

MILAN, ITALY 30th JUNE - 5th JULY 2024

www.wcee2024.it

SDM8/9 - THEORY, MEASUREMENT AND MODELLING OF DAMPING FOR SEISMIC RESPONSE ANALYSIS OF LARGE-SCALE STRUCTURES

MONITOR 24

IDENTIFICATION OF DYNAMIC CHARACTERISTICS FOR STEEL ARCH BRIDGE BY SEISMIC OBSERVATION RECORDS

ISHII Yosuke¹, NAKAO Yoshihiro² and SHOJI Gaku³

¹Earthquake Disaster Management Division, NILIM, MLIT, Japan, Ph. D. (Eng.)

²Head of Earthquake Disaster Management Division, NILIM, MLIT, Japan (At the time of the research)

³Professor, Faculty of Engineering, Information and Systems, University of Tsukuba, Japan, Dr. Eng

Introduction; Structural characteristics of bridges

- > A bridge is a composite structural system consisting of members such as girders, piers, foundations, and the ground.
- Road bridge models are complex due to the inclusion of various elements.
 - Bridge structure-ground system includes various natural frequencies, damping characteristics, and boundary conditions.

- Road bridges are affected by stationary external forces such as traffic vibrations and unsteady external forces such as seismic ground motion.
- > The vibration phenomenon (input-output relationship) of road bridges is difficult to quantitatively understand.
- Vibration of road bridges is excited by the characteristics of external forces.
- ✓ Need to understand vibration characteristics of bridges by vibration observation.

Introduction; Research framework

MILAN, ITALY 30th JUNE - 5th JULY 2024

www.wcee2024.it

Identification of vibration mode of target bridge by combining multiple methods

Strong Motion Monitoring System

www.wcee2024.it

→Y. Ishii, Y. Nakao, G. Shoji: Estimation of vibration characteristics for a bridge-underground system by subspace model identification method using multi-point monitoring seismic records, EVACES 2023, LNCE, volume 433, pp. 479–489, 2023.

- Transmission of observation data by wireless communication.
- > The seismometer is always working. \rightarrow SMMS enables continuous vibration observation.

Case study of SMMS for applying a bridge

MII AN

MILAN, ITALY 30th JUNE - 5th JULY 2024

Case study of SMMS for applying a bridge

7

- ➢ Observation of earthquake off the coast of Fukushima Prefecture on March 16, 2022
 → Seismic intensity of about 2 on the target bridge
- > The waveform was cut out 30 seconds from the start of the earthquake and 50 seconds from the end of the earthquake.

Fourier Spectral Ratio for the LG direction

18TH WORLD CONFERENCE ON EARTHOUAK

MILAN, ITALY 30th JUNE - 5th JULY 2024

Fourier Spectral Ratio for the TR direction

MILAN, ITALY 30th JUNE - 5th JULY 2024

www.wcee2024.it

Ground surface - girder

MII AN

A1 abutment base - girder

A2 abutment base - girder

Fourier Spectral Ratio for the Vertical direction

18TH WORLD CONFERENCE ON FARTHOLIAK

MII AN

MILAN, ITALY 30th JUNE - 5th JULY 2024

System identification based on the subspace method

- The Ordinary MOESP method; Ordinary Multi variable Output-Error State sPace method using input and output was proposed by Verhaegen *et al.* (1992).
- The SSI-COV method; COVariance-driven Stochastic Subspace Identification method, which performs identification calculations using only output, was developed by Peeters (2000).

 \geq

Case study of SMMS for applying a bridge

www.wcee2024.it

We estimated the natural frequency and damping characteristics of the bridge using both Ordinary MOESP and SSI-COV.

System identification flow

		•		
Classification	Item description	CASE1	CASE2	
System identification $(1)^{\sim}(4)$	Technique	SSI-COV	Ordinary MOESP	
	Time interval∆t	0.025 s	0.025 s	
	Number of inputs	-	2 points under the pier	
	Number of outputs	2 points under the pier 3 points on pier top 5 points girder parts 1 point surface	3 points on pier top 5 points girder parts	
	Number of samples N	4800 (120s)	4800 (120s)	
	Number of block lines M	100 (5.0s)	100 (5.05)	
Complex eigenvalue extraction (5)	System order maximum n	100	100	
	System order Minimum n	20	20	
	Natural frequency Stability judgment threshold ε_f	0.01	0.01	
	Mode shape Stable judgment threshold ε ψ	0.02	0.02	
	Upper limit of attenuation h_{max}	0.4	0.4	
Clustering (6)	Technique	Hierarchical clustering (group average method)		

No input Abutment base input

 \geq

System Identification Results for Arch Bridge

Stabilization diagram (top) and number of data (bottom)

Natural frequencies evaluated were around 1.20/1.21Hz, 2.21/2.23Hz, and 2.67Hz.

MILAN, ITALY 30TH JUNE - 5TH JULY 2024

13

www.wcee2024.it

 \star : When there is a correlation between the natural frequency and the eigenvector

× : When there is a correlation only

When there is no correlation but the calculated natural frequency

Natural frequency 2.67Hz,

Natural frequency 2.23Hz,

Vibration mode of SSI-COV system identification for the TR direction

- The 1.21Hz vibration mode estimated by system identification is exerted in the bridge TR direction.
 Matches the dominant frequency in the bridge TR direction.
- Also matches the vibration mode obtained from the eigenvalue analysis of the target bridge.

Vibration mode of SSI-COV system identification for the vertical direction

- The 2.67Hz vibration mode estimated by system identification is exerted in the vertical direction.
 Matches the dominant frequency in the vertical direction.
- > The center of the girder has a larger response than the other observation points
 - \rightarrow It is believed that this reflects the difference in response in the observation records.

Vibration mode of SSI-COV system identification for the LG direction

- \geq The vibration mode of 2.23Hz estimated by system identification is a mode in which the left and right pillars are in opposite phase toward the center, and is expressed in the bridge LG direction.
- The fact that a vibration mode appeared in the bridge LG direction is consistent with the dominant frequency. \geq

○Findings gained from the study

- The vertical observation records in the center of the arch structure showed particularly large accelerations and prominent peak amplitudes compared to other observation records.
- ✓ The vibration mode was evaluated by system identification in the TR direction and the vertical direction.
- ✓ The vibration mode in the LG direction evaluated by system identification was a vibration mode that could not be expressed by the vibration mode obtained by eigenvalue analysis of the analysis model.
- ✓ The damping characteristics estimated by system identification need to be verified by model analysis.

IB^M WORLD CONFERENCE ON EARTHOUAKE ENGINEERING WCEEE2024 MILAN

MILAN, ITALY 30TH JUNE - 5TH JULY 2024

www.wcee2024.it

References

CEE2024 Strong Motion Monitoring System

18TH WORLD CONFERENCE ON EARTHOUAKE

ENGINEERING

MII AN

www.wcee2024.it

Receiver station Local ** Time synchronization signal Time synchronization signal Other signals Data acquisition signal Data acquisition signal Waveform data (one sensor) (one sensor) 126 007 015 048 66 001 018 088 57 018 018 018 Data (one sensor) Data (one sensor) **Recording device** Sensor Receiver **Cloud** server External generic service **Receive handler** NTP Compressed file Background processing (NICT) expansion Integral processing (Vibration animation) Map server CSV conversion (Geospatial Information Anomaly detection Authority of Japan) processing User Earthquake event Web server detection processing Browser (WEB script) WEB menu * User Setting * Data acquisition status Real time monitor Storage server * Earthquake event list Waveform download •••etc

Strong Motion Monitoring System

MILAN, ITALY 30th JUNE - 5th JULY 2024

www.wcee2024.it

Seismometer performance

Sensor type	Accelerometer
Measurement range	±10m/s ²
Resolution	1 mm/s²
Measuring axis	3 axes (2 horizontal directions, 1 vertical direction)
Observation method	24-hour continuous observation
Data transmission method	920MHz band wireless communication
Sampling frequency	100Hz
Waterproof performance	IP65
Weight	600g
Power supply	Battery

System Identification Results for Arch Bridge

www.wcee2024.it

Natural frequency and mode damping

SSI-COV: no input

Mode order	Natural frequency		Mode damping		Data
	f_{mean} (Hz)	$f_{\sigma}(\text{Hz})$	h_{mean} (%)	$h_{\sigma}(\%)$	<i>n</i> _c (-)
1	1.20	0.00	2.63	0.04	62
2	1.79	0.02	6.32	0.26	12
3	1.92	0.01	0.56	0.14	53
4	2.05	0.00	1.06	0.22	63
5	2.21	0.00	0.70	0.12	66
6	2.32	0.00	0.52	0.07	59
7	2.49	0.00	1.93	0.26	34
8	2.62	0.01	1.53	0.13	31
9	2.67	0.00	0.20	0.04	75
10	2.99	0.01	1.58	0.05	25
11	3.00	0.01	1.26	0.05	18
12	3.17	0.01	0.32	0.12	34
13	3.18	0.00	0.27	0.09	15
14	3.46	0.01	0.76	0.25	72
15	3.65	0.01	1.17	0.19	51

Ordinary MOESP: input of abutment base

Mode order	Natural frequency		Mode damping		Data
	f_{mean} (Hz)	f_{σ} (Hz)	h_{mean} (%)	$h_{\sigma}(\%)$	<i>n</i> _c (-)
1	0.31	0.01	6.68	1.45	11
2	1.21	0.00	0.39	0.03	73
3	2.23	0.03	2.40	0.59	124
4	2.33	0.00	0.63	0.03	66
5	2.49	0.00	1.28	0.46	13
6	2.67	0.02	0.29	0.14	110
7	2.85	0.01	1.31	0.14	12
8	3.17	0.01	0.59	0.14	19
9	3.29	0.01	4.46	0.63	22
10	3.44	0.01	0.93	0.05	17
11	3.45	0.00	0.63	0.10	22
12	3.48	0.00	1.16	0.09	11
13	4.02	0.01	0.94	0.66	31
14	4.07	0.00	0.27	0.03	12
15	4.09	0.01	0.66	0.03	31