-0        | J          | E-3        | E-3        | E-3        | E-3        |
|                       |             |     | E-4            | FRP製品                       | J      | J    | E-0        | J          | E-0        | E-4        | E-0        | E-4        |
|                       |             |     | F-5            | 熱可塑性樹脂製品(廃発泡                | J      | J    | E-0        | J          | E-0        | J          | E-0        | E-5        |
|                       |             |     |                | 人ナロール、際にニール会)               |        | J    | L 0        | - 0        |            | 0          |            | LJ         |
|                       |             |     | E-6            | 熱硬化性樹脂製品(ウレタ                | J      | J    | E-0        | J          | E-0        | J          | E-0        | E-6        |
|                       |             |     | E_7            | ン、フェノール等)<br>押出発泡ポリスチレン製品   | J      | J    | E-0        | J          | E-7        | E-5        | E-7        | E-5        |
|                       | 金属くず1       | F-0 | L /            | 金属くず1                       | -      | -    | _          | -<br>-     |            | _          |            | _          |
|                       | 並高くすし       | F-0 |                | <b>独母独な/ボ 全居加工/ボ</b>        |        |      |            |            |            |            |            |            |
|                       |             |     | F-1            | (躯体に用いられるもの)                | J      | J    | F-0        | F-0        | F-0        | F-0        | F-1        | F-1        |
|                       |             |     | F-2            | 鉄骨鉄筋くず、金属加工くず               | J      | J    | F-0        | F-0        | F-0        | F-0        | F-2        | F-2        |
|                       |             |     |                | 鉄混合製品                       | J      | J    | F-0        | F-0        | F-0        | F-0        | F-3        | F-3        |
|                       | 金属くず2       | G-0 |                | 金属くず2                       | _      | _    | _          | _          | _          | _          | _          | _          |
|                       |             |     | G-1            | アルミくず                       | J      | J    | G-0        | G-0        | G-0        | G-0        | G-1        | G−1        |
|                       |             |     |                | 電線くず                        | J      | J    | G-0        | G-0        | G-0        | G-0        | G-2        | G-2        |
|                       |             |     |                | ステンレス系、その他金属類               | J      | J    | G-0        | G-0        | G-0        | G-0        | G-3        | G-3        |
|                       | ゴムくず        |     | H              | 天然ゴムくず                      | J      | J    | J          | J          | J          | J          | J          | Н          |
|                       | その他1        |     | 1              | 金属樹脂複合板                     | J      | J    | J          | J          | I          | J          | 1          | I          |
| 777 TUI IIII TT - *** | 混合廃棄物1      | _   | J              | A~Hの混合廃棄物                   | J      | J    | J          | J          | J          | J          | J          | J          |
| 管理型産業                 | 汚 泥         |     | K              | 掘削工事から生じる泥場の                | U      | U    | U          | K          | U          | K          | U          | K          |
| 廃棄物                   | ガラス・陶磁器くず   |     | -1             | 掘削物および泥水(建設汚<br> 廃石膏ボード     | U      | U    | U          | U          | L-1        | L-1        | L-1        | L-1        |
|                       | 及びがれき1      |     | -2             | 木毛セメント板                     | Ü      | U    | Ü          | Ü          | L-2        | U          | L-2        | L-2        |
|                       | ガラス・陶磁器くず   |     |                | 有機性のものが付着・混入し               | U      |      |            | _          |            |            |            |            |
|                       | 及びがれき2      |     | М              | たガラス・陶磁器くず                  |        | U    | U          | U          | М          | М          | М          | М          |
|                       | 廃プラスチック類2   |     | -1             | 壁紙くず等(塩化ビニル製                | U      | U    | U          | U          | N-1        | N-1        | N-1        | N-1        |
|                       | 金属くず3       |     | -2             | 木粉入樹脂成形材                    | U      | U    | U          | U          | N-2        | U          | N-2        | N-2        |
|                       | 亚偶/93       | Ι ' | 0              | 鉛管、有機性のものが付着・<br>混入した金属くず   | 0      | 0    | 0          | 0          | 0          | 0          | 0          | 0          |
|                       | 木くず         | P-0 |                | 木くず                         | _      | _    | _          | _          | _          | _          | l –        | _          |
|                       | [           | lí  |                | 木くず(木材)                     | P-0    | P-0  | P-0        | P-0        | P-1        | P-1        | P-1        | P-1        |
|                       |             |     |                | 木くず(合板類)                    | P-0    | P-0  | P-0        | P-0        | P-2        | P-2        | P-2        | P-2        |
|                       | (3.1)       | _   | P-3            | パーティクルボード                   | P-0    | P-0  | P-0        | P-0        | P-3        | P-2        | P-3        | P-2        |
|                       | 紙くず         | _   | Q              | 壁紙くず、障子                     | U      | U    | U          | U          | U          | U          | U          | Q          |
|                       | 繊維くず        |     | -1             | 稲藁畳                         | U      | U    | U          | U          | U          | R-1        | U          | R-1        |
|                       |             |     | -2<br>-2       | 建材畳(化学畳等)                   | U      | U    | U          | U          | U          | R-2        | U          | R-2        |
|                       | 廃 油         | _   | <u>-3</u><br>S | その他<br> 機械重油                | U      | U    | U          | U          | U          | U          | U<br>S     | U<br>S     |
|                       | 廃 油<br>その他2 | _   | <u>5</u><br>−1 |                             | U      | U    | U          | U          | T-1        | T-1        | T-1        | T-1        |
|                       | COLIE       |     |                |                             |        |      |            |            |            |            |            |            |
|                       |             | T   | -2             | 作   生・EPR)                  | U      | U    | U          | U          | T-2        | T-2        | T-2        | T-2        |
|                       |             | -   | -3             | ユニットもの(バス、キッチン              | U      | U    | U          | U          | T-3        | T-3        | T-3        | T-3        |
|                       |             |     |                | など)                         |        |      |            |            |            |            |            |            |
|                       | 混合廃棄物2      |     | U              | J~Sの混合廃棄物                   | U      | U    | U          | U          | U          | U          | U          | U          |
| その他                   | 建設発生土       | -   | V              | 土砂及び専ら土地造成の目                | ٧      | ٧    | ٧          | ٧          | ٧          | V          | ٧          | V          |
|                       | 認定等対応       |     |                | 的となる土砂に準ずるもの                |        |      |            |            | •          |            |            |            |

網掛けは広域認定等対応

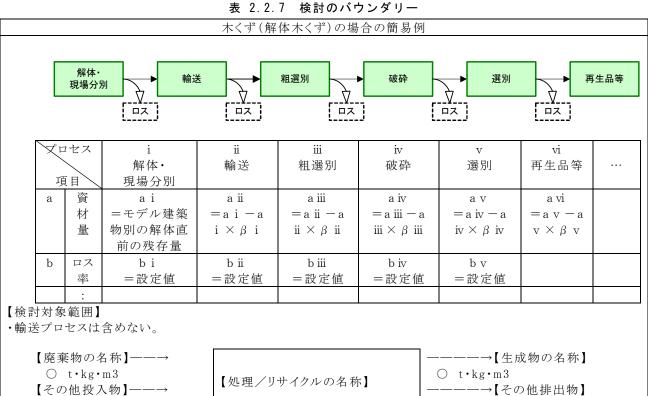
表 2.2.6-1 廃棄物分類及び処理・利用方法

|     | 処理·利用方法    |     |                    |      |             |                    |             |              |                                         |                            |
|-----|------------|-----|--------------------|------|-------------|--------------------|-------------|--------------|-----------------------------------------|----------------------------|
|     | シナリ        | オI  | シナリス               | † II | シナリ         | JオII               |             | シナリオⅣ        | 備考                                      | (通常の処理・利用以<br>外)(マテリアルバランス |
|     | 未使用        | 使用済 | 未使用                | 使用済  | 未使用         | 使用済                | 未使用         | 使用済          |                                         | 整理の対象)                     |
| Α   | 再生砕石化      |     | 再生砕石化              |      | 再生砕石化       |                    | 高品質再生骨材     | 回収           |                                         |                            |
| B-0 |            |     | 再生砕                | 石化   |             | <b>卆石化</b>         |             |              |                                         |                            |
| B-1 |            |     |                    |      | 再生砕石化       |                    | 再生砕石化       |              |                                         |                            |
| B-2 |            |     |                    |      | 広域認定等       |                    | 広域認定等       |              |                                         |                            |
|     | 再生アスファルト化  | Ĺ   | 再生アスファルト化          |      | 再生アスファルト    |                    | 再生アスファルト    | 化            |                                         |                            |
| D-0 |            |     | 再生砕                | 石化   | 再生研         | <b>卆石化</b>         |             |              |                                         |                            |
| D-1 |            |     |                    |      |             |                    | 再生カレット化     |              |                                         |                            |
| D-2 |            |     |                    |      |             |                    | 再生砕石化       |              |                                         |                            |
| D-3 |            |     |                    |      | 広域認定等       |                    | 広域認定等       | グラスウール原料化    |                                         |                            |
| D-4 |            |     |                    |      | 広域認定等       |                    | 広域認定等       | けい酸カルシウム原料化  |                                         |                            |
| D-5 |            |     |                    |      | 広域認定等       |                    | 広域認定等       | タイル、ブロック原料化  |                                         |                            |
| D-6 |            |     |                    |      | 広域認定等       |                    | 広域認定等       | ロックウール原料化    |                                         |                            |
| D-7 |            |     |                    |      | 広域認定等       |                    | 広域認定等       | ALC原料化       |                                         |                            |
| D-8 |            |     | Little strate 11 . |      | 広域認定等       |                    | 広域認定等       | 窯業系サイディング原料化 |                                         |                            |
| E-0 |            |     | 燃料化                |      | 燃料化         | . 187              | 燃料化         | . 187        |                                         | 16 + m .l-                 |
| E-1 |            |     |                    |      | 再生塩ビコンパウ    | プンド化               | 再生塩ビコンパウ    | プンド化         |                                         | 塩素回収                       |
| E-2 |            |     |                    |      | 広域認定等       | - 1871.            | 広域認定等       | -> 1871.     |                                         |                            |
| E-3 |            |     |                    |      | 再生塩ビコンパウ    | フント化               | 再生塩ビコンパウ    |              |                                         | 塩素回収                       |
| E-4 |            |     |                    |      |             | セメント原料化<br>再生コンパウン |             | セメント原料化      |                                         |                            |
| E-5 |            |     |                    |      |             | 再生コンバリン<br>ド化      |             | 再生コンパウンド化    |                                         |                            |
| E-6 |            |     |                    |      |             |                    |             | 燃料化          |                                         |                            |
| E-7 |            |     |                    |      | 再生コンパウン     |                    | 再生コンパウン     |              |                                         |                            |
|     |            |     |                    |      | ド化          |                    | ド化          |              |                                         |                            |
| F-0 |            |     | 金属回収               |      | 金属          | 回収                 |             |              |                                         |                            |
| F-1 |            |     |                    |      |             |                    | 金属回収        |              |                                         |                            |
| F-2 |            |     |                    |      |             |                    | 金属回収        |              |                                         |                            |
| F-3 |            |     | A = = -            |      |             |                    | 金属回収        |              |                                         |                            |
| G-0 |            |     | 金属回収               |      | 金属回収        | İ                  | A = = :-    |              |                                         |                            |
| G-1 |            |     |                    |      |             |                    | 金属回収        |              | \\ == \\ \_\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                            |
| G-2 |            |     |                    |      |             |                    | 金属回収        |              | 注記:塩ビ被覆材の現<br>場剥離ケースの可能                 |                            |
| G-3 |            |     |                    |      |             |                    | 金属回収        |              |                                         |                            |
| Н   |            |     |                    |      |             |                    |             | 鉄鋼原料化        |                                         |                            |
| I   |            |     |                    |      | 広域認定等       |                    | 広域認定等       | 金属樹脂複合板原料化   |                                         |                            |
| J   | 素材別回収      |     | 素材別回収              |      | 素材別回収       |                    | 素材別回収       |              |                                         | ※混廃処理の分別・再                 |
| J   | (→A~H、J~R) |     | (→A~H、J~R)         |      | (→A~H, J~R) |                    | (→A~H, J~R) |              |                                         | 資源化レベルの整理                  |

表 2.2.6-2 廃棄物分類及び処理・利用方法

|     | 処理·利用方法                  |        |                          |     |                              |                     |                                  |                 |           | 先進事例                       |
|-----|--------------------------|--------|--------------------------|-----|------------------------------|---------------------|----------------------------------|-----------------|-----------|----------------------------|
|     | シナリ                      | シナリオ I |                          | tΙ  | シナリ                          | JオⅢ                 |                                  | シナリオ™           | 備考        | (通常の処理・利用以<br>外)(マテリアルバランス |
|     | 未使用                      | 使用済    | 未使用                      | 使用済 | 未使用                          | 使用済                 | 未使用                              | 使用済             |           | 整理の対象)                     |
| K   |                          |        |                          | 改良土 |                              | 改良土                 |                                  | 改良土             |           |                            |
| L-1 |                          |        |                          |     |                              | 石膏ボード原料             | 広域認定等                            | 石膏ボード原料化        |           |                            |
| L-2 |                          |        |                          |     | 広域認定等                        |                     | 広域認定等                            | 木毛セメント原料化       |           |                            |
| М   |                          |        |                          |     | 広域認定※素材<br>別回収(→D-3<br>~D-8) | 再生砕石化               | 広域認定※素材<br>  別回収(→D-3<br>  ~D-8) | 再生砕石化           |           |                            |
| N-1 |                          |        |                          |     | 再生塩ビコンパウ                     | ンド化                 | 再生塩ビコンパウ                         |                 |           | 塩素回収                       |
| N-2 |                          |        |                          |     | 広域認定等                        |                     | 広域認定等                            | 木粉入樹脂成形材原料化     |           |                            |
| 0   | 金属回収                     |        | 金属回収                     |     | 金属回収                         |                     | 金属回収                             |                 |           |                            |
| P-0 | ボイラ燃料化                   |        | ボイラ燃料化                   |     |                              |                     |                                  |                 |           |                            |
| P-1 |                          |        |                          |     | 製紙原料化 ボード原料化 ボイラ燃料化          |                     | 製紙原料化 ボード原料化 ボイラ燃料化              |                 |           | バイオエタノール回収                 |
| P-2 |                          |        |                          |     | ボイラ燃料化                       |                     | ボイラ燃料化                           |                 |           | バイオエタノール回収                 |
| P-3 |                          |        |                          |     | 広域認定等                        |                     | 広域認定等                            |                 |           | バイオエタノール回収                 |
| Q   |                          |        |                          |     |                              |                     |                                  | 燃料化             |           |                            |
| R−1 |                          |        |                          |     |                              | 堆肥化<br>飼料化          |                                  | 堆肥化<br>飼料化      |           | バイオエタノール回収                 |
| R-2 |                          |        |                          |     |                              | 堆肥化<br>飼料化          |                                  | 堆肥化<br>飼料化      |           |                            |
| R-3 |                          |        |                          |     |                              | ,                   |                                  | 2,1119          | (具体内容未設定) |                            |
| S   |                          |        |                          |     |                              |                     | 再利用                              |                 |           |                            |
| T-1 |                          |        |                          |     | 水銀回収(水銀)<br>再生カレット化<br>(ガラス) |                     | 水銀回収(水銀)<br>再生カレット化<br>(ガラス)     |                 |           |                            |
| T-2 |                          |        |                          |     | リユース<br>金属回収                 |                     | リユース<br>金属回収                     |                 |           |                            |
| T-3 |                          |        |                          |     | 広域認定等                        | 素材別回収<br>(→A~H、J~R) | 広域認定等                            | 素材別回収(→A~H、J~R) |           |                            |
| U   | 素材別回収<br>(→A~H、J~R)      |        | 素材別回収<br>(→A~H、J~R)      |     | 素材別回収<br>(→A~H、J~R)          |                     | 素材別回収<br>(→A~H、J~R)              |                 |           | ※混廃処理の分別・再<br>資源化レベルの整理    |
| ٧   | 埋戻材(現場内<br>利用、現場間利<br>用) |        | 埋戻材(現場内<br>利用、現場間利<br>用) |     | 埋戻材(現場内<br>利用、現場間利<br>用)     |                     | 埋戻材(現場内<br>利用、現場間利<br>用)         |                 |           |                            |

# (3) 再資源化率の検討


○ t • kg • m 3

現場での分別解体等が行われた廃棄物等は、輸送、その他でロスが生じ、それらが別の再資 源化又は処分に供されることになる。しかしながら、ここでは、中間処理施設における再資源化率 として検討を行うこととする。

- ①処理・利用方法として分別シナリオに相当して、処理施設での処理方法を考慮し、素材回収率 の整理として行った。この場合、分別による素材回収率などは考慮せず、回収分は全て再資源 化施設での受入基準を満足するものとして考えた。
- ②広域認定及び広域再生利用指定などの取扱方法については、認定事業者へのアンケート結 果をもとに、とりまとめを行った。
- ③先進事例(通常の処理・利用以外)については、特にわかる範囲での記載を試みた。但し、こ れらの処理・利用方法については、処理フロー及びマテリアルバランスは十分な整理ができて いない。

検討のバウンダリーを表 2.2.7に、得られた再資源化率を表 2.2.8に示す。

再資源化率は、現状における値、及び現状における想定値で記入したが、技術の普及程度が 異なる等の理由により精度にはばらつきがある。今後、社会状況の変化等によっても数字が変わ るため、適宜データの更新が必要である。



・中間処理における処理フロー、マテリアルバランスについてのみの評価として行う。

○ t • kg • m 3

表 2.2.8 再資源化率 (想定値)

# 再資源化率

| 安定型産業 がれき類                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 廃棄物分類      |             |                  |               | シナリオ                   | т   |          | -   |     |     |     |     | 中間処理 |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|------------------|---------------|------------------------|-----|----------|-----|-----|-----|-----|-----|------|---------|
| 接来物                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 区分         | 性日          | ā                | ᅜᅙ            | 内谷                     | 未使用 | 」<br>使用済 |     |     |     |     |     | -    | (先進)    |
| かけき類2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | がれき類1       |                  | Α             | コンクリート塊                |     |          |     |     |     |     |     |      | 80      |
| 日・  レンパボ・石が、瓦が、日本で、日本で、日本で、日本で、日本で、日本で、日本で、日本で、日本で、日本で                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>発来初</b> | がれき類2       | B-0              |               | がれき類2                  | 0   | 0        | 100 | 100 | 100 | 100 | 0   | 0    |         |
| B-2   医子(海原氏 発生)   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | N TOC XXL   | ٦                |               |                        |     |          |     |     |     |     | _   |      | 0       |
| がれき類。 C アスファルコングリー・壊 100 100 100 100 100 100 100 100 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |                  |               |                        |     |          |     | 0   | 100 |     |     |      | 0       |
| Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | がれき類3       |                  |               | アスファルトコンクリート塊、         | 100 | 100      | 100 | 100 | 100 | 100 | 100 | 100  | 80      |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | ガラス・陶磁器くず   | D-0              |               |                        | 0   | 0        | 50  | 50  | 50  | 50  | 0   | 0    |         |
| D-2 部余子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |             |                  |               |                        | 0   | 0        | 0   | 0   | 0   | 0   | 50  | 50   | 0       |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |             |                  | D-2           | ALCくず、タイルくず、衛生陶<br>器くず | 0   | 0        | 0   | 0   | 0   | 0   | 50  | 50   | 0       |
| D-5   タイル・プロック、報注路器   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |             |                  | D-3           | グラスウール製品               | 0   | 0        | 0   | 0   | 100 | 0   | 100 | 80   | 0       |
| Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |             |                  | D-4           | けい酸カルシウム製品             | 0   | 0        | 0   | 0   | 100 | 0   | 100 | 80   | 0       |
| D-7   ALC   O 0 0 0 0 100 0 100 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |             |                  | D-5           | タイル、ブロック、衛生陶器          | 0   | 0        | 0   | 0   | 100 | 0   | 100 | 80   | 0       |
| Pos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |             |                  | D-6           | ロックウール製品               | 0   | 0        | 0   | 0   | 100 | 0   | 100 | 80   | 0       |
| 東プスチウ類                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |             |                  |               |                        | 0   | 0        | 0   | 0   | 100 | 0   | 100 | 80   | 0       |
| E-1   担任管 総手                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |             |                  | D-8           | 窯業系サイディング等             |     |          |     |     |     |     |     |      | 0       |
| E2 対りカーペト等塩化ビニーとのののののののののののののののののののののののののののののののののののの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 廃プラスチック類1   | E-0              |               |                        |     |          |     |     |     |     |     | _    |         |
| E-2   対力   100   0   0   0   100   0   100   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |             | 1                | E-1           |                        | 0   | 0        | 0   | 0   | 100 | 100 | 100 | 100  | 80      |
| E-4   Firey Bas   0 0 0 0 0 0 90 0 90 0 90   60   60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |             |                  | E-2           | 材)                     | 0   | 0        | 0   | 0   | 100 | 0   | 100 | 0    | 0       |
| F-5 大田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |             |                  | $\overline{}$ | ル製品                    |     | 0        | 0   |     | 80  |     |     |      | 0       |
| 日本語の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |             |                  | E-4           |                        | 0   | 0        | 0   | 0   | 0   | 90  | 0   | 90   | 0       |
| 日本   日本   日本   日本   日本   日本   日本   日本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |             |                  |               | スチロール、廃ビニール等)          | 0   | 0        | 0   | 0   | 0   | 80  | 0   | 80   | 80      |
| 金属(ず1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |             |                  | E-6           |                        | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 80   | 80      |
| Fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |             |                  | E-7           | 押出発泡ポリスチレン製品           | 0   | 0        | 0   | 0   | 100 | 0   | 100 | 0    | 0       |
| F-1 (銀体に用いたれるもの)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 金属くず1       | F-0              |               |                        | 0   | 0        | 100 | 100 | 100 | 100 | 0   | 0    |         |
| F-3 鉄注合製品                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |             | F-0<br>F-<br>F-: | F-1           |                        | 0   | 0        | 0   | 0   | 0   | 0   | 100 | 100  | 80      |
| 金属(ず2   G-0   金属(ず2   0 0 0 100 100 100 100 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |                  |               |                        |     |          | _   | _   |     |     |     |      |         |
| G-1 アルミくず                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |             |                  | 鉄混合製品         |                        | 0   | 0        | 0   | 0   | 0   | 100 | 100 |      |         |
| G-2 電線ペず                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 金属くず2       | G-0              |               |                        |     |          |     |     |     |     |     | _    |         |
| G-3 ステンレス系、その他金属類 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |             |                  |               |                        |     |          |     |     |     |     |     |      | 80      |
| ゴム〈ず<br>その他1         H<br>その他1         天然ゴム〈ず<br>日本の地1         日<br>日本日の混合廃棄物         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |             |                  |               |                        |     |          |     |     |     |     |     |      | 80      |
| その他1         I         金属樹脂複合板         0         0         0         0         100         0         100         80           管理型産業 廃棄物         万         万         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         20         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |             | -                |               |                        |     |          |     |     |     |     |     |      | 0       |
| 混合廃棄物1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |             |                  |               |                        |     |          |     |     |     |     |     |      | 0       |
| 管理型産業                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |             |                  |               |                        |     |          |     |     |     |     |     |      | 0       |
| # 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |             |                  |               | 掘削工事から生じる泥場の           |     |          |     |     |     |     |     |      | 0       |
| L-2 本毛セグト板                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>廃棄物</b> | がラス・陶磁器くず   |                  |               |                        |     |          |     |     |     |     |     |      | 80      |
| ### おかけ  ###                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 及ひがれき1      |                  |               |                        |     |          |     | _   |     |     |     |      |         |
| Ref   Re |            |             |                  |               | 有機性のものが付着・混入し          |     |          |     |     |     |     |     |      | 0       |
| N-2   木粉入樹脂成形材                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |             |                  |               | たカラス・陶磁器くず             |     |          | _   | _   |     |     |     | _    |         |
| 金属〈ず3       O       鉛管、有機性のものが付着・<br>混入した金属〈ず       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 疣ノ フヘアソソ(類と |                  |               |                        |     |          |     |     |     |     |     |      | 0       |
| 注入した金属ぐず   80   80   80   80   80   80   80   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | AE/#c       |                  |               | 鉛管、有機性のものが付着・          |     |          | _   | -   |     | _   |     |      | _       |
| P-1 木くず(木材)       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 金属くす3       |                  | U             |                        | 80  | 80       | 80  | 80  | 80  | 80  | 80  | 80   | 80      |
| P-2 木ぐず(合板類)     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80     80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 木くず         | P-0              |               |                        | 100 | 100      | 100 | 100 | 0   | 0   | 0   | 0    |         |
| P-3 パーティクルボード                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |             |                  |               |                        |     |          |     |     |     |     |     |      | 0       |
| 無くず Q 壁紙(ず、障子 0 0 0 0 0 0 0 95 95<br>帰土 稲藁畳 0 0 0 0 0 95 0 95<br>R-2 建材畳(化学畳等) 0 0 0 0 0 95 0 95<br>R-3 その他 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |             | 1                |               |                        |     |          |     |     |     |     |     |      | 80      |
| 総維くず     R-1     稲藁畳     0     0     0     0     95     0     95       R-2     建材畳(化学畳等)     0     0     0     0     0     95     0     95       R-3     その他     0     0     0     0     0     0     0     0     0     0       廃 油     S     機械重油     0     0     0     0     0     0     0     100     100     100       その他2     T-1     蛍光ランブ、水銀ランブ     0     0     0     0     0     10     10     10     10       T-2     塩・EPR)     カーカー再     0     0     0     0     96     96     96       オーコーツトもの(パス、キッチン     0     0     0     0     100     100     100     100       混合廃棄物2     U     J~Sの混合廃棄物     80     80     80     80     80     80     80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 糾ノボ         | <u> </u>         |               |                        |     |          |     |     |     |     |     |      | 80<br>0 |
| R-2     建材畳(化学畳等)     0     0     0     0     0     95     0     95       R-3     その他     0     0     0     0     0     0     0     0     0     0       廃油     S     機械重油     0     0     0     0     0     0     0     100     100     100       その他2     T-1     蛍光ランプ、水銀ランプ     0     0     0     0     10     10     10     10       T-2     冷凍・空調機器(メーカー再<br>生・EPR)     0     0     0     0     96     96     96       T-3     ユニットもの(バス、キッチン<br>など)     0     0     0     100     100     100     100       混合廃棄物2     U     J~Sの混合廃棄物     80     80     80     80     80     80     80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |             |                  |               |                        |     |          |     |     |     |     |     |      | 80      |
| R-3     その他     0     0     0     0     0     0     0     0       廃油     S     機械重油     0     0     0     0     0     0     0     100     100       その他2     T-1     蛍光ランプ、水銀ランプ     0     0     0     0     10     10     10     10       T-2     冷凍・空調機器(メーカー再<br>生・EFR)     0     0     0     0     96     96     96       T-3     ユニットもの(バス、キッチン<br>など)     0     0     0     100     100     100     100       混合廃棄物2     U     J~Sの混合廃棄物     80     80     80     80     80     80     80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | η-≫/PE \ 7  |                  |               |                        |     |          |     |     |     |     |     |      | 0       |
| 廃油     S     機械重油     0     0     0     0     0     0     100     100       その他2     T-1     蛍光ランプ、水銀ランプ     0     0     0     0     10     10     10     10       T-2     冷凍・空調機器(メーカー再<br>生・EPR)     0     0     0     0     96     96     96       T-3     ユニットもの(バス、キッチン<br>など)     0     0     0     100     100     100     100       混合廃棄物2     U     J~Sの混合廃棄物     80     80     80     80     80     80     80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |             | _                |               | <u></u>                |     |          |     |     |     |     |     |      | 0       |
| その他2     T-1 蛍光ランプ、水銀ランプ     0 0 0 0 10 10 10 10 10       T-2 冷凍・空調機器(メーカー再生・FFR)     0 0 0 0 96 96 96 96     96 96       T-3 ユニットもの(バス、キッチン など)     0 0 0 0 100 100 100 100     100 100       混合廃棄物2     U J~Sの混合廃棄物 80 80 80 80 80 80 80 80 80     80 80 80 80 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 廃 油         |                  |               |                        |     |          |     |     |     |     |     |      | 0       |
| T-2     冷凍・空調機器(メーカー再<br>生・EPR)     0     0     0     96     96     96       T-3     ユニットもの(パス、キッチン<br>など)     0     0     0     100     100     100     100       混合廃棄物2     U     J~Sの混合廃棄物     80     80     80     80     80     80     80     80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |             | _ 1              | <u>-1</u>     |                        |     |          |     |     |     |     |     |      | 80      |
| T-3 コニットもの(パス、キッチン 0 0 0 100 100 100 100 100<br>  混合廃棄物2 U J~Sの混合廃棄物 80 80 80 80 80 80 80 80 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |             |                  |               | 冷凍・空調機器(メーカー再          |     | 0        | 0   | 0   |     |     |     | 96   | 0       |
| Taと                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |             |                  |               | ユニットもの(バス、キッチン         |     |          |     | _   |     |     |     |      | 0       |
| 135 135 KM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 混合廃棄物2      |                  |               |                        |     |          |     | -   |     |     |     |      | 0       |
| その他 建設発生土 V 土砂及び専ら土地造成の目 50 50 50 50 50 50 50 50 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | その他        |             | -                |               | 土砂及び専ら土地造成の目           |     |          |     |     |     |     |     |      | 0       |

# 2.2.5 修繕・更新シナリオ

本節ではLCW 算定手法に具備すべき修繕・更新シナリオの考え方について述べる。

## (1) 基本的な考え方

算出ツールにおいて実態に即した修繕・更新シナリオを設定するため、材料寿命等によらない所有者等の意思による計画更新を組み入れることが可能となるような、シナリオの枠組みを算定ツール上に作成した。通常の更新・修繕に係るパラメータとしては、修繕率・更新周期があるが、部位毎、あるいは室単位の改修にも対応させるために、建物用途、SI-非 SI の別、建築物の構成分類、室等の名称をツール上の情報として取り扱えるよう配慮した。

#### (1.1.1) 算出パラメータ

材料の修繕率と更新周期によって置換回数を定めるため、個別資材に対する修繕率・更新周期を、予め定める。

- ・修繕率(%):定期的に材料の定率(修繕率)分が置換
- ・更新周期(年):当該材料の寿命によって置換

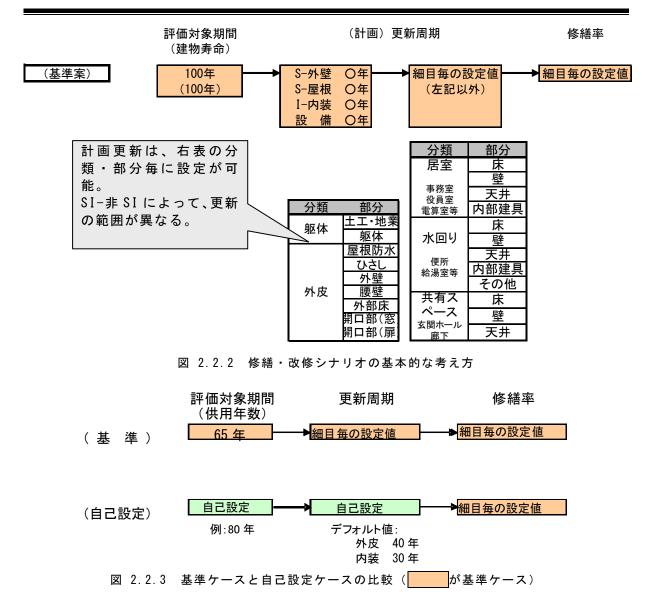
#### (1.1.2) 建物用途、SI-非SIの設定

建物用途によって異なるデフォルト値を設定した。SI-非 SI の選択基準は、性能表示等による。

## (1.1.3) 建築物構成分類の設定

躯体(外周壁・外皮)と内部空間(内装仕上げ・下地等)

#### (1.1.4) 室単位の更新への対応 (オプション)

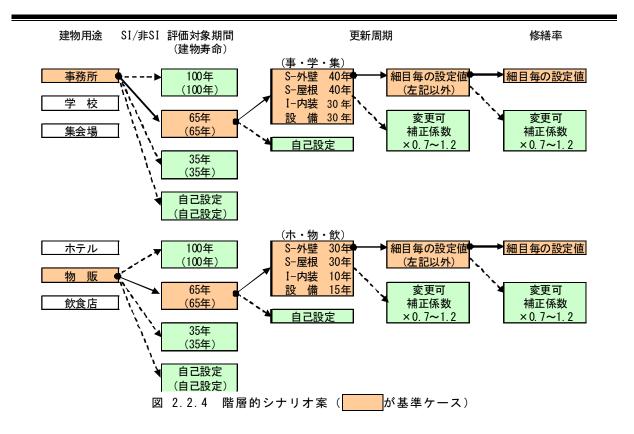

室単位毎に計算範囲を分割することや、各資材に対して、室名等の情報を付与することにより、室単位での更新周期の設定が可能となる。

# (2) 基準ケースの設定

入力を簡便にするために、建物用途や評価対象期間、建物用途に合致した更新周期について標準的なものについては、「基準ケース」(デフォルト)として定め、同一の建築物に対して、「SI化する」、「建物寿命を長くする」等の LCW 削減に係る対策案との比較や、他の建築物との相互比較を行うことも可能となる。

## (3) 修繕・更新シナリオの補正・自己設定と入力の簡便化への対応

修繕・更新シナリオによって、置換回数を算定する時に、想定する建物寿命・修繕周期と使用する材料・部材で定められる更新周期との関係で、材料の寿命と比べて供用する期間が短く計算




され、置換回数が過大となることが考えられる。このような場合には、材料・部材の更新時期を補 正係数により調整できることとする。

使用する材料・部材の更新時期によっては、下地材と仕上げ材の関係のように、更新する場合に共に置換しなければならない場合(道連れ)が生じる。基準ケースでは、それぞれの部位で用いられる仕様のレベルで評価を行っているが、道連れを考慮した修繕・更新を計画する場合には、その計画による自己設定ができることとする。

また、将来において、自己設定ケースについてその考え方や具体的な方策について知見が集積した場合に、典型的な設定例については、入力の簡便化を図るために、建物用途や評価対象期間、建物用途に合致した更新周期について代替案リストを作成し、階層構造によって簡便なシナリオ設定も可能である。

いずれの場合も、当該建築物に最適化した計画に基づく「自己設定ケース」であることから、L CW 算定時において「基準ケース」と比較した効用について評価されるものとして取り扱う。



# 2.2.6 廃棄物排出量(LCW)の算出プロセス

本手法により、各ライフサイクル段階における資材投入量及び廃棄物発生量を精度よく算出・評価することが可能となった。

また、再資源化量、最終処分量等の、建設廃棄物対策の指標となりうる量の算出も可能である。

表 2.2.9に本手法で算出する主な値をライフサイクル段階ごとに示す。

|     |        | 建設時 | 修繕•更新時 | 解体時 |
|-----|--------|-----|--------|-----|
| 投入  | 資材投入量  | 0   | 0      | _   |
|     | 廃棄物発生量 | 0   | 0      | 0   |
| 排出  | 再資源化量  | 0   | 0      | 0   |
| 7升山 | 混合廃棄物量 | 0   | 0      | 0   |
|     | 最終処分量  | 0   | 0      | 0   |

表 2.2.9 本手法で算出する主な値

各々の量の廃棄物分類毎の小計、総計について、延床面積あたりの質量 $(t/m^2)$ 、年間及び面積あたりの質量 $(t/m^2)$ ・年間及び面積あたりの質量 $(t/m^2)$ ・年間を算出する。

廃棄物発生量の削減等の対策への効果は、廃棄物発生量や再資源化量の対策前後の値の比較で確認できる。対策の内容等、分析目的に応じてどの値を用いるかを判断するのがよい。

各々の量の算出式を表 2.2.10に、更新回数の算出式を表 2.2.11に示す。

各材料について、表 2.2.10に示す計算内容の値を計算し、さらに廃棄物分類毎に集計し、1 棟分の総計を算出する。計算内容の欄に\*を付した値については、分別・再資源化シナリオ、修繕・更新シナリオにより値が異なるため、シナリオ毎に値が算出される。

| 表 2.2.10 各材料の計算内容及び計算 | ↓の計算内容及び計算 | <b>た</b> 算 |
|-----------------------|------------|------------|
|-----------------------|------------|------------|

| 計算内容              | 単位 | 計算式                                         |
|-------------------|----|---------------------------------------------|
| 建設時投入量            | kg | ="換算係数"*"寸法"*"質量換算值"*"使用量"                  |
| 建設時廃棄物発生量         | kg | ="換算係数"*"寸法"*"質量換算値"*"使用量"*"ロス率"            |
| 建設時廃棄物回収量 *       | kg | ="建設時廃棄物発生量"*""回収率"                         |
| (建設時廃棄物分類) *      | _  | ="廃棄物分類"                                    |
| 建設時廃棄物混廃量 *       | kg | ="建設時廃棄物発生量"一"建設時廃棄物回収量"                    |
| (建設時廃棄物混廃分類) *    | _  | =J("建設時廃棄物分類"=A~I)orU("建設時廃棄物分類"=K~T)       |
| 更新時投入量            | kg | ="建設時投入量"*"更新回数"                            |
| 更新時未使用廃棄物発生量      | kg | ="建設時廃棄物発生量"*"更新回数"                         |
| 更新時未使用廃棄物回収量 *    | kg | ="更新時未使用廃棄物発生量"*"回収率"                       |
| (更新時未使用廃棄物分類) *   | _  | ="廃棄物分類"                                    |
| 更新時未使用廃棄物混廃量 *    | kg | ="更新時未使用廃棄物発生量"一"更新時未使用廃棄物回収量"              |
| (更新時未使用廃棄物混廃分類) * | _  | =J("更新時未使用廃棄物分類"=A~I)orU("更新時未使用廃棄物分類"=K~T) |
| 更新時使用済廃棄物発生量 *    | kg | ="更新時投入量"                                   |
| 更新時使用済廃棄物回収量 *    | kg | ="更新時投入量"*"回収率"                             |
| (更新時使用済廃棄物分類) *   | _  | ="(廃棄物分類)"                                  |
| 更新時使用済廃棄物混廃量 *    | kg | ="更新時使用済廃棄物発生量"一"更新時使用済廃棄物回収量"              |
| (更新時使用済廃棄物混廃分類) * | -  | =J("更新時使用済廃棄物分類"=A~I)orU("更新時使用済廃棄物分類"=K~T) |
| 解体時廃棄物発生量         | kg | ="建設時投入量"                                   |
| 解体時廃棄物回収量 *       | kg | ="建設時投入量"*"回収率"                             |
| (解体時廃棄物分類) *      | -  | ="(廃棄物分類)"                                  |
| 解体時廃棄物混廃量 *       | kg | ="建設時投入量"-"解体時廃棄物回収量"                       |
| (解体時廃棄物混廃分類) *    | -  | =J("解体時廃棄物分類"=A~I)orU("解体時廃棄物分類"=K~T)       |

# 表 2.2.11 更新回数の計算式

| 更新回数(基準値)   | 回 | 屋根防水、外壁、内装: "65年"/"更新周期"(切捨)+"修繕率"×"65年"                                                                                                 |
|-------------|---|------------------------------------------------------------------------------------------------------------------------------------------|
| 更新回数(自己設定値) | 回 | 屋根防水、外壁: "評価期間(供用年数)"/"40年(事務所の防水、外壁の計画更新周期)"(切捨)+"修繕率"×"評価期間(供用年数)"<br>内装: "評価期間(供用年数)"/"15年(事務所の内装の計画更新周期)"(切捨)<br>+"修繕率"×"評価期間(供用年数)" |

# 2.2.7 モデル建築物を用いたLCWの試算

# (1) LCW試算の目的

本ツールの開発にあたり設定した、LCW算出のプロセス、算出条件の効果を確認するために、 図面及び内訳明細書を入手可能な建築物についてLCWの試算を行うこととした。ただし、設備 機器、建設発生土は対象外とした。

# (2) モデル建築物の概要

調査に用いるモデル建築物は、事務所および賃貸マンションの各 1 棟を設定した。モデル建築物としては標準的なものが望ましいが、標準的であるか否かの検討はその定義が曖昧で困難なことから行わないこととし、特異な構法や仕上げ等を用いていないことを確認し、モデル建築物として設定した。

モデル建築物の概要及び主な仕上げを表 2.2.12、表 2.2.13に示す。

表 2.2.12 モデル建築物の概要

| 用途      | 構造  | 階数 (地上) | 階数 (地下) | 建築面積  | 延床面積                | 基準階<br>面積         | 建物<br>形状<br>(平面) | 軒高     | 階高   | 杭長  | 用途比率          |
|---------|-----|---------|---------|-------|---------------------|-------------------|------------------|--------|------|-----|---------------|
| 事務所     | SRC | 8       | 0       | 350m² | 2,400m <sup>2</sup> | 350m <sup>*</sup> | 矩形               | 31.0 m | 3.5m | 16m | 事務所(100%)     |
| 賃貸マンション | RC  | 3       | 0       | 750m² | 1,440m²             | 510m <sup>2</sup> | L形               | 9.3 m  | 2.9m | なし  | 賃貸住宅39戸(100%) |

表 2.2.13 モデル建築物の主な仕上げ

| 用途      | 外                | ·装                  | 内装                   |                      |                      |  |  |
|---------|------------------|---------------------|----------------------|----------------------|----------------------|--|--|
| - 一     | 外壁               | 開口部                 | 床                    | 壁                    | 天井                   |  |  |
| 事務所     | 石・一部タイル、複<br>層塗材 | カラーアルミサッ<br>シ、複層ガラス | 石、タイルカーペッ<br>ト、OAフロア | 石、タイル、中級ク<br>ロス      | 岩綿吸音板、一部<br>リブ付      |  |  |
| 賃貸マンション | タイル、複層塗材         | アルミサッシ(セミエ<br>アタイト) | フローリング、長尺<br>塩ビシート   | ビニルクロス、せっ<br>こうボード下地 | ビニルクロス、せっ<br>こうボード下地 |  |  |

# (3) 試算条件

開発した LCW 算出ツールを用いて算出を行った。自己設定の場合の供用年数、計画更新年数は、供用年数:80年、計画更新年数(外皮):40年、計画更新年数(内装):30年とした。

なお、開発した LCW ツールの対象範囲が建築工事に限定されているため、試算も建築工事のみについて行い、設備工事は対象外とした。

# (4) 試算結果

試算結果は以下であった。モデル建築物 2 棟の資材投入量を表 2.2.14, 表 2.2.15にそれぞれ示す。また、廃棄物発生量、混合廃棄物量、再資源化量、最終処分量を表 2.2.16, 表 2.2.17に示す。

表 2.2.14 モデル建築物(事務所)の投入量

| 建設時投入量(t) | 更新時投入量(t) |
|-----------|-----------|
| 5623.6    | 195.6     |

表 2.2.15 モデル建築物(賃貸マンション)の投入量

| 建設時投入量(t) | 更新時投入量(t) |
|-----------|-----------|
| 4170. 2   | 229. 8    |

さらに、修繕・更新時について、修繕・更新のタイミングを自己設定した場合の廃棄物発生量等を表 2.2.18, 表 2.2.19に示す。

また、図 2.2.5、図 2.2.6にこれらの廃棄物発生量を延床面積、供用年数で除して係数化したグラフを示す。

表 2.2.16 モデル建築物(事務所)の廃棄物発生量、混合廃棄物量等

| ライフサイクル   |       | 建設日    | 诗(t)  |        |        | 修繕・更  | 新時(t)  |       |         | 解体      | 诗(t)   |         |
|-----------|-------|--------|-------|--------|--------|-------|--------|-------|---------|---------|--------|---------|
| 分別・廃棄シナリオ | I     | П      | Ш     | IV     | I      | П     | Ш      | IV    | I       | Π       | Ш      | IV      |
| 廃棄物発生量    |       | 113    | . 9   |        |        | 202   | . 0    |       |         | 5623    | 3. 6   |         |
| 混合廃棄物量    | 78. 2 | 11. 1  | 10.8  | 10. 8  | 183. 4 | 90.6  | 72. 0  | 64.7  | 1522. 4 | 1156. 2 | 1150.4 | 1146. 5 |
| 再資源化量     | 90. 9 | 110. 6 | 104.7 | 104. 3 | 149. 2 | 145.8 | 146. 5 | 147.7 | 5168. 5 | 5271.0  | 5271.5 | 3839. 4 |
| 最終処分量     | 23. 0 | 3. 3   | 9.2   | 9. 6   | 52.8   | 56. 2 | 55. 6  | 54.4  | 455. 2  | 352. 7  | 352. 1 | 1784. 2 |

表 2.2.17 モデル建築物(賃貸マンション)の廃棄物発生量、混合廃棄物量等

| ライフサイクル   |       | 建設印   | 侍(t) |       |        | 修繕・更   | 新時(t)  |       |         | 解体     | 诗 (t)  |         |
|-----------|-------|-------|------|-------|--------|--------|--------|-------|---------|--------|--------|---------|
| 分別・廃棄シナリオ | I     | I     | Ш    | IV    | I      | I      | Ш      | IV    | I       | I      | Ш      | IV      |
| 廃棄物発生量    |       | 67.   | 8    |       |        | 239    | . 5    |       |         | 4170   | 0. 2   |         |
| 混合廃棄物量    | 29. 3 | 6.8   | 6.5  | 6. 5  | 162. 9 | 106. 0 | 86. 6  | 86.0  | 1092. 7 | 866. 1 | 849. 4 | 846.8   |
| 再資源化量     | 59. 5 | 66. 0 | 59.5 | 59. 5 | 195. 8 | 210.8  | 201. 2 | 195.9 | 3846. 8 | 3908.8 | 3908.5 | 2847. 6 |
| 最終処分量     | 8. 3  | 1.8   | 8.2  | 8. 3  | 43. 7  | 28. 7  | 38. 3  | 43.5  | 323. 3  | 261.4  | 261.7  | 1322. 6 |

表 2.2.18 モデル建築物(事務所)の修繕・更新時(自己設定の場合)

の廃棄物発生量、混合廃棄物量等

| ライフサイクル   |        | 修繕・更  | 新時(t)  |       |
|-----------|--------|-------|--------|-------|
| 分別・廃棄シナリオ | I      | I     | Ш      | IV    |
| 廃棄物発生量    |        | 202   | . 9    |       |
| 混合廃棄物量    | 183. 6 | 94.1  | 73.8   | 66.0  |
| 再資源化量     | 152. 8 | 149.6 | 150. 2 | 151.9 |
| 最終処分量     | 50. 1  | 53.3  | 52.7   | 51.0  |

# 表 2.2.19 モデル建築物(賃貸マンション)の修繕・更新時(自己設定の場合)

の廃棄物発生量、混合廃棄物量等

| ライフサイクル   | 修繕・更新時(t) |        |        |        |  |  |
|-----------|-----------|--------|--------|--------|--|--|
| 分別・廃棄シナリオ | I         | I      | Ш      | IV     |  |  |
| 廃棄物発生量    |           | 254    | . 8    |        |  |  |
| 混合廃棄物量    | 177. 3    | 111.9  | 90. 6  | 90.0   |  |  |
| 再資源化量     | 208. 2    | 223. 7 | 213. 4 | 209. 3 |  |  |
| 最終処分量     | 46. 5     | 31. 1  | 41. 3  | 45. 5  |  |  |



図 2.2.5 モデル建築物(事務所)の廃棄物発生量、混合廃棄物量等

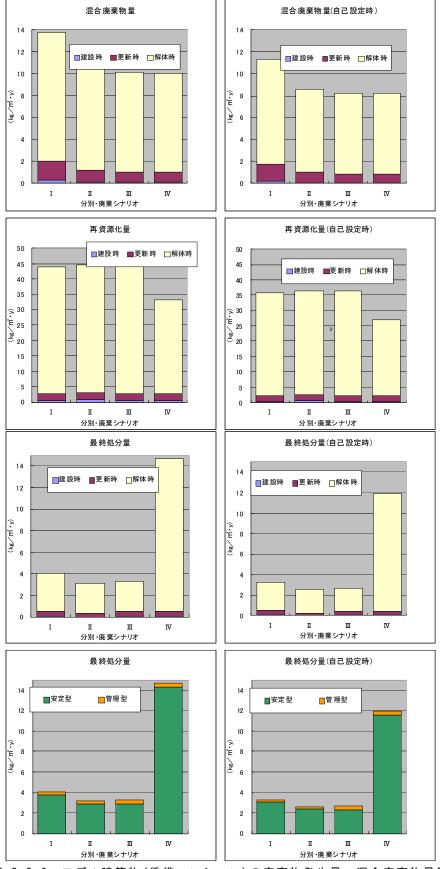



図 2.2.6 モデル建築物(賃貸マンション)の廃棄物発生量、混合廃棄物量等

## (5) 考察及び今後の課題

#### (5.1) 投入量の把握について(投入資材の分析)

表 2.2.20、表 2.2.21 にモデル建築物 2 棟について、投入資材の種類と量を算出した結果を示すが、事務所、賃貸マンション共に本研究で設定した廃棄物分類のうち、26 種類の廃棄物分類にわたる建設資材を投入していた。本研究で用いたモデル建築物の構造種別は、事務所がSRC、賃貸マンションがRCであるが、いずれも質量ベースで投入量の約 90% がコンクリート系の材料であった。また、用途の違いについては、賃貸マンションで木質系材料、ユニット類が事務所に比べて多く用いられていることなどの特徴がみられた。

本ツールにより、投入資材の内訳を現状及び将来実行可能なリサイクル技術の適用に有効な分類で把握が可能となった。

今後、構造種別、用途、規模等による投入資材の傾向の違いについて、既往調査との比較検討を加えると共に、さらに事例を増やして試算を行うこと、設備機器に関する検討は今後の課題である。

## (5.2) 分別・廃棄シナリオ及び廃棄物分類の設定効果について

モデル建築物 2 棟(事務所、賃貸マンション)の混合廃棄物量、再資源化量、最終処分量 を分別・廃棄シナリオ毎に示した。

混合廃棄物量はシナリオ I とその他では大きく異なり、シナリオ II 以上を選択とすると、混合廃棄物量を 2~3 割削減することができる。シナリオ II 以上では、混合廃棄物の量はほとんど同程度であるが、内訳を見ると、排出される分類が異なっている。例えば、シナリオ II で "ガラス・陶磁器くず"の分類で回収されていた廃棄物が、シナリオ III、IV では ALC くず、グラスウール製品などの、製品に近い分類で回収されることとなっている。

本来、労力をかけて分別を行う以上、高度な分別・廃棄シナリオの選択が再資源化の推進、最終処分量の削減等に結びつくのが望ましいが、シナリオIからIIIについては、再資源化量はやや増大傾向、最終処分量はやや減少傾向にあるものの、大きくは変わらない。一方、シナリオIVについては、他と比較して再資源化量は大きく減少、最終処分量は大きく増加している。これは、シナリオIVの再資源化技術のそれぞれの再資源化率が低いことによる。同一の製品に戻すことから、再資源化率が低くなる、全ての含有資源を用いるのではなく、有用な一部の資源のみを取り出し再資源化している、などの理由がある。

今回の試算では、量を指標としたためシナリオIVが最も不利な結果となった。再資源化にかかる使用エネルギーや、資源の価値、経済性等、評価の指標となりうる要因を検討し、今後多角的な評価を行えることが望ましい。

# (5.3) 修繕・更新の算出ルールの効果について

本ツールでは、供用年数、外皮の計画更新年数、内装の計画更新年数を設定できること としているが、本試算で行った設定(供用年数:80年、計画更新年数(外皮):40年、計画更

表 2.2.20 モデル建築物(事務所)の資材投入量と比率

|                   | 建設時投入                 | 更新時投入           | 更新時投入           |
|-------------------|-----------------------|-----------------|-----------------|
| 廃棄物分              | 量                     | 量(基準)           | 量(自己設           |
| 類                 | <u>+</u><br>(kg)      | (kg)            | 定)              |
|                   | (1.6/                 | (1.6/           | (kg)            |
|                   |                       |                 |                 |
| A                 | 5,031,975.8           | 0.0             | 0.0             |
| B-1               | 90,679.7              | 0.0             | 0.0             |
| B-2               | 0.0<br>2,080.2        | 0.0             | 0.0             |
| C<br>D−1          | 1,187,7               | 5,390.8<br>0.0  | 5,674.8<br>0.0  |
| D-1<br>D-2        | 10.914.8              | 58,735.7        | 50.584.7        |
| D-3               | 120.3                 | 518.0           | 582.0           |
| D-4               | 1,472.9               | 8,125.0         | 9,320.2         |
| D-5               | 5,173.6               | 0.0             | 0.0             |
| D-6               | 664.6                 | 2,862.9         | 3,216.8         |
| D-7               | 0.0                   | 0.0             | 0.0             |
| D-8               | 0.0                   | 0.0             | 0.0             |
| E-1               | 582.2                 | 4,262.3         | 4,978.9         |
| E-2               | 0.0                   | 0.0             | 0.0             |
| E-3               | 1,059.4               | 2,533.8         | 2,623.7         |
| E-4               | 0.0                   | 0.0             | 0.0             |
| E-5               | 2,191.1               | 4,309.8         | 4,469.1         |
| <u>E−6</u><br>E−7 | 6,274.9               | 31,876.3        | 34,039.4        |
| F-1               | 0.0                   | 0.0             | 0.0             |
| F-1<br>F-2        | 381,816.6<br>24,504.4 | 0.0<br>30,142.1 | 0.0<br>30,699.2 |
| F-3               | 913.8                 | 0.0             | 0.0             |
| G-1               | 39,766.2              | 12,125.4        | 14,720.0        |
| G-2               | 0.0                   | 0.0             | 0.0             |
| G-3               | 3,271.5               | 467.2           | 391.1           |
| Н                 | 0.0                   | 0.0             | 0.0             |
| I                 | 0.0                   | 0.0             | 0.0             |
| J                 | 832.3                 | 5,686.4         | 4,931.2         |
| 小計                | 5,605,481.7           | 167,035.6       | 166,231.2       |
| K                 | 0.0                   | 0.0             | 0.0             |
| L-1               | 4,507.5               | 12,325.8        | 13,089.9        |
| L−2<br>M          | 0.0                   | 0.0             | 0.0             |
| N-1               | 0.0<br>647.6          | 0.0<br>2,490.7  | 0.0<br>2,766.6  |
| N-2               | 0.0                   | 0.0             | 0.0             |
| 0                 | 0.0                   | 0.0             | 0.0             |
| P-1               | 2,318.7               | 5,076.9         | 5,237.9         |
| P-2               | 982.6                 | 2,265.5         | 2,616.8         |
| P-3               | 5,210.0               | 0.0             | 0.0             |
| Q                 | 0.0                   | 0.0             | 0.0             |
| R-1               | 0.0                   | 0.0             | 0.0             |
| R-2               | 0.0                   | 0.0             | 0.0             |
| R-3               | 0.0                   | 0.0             | 0.0             |
| S<br>1            | 0.0                   | 0.0             | 0.0             |
| T−1<br>T−2        | 0.0<br>0.0            | 0.0             | 0.0             |
| T-3               | 2,116.1               | 0.0             | 0.0             |
| U                 | 2,371.2               | 6,452.2         | 6,528.3         |
| 小計                | 18,153.7              | 28,611.1        | 30,239.4        |
| 計                 | 5,623,635.4           | 195,646.7       | 196,470.6       |
| HI                | 2,323,000.7           | . 55,510.7      | . 3 5, . 7 5.0  |

| A 89.5 0.0 0.0 B-1 1.6 0.0 0.0 B-2 0.0 0.0 0.0 0.0 C 0.0 2.8 2.9 D-1 0.0 0.0 0.0 0.0 D-2 0.2 30.0 25.7 D-3 0.0 0.3 0.3 D-4 0.0 4.2 4.7 D-5 0.1 0.0 0.0 0.0 D-6 0.0 1.5 1.6 D-7 0.0 0.0 0.0 0.0 E-1 0.0 2.2 2.5 E-2 0.0 0.0 0.0 0.0 E-3 0.0 1.3 1.3 E-4 0.0 0.0 2.2 2.3 E-6 0.1 16.3 17.3 E-7 0.0 0.0 2.2 2.3 E-6 0.1 16.3 17.3 E-7 0.0 0.0 0.0 0.0 E-1 6.8 0.0 0.0 0.0 0.0 E-1 6.8 0.0 0.0 0.0 0.0 E-1 7 0.0 0.0 0.0 0.0 0.0 E-1 8 0.0 0.0 0.0 0.0 0.0 E-1 0.0 0.0 0.0 0.0 0.0 0.0 E-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 廃棄物分<br>類 | 建設時投入<br>量<br>(%) | 更新時投入<br>量(基準)<br>(%) | 更新時投入<br>量(自己設<br>定)<br>(%) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|-----------------------|-----------------------------|
| B−1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Α         | 89.5              | 0.0                   | 0.0                         |
| B−2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                   |                       |                             |
| C         0.0         2.8         2.9           D−1         0.0         0.0         0.0           D−2         0.2         30.0         25.7           D−3         0.0         0.3         0.3           D−4         0.0         4.2         4.7           D−5         0.1         0.0         0.0           D−6         0.0         1.5         1.6           D−7         0.0         0.0         0.0           D−8         0.0         0.0         0.0           E−1         0.0         2.2         2.5           E−2         0.0         0.0         0.0           E−3         0.0         1.3         1.3           E−4         0.0         0.0         0.0           E−3         0.0         2.2         2.3           E−6         0.1         16.3         17.3           E−7         0.0         0.0         0.0           F−1         6.8         0.0         0.0           F−1         6.8         0.0         0.0           F−2         0.4         15.4         15.6           F−3         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                   |                       |                             |
| D−1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                   |                       |                             |
| D-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                   |                       |                             |
| D-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                   |                       |                             |
| D-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                   |                       |                             |
| D-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                   |                       |                             |
| D-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D-5       |                   |                       |                             |
| D-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D-6       | 0.0               |                       | 1.6                         |
| E-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D-7       |                   |                       |                             |
| E-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D-8       |                   |                       |                             |
| E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                   |                       |                             |
| E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E-2       |                   | 0.0                   | 0.0                         |
| E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E-3       |                   |                       |                             |
| E−5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E-4       |                   | 0.0                   | 0.0                         |
| E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E-5       |                   | 2.2                   |                             |
| E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E-6       | 0.1               | 16.3                  |                             |
| F-2         0.4         15.4         15.6           F-3         0.0         0.0         0.0           G-1         0.7         6.2         7.5           G-2         0.0         0.0         0.0           H         0.0         0.0         0.0           I         0.0         0.0         0.0           J         0.0         2.9         2.5           パッド         99.7         85.4         84.6           K         0.0         0.0         0.0           L-1         0.1         6.3         6.7           L-2         0.0         0.0         0.0           M         0.0         0.0         0.0           N-1         0.0         1.3         1.4           N-2         0.0         0.0         0.0           O         0.0         0.0         0.0           P-1         0.0         2.6         2.7           P-2         0.0         1.2         1.3           P-3         0.1         0.0         0.0           R-1         0.0         0.0         0.0           R-2         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 0.0               |                       |                             |
| F-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F-1       | 6.8               | 0.0                   | 0.0                         |
| G-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F-2       |                   | 15.4                  |                             |
| G-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F-3       | 0.0               | 0.0                   | 0.0                         |
| G-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G-1       | 0.7               | 6.2                   | 7.5                         |
| H 0.0 0.0 0.0 0.0  I 0.0 0.0 0.0 0.0  J 0.0 2.9 2.5  //ऽ  //ऽ  //ऽ  H 99.7 85.4 84.6  K 0.0 0.0 0.0 0.0  L-1 0.1 6.3 6.7  L-2 0.0 0.0 0.0  M 0.0 0.0 0.0  M 0.0 0.0 0.0  N-1 0.0 1.3 1.4  N-2 0.0 0.0 0.0 0.0  O 0.0 0.0 0.0  P-1 0.0 2.6 2.7  P-2 0.0 1.2 1.3  P-3 0.1 0.0 0.0  Q 0.0 0.0 0.0  R-1 0.0 0.0 0.0  R-2 0.0 0.0 0.0  R-3 0.0 0.0 0.0  R-3 0.0 0.0 0.0  R-3 0.0 0.0 0.0  S 0.0 0.0 0.0  T-1 0.0 0.0 0.0  T-2 0.0 0.0 0.0  T-3 0.0 0.0 0.0  T-2 0.0 0.0 0.0  T-3 0.0 0.0 0.0  T-1 0.0 0.0 0.0  T-2 0.0 0.0 0.0  T-3 0.0 0.0 0.0  T-1 0.0 0.0 0.0  T-2 0.0 0.0 0.0  T-3 0.0 0.0 0.0  T-1 0.0 0.0 0.0  T-2 0.0 0.0 0.0  T-3 0.0 0.0 0.0  T-3 0.0 0.0 0.0  T-3 0.0 0.0 0.0  T-3 0.0 0.0 0.0  T-1 0.0 0.0 0.0  T-2 0.0 0.0 0.0  T-3 0.0 0.0 0.0  T-3 0.0 0.0 0.0  T-3 0.0 0.0 0.0  T-1 0.0 0.0 0.0  T-2 0.0 0.0 0.0  T-3 0.0 0.0 0.0  T-3 0.0 0.0 0.0  T-1 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G-2       | 0.0               | 0.0                   | 0.0                         |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G-3       | 0.1               | 0.2                   | 0.2                         |
| J       0.0       2.9       2.5         J√st       99.7       85.4       84.6         K       0.0       0.0       0.0         L-1       0.1       6.3       6.7         L-2       0.0       0.0       0.0         M       0.0       0.0       0.0         N-1       0.0       1.3       1.4         N-2       0.0       0.0       0.0         O       0.0       0.0       0.0         P-1       0.0       2.6       2.7         P-2       0.0       1.2       1.3         P-3       0.1       0.0       0.0         Q       0.0       0.0       0.0         R-1       0.0       0.0       0.0         R-2       0.0       0.0       0.0         R-3       0.0       0.0       0.0         T-1       0.0       0.0       0.0         T-2       0.0       0.0       0.0         T-3       0.0       0.0       0.0         T-3       0.0       0.0       0.0         T-3       0.0       0.0       0.0         0.0       0.0 <th>Н</th> <td>0.0</td> <td>0.0</td> <td>0.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Н         | 0.0               | 0.0                   | 0.0                         |
| 小計 99.7 85.4 84.6   K 0.0 0.0 0.0 0.0   C.0   C.0 |           |                   |                       |                             |
| K       0.0       0.0       0.0         L-1       0.1       6.3       6.7         L-2       0.0       0.0       0.0         M       0.0       0.0       0.0         N-1       0.0       1.3       1.4         N-2       0.0       0.0       0.0         O       0.0       0.0       0.0         P-1       0.0       2.6       2.7         P-2       0.0       1.2       1.3         P-3       0.1       0.0       0.0         Q       0.0       0.0       0.0         R-1       0.0       0.0       0.0         R-2       0.0       0.0       0.0         R-3       0.0       0.0       0.0         T-1       0.0       0.0       0.0         T-2       0.0       0.0       0.0         T-3       0.0       0.0       0.0         U       0.0       3.3       3.3         J\strip       0.3       14.6       15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                   |                       |                             |
| L-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                   |                       |                             |
| L-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                   |                       |                             |
| M       0.0       0.0       0.0         N-1       0.0       1.3       1.4         N-2       0.0       0.0       0.0         O       0.0       0.0       0.0         P-1       0.0       2.6       2.7         P-2       0.0       1.2       1.3         P-3       0.1       0.0       0.0         Q       0.0       0.0       0.0         R-1       0.0       0.0       0.0         R-2       0.0       0.0       0.0         R-3       0.0       0.0       0.0         T-1       0.0       0.0       0.0         T-2       0.0       0.0       0.0         T-3       0.0       0.0       0.0         U       0.0       3.3       3.3         J\strip       0.3       14.6       15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                   |                       |                             |
| N-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                   |                       |                             |
| N-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                   |                       |                             |
| O       0.0       0.0       0.0         P-1       0.0       2.6       2.7         P-2       0.0       1.2       1.3         P-3       0.1       0.0       0.0         Q       0.0       0.0       0.0         R-1       0.0       0.0       0.0         R-2       0.0       0.0       0.0         S       0.0       0.0       0.0         T-1       0.0       0.0       0.0         T-2       0.0       0.0       0.0         T-3       0.0       0.0       0.0         U       0.0       3.3       3.3         J\strip       0.3       14.6       15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                   |                       |                             |
| P-1       0.0       2.6       2.7         P-2       0.0       1.2       1.3         P-3       0.1       0.0       0.0         Q       0.0       0.0       0.0         R-1       0.0       0.0       0.0         R-2       0.0       0.0       0.0         R-3       0.0       0.0       0.0         S       0.0       0.0       0.0         T-1       0.0       0.0       0.0         T-2       0.0       0.0       0.0         T-3       0.0       0.0       0.0         U       0.0       3.3       3.3         J\strip = 1       0.3       14.6       15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                   |                       |                             |
| P-2       0.0       1.2       1.3         P-3       0.1       0.0       0.0         Q       0.0       0.0       0.0         R-1       0.0       0.0       0.0         R-2       0.0       0.0       0.0         R-3       0.0       0.0       0.0         S       0.0       0.0       0.0         T-1       0.0       0.0       0.0         T-2       0.0       0.0       0.0         T-3       0.0       0.0       0.0         U       0.0       3.3       3.3         J\strip = 1       0.3       14.6       15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U<br>D-1  |                   | 0.0                   |                             |
| P−3       0.1       0.0       0.0         Q       0.0       0.0       0.0         R−1       0.0       0.0       0.0         R−2       0.0       0.0       0.0         R−3       0.0       0.0       0.0         S       0.0       0.0       0.0         T−1       0.0       0.0       0.0         T−2       0.0       0.0       0.0         T−3       0.0       0.0       0.0         U       0.0       3.3       3.3         /√at+       0.3       14.6       15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                   |                       |                             |
| Q     0.0     0.0     0.0       R-1     0.0     0.0     0.0       R-2     0.0     0.0     0.0       R-3     0.0     0.0     0.0       S     0.0     0.0     0.0       T-1     0.0     0.0     0.0       T-2     0.0     0.0     0.0       T-3     0.0     0.0     0.0       U     0.0     3.3     3.3       /\sightarrow\frac{1}{2} + \frac{1}{2} + \                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P-2       | 0.0               |                       |                             |
| R-1 0.0 0.0 0.0 0.0 R-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                   |                       | 0.0                         |
| R-2 0.0 0.0 0.0 0.0 R-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ્ય<br>R−1 | 0.0               |                       |                             |
| R-3     0.0     0.0     0.0       S     0.0     0.0     0.0       T-1     0.0     0.0     0.0       T-2     0.0     0.0     0.0       T-3     0.0     0.0     0.0       U     0.0     3.3     3.3       小清十     0.3     14.6     15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                   |                       |                             |
| S     0.0     0.0     0.0       T-1     0.0     0.0     0.0       T-2     0.0     0.0     0.0       T-3     0.0     0.0     0.0       U     0.0     3.3     3.3       小清十     0.3     14.6     15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R-3       |                   | 0.0                   | 0.0                         |
| T-1     0.0     0.0     0.0       T-2     0.0     0.0     0.0       T-3     0.0     0.0     0.0       U     0.0     3.3     3.3       小清十     0.3     14.6     15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                   |                       |                             |
| T-2     0.0     0.0     0.0       T-3     0.0     0.0     0.0       U     0.0     3.3     3.3       小計     0.3     14.6     15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T-1       |                   |                       |                             |
| T-3     0.0     0.0     0.0       U     0.0     3.3     3.3       小計     0.3     14.6     15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T-2       |                   |                       |                             |
| U 0.0 3.3 3.3 /小計 0.3 14.6 15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T-3       |                   |                       |                             |
| 小計 0.3 14.6 15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U U       |                   | 3.3                   | 3.3                         |
| 計 100.0 100.0 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 小計        |                   | 14.6                  |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 計         | 100.0             | 100.0                 | 100.0                       |

表 2.2.21 モデル建築物 (賃貸マンション) の資材投入量と比率

| 廃棄物分<br>類 | 建設時投入<br>量<br>(kg)      | 更新時投入<br>量(基準)<br>(kg) | 更新時投入<br>量(自己設<br>定)<br>(kg) |
|-----------|-------------------------|------------------------|------------------------------|
|           | 2.760.660.0             | 0.0                    | 0.0                          |
| A<br>B−1  | 3,768,660.9<br>15,356.0 | 0.0<br>1.474.6         | 0.0<br>2.715.6               |
| B-2       | 3,413.3                 | 10,221.0               | 11,004.3                     |
| C         | 4,608.6                 | 11,943.2               | 12,572.3                     |
| D-1       | 11,865.9                | 0.0                    | 0.0                          |
| D-2       | 2.408.1                 | 2,833.8                | 5,218.7                      |
| D-3       | 4.6                     | 19.7                   | 22.2                         |
| D-4       | 819.6                   | 3,751.1                | 4,257.4                      |
| D-5       | 0.0                     | 0.0                    | 0.0                          |
| D-6       | 72.2                    | 299.4                  | 336.4                        |
| D-7       | 0.0                     | 0.0                    | 0.0                          |
| D-8       | 0.0                     | 0.0                    | 0.0                          |
| E-1       | 755.3                   | 5,565.5                | 6,501.2                      |
| E-2       | 0.0                     | 0.0                    | 0.0                          |
| E-3       | 1,387.8                 | 3,296.2                | 3,382.1                      |
| E-4       | 576.7                   | 0.0                    | 0.0                          |
| E-5       | 2,221.1                 | 2,632.0                | 2,730.1                      |
| E-6       | 3,561.5                 | 16,958.8               | 15,733.3                     |
| E-7       | 0.0                     | 0.0                    | 0.0                          |
| F-1       | 239,059.2               | 0.0                    | 0.0                          |
| F-2       | 14,364.6                | 30,308.9               | 33,250.0                     |
| F-3       | 0.0                     | 0.0                    | 0.0                          |
| G-1       | 9,149.6                 | 21,595.3               | 25,581.3                     |
| G-2       | 0.0                     | 0.0                    | 0.0                          |
| G-3       | 3,455.5                 | 1,131.7                | 947.5                        |
| Н         | 0.0                     | 0.0                    | 0.0                          |
| I         | 0.0                     | 0.0                    | 0.0                          |
| J         | 2,773.3                 | 21,096.1               | 18,243.0                     |
| 小計        | 4,084,513.6             | 133,127.2              | 142,495.4                    |
| K         | 0.0                     | 0.0                    | 0.0                          |
| L-1       | 3,831.4                 | 10,477.1               | 11,126.5                     |
| L-2       | 0.0                     | 0.0                    | 0.0                          |
| М         | 0.0                     | 0.0                    | 0.0                          |
| N-1       | 1,387.2                 | 5,335.2                | 5,926.1                      |
| N-2       | 0.0                     | 0.0                    | 0.0                          |
| 0         | 0.0                     | 0.0                    | 0.0                          |
| P-1       | 32,997.9                | 4,956.2                | 5,113.5                      |
| P-2       | 9,292.5                 | 21,487.5               | 24,449.7                     |
| P-3       | 16,848.0                | 38,843.1               | 40,030.8                     |
| Q         | 0.0                     | 0.0                    | 0.0                          |
| R-1       | 0.0                     | 0.0                    | 0.0                          |
| R-2       | 0.0                     | 0.0                    | 0.0                          |
| R-3       | 0.0                     | 0.0                    | 0.0                          |
| S         | 0.0                     | 0.0                    | 0.0                          |
| T-1       | 0.0                     | 0.0                    | 0.0                          |
| T-2       | 0.0                     | 0.0                    | 0.0                          |
| T-3       | 15,742.8                | 0.0                    | 0.0                          |
| U         | 5,568.5                 | 15,621.4               | 15,474.9                     |
| 小計        | 85,668.4                | 96,720.5               | 102,121.6                    |
| 計         | 4,170,181.9             | 229,847.7              | 244,617.0                    |

| 廃棄物分<br>類  | 建設時投入<br>量<br>(%) | 更新時投入<br>量(基準)<br>(%) | 更新時投入<br>量(自己設<br>定)<br>(%) |
|------------|-------------------|-----------------------|-----------------------------|
|            |                   |                       |                             |
| Α          | 90.4              | 0.0                   | 0.0                         |
| <u></u>    | 0.4               | 0.6                   | 1.1                         |
| B-2        | 0.1               | 4.4                   | 4.5                         |
| C          | 0.1               | 5.2                   | 5.1                         |
| D-1        | 0.3               | 0.0                   | 0.0                         |
| D-2        | 0.3               | 1.2                   | 2.1                         |
|            |                   |                       | 0.0                         |
| D-3<br>D-4 | 0.0               | 0.0                   |                             |
| D-4<br>D-5 | 0.0               | 1.6                   | 1.7                         |
|            | 0.0               | 0.0                   | 0.0                         |
| D-6        | 0.0               | 0.1                   | 0.1                         |
| D-7        | 0.0               | 0.0                   | 0.0                         |
| D-8        | 0.0               | 0.0                   | 0.0                         |
| E-1        | 0.0               | 2.4                   | 2.7                         |
| E-2        | 0.0               | 0.0                   | 0.0                         |
| E-3        | 0.0               | 1.4                   | 1.4                         |
| E-4        | 0.0               | 0.0                   | 0.0                         |
| E-5        | 0.1               | 1.1                   | 1.1                         |
| E-6        | 0.1               | 7.4                   | 6.4                         |
| E-7        | 0.0               | 0.0                   | 0.0                         |
| F−1        | 5.7               | 0.0                   | 0.0                         |
| F-2        | 0.3               | 13.2                  | 13.6                        |
| F-3        | 0.0               | 0.0                   | 0.0                         |
| G-1        | 0.2               | 9.4                   | 10.5                        |
| G-2        | 0.0               | 0.0                   | 0.0                         |
| G-3        | 0.1               | 0.5                   | 0.4                         |
| Н          | 0.0               | 0.0                   | 0.0                         |
| I          | 0.0               | 0.0                   | 0.0                         |
| J          | 0.1               | 9.2                   | 7.5                         |
| 小計         | 97.9              | 57.9                  | 58.3                        |
| K          | 0.0               | 0.0                   | 0.0                         |
| L-1        | 0.1               | 4.6                   | 4.5                         |
| L-2        | 0.0               | 0.0                   | 0.0                         |
| M          | 0.0               | 0.0                   | 0.0                         |
| N-1        | 0.0               | 2.3                   | 2.4                         |
| N-2        | 0.0               | 0.0                   | 0.0                         |
| 0          | 0.0               | 0.0                   | 0.0                         |
| P-1        | 0.8               | 2.2                   | 2.1                         |
| P-2        | 0.2               | 9.3                   | 10.0                        |
| P-3        | 0.2               | 16.9                  | 16.4                        |
|            | 0.0               |                       | 0.0                         |
| Q<br>R-1   |                   | 0.0                   | 0.0                         |
| L-1        | 0.0               |                       |                             |
| R-2        | 0.0               | 0.0                   | 0.0                         |
| R-3        | 0.0               | 0.0                   | 0.0                         |
| S          | 0.0               | 0.0                   | 0.0                         |
| T-1        | 0.0               | 0.0                   | 0.0                         |
| T-2        | 0.0               | 0.0                   | 0.0                         |
| T-3        | 0.4               | 0.0                   | 0.0                         |
| U          | 0.1               | 6.8                   | 6.3                         |
| 小計         | 2.1               | 42.1                  | 41.7                        |
| 計          | 100.0             | 100.0                 | 100.0                       |

新年数(内装):30 年)による計算結果では、投入資材量、廃棄物量等の総量に大きな影響はなかった。今後、資源の有効利用の観点等から、効率のよい修繕・更新計画に役立てるための設定条件等を改めて検討する必要がある。

#### (5.4) 廃棄物処理の現状に関する分析

本試算結果では、建設リサイクル法レベルの分別・廃棄シナリオ I の場合、現状の通常のリサイクルのレベルを想定した分別・廃棄シナリオ II の場合、先進的なリサイクル技術を取り入れた分別・廃棄シナリオ III の場合の計算結果を比較すると、再資源化量では I、II、III の間で大きな差はなかった。②でも述べたが、量のみを指標とすると、先進的な技術を取り入れても、最終処分量等は大きく変わらず、現状レベルである程度のレベルに達しているともいえる。

ただし、全体の 90%程度を占めるコンクリート塊を例にとっても、現状のリサイクルは大半が路盤材等への利用に負っているが、路盤材としての利用先の受入量が今後も現状と同様のまま推移するとは考えにくく、新たなリサイクル手段の開発の必要性が求められているなど、あくまで現状の値であることに注意が必要である。

建築物のように長期にわたって供用するものについて評価を行うため、新築時での評価結果は、あくまで試算にすぎない。技術や社会状況の変化等により、ツールのデータを更新する等の対応が必要である。

## 2.2.8 今後の課題

ここでは、積算標準書式ベースの LCW 算出ツールを開発し、建築物のライフサイクルを通じた投入資材、発生廃棄物の物量を精緻に把握するための算定標準を提案した。この成果は、BEAT-BI dg における環境負荷算出 (特に材料製造に伴う  $CO_2$  排出量及び廃棄物排出量) の基礎となるデータを提供するとともに、将来的には建築物のより合理的な資源・廃棄物管理等に活用されることが期待される。

ただし、現在のデータシートについては、物量把握に係るデータを優先したため、要管理物質等の情報が未収録となっており、また、物量データに関しても、精度向上のため随時実態に即した更新が必要である。今後、データのメンテナンスを含めた継続的な取り組みが求められる。

また、現時点ではモデル建築物による試算のみであるが、数多くのLCW算出事例を収集・蓄積することにより、LCW評価データベース(レファレンス)構築を行うことを考えている。既に、Web 版のプログラム開発を終えており、近く公開を予定している。

#### 参考文献

- 1)「LCZeroemi 評価ツール」、(社)建築業協会ゼロエミ研究会、2004年8月
- 2)「建物のLCA 指針」、(社)日本建築学会、2006 年 11 月
- 3)「建築コスト情報」、(財)建設物価調査会、2005年冬号
- 4)「建設物価」、(財)建設物価調査会、2005年12月号
- 5)「平成17年版建築物のライフサイクルコスト」、(財)建築保全センター、2005年9月

| -80- |  |  |
|------|--|--|
|      |  |  |
|      |  |  |