ICタグを活用したコンクリート製造過程におけるトレーサビリティ確保技術に関する共同研究の成果概要表

項目	細目	確認したこと	課題と展望
【 I 】 ICタグに要求 される基本的 性能	物理的性能	・市販ICタグであっても一定程度の耐水性、耐熱性、耐摩耗性等の性能を保有するもの多い。 ・短期間であるが、ICタグを起点としてコンクリートにひび割れ等の悪影響を及ぼさない。 ・軽いタグ(密度1.5g/cm3以下)はコンクリート打ち込み時に浮いてくる。	(課題) ①ICタグの評価方法の確立、②要求性能/品質の 整理、③コンクリート用ICタグの開発、④温冷繰 返し・コンクリート中でのICタグの通信指向性・
	コンクリートへ及ぼす影響 度合い	・ICタグを埋め込んだモルタルに-10〜80℃の温冷繰り返しを与えても、ひび割れは発生しなかった。 ・コンクリート強度の低下が認められたものは皆無であった。	コンクリート内ICタグ通信の経過測定等のフォローアップ調査の実施 (展望)
	通信性能	・UHF帯ICタグは、コンクリート表面より深さ25cm〜30cm、HF帯は深さ10〜15cmまで通信可能。 ・HF帯に比べて、UHF帯ICタグの通信距離は不安定な傾向がある。 ・鉄筋が交差する部分ではICタグの読取可能、中央部でも読取可能、裏側は不可である。	①民間企業等によるコンクリートへの埋め込みを想定したICタグ及び関連技術の開発、②コンクリートの力学性能への影響の証明が可能、③ JISA5308関連の明言、④必要な投入個数の算出が可能
	記録情報の保存性	・実大模擬試験体の内部に埋め込んだICタグは施工後2年経過時点(現在)で通信可能。	
【川】 トレーサビリ ティシステム の構築	全体フローの形成	・ICタグの用い方(ID方式、メモリー方式)、投入タイミング(出荷時、荷卸し時、コンクリート打込み時)、ICタグの周波数帯等により多様な組み合わせがある。 ・生コン工組側からの提案(理想案と現実案)は、書面の省略化・ペーパレス化。 ・工組提案現実案を参考にして、HF帯及びUHF帯ICタグ用基礎アプリケーションを開発。	(課題) ①標準部分と自由に設計できるオプション部分を持つDBとシステム枠組みの検討、②システムに盛り込むセキュリティ技術の検討、③ICチップのメモリー容量
	記録情報の整理	・記録情報は、生コンの製造情報(配合計画、計量印字記録)や各種試験結果や時刻の情報が不可欠である。維持管理段階の検査結果等の情報記録も有用である。	(展望) ①住宅履歴情報との連動等、施工者や建築主・消費者による、ICタグの二次利用を組み込んだシステム、②センサー等との連携によりコンクリート性状のモニタリング、情報蓄積も可能
【Ⅲ】 フィールド実 験	通信性能	・UHF帯ICタグはコンクリート表面より深さ25cm〜30cm、HF帯は深さ10〜15cmまで通信可能。 ・HF帯に比べて、UHF帯の読取距離は不安定。	(課題) ①ICタグ投入個数の関係を試算する手法の検 討、②データベースの標準化、③コンクリート内
	生コン製造過程	・生コン工場が保有する既存の製造・出荷管理システムと国総研で開発した基礎アプリを活用し、ID方式による生コン製造情報の生成・記録、及び情報読取が可能である。	のICタグの流動シミュレーション、ICタグの排出確率検討、④柱状等有筋試験体での読取可能性を検証、⑤コンクリート内でICタグを分散手法の
	運搬・荷卸し過程	・運搬荷卸し時にICタグを投入することで、確実にICタグを施工に使用する生コンへ投入できる。荷卸し時の品質検査の結果情報を確実に記録できる。	検討、⑥マンパワーの削減方法の検討、⑦リー ダーライタの仕様・性能の十分な考慮・検討、⑧ 実現場におけるコスト分析のための実証実験の実
	施工過程	・実アジテータ車内にICタグを投入・現場施工後、車内にICタグが残存しない。 ・アジテータ車から排出する際のICタグの読取はほぼ不可能であった。 ・ICタグを混入したコンクリートの排出性、施工性は通常のコンクリートとほぼ同等。	施。 (展望) ①既存の製造・出荷管理システムの活用、コスト 分析が進めば、様々な規模の工場での適用システ
	合理化・省力化の効果の評価	・基礎アプリを用いた場合新たに発生する付加作業は約70秒であり、負荷は決して大きくない。	ムの提示可能②ワークフローの検討による一層の 時間短縮が可能
【IV】 その他	IC建築部材中でのICタグの 検索技術	・時速7kmまでは確認可能。ただし、ID読取は時速1km以下。	(課題) ①生コン単価の上昇、②消費者・建築主の啓発 (展望)
	I Cタグ利用についての生 コン業者の意識	・現状の主な課題が設備老朽化と人材不足にある。 ・ICタグの認知度は60%以上あり、高い。 ・ICタグへの期待は、品質保証、納品管理の合理化や単価上昇である。ICタグ導入には、課題解決ではなく、期待実現が肝要である。	①ペーパーレス化等合理化は十分可能、②品質保