簡素型ITSスポットの 実現に向けた取り組み

道路交通研究部 高度道路交通システム研究室

主任研究官 鈴木 彰一 研究官 田中 良寛 ^{室長} 牧野 浩志 交流研究員 佐治 秀剛

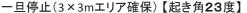
(キーワード) 簡素型ITSスポット、ETC2.0、電界強度分布

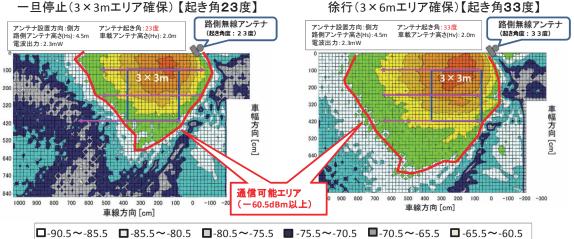
1. はじめに

国土交通省では、渋滞の緩和、交通安全の向上等 を目的として、全国の高速道路本線上を中心に路車 間通信用の無線アンテナ(ITSスポット)を設置し、 ETC2.0サービスの提供を行っている。また、ITSスポ ットでは、道路交通情報の提供のみならず、走行履 歴等の情報(アップリンク情報)を抽出・収集し、 道路交通関連の分析に活用することが可能である。

国総研では、ETC2.0対応カーナビの普及、アップ リンク情報収集量の拡大等を図る観点からアップリ ンク情報を産学官で連携して活用するサービスを開 発・普及展開するための方策を検討している。本稿 では、港湾・物流拠点等の路外施設への設置を想定 した簡素型のITSスポット(以下、「簡素型ITSスポ ット」という。) の機器仕様を検討するために、実 施した検証実験について報告する。

2. 簡素型ITSスポットの特徴


ノンストップで通信を行う従来型ITSスポットと は異なり、スポット通過時に一旦停止、および徐行 する車両と通信を行うことを想定し、無線通信エリ アを車両1台分に縮小する。その際に、無線局申請の 簡素化を念頭に、従来の無線出力(70mW)に対して、 5mW程度まで低下させることを目標とした。


3. 計測結果

国総研試験走路上のITSスポットの電波出力や設 置高等を変化させ、電界強度分布を計測した。計測 した電界強度分布を図に示す。出力を2.3mWまで低下 させても、アンテナ起き角が23度の場合は、車両1 台分と想定する3×3mの通信エリアが確保でき、対 象車両が一旦停止する場合ではサービスが可能であ ることを確認した。また徐行時の速度を20km/h、 ETC2.0サービスの通信処理時間を1秒と仮定すると、 進行方向におよそ6mの通信エリアが必要となる。図 に示す通り、アンテナ起き角が33度の場合、出力 2.3mWでも3×6mの通信エリアが確保でき、徐行時で のサービスが可能であることを確認した。

4. おわりに

本検証実験では、従来のITSスポットの電波出力を 低下させた計測を行った。今後は、運用条件につい ても簡素化を図るため、必要機能を抽出し、簡素型 ITSスポット実験機を作成し、機能・性能の検証実験 を実施する必要があると考えている。

□-60.5~-55.5 **□**-55.5~-50.5 **□**-50.5~-45.5 **□**-45.5~-40.5 **□**-40.5~-35.5 **□**-35.5~-30.5 電界強度分布(単位:dBm)