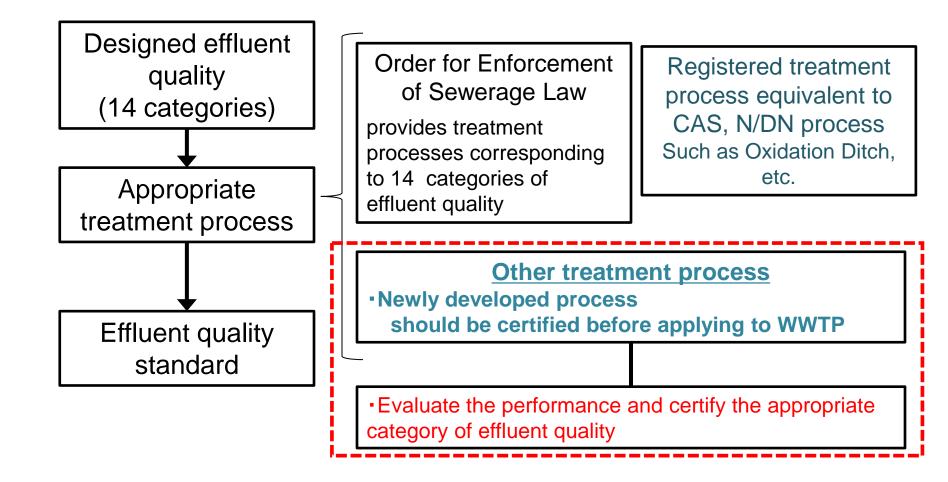


Introduction of Water Quality Control Department

June 10, 2016
Water Quality Control Department
NILIM

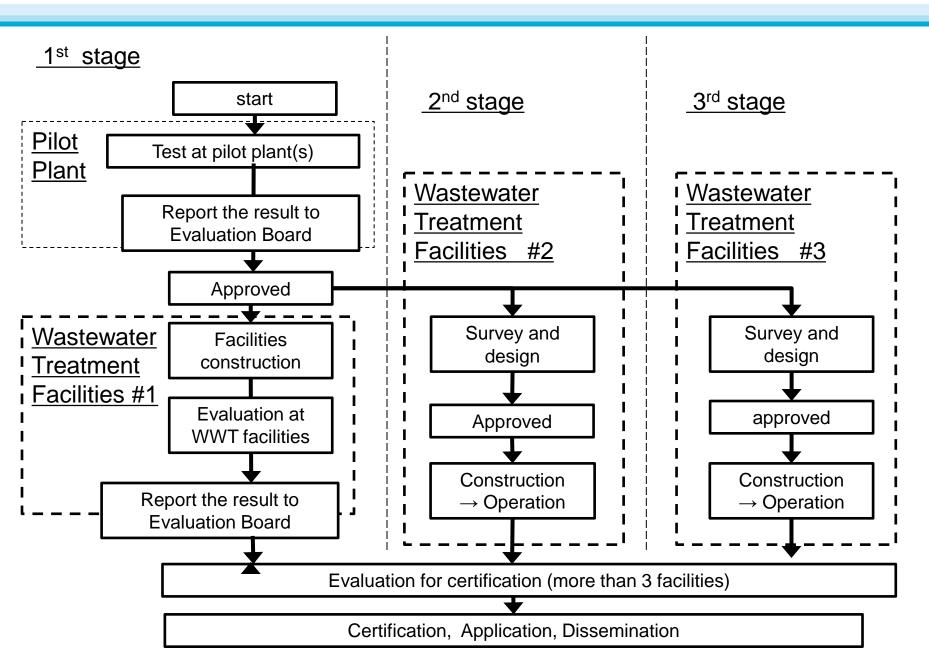

Water Quality Control Department

- Research Coordinator for Water Quality Control
- Research Coordinator for Wastewater System Restoration
- Researching technical standards and management methods for sewerage facilities
 - Wastewater System Division
 - Stock management
 - Earthquake countermeasures for wastewater facilities
 - System planning at a lower cost
 - Wastewater and Sludge Management Division
 - Utilization of resources, energy and stocks of wastewater system
 - Improving hygienic safety
 - Global warming measures for wastewater system

Certification of wastewater treatment process

 Schematic of effluent quality standard on Japanese Sewerage Law

Treatment processes corresponding to 14 categories of effluent quality standard


Effluent Water Quality Standard for Wastewater Treatment Plant

рН	Coliform	SS	BOD	Total	Total	Treatment Process			
2000000	group	(mg/L)	(mg/L)	Nitrogen	Phosphorus	Main	Addition for	Additoion for	Particulate
	(CFU/mL)	=======================================		(mg/L)	(mg/L)		Denitrification	Phosphorus removal	matter removal
					≤0.5	A ² /O process	Carbon source	Chemical	Sand filtration
					>0.5	_			
					≤1	N/DN process	Carbon source	Chemical	Sand filtration
				≤10	>1				
					≤3	A ² /O process	Carbon source		Sand filtration
					=	-			
						N/DN process	Carbon source		Sand filtration
					≤1	A ² /O process		Chemical	Sand filtration
			≤10			N/DN process		Chemical	Sand filtration
≥5.8	≤3,000	≤40		>10	>1				
≤8.6	M PRESENTATIVO	27 14/37/400		≤20	≤3	A ² /O process			Sand filtration
					-				
						N/DN process			Sand filtration
					≤1	A ² /O process		Chemical	Sand filtration
						A/O process		Chemical	Sand filtration
				N=	>1	A ² /O process			Sand filtration
					≤3	A/O process			Sand filtration
					E	CAS process			Sand filtration
					≤3	N/DN process		Chemical	
				≤20		A ² /O process			
			>10		-				
			≤15		C Seast	N/DN process			
					≤3	A ² /O process			
				N .D)		A/O process			
					-	CAS process			

N/DN process: Circulated nitrification & denitrification process CAS process: Conventional activated sludge process

Flowchart of evaluation and certification

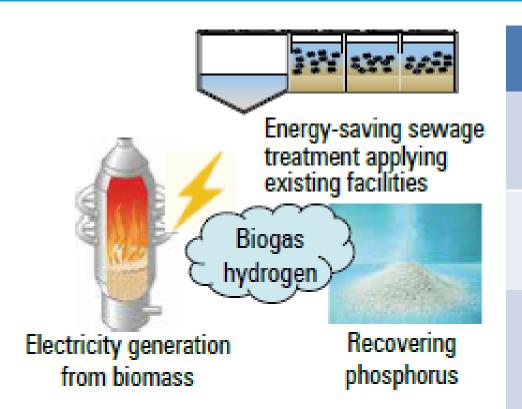
B-DASH Project

■ MLIT conducts the new technology development project (2011~)

B-DASH -- Breakthrough by Dynamic Approach in Sewage High technology

- Accelerate the government-led development of new technology and its practical application
 - by promoting technical validation through installation of actual size plants and by formulating guidelines.
 - To support overseas expansion of water business by Japanese companies
- Achieving cost reduction in the sewerage projects and generation of renewable energy

Dissemination Strategies of B-DASH Technologies



- ➤ Publishing Technical Guideline on each developed technology
- Technical advise from MLIT to municipality governments for development of effective energy use in sewage works
- ➤ Describing the developed technology to Design Manual on Sewerage System

- Promoting cost reduction, energy saving and energy generation by dissemination of the technologies in Japan
- Supporting world water-business by reflecting to international standards etc.

The concept and the collaborators of B-DASH National Institute for Land and Infrastructure Management

Major cities and prefectures in B-DASH project

Ikeda City, Wakayama City Electricity generation from biomass (from 2013 fiscal year)

> Fukuoka City Hydrogen generation (from 2014 fiscal year)

Kochi City and prefectures of Saitama, Ibaraki, & Fukuoka Energy-saving sewage treatment (from 2014 fiscal year)

Saga City
CO₂ recovery from bio-gas and exploitable algae cultivation
(from 2015 fy)

Fukui City and Toyama City
Rainfall prediction and flood control for
urban storm
(from 2015 fy)