戸建て住宅地の液状化対策における 格子状地中壁工法の適用に関する実験 報告書

2013年 4月

国土交通省国土技術政策総合研究所

1.	業	務の概要	_1-1
]	L.1.	業務の目的	_ 1-1
1	L.2.	業務内容	_ 1-1
]	L.3.	格子状地中壁工法について	1-2
2.	実	<i>険計画書</i>	_2-1
2	2.1.	検討方針	2-1
5	2.2	実験に使用する砂の仕様と室内試験項目	 2-4
ç	<u></u> . २ २	実験ケースと実験条件	 2-6
4	2.0. D 4	入力地電波	0
- -	۵.4. ص	八八地辰似	_ 2-9
З.	天橋	映条件設定のためのFEM	_3-1
ć	3.1.	3 軸液状化試験	_ 3-1
ç	3.2.	実験条件設定のための FEM 解析	3-5
	3.2.	1. 解析コード MuDIAN	3-5
	3.2.	2. Case1(格子間隔 13m×13m、26m×13m、豊浦砂 Dr=50%, 70%)の予備解析	3-9
	3.2.	3. Case2(格子間隔 13m×13m、豊浦砂 Dr=50%)の予備解析	_3-12
	3.2.	4. Case3(格子間隔 32m×26m、豊浦砂 Dr=50%, Dr=70%)、Case4(格子間隔	
	32n	n×13m、浦安砂 D 値=90%, D 値=95%)、Case5(無対策)の予備解析	_3-16
	3.2.	5. Case4(格子間隔 32m×13m、部分締固め併用あり、浦安砂 D 値=90%, D 値=	95%)
	の	予備解析	_3-19
	3.2.	6. Case6(格子間隔 16m×13m、32m×13m、ドレーン柱併用あり、浦安砂 D 値=	90%,
	D 値	重=95%)の予備解析	_3-26
	3.2.	7. Case4(格子間隔 20m×10m、浦安砂 D 値=90%)の予備解析	
	(格-	子状地中壁の形状効果の検討)	_3-36
4.	試	験体地盤模型、格子状地中壁模型及び住宅基礎模型の製作	4-1
4	4 .1.	模型地盤と格子状地中壁模型の製作条件	4-1
4	4.2.	住宅模型の製作	4-4
	4.2.	1. 建物条件	4-4
	4.2.	2. モデル化	4-4
	4.2.	3. 模型の概要	4-5
4	4.3.	Case1(格子間隔 13m×13m、26m×13m、豊浦砂 Dr=50%, 70%)	4-7

4.4.	Case2(格子間隔 13m×13m、豊浦砂 Dr=50%)	4-8
4.5.	Case3(格子間隔 32m×26m、豊浦砂 Dr=50%, Dr=70%)	4-9
4.6.	Case4(格子間隔 32m×13m、部分締固め併用あり、浦安砂 D 値=90)%, D 値
=95%	%)	4-10
4.7.	Case5(無対策、浦安砂 D 値=90%, D 値=95%)	4-11
4.8.	Case6(格子間隔 16m×13m、32m×13m、ドレーン併用あり、浦安砂 I)值=90%,
D 値=	=95%)	4-12
4.9.	Case7(格子間隔 20m×10m、浦安砂 D 值=90%, D 值=95%、格子状	地中壁モ
デル	の想定 Fc=1.5N/mm², Fc=3.0N/mm²)	4-18
4.10.	. Case8(格子間隔 16m×13m、32m×13m、盛土 1m 併用あり、浦5	安砂 D 値
=90%	%, D 值=95%)	4-14
5. セ	ンサー類の配置計画	5-1
5.1.	計測器の配置	5-1
6. 遠	心力載荷装置による振動実験の実施	6-1
6.1.	計測結果	6-1
6.2.	入力地震動と加振実験終了後の模型地盤の状況	6-2
7. 実	験結果の表示用図表の作成	7-2
7.1.	実験結果の検討と考察	7-8
7.1	.1. 格子間隔による液状化抑制効果の確認	7-4
7.1	.2. 格子状地中壁と併用する副工法の効果	
		7-13

業務の概要

1.1. 業務の目的

東日本大震災では液状化被害を受けた住宅地のうち、東京湾岸埋立地など液状化層が比較的厚い地域においては、道路と宅地の一体的な液状化対策の工法選択に当たり、格子状地中壁工法が有力な選択肢のひとつと考えられるに至っているが、戸建住宅が建ち並ぶ街 区に対しては、これまでこの工法の適用例がない。

戸建て住宅地では、地中壁の位置を敷地の境界下に配せざるを得ないという制約から、 格子の間隔距離が長くならざるを得ないが、地盤条件によっては地中壁だけで液状化を十 分に抑制するには至らず、格子状に囲まれた宅地の中において付加的な対策工法の適用を 要する場合があるとともに、スロッシング現象に類似した宅地地盤の揺動が発生しないよ うにする対策の必要性についても、専門家から指摘されている。液状化被災市街地の復興 対策の促進のため、こうした問題の解決に向けた検討のための科学的データを早期に整備 する必要がある。

本業務は、格子状地中壁工法を戸建て住宅地に適用した場合に発生することが予測され る液状化抑制上の問題について、遠心力載荷装置を用いた実験により、住宅が建っている 格子内の地盤において発生する現象を実測し、所要のデータを取得するとともに、付加的 に講じる対策の効果を確認するものである。

1.2. 業務内容

本業務の構成は以下のとおりである。

- 1) 実験計画書の作成
- 2) 実験条件設定のための FEM 解析及び 3 軸液状化試験の実施
- 3) 試験体地盤模型、格子状地中壁模型及び住宅基礎模型の製作
- 4) センサー類の配置計画の作成
- 5) 遠心力載荷試験装置による振動実験の実施(計7回)
- 6) 実験結果の表示用図表の作成

1.3. 格子状地中壁工法について

図 1.3-1 に格子状地中壁工法のイメージを示す。格子状地中壁工法は、地盤中に注入したセメントミルクと土を混合することによって高強度の改良土(標準的な圧縮強度は 1.5N/mm²)で施工された壁を、平面的に見て格子状に配置することによって液状化を抑制 する工法である。

図 1.3・2 に示すように、緩い砂地盤に地震力のような大きな繰返しせん断力が作用する と、土粒子の骨格部分が縮まり、土粒子の間にある間隙水が圧縮されることによって過剰 間隙水圧が発生し、蓄積された過剰間隙水圧の大きさが、地震力が作用する前の鉛直有効 応力よりも大きくなると、土粒子の骨格を拘束している力がなくなり、まるで土が液体に 変わったような挙動を示す。

このようなメカニズムで発生する液状化を抑制する方法は、図 1.3-3 に示すように大き く分けて3つある。それは、①緩い砂地盤の密度を上げる、②大きなせん断力が地盤に作 用しないようにする、③発生した過剰間隙水圧が蓄積する前に消散させることである。

格子状地中壁工法は②の大きなせん断力が地盤に作用しないようにする方法に該当する。 そのメカニズムは、格子状に配置した高強度の改良壁の方に地震力の大部分が作用するた めに、格子状地中壁に囲まれた地盤に作用する地震力が小さくなり、液状化の発生が抑制 される。この効果は、格子間隔が狭いほど高くなる。

しかし、既設宅地と道路を一体として液状化対策をする場合には、既設住宅の下に格子 状地中壁を構築できないという制約を受けるために、格子間隔が広くならざるを得なくな り、そのために格子状地中壁の液状化抑制効果を遠心模型振動実験で調べる必要がある。

図 1.3-1 格子状地中壁工法のイメージ

図 1.3-2 砂地盤が液状化する仕組み

図 1.3-3 格子状地中壁工法が液状化を防止するメカニズム

2. 実験計画書

2.1. 検討方針

実験を実施するにあたり実験計画書を作成した。

実験装置については、竹中技術研究所(千葉県印西市大塚 1-5-1)の遠心実験装置を用いて 実験を実施する。図 2.1-1 は竹中技術研究所の遠心実験装置の全景写真である。表 2.1-1 は同遠心実験装置の仕様であり、東北太平洋沖地震時に K-net 浦安波で観測された地震波 を再現した加振実験を行う能力を有している。

図 2.1-1 竹中技術研究所の遠心実験装置全景

	<u> 地名</u> 65	200G (2ton搭載時)		
	194 U U	100G (2ton搭載時)		
谷 里	動 的 (予測目標)	100G(5ton搭載時)		
_+ 注	有効半径	6.5m		
	モデル用空間	W2.0m×D2.0m×H1.0m		
	モデル内法寸法	W1. Om $ imes$ D1. Om $ imes$ H0. 5m		
振動実験	最大周波数	200Hz		
(予測目標)	最大水平加速度	60G		
	最大遠心加速度	100G		
計測(音十)	スリップリング	200極		
司 例 (取 八)	サンプリング速度	10,000点/sec./測点		
高速度ビデオ		1,000⊐マ/sec.		

表 2.1-1 竹中技術研究所の遠心実験装置仕様

遠心模型振動実験は 60G 場で行う。模型地盤は、表 2.1-2 に示す 2 種類のせん断土槽を 実験の目的に応じて使い分ける。土槽 1 の高さは低いが(60G 場の実験で実スケール換算 13.8m)、平面的に広い(60G 場の実験で実スケール換算 48m(加振方向)×31.8m(加振直交 方向))特徴があり、1 度に 4 軒の宅地(1 宅地 13m×13m)をモデル化できる。土槽 2 の奥行 きは狭いが(60G 場の実験で実スケール換算 18m)、高さが高い(60G 場の実験で実スケー ル換算 20.4m)特徴がある。

模型地盤の飽和には、実スケール換算での透水係数の相似則を満足できるように、表 2.1-3 に示す粘性のあるシリコンオイル(信越シリコン製、KF-96-50CS)を用いる。

図 2.1-2 に業務の検討フローを示す。遠心模型振動実験の実験条件を決めるための解析 は、解析コード(MuDIAN)を用いた3次元有効応力解析で実施する。

模型地盤の作成に使用する砂は、目的に応じて豊浦砂と浦安市で採取する試料を使い分 ける。

業務の打合せは、①業務着手時、②遠心実験の実施時、③報告書の報告時とする。

十埔	它古	カイゴ	内寸()内は60G場での実スケール		外寸(最大)			頭部の最大	
工作	于 具	212	幅(mm)	奥行き(mm)	高さ(mm)	幅(mm)	奥行き(mm)	高さ(mm)	変位 (mm)
1		せん断土槽	800 (48m)	530 (31.8m)	230 (13.8m)	880	580	235	40
2		せん断土槽	1000 (60m)	300 (18m)	340 (20.4m)	1050	350	350	50

表 2.1-2 せん断土槽の仕様一覧

表 2.1-3 シリコンオイルの性能

製品名	外観	動粘度 25°C mm²/s	比 重 25°C	揮発分 150°C/24時間 (%)	粘度温度係数 V.T.C ^{*1}	屈 折 率 25℃	流動点 (°C)
KF-96L-0.65cs	無色透明液体	0.65	0.760	B.P100°C	0.31	1.375	-75以下
KF-96L-1cs	無色透明液体	1.0	0.818	B.P153°C	0.37	1.382	-100以下
KF-96L-1.5cs	無色透明液体	1.5	0.852	B.P194°C	0.46	1.387	-90以下
KF-96L-2cs	無色透明液体	2.0	0.873	B.P229°C	0.48	1.391	-120以下
KF-96L-5cs	無色透明液体	5.0	0.915	40以下(105°C/3h)	0.54	1.396	-110以下
KF-96A-6cs	無色透明液体	6.0	0.925	5.0以下(105°C/3h)	0.54	1.397	-100以下
KF-96-10cs	無色透明液体	10	0.935	40以下	0.55	1.399	-100以下
KF-96-20cs	無色透明液体	20	0.950	4.0以下	0.57	1.400	-60以下
KE-96-30cs		30	0.955	1.5以下	0.58	1.401	-55以下
KF-96-50cs	無色透明液体	50	0.960	0.5以下	0.59	1.402	-50以下
KF-96-100cs	無色透明液体	100	0.965	0.5以下	0.59	1.403	-50以下
KF-96-200cs	無色透明液体	200	0.970	0.5以下	0.60	1.403	-50以下
KF-96-300cs	無色透明液体	300	0.970	0.5以下	0.60	1.403	-50以下
KF-96-350cs	無色透明液体	350	0.970	0.5以下	0.60	1.403	-50以下
KF-96-500cs	無色透明液体	500	0.970	0.5以下	0.60	1.403	-50以下
KF-96-1,000cs	無色透明液体	1,000	0.970	0.5以下	0.60	1.403	-50以下
KF-96-3,000cs	無色透明液体	3,000	0.970	0.5以下	0.60	1.403	-50以下

図 2.1-2 検討フロー

2.2. 実験に使用する砂の仕様と室内試験項目

表 2.2-1 には、遠心実験の目的に応じて使用する砂の種類を示している。格子状地中壁 工法の液状化抑制メカニズムの検討を主たる目的とした実験ケースでは、液状化検討の実 験で一般的に用いられている豊浦砂を使用する。また、東日本大震災で被災した地域への 格子状地中壁工法を適用するために、必要な格子間隔を検討することを主たる目的とした 実験ケースでは、図 2.2-1 に示す集積場所に保管されている、東日本大震災時に浦安市で 発生した墳砂を粒度調整して用いる。

公 2.2 I 还怕快生地盖?/T从飞伏/T/300%/性效				
遠心実験の目的	使用する砂			
格子状地中壁の液状化抑制メカニズムの検討	豊浦砂			
東日本大震災で被災した地域への適用のため	東日本大震災時に浦安市で発生した			
の仕様の検討	墳砂を粒度調整した試料			

表 2.2-1 遠心模型地盤の作成で使用する砂の種類

図 2.2-1 東日本大震災で発生した浦安市の墳砂集積場所

採取した墳砂に対して、表 2.1-1 に示す土質試験項目を実施する。突固めによる土の締 固め試験結果から、目標とする3密度を設定し、その密度に対して動的変形試験・液状化 試験・CD 試験を実施する。目標とする3密度には幅を持たせ、遠心模型実験で作成する 地盤条件の変化に対応できるようにする。

土質試験項目	試験数
土粒子の密度試験	1
土の粒度試験	1
突固めによる土の締固め試験	1
地盤材料の変形特性を求めるための繰返し三	3(密度)
軸試験(動的変形試験)	
土の繰返し非排水三軸試験(液状化試験)	3(密度)
土の三軸圧縮試験(CD 試験)	3(密度)
土の透水試験	3(密度)
砂の最小密度・最大密度試験	1

表 2.2-2 土質試験項目の一覧

2.3. 実験ケースと実験条件

表 2.3-1 と表 2.3-2 に実験条件と模型の平面図・断面図を示す。計測は間隙水圧・加速 度・鉛直変位・土圧に対して行う。

実験	使用土槽	模型地盤	実験目的	
ケース名				
			格子間隔 13m×13m、格子間隔	
Case1	土槽 1	豊浦砂	26m×13m の格子状地中壁の液	
			状化抑制効果検討	
0	上 / # 1	曲述功	格子状地中壁のスロッシング現	
Case2	工作[1	豆佣砂	象検討	
()	上捕る	曲述功	格子間隔 32m×26m の格子状地	
Case3	工作2	豆佣砂	中壁の液状化抑制効果検討	
			格子間隔 32m×13m の格子状地	
Case4	土槽 2	浦安採取試料	中壁の液状化抑制効果と部分締	
			固め効果の検討	
	土槽 2		無対策での家と地盤に発生する	
Case5		浦安採取試料	沈下量と、地盤の液状化発生程度	
			の検討	
	土槽 2	浦安採取試料	格子間隔 16m×13m、格子間隔	
Casef			32m×13m の格子状地中壁の液	
Caseo			状化抑制効果と、ドレーンを用い	
			た追加対策の効果検討	
			格子間隔 20m×10m の格子状地	
$C_{a} = 7$	土槽 2	浦空河西封約	中壁の加振方向に対する液状化	
Case7		佣女抓取科科	抑制効果と、改良壁のせん断剛性	
			と液状化抑制効果の検討	
			格子間隔 16m×13m、格子間隔	
			32m×13m の格子状地中壁の液	
Case8	土槽 2	浦安採取試料	状化抑制効果と、格子間隔 16m	
			×13m+盛土 1m を用いた追加	
			対策の効果検討	

表 2.3-1 実験ケース一覧

表 2.3-2 各実験ケースの模型平面図と断面図(1/2)

	X 2.55 日天候/ 八0/快至十回因と时回因(212)					
実験ケース名	遠心模型の平面図	遠心模型の断面図				
Case5	(0.5m) (0.5m)	1335 (7.0m) (8.0m) (2.0m) (8.0m) (4.0m) (8.0m) (8				
Case6	(0.5m) (0.5	H→21 Back 172:0120000 0 0000 0 0000 1100.0001 0 0000 -1100.0001 -110000 -1100.0001 -110000 -234 -110000 0 0000 -110000 -234 -110000 0 0000 -110000 -234 -110000 -234 -110000 -234 -110000 -234 -110000 -234 -110000 -234 -110000 -234 -110000 -234 -110000 -234 -110000 -234 -110000 -234 -110000 -234 -110000 -234 -110000 -234 -1100000 -234 -110000 -234 -110000 -234 -110000 -234 -110000				
Case7	83 (210m) (20m) (20m) (100m) (100m) (110m) (100	15 430 15 また大田 -193				
Case8	108 132 33 133 67 100 (5m) (5m) (5m) (5m) (5m) (5m) (5m) (5m) (5m) (5m) (110m) (110m) (5m) (5m) (5m) (5m) (5m) (110m) (110m) (5m) (5m) (5m) (5m) (5m) (2m) (5m) (5m) (5m) (5m) (5m) (5m) (5m) (5	#rx#				

表 2.3-3 各実験ケースの模型平面図と断面図(2/2)

2.4. 入力地震波

表 2.4-1 と図 2.4-1 から図 2.4-5 に示す地震波を、実験目的に応じて用いる。

表 2.4-1 遠心模型振動実験で使用する地震波

地震波	特徵
K-NET 浦安観測波 ¹⁾	東日本大震災での地表の観測波(観測最大加速度 157gal)
EW 成分	
夢の島観測波 ²⁾	東日本大震災での基盤観測波を、浦安モデル地盤の工学的基盤に引
EW 成分	き上げた地震波(最大加速度 108gal)の振幅を 1.4 倍
JR 鷹取駅観測波 ³⁾	阪神大震災での観測波(観測最大加速度 641gal)
NS 成分	
東京湾北部地震	東京湾北部地震を想定した模擬地震波(最大加速度)
sin 波	2Hz の正弦波 20 波

図 2.4-1 K-NET 浦安観測波 EW 成分(実験での加振は 150 秒まで)

図 2.4-2 JR 鷹取駅観測波 NS 成分(実験での加振は 40 秒まで)

地震記録の出典

1) 独立行政法人防災科学技術研究所 強震観測網(K-NET, KiK-net), http://www.kyoshin.bosai.go.jp/kyoshin/

2) 東京都港湾局:港湾局地震観測所で観測した地震動について

http://www.kouwan.metro.tokyo.jp/business/kisojoho/jishindou.html

3) 中村豊,上半文昭,井上英司:1995年兵庫県南部地震の地震動記録波形と分析(II), JR 地震情報 No.23d, 財団法人 鉄道総合技術研究所ユレダス開発推進部,1996,3.

3. 実験条件設定のための FEM 解析及び 3 軸液状化試験の実施

3.1. 3 軸液状化試験

浦安市の「液状化対策実現可能性技術検討委員会」で用いられたモデル地盤の地盤条件 に合わせて、遠心模型振動実験の模型地盤を作成するために、東日本大震災時に浦安市で 発生した墳砂の粒度調整状況と室内土質試験結果を図 3.1-1~図 3.1-4 と表 3.1-3 に示す。

図 3.1-5 と図 3.1-6 に示すのは、FEM 解析に必要なパラメータを設定するために行った、繰返し三軸試験のシミュレーション結果である。

図 3.1-1 東日本大震災時に浦安市で発生した墳砂の試料採取と粒度調整状況

₩5-4℃(通貨重量	百分率(%)
私1全(mm)	採取試料	遠心実験用調整試料
2	100	100
0.85	98.9	99.3
0.425	96.9	97.4
0.25	88.1	86.7
0.106	49.8	37.5
0.075	34.9	24.7
0.054	19.7	15.3
0.0387	13.5	11.3
0.0247	9.8	8.9
0.0144	7.4	6.4
0.0102	6.1	4.8
0.00722	4.9	3.2
0.00362	3.7	1.6
0.00148	2.5	0.8

図 3.1-2 採取試料と粒度調整した試料の粒度分布

		採取試料	遠心実験用 調整試料
	石分 (75 µ 以上) %	0	0
	礫分(2~75mm) %	0	0
	砂分(0.075~2mm) %	65.1	75.3
粒度	シルト分 (0.005~0.075mm) %	30.7	22.6
	粘土分(0.005mm未満)%	4.2	2.1
	最大粒径 mm	2	2
	均等係数 Uc	5.19	4.74
土粒子の	D密度 ρ s g/cm ³	_	2.686
自然含7	K比 w (%)	20.5	-
最小間隙	象比 e _{min}	_	0.761
最大間隙	泉比 e _{max}	_	1.333

表 3.1-1 土質試験結果

図 3.1-3 粒度調整した浦安砂の動的変形試験結果

D値	三軸圧縮試	透水係数	
	内部摩擦角(度)	粘着力(kPa)	(m / sec)
90%	34.2	4.8	1.67E-05
95%	34.8	18.2	9.05E-06
100%	36.6	29.1	7.06E-06

表 3.1-2 粒度調整した浦安砂の三軸圧縮試験(CD 試験)と透水試験結果

図 3.1-4 粒度調整した浦安砂の三軸液状化試験結果

	応力比	片振幅軸歪み ε_{a} (%)		
	$\sigma d / 2 \sigma c'$	0.50	1.00	2.50
	0.157	54	55	57
□/茴00₩	0.174	19	20	22
D1090%	0.189	13	14	15
	0.213	5.5	6.5	8
D値95%	0.237	31	37	41
	0.265	14	18	22
	0.294	6	11	15
	0.321	4	7.5	11
D値100%	0.321	3.8	57	69
	0.368	8	19	30
	0.422	3	10	19
	0.482	0.7	2	7.5

表 3.1-3 粒度調整した浦安砂の三軸液状化試験結果

図 3.1-6 予備解析でのパラメータ設定のための三軸液状化試験シミュレーション結果(豊浦砂)

3.2. 実験条件設定のための FEM 解析

遠心模型振動実験で用いる入力地震動の大きさ、格子状地中壁の効果の予測を主な目的 とした予備解析を、解析コード MuDIAN を用いた3次元有効応力解析で実施した。

3.2.1. 解析コード MuDIAN

解析コードMuDIAN (Multi-phase Dynamic Interacton Analysis)は、Walse大学 Swansea校で1982に年開発されたDIANA-Gを元にし、日英産学協同のDIANAプロジェクト(川井忠彦東京大学名誉教授をリーダーとするマルチクライアント型の開発プロジェクト、1984年~1987年)で、1987年にDIANA-Jとして公表されたプログラムを(株)竹中 工務店が地盤の液状化を考慮することの出来る2次元・3次元汎用有限要素法プログラム として改良したものである。静的解析、圧密解析、周波数応答解析、地震応答解析に対応 している。支配方程式は、uU、up、upSの3つの定式化を選択することが出来る。uUは、 土骨格と地下水の変位を未知数、upは、土骨格の変位と地下水の圧力を未知数、upSは、 それに飽和度を加えた未知数を用いている。液状化に関しては、1984年以来様々な地盤工 学会の委員会やプロジェクトのベンチマークテストに参加してきている。1993年には遠心 載荷装置による液状化試験に対する事前予測解析プロジェクトVELACSに参加し、実験結 果や他の海外のソフトとの比較を発表している。

液状化を表すこととの出来る構成式としては、Pastor-Zienkiewiczモデル、 Densificationモデル、Multi-mechanismモデルなど複数の構成式を有している。

簡易なメッシュ作成と豊富な図化機能をもつプリポストプログラムを有する。また動的 解析結果の可視化プログラムEODASと連携し、地震応答解析の分析を容易にしている。

修正Densificationモデル

検討で使用する構成式は修正Densificationモデルである。以下に修正Densificationモデ ルの概要を示す。

弾塑性論でひずみ増分 $d\varepsilon$ は弾性ひずみ増分 $d\varepsilon'$ と塑性ひずみ増分 $d\varepsilon'$ に分けられ、 (8.1) 式の形で表される。

$$d\varepsilon = d\varepsilon^e + d\varepsilon^p \tag{3.1}$$

Original Densificationモデルでは塑性ひずみ増分を塑性体積ひずみ増分と塑性せん断ひ ずみ増分に分解し

$$d\varepsilon^{p} = d\varepsilon_{v}^{p} + d\varepsilon_{s}^{p} \tag{3.2}$$

体積ひずみに対する硬化則とせん断ひずみに対する硬化則を独立して考えることにより、

土の構成式のパラメータが土質試験結果から直接求められる特徴がある。Original Densificationモデルではせん断ひずみに対する硬化則はMohr-Coulombモデルか、 Drucker-Pragerモデルを用いているが、いずれのモデルも完全弾塑性タイプで、応力が降 伏面に達するまで塑性せん断ひずみは発生しない。

土の応力-ひずみ関係では、応力が降伏面に到達する前に塑性せん断ひずみが発生して おり、この点もモデル化できるように降伏面はMohr-Coulomb面かDrucker-Prager面を使 用するが、応力が降伏面内にある時は下負荷面の考え方を取り入れるように修正した。

下負荷面モデルでは降伏面の内部に応力が存在する場合でも、常に現応力点を通って降 伏面と相似な形を保ちながら膨張・収縮する下負荷面を仮定(図 3.2-1参照)することによ って、降伏面の内部でも塑性ひずみの発生を考慮することができる。また相似中心*s*が移 動することによってある程度Masing則が満足される。以下に塑性せん断ひずみと塑性体積 ひずみの硬化則について述べる。

図 3.2-1 降伏関数の概念図

I. 塑性せん断ひずみに対する硬化則

塑性せん断ひずみの計算は関連流れ則による。降伏関数とポテンシャル関数 f に角度 $\phi=0$ としたMohr – Coulomb面かDrucker-Prager面を下負荷面として用いる。

下負荷面上の応力を求めるためには弾塑性剛性マトリックスが必要で、弾塑性剛性マト リックスを設定するために必要な塑性係数の誘導を以下に述べる。

図 3.2-1に示す主応力空間上で降伏面の大きさをF,降伏面と下負荷面の相似比をRとし、下負荷面上の応力を $\overline{\sigma}$ とすると

$$f\left(\overline{\sigma}\right) = R \cdot F \tag{3.3}$$

で表され、(3.3)式を微分すると

$$tr\left(\frac{\partial f}{\partial \overline{\sigma}} \cdot d\overline{\sigma}\right) = R \cdot \dot{F} + \dot{R} \cdot F \tag{3.4}$$

 $\dot{F} = 0 \downarrow \emptyset$

$$tr(\frac{\partial f}{\partial \overline{\sigma}} \cdot d\overline{\sigma}) = \dot{R} \cdot F \tag{3.5}$$

$$\overline{\sigma} = \sigma - \overline{\alpha}$$

$$= \sigma - (1 - R) \cdot s$$
(3.6)

(8.6)式を増分形で書くと

$$d\overline{\sigma} = d\sigma - (1 - R) \cdot ds + \dot{R} \cdot s \tag{3.7}$$

塑性負荷過程において下負荷面は降伏面に漸近する。つまり、Rは次の関係を満たして 単調に増大すると仮定する。

$$R=0 : \dot{R}=+\infty 0 < R < 1: \dot{R} > 0 R=1 : \dot{R}=0, R>1 : \dot{R} < 0$$

ゆえに、塑性負荷過程におけるRの発展式は次式で与えられる

$$\begin{split} \dot{R} &= U(R) \cdot \left\| d\varepsilon_s^p \right\| \tag{3.8} \\ U &= - u \cdot \ln R \qquad u : \overset{\mathcal{N}}{\supset} \overset{\mathcal{I}}{\prec} - \overset{\mathcal{I}}{\not{\supset}} \qquad (3.9) \end{split}$$

(3.9)式で示される関数Uは図 3.2-2に示されるような単調減少関数を採用している。

図 3.2-2 関数Uの定義

R

Ⅱ. 塑性体積ひずみに対する硬化則

また、Original Densificationモデルでは塑性体積ひずみに対する硬化則に、土が受けた ダメージの程度を表す損傷パラメータ κ から自生体積ひずみ増分 $d\varepsilon_{v0}$ を計算する累積損傷 理論を採用しており、 $d\varepsilon_{v0}$ は(3.10)式で表される。

$$d\varepsilon_{v0} = -\frac{A}{1+B\cdot\kappa} \cdot d\kappa \qquad A, B: \stackrel{\circ}{\nearrow} \bar{\gamma} \not \to \not a \qquad (3.10)$$

(3.11)

 $d\kappa = e^{\gamma \theta} \cdot (\gamma \cdot \xi \cdot d\theta + d\xi)$ *と*:ひずみの 2 次不変量

$$\theta = \frac{\overline{\sigma}}{\sigma_{m0}}$$

(3.11)式で求まる自生体積ひずみは、損傷パラメータ κ の増加に伴って単調に増加する 量であるため、応力比 θ が変化しても、 $d\varepsilon_{v0}$ の量は変化するが符号は変わらないため、 密な砂で見られるある一定の応力比以上になると $d\varepsilon_{v0}$ の符号が変わり、載荷過程で有効応 力が回復するサイクリックモビリティ現象を表すことができない。そこで、サイクリック モビリティ現象を表せるように修正を行った。修正によりサイクリックモビリティ現象が 表わせている繰返しせん断試験のシミュレーション結果を、図 3.2-3と図 3.2-4に示す。

図 3.2-3 ストレスパスと応力ひずみ関係

3.2.2. Case1(格子間隔 13m×13m、26m×13m、豊浦砂 Dr=50%, 70%)の予備解析

図 3.2-5 に示す 3 次元解析モデルを用いて、表 3.2-1 に示すケースの解析を実施して格 子間隔 13m×13m、格子間隔 26m×13m の液状化防止効果について検討した。液状化層 は Dr=50%と Dr=70%の豊浦砂で、それぞれ修正 Densification モデルでモデル化してい る。

表 3.2-1 解析ケース

	入力地震動の最大加速度	格子間隔
CASE-1	180gal	未改良
CASE-2	180gal	13m, 26m
CASE-3	190gal	13m, 26m

図 3.2-6 CASE-1 未改良地盤の変形図(破線:初期、実線:変形後、変形スケール 1.0m)と 過剰間隙水圧比の最大値コンター図 (入力地震動の最大加速度 180gal)

図 3.2-7 CASE-2 格子間隔13m, 26mモデルの変形図(破線:初期、実線:変形後、変形スケ ール 1.0m)と過剰間隙水圧比の最大値コンター図 (入力地震動の最大加速度 180gal)

入力地震動 190gal

① 格子状改良地盤(図-10)でも部分的に液状化が発生しているが、格子 状改良地盤の効果で建屋の変形が抑制されている。

図 3.2-8 CASE-3 格子間隔13m, 26m モデルの変形図(破線:初期、実線:変形後、変形スケ ール 1.0m)と過剰間隙水圧比の最大値コンター図 (入力地震動の最大加速度 190gal)

	入力最大加速度 180gal				入力最大加速度 190gal		
	CASE-1 (未改良)		CASE-2(格子状改良)		CASE-3(格子状改良)		
	沈下量	傾斜角(1/1000)	沈下量	傾斜角(1/1000)	沈下量	傾斜角(1/1000)	
建屋 A	169.8	-19.3	6.0	0.3	26.2	2.5	
建屋 B	68.2	-17.0	0.5	-0.1	8.0	-2.0	
建屋 C	127.2	31.8	0.0	0.0	8.0	2.0	

表 3.2-2 建屋の沈下量と傾斜角

3.2.3. Case2(格子間隔 13m×13m、豊浦砂 Dr=50%)の予備解析

図 3.2-9 に示す 3 次元解析モデルを用いて、表 3.2-3 に示す解析を実施してスロッシン グ現象の予測検討を行った。得られた会席結果では、スロッシングのような現象は見られ ず、地下水位が低いと液状化による変形を抑制する効果も高いことが分かった。

図 3.2-9 Case2 の3次元解析モデル

表 3.2-3 解析ケース

	入力地震動	最大加速度		
CASE-2-1	sin波(2Hz20波)	100gal		
CASE-2-2	sin波(2Hz20波)	150gal		
CASE-2-3	sin波(2Hz20波)	200gal		
CASE-2-4	sin波(2Hz20波)	300gal		

0.50 0.45

0.40

0.35

0.10 0.05 0.00

1

± 0.30 〒 0.25 0.17 0.20 0.15

図 3.2-10 格子中央断面での変形図(変形スケール 0.2m)

図 3.2-11 格子中央断面での過剰間隙水圧比の最大値コンター図

	傾斜角 (1 / 1000)			沈下量		
	加振方向		加振直交方向		(mm)	
入力最大加速度	家(左)	家(右)	家(左)	家(右)	家(左)	家(右)
100gal	3.2	1.6	7.1	5.4	65.4	-10.8
150gal	2.8	2.2	8.1	6.5	75.3	52.7
200gal	4.2	1.2	8.6	8.0	82.6	58.2
300gal	8.0	-1.0	8.7	10.2	89.4	60.3

表 3.2-4 家の傾斜角と沈下量の一覧

3.2.4. Case3(格子間隔 32m×26m、豊浦砂 Dr=50%, Dr=70%)、Case4(格子間隔 32m×13m、 浦安砂 D 値=90%, D 値=95%)、Case5(無対策)の予備解析

図 3.2-12 に示す 3 次元解析モデルを用いて、格子間隔 32m×13m と格子間隔 32m× 26m の液状化抑制効果の検討を行った。得られた結果から、格子間隔 32m×13m では液 状化抑制効果が見られるが、格子間隔 32m×26m では無対策と殆ど変わらなかった。

図 3.2-12 格子間隔 32m×13mと格子間隔 32m×26mの3 次元解析モデル

図 3.2-13 変形図(変形スケール 1.0m)

図 3.2-14 過剰間隙水圧比の最大値コンター図

3.2.5. Case4(格子間隔 32m×13m、部分締固め併用あり、浦安砂 D 値=90%, D 値=95%)の 予備解析

図 3.2-5 と図 3.2-12 に示す 3 次元解析モデルを用いて、格子間隔と液状化抑制効果の 関係と部分締固めの効果について検討した。

図 3.2-15 と図 3.2-16 に得られた結果のまとめを示す。格子間隔が狭いと住宅の沈下を 抑制する効果が高く、この点は遠心模型振動実験の結果と対応していた。しかし、予備解 析では部分締固めをした方が住宅の沈下を抑制する効果が高く出ていたが、遠心模型振動 実験結果は逆であった。遠心模型振動実験では、部分締固めで囲まれた無対策部に住宅が 落ち込むように沈下していたが、このように縁が切れたような変形を FEM 解析は十分に 表せないことが、予備解析結果と遠心模型振動実験で逆の結果が出た原因であると考えら れる。

表 3.2-5 過剰間隙水圧比の最大値コンター図
表 3.2-6 変形図

表 3.2-7 過剰間隙水圧比の最大値コンター図

表 3.2-8 変形図

図 3.2-16 格子間隔と住宅の傾斜角の関係

3.2.6. Case6(格子間隔 16m×13m、32m×13m、ドレーン柱併用あり、浦安砂 D 値=90%, D 値=95%)の予備解析

図 3.2-17 に示す 3 次元解析モデルを用いて、格子状地中壁とドレーン柱を併用した効 果の検討を行った。得られた解析結果を表 3.2-10~表 3.2-18 に示す。遠心模型振動実験 では、ドレーン柱を設置することによる排水効果が明確に見られたが、解析ではドレーン 柱を設置する効果は見られなかった。解析ではドレーン柱の中を砂礫で埋めている条件で 透水係数を設定しているのに対して、遠心模型振動実験ではドレーン柱の中を中空にして いたため、排水効果に差があったことが原因と考えられる。

図 3.2-17 3 次元解析モデル

表 3.2-10 過剰間隙水圧比の最大値コンター

表 3.2-11 過剰間隙水圧比の最大値コンター

表 3.2-14 過剰間隙水圧比の最大値コンター

表 3.2-15 過剰間隙水圧比の最大値コンター

表 3.2-18 ドレーン柱配置での過剰間隙水圧比の最大値コンター

3.2.7. Case4(格子間隔 20m×10m、浦安砂 D 値=90%)の予備解析 (格子状地中壁の形状効果の検討)

図 3.2-18 に示す 3 次元解析モデルを用いて、格子状地中壁の剛性と液状化抑制効果の 関係と、長方形状の格子状地中壁と入力地震波の入射方向の関係について検討を行った。

得られた解析結果から、格子状地中壁の剛性が高くなると液状化抑制効果が高くなるこ と、入力地震波の方向が短辺方向に比べて長辺方向の方が液状化抑制効果が高いことが分 かった。遠心模型振動実験では、これらの傾向は明確ではなかったが、同様の傾向が見ら れている。

図 3.2-18 遠心模型振動実験 Case7 の予備解析モデル

表 3.2-19 過剰間隙水圧比の最大値コンター

表 3.2-20 過剰間隙水圧比の最大値コンター

表 3.2-21 過剰間隙水圧比の最大値コンター

4. 試験体地盤模型、格子状地中壁模型及び住宅基礎模型の製作

模型地盤の作成状況を以下に示す。

4.1. 模型地盤と格子状地中壁模型の製作条件

表 4.1-1 に示す液状化強度を目標に模型地盤を製作した。地盤の飽和にシリコンオイル を用い、粘性により遠心場での透水係数の相似則を満足させた。飽和に用いた設備を図 4.1-2 と図 4.1-3 に示す。格子状地中壁は、せん断剛性が設計基準強度 Fc=1.5N/mm2 相 当のアクリル製と、設計基準強度 Fc=3.0N/mm2 相当のガラス樹脂強化ポリエステルで製 作した。模型地盤内の可視化には、図 4.1-1 に示す赤色に着色した砂を用いた。

	浦安モ	デル地盤 ※1	遠心模型地盤					
	層区分	DA=5%, 20波の 応力比	層区分	DA=5%, 20波の 応力比	層区分	DA=5%, 20波の 応力比		
GL±0∼GL-2m	Bs	0.25	豊浦砂	0.17	浦安砂 ※2	0.18		
GL−2m∼GL−8m	Fs	0.20	Dr=50%	0.17	D值=90%			
GL-8m~GL-10m	As1	0.36	豊浦砂	0.00	浦安砂 ※2	0.29		
GL-10m~GL-12m	As2	0.23	Dr=70%	0.22	D值=95%	0.28		

表 4.1-1 遠心模型地盤の目標液状化強度

※1 浦安モデル地盤は、浦安市の「液状化対策実現可能性技術検討委員会」で用いられた モデル地盤

※2 D 値=90%は概ね N 値 5 に相当、D 値=95%は概ね N 値 10 に相当

表 4.1-2 アクリルの性能表

改良壁 Fc=1.5N/mm2 相

当の模型材料

				性能比較美	-202		冲行	東空前	2117	0		
						数可塑性树脂						
75スチック (1115/2003) (1115/2003				アクリライト スミペックス デラクラス	ボルカエース ボルビロン ハンライト レキザン	カイダッン	לםול	דועוד גרפבלי	געער	עםר ק		
			ポリピロ ピレン	メチル メタアクリ レート	ポリカーボ ネート	アクリ要性 高価繁増化 ビニール	ポリアミド	ポリアセ タール	ポリフェレン オイサイト	4売化 エデレン		
	Na	性質	^ ∧	8	PP	PMMA	PC	K•D	P•A	POM	PP0	PTFE
<u>م</u>	1	比重	8792		0.9	1.2	1,2	1.35	7.15	1.42	1.06	2.13
現 的	2	吸水罩	8570	*	0.03	0.15-0.2	0.23-0.26	0.07	1.0-1.5	0.2-0.3	0.07	
性質	3	乾燥性	D635	-	可燃性	可燃性	日海	、創港	自消	遅い	會消	不燃性
	4	日展り発き	0636	kg/cm	300390	600-770	550-650	400-450	700-850	650	630~670	90~300
	5	後び年	0635	×	200-70	4-7	60-100	120-130	20-200	15-70	20-60	200-400
視	6	曲げ強さ	0790	kg/cm²	420-560	1100-1200	800-950	680	560-1100	960		·
種的	7	曲了弹性车	D790	×10 ²⁰ /cm*	100-160	300-310	240	220				
低貫	8	商業強度 (アイソット)	D256	kg/on/cm	3-8	2-3	60-80	70	20	17	69	16
	. 9	破滅 (ロックウエル)	D785	()は別単位	R85-11	R124	R1 10~120	R103	R103-118	R110-120	R119	R10-20
5	10	的变形温度	D648	3	58-68	87-100	130-100	73	216	120	130	
節	11	縁厳張係数	D696	×10-5/C	10-20	7-8	6.5	8	9	6.5	5.9	
菄	12	除伝導率	c177	×10-4cal/se	2.8	4.5	4.6	- 3.4				
光学	13	透明度	の良い	\ ×劣る >n≊	半透明 不透明	透明	透明	不透明	半透明	半透明		不透明
的住	14	耐燥性			Δ	0	Ō	0	0	0	0	0
ÿ,	15	全光線透過本		×		90	87					0
-	15	弱酸の影響	— —		0	0	0	0	Δ	0	0	0
化	17	強酸の影響	の形常	に耐える 耐える	Δ		Δ	Ó	×	×	4	0
学的	18	霧アルカリの影響	したこれえる ムわずかに使される		0	0	0	0	0	0	0	0
性質	19	強アルカリの影響	l^~°		0	0	0	0	0	0	<u> </u>	0
	20	有機溶剤の影響	<u> </u>		0	×	×	×	0	0	×	Ø
									開オシ	ギリカタログ	参考資料6Aよい	月回

the second states and

			_								
				改良壁 Fc=3.0N/mm2 相							
				当の模型材料							
_			l								
	ブラスチック性能比較表-2(3)										
	プラスチック		樹脂大分類		熱硬化性樹脂	樹脂以外の材質					
		-	商具								
試測	_{練項目}	-									
-			樹		•						
整	*1/4C	方法		ガラス繊維	ポ リウレタン	布入積層	ステンレス	鉄鑼	アルミ	ガラス	
理	\^S	'\	10 22	ポリエステル	34	フェノール			-94		
No.	性質	M	4	FRP (GF30%)	PUR	PL.	SUS	SS	AL		
	比重	D792		1.68-1.8	1.25	1.4	8	7.9	2.7	2.54	
. 2	2 吸水率	0570	*	0.2-2.5	-	0.8	~	-	-		
3	3 乾燥性	D635	-	可燃		遅い	不燃	不燃	不燃	不燃	
4	弓服り強さ	D638	kg/cm²	1200	350-570	460-700	5900	3,800 -4,800	1,000 -2,000	330-810	
5	i伸び率	D638	%		100-600	0.4-0.8	25	30-35	35	3	
ŧ	は世強さ	D790	kg/cm²	1,200	50-70	1,000					
3	曲げ弾性率	D790	×10 /cm*	550		7,400	縦弾性率 20,400	縦弾性率 21,100	縦弾性率 7,200		
Ę	衝撃強度 (アイゾット)	D256	kg/cm/cm	65-90	破壊せず	10-22					
3	硬度 (ロックウエル)	D785	()は別単位	R115	90(ショア)	R96-120	プリネル硬度 85	プリネル硬度 100-130	プリネル硬度 17-14		
10	熱変形温度	D648	ĉ				-	-	-		
11	線膨張係数	D696	×10-5/C	2.3-3.0	16	2	1.2	1.3	2-2.3	0.9	
12	熱伝導率	c177	×10-4cal/se	6-8		5.7	380-600	1,450	5,000	19	
13	透明度	OBL	N ×劣る	半透明	半透明	不透明	不透明	不透明	不透明	透明	
14	耐候性	ムやや	0劣	Δ	0						
15	全光線透過率		X	Δ	0	0				91	
16	弱酸の影響			×	×	Δ	×	×	×	0	
17	強酸の影響	O 非常 O 殆ど	に耐える 耐える	×	0	Δ	×	×	×	Δ	
18	18 弱アルカリの影響 へわずかに侵される ×侵される			×	×	Δ	×	×	×	0	
19	強アルカリの影響			×	×	Δ	×	×	×	0	
20	有機溶剤の影響			×	0	0	0	0	0	0	
					㈱オダギリカタログ参考資料7Aより引用						

図 4.1-1 格子状地中壁内部地盤の可視化に用いた色砂(赤色)と住宅模型(右)

<text>

図 4.1-2 真空脱気槽とシリコンオイル圧入ポンプ

図 4.1-3 真空脱気槽

4.2. 住宅模型の製作

2 階建て住宅を1 質点にモデル化した試験体を用い、遠心模型振動実験に用いる。1 質点 へのモデル化方法とその結果を以下に示す。住宅模型は、この結果に従って製作した。

4.2.1. 建物条件

2階建て住宅の緒元を図 4.2-1に示す(第2回液状化対策実現可能性技術検討委員会 資料 No.2-1 表 2.4.5 「建物重量と地震力(べた基礎/C0=0.3)」参照)。以下に、本検討で用いた仮定条件を示す。

・屋根階の重量は、屋根階高の中心位置に集中しているとする。

・1次モード形が、質点高さに比例した逆三角形の形状をしているとする。

図 4.2-1 2 階建て住宅の緒元

4.2.2. モデル化

1 質点モデルには、建物の1次モードによって建物から基礎に伝わるせん断力と転倒モ ーメントが等価となる質点重量(等価重量 We)と質点高さ(等価高さ He)を緒元として 用いる¹⁾。

①まず、1次モードの刺激係数 β を求める。建物条件での仮定から、1次モード形u e u=[u2 u1]=[7 3]とする。刺激係数 β は、

0

$$\beta = \frac{W2 \times u2 + W1 \times u1}{W2 \times u2^{2} + W1 \times u1^{2}} = 0.182$$
この時、刺激関数 $\beta \times u$ は $\beta \times u = [1.27 \quad 0.55]$ となる

②1次モードの等価重量Weを求める。

 $We = W2 \times (\beta \times u2)^2 + W1 \times (\beta \times u1)^2 = 198.8kN$

③1 次モードの等価高さ He を求める。

$$He = \frac{W2 \times u2 \times H2 + W1 \times u1 \times H1}{W2 \times u2 + W1 \times u1} = 5.50m$$

表 4.2-1 に、求めた1質点モデルの緒元をまとめる。

表 4.2-1 1 質点モデルの緒元

項目	値	
等価重量 We(kN)	198.8	He
等価高さ He(m)	5.50	
		- /// ///

【参考文献】

1) 柴田明徳:「最新 耐震構造解析」, 森北出版

4.2.3. 模型の概要

図 4.2-2 に家の模型の計画図、図 4.2-3 に家の模型の写真を示す。

図 4.2-2 家の模型の計画図

図 4.2-3 住宅基礎模型(基礎部には 1mm ピッチの縞模様配置)

4.3. Case1(格子間隔 13m×13m、26m×13m、豊浦砂 Dr=50%, 70%)

図 4.3-1 格子状地中壁模型(左)、砂礫層の作成完了(右)

図 4.3-2 色砂の設置(左)、地盤の作成状況(右)

図 4.3-3 地盤の作成完了(左)、実験直前(右)

4.4. Case2(格子間隔 13m×13m、豊浦砂 Dr=50%)

図 4.4-1 格子状地中壁模型(左)、砂礫層の作成完了(右)

図 4.4-2 模型地盤作成状況(左、右)

図 4.4-3 模型地盤の作成完了(左)、建屋模型の設置状況(右)

4.5. Case3(格子間隔 32m×26m、豊浦砂 Dr=50%, Dr=70%)

図 4.5-1 格子状地中壁模型

図 4.5-2 砂礫層の作成完了(左)、模型地盤作成状況(右)

図 4.5-3 実験直前

4.6. Case4(格子間隔 32m×13m、部分締固め併用あり、浦安砂 D 値=90%, D 値=95%)

格子②(部分締固めあり)

図 4.6-1 格子状地中壁模型(左)、砂礫層の作成完了(右)

図 4.6-2 模型地盤の作成状況(左)、模型地盤作成完了(右)

図 4.6-3 建屋と計測器の設置状況

4.7. Case5(無対策、浦安砂 D 值=90%, D 值=95%)

図 4.7-1 砂礫層の作成完了(左)、模型地盤の作成状況(右)

図 4.7-2 模型地盤の作成状況(左)、模型地盤の作成完了(右)

図 4.7-3 実験直前

4.8. Case6(格子間隔 16m×13m、32m×13m、ドレーン併用あり、浦安砂 D 値=90%, D 値=95%)

図 4.8-1 砂礫層の作成完了(左)、格子状地中壁模型とドレーン模型(右)

図 4.8-2 格子状地中壁模型とドレーン模型(左)、模型地盤作成状況(右)

図 4.8-3 模型地盤の作成完了

4.9. Case7(格子間隔 20m×10m、浦安砂 D 値=90%, D 値=95%、格子状地中壁モデルの想定 Fc=1.5N/mm², Fc=3.0N/mm²)

図 4.9-1 格子状地中壁模型(左、透明:Fc=1.5N/mm2 想定、赤:Fc=3.0N/mm2 想定)、 砂礫層の作成完了(右)

図 4.9-2 模型地盤の作成状況

図 4.9-3 模型地盤の作成状況(左)、模型地盤の作成完了(右)

4.10. Case8(格子間隔 16m×13m、32m×13m、盛土 1m 併用あり、浦安砂 D 値=90%, D 値=95%)

格子状改良壁模型

地盤の作成状況

1m 盛土(16m×13m 格子)

砂礫層の作成

地盤の作成状況

模型地盤の作成完了

図 4.10-1 模型地盤の作成

5. センサー類の配置計画

5.1. 計測器の配置

図 5.1-1 に示すように、遠心装置の軸方向を東西方向(中心側を東)、回転方向を南北方 向とした。

図 5.1-2~図 5.1-8 に示すのは、各実験ケースでの計測器の配置図である。

図 5.1-1 計測器配置図で使用している方向と遠心装置との関係

図 5.1-2 Case1の計測器配置(格子間隔 13m×13m、26m×13m、豊浦砂 Dr=50%, 70%)

図 5.1-3 Case2の計測器配置(格子間隔 13m×13m、豊浦砂 Dr=50%)

図 5.1-4 Case3の計測器配置(格子間隔 32m×26m、豊浦砂 Dr=50%, Dr=70%)

図 5.1-5 Case4の計測器配置(格子間隔 32m×13m、部分締固め併用あり、浦安砂 D 値=90%, D 値=95%)

図 5.1-6 Case5の計測器配置(無対策、浦安砂 D 値=90%, D 値=95%)

·加速度計配置

図 5.1-7 Case6の計測器配置(格子間隔 16m×13m、32m×13m、ドレーン併用あり、浦安砂 D 値=90%, D 値=95%)

·加速度計配置

·間隙水圧計配置

図 5.1-8 Case7の計測器配置(格子間隔 20m×10m、浦安砂 D 値=90%, D 値=95%、格子状地 中壁モデルの想定 Fc=1.5N/mm², Fc=3.0N/mm²)

·加速度計配置

·間隙水圧計配置

図 5.1-9 Case8の計測器配置 (格子間隔 16m×13m、32m×13m、盛土 1m 併用あり、浦安砂 D 値=90%, D 値=95%)

6. 遠心力載荷装置による振動実験の実施

6.1. 計測結果

8回の遠心模型振動実験で計測された水平応答加速度、過剰間隙水圧比、水平応答加速 度から計算した相対変位・加速度応答スペクトル、鉛直変位の時刻歴と計測値を資料編に 掲載した。

実験ケース	計測項目	資料編掲載頁		
	水平応答加速度、過剰間隙水圧比、相対変位の各時刻歴	p.1~p.8		
Case1	水平応答加速度の加速度応答スペクトル	P.193		
	鉛直変位	p.205		
	水平応答加速度、過剰間隙水圧比、相対変位の各時刻歴	p.9~p.44		
Case2	水平応答加速度の加速度応答スペクトル			
	鉛直変位	p.205		
	水平応答加速度、過剰間隙水圧比、相対変位の各時刻歴	p.45~p.68		
Case3	水平応答加速度の加速度応答スペクトル	p.194		
	鉛直変位	p.205		
	水平応答加速度、過剰間隙水圧比、相対変位の各時刻歴	p.69~p.92		
Case4	水平応答加速度の加速度応答スペクトル	p.195~p.196		
	鉛直変位	p.205		
	水平応答加速度、過剰間隙水圧比、相対変位の各時刻歴	p.93~p.108		
Case5	水平応答加速度の加速度応答スペクトル	p.197~p.198		
	鉛直変位	p.205		
	水平応答加速度、過剰間隙水圧比、相対変位の各時刻歴	p.109~p.132		
Case6	水平応答加速度の加速度応答スペクトル	p.199~p.202		
	鉛直変位	p.205		
	水平応答加速度、過剰間隙水圧比、相対変位の各時刻歴	p.133~p.168		
Case7	水平応答加速度の加速度応答スペクトル	_		
	鉛直変位	p.205		
	水平応答加速度、過剰間隙水圧比、相対変位の各時刻歴	p.169~p.192		
Case8	水平応答加速度の加速度応答スペクトル	p.203~p.204		
	鉛直変位	p.205		

表 6.1-1 計測結果の資料編掲載ページ

6.2. 入力地震動と加振実験終了後の模型地盤の状況

図 6.2-1 に Case1, Case4, Case5 の振動台加速度の応答スペクトルと、入力地震波の加速度応答スペクトルの比較を示す。

図 6.2-1 遠心模型振動実験での振動台加速度の加速度応答スペクトル比較

図 6.2-2 Case1 の加振実験終了後

図 6.2-3 Casel 加振後の格子状地中壁側面の写真

図 6.2-4 Case2 の加振実験終了後

図 6.2-5 Case2 加振後の格子状地中壁側面と地表面の写真

図 6.2-6 Case3 の加振実験終了後

図 6.2-7 Case3 加振後の格子状地中壁側面の写真

図 6.2-8 Case4 の加振実験終了後

図 6.2-9 Case4 加振後の格子状地中壁側面の写真

図 6.2-10 Case5 の加振実験終了後

図 6.2-11 Case6 加振後の格子状地中壁側面の写真

7. 実験結果の表示用図表の作成

Case1~Case7 の遠心模型振動実験結果に対して、①水平応答加速度時刻歴図、②過剰 間隙水圧比時刻歴図、③住宅と地表面の鉛直変位時刻歴図、④水平相対変位の時刻歴図を 作成した。作成した図は資料編に載せてある。水平相対変位は、水平応答加速度から算出 した水平変位時刻歴を用いて、①振動台に対する相対変位、②隣接する測点との間の相対 変位をそれぞれ図化している。そして、①格子間隔と液状化抑制効果、②格子状地中壁と 併用する副工法を用いる効果についてそれぞれ検討と考察を行っている。過剰間隙水圧比 のコンター図は以下の手順で作成した。

過剰間隙水圧比のコンター図作成手順

- STEP1: 過剰間隙水圧の時刻歴図の作成 ローパスフィルター処理により、観測した過剰間隙水圧時刻歴の生データから、 10Hz 以上の高周波数成分をカット。
- STEP2:初期有効上載圧の決定

①地下水位の決定: 60G 場で加振前において砂礫層の上に設置した水圧計の計 測値から地下水位を決定する。

②各水圧計の設置深度の決定:上記の地下水位を用いて各水圧計の計測値から 各水圧計の深度を決定する。

③初期有効上載圧の決定:設置深度に対応した有効上載圧を計算。:

STEP3:水圧計設置位置間における補完過剰間隙水圧比の設定(K-NET 浦安波に対して) 主要動時間内(50 秒~100 秒)において、上部の応答加速度が直近下部の応答加速 度に対して著しく低減して観測された場合、水圧計設置深度の中間点の過剰間隙 水圧比を、次の方法で仮想的に設定する。

過剰間隙水圧比

- ①周期 0.5 秒~1.0 秒の間で、80 秒以降の加速度の加速度応答スペクトルが、
 80 秒以降の振動台での加速度応答スペクトルの 50%以下になる周期がある。
 ⇒ 過剰間隙水圧比 0.95
- ②周期 0.5 秒~1.0 秒の間で、80 秒以降の加速度の加速度応答スペクトルが、
 80 秒以降の振動台での加速度応答スペクトルの 30%以下になる周期がある。
 ⇒ 過剰間隙水圧比 1.00

STEP4:以上による各深度の過剰間隙水圧比に関して、なめらかにカラーコンター図を描く。

7.1. 実験結果の検討と考察

格子状地中壁工法で道路と宅地を一体で液状化対策する場合、表 7.1-1 に示すような改 良壁の配置パターンが考えられる。液状化抑制効果が得られて経済的な格子状地中壁工法 のガイドライン作成を目的として、7回の遠心模型振動実験を 60G 場で行い、①格子間隔 による液状化抑制効果、②格子状地中壁と併用する副工法を用いる効果について検討した。

格子間隔	格子状地中壁配置のゴ	平面図と断面図
無対策		
13(16m)× 13m (加振方向 13m)	空地 道路 道路 1<	
32m×13m (加振方向 32m)	道路 	道路 <u> 当 下 水 位</u> 渡 状 化 層 道路 上 上 一 上 一 一 上 一 上 一 上 一 上 一 上 一 上 一 上 一 上 一 上 一 一 上 一 上 一 一 一 一
32m×26m (加振方向 32m)	道路 	道路

表 7.1-1 格子状地中壁工法の想定される改良壁のパターン

7.1.1. 格子間隔による液状化抑制効果の確認

マグニチュード 9.0、地表面加速度 200gal 相当(浦安市観測波約 160gal の約 1.25 倍)の地震波(波形は K-NET 浦安観測波に同じ)に対して

①対策地盤

無対策地盤では、加振後 60 秒以降に、GL-2m と GL-7m との間で液状 化が発生し、以降長時間に渡って液状化した状態で加振が継続した。こ の結果、住宅の沈下量は実験ケースで最も大きい値(13.3cm)となった。

②4 宅地1格子

無対策地盤と比較してやや遅れて液状化が発生し、90秒以降において深 さ7m付近が広く液状化に至り、その状態で加振が継続した。その結果、 住宅の沈下量は10.9cmとなった。

③2 宅地1格子

液状化の発生時刻はさらに遅くなり、90秒~100秒の間で瞬間的に広い 範囲で液状化が発生したが、その前後においては、過剰間隙水圧の上昇 はあるが液状化には至らない状態で推移した。住宅の沈下量は6.6cm に とどまった。

④1 宅地1 格子

加振時全般を通じて明確な液状化には至っておらず、特に浅層部では過 剰間隙水圧が高くならずに推移した。住宅の沈下量は、格子間隔 16m× 13mの場合に 8.1cm、格子間隔 13m×13mの場合に 5.4cm 程度であった。 ⑤1 宅地1格子プラス盛土 1m

加振時間全般を通じて液状化に至っておらず、また住宅沈下量も 2.5cm と軽微な値にとどまった。

注:60G場における遠心力載荷による実験では、模型地盤上の長さ(深さ)は実地盤において60倍に増幅される。例えば住宅沈下量の値を見るにあたっては、模型地盤における1mm

の計測差は、実地盤では 6cm に換算されることに留意する必要がある。

直下型地震の場合を想定して、マグニチュード 7.3、地表面加速度 350gal の地震波(波形 は阪神大震災の JR 鷹取駅観測波に同じ)に対して

①無対策地盤

最初の大きな揺れで地盤の下層部分が一気に液状化し、その状態で加振終了時まで継続 した。ただし、下層部の液状化により揺れが吸収され、表層部は液状化せずに加振終了時 まで継続した。住宅沈下量は26.0cmと大きくなった。

②4 宅地1格子

最初の大きな揺れで地盤の下層部分が一気に液状化し、その過剰間隙水圧が格子内で表 層部まで伝播し、一瞬ではあるが格子内全体が液状化した。ただし、格子状地中壁が地盤 の変形を抑制したため、住宅沈下量は無対策に比べ半分以下の12.1cmに抑えられた。

③2 宅地1格子

4 宅地1 格子と同様の挙動を示したが、液状化が表層部まで達することはなかった。住 宅沈下量は4 宅地1 格子と同程度の13.7cm であった。

④1 宅地 1 格子

最初の大きな揺れで地盤の下層部分が一気に液状化し、上・中部は液状化しない状態で 加振終了時まで継続した。格子状地中壁の間隔が狭い効果により、住宅沈下量は8.6cm に とどまった。

⑤1 宅地1 格子プラス盛土 1m

盛土のない1宅地1格子と液状化の傾向は同じであった。住宅沈下量は11.0cm であった。

地震波		東日本	大震災の	K-NET浦安	観測波		阪神大震災のJR鷹取駅観測波							
格子間隔	入力最大	水圧計	- 最大過剰間隙水圧比 ※ (Δu/σv´)ノ				入力最大	水圧計	最	大過剰間	*	地表から		
	加速度	深度					加速度	深度	_	(Δu/σv´)			の水位	備考
	(gal)	(m)	格子内 庭部分	格子内 住宅下	格子外	住宅の沈 下量(cm)	(gal)	(m)	格子内 庭部分	格子内 住宅下	格子外	住宅の沈 下量(cm)	(-m)	
		2.0	0.55	0.52	0.53			2.0	0.49	0.46	0.50			
無対策	142	7.0	0.89	0.78	0.86	13.3	360	7.0	0.90	0.78	0.88	26.0	1.0	浦安砂
		12.0	0.61	0.55	0.59			12.0	0.98	0.89	0.98			
		2.0	0.86	0.43	1.01			2.0	0.94	0.94 0.85 0.89				
4户/1区间 (22m×26m)	143	7.0	0.99	0.92	0.94	10.9	307	7.0	1.03	0.95	0.98	12.1	1.0	豊浦砂
(32111 ~ 2011)		12.0	0.82	0.77	0.89			12.0	1.03	0.99	1.05			
2百 / 1区問	152	2.0	0.74	0.41	0.70		397	2.0	0.96	0.52	0.70	13.7	- 1.3	浦安砂 (第8回実験)
$(22m \times 12m)$		7.0	0.83	0.78	1.01	6.6		7.0	1.04	0.95	1.15			
(3211 × 1311)		12.0	0.99	0.89	0.94			12.0	1.10	1.00	1.07			
1百/1区問①		2.0	0.83	0.62		-		2.0	0.80	0.65				
(16m X 13m)		7.0	0.83	0.76		8.1		7.0	0.91	0.81		8.6		
(1011)		12.0	0.92	0.87	\sim			12.0	1.04	0.98				
1百/1区間②		2.0	0.53	0.29	0.58	4		2.0		未実施				
(13m × 13m)	148	7.0	0.87	0.80	0.88	5.4	-	7.0					1.0	豊浦砂
		12.0	-	0.79	-			12.0						
1戸 / 1区間③ (16m X 13m+成+1m)		2.0	0.22	0.12	0.70	4		2.0	0.60	0.60	0.70			浦安砂
	152	7.0	0.55	0.51	1.01	2.5	397	7.0	0.72	0.72 1.15 1		11.0	1.3	(第8回宝驗)
		12.0	0.84	0.76	0.94			12.0	0.96	0.90	1.07			

表 7.1-2 過剰間隙水圧比の最大値と住宅沈下量の一覧

※過剰間隙水圧時刻歴の高周波数成分を取り除くために、1Hzのローパスフィルタをかけ て過剰間隙水圧比の最大値を求めている。

表 7.1-3 水平応答加速度時刻歷図(格子内庭部分)

	深度	無対策 (地下水位 GL-1.0m、浦安砂)	4 戸/1 区画 (32m×26m) (地下水位 GL-1.0m、豊浦砂)	2 戸/1 区画 (32m×13m)(Case8) (地下水位 GL-1.0m、浦安砂)	1 戸/1 区画 格子間隔 16m×13m (地下水位 GL-1.0m、浦安砂)	格子間隔 13m (地下水位 GL-1.0r
	-2m		未計測	200 200 200 200 200 20 40 40 40 40 40 40 40 40 40 4	200 3 100 	200 100 100 100 200 20 40 60 80 100 100 100 100 100 100 100 100
浦 安 波	-7m		未計測		200 100 	200 100 -2
	-12m		未計測			
	-2m	400 5 10 15 20 25 30 25 40	未計測		400 5 100 400 5 10 15 20 25 20 25 20 35 40 10 10 10 10 10 10 10 10 10 1	未実施
鷹取波	-7m		未計測	$\begin{array}{c} 400\\ 500\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$\begin{array}{c} 400\\ 300\\ 300\\ 300\\ 300\\ 400\\ 5\\ 10\\ 5\\ 10\\ 15\\ 20\\ 20\\ 5\\ 10\\ 15\\ 20\\ 20\\ 25\\ 20\\ 25\\ 30\\ 35\\ 40\\ \hline \blacksquare \blacksquare (s) \end{array}$	未実施
	-12m	400 5 100 5 10 15 20 25 30 35 40 Mail	未計測	400 9 100 100 100 100 100 100 100		未実施

表 7.1-4 水平応答加速度時刻歷図(格子内住宅下)

 $\langle \dots \rangle$

液状化発生による応答加速度の減衰

表 7.1-5 過剰間隙水圧比時刻歴図(格子内庭部分)

表 7.1-6 過剰間隙水圧比時刻歷図(格子内住宅下)

表 7.1-7 過剰間隙水圧比コンター図(K-NET 浦安波)

表 7.1-8 過剰間隙水圧比コンター図(JR 鷹取駅観測波)

- 7.1.2. 格子状地中壁と併用する副工法の効果
- (1) ドレーン柱
- 住宅沈下量の低減を狙って、直径 0.3mのドレーン柱を住宅周囲に 1mピッチで設置した。この結果、1宅地1格子の場合に、沈下量が 約半分に低減される効果が見られた。

地震波		東日本	5大震災の	<-NET浦安	·観測波		阪神大震災のJR鷹取駅観測波							
格子間隔			最	大過剰間	隙水圧比	*			最	大過剰間	<u></u>	*	地表から	備考 浦安砂 浦安砂
	人力最大	水上計		(∆u∕	σv´)		人力最大			(Δu/σv´)		σv´) – – – – の水位 備		備考
	加速度 (gal)	/末度 (m)	格子内 庭部分	格子内 住宅下	格子外	住宅の沈 下量(cm)	加速度 (gal)	/朱/攴 (m)	格子内 庭部分	格子内 住宅下	格子外	住宅の沈 下量(cm)	(-m)	備考 浦安砂 浦安砂 浦安砂
10		2.0	0.73	0.63	0.69			2.0	0.72	0.57	0.73			
16m × 13m ドレーンなし		7.0	0.67	-	0.89	24.0		7.0	0.90	-	0.94	13.3	0.5	浦安砂
		12.0	0.74	0.68	0.83			12.0	0.92	0.87	1.00			
10 110		2.0	0.75	1.10	0.69			2.0	0.81	0.94	0.73			
16m×13m ドレーン右り	140	7.0	0.40	0.30	0.89	12.2	400	7.0	0.59	0.54	0.94	15.3	0.5	浦安砂
		12.0	0.78	0.66	0.83			12.0	1.00	0.82	1.00	ſ		
		2.0	0.76	0.78	0.69			2.0	0.94	0.85	0.73	12.9	地表から の水位 (-m) 0.5 浦3 0.5 浦3 0.5 浦3	浦安砂
32m×13m ドレーン有り		7.0	0.49	0.45	0.89	17.9		7.0	1.03	0.95	0.94			
		12.0	0.79	0.68	0.83			12.0	1.03	0.99	1.00			
				•										

表 7.1-9 過剰間隙水圧比の最大値と住宅沈下量の一覧

表 7.1-9 において住宅沈下量の絶対値が比較的大きい値となった理由は、実験時の地下 水位が GL-0.5m と他の実験ケースに比べて高かった(表 7.1-9 参照)。また、加振中にドレ ーン柱から排出された水(シリコンオイル)によって地下水位が上昇したような状態になっ ていた。さらに、ドレーン柱を設置することで支持層の砂礫層が排水層となり、液状化層 の深度が深い部分での過剰間隙水圧消散を促進し(表 7.1-12~表 7.1-14 参照)、地盤の応 答特性が他の実験ケースと異なったためである。

表 7.1-10 水平応答加速度時刻歴比較(格子内庭部分)

表 7.1-11 水平応答加速度時刻歴比較(格子内住宅下)

表 7.1-12 過剰間隙水圧比時刻歴(格子内庭部分)

表 7.1-13 過剰間隙水圧比時刻歴(格子内住宅下)

表 7.1-14 過剰間隙水圧比コンター図(K-NET 浦安波)

表 7.1-15 過剰間隙水圧比コンター図(JR 鷹取駅観測波)

図 7.1-2 JR 鷹取駅観測波の入力に対する液状化層での水平応答加速度の応答スペクトル

図 7.1-3 隣接測点間の相対水平変位最大値の深度分布比較

(2) 部分締固め

①住宅が建っている状態での施工を想定して、締固めの範囲を敷地内の 住宅が建っていない庭等の部分のみに限定した。この結果、2 宅地1 格子の場合において、締固めした部分は、液状化が回避できたものの、 住宅に沈下量は、締固め対策なしの場合と比較して、約 1.8 倍にかえ って増加した。

地震波		東日本	「大震災の」	K−NET浦安	観測波			阪神大震災のJR鷹取駅観測波							
格子間隔	入力最大	水圧計	最	と大過剰間№ (Δu/	隙水圧比 ′σv´)	*	入力最大	水圧計	最	と へ⊿u/	隙水圧比 「σv´)	*	地表から の水位	備考	
	加速度 (gal)	深度 (m)	格子内 庭部分	格子内 住宅下	格子外	住宅の沈 下量(cm)	加速度 (gal)	深度 (m)	格子内庭部分	格子内 住宅下	格子外	住宅の沈 下量(cm)	(-m)		
32m×13m 部公統国めた	150	2.0	0.84	0.58	0.67		10.6	2.0	0.82	0.66	0.62		0.6	浦安砂	
		7.0	0.78	0.7	0.85	10.6		7.0	1.01	0.87	0.91	9.8			
ことでは		12.0	0.89	0.82	0.85		250	12.0	1.04	1.07	0.98				
32m×13m 部分締固め有り	100	2.0	0.57	0.81	0.67		309	2.0	0.57	0.70	0.62				
		7.0	0.78	0.71	0.85	18.7		7.0	0.81	0.83	0.91	13.0	0.6	浦安砂	
				12.0	0.81	0.79	0.85			12.0	0.99	0.94	0.98		

表 7.1-16 過剰間隙水圧比の最大値と住宅沈下量の一覧

K-NET 浦安観測波に対して、表 7.1-21 に示す過剰間隙水圧比の最大値コンター図の部 分締固めしていない部分では、過剰間隙水圧比 1.0 の液状化まで過剰間隙水圧が上昇して いる部分が見られるが、部分締固めしている部分では、液状化発生まで過剰間隙水圧は上 昇していない。また、表 7.1-17 と表 7.1-18 に示す水平応答加速度時刻歴図から、部分締 固めがない側の格子の GL-2m 地点では、60 秒以降に GL-2m 以浅の地盤の液状化による 応答加速度の減衰が明確に表れている。一方、部分締固めがある部分では液状化による応 答加速度の減衰は見られない。過剰間隙水圧の上昇と水平応答加速度から、部分締固めし た部分では液状化が発生しなかったが、部分締固めしていない部分では液状化が発生した と判断した。

図 7.1-4 に示すのは、JR 鷹取駅観測波での加振後の部分締固めした側の断面写真であ る。部分締固めしている部分では殆ど沈下が発生していないが、部分締固めしていない部 分では沈下が発生しているのが、色砂の状況から分かる。既設住宅に対して副工法として 部分締固めを採用した場合、部分締固めした部分は液状化しないが、住宅下の直接的な対 策にはなっていないため、住宅の沈下量を増加させる場合もある。

図 7.1-4 加振終了後の色砂の状況(部分締固め側の断面)

表 7.1-17 水平応答加速度時刻歴比較(格子内庭部分)

表 7.1-18 水平応答加速度時刻歴比較(格子内住宅下)

表 7.1-19 過剰間隙水圧比時刻歴比較(格子内庭部分)

表 7.1-20 過剰間隙水圧比時刻歴比較(格子内住宅下)

表 7.1-21 過剰間隙水圧比コンター図(K-NET 浦安波)

表 7.1-22 過剰間隙水圧比コンター図(JR 鷹取駅観測波)

図 7.1-5 格子内住宅下での加速度応答スペクトル(K-NET 浦安観測波入力)

図 7.1-6 格子内住宅下での加速度応答スペクトル(JR 鷹取駅観測波入力)

図 7.1-7 隣接測点間の相対水平変位最大値の深度分布比較

(3) 格子状地中壁の剛性

①格子状地中壁の剛性(Fc)を高めた場合の効果を確認するため、 Fc=1.5(N/mm2)と Fc=3.0(N/mm2)の地中壁模型を格子規模 20m× 10m で作成した。両者で地表面の沈下量に顕著な差は認められなかっ たが、地中壁の剛性を高めた場合は、液状化に至る時間を遅らせる効果 が見られた。

地震波	a波の71%の振幅								а	波			b波					
格子間隔	入力最大 加速度 _(gal)	: 水圧計 深度 (m)	最大過剰間隙水圧比 ※ (Δu/σv ⁽) 格子内			格子中央 地表面の	入力最大 加速度	水圧計 深度	最大過剰間隙水圧比 ※ (Δu/σv ⁽)			格子中央 地表面の 加下号 加	入力最大 加速度	水圧計 深度	最大過剰間隙水圧比 ※ (Δu/σv [´]) 格子内			格子中央 地表面の ※11万景
			中間部 (庭部分)	中央 (住宅下)	壁際	(cm)	(gal)	(m)	中間部 (庭部分)	中央 (住宅下)	壁際	(cm)	(gal)	(m)	中間部 (庭部分)	中央 (住宅下)	壁際	(cm)
$20m \times 10m$ Fc=1.5N/mm ²	121	2.0	-	-	0.73	5.2	170	2.0	-	-	0.85	9.2 9.1	228	2.0	-	-	0.80	10.4 12.6
		6.0	0.86	0.82	0.81			6.0	0.97	0.93	1.02			6.0	1.03	1.00	1.01	
		10.0	0.96	0.94	0.97			10.0	0.98	0.96	0.97			10.0	0.10	0.97	0.98	
20m × 10m		2.0	0.62	0.69	0.85	5.7 18.8		2.0	0.66	0.76	0.84			2.0	0.56	0.70	0.80	
Fc=3.0N/mm ²		6.0	0.84	0.84	0.83			6.0	0.92	0.92	0.97			6.0	0.98	0.98	1.01	
		10.0	0.96	0.94	_			10.0	0.98	0.97	_			10.0	1.00	0.99	_	
無対策		2.0		0.76				2.0		0.77				2.0		0.76		
		6.0		0.84				6.0		0.94	0.94 24			6.0		0.90		17.4
			10.0		0.96	1	10.0		0.98			10.0			0.99		1	

表 7.1-23 過剰間隙水圧比の最大値と地表面沈下量の一覧

図 7.1-8 計測点と格子状地中壁の配置

表 7.1-24 水平応答加速度時刻歴の比較(格子内中央)

表 7.1-25 過剰間隙水圧比時刻歴の比較(格子内中央)

表 7.1-26 過剰間隙水圧比のコンター図(a 波の 70%振幅)

表 7.1-27 過剰間隙水圧比のコンター図(a 波)

表 7.1-28 過剰間隙水圧比のコンター図(b 波)

(4) 長方形の格子に対する入力地震波の方向の影響

①格子形状が長方形となる場合について、加振方向の違いによる液状化抑制効果の差を確認するため、20m×10mの長方形平面を持つ地中壁を直交させて模型地盤内に配置した。この結果、短辺方向に加振される方が長辺方向に加振されるよりも液状化抑制効果が弱く地表面の沈下量が約2倍大きくなった。

表	7.1-29	過剰間隙水圧比の最大値と地表面沈下量の一	-覧
1	1.1 4/		

地震波	a波の71%の振幅							a波						b波						
			最大過剰間隙水圧比 ※ (Δu/σv ⁽)			格子中央 地表面の ※下景	入力最大 加速度	水圧計 深度	最大過剰間隙水圧比 ※ (Δu/σv [´])			格子中央 地表面の 沖下景	入力最大 加速度	水圧計 深度	最大過剰間隙水圧比 ※ (Δu/σv [´])			格子中央 地表面の		
格子間隔	入力最大 加速度 _(gal)	: 水圧計 深度 (m)																		
			格子内						格子内						格子内					
			中間部 (庭部分)	中央 (住宅下)	壁際	(cm)	(gal)	(m)	中間部 (庭部分)	中央 (住宅下)	壁際	(cm)	(gal)	(m)	中間部 (庭部分)	中央 (住宅下)	壁際	(cm)		
20m×10m 長辺方向加振	121	2.0	-	_	0.73	5.2	170	2.0	-	-	0.85	9.2 18.1	228	2.0	-	-	0.80	9.5		
		6.0 10.0	0.86	0.82	0.81			6.0	0.97	0.93	1.02			6.0	1.03	1.00	1.01			
			0.96	0.94	0.97			10.0	0.98	0.96	0.97			10.0	0.10	0.97	0.98			
20m×10m 短辺方向加振		2.0	0.86	0.71	0.90			2.0	0.90	0.74	0.80			2.0	0.67	0.62	0.77			
		6.0	0.93	0.96	-			6.0	1.03	1.08	1.03			6.0	0.99	1.04	0.99			
		10.0	0.96	0.98	-			10.0	0.98	1.01	-			10.0	0.99	1.02	-			
無対策		2.0	0.76			T .	2.0		0.77				2.0		0.76					
		6.0		0.84	18.8			6.0		0.94				6.0		0.90		17.4		
		10.0		0.96				10.0		0.98				10.0		0.99				

表 7.1-30 水平応答加速度時刻歴の比較(格子内中央)

表 7.1-31 過剰間隙水圧比時刻歴の比較(格子内中央)

表 7.1-32 過剰間隙水圧比のコンター図(a 波の 70%振幅)

表 7.1-33 過剰間隙水圧比のコンター図(a 波)

表 7.1-34 過剰間隙水圧比のコンター図(b 波)

8. まとめ

東日本大震災で液状化の被害を受けた被災地の復旧・復興を技術的に支援するために、 既成住宅地に導入できる液状化対策の一つとして有力視されている格子状地中壁工法につ いて、街区・宅地レベルの大きな格子間隔で用いた場合の効果を遠心模型実験により明ら かにした。

模型地盤の設定は、「浦安市液状化対策実現可能性技術検討委員会」の条件(液状化層厚 さ12m、地下水位 GL-1m、GL-1m~GL-8m に比べて GL-8m~GL-12m での液状化強度 が強い)とし、入力地震動は、東日本大震災と同様のマグニチュード 9.0・地表面最大加速 度 200gal 相当(東日本大震災時の浦安市観測波約 160gal の約 1.25 倍)と、直下型地震を想 定したマグニチュード 7.3、地表面最大加速度 350gal 相当の地震波を用いた。

今回の実験で明らかになった点を以下に示す。

1) 格子間隔による液状化抑制効果の違い

東日本大震災と同様のマグニチュード 9.0・地表面最大加速度 200gal 相当の入力地震動 に対する効果の比較。

a)無対策地盤

無対策地盤では、加振後 60 秒以降に、GL-2m と GL-7m との間で液状化が発生し、 以降長時間に渡って液状化した状態で加振が継続した。この結果、住宅の沈下量は実験 ケースで最も大きい値(13.3cm)となった。

b) 4 宅地 1 格子

無対策地盤と比較してやや遅れて液状化が発生し、90秒以降において深さ7m付近が 広く液状化に至り、その状態で加振が継続した。その結果、住宅の沈下量は10.9cmと なった。

c) 2 宅地 1 格子

液状化の発生時刻はさらに遅くなり、90秒~100秒の間で瞬間的に広い範囲で液状化 が発生したが、その前後においては、過剰間隙水圧の上昇はあるが液状化には至らない 状態で推移した。住宅の沈下量は6.6cmにとどまった。

d)1宅地1格子

加振時全般を通じて明確な液状化には至っておらず、特に浅層部では過剰間隙水圧が 高くならずに推移した。住宅の沈下量は、格子間隔 16m×13m の場合に 8.1cm、格子間 隔 13m×13m の場合に 5.4cm 程度であった。 e) 1 宅地1 格子プラス盛土 1m

加振時間全般を通じて液状化に至っておらず、また住宅沈下量も2.5cmと軽微な値に とどまった。

2) 格子状地中壁と併用する副工法の効果

東日本大震災と同様のマグニチュード 9.0・地表面最大加速度 200gal 相当の入力地震動 に対する効果の比較。

a) ドレーン柱

住宅沈下量の低減を狙って、直径 0.3m のドレーン柱を住宅周囲に 1m ピッチで設置 した。この結果、1 宅地 1 格子の場合に、沈下量が約半分に低減される効果が見られ た。

b) 部分締固め

住宅が建っている状態での施工を想定して、締固めの範囲を敷地内の住宅が建って いない庭等の部分のみに限定した。この結果、2宅地1格子の場合において、締固め した部分は、液状化が回避できたものの、住宅の沈下量は、締固め対策なしの場合と 比較して、約1.8倍にかえって増加した。

c) 格子状地中壁の剛性

格子状地中壁の剛性(Fc)を高めた場合の効果を確認するため、Fc=1.5(N/mm2) と Fc=3.0(N/mm2)の地中壁模型を格子規模 20m×10m で作成した。両者で地表面の 沈下量に顕著な差は認められなかったが、地中壁の剛性を高めた場合は、液状化に至 る時間を遅らせる効果が見られた。

3) 直下型地震を想定した入力地震動の場合

格子間隔により液状化が発生した深さや範囲は異なるが、沈下量は、どの格子間隔の場合も無対策の場合の約半分程度に留まった。

4) 長方形の格子に対する入力地震波の方向の影響

格子形状が長方形となる場合について、加振方向の違いによる液状化抑制効果の差を確認するため、20m×10mの長方形平面を持つ地中壁を直交させて模型地盤内に配置した。 この結果、短辺方向に加振される方が長辺方向に加振されるよりも液状化抑制効果が弱く 地表面の沈下量が約2倍大きくなった。