新しい木質材料を活用した混構造建築物の 設計・施工技術の開発

ー木質系混構造建築物の構造設計に資する技術資料ー

参考資料:プロトタイプⅡ(RC+CLT 袖壁)実験報告

# 内容

| 1. |    | はじ       | めに                       | 4  |
|----|----|----------|--------------------------|----|
|    | 1. | 1.       | 研究背景                     | 4  |
|    | 1. | 2.       | 研究対象                     | 4  |
|    | 1. | 3.       | 参考文献                     | 5  |
| 2. |    | 部材       | 実験                       | 6  |
|    | 2. | 1.       | 設計の考え方                   | 6  |
|    | 2. | 2.       | 試験体の概要<br>               | 8  |
|    |    | 2. 2. 1. | 試験体の形状                   | 8  |
|    |    | 2. 2. 2. | CLT 袖壁のラミナの配置            | 10 |
|    | 2. | 3.       | 施工実験                     | 12 |
|    |    | 2.3.1.   | 全体の工程について                | 12 |
|    |    | 2. 3. 2. | 作業の詳細について                | 13 |
|    |    | 2.3.3.   | ボルトの締め付け                 | 22 |
|    | 2. | 4.       | 材料試験                     | 24 |
|    |    | 2.4.1.   | コンクリート                   | 24 |
|    |    | 2.4.2.   | 鋼材                       | 25 |
|    |    | 2.4.3.   | CLT パネル                  | 27 |
|    |    | 2.4.4.   | エポキシ樹脂                   | 31 |
|    | 2  | 5.       | 加力実験                     | 32 |
|    |    | 2.5.1.   | 載荷方法                     | 32 |
|    |    | 2. 5. 2. | 計測方法                     | 33 |
|    |    | 2.5.3.   | 指傷状況                     | 48 |
|    |    | 2. 5. 4. | 荷重変形関係                   | 60 |
|    |    | 2. 5. 5. | 補強効果の検証(RC柱の終局強度計算値との比較) | 63 |
|    |    | 2. 5. 6. | 変形成分                     | 64 |
|    |    | 2.5.7.   | ろ                        | 69 |
|    |    | 2. 5. 8. | 各部材に作用する軸力、せん断力の推定       | 75 |
|    |    | 2 5 9    | 等価粘性減衰定数の推移              | 82 |
|    | 2. | 6.       | 骨組解析                     | 84 |
|    |    | 2.6.1.   | はじめに                     | 84 |
|    |    | 262      | 部材のモデル化                  | 90 |
|    |    | 2.6.3.   | 解析結果                     | 00 |
|    | 2. | 7.       | 実験結果及び解析結果を踏まえた試験体の設計    | 33 |
|    |    | 2. 7. 1. | 材料确度                     | 33 |
|    |    | 2. 7. 2. | RC 柱の設計(共通)1             | 35 |
|    |    | 2. 7. 3. | RC 柱の設計(パンチングシア破壊)1      | 37 |
|    |    | 2. 7. 4. | CLT 袖壁の設計                | 39 |
|    |    | 2. 7. 5. | 接合部の設計(試験体 AS、AD)1       | 41 |
|    |    | 2. 7. 6. | 接合部の設計(試験体 BS、BD) 1      | 53 |
|    | 2. | 8.       | まとめ                      | 58 |
|    | 2. | 9.       | 謝辞                       | 61 |
|    | 2. | 10.      | 参考文献                     | 61 |
| 3. |    | 架權       | 実験                       | 63 |
|    | 3. | 1.       | 設計の考え方                   | 63 |
|    | 3. | 2.       | 試験体の概要1                  | 65 |
|    |    | 3. 2. 1. | 試験体の形状                   | 65 |
|    |    | 3. 2. 2. | CLT 袖壁のラミナの配置1           | 80 |
|    | 3. | 3.       | 施工実験                     | 82 |
|    |    | 3. 3. 1. | CLT 袖壁の製作及び接合金物の設置1      | 82 |

|    | 3. 3. 2.                                                                 | 全体の工程について                                                 | 182        |
|----|--------------------------------------------------------------------------|-----------------------------------------------------------|------------|
|    | 3. 3. 3.                                                                 | 作業の詳細について                                                 | 183        |
|    | 3, 3, 4,                                                                 | ボルトの締め付け                                                  | 188        |
| (  | 3. 4.                                                                    | 材料試験                                                      | 190        |
|    | 3, 4, 1,                                                                 | コンクリート                                                    | 190        |
|    | 3.4.2.                                                                   | モルタル                                                      | 192        |
|    | 3.4.3.                                                                   | 鋼材                                                        | 193        |
|    | 3 4 4                                                                    | GIT パネル                                                   | 195        |
|    | 345                                                                      | ドリフトピン面圧試験                                                | 204        |
| :  | 3 5                                                                      | 鋼板挿入ドリフトピン接合部の剛性と耐力の評価                                    | 215        |
|    | 3 6                                                                      |                                                           | 223        |
|    | 361                                                                      | 載荷方法                                                      | 223        |
|    | 362                                                                      | 11月17日                                                    | 223        |
|    | 363                                                                      | 指续出口 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.               | 245        |
|    | 364                                                                      | 荷重変形関係と補強効単の比較                                            | 274        |
|    | 365                                                                      | 村はりの主筋 せん断補強筋 アンカーボルト 寸切りボルトの降伏状況                         | 277        |
|    | 366                                                                      | 変形成分                                                      | 281        |
|    | 367                                                                      | <u> 冬部位の11ずみの堆移</u>                                       | 201        |
|    | 368                                                                      | 各部材に作用する軸力 せん断力の推定                                        | 305        |
|    | 369                                                                      | 当時期に17月9日の4月30日月30日と11日日日の11日日日の11日日日の11日日の11日日の11日日の11日日 | 313        |
|    | 37                                                                       | 每個相任/// 我之気》/ 出版 · · · · · · · · · · · · · · · · · ·      | 315        |
| ,  | 371                                                                      |                                                           | 315        |
|    | 372                                                                      | 2000に                                                     | 321        |
|    | 373                                                                      | 21400 ビリル10                                               | 335        |
|    | 3 8                                                                      | 宇騎結果及び解析結果を踏まえた試験体の設計                                     | 378        |
| `` | 7.0.<br>3.8.1                                                            | 大教和未及の許信和未を留るたた的教体の設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 378        |
|    | 382                                                                      | RC                                                        | 380        |
|    | 3.0.2.<br>3.8.3                                                          | RC 柱の設計 (パンチングシア破壊)                                       | 382        |
|    | 384                                                                      | RC けりの設計                                                  | 385        |
|    | 0.0. <del>4</del> .<br>3 8 5                                             | RC 社けし接合部の設計                                              | 380        |
|    | 386                                                                      | () [ ] 加辟の設計                                              | 300        |
|    | 387                                                                      | ビー 御主の設計 (計略休 Δ)                                          | 202        |
|    | 3 8 8                                                                    | 安白即の設計 (試験体系) ····································        | 107        |
| ,  | ₹ 0. 0. 0.<br>2 0                                                        | 22時の1000日(武家平り)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 407        |
| `  | ,<br>,<br>,                                                              | ネ 1冊中小水 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1             | A12        |
|    | 30.7.                                                                    | 86.0%)~                                                   | /10        |
| ,  | J. 9. Z.<br>2 10                                                         | パチ1711 中不 · · · · · · · · · · · · · · · · · ·             | 410        |
| ,  | ). 10.<br>2 11                                                           | よこの,<br>割柱                                                | 444        |
| ,  | ).    .<br>2 10                                                          | 初中・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                    | 449        |
| ۱, | ).  ∠.<br>/+#∃                                                           | _ ② 「 入 冊♪                                                | 449<br>151 |
| 4. | 「1」<br>「小」<br>「小」<br>「小」<br>「小」<br>「小」<br>「小」<br>「小」<br>「小」<br>「小」<br>「小 | (                                                         | 401        |
| 4  | t. I.                                                                    | 計画式に用いた記写の一見                                              | 401        |

### 1. はじめに

#### 1.1. 研究背景

国土交通省では、木材の利用の促進や使用ニーズに対応するため、直交集成材(CLT)パネル工法 に関する設計基準告示の制定や、木質材料をあらわしで使用できる防耐火設計法の告示改正を進めて きた。一方で、木材の需要拡大に繋がり、社会からの要望も大きい中高層木造建築物に関しては、主 要構造部を耐火構造とする必要があるなどの制約がある。国土技術政策総合研究所では、プロジェク ト研究「新しい木質材料を活用した混構造建築物の設計・施工技術の開発」(以下、木質混構造総プロ と称す)において、鉄筋コンクリート(RC)造等の他の構造形式を組み合わせた混構造とすることで、 木質材料を使用した中高層建築物を実現するための検討を行った。

本報告書では、木質混構造総プロで提案されたプロトタイプ(設計例)のうち、RC ラーメンと CLT 袖壁を組み合わせた構造形式(タイプII)を対象とした構造設計法の提案を目的とした部材実験およ び架構実験に関する検討内容を報告する。

## 1.2. 研究対象

本報告書では、全体崩壊形を形成する RC ラーメンを対象に、同架構に CLT 袖壁を挿入する際の構 造設計の考え方を示している。RC と木質材料を組み合わせた混構造建築物に関する研究事例や設計 実績が現状では少なく、構造設計の考え方が十分に整理されていないことを踏まえ、最低限必要な耐 震性能(例えば、保有水平耐力計算では、*D*<sub>s</sub>=0.3 相当の保有水平耐力)は RC ラーメンのみで確保し、 CLT 袖壁を追加の耐震要素として付与する場合の考え方を示すこととする。なお、柱やはりに取り付 く壁部材を耐震要素として活用し、建築物の剛性や耐力を高める考え方としては、国土技術政策総合 研究所が過去に実施した災害拠点総合プロジェクト<sup>[1-1]</sup>における考え方が参考になる。図1-1 に示すよ うに、災害拠点総合プロジェクトでは、過大な入力に対する安全性として、極希地震と比較して 1.25 倍や 1.5 倍のエネルギー吸収能を確保することを目的として、現行の保有水平耐力計算を満足する柱 はりのフレームに、袖壁・腰壁・垂れ壁を活用して保有水平耐力を大幅に向上させ、それによって応 答変形を減らし被災度を低減させる工法を提案している。



図 1-1 災害拠点総合プロジェクトにおける耐震ランク I、 Iの考え方<sup>[1-1]</sup>

本報告書では、CLT 部材の剛性が RC 部材と比較して小さく、CLT 部材に応力負担をさせるために は、架構の水平変形がある程度必要となること、また、CLT の袖壁、腰壁、垂れ壁を組み合わせて用 いる場合、モデル化等が煩雑となり、破壊形式や負担応力の推定が困難となる可能性があることから、 同構法の耐震ランク II ( $C_0=0.40$ 時の最大層間変形角が 1/200 以下)に木質混構造に適用することを目 標とし、RC 造ラーメンに CLT 袖壁を挿入する架構形式を対象とした。2 章では RC 柱の両側に CLT 袖壁を取り付けた部材実験について、3 章では 2 層 1 スパンの RC ラーメンの内側に CLT 袖壁を取り 付けた架構実験について得られた知見を整理している。

なお、袖壁を RC から CLT に変更した場合に、想定される利点と欠点の一例は以下の通りである。

(利点)

- ・CLT 袖壁は RC 袖壁と比較して軽量であり、地震時の慣性力が低減できる。
- ・RC 袖壁の場合、コンクリートの剥落、圧壊が比較的小さい変形で発生するのに対し、CLT 袖 壁は大変形時まで損傷が目立ちにくく、比較的ねばりのある挙動を示す。
- ・将来の用途変更や地震等で損傷を受けた場合に、CLT 袖壁は取り換えが容易に行える。

(欠点)

- ・RC 袖壁と比較して CLT 袖壁は剛性が低く、接合部分においてめり込み等が生じるため、水平 耐力を発揮するために大きな変形が必要となる。
- ・CLT 袖壁は大変形時まで弾性的な挙動を示すため、アンカーボルト等のエネルギー消費要素の 有無にもよるが、RC 袖壁と比較して、減衰が小さくなる可能性がある。
- ・RC 柱-CLT 袖壁間の鉛直接合部、RC はり、基礎はり-CLT 袖壁間の水平接合部に関する設計、施工時の配慮が必要となる。

#### 1.3. 参考文献

[1-1] 国土技術政策総合研究所:災害拠点建築物の設計ガイドライン(案)、

http://www.nilim.go.jp/lab/hbg/saigai/saigaikyotenn.htm、2017.3

#### 2. 部材実験

#### 2.1. 設計の考え方

RC ラーメンに CLT 袖壁を挿入した場合、「RC はりのヒンジ形成位置を RC 柱フェイスから CLT 袖 壁フェイスに移動させるヒンジリロケーション効果」と「CLT 袖壁が取り付くことによる RC 柱の補 強効果」の二つが想定される。このうち、後者に関する検証や、CLT 袖壁の RC ラーメンへの取り付 け方法の確認を目的とした部材実験を実施した。

RC 骨組と CLT 袖壁を接合する場合、水平接合面、鉛直接合面をできるだけ剛強に接合し、接合部 分に大きな変形の発生を許容せず、早期の耐力発現を目指す方法(A タイプ)と、施工性や可変性に 配慮して、水平接合面、鉛直接合面の接合をできるだけ簡素化する方法(B タイプ)の二通りが考え られる。また、RC ラーメン内での RC 柱の応力状態としては、RC ラーメンが全体崩壊形を形成する ものと仮定すると、1 階柱脚のように片持ちに近い曲げモーメント分布となる場合と、中間階のよう に逆対称に近い曲げモーメント分布となる場合が想定される。

表 2-1 に応力状態ごとに分類した各接合方法の利点と欠点をまとめて示す。A タイプでは、剛性が向上し、早期に最大耐力を発揮できる点が利点であるが、接合部への入力せん断力が大きくなるため、特に鉛直接合部の設計が厳しくなり、接合部の寸法や重量が大きくなることが想定される。また、B タイプでは、鉛直接合部の設計が必要なく、1 階柱のように、片持ち柱形式の曲げモーメント分布

(Single curvature、以後 S モードと称す)が作用する場合には、CLT 袖壁に軸方向の変形が強制されるため、一体型と同等の最大耐力を発揮することが期待されるが、中間階の柱のように、逆対称の曲 げモーメント分布(Double curvature、以後 D モードと称す)が作用する場合には、RC 柱の変形に追随できず、剛性や耐力が大幅に低下することが懸念される。

これらの利点と欠点を踏まえ、今回の部材実験では、AタイプとBタイプのそれぞれの実現の可能 性を図ることとし、Aタイプでは逆対称形式と片持ち柱形式の試験体 AD、AS、Bタイプでは片持ち 柱形式の試験体 BS の 3 体の実験を実施することとした。なお、Bタイプの逆対称形式の BD に関し ては実験を実施しない。これは、部材実験では、RC 柱と CLT 袖壁が独立した部材として挙動するた め、同時に実験を実施するメリットが小さいと判断したためである。実際の架構の中間階では、部材 実験とは異なり、RC 柱ではなく RC はりに塑性ヒンジが形成されるように各部材の設計を行うため、 柱の曲げモーメント分布が逆対称となる場合でも、RC はりの変形により、CLT 袖壁に応力がある程 度は伝達されるものと考えられる。なお、後述する骨組解析では、実験を行っていない BD を含めた 検討を実施している。

| 1.0            |                    |       |                                                                     |                                                   |
|----------------|--------------------|-------|---------------------------------------------------------------------|---------------------------------------------------|
|                | タイプ                |       | Aタイプ                                                                | Bタイプ                                              |
| 部<br>逆交<br>載荷? | 部材実験で<br>逆対称形式の    | メリット  | ー体で挙動することで、CLT袖壁が十分な曲げ圧縮<br>合力を負担することが可能となり、早期に曲げ耐力を<br>実現することができる。 | CLT袖壁とRC柱を独立した部材として取り扱うため,<br>鉛直接合部の設計を行う必要がない。   |
|                | 載荷を行うケース<br>(Dモード) | デメリット | 柱脚, 柱頭において, 曲げ耐力を発揮させるために,<br>鉛直接合部に十分な耐力を付与する必要がある。                | CLT袖壁の負担応力が小さく、補強効果が小さくなる<br>可能性がある。              |
|                | 部材実験で<br>片持ち柱形式の   | メリット  | 柱頭の回転に加えて、RC柱の曲げ変形に伴った圧<br>縮変形の強制が見込めるため、早期に曲げ耐力を<br>実現することができる。    | 柱頭の回転により,圧縮変形が強制されるため,一<br>体型と遜色のない曲げ耐力の発揮が期待できる。 |
|                | 載荷を行うケース<br>(Sモード) | デメリット | 逆対称形式の場合ほどではないが, 鉛直接合部に<br>十分な耐力を付与する必要がある。                         | 一体型と比較すると、水平剛性がやや劣る。                              |

表 2-1 RC 柱に関する一体型と分離型のメリットとデメリット

試験体 AD、AS は、試験体の周囲に金物を設け、RC 柱と CLT 袖壁の水平、鉛直方向のずれを防止 し、両者が一体となって挙動するように設計する。試験体 AD では、鉛直接合部の入力せん断力が大 きい状態を想定しており、鉛直接合部にも相応の応力負担を要求する試験体であり、破壊形式として は CLT 袖壁のせん断破壊や鉛直接合部のせん断破壊が推定されるため、鉛直接合部の破壊に起因する 耐力評価に必要な情報を得ることができるものと考えられる。一方、試験体 AS では、試験体 AD と 比較すると、鉛直接合部の入力せん断力が軽減されるため、RC 柱と CLT 袖壁が一体となった場合の 挙動を確認することができるものと考えられるが、鉛直接合部や水平接合部にずれ等が生じないか、 確認する必要がある。

試験体 BS は、鉛直接合部に金物を設けず、RC 柱と CLT 袖壁の鉛直接合部のずれを許容し、両者 が独立に挙動することを意図した試験体である。なお、本来は試験体 AD、AS と同じ壁厚(90mm) で実験を行うことが望ましいが、試験体 BS では CLT 袖壁から鋼製の滑り止めへの応力伝達を CLT 袖 壁の材軸直交方向の支圧によって行うことになるため、材軸直交方向のラミナにもある程度の断面が 必要となる。そこで、壁厚を 120mm として、材軸直交方向の応力伝達を可能とするとともに、試験体 AS と同程度の曲げ耐力となるように調整を行った。今回の実験では試験体数に制約があるため、片持 ち柱形式(S モード)で実験を行うこととした。接合部の耐力が、試験体の剛性や耐力に及ぼす影響 を検証するのであれば、鉛直接合部に作用するせん断力がより大きい試験体 AD に揃える形で、試験 体 BS ではなく、試験体 BD を計画した方が都合がよいが、試験体 BD では、今回実施する部材実験 では実際の架構とは載荷条件が異なる(載荷はりが変形しない)ため、CLT 袖壁が耐震要素として十 分に性能を発揮できず、CLT 袖壁の寄与を評価できない可能性がある(逆に RC はりが変形する架構 実験では有効に機能する可能性がある)と考えられるため、実設計で活用可能なデータの収集を優先 させ、試験体 BS を選択することとした。

|      |      |       | 接合                                                  | 合方法                       |
|------|------|-------|-----------------------------------------------------|---------------------------|
| 試験体名 | 載荷方法 | CLT板厚 | 水平                                                  | 鉛直                        |
| AD   | 逆対称  | 90mm  | ・エポキシ樹脂充填<br>・山形鋼, アンカーボルト                          | ・エポキシ樹脂充填<br>・山形鋼、 寸切りボルト |
| AS   | 片持ち  | 90mm  | ・エポキシ樹脂充填<br>・山形鋼, アンカーボルト                          | ・エポキシ樹脂充填<br>・山形鋼, 寸切りボルト |
| BS   | 片持ち  | 120mm | <ul> <li>エポキシ樹脂充填</li> <li>予り止め、テンションロッド</li> </ul> | ・エポキシ樹脂充填                 |

表 2-2 実験変数

## 2.2. 試験体の概要

表 2-3 に実験試験体の概要の一覧を示す。上述したように、部材実験の試験体数は3体である。

| 試験       | 44                                                                                | P2                                                               | 水平接合部                                             |                                   |                          |                                    |  |  |
|----------|-----------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|-----------------------------------|--------------------------|------------------------------------|--|--|
| 体名       | 性                                                                                 | 袖壁                                                               | 金物                                                | RC-金物                             | 金物-CLT                   | 金物-金物                              |  |  |
| AS<br>AD | 450mm×450mm<br>主筋 16-D19<br>(SD345) pg=2.26%<br>帯筋 4-D10@100<br>(SD295A) pw=0.63% | 90mm×645mm×1690mm<br>(S60-3-3)<br>幅はぎ接着:なし<br>接着剤:水性高分子イソシアネート系  | 山形鋼<br>(SM490)<br>断面寸法 : 112mm×150mm<br>厚さ : 12mm | アンカー<br>ボルト<br>4-M16<br>(ABR490B) | エポキシ<br>樹脂<br>(E390TL)   | 接着用<br>ボルト<br>4-M16<br>(不明)        |  |  |
| BS       |                                                                                   | 120mm×645mm×1690mm<br>(S60·3·4)<br>幅はぎ接着:なし<br>接着剤:水性高分子イソシアネート系 | 滑り止め<br>(SM490)                                   | PC鋼棒<br>2-23mm<br>(C種1号)          | 滑り止め<br>(SM490)<br>による支圧 | テンション<br>ロッド<br>2-M16<br>(ABR490B) |  |  |

表 2-3 実験試験体

| 試験       | 鉛                                               | 充填                      |                        |                             |        |
|----------|-------------------------------------------------|-------------------------|------------------------|-----------------------------|--------|
| 体名       | 金物                                              | RC-金物                   | 金物-CLT                 | 金物·金物                       | RC-CLT |
| AS<br>AD | 山形鋼<br>(SM490)<br>断面寸法 : 150mm×150mm<br>厚さ:12mm | ボルト<br>26-M16<br>(S45C) | エポキシ<br>樹脂<br>(E390TL) | 接着用<br>ボルト<br>8-M16<br>(不明) | エポキシ   |
| BS       |                                                 | なし                      |                        |                             | 增      |

#### 2.2.1. 試験体の形状

図 2-1 に RC 柱の断面図を示す。試験体の縮尺は 2/3 で、補強対象となる柱の寸法は 450mm×450mm で、主筋は 16-D19、帯筋は加力方向に対して 4-D10@100 としている。



図 2-2、図 2-3 に試験体 AD、AS の側面図と平面図を示す。A タイプでは、RC ラーメンと CLT 袖壁の水平接合面、鉛直接合面を剛強に接合し、接合部分に大きな変形の発生を許容せず、早期の耐力 発現を目指すこととする。接合部分における応力伝達は、アンカーボルトや寸切りボルト、水平接合 材や鉛直接合材を用いて実現するものとするが、RC 柱と CLT 袖壁を一体で挙動させるために、鉛直 接合部を剛強な設計としている。



図 2-3 試験体 AD、AS の平面図

図 2-4、図 2-5 に試験体 BS の概要を示す。B タイプでは、RC ラーメンと CLT 袖壁の水平接合面、 鉛直接合面の接合は、エポキシ樹脂の充填のみで行うものとし、特に鉛直接合面では、接着面が破壊 した後の接合部分における応力伝達には期待せず、RC 柱と CLT 袖壁がある程度分離して挙動するこ とを想定する。本検討では、CLT 袖壁と RC ラーメンを直接接合するような金物は設置しないが、CLT 袖壁の耐力や剛性への寄与分を増やすため、CLT 袖壁の端部に鋼製の滑り止めとテンションロッドを 設置している。





# 2.2.2. CLT 袖壁のラミナの配置

図 2-6、図 2-7、図 2-8 に今回使用した CLT 袖壁におけるラミナの割り付け状況を示す。使用した ラミナの幅は 122mm を基準としており、最外縁のラミナの幅方向の数は 6~7 枚、中間層のラミナの せい方向の数は 15 枚である。最外縁のラミナには、フィンガージョイントは設けておらず、縦継ぎは 行っていない。幅はぎ(厚さ方向の接着)については、今回の実験では行わなかった。



図 2-6 試験体 AS に使用した CLT 袖壁におけるラミナの割り付け(単位:mm)



図 2-7 試験体 BS に使用した CLT 袖壁におけるラミナの割り付け(単位:mm)



図 2-8 試験体 AD に使用した CLT 袖壁におけるラミナの割り付け(単位:mm)

## 2.3. 施工実験

# 2.3.1. 全体の工程について

本実験では、実験試験体3体(AD、AS、BS)に対して計6枚のCLT 袖壁の設置、実験試験体2体 (AD、AS)に対して水平接合材を計16個、鉛直接合材を計8個の取り付けを行った。以下に作業の 工程を示す。

| 作業口  | 開始    | 終了    | 作業   | 作業  | 作業                            |
|------|-------|-------|------|-----|-------------------------------|
| TF来日 | 時間    | 時間    | 時間   | 人数  | 内容                            |
| 5/17 | 8:30  | 10:00 | 1:30 | 1人  | グラインダーを用いた RC 試験体の目荒らし        |
|      | 8:30  | 10:00 | 1:30 | 2人  | 型枠の切断、ゴムスポンジ、養生テープの貼り付け       |
|      | 10:30 | 12:00 | 1:30 | 1人  | 型枠の切断、ゴムスポンジ、養生テープの貼り付け       |
|      | 10:30 | 12:00 | 1:30 | 2人  | RC 試験体への墨出し(試験体の幅方向に傾斜があったた   |
|      |       |       |      |     | め、作業に手戻りが生じた)                 |
|      | 13:00 | 15:00 | 2:00 | 3人  | CLT 袖壁への養生テープの貼り付け、接合材を用いた試験  |
|      |       |       |      |     | 体の仮位置合わせ、RC 試験体への養生テープの貼り付け   |
|      | 15:30 | 18:30 | 3:00 | 3人  | CLT 袖壁の設置、片面側の型枠の設置           |
| 5/18 | 8:30  | 12:00 | 3:30 | 2人  | もう片面と厚さ方向の型枠の設置、周辺のボルトの養生、    |
|      |       |       |      |     | 上部の水平接合面の空気孔の設置               |
|      | 13:00 | 15:00 | 2:00 | 2人  | エポキシ充填用の取り付け口(水平接合面は3個、鉛直接    |
|      |       |       |      |     | 合面は高さ 300mm ごと)の貼り付け、型枠周辺へのシー |
|      |       |       |      |     | ル材の塗布                         |
| 5/21 | 8:00  | 8:30  | 0:30 | 2 人 | 試験体周辺の養生                      |
|      | 8:30  | 9:40  | 0:50 | 2人  | 試験体 AD へのエポキシ樹脂の充填(一回目)       |
|      | 10:30 | 12:00 | 1:30 | 2人  | 試験体 AS へのエポキシ樹脂の充填(一回目)       |
|      | 13:00 | 14:40 | 1:40 | 2人  | 試験体 AS へのエポキシ樹脂の充填(一回目)       |
|      |       |       |      |     | 試験体 BS へのエポキシ樹脂の充填(一回目)       |
| 5/22 | 8:15  | 10:15 | 2:00 | 2人  | シール材、取り付け口、型枠の撤去、清掃           |
|      | 10:45 | 12:45 | 2:00 | 2 人 |                               |
|      | 14:30 | 14:50 | 0:50 | 2人  | 型枠の取り付け (CLT 袖壁側の木ねじのみ)       |
|      | 14:50 | 16:00 | 1:10 | 2人  | エポキシ充填用の取り付け口(水平接合面は3個、鉛直接    |
|      |       |       |      |     | 合面は1個)の貼り付け、型枠周辺へのシール材の塗布     |

表 2-4 作業工程(2018/5/17~5/22)

表 2-5 作業工程(2018/5/23~5/25)

| 化坐口   | 開始    | 終了    | 作業   | 作業 | 作業                         |
|-------|-------|-------|------|----|----------------------------|
| 11-未日 | 時間    | 時間    | 時間   | 人数 | 内容                         |
| 5/23  | 8:15  | 8:40  | 0:25 | 2人 | 二次充填の準備                    |
|       | 8:40  | 10:00 | 1:20 | 2人 | 試験体 AD、AS へのエポキシ樹脂の充填(二回目) |
|       | 10:30 | 11:10 | 0:40 | 2人 |                            |
|       | 11:10 | 12:20 | 1:10 | 2人 | 試験体 BS へのエポキシ樹脂の充填(二回目)    |
| 5/24  | 8:15  | 9:00  | 0:45 | 2人 | 脱型                         |
|       | 9:00  |       | 2:00 | 2人 | シール材、取り付け口、型枠の撤去、清掃        |
|       | 11:00 | 12:00 | 1:00 | 2人 | エアーがある箇所の補修                |
|       | 13:00 | 14:00 | 1:00 | 1人 | CLT 袖壁の養生                  |
|       | 13:00 | 14:40 | 1:40 | 1人 |                            |
| 5/25  | 8:30  | 9:20  | 0:50 | 2人 | 接合部固定用のボルト(M16)の準備         |
| 9:20  |       | 11:30 | 1:20 | 2人 | 試験体 AD への水平、鉛直接合材の接着、仕上げ   |
|       | 12:30 | 13:10 | 0:40 | 2人 |                            |
|       | 13:10 | 15:15 | 2:05 | 2人 | 試験体 AS への水平、鉛直接合材の接着、仕上げ   |

#### 2.3.2. 作業の詳細について

**写真 2-1**に RC 試験体の目荒らし、墨出しの様子を示す。試験体の目荒らしは、CLT 袖壁と接触す る面を対象にディスクグラインダーで行った。また、当初はデジタル水平機を用いて墨出しを行って いたが、作業中に試験体が傾いていることが分かったため、各部の寸法をスケールで計測し直した。

**写真 2-2** に型枠の作成時の様子を示す。型枠は 20mm×50mm もしくは 25mm×50mm の断面の木材 を用いて作成されており、エポキシ樹脂の漏れを防ぐため、両面テープでゴムスポンジが接着されて いる。さらに脱型時のはがれやすさを考え、ゴムスポンジの上に養生テープを貼り付けた状態で使用 する。



写真 2-1 目荒らし、墨出し



写真 2-2 型枠の表面処理(ゴムスポンジ(漏れ止め)+養生テープ(脱型のしやすさ))

**写真 2-3** に CLT 袖壁の位置決めの様子を示す。墨出しに合わせてテープで試験体を養生した上で、 CLT 袖壁を横から試験体に挿入した。試験体の脚部と側面の目地幅は、直径 5mm の丸鋼を挟み込む ことで確保した。一方、試験体の頂部については、目地幅の調整は行っていないので、目地幅にはば らつきがあるものと考えられる。型枠を用いて試験体の位置を固定した後、丸鋼は取り除いた。

**写真 2-4**に RC 柱への型枠の固定、CLT 袖壁の型枠への固定の様子を示す。型枠は RC 柱や上下の スタブにコンクリートねじを用いて固定した。また、CLT 袖壁は固定した型枠に木ねじで固定した。



写真 2-3 CLT 袖壁の位置決め



写真 2-4 RC 柱への型枠の固定、CLT 袖壁の型枠への固定

**写真 2-5** に CLT 袖壁の周辺に型枠を設置した後の様子を示す。本実験では、鉛直接合部の充填は一度に行わず、一回目の充填では脚部から 1500mm 程度の高さまでの充填とし、型枠もそれに合った高さとしている。

写真 2-6 に型枠の周辺にエポキシ樹脂の注入口を接着し、目地材としてカートリッジタイプのはく りシールで隙間を埋めた状態を示す。注入口は水平接合部では各袖壁につき3箇所、鉛直接合部では 300mm 間隔で設置した。なお、注入口はパネルの片面のみに設置しており、反対側には設置されてい ない。





写真 2-5 型枠設置終了後の様子





写真 2-6 エポキシ樹脂の注入口と目地材の設置

写真 2-7 に1回目のエポキシ樹脂の充填時の様子を示す。使用したエポキシ樹脂は、E207DS(コニシ株式会社製)である。袖壁端に最も近い注入口からエポキシ樹脂の充填を始め、隣接する注入口にエポキシ樹脂が到達したのを確認した後は、その注入口からエポキシ樹脂の充填を継続した。エポキシの充填は要量 50ml の注射器を用いて行った。なお、一回目の充填では、鉛直接合部に取り付けた目地の一番上側が解放されているため、大きな圧力を掛け過ぎると、エポキシ樹脂が上から流れ出す可能性がある。そこで、1回目の充填では、圧力が大きくなり過ぎないように輪ゴムを用いた圧力の調整は行わなかった。また、目地材の隙間からエポキシ樹脂の漏れが確認された場合には、市販の粘土や止水セメントを用いて漏れ止めを行った。



写真 2-7 1回目のエポキシ樹脂の充填時の様子

**写真 2-8**に1回目のエポキシ樹脂充填後の脱型時の様子を示す。RC部分やCLT袖壁に粘着している目地材があるため、型枠の撤去、清掃には半日程掛かった。**写真 2-9**に2回目のエポキシ充填のための型枠、目地材の設置、試験体の養生の様子について示す。



写真 2-8 1回目のエポキシ樹脂充填後の脱型時の様子



写真 2-9 2 回目のエポキシ樹脂充填のための型枠、目地材の設置、試験体の養生

**写真 2-10** に 2 回目のエポキシ樹脂の充填時の様子を示す。エポキシ樹脂は、鉛直接合部の一番下 側の注入口から充填し、隣接する注入口まで樹脂が到達したことを確認した上で、隣の注入口に移動 し、充填を継続した。なお、袖壁端には空気穴が設けられており、空気穴にエポキシ樹脂が到達する まで充填作業を継続したが、一部の空気穴では型枠の内側に貼り付けたゴムスポンジが逆止弁のよう な働きをしたため、エポキシ樹脂の到達を十分に確認できない箇所があった。1 回目の充填時とは異 なり、2 回目の充填では、注入器に輪ゴムを掛け、圧力により、エポキシ樹脂が十分内部に万遍なく 充填されるようにしたが、圧力を大きくしたことで、注入口付近からエポキシ樹脂が漏れ出す箇所も あった。



写真 2-10 2回目のエポキシ樹脂の充填時の様子

なお、**写真 2-11** に示すように、1、2 回目のいずれの充填でも、エポキシ樹脂の材料特性を把握す るための試験片(圧縮、引張、引張せん断)の作成を行っている。



写真 2-11 試験片の作成

**写真 2-12** に 2 回目のエポキシ樹脂充填後の脱型時の様子を示す。一部の鉛直、水平目地部では、気泡が残留していたため、こてを使ってエポキシ樹脂の充填作業を行っている。



写真 2-12 2回目のエポキシ樹脂充填後の脱型時の様子

写真 2-13 に水平接合材の接着時の様子を、写真 2-14 に鉛直接合材の接着時の様子を示す。接着剤 には、E390TL (コニシ株式会社製)を用いた。いずれの接合材に関しても、CLT 袖壁の表面に数 mm の厚さで接着剤を塗り付けた後、CLT 袖壁を挟み込むように、対になる 2 個の接合材を上下のスタブ に埋め込まれたアンカーボルトもしくは柱側面に埋め込まれた寸切りボルトで仮止めした。その後、 CLT 袖壁内に設けた直径 20mm の孔に接着用の M16 のボルトを通して、軽くナットを締め、仮止め したアンカーボルトや寸切りボルトのナットを緩めた状態で、CLT 袖壁内を貫通する接着用の M16 ボ ルトの両側のナットを締め込み、接着面に接着剤を行き渡らせた。締め付けは、電動ドリルできつく 締め付け過ぎないように行った。



写真 2-13 水平接合部の接着時の様子







写真 2-14 鉛直接合材の接着時の様子

なお、写真 2-15 に示すように、エポキシ樹脂 E390TL に関しても、材料特性を把握するための試験 片(圧縮、引張、引張せん断)の作成を行っている。また、作業終了後の試験体の様子を写真 2-16 に 示す。



写真 2-15 試験片の作成



写真 2-16 施工終了時の試験体の様子

#### 2.3.3. ボルトの締め付け

試験体 AS、AD では、長期軸力の入力前に、水平接合材、鉛直接合材の固定に用いているアンカー ボルト(上下スタブに埋め込み、M16、ABR490B)と寸切りボルト(RC 柱内に埋め込み、M16、S45C) の締め付けを行い、初期トルクを導入した。なお、水平接合材、鉛直接合材のエポキシ樹脂による接 着時にも、これらのボルトの締め付けは行っているが、トルクの管理が十分でなかったため、エポキ シ樹脂の硬化後に初期トルクの調整を行っている。

初期トルクの大きさは、アンカーボルトの一次締め付けトルクである 60Nm を参考とした。なお、 鉛直接合面に関しては、寸切りボルトとして S45C を用いており、より大きなトルクで締め付けを行 った方がずれの防止には有効であるが、締め付け時に CLT 袖壁と接合材の接着面付近から異音がした ため、それ以上の締め付けを行わなかった。今回の実験では、RC 柱と鉛直接合材の間にモルタル等の 充填を行わなかったため、両者の間に隙間が生じ、接着面に負担が掛かったものと考えられる。

表 2-6、表 2-7 に、試験体 AS、AD の長期荷重入力前のアンカーボルトの初期ひずみを示す。初期 ひずみ、CLT 袖壁の施工前と施工後のひずみの計測値から算定した。CLT 袖壁のトルクの最終的な調 整は、水平接合材、鉛直接合材の取り付け後、接着剤が硬化した後に行った。そのため、一部のアン カーボルトに関しては、エポキシ樹脂が付着しており、トルクとひずみの大きさが必ずしも対応して いないが、全体の平均としては、締め付けにより、300µ 程度の初期ひずみが生じていた。本実験では、 一次締め付け後の本締めを行っていないため、初期ひずみの値はテンションロッドの降伏ひずみ 1776µ の 17%程度の値に留まっている。トルクの大きさを調整することにより、CLT 袖壁端部の離間 耐力の大きさと、アンカーボルトが引張降伏する時の層間変形角が変動するものと考えられるが、ど の程度の初期ひずみを与えるのが妥当かは今後の検証が必要である。

なお、水平接合材、鉛直接合材の接着時には、接着剤が万遍なく広がるように、M16の寸切りボルト(鋼種不明)を用いて、CLT 袖壁の幅方向の締め付けを行った。本来であれば、せん断伝達に寄与するボルトは取り除き、接着面の応力伝達のみに期待して加力実験を行うべきであったが、鉛直接合面の締め付けに用いたボルトを緩めようとしたところ、CLT 袖壁と鉛直接合材の接着面から異音がし

たため、そのままの状態で加力実験を行うこととした。また、水平接合面に関しても、その後の検討 により、CLT 袖壁に作用する繊維直交方向の引張力により、CLT 袖壁と水平接合材の接着面近傍での 破壊が生じる恐れがあることが分かったため、寸切りボルトを取り付けたまま加力実験を実施した。

| 部位                | ゲージの名前 | 初期ひずみ(μ) | 平均値 (μ) |  |
|-------------------|--------|----------|---------|--|
| 北面油胺。脚立           | SABNN  | 538      | 550     |  |
| 1010月1日。 1010月11日 | SABNS  | 562      | 550     |  |
| <b>南</b> 側加辟,開如   | SABSN  | 321      | 204     |  |
| 用"则"阳空" "加"印      | SABSS  | 467      | 394     |  |
| 北加加辟,百如           | SATNN  | 100      | 122     |  |
| 4」(則相望 • 」頁司)     | SATNS  | 164      | 132     |  |
| <b>声</b> 侧加辟,頂如   | SATSN  | 292      | 192     |  |
| (百貝L• 室町(町))<br>日 | SATSS  | 72       | 182     |  |

表 2-6 試験体 AS の長期荷重入力前のアンカーボルトの初期ひずみ

| 表 2-7 言 | 試験体 AD | の長期荷重ノ | し力前のア: | ンカーボル | トの初期ひずみ | 4 |
|---------|--------|--------|--------|-------|---------|---|
|---------|--------|--------|--------|-------|---------|---|

| 部位                                 | ゲージの名前 | 初期ひずみ(μ) | 平均値 (μ) |
|------------------------------------|--------|----------|---------|
| 北面油展,脚立                            | SABNN  | 296      | 255     |
| 1010月1日1日 1010月1日                  | SABNS  | 214      | 233     |
| 古 侧 如 腔 。 脚 郊                      | SABSN  | 268      | 256     |
| 判1   1   1   1   1   1   1   1   1 | SABSS  | 444      | 330     |
| 北侧油腔,顶如                            | SATNN  | 122      | 248     |
| 北側袖室・頂前                            | SATNS  | 374      | 248     |
| 古间地腔, 百如                           | SATSN  | 138      | 210     |
|                                    | SATSS  | 500      | 519     |

一方、試験体 BS に関しては、長期荷重の入力の直前に、テンションロッド(M16、ABR490B)の 締め込みを行った。初期トルクの大きさは、アンカーボルトの一次締め付けトルクである 60Nm を参 考とした。締め付け後の初期ひずみの大きさは 300µ 程度であり、試験体 AS、AD とほぼ同等の値を 示したが、その後の長期荷重を入力すると、初期ひずみが減少し、水平加力直前のひずみの大きさは、 100µ 程度となった。

| 部位     | ゲージの名前 初期ひずみ( |     | 平均値 (μ) |
|--------|---------------|-----|---------|
| 北和地市民  | TN            | 298 | 200     |
| イロ則作世生 | TN2           | 301 | 299     |
| 古间神晓   | TS            | 306 | 205     |
| 用側袖壁   | TS2           | 305 | 303     |

表 2-8 試験体 BS の長期荷重入力前のテンションロッドの初期ひずみ

## 2.4. 材料試験

## 2.4.1. コンクリート

表 2-9 にコンクリートの圧縮、割裂試験の結果を、図 2-9、図 2-10 に圧縮試験におけるコンクリートの応力-ひずみ関係を示す。試験区間のコンクリートの圧縮強度の平均値は 29.2~29.8N/mm<sup>2</sup> であり、試験体ごとの相違は殆ど見られない。

| 試験体名 |           | 割線剛性     | 圧縮強度                 | 割裂強度                 | 材齢  |
|------|-----------|----------|----------------------|----------------------|-----|
|      |           | (kN/mm²) | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (日) |
| 20   | 下スタブ      | 23.2     | 30.3                 | 2.4                  | 126 |
| AS   | 試験区間、上スタブ | 23.3     | 29.7                 | 2.5                  | 119 |
| BC   | 下スタブ      | 22.7     | 30.1                 | 2.5                  | 138 |
| DO   | 試験区間、上スタブ | 23.0     | 29.2                 | 2.4                  | 131 |
|      | 下スタブ      | 22.0     | 30.4                 | 2.4                  | 150 |
|      | 試験区間、上スタブ | 21.4     | 29.8                 | 2.4                  | 143 |

表 2-9 コンクリートの試験結果



図 2-9 コンクリートの応力-ひずみ関係(下スタブ)



図 2-10 コンクリートの応カーひずみ関係(試験区間、上スタブ)

# 2.4.2. 鋼材

表 2-10 に鋼材の引張試験の結果を、図 2-11 に引張試験における鋼材の応力-ひずみ関係を示す。 CLT 袖壁と山形鋼の接着の際に用いた締め付け用の M16 のボルトに関しては、当初、ボルトを取り外 した状態で載荷を行うことを想定していたため、規格品を用いていない。

|     |         |                    |         |                       | · · · · · ·          | A COLUMN             |       |
|-----|---------|--------------------|---------|-----------------------|----------------------|----------------------|-------|
|     | 計睦体々    | · 如 /              | 村街      | ヤング係数                 | 降伏強度                 | 引張強度                 | 降伏ひずみ |
|     | <b></b> | цр. <u>177</u>     | 们俚      | (kN/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (µ)   |
| D10 |         | 柱帯筋                | SD295A  | 181                   | 363                  | 504                  | 1999  |
| D13 | 土通      | スタブせん断補強筋          | SD295A  | 181                   | 390                  | 486                  | 2155  |
| D19 | 六地      | 柱主筋                | SD345   | 182                   | 383                  | 583                  | 2107  |
| D25 |         | スタブ主筋              | SD345   | 179                   | 377                  | 568                  | 2106  |
|     | AD, AS  | アンカーボルト<br>(水平接合部) | ABR490B | 189                   | 336                  | 546                  | 1776  |
| M1C | BS      | テンションロッド           |         |                       |                      |                      |       |
| M16 | AD, AS  | ボルト<br>(鉛直接合部)     | S45C    | 183                   | 540*                 | 783                  | 2958  |
|     | AD, AS  | 接合材締め付け            | 不明      | 183                   | 448*                 | 545                  | 2452  |

表 2-10 鉄筋、アンカーボルト、テンションロッドの試験結果



図 2-11 鉄筋、アンカーボルト、テンションロッドの応カーひずみ関係

# 2.4.3. CLT パネル

# 2.4.3.1. 圧縮試験

構造用木材の強度試験マニュアル<sup>[2-1]</sup>を参考に、試験体の形状を決定した。試験体の全長は断面の短辺長さの6倍としている。計測に関しては、相対する2材面の軸ひずみを計測した。計測長が短い場合は、ひずみの評価が局所的となる可能性があるため、ここでは短辺長さの4倍(3層3プライ: 360mm、3層4プライ:480mm)を計測長とした変位計による計測値を行った。

|         |     | 割線剛性                  | 圧縮強度    | 圧縮強度時ひずみ |
|---------|-----|-----------------------|---------|----------|
|         |     | (kN/mm <sup>2</sup> ) | (N/mm²) | (µ)      |
| S60-3-3 | 縦圧縮 | 5.53                  | 20.8    | 4791     |
| S60-3-3 | 横圧縮 | 2.23                  | 8.9     | 5554     |
| S60-3-4 | 縦圧縮 | 4.49                  | 15.5    | 5126     |
| S60-3-4 | 横圧縮 | 5.06                  | 14.9    | 3590     |

表 2-11 CLT の試験結果 (変位計による計測値を使用)







(a) \$60-3-3



(b) S60-3-4 写真 2-17 縦圧縮試験の様子



図 2-14 横圧縮試験の応カーひずみ関係



(a) \$60-3-3



(b) S60-3-4 写真 2-18 横圧縮試験の様子

表 2-12 に示す圧縮強度と座屈強度の関係を用いて、材料試験の結果(座屈強度)から、CLT の圧縮 強度を計算する。計算結果を表 2-13 に示す。ここでは、材料試験片の境界条件が片側固定、片側ピン となることから、座屈長さを実際の試験片の長さの 0.7 倍とした。また、CLT の圧縮強度を用いて、 部材実験の検討に使用する CLT の座屈強度を計算する。CLT 袖壁の座屈強度の計算結果を表 2-14 に 示す。ここでは、袖壁の境界条件が両端固定となるものと仮定し、座屈長さを、縦圧縮の場合は袖壁 高さの 0.5 倍、横圧縮の場合は袖壁せいの 0.5 倍とした(横圧縮の場合は、滑り止めに対する CLT の 圧縮強度が問題となるため、縦圧縮の場合と同様に境界条件が両端固定であるものと仮定した)。

| 衣 Z=12   圧陥的()  ()  ()  () | 材料強度 | を屈)( | 圧縮材 | 表 2-12 |
|----------------------------|------|------|-----|--------|
|----------------------------|------|------|-----|--------|

| 有効細長比                  | 圧縮材(座屈)の材料強度           |
|------------------------|------------------------|
| $\lambda$ $\leq$ 30の場合 | tFc                    |
| 30<λ≦100の場合            | (1.3-0.01 λ )tFc       |
| 100<λの場合               | $(3000/\lambda^2)$ tFc |

ここで、 $_{I}F_{c}$ : 圧縮に関する基準強度、 $\lambda$ : 有効細長比( $= l_{b}\sqrt{A/I_{e}}$ )、 $l_{b}$ : 座屈長さ、A: 強軸方向の 許容応力度を計算する場合は全断面積、弱軸方向の許容応力度を計算する場合は外層を除いた部分の 断面積、 $I_{c}$ : 強軸方向の許容応力度を計算する場合は全断面の断面二次モーメント、弱軸方向の許容応 力度を計算する場合は外層を除いた部分の断面二次モーメントとする。

#### 表 2-13 材料試験から推定した CLT の圧縮強度(記号は表 2-12 を参照)

|             | 推定した圧縮強度<br>(N/mm <sup>2</sup> ) | 材料試験の最大圧縮応力<br>(=座屈強度)<br>(N/mm <sup>2</sup> ) | λ    | Ie<br>(mm <sup>4</sup> ) |       |   | A<br>(mm²) |   |     | lb<br>(mm) |
|-------------|----------------------------------|------------------------------------------------|------|--------------------------|-------|---|------------|---|-----|------------|
| S60-3-3 縦圧縮 | 20.8                             | 20.8                                           | 14.5 | 7290000                  | 10800 | = | 120        | × | 90  | 378        |
| S60-3-3 横圧縮 | 10.3                             | 8.9                                            | 43.6 | 270000                   | 3600  | = | 120        | × | 30  | 378        |
| S60-3-4 縦圧縮 | 15.5                             | 15.5                                           | 14.5 | 23040000                 | 19200 | = | 160        | × | 120 | 504        |
| S60-3-4 横圧縮 | 14.9                             | 14.9                                           | 29.1 | 2880000                  | 9600  | = | 160        | × | 60  | 504        |

| 衣 2-14   節材美験の検討に使用 9 る 661 の座出独度(記号は衣 2-12 : | を奓喣) |
|-----------------------------------------------|------|
|-----------------------------------------------|------|

|             | 推定した圧縮強度<br>(N/mm <sup>2</sup> ) | 部材試験の座屈強度<br>(N/mm <sup>2</sup> ) | λ    | Ie<br>(mm <sup>4</sup> ) |        |   | A<br>(mm <sup>2</sup> ) |   |     | lb<br>(mm) |
|-------------|----------------------------------|-----------------------------------|------|--------------------------|--------|---|-------------------------|---|-----|------------|
| S60-3-3 縦圧縮 | 20.8                             | 20.2                              | 32.7 | 39487500                 | 58500  | = | 650                     | × | 90  | 850        |
| S60-3-3 横圧縮 | 10.3                             | 9.5                               | 37.5 | 3825000                  | 51000  | = | 1700                    | × | 30  | 325        |
| S60-3-4 縦圧縮 | 15.5                             | 15.5                              | 24.5 | 93600000                 | 78000  | = | 650                     | × | 120 | 850        |
| S60-3-4 横圧縮 | 14.9                             | 14.9                              | 18.8 | 30600000                 | 102000 | = | 1700                    | × | 60  | 325        |

#### 2.4.3.1. 含水率、密度の計測

圧縮試験片を用いて、CLTの密度と含水率を計測した。含水率の計測には高周波方式の木材水分計 を用いた。S60-3-3、S60-3-4のいずれについても、密度は0.40g/cm<sup>3</sup>、含水率は10.5%程度となった。

|             |            | 密度<br>(g/cm <sup>3</sup> ) | 含水率<br>(%) |  |  |
|-------------|------------|----------------------------|------------|--|--|
|             | No.1 0.405 |                            | 10.3       |  |  |
| 500-3-3 靴庄柏 | No.2       | 0.404                      | 10.5       |  |  |
|             | No.1       | 0.386                      | 10.3       |  |  |
| S60-3-3 横圧縮 | No.2       | 0.405                      | 10.5       |  |  |
|             | No.3       | 0.405                      | 10.8       |  |  |
|             | No.1       | 0.396                      | 10.8       |  |  |
| S60-3-4 縦圧縮 | No.2       | 0.383                      | 10.3       |  |  |
|             | No.3       | 0.403                      | 10.3       |  |  |
|             | No.1       | 0.392                      | 10.5       |  |  |
| 500-3-4 傾注船 | No.2       | 0.406                      | 11.3       |  |  |
|             |            |                            |            |  |  |
| S60-3-3     | 0.401      | 10.5                       |            |  |  |
| S60-3-4     |            | 0.396                      | 10.6       |  |  |

# 表 2-15 密度、含水率の計測結果

#### 2.4.4. エポキシ樹脂

表 2-16 に実験で使用したエポキシ樹脂の実験結果を示す。JIS K7113 に基づく引張強さ試験、JIS K 7208 に基づく圧縮降伏強さ試験、JIS K6850 に基づく引張せん断接着強さ試験は、材齢 28 日の条件で 実施され、各実験の試験片の数は5 体である。いずれのエポキシ樹脂(E207D: RC-CLT 袖壁間の充填 に用いたもの、E390TL:水平接合材、鉛直接合材-CLT 袖壁間の充填に用いたもの)についても、圧 縮降伏強さは 70N/mm<sup>2</sup>を上回っており、コンクリートの2 倍以上高い圧縮強度を有している。また、 引張せん断接着強さの平均値は 22N/mm<sup>2</sup>であった。

|     |        | 引張強さ       | 圧縮降伏強さ     | 引張せん断接着強さ  |
|-----|--------|------------|------------|------------|
|     |        | $(N/mm^2)$ | $(N/mm^2)$ | $(N/mm^2)$ |
| 充填用 | E207DS | 45         | 83         | 22         |
| 接着用 | E390TL | 26         | 76         | 22         |

表 2-16 エポキシ樹脂の実験結果

# 2.5. 加力実験

# 2.5.1. 載荷方法

図 2-15、図 2-16、図 2-17 に各試験体の加力装置図を示す。1 本の 2000kN 鉛直ジャッキを用いて柱 断面に対する軸力比が 0.10 となるように、長期荷重を作用させた後に、2 本の 1000kN 水平ジャッキ を用いて水平荷重を作用させた。長期荷重は、材料試験結果を基に、試験体 AS で 601kN、試験体 BS で 591kN、試験体 AD で 603kN とした。水平加力の高さは、下スタブ上端面から試験体 AS、BS では 2400mm、試験体 AD では 850mm とした。試験体 AD では、加力治具によって上スタブの回転を拘束 し、上下のスタブが平行に移動するようにしている。

加力は、正負交播の漸増繰り返し載荷とし、載荷は図 2-18 に示す上スタブの下端面に設けた変位計 を用いて計測した水平変位を加力高さ 1700mm で除した変形角 *R* で制御した。加力サイクルは、*R*=± 1/800rad で1回、*R*=±1/400、±1/200、±1/133、±1/100、±1/50、±1/33rad で2回ずつ繰り返した後、 *R*=+1/20rad まで押切載荷を行った。なお、試験体 BS に関しては、加力後に CLT 袖壁を取り外した RC 柱のみの状態で、*R*=+1/20rad まで押切載荷を追加で行っている。



図 2-15 試験体 AS の加力装置図(単位:mm)





## 2.5.2. 計測方法

図 2-18 に水平変位、鉛直変位の計測に用いた変位計の設置位置を示す。加力の制御に用いた水平変 位を計測するための変位計は、上スタブの下端高さに設置した。図 2-19、図 2-20 に RC 柱と CLT 袖 壁の曲げ変形、せん断変形の計測に用いた変位計の設置位置を示す。材軸方向に RC 柱では 8 区間(材 端含む)、CLT 袖壁では 4 区間に分割して、計測を行った。図 2-21 に RC 柱-CLT 袖壁間の鉛直接合 部の離間量やずれ量を計測するために設置した変位計の位置を示す。試験体 AS、AD では、鉛直接合 用の山形鋼を避けるように変位計を設置したため、離間量やずれ量の計測長さが 270mm とやや長く、 計測値に CLT 袖壁自体の曲げ変形やせん断変形が含まれる点に注意が必要である。

図 2-22 に柱主筋、帯筋、アンカーボルト、テンションロットに貼付したひずみゲージの位置を、図 2-23 に袖壁表面に貼付したひずみゲージの位置を示す。また、表 2-17 から表 2-24 に各実験における 計測項目の一覧を示す。















図 2-20 袖壁の曲げ変形、せん断変形の計測用変位計の位置(単位:mm)




図 2-21 柱-袖壁間の離間、ずれの計測用変位計の位置(単位:mm)



に貼付したひずみゲージの位置(単位:mm)



図 2-23 袖壁の表面に貼付したひずみゲージの位置(単位:mm)

# 表 2-17 試験体 AS、AD の計測項目

| CH. | 학계교묘             | 反开            | 拉工区粉   | )<br>고 (그 | メジャー | センサ   | <u>計測₩</u> 22 <i>内</i> | ゲージ | インサート |
|-----|------------------|---------------|--------|-----------|------|-------|------------------------|-----|-------|
| No. | 計測項日             | 石小            | 校正孫致   | 甲凹        | モード  | モード   | 計測機奋石                  | No. | 距離    |
| 0   | 軸力               | Axial Load    | -1     | kN        | メジャー | 4GAGE | _                      | _   | —     |
| 1   | 水平力(北)           | Lat. Load (N) | -0.498 | kN        | メジャー | 4GAGE | _                      | —   | —     |
| 2   | 水平力(南)           | Lat. Load (S) | 0.499  | kN        | メジャー | 4GAGE | _                      | —   | —     |
| 3   | 水平変位             | PH            | 0.02   | mm        | メジャー | 4GAGE | SDP-200                | _   | —     |
| 4   | 鉛直変位 上スタブ北       | PVN           | 0.02   | mm        | メジャー | 4GAGE | SDP-200                | _   | _     |
| 5   | 鉛直変位 上スタブ南       | PVS           | 0.02   | mm        | メジャー | 4GAGE | SDP-200                | _   | _     |
| 6   | 面外変位 北           | OUT-N         | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | _     |
| 7   | 面外変位 南           | OUT-S         | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | _     |
| 8   |                  |               |        |           |      |       |                        |     |       |
| 9   | 曲げ・軸変形 柱北        | CVN1          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 200   |
| 10  | 曲げ・軸変形 柱北        | CVN2          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 200   |
| 11  | 曲げ・軸変形 柱北        | CVN3          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 400   |
| 12  | 曲げ・軸変形 柱北        | CVN4          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 400   |
| 13  | 曲げ・軸変形 柱北        | CVN5          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 200   |
| 14  | 曲げ・軸変形 柱北        | CVN6          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 200   |
| 15  | 曲げ・軸変形 柱南        | CVS1          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 200   |
| 16  | 曲げ・軸変形 柱南        | CVS2          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 200   |
| 17  | 曲げ・軸変形 柱南        | CVS3          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 400   |
| 18  | 曲げ・軸変形 柱南        | CVS4          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 400   |
| 19  | 曲げ・軸変形 柱南        | CVS5          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 200   |
| 20  | 曲げ・軸変形 柱南        | CVS6          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 200   |
| 21  | 脚部 鉛直 柱北         | CBVN          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 50    |
| 22  | 脚部 鉛直 柱南         | CBVS          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 50    |
| 23  | 頂部 鉛直 柱北         | CTVN          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 50    |
| 24  | <u>頂部 鉛色 柱</u> 窄 | CTVS          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 50    |
| 25  | せん断 1層目 柱北上      | CDNU1         | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 369   |
| 26  | せん断 2 層目 柱北上     | CDNU2         | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 369   |
| 27  | せん断 3層目 柱北上      | CDNU3         | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 506   |
| 28  | せん断 4層目 柱北上      | CDNU4         | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 506   |
| 29  | せん断 5層目 柱北上      | CDNU5         | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 369   |
| 30  | せん断 6層目 柱北上      | CDNU6         | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 369   |
| 31  | せん新 1層目 柱南上      | CDSU1         | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 369   |
| 32  | せん断 2層目 柱南上      | CDSU2         | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 369   |
| 33  | せん断 3層日 柱南上      | CDSU3         | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 506   |
| 34  | せん新 4層目 柱南上      | CDSU4         | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 506   |
| 35  | せん断 5層目 柱南上      | CDSU5         | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 369   |
| 36  | せん断 6層目 柱南上      | CDSU6         | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | 369   |
| 37  | 脚部 水平 柱北         | CBHN          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | _     |
| 38  | 脚部 水平 柱南         | CBHS          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | _     |
| 39  | 頂部 水平 柱北         | CTHN          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | _     |
| 40  |                  | CTHS          | 0.002  | mm        | メジャー | 4GAGE | CDP-25                 | _   | _     |
| 41  | 曲げ・軸変形 北袖北       | NWVN1         | 0.005  | mm        | メジャー | 4GAGE | CDP-50M                | _   | 250   |
| 42  | 曲げ・軸変形北袖北        | NWVN2         | 0.005  | mm        | メジャー | 4GAGE | CDP-50                 | _   | 600   |
| 43  | 曲げ・軸変形北袖北        | NWVN3         | 0.005  | mm        | メジャー | 4GAGE | CDP-50                 | _   | 600   |
| 44  | 曲げ・軸変形 北袖北       | NWVN4         | 0.005  | mm        | メジャー | 4GAGE | CDP-50M                | _   | 250   |
| 45  | 曲げ 軸変形 北袖南       | NWVS1         | 0.005  | mm        | メジャー | 4GAGE | CDP-50M                | -   | 250   |
| 46  | 曲げ 軸変形 北袖南       | NWVS2         | 0.005  | mm        | メジャー | 4GAGE | CDP-50                 | _   | 600   |
| 47  | 曲げ•動変形 北袖南       | NWVS3         | 0.005  | mm        | メジャー | 4GAGE | CDP-50                 | _   | 600   |
| 48  | 曲げ・軸変形 北袖南       | NWVS4         | 0.005  | mm        | メジャー | 4GAGE | CDP-50M                | _   | 250   |
| 49  | せん断 1層目 北袖北上     | NWDNU1        | 0.005  | mm        | メジャー | 4GAGE | CDP-50                 | -   | 484   |

# 表 2-18 試験体 AS、AD の計測項目

| CH. |                                       | 17 Th    | ++ <i>1</i> *+- | <u> </u> | メジャー | センサ             |                   | ゲージ | インサート |
|-----|---------------------------------------|----------|-----------------|----------|------|-----------------|-------------------|-----|-------|
| No. | 計測項目                                  | 名称       | 校止係数            | 甲位       | モード  | モード             | 計測機器名             | No. | 距離    |
| 50  | せん断 2層目 北袖北上                          | NWDNU2   | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | _   | 730   |
| 51  | せん断 3層目 北袖北上                          | NWDNU3   | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | _   | 730   |
| 52  | せん断 4層目 北袖北上                          | NWDNU4   | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | —   | 484   |
| 53  | せん断 1層目 北袖南上                          | NWDSU1   | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | —   | 484   |
| 54  | せん断 2層目 北袖南上                          | NWDSU2   | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | —   | 730   |
| 55  | せん断 3層目 北袖南上                          | NWDSU3   | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | _   | 730   |
| 56  | せん断 4層目 北袖南上                          | NWDSU4   | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | —   | 484   |
| 57  | 脚部 水平 北袖                              | NWBH     | 0.002           | mm       | メジャー | 4GAGE           | CDP-25            | —   | 50    |
| 58  | 頂部 水平 北袖                              | NWTH     | 0.002           | mm       | メジャー | 4GAGE           | CDP-25            | —   | 50    |
| 59  | 曲げ・軸変形 南袖北                            | SWVN1    | 0.005           | mm       | メジャー | 4GAGE           | CDP-50M           | _   | 250   |
| 60  | 曲げ・軸変形 南袖北                            | SWVN2    | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | _   | 600   |
| 61  | 曲げ・軸変形 南袖北                            | SWVN3    | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | _   | 600   |
| 62  | 曲げ・軸変形 南袖北                            | SWVN4    | 0.005           | mm       | メジャー | 4GAGE           | CDP-50M           | _   | 250   |
| 63  | 曲げ・軸変形 南袖南                            | SWVS1    | 0.005           | mm       | メジャー | 4GAGE           | CDP-50M           | _   | 250   |
| 64  | 曲げ・軸変形 南袖南                            | SWVS2    | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | _   | 600   |
| 65  | 曲げ・軸変形 南袖南                            | SWVS3    | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | _   | 600   |
| 66  | 曲げ・軸変形 南袖南                            | SWVS4    | 0.005           | mm       | メジャー | 4GAGE           | CDP-50M           | _   | 250   |
| 67  | せん断 1層目 南袖北上                          | SWDNU1   | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | _   | 484   |
| 68  | せん断 2層目 南袖北上                          | SWDNU2   | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | —   | 730   |
| 69  | せん断 3層目 南袖北上                          | SWDNU3   | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | _   | 730   |
| 70  | <u>せん断 4層目 南袖北上</u>                   | SWDNU4   | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | _   | 484   |
| 71  | せん断 1層目 南袖南上                          | SWDSU1   | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | _   | 484   |
| 72  | せん断 2層目 南袖南上                          | SWDSU2   | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | _   | 730   |
| 73  | せん断 3層目 南袖南上                          | SWDSU3   | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | _   | 730   |
| 74  | せん断 4層目 南袖南上                          | SWDSU4   | 0.005           | mm       | メジャー | 4GAGE           | CDP-50            | _   | 484   |
| 75  | 脚部 水平 南袖                              | SWBH     | 0.002           | mm       | メジャー | 4GAGE           | CDP-25            | —   | —     |
| 76  | 頂部 水平 南袖                              | SWTH     | 0.002           | mm       | メジャー | 4GAGE           | CDP-25            | _   | _     |
| 77  | <u>柱·北袖壁間 水平1層目</u>                   | JNH1     | 0.002           | mm       | メジャー | 4GAGE           | CDP-25            | _   | 270   |
| 78  | 柱·北袖壁間 水平2層目                          | JNH2     | 0.002           | mm       | メジャー | 4GAGE           | CDP-25            | —   | 270   |
| 79  | <u>柱·北袖壁間 水平3層目</u>                   | JNH3     | 0.002           | mm       | メジャー | 4GAGE           | CDP-25            | _   | 270   |
| 80  | <u>柱·北袖壁間 北上1層目</u>                   | JNDNU1   | 0.002           | mm       | メジャー | 4GAGE           | CDP-25            | —   | 658   |
| 81  | <u>柱·北袖壁間 北上2層目</u>                   | JNDNU2   | 0.002           | mm       | メジャー | 4GAGE           | CDP-25            | —   | 658   |
| 82  | <u>柱·北袖壁間</u> 南上1層目                   | JNDSU1   | 0.002           | mm       | メジャー | 4GAGE           | CDP-25            | —   | 658   |
| 83  | <u>柱·北袖壁間 南上2層目</u>                   | JNDSU2   | 0.002           | mm       | メジャー | 4GAGE           | CDP-25            | —   | 658   |
| 84  | <u>柱·南袖壁間 水平1層目</u>                   | JSH1     | 0.002           | mm       | メジャー | 4GAGE           | CDP-25            | _   | 270   |
| 85  | <u>柱·南袖壁間 水平2層目</u>                   | JSH2     | 0.002           | mm       | メジャー | 4GAGE           | CDP-25            | _   | 270   |
| 86  |                                       | JSH3     | 0.002           | mm       | メジャー | 4GAGE           | CDP-25            | -   | 270   |
| 87  | <u>柱·南袖壁間 北上1層目</u>                   | JSDNU1   | 0.002           | mm       | メジャー | 4GAGE           | CDP-25            | —   | 658   |
| 88  |                                       | JSDNU2   | 0.002           | mm       | メジャー | 4GAGE           | CDP-25            | -   | 658   |
| 89  |                                       | JSDSU1   | 0.002           | mm       | メシャー | 4GAGE           | CDP-25            | _   | 658   |
| 90  | 柱・南袖壁間 南上2層目                          | JSDSU2   | 0.002           | mm       | メジャー | 4GAGE           | CDP-25            | _   | 658   |
| 91  |                                       |          |                 |          |      |                 |                   |     |       |
| 92  | バネル隅角部                                | A        | 0.9389671       | μ        | メシャー | 1G3W120Ω        | PFL-30-11-5LJCT-F | 100 | _     |
| 93  |                                       | B        | 0.9389671       | μ        | メンヤー | IG3W120Ω        | PFL-30-11-5LJCT-F | 101 |       |
| 94  | ハネル隅角部                                | <u> </u> | 0.9389671       | μ        | メンヤー | <u>1G3W120Ω</u> | PFL-30-11-5LJCT-F | 102 |       |
| 95  | ///////////////////////////////////// |          | 0.9389671       | μ        | メンヤー | 1G3W120Ω        | PFL-30-11-5LJCT-F | 103 | —     |
| 96  | ハイルドの方法                               |          | 0.93896/1       | μ        | メンヤー | 1G3W120Ω        | PFL-30-11-5LJCI-F | 104 | _     |
| 97  | ハイル柄河部                                |          | 0.9389671       | μ        | メンヤー | 1G3W120Ω        | PFL-30-11-5LJCI-F | 105 |       |
| 98  | ハイル脳用部                                | G        | 0.9389671       | μ        | メンヤー | 1G3W12UΩ        | PFL-30-11-5LJCI-F | 106 | _     |
| 99  | ハイル ハイル 尚                             | Н        | 0.93896/1       | μ        | メンヤー | 1G3W120Ω        | PFL-30-11-5LJC1-F | 107 | _     |

## 表 2-19 試験体 AS、AD の計測項目

| СН  |                |         |           |          | メジャー | センサ       |                | ゲージ | インサート |
|-----|----------------|---------|-----------|----------|------|-----------|----------------|-----|-------|
| No. | 計測項目           | 名称      | 校正係数      | 単位       | チード  | モード       | 計測機器名          | No  | 距離    |
| 100 | 柱主筋            | SCR11-f | 0 9478673 | 11       | メジャー | 1G3W120 Q | FLA-3-11-5LJCT | 0   |       |
| 101 | 村主筋            | SCR11-b | 0.9478673 | μ<br>μ   | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 1   | _     |
| 102 |                | SCR21-f | 0.9478673 | <u>u</u> | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 2   | _     |
| 103 |                | SCR21-b | 0 9478673 | <u> </u> | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 3   | _     |
| 104 |                | SCR31-f | 0.9478673 | <u>u</u> | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 4   | _     |
| 105 |                | SCR31-b | 0.9478673 | u        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 5   | _     |
| 106 |                | SCR41-f | 0.9478673 | μ.       | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 6   | _     |
| 107 | 村主筋            | SCR41-b | 0.9478673 | и<br>и   | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 7   | _     |
| 108 |                | SCR12-f | 0.9478673 | ú        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 8   | _     |
| 109 |                | SCR12-b | 0.9478673 | ú        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 9   | _     |
| 110 |                | SCR42-f | 0.9478673 | ú        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 14  | _     |
| 111 | 村主筋            | SCR42-b | 0.9478673 | и<br>и   | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 15  | _     |
| 112 |                | SCR13-f | 0.9478673 | u        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 16  | _     |
| 113 |                | SCR13-b | 0.9478673 | μ.       | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 17  | _     |
| 114 |                | SCR43-f | 0.9478673 | ú        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 22  | _     |
| 115 |                | SCR43-b | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 23  | _     |
| 116 |                | SCR14-f | 0.9478673 | u        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 24  | _     |
| 117 |                | SCR14-b | 0.9478673 | μ.       | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 25  | _     |
| 118 | 村主筋            | SCR44-f | 0.9478673 | и<br>и   | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 30  | _     |
| 119 |                | SCR44-b | 0.9478673 | <u>u</u> | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 31  | _     |
| 120 |                | SCR15-f | 0.9478673 | <u>u</u> | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 32  | _     |
| 121 |                | SCR15-b | 0.9478673 | μ<br>μ   | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 33  | _     |
| 122 | 村主筋            | SCR25-f | 0.9478673 | и<br>и   | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 34  | _     |
| 123 |                | SCR25-b | 0.9478673 | u        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 35  | _     |
| 124 |                | SCR35-f | 0.9478673 | ú        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 36  | _     |
| 125 | 柱主筋            | SCR35-b | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 37  | -     |
| 126 | 柱主筋            | SCR45-f | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 38  | -     |
| 127 | 柱主筋            | SCR45-b | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 39  | _     |
| 128 | 柱せん断補強筋        | SCH1    | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 40  | _     |
| 129 | 柱せん断補強筋        | SCH2    | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 41  | -     |
| 130 | 柱せん断補強筋        | SCH3    | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 42  | -     |
| 131 | 柱せん断補強筋        | SCH4    | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 43  | -     |
| 132 | 柱せん断補強筋        | SCH5    | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 44  | _     |
| 133 | 柱せん断補強筋        | SCH6    | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 45  | -     |
| 134 | アンカーボルト 脚部 北袖北 | SABNN-f | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 50  | -     |
| 135 | アンカーボルト 脚部 北袖北 | SABNN-b | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 51  | -     |
| 136 | アンカーボルト 脚部 北袖南 | SABNS-f | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 52  | -     |
| 137 | アンカーボルト 脚部 北袖南 | SABNS-b | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 53  | -     |
| 138 | アンカーボルト 脚部 南袖北 | SABSN-f | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 54  | -     |
| 139 | アンカーボルト 脚部 南袖北 | SABSN-b | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 55  | -     |
| 140 | アンカーボルト 脚部 南袖南 | SABSS-f | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 56  | -     |
| 141 | アンカーボルト 脚部 南袖南 | SABSS-b | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 57  | -     |
| 142 | アンカーボルト 頂部 北袖北 | SATNN-f | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 58  | -     |
| 143 | アンカーボルト 頂部 北袖北 | SATNN-b | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 59  | _     |
| 144 | アンカーボルト 頂部 北袖南 | SATNS-f | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 60  | _     |
| 145 | アンカーボルト 頂部 北袖南 | SATNS-b | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 61  | _     |
| 146 | アンカーボルト 頂部 南袖北 | SATSN-f | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 62  | _     |
| 147 | アンカーボルト 頂部 南袖北 | SATSN-b | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 63  | —     |
| 148 | アンカーボルト 頂部 南袖南 | SATSS-f | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 64  | —     |
| 149 | アンカーボルト 頂部 南袖南 | SATSS-b | 0.9478673 | μ        | メジャー | 1G3W120Ω  | FLA-3-11-5LJCT | 65  | —     |

# 表 2-20 試験体 AS、AD の計測項目

| CH. | 計測項目                                                 | 名称          | 校正係数      | 単位         | メジャー | センサ        | 計測機器名               | ゲージ  | インサート |
|-----|------------------------------------------------------|-------------|-----------|------------|------|------------|---------------------|------|-------|
| NO. | パカリ畑色如                                               | T           | 0.0200671 |            |      |            |                     | 100. | 距離    |
| 150 | <u>ハイル柄月市</u><br>パクリ 隅色 知                            | 1           | 0.9389671 | μ          | メジャー | 103W12092  | PFL-30-11-5LJCT-F   | 108  | _     |
| 152 | ハイル 内田 の パタル 御 日 の の の の の の の の の の の の の の の の の の | J           | 0.9369071 | μ          | メジャー | 103W12052  | PFL-30-11-5LJCT-F   | 110  | _     |
| 152 |                                                      | N I         | 0.9389071 | μ          | メンヤー | 103W12032  |                     | 111  |       |
| 153 |                                                      | L           | 0.9369071 | μ          | メジャー | 103W12052  | PFL-30-11-5LJCT-F   | 110  |       |
| 104 |                                                      | IVI         | 0.9369071 | μ          | メジャー | 103W12052  | PFL-30-11-5LJCT-F   | 112  |       |
| 155 |                                                      | N 0         | 0.9369071 | μ          | メジャー | 103W12052  | PFL-30-11-5LJCT-F   | 110  |       |
| 150 |                                                      |             | 0.9389071 | μ          | メンヤー | 103W12032  |                     | 114  |       |
| 157 | パカル胸角の                                               | P 0         | 0.9369071 | μ          | メジャー | 103W120 92 | PFL-30-11-5LJCT-F   | 110  |       |
| 150 |                                                      |             | 0.9389071 | $\mu$      | メジャー | 103W12052  |                     | 117  |       |
| 160 |                                                      | R<br>C      | 0.9389071 | $\mu$      | メジャー | 103W12052  | PFL-30-11-5LJCT-F   | 110  |       |
| 161 |                                                      | <u>з</u>    | 0.9389071 | μ          | メジャー | 103W12052  | PFL-30-11-5LJCT-F   | 110  |       |
| 162 | ハイル両月即                                               | I           | 0.9369071 | μ          | ×>~- | 103W12032  | FFL-30-11-3L001-F   | 119  |       |
| 162 |                                                      |             |           |            |      |            |                     |      |       |
| 164 | パネル2軸 1                                              | 1_v         | 0.0380671 |            | 1:2- | 103W1200   | DEI _20_11_51 ICT_E | 120  | _     |
| 165 |                                                      | 1_1_1_      | 0.0200671 | μ          | 15   | 102W12032  | PTL 30 11 5L001 1   | 120  | _     |
| 166 | <u>パネル3軸 1-y</u><br>パネル2軸 1                          | 1-y         | 0.9389071 | $\mu$      | メジャー | 103W12052  |                     | 121  |       |
| 167 | パカル3軸 1-2                                            | 1- <u>z</u> | 0.9389071 | $\mu$      | メジャー | 103W12052  |                     | 122  |       |
| 160 |                                                      | 2-x         | 0.9389071 | μ          | メジャー | 103W12052  | PFL-30-11-5LJCT-F   | 123  |       |
| 160 | <u>パネル3軸 2-y</u><br>パネル2軸 9                          | 2-y<br>2-7  | 0.9389071 | $\mu$      | メジャー | 103W12052  | PFL-30-11-5LJCT-F   | 124  | _     |
| 170 | パカル3軸 2-2                                            | 2-2         | 0.9389071 | $\mu$      | メジャー | 103W12052  |                     | 125  |       |
| 170 | バネル3軸 3-x                                            | 3-x         | 0.9389071 | $\mu$      | メジャー | 1G3W120 S2 | PFL-30-11-5LJCT-F   | 120  | _     |
| 170 |                                                      | 3-y<br>2-7  | 0.9389071 | μ          | メジャー | 103W12052  | PFL-30-11-5LJCT-F   | 127  |       |
| 172 | <u>パネル3軸 3-2</u><br>パネル3軸 4-y                        | <u> </u>    | 0.9389071 | $\mu$      | メジャー | 1G3W120 S2 | PFL-30-11-5LJCT-F   | 120  | _     |
| 174 |                                                      | 4 x<br>1-v  | 0.9389671 | μ          | ***- | 1G3W120 92 | PTL 30 11 5L001 1   | 120  | _     |
| 174 | パネル3軸 4-z                                            | 4 y<br>4-7  | 0.9389671 | $\mu$      | メジャー | 1G3W120 92 | PFL 30 11 5L001 1   | 130  | _     |
| 176 | パネル3軸 5-v                                            | 5-x         | 0.9389671 | μ          | メジャー | 1G3W120 0  | PFL -30-11-5LUCT-F  | 132  | _     |
| 177 | パネル3軸 5-v                                            | 5-v         | 0.9389671 | μ<br>11    | メジャー | 1G3W120 0  | PFL-30-11-5LUCT-F   | 133  | _     |
| 178 | パネル3軸 5-7                                            | <u>5-</u> 7 | 0.9389671 | μ<br>11    | メジャー | 1G3W1200   | PFL-30-11-5LUCT-F   | 134  | _     |
| 179 | パネル3軸 6-v                                            | 6-x         | 0.9389671 | , m<br>, m | メジャー | 1G3W120 Q  | PFL-30-11-5LUCT-F   | 135  | _     |
| 180 | パネル3軸 6-v                                            | 6-v         | 0.9389671 | <i>"</i>   | メジャー | 1G3W120 Q  | PFL-30-11-5LJCT-F   | 136  | _     |
| 181 | パネル3軸 6-7                                            | 6-7         | 0.9389671 | <i>"</i>   | メジャー | 1G3W120 Q  | PFL-30-11-5LJCT-F   | 137  | _     |
| 182 | パネル3軸 7-x                                            | 7-x         | 0.9389671 | <i>"</i>   | メジャー | 1G3W120 Q  | PFI -30-11-5I JCT-F | 138  | _     |
| 183 | パネル3軸 7-v                                            | 7-v         | 0.9389671 | <i>"</i>   | メジャー | 1G3W120 Q  | PFI -30-11-5I JCT-F | 139  | _     |
| 184 | パネル3軸 7-z                                            | 7-7         | 0.9389671 | <i>"</i>   | メジャー | 1G3W120 Q  | PFL-30-11-5LJCT-F   | 140  | _     |
| 185 | パネル3軸 8-x                                            | 8-x         | 0.9389671 | и<br>Ш     | メジャー | 1G3W120Ω   | PFL-30-11-5LJCT-F   | 141  | _     |
| 186 | パネル3軸 8-v                                            | 8-v         | 0.9389671 | μ<br>μ     | メジャー | 1G3W120Ω   | PFL-30-11-5LJCT-F   | 142  | _     |
| 187 | パネル3軸 8-z                                            | 8-z         | 0.9389671 | <u>u</u>   | メジャー | 1G3W120Ω   | PFL-30-11-5LJCT-F   | 143  | _     |
| 188 | パネル3軸 9-x                                            | 9-x         | 0.9389671 | <u>u</u>   | メジャー | 1G3W120Ω   | PFL-30-11-5LJCT-F   | 144  | _     |
| 189 | パネル3軸 9-v                                            | 9-v         | 0.9389671 | μ.         | メジャー | 1G3W120Ω   | PFL-30-11-5LJCT-F   | 145  | _     |
| 190 | パネル3軸 9-z                                            | 9-z         | 0.9389671 | μ<br>μ     | メジャー | 1G3W120Ω   | PFL-30-11-5LJCT-F   | 146  | _     |
| 191 | パネル3軸 10-x                                           | 10-x        | 0.9389671 | и<br>и     | メジャー | 1G3W120Ω   | PFL-30-11-5LJCT-F   | 147  | _     |
| 192 | パネル3軸 10-y                                           | 10-y        | 0.9389671 | μ          | メジャー | 1G3W120Ω   | PFL-30-11-5LJCT-F   | 148  | —     |
| 193 | パネル3軸 10-z                                           | 10-z        | 0.9389671 | μ          | メジャー | 1G3W120Ω   | PFL-30-11-5LJCT-F   | 149  | —     |
| 194 | パネル3軸 11-x                                           | 11-x        | 0.9389671 | μ          | メジャー | 1G3W120Ω   | PFL-30-11-5LJCT-F   | 150  | _     |
| 195 | パネル3軸 11-y                                           | 11-y        | 0.9389671 | μ          | メジャー | 1G3W120Ω   | PFL-30-11-5LJCT-F   | 151  | —     |
| 196 | パネル3軸 11-z                                           | 11-z        | 0.9389671 | μ          | メジャー | 1G3W120Ω   | PFL-30-11-5LJCT-F   | 152  | —     |
| 197 | パネル3軸 12-x                                           | 12-x        | 0.9389671 | μ          | メジャー | 1G3W120Ω   | PFL-30-11-5LJCT-F   | 153  | —     |
| 198 | パネル3軸 12-y                                           | 12-y        | 0.9389671 | μ          | メジャー | 1G3W120Ω   | PFL-30-11-5LJCT-F   | 154  | —     |
| 199 | パネル3軸 12-z                                           | 12-z        | 0.9389671 | μ          | メジャー | 1G3W120Ω   | PFL-30-11-5LJCT-F   | 155  | _     |

# 表 2-21 試験体 BS の計測項目

| CH. | 計測項口                                  | 反折            | 拉工区粉   | ᄨᅜ  | メジャー | センサ   | ⇒上:101 ±44 55 万 | ゲージ | インサート |
|-----|---------------------------------------|---------------|--------|-----|------|-------|-----------------|-----|-------|
| No. | 計測項日                                  | 名孙            | 校正係剱   | 里12 | モード  | モード   | 訂測懱奋名           | No. | 距離    |
| 0   | 軸力                                    | Axial Load    | -1     | kN  | メジャー | 4GAGE | -               | _   | -     |
| 1   | 水平力(北)                                | Lat. Load (N) | -0.498 | kN  | メジャー | 4GAGE | —               | —   | _     |
| 2   | 水平力(南)                                | Lat. Load (S) | 0.499  | kN  | メジャー | 4GAGE | -               | —   | -     |
| 3   | 水平変位                                  | PH            | 0.02   | mm  | メジャー | 4GAGE | SDP-200         | —   | -     |
| 4   | 鉛直変位 上スタブ北                            | PVN           | 0.02   | mm  | メジャー | 4GAGE | SDP-200         | _   | _     |
| 5   | 鉛直変位 上スタブ南                            | PVS           | 0.02   | mm  | メジャー | 4GAGE | SDP-200         | —   | _     |
| 6   | 面外変位 北                                | OUT-N         | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | _     |
| 7   | 面外変位 南                                | OUT-S         | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | _     |
| 8   |                                       |               |        |     |      |       |                 |     |       |
| 9   | 曲げ・軸変形 柱北                             | CVN1          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | —   | 200   |
| 10  | 曲げ・軸変形 柱北                             | CVN2          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 200   |
| 11  | 曲げ・軸変形 柱北                             | CVN3          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | —   | 400   |
| 12  | 曲げ・軸変形 柱北                             | CVN4          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | —   | 400   |
| 13  | 曲げ・軸変形 柱北                             | CVN5          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | —   | 200   |
| 14  | 曲げ・軸変形 柱北                             | CVN6          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 200   |
| 15  | 曲げ・軸変形 柱南                             | CVS1          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 200   |
| 16  | 曲げ・軸変形 柱南                             | CVS2          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 200   |
| 17  | 曲げ・軸変形 柱南                             | CVS3          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 400   |
| 18  | 曲げ・軸変形 柱南                             | CVS4          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 400   |
| 19  | 曲げ・軸変形 柱南                             | CVS5          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 200   |
| 20  | 曲げ・軸変形 柱南                             | CVS6          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 200   |
| 21  | 脚部 鉛直 柱北                              | CBVN          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 50    |
| 22  | 脚部 鉛直 柱南                              | CBVS          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 50    |
| 23  | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | CTVN          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 50    |
| 24  | 頂部 鉛直 柱南                              | CTVS          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 50    |
| 25  | せん断 1層目 柱北上                           | CDNU1         | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 369   |
| 26  | せん断 2層目 柱北上                           | CDNU2         | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 369   |
| 27  | せん断 3層目 柱北上                           | CDNU3         | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 506   |
| 28  | せん断 4層目 柱北上                           | CDNU4         | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 506   |
| 29  | せん断 5層目 柱北上                           | CDNU5         | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 369   |
| 30  | せん断 6層目 柱北上                           | CDNU6         | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 369   |
| 31  | せん断 1層目 柱南上                           | CDSU1         | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 369   |
| 32  | せん断 2層目 柱南上                           | CDSU2         | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 369   |
| 33  | せん断 3層目 柱南上                           | CDSU3         | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 506   |
| 34  | せん断 4層目 柱南上                           | CDSU4         | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 506   |
| 35  | せん断 5層目 柱南上                           | CDSU5         | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | 369   |
| 36  | せん断 6層目 柱南上                           | CDSU6         | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | —   | 369   |
| 37  | 脚部 水平 柱北                              | CBHN          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | -     |
| 38  | 脚部 水平 柱南                              | CBHS          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | _     |
| 39  | 頂部 水平 柱北                              | CTHN          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | _   | _     |
| 40  | 頂部 水平 柱南                              | CTHS          | 0.002  | mm  | メジャー | 4GAGE | CDP-25          | —   | _     |
| 41  | 曲げ・軸変形 北袖北                            | NWVN1         | 0.005  | mm  | メジャー | 4GAGE | CDP-50M         | _   | 250   |
| 42  | 曲げ・軸変形 北袖北                            | NWVN2         | 0.005  | mm  | メジャー | 4GAGE | CDP-50          | —   | 600   |
| 43  | 曲げ・軸変形 北袖北                            | NWVN3         | 0.005  | mm  | メジャー | 4GAGE | CDP-50          | —   | 600   |
| 44  | 曲げ・軸変形 北袖北                            | NWVN4         | 0.005  | mm  | メジャー | 4GAGE | CDP-50M         | —   | 250   |
| 45  | 曲げ・軸変形 北袖南                            | NWVS1         | 0.005  | mm  | メジャー | 4GAGE | CDP-50M         | —   | 250   |
| 46  | 曲げ・軸変形 北袖南                            | NWVS2         | 0.005  | mm  | メジャー | 4GAGE | CDP-50          | —   | 600   |
| 47  | 曲げ・軸変形 北袖南                            | NWVS3         | 0.005  | mm  | メジャー | 4GAGE | CDP-50          | —   | 600   |
| 48  | 曲げ・軸変形 北袖南                            | NWVS4         | 0.005  | mm  | メジャー | 4GAGE | CDP-50M         | —   | 250   |
| 49  | せん断 1層目 北袖北上                          | NWDNU1        | 0.005  | mm  | メジャー | 4GAGE | CDP-50          | _   | 484   |

# 表 2-22 試験体 BS の計測項目

| CH. | 計測适口         | 反开     | 拉工区粉      | ᄥᄮ  | メジャー | センサ      | <u>⇒</u> ↓ 測 地線 四 夕 | ゲージ | インサート |
|-----|--------------|--------|-----------|-----|------|----------|---------------------|-----|-------|
| No. | 計測項日         | 名称     | 校止1杀致     | 里12 | モード  | モード      | <b>訂測</b> 懱 奋 名     | No. | 距離    |
| 50  | せん断 2層目 北袖北上 | NWDNU2 | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              | -   | 730   |
| 51  | せん断 3層目 北袖北上 | NWDNU3 | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              | —   | 730   |
| 52  | せん断 4層目 北袖北上 | NWDNU4 | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              | -   | 484   |
| 53  | せん断 1層目 北袖南上 | NWDSU1 | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              | -   | 484   |
| 54  | せん断 2層目 北袖南上 | NWDSU2 | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              | _   | 730   |
| 55  | せん断 3層目 北袖南上 | NWDSU3 | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              | -   | 730   |
| 56  | せん断 4層目 北袖南上 | NWDSU4 | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              | -   | 484   |
| 57  | 脚部 水平 北袖     | NWBH   | 0.002     | mm  | メジャー | 4GAGE    | CDP-25              | -   | -     |
| 58  | 頂部 水平 北袖     | NWTH   | 0.002     | mm  | メジャー | 4GAGE    | CDP-25              | _   | _     |
| 59  | 曲げ・軸変形 南袖北   | SWVN1  | 0.005     | mm  | メジャー | 4GAGE    | CDP-50M             | -   | 250   |
| 60  | 曲げ・軸変形 南袖北   | SWVN2  | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              | -   | 600   |
| 61  | 曲げ・軸変形 南袖北   | SWVN3  | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              | -   | 600   |
| 62  | 曲げ・軸変形 南袖北   | SWVN4  | 0.005     | mm  | メジャー | 4GAGE    | CDP-50M             | _   | 250   |
| 63  | 曲げ・軸変形 南袖南   | SWVS1  | 0.005     | mm  | メジャー | 4GAGE    | CDP-50M             | -   | 250   |
| 64  | 曲げ・軸変形 南袖南   | SWVS2  | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              | _   | 600   |
| 65  | 曲げ・軸変形 南袖南   | SWVS3  | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              | -   | 600   |
| 66  | 曲げ・軸変形 南袖南   | SWVS4  | 0.005     | mm  | メジャー | 4GAGE    | CDP-50M             | _   | 250   |
| 67  | せん断 1層目 南袖北上 | SWDNU1 | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              | _   | 484   |
| 68  | せん断 2層目 南袖北上 | SWDNU2 | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              |     | 730   |
| 69  | せん断 3層目 南袖北上 | SWDNU3 | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              |     | 730   |
| 70  | せん断 4層目 南袖北上 | SWDNU4 | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              | -   | 484   |
| 71  | せん断 1層目 南袖南上 | SWDSU1 | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              | -   | 484   |
| 72  | せん断 2層目 南袖南上 | SWDSU2 | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              |     | 730   |
| 73  | せん断 3層目 南袖南上 | SWDSU3 | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              | -   | 730   |
| 74  | せん断 4層目 南袖南上 | SWDSU4 | 0.005     | mm  | メジャー | 4GAGE    | CDP-50              | -   | 484   |
| 75  | 脚部 水平 南袖     | SWBH   | 0.002     | mm  | メジャー | 4GAGE    | CDP-25              | -   | -     |
| 76  | 頂部 水平 南袖     | SWTH   | 0.002     | mm  | メジャー | 4GAGE    | CDP-25              | -   | -     |
| 77  | 柱·北袖壁間 水平1層目 | JNH1   | 0.002     | mm  | メジャー | 4GAGE    | CDP-25              | _   | 270   |
| 78  | 柱·北袖壁間 水平2層目 | JNH2   | 0.002     | mm  | メジャー | 4GAGE    | CDP-25              | -   | 270   |
| 79  | 柱·北袖壁間 水平3層目 | JNH3   | 0.002     | mm  | メジャー | 4GAGE    | CDP-25              | -   | 270   |
| 80  | 柱·北袖壁間 北上1層目 | JNDNU1 | 0.002     | mm  | メジャー | 4GAGE    | CDP-25              |     | 658   |
| 81  | 柱·北袖壁間 北上2層目 | JNDNU2 | 0.002     | mm  | メジャー | 4GAGE    | CDP-25              | _   | 658   |
| 82  | 柱·北袖壁間 南上1層目 | JNDSU1 | 0.002     | mm  | メジャー | 4GAGE    | CDP-25              | -   | 658   |
| 83  | 柱·北袖壁間 南上2層目 | JNDSU2 | 0.002     | mm  | メジャー | 4GAGE    | CDP-25              | -   | 658   |
| 84  | 柱·南袖壁間 水平1層目 | JSH1   | 0.002     | mm  | メジャー | 4GAGE    | CDP-25              |     | 270   |
| 85  | 柱·南袖壁間 水平2層目 | JSH2   | 0.002     | mm  | メジャー | 4GAGE    | CDP-25              | -   | 270   |
| 86  | 柱·南袖壁間 水平3層目 | JSH3   | 0.002     | mm  | メジャー | 4GAGE    | CDP-25              |     | 270   |
| 87  | 柱·南袖壁間 北上1層目 | JSDNU1 | 0.002     | mm  | メジャー | 4GAGE    | CDP-25              | -   | 658   |
| 88  | 柱·南袖壁間 北上2層目 | JSDNU2 | 0.002     | mm  | メジャー | 4GAGE    | CDP-25              |     | 658   |
| 89  | 柱·南袖壁間 南上1層目 | JSDSU1 | 0.002     | mm  | メジャー | 4GAGE    | CDP-25              | -   | 658   |
| 90  | 柱·南袖壁間 南上2層目 | JSDSU2 | 0.002     | mm  | メジャー | 4GAGE    | CDP-25              |     | 658   |
| 91  |              |        |           |     |      |          |                     |     |       |
| 92  | パネル隅角部       | A      | 0.9389671 | μ   | メジャー | 1G3W120Ω | PFL-30-11-5LJCT-F   | 100 | —     |
| 93  | パネル隅角部       | В      | 0.9389671 | μ   | メジャー | 1G3W120Ω | PFL-30-11-5LJCT-F   | 101 | _     |
| 94  | パネル隅角部       | С      | 0.9389671 | μ   | メジャー | 1G3W120Ω | PFL-30-11-5LJCT-F   | 102 | _     |
| 95  | パネル隅角部       | D      | 0.9389671 | μ   | メジャー | 1G3W120Ω | PFL-30-11-5LJCT-F   | 103 | _     |
| 96  | パネル隅角部       | E      | 0.9389671 | μ   | メジャー | 1G3W120Ω | PFL-30-11-5LJCT-F   | 104 | -     |
| 97  | パネル隅角部       | F      | 0.9389671 | μ   | メジャー | 1G3W120Ω | PFL-30-11-5LJCT-F   | 105 | -     |
| 98  |              |        |           |     |      |          |                     |     |       |
| 99  |              |        |           |     |      |          |                     |     |       |

# 表 2-23 試験体 BS の計測項目

| CH. |              | 5 74    |           |        | メジャー | センサ               |                | ゲージ | インサート |
|-----|--------------|---------|-----------|--------|------|-------------------|----------------|-----|-------|
| No. | 計測項目         | 名称      | 校止係数      | 甲位     | モード  | モード               | 計測機器名          | No. | 距離    |
| 100 | 柱主筋          | SCR11-f | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 0   | _     |
| 101 | 柱主筋          | SCR11-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 1   | _     |
| 102 | 柱主筋          | SCR21-f | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 2   | —     |
| 103 | 柱主筋          | SCR21-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 3   | _     |
| 104 | 柱主筋          | SCR31-f | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 4   | _     |
| 105 | 柱主筋          | SCR31-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 5   | _     |
| 106 | 柱主筋          | SCR41-f | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 6   | _     |
| 107 | 柱主筋          | SCR41-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 7   | _     |
| 108 | 柱主筋          | SCR12-f | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 8   | _     |
| 109 | 柱主筋          | SCR12-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 9   | _     |
| 110 | 柱主筋          | SCR22-f | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 10  | _     |
| 111 | 柱主筋          | SCR22-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 11  | _     |
| 112 | 柱主筋          | SCR32-f | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 12  | _     |
| 113 | 柱主筋          | SCR32-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 13  | _     |
| 114 | 柱主筋          | SCR42-f | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 14  | _     |
| 115 | 柱主筋          | SCR42-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 15  | _     |
| 116 | 柱主筋          | SCR13-f | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 16  | _     |
| 117 | 柱主筋          | SCR13-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 17  | _     |
| 118 | 柱主筋          | SCR23-f | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 18  | —     |
| 119 | 柱主筋          | SCR23-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 19  | _     |
| 120 |              | SCR33-f | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 20  | _     |
| 121 |              | SCR33-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 21  | _     |
| 122 | 村主筋          | SCR43-f | 0.9478673 | и<br>и | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 22  | _     |
| 123 |              | SCR43-b | 0.9478673 | u      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 23  | _     |
| 124 |              | SCR14-f | 0.9478673 | μ.     | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 24  | _     |
| 125 |              | SCR14-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 25  | _     |
| 126 | 柱主筋          | SCR24-f | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 26  | _     |
| 127 |              | SCR24-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 27  | _     |
| 128 |              | SCR34-f | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 28  | _     |
| 129 | 柱主筋          | SCR34-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 29  | _     |
| 130 |              | SCR44-f | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 30  | _     |
| 131 | 柱主筋          | SCR44-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 31  | _     |
| 132 | 柱主筋          | SCR15-f | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 32  | _     |
| 133 | 柱主筋          | SCR15-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 33  | _     |
| 134 | 柱主筋          | SCR25-f | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 34  | _     |
| 135 | 柱主筋          | SCR25-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 35  | _     |
| 136 | 柱主筋          | SCR35-f | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 36  | —     |
| 137 | 柱主筋          | SCR35-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 37  | _     |
| 138 | 柱主筋          | SCR45-f | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 38  | —     |
| 139 | 柱主筋          | SCR45-b | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 39  | _     |
| 140 | 柱せん断補強筋      | SCH1    | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 40  | _     |
| 141 | 柱せん断補強筋      | SCH2    | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 41  | _     |
| 142 | 柱せん断補強筋      | SCH3    | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 42  | —     |
| 143 | 柱せん断補強筋      | SCH4    | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 43  | _     |
| 144 | 柱せん断補強筋      | SCH5    | 0.9478673 | μ      | メジャー | 1G3W120Ω          | FLA-3-11-5LJCT | 44  | _     |
| 145 | 柱せん断補強筋      | SCH6    | 0.9478673 | μ      | メジャー | 1 <u>G3W</u> 120Ω | FLA-3-11-5LJCT | 45  | _     |
| 146 | テンションロッド 北裏面 | TN-f    | 0.9345794 | μ      | メジャー | 1G3W120Ω          | YEFLA-5-5LJCT  | 144 | _     |
| 147 | テンションロッド 北裏面 | TN-b    | 0.9345794 | μ      | メジャー | 1G3W120Ω          | YEFLA-5-5LJCT  | 145 | _     |
| 148 | テンションロッド 南裏面 | TS-f    | 0.9345794 | μ      | メジャー | 1G3W120Ω          | YEFLA-5-5LJCT  | 146 | —     |
| 149 | テンションロッド 南裏面 | TS-b    | 0.9345794 | μ      | メジャー | 1G3W120Ω          | YEFLA-5-5LJCT  | 147 | —     |

# 表 2-24 試験体 BS の計測項目

|       |               |       | 1         | 1        |      |             |                     |      |       |
|-------|---------------|-------|-----------|----------|------|-------------|---------------------|------|-------|
| CH.   | 計測項目          | 名称    | 校正係数      | 単位       | メジャー | センサ         | 計測機器名               | ゲージ  | インサート |
| No.   |               |       | 0.0045704 |          | モード  | <u>+</u>    |                     | No.  | 距離    |
| 150   | <u> </u>      |       | 0.9345/94 | μ        | メシャー | 1G3W120Ω    | YEFLA-5-5LJCI       | 148  | _     |
| 151   | <u> </u>      | IN2-b | 0.9345/94 | μ        | メシャー | 1G3W120Ω    | YEFLA-5-5LJCI       | 149  | _     |
| 152   | <u> </u>      | TS2-t | 0.9345/94 | μ        | メシャー | 1G3W120Ω    | YEFLA-5-5LJCI       | 150  | _     |
| 153   | テンションロット 南止面  | TS2-b | 0.9345794 | μ        | メジャー | 1G3W120Ω    | YEFLA-5-5LJCT       | 151  | _     |
| 154   |               | -     |           |          |      |             |                     |      | _     |
| 155   |               | G     | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 106  | -     |
| 156   | パネル隅角部        | Н     | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-6LJCT-F   | 107  | _     |
| 157   | <u>パネル隅角部</u> | I     | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-7LJCT-F   | 108  | _     |
| 158   | <u>パネル隅角部</u> | J     | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-8LJCT-F   | 109  | -     |
| 159   | <u>パネル隅角部</u> | K     | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-9LJCT-F   | 110  | _     |
| 160   | <u>パネル隅角部</u> | L     | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-10LJCT-F  | 111  | _     |
| 161   |               |       |           |          |      |             |                     |      | -     |
| 162   |               |       |           |          |      |             |                     |      | -     |
| 163   |               |       |           |          |      |             |                     |      | -     |
| 164   | パネル3軸 1-x     | 1-x   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 112  | -     |
| 165   | パネル3軸 1-y     | 1-y   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 113  | -     |
| 166   | パネル3軸 1-z     | 1-z   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 114  | -     |
| 167   | パネル3軸 2-x     | 2-x   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 115  | -     |
| 168   | パネル3軸 2-y     | 2-у   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 116  | -     |
| 169   | パネル3軸 2-z     | 2-z   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 117  | _     |
| 170   | パネル3軸 3-x     | 3-x   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 118  | -     |
| 171   | パネル3軸 3−y     | 3-у   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 119  | -     |
| 172   | パネル3軸 3-z     | 3-z   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 120  | Ι     |
| 173   | パネル3軸 4-x     | 4-x   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 121  | Ι     |
| 174   | パネル3軸 4−y     | 4−y   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 122  | -     |
| 175   | パネル3軸 4-z     | 4-z   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 123  | -     |
| 176   | パネル3軸 5−x     | 5-x   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 124  |       |
| 177   | パネル3軸 5−y     | 5-y   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 125  | -     |
| 178   | パネル3軸 5-z     | 5-z   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 126  | -     |
| 179   | パネル3軸 6−x     | 6-x   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 127  | -     |
| 180   | パネル3軸 6-y     | 6-y   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 128  | -     |
| 181   | パネル3軸 6-z     | 6-z   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 129  | _     |
| 182   | パネル3軸 7-x     | 7-x   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 130  | _     |
| 183   | パネル3軸 7-y     | 7-y   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 131  | -     |
| 184   | パネル3軸 7-z     | 7-z   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 132  | -     |
| 185   | パネル3軸 8-x     | 8-x   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 133  | _     |
| 186   | パネル3軸 8-v     | 8-v   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 134  | _     |
| 187   | パネル3軸 8-z     | 8-z   | 0.9389671 | ú        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 135  | -     |
| 188   | パネル3軸 9-x     | 9-x   | 0.9389671 | μ        | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 136  | _     |
| 189   | パネル3軸 9-v     | 9-v   | 0.9389671 | <u>u</u> | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 137  | _     |
| 190   | パネル3軸 9-z     | 9-z   | 0.9389671 | <u>u</u> | メジャー | 1G3W120Ω    | PFL-30-11-5LJCT-F   | 138  | _     |
| 191   | パネル3軸 10-x    | 10-x  | 0.9389671 | 11       | メジャー | 1G3W120 Q   | PFI -30-11-5I JCT-F | 139  | _     |
| 192   | パネル3軸 10-v    | 10-v  | 0.9389671 | í,       | メジャー | 1G3W1200    | PFL-30-11-5I JCT-F  | 140  | _     |
| 193   | パネル3軸 10-7    | 10-7  | 0.9389671 | 11       | メジャー | 1G3W120 O   | PFL-30-11-5I JCT-F  | 141  | _     |
| 194   | パネル3軸 11-x    | 11-x  | 0.9389671 | -<br>    | メジャー | 1G3W120 O   | PFL-30-11-5LJCT-F   | 142  | _     |
| 195   | パネル3軸 11-v    | 11-v  | 0.9389671 | μ<br>11  | メジャー | 1G3W1200    | PFI -30-11-51 JCT-F | 143  | _     |
| 196   | パネル3軸 11      | 11-7  | 0.9389671 | 11       | メジャー | 1G3W1200    | PFL-30-11-5LUCT-F   | 144  | _     |
| 197   | パネル3軸 12-v    | 12-v  | 0.9389671 | 11       | メジャー | 1G3W1200    | PFL-30-11-5LUCT-F   | 145  | _     |
| 198   | パネル3軸 12->    | 12-1  | 0.9389671 | μ<br>μ   | メジャー | 1G3W1200    | PFL-30-11-51.10T-F  | 146  | _     |
| 199   | パネル3軸 12-7    | 12-7  | 0.9389671 | μ<br>11  | メジャー | 1G3W1200    | PFL -30-11-5L JCT-F | 147  | _     |
| 1 100 |               | 166   | 0.00000/1 | . M      |      | 1 301112036 |                     | 1-1/ |       |

#### 2.5.3. 損傷状況

#### 2.5.3.1. 試験体 AS

試験体 AS では、R=1/800rad サイクルにおいて CLT 袖壁の脚部で離間が確認され、正方向では Q=144kN で、負方向では Q=-143kN で RC 柱の脚部に曲げひび割れが発生した。R=1/400rad サイクル では中心高さ付近まで曲げひび割れの本数が増え、R=1/200rad サイクルで曲げせん断ひび割れの進展 が見られた。

また、R=1/200rad サイクルでは、加力方向に対して引張側となる CLT 袖壁の脚部において、CLT 袖 壁と水平接合材の接着面に亀裂が発生している様子が確認されており、アンカーボルトに引張力が作 用することで、接着面を引き離す方向に応力が作用している様子が確認された。その後の R=1/133rad サイクルにおいて、CLT 袖壁と水平接合材の接着面のずれが生じた。実験終了後に水平接合材を取り 外し、CLT 袖壁と水平接合材の接着面の確認を行ったが、接着面に CLT 袖壁の一部が貼り付いてお り、CLT 袖壁が繊維直交方向に引き剥がされるような応力を受けたことで、一体性が損なわれたもの と考えられる。したがって、接着面を介して引張力の伝達に期待する場合には、例えば CLT 袖壁の両 側に取り付けた水平接合材を一体化し、接着面を引き剥がす方向に引張応力が発生しないように配慮 するなど、十分な注意が必要と考えられる。一方で、CLT 袖壁と鉛直接合材の接着面ではこのような ずれは確認されていないことから、接着面を介したせん断力の伝達に期待する場合には、今回採用し た工法で特に問題はないものと考えられる。

CLT 袖壁の端部では、*R*=1/133rad サイクルにおいて亀裂の発生が確認されており、*R*=1/100rad サイ クルではラミナの厚さ方向に発生した亀裂が、ラミナ間に沿って進展していく様子が確認された。 *R*=1/50rad サイクルでは、加力方向に対して圧縮側の CLT 袖壁では、ラミナ間の接着面が破壊し、面 外方向への部分的なはらみ出しが生じた。面外方向のはらみ出しによって、ラミナの表面にはしわが 発生したが、しわが発生した範囲は、袖壁全せいの 1/2~2/3 程度の範囲に及んでいた。最終的に *R*=1/20rad サイクルの押切載荷時には、ラミナが面外方向にずれるように破壊したが、急激な耐力低下 は生じなかった。また、ラミナの破壊は、脚部に設けた水平接合材の上部で生じており、水平接合材 を設置している位置では、CLT 袖壁が面外方向に拘束されることで、損傷が低減されていた可能性が ある。

なお、RC 柱に関しては、*R*=1/33rad サイクルにおいて、RC 柱の脚部のカバーコンクリートに浮きが、*R*=1/20rad サイクルにおいて、カバーコンクリートの剥落が生じている。







(a) CLT 袖壁-水平接合材間の亀裂とずれ (A=1/133)



(b) CLT 袖壁-水平接合材間の亀裂とずれ(左 爬1/100、右 爬1/50)



(c) CLT 袖壁-水平接合材間の破壊面の様子(実験終了後)
 写真 2-19 試験体 AS の損傷状況



(d) CLT 袖壁の端部の亀裂(A=1/100)



(e) CLT 袖壁の端部の亀裂 (*P*=1/50)



(f) 最終的な破壊性状(R=1/20) 写真 2-19 試験体 AS の損傷状況

## 2.5.3.2. 試験体 BS

試験体 BS では、R=1/800rad サイクルにおいて、正方向では Q=76kN で、付方向では Q=-50kN で CLT 袖壁の脚部の離間が確認された。また、正方向では Q=108kN で、付方向では Q=-88kN で、RC 柱 の脚部に曲げひび割れが発生した。その後は、試験体 AS と同じように、R=1/400rad サイクルでは中 心高さ付近まで曲げひび割れの本数が増え、R=1/200rad サイクルで曲げせん断ひび割れの進展が見ら れた。

*R*=1/200rad サイクルでは、加力方向に対して引張側にある CLT 袖壁において、CLT 袖壁と柱際に沿ったひび割れの進展が確認された。ひび割れが発生した範囲は柱脚から 300~400mm 程度の範囲であり、RC 柱の塑性ヒンジの長さとほぼ対応しているものと考えられる。したがって、RC 柱の曲げ変形に追随できなくなることで境界面にひび割れが発生したものと考えられる。その後、*R*=1/133rad サイクルでは、柱際のひび割れは脚部から 1500mm の高さまで進展し、*R*=1/100rad サイクルで試験区間全体(脚部から 1700mm の高さ)まで到達した。また、*R*=1/133rad サイクル以降は、加力方向に対して圧縮側の CLT 袖壁においても、CLT 袖壁と柱際の境界面における離間が確認されており、離間量は特に脚部に近い位置で大きくなる傾向が見られた。これは、加力方向に対して圧縮側の CLT 袖壁において、対角方向の圧縮ストラットが形成されていることを示唆しているものと考えられる。

CLT 袖壁の端部では、*R*=1/100rad サイクルにおいて隅角部の亀裂が発生し、下スタブとの境界面に おいてもラミナが面外方向に若干膨らむ様子が確認された。また、*R*=1/50rad サイクルでは、ラミナ間 の接着面が破壊し、CLT 袖壁の先端が面外方向に開くように変形する様子が確認された。最終的に *R*=1/20rad サイクルの押切載荷時には、ラミナの破壊が脚部から 300~400mm の範囲まで及んでいた。

RC 柱に関しては、*R*=1/50rad サイクルにおいて、RC 柱の脚部のカバーコンクリートに浮きが、 *R*=1/33rad サイクルにおいて、カバーコンクリートの剥落が生じている。また、試験体 BS の特徴とし て、片持ち柱形式の載荷を行ったにも関わらず、*R*=1/100rad 以降に、試験体の頂部でも曲げひび割れ、 曲げせん断ひび割れの発生が確認されている点が挙げられる。このような曲げひび割れ、曲げせん断 ひび割れの発生は、同じく片持ち柱形式の載荷を行った試験体 AS では確認されていない。

なお、試験体 BS に関しては、実験終了後に CLT 袖壁とテンションロッドを取り外した状態で、 *R*=1/20rad までの押切載荷を行っている。**写真 2-21** に示すように、取り外した CLT 袖壁の仕口面には コンクリートが付着しており、エポキシ樹脂を充填した仕口面における破壊がコンクリート側で生じ ていることが分かる。RC 柱試験体の表面を見ると、接着面には凹凸が生じていた。したがって、水平 接合面においては、離間によって境界面の破壊が生じた後も、離間が閉じ、圧縮軸力が作用すれば、 一定の摩擦抵抗が期待できるものと思われる。

52







(a) CLT 袖壁-RC 柱間の境界面に沿ったひび割れ (P=1/100)



(b) CLT 袖壁の端部の亀裂(A=1/100)



(c) CLT 袖壁の端部の亀裂(R-1/50) 写真 2-20 試験体 BS の損傷状況



(d) 最終的な破壊性状(R=1/20) 写真 2-20 試験体 BS の損傷状況





写真 2-21 試験体 BS の損傷状況(CLT 袖壁取り外し後)

#### 2.5.3.3. 試験体 AD

試験体 AD では、R=1/800rad サイクルにおいて、Q=300kN で曲げひび割れの発生を確認した(正方向のみ)。また、正方向では Q=300kN で、負方向では Q=-400kN で、CLT 袖壁の脚部もしくは頂部での離間を確認した。その後の R=1/400rad サイクルでは RC 柱の曲げせん断ひび割れが、R=1/200rad サイクルでは RC 柱のせん断ひび割れが発生した。

*R*=1/133rad サイクル付近から、試験体 AS と同様に、CLT 袖壁と水平接合材の接着面に亀裂が発生し、境界面でずれが生じる様子が確認された。その後のサイクルにおいても、CLT 袖壁-水平接合材間の接着面のずれは大きくなっている。

RC 柱と CLT 袖壁の鉛直接合面に関しては、*R*=1/100rad サイクルにおいて、加力方向に対して圧縮 側に CLT 袖壁が取り付いている位置(正方向加力時の場合は、南側の袖壁の脚部や、北側の袖壁の頂 部)において、RC 柱-CLT 袖壁間のひび割れの発生や、CLT 袖壁-鉛直接合材間の接着面が部分的 にずれている様子が確認された。*R*=1/50rad サイクルになると、材軸方向に配置された最外縁のラミナ 間で鉛直方向のずれが生じ、CLT 袖壁自体がせん断変形している様子が確認された。ラミナ間の鉛直 方向のずれは RC 柱に近い程大きく、CLT 袖壁の端部では小さくなる傾向があった。また、ラミナ間 のずれが支配的となったため、CLT 袖壁-鉛直接合材間の接着面のずれがそれ以上進展することはな かった。また、試験体 AS と比較すると CLT 袖壁の端部の損傷は小さく抑えられており、*R*=1/20rad サ イクルにおいても、目立った損傷は確認されなかった。

なお、RC 柱に関しては、*R*=1/100rad サイクルにおいて、RC 柱の脚部もしくは頂部に圧縮方向の縦 ひび割れが発生し、*R*=1/50rad サイクルにおいて、カバーコンクリートの剥落が生じている。



図 2-26 試験体 AD のひび割れ図



(a) CLT 袖壁-水平接合材間のずれと CLT 袖壁-RC 柱間のひび割れ (R=1/100)



(b) CLT 袖壁-水平接合材間のずれ (P=1/50)



(c) 最終的な破壊性状(A=1/20) 写真 2-22 試験体 AD の損傷状況

## 2.5.3.4. ひび割れ幅の推移

表 2-25、表 2-26 に各サイクルの正方向載荷時の 2 回目のピーク時と除荷時(水平荷重が 0kN の時) に計測した RC 柱の最大ひび割れ幅の推移を示す。ひび割れ幅の計測にはクラックゲージを用い、試 験区間内のひび割れのうち、その幅が最大となるものを用いた。また、ひび割れ幅の計測は、曲げひ び割れとせん断ひび割れ(曲げせん断ひび割れも含む)に分類して行った。

いずれの試験体も R=1/100rad サイクルまでは、残留ひび割れ幅が 0.05mm 以下に留まっている。本 試験体の縮尺は 2/3 であり、寸法効果が損傷量に及ぼす影響について考える必要はあるが、この程度 のサイクルまでであれば、直ちに修復が必要となるような目立った損傷が RC 柱には残らないことが 分かる。CLT 袖壁に関しても、R=1/100rad サイクル付近までは、壁端に亀裂がわずかに発生する程度 に留まることを確認しており、損傷を抑制する観点では層間変形角 R=1/100rad が目安となるものと考 えられる。

|          | AS        |        | В         | S         | AD     |           |  |
|----------|-----------|--------|-----------|-----------|--------|-----------|--|
|          | ピーク時      | 除荷時    | ピーク時      | 除荷時       | ピーク時   | 除荷時       |  |
| R=+1/400 | 0.05mm 未満 | 閉      | 0.05mm 未満 | 閉         | 0.05mm | 0.05mm 未満 |  |
| R=+1/200 | 0.05mm    | 閉      | 0.05mm    | 閉         | 0.10mm | 0.05mm 未満 |  |
| R=+1/133 | 0.15mm    | 閉      | 0.10mm    | 0.05mm 未満 | 0.15mm | 0.05mm    |  |
| R=+1/100 | 0.20mm    | 閉      | 0.15mm    | 0.05mm 未満 | 0.25mm | 0.05mm    |  |
| R=+1/50  | 1.20mm    | 1.00mm | 1.00mm    | 0.65mm    | 1.10mm | 0.75mm    |  |

表 2-25 ひび割れ幅の推移(曲げひび割れ、単位:mm)

|          | А      | S         | В         | S         | AD     |           |  |  |  |  |
|----------|--------|-----------|-----------|-----------|--------|-----------|--|--|--|--|
|          | ピーク時   | 除荷時       | ピーク時      | 除荷時       | ピーク時   | 除荷時       |  |  |  |  |
| R=+1/400 | _      |           | 0.05mm 未満 | 閉         | 0.05mm | 0.05mm 未満 |  |  |  |  |
| R=+1/200 | 0.05mm | 0.05mm 未満 | 0.05mm    | 閉         | 0.10mm | 0.05mm 未満 |  |  |  |  |
| R=+1/133 | 0.10mm | 0.05mm 未満 | 0.05mm    | 0.05mm 未満 | 0.20mm | 0.05mm 未満 |  |  |  |  |
| R=+1/100 | 0.15mm | 0.05mm 未満 | 0.15mm    | 0.05mm 未満 | 0.20mm | 0.05mm    |  |  |  |  |
| R=+1/50  | 0.25mm | 0.10mm    | 0.25mm    | 0.10mm    | 0.35mm | 0.15mm    |  |  |  |  |

表 2-26 ひび割れ幅の推移(せん断ひび割れ、単位:mm)

#### 2.5.4. 荷重変形関係

図 2-27、図 2-28、図 2-29 に各試験体の荷重変形関係を示す。なお、各図には、最大耐力点に加え、 柱主筋、帯筋、アンカーボルト、テンションロットの降伏点も示している。また、これらの特性点を まとめたものを表 2-27 に示す。

試験体 AS では、*R*=0.3~0.4×10<sup>2</sup>rad 付近で、袖壁脚部のアンカーボルトが引張降伏し、その後、 *R*=0.8~0.9×10<sup>2</sup>rad 付近で、柱主筋が引張降伏し、耐力がほぼ頭打ちとなった。したがって、*R*=1/100rad までに凡その最大耐力を発揮することができると言える。実験では、*R*=1/133rad サイクルにおいて、 CLT 袖壁と水平接合部の山形鋼の間の接着面の剥離が生じたことにより、アンカーボルトが負担可能 な引張力が減少したことも、早期に最大耐力を迎えた一因となっている可能性がある。

試験体 BS についても、 $R=0.3\sim0.4\times10^{-2}$ rad 付近で、袖壁の外側に設けたテンションロットが引張降 伏し、その後、試験体 AS と同様に、 $R=0.8\sim0.9\times10^{-2}$ rad 付近で、柱主筋が引張降伏した。試験体 AS との相違点として、柱主筋の降伏後も水平荷重の増大が見られ、R=1/50rad サイクルにおいて、最大耐 力に到達した。図 2-30 に試験体 AS と試験体 BS の荷重変形関係の包絡線の比較を示す。両試験体の 最大耐力はほぼ等しいが、試験体 AS が R=1/100rad サイクルでほぼ最大耐力に到達していたのに対し、 試験体 BS では R=1/50rad サイクルまで最大耐力が増加し続けた。その原因としては、試験体 BS で は、試験体 AS のアンカーボルトと異なり、テンションロッドの引張力が増大し続けたこと、試験体 BS では、RC 柱-CLT 袖壁間の鉛直接合面において、ずれ変形が生じており、試験体 AS と比較して、 CLT 袖壁に強制される変形が小さくなったことなどが考えられる。

試験体 AD では、 $R=0.6\sim0.7\times10^{-2}$ rad 付近で、袖壁脚部のアンカーボルトが引張降伏した。これは、 試験体 AS の 2 倍近い変形であった。CLT 袖壁と水平接合部の山形鋼の間の接着面の剥離が生じたこ とにより、アンカーボルトが負担可能な引張力が減少したのは、試験体 AS と同様に、R=1/133rad サ イクル付近からであり、試験体 AD における接着面の剥離が早期に生じた訳ではない。後述の 2.5.6 項 で示すように、試験体 AD では、逆対称の曲げモーメント分布を与えたことにより、CLT 袖壁のせん 断変形の割合が大きくなっており、CLT 袖壁の曲げ変形の割合が小さかったことで、アンカーボルト が引張降伏する際の変形角が大きくなったと考えられる。試験体 AS と同じく、 $R=0.8\sim0.9\times10^{-2}$ rad 付 近で、柱主筋が引張降伏すると、耐力がほぼ頭打ちとなった。

試験体 BS に関しては、加力実験終了後に、CLT 袖壁、滑り止め、テンションロットを取り外した 状態で、*R*=+1/20rad まで一方向の押切載荷を行った。 図 2-31 にその際の荷重変形関係を示す。RC 柱 のみの場合の押し切り時の最大耐力は 138kN であり、実験における最大耐力(387kN)の 0.36 倍であ った。単純な比較はできないが、試験体 BS では、CLT 袖壁、滑り止め、テンションロットの設置に より、3 倍近く最大耐力が増大した可能性がある。

60







図 2-28 水平荷重-変形角関係(試験体 BS)



図 2-29 水平荷重-変形角関係(試験体 AD)







図 2-31 水平荷重-変形角関係(試験体 BS、加力終了後)

|    | 主筋降伏                    |      | 帯筋降伏                    |      | アンカーオ                   | <b>ドルト降伏</b> | テンション                   | ロッド降伏 | 最大耐力                    |      |
|----|-------------------------|------|-------------------------|------|-------------------------|--------------|-------------------------|-------|-------------------------|------|
|    | R                       | Q    | R                       | Q    | R                       | Q            | R                       | Q     | R                       | Q    |
|    | (×10 <sup>-2</sup> rad) | (kN) | (×10 <sup>-2</sup> rad) | (kN) | (×10 <sup>-2</sup> rad) | (kN)         | (×10 <sup>-2</sup> rad) | (kN)  | (×10 <sup>-2</sup> rad) | (kN) |
| 46 | 0.860                   | 366  | -                       | -    | 0.328                   | 262          | -                       | -     | 1.341                   | 389  |
| AS | -0.805                  | -335 | -                       | I    | -0.412                  | -294         | -                       | I     | -1.636                  | -376 |
|    | 0.871                   | 330  | 4.206                   | 328  | -                       | -            | 0.358                   | 229   | 1.819                   | 387  |
| 69 | -0.869                  | -273 | -                       | -    | -                       | -            | -0.360                  | -230  | -1.964                  | -373 |
|    | 0.838                   | 759  | -                       | -    | 0.638                   | 736          | -                       | -     | 1.732                   | 819  |
| AD | -0.884                  | -748 | -1.162                  | -681 | -0.656                  | -708         | -                       | I     | -0.991                  | -779 |

表 2-27 各特性点における荷重と変形

#### 2.5.5. 補強効果の検証(RC 柱の終局強度計算値との比較)

現状では、CLT 袖壁を設置した RC 柱の曲げ終局モーメント、せん断終局耐力を簡易に予測する方 法がない(後述する骨組解析を実施すれば推定は可能)ため、ここでは、文献[2-2]に記載のある以下 の計算式を用いて、実験の最大耐力を RC 柱単独で考えた場合の曲げ終局モーメント時のせん断力、 せん断終局耐力と比較した。曲げ終局モーメント時のせん断力は、釣合軸力以下の場合の式(2.1)によ る曲げ終局モーメントを、せん断スパン(試験体 AS、BS: 2.3m、試験体 AD: 0.85m)で除すことで、 せん断終局耐力は式(2.2)を用いて計算した。材料強度には、2.4節で示した実強度を用いた。

いずれの試験体についても、RC 柱の曲げ終局モーメント時のせん断力がせん断終局耐力よりも小 さくなった。RC 柱の曲げ終局モーメント時のせん断力と比較すると、実験の最大耐力は、試験体 AS、 BS で約 2.6 倍、試験体 AD で 2.0 倍となっており、CLT 袖壁、アンカーボルト、テンションロッドの 設置による補強効果が確認できる。

$$M_u = 0.5_c a_{gc} \sigma_v g_1 D_c + 0.5 N_c D_c (1 - N_c / b_c D_c c F_c)$$

ここで、<sub>c</sub>ag: RC 柱の主筋全断面積(mm<sup>2</sup>)、<sub>c</sub>oy: RC 柱主筋の降伏強度(N/mm<sup>2</sup>)、g1: RC 柱の引張 筋重心と圧縮筋重心との距離の全せいに対する比、De: RC 柱のせい (mm)、Ne: RC 柱の軸方向力 (N)、  $b_{c}$ : RC 柱の幅 (mm)、<sub>c</sub>F<sub>c</sub>: コンクリートの設計基準強度 (N/mm<sup>2</sup>) である。

$${}_{c}\mathcal{Q}_{su} = \left\{ \frac{0.068 {}_{c} {}_{t} {}^{0.23} ({}_{c} {}_{c} {}_{c} + 18)}{M / (Q \cdot d_{c}) + 0.12} + 0.85 \sqrt{{}_{c} {}_{w} {}_{c} {}_{wy}} + 0.1 {}_{c} {}_{\sigma}_{0} \right\} b_{c} j_{c}$$

(2.2)

(2.1)

ここで、 $p_t$ : RC 柱の引張鉄筋比(%)、 $c_c$ : コンクリートの設計基準強度(N/mm<sup>2</sup>)、M/O: M, Oはそれぞれ終局強度算定時における部材内の最大曲げモーメント及びせん断力(ただし、M/(Od.)は、  $M/(Qd_c) < 1$ のとき1とし、 $M/(Qd_c) > 3$ のとき3とする)(mm)、 $d_c : RC 柱の有効せい(mm)$ 、 $_{cp_w} : RC$ 柱のせん断補強筋比(小数、中子筋を除く場合 0.012 を上限とする。ただし、せん断補強筋として中 子筋を併用する場合やスパイラル筋を用いる場合には 0.015 を上限とすることができる。)、cow: RC 柱のせん断補強筋の降伏強度  $(N/mm^2)$ 、 $j_c: RC$ 柱の応力中心距離で $7d_d/8$ としてよい (mm)、 $c_{\sigma_0}: RC$ 柱の平均軸方向応力度  $(=N_c/(b_cD_c))$   $(N/mm^2)$  で  $0.4_cF_c$  以下である。

| 表 2-28 各試験体の初期剛性と最大耐力の比較 |                               |                                             |                                 |  |  |  |  |  |  |  |
|--------------------------|-------------------------------|---------------------------------------------|---------------------------------|--|--|--|--|--|--|--|
|                          | 実験値                           | 計算値(RC)                                     | 柱のみ)                            |  |  |  |  |  |  |  |
|                          | 最大耐力<br>Q <sub>max</sub> (kN) | 曲げ終局モーメント時<br>のせん断力<br>Q <sub>mu</sub> (kN) | せん断終局耐力<br>Q <sub>su</sub> (kN) |  |  |  |  |  |  |  |
| 46                       | 388.8                         | 149.0                                       | 405.1                           |  |  |  |  |  |  |  |
| AS                       | -375.9                        | 140.0                                       | 405.1                           |  |  |  |  |  |  |  |
| БС                       | 387.3                         | 147.0                                       | 402 F                           |  |  |  |  |  |  |  |
| ЪЗ                       | -373.4                        | 147.9                                       | 403.5                           |  |  |  |  |  |  |  |
|                          | 819.0                         | 419.0                                       | 466.1                           |  |  |  |  |  |  |  |
| AD                       | -779.2                        | 410.0                                       | 400.1                           |  |  |  |  |  |  |  |

2.5.6. 変形成分

### 2.5.6.1. 曲げ変形とせん断変形の比率

図 2-32、図 2-33、図 2-34 に加力制御に用いた図 2-18 で示した水平変位計の計測値から算定した 変形角(横軸)と、各試験体の RC 柱、南北の CLT 袖壁の曲げ変形角、せん断変形角(縦軸)の関係 と、各サイクルにおける RC 柱、南北の CLT 袖壁の曲げ変形角、せん断変形角の変形角に対する比率 を示す。RC 柱、南北の CLT 袖壁の曲げ変形角、せん断変形角は、図 2-19、図 2-20 で示した変位計 の計測値から計算した。

図 2-32(c)に示す試験体 AS の南側袖壁、図 2-33 に示す試験体 BS の南側袖壁を除くと、RC 柱、 CLT 袖壁の曲げ変形成分とせん断変形成分の和は、水平変位計の計測値から算定した変形角と概ね一 致しており、各区間における計測が精度良く行われていることが確認できる。

RC 柱に関しては、いずれの試験体でも、変形の大部分を曲げ変形が占めており、せん断変形の割合 は小さい。特に片持ち柱形式の載荷を行った試験体 AS、BS ではその傾向が顕著である。一方、CLT 袖壁に関しては、片持ち柱形式の載荷を行った試験体 AS、BS では、RC 柱と同様に、変形の大部分を 曲げ変形が占めており、せん断変形の割合は比較的小さい。しかしながら、逆対称載荷を行った試験 体 AD では、変形の大部分をせん断変形が占めていた。2.5.4 項の荷重変形関係では、試験体 AS と比 較して、試験体 AD ではアンカーボルトが降伏する時の変形角が倍近く大きくなることを説明したが、 CLT 袖壁のせん断変形成分が大きくなり、アンカーボルトに伸びを生じさせる原因となる曲げ変形の 割合が小さくなったことがその一因として考えられる。2.5.3 項で示したように、試験体 AD では、材 軸方向に配置された最外縁のラミナ間で鉛直方向のずれが生じ、CLT 袖壁自体がせん断変形している 様子が確認されており、変形角の増大に比例する形でせん断変形が増大していたことが確認できる。



(c) CLT 袖壁(南側) 図 2-32 各部材の曲げ変形、せん断変形の割合(試験体 AS)



(c) CLT 袖壁(南側)図 2-33 各部材の曲げ変形、せん断変形の割合(試験体 BS)



(c) CLT 袖壁(南側)図 2-34 各部材の曲げ変形、せん断変形の割合(試験体 AD)

#### 2.5.6.2. 鉛直接合面におけるせん断変形

図 2-35 に、図 2-21 で示した RC 柱-CLT 袖壁間の鉛直目地を横切るように設置した変位計の計測 値を用いて算定した鉛直接合面におけるせん断変形の推移を示す。なお、図 2-21 に示すように、試験 体 AS、AD の山形鋼を避けるように変位計を設置したため、計測区間(RC 柱側:70mm、CLT 袖壁 側:200mm、合計 270mm)が長く、ここで示すせん断変形には、境界面におけるずれだけでなく、CLT 袖壁自体のせん断変形も含まれているものと考えられる。

鉛直接合面におけるせん断変形は、同じ片持ち載荷の場合で比較すると、鉛直接合面に山形鋼を設けた試験体 AS と比較して、鉛直接合面に金物を設けていない試験体 BS の方が大きい。いずれの試験体でも、加力方向に対して圧縮側に位置する CLT 袖壁の鉛直接合面におけるずれ量が大きくなっており、試験体 BS では、最大で 5mm 程度のせん断変形が確認された。試験体 BS では目視により、RC 柱-CLT 袖壁間でずれが生じていることが確認されており、CLT 袖壁自体のせん断変形は小さいものと考えられる。また、試験体 BS のずれ量は、変形角の増大に比例する形で大きくなっており、その増大は、CLT 袖壁のラミナ間の接着面が破壊し、CLT 袖壁の先端が面外方向に開くように変形する様子が確認された *R*=1/50rad サイクル付近まで継続した。

また、逆対称載荷とした試験体 AD では、片持ち載荷とした試験体 AS を大きく上回る、最大で 12mm 程度のせん断変形が確認されている。試験体 AD では、鉛直接合面に山形鋼を設けており、目視でも RC 柱-CLT 袖壁間のずれは確認されていない。したがって、試験体 BS の場合と異なり、CLT 袖壁自 体のせん断変形が占める割合が大きいものと考えられる。そこで、試験体 AD に関しては、図 2-35 で 示した鉛直接合面におけるせん断変形を、CLT 袖壁側の計測長さである 200mm で除して求めたせん 断変形角と変形角の関係を求めた。図 2-36 に関係図を示す。鉛直接合面におけるせん断変形角は、試 験体の変形角と同等かそれを上回る値となっており、両者の間に関連性が見られる。



図 2-35 鉛直接合面におけるせん断変形の推移



図 2-36 試験体 AD の鉛直接合面におけるせん断変形角の推移

## 2.5.7. 各部位のひずみの推移

### 2.5.7.1. アンカーボルト、テンションロッドの軸ひずみの推移

図 2-37 から図 2-39 に、アンカーボルト(試験体 AS、AD) とテンションロッド(試験体 BS)の軸 ひずみの推移を示す。

試験体 AS では、脚部において、いずれのアンカーボルトにも降伏ひずみ(*ε<sub>y</sub>*=1776µ)を超える引張 ひずみが確認されているが、袖壁の外側に配置したアンカーボルトの引張ひずみは *R*=1/100rad サイク ルでほぼ頭打ちとなっている。これは、水平接合部の接着面にずれが生じ、アンカーボルトに十分な 引張ひずみが生じなくなったことが原因と考えられる。また、袖壁の内側に配置されたアンカーボル トについても、水平接合部の接着面のずれの影響で、引張ひずみは降伏ひずみ程度に留まっている。 また、片持ち柱形式の載荷を行ったため、頂部のアンカーボルトには殆ど引張ひずみは生じていない。

試験体 BS では、テンションロッドを滑り止めに固定していたため、変形角の増大に伴って、実験 終了時まで引張ひずみが増大する傾向が確認された。最終の *R*=1/25rad サイクルにおける押切載荷時 には、引張ひずみが 40000μ に到達しており、テンションロッドのひずみは、ひずみ硬化域に到達して いたものと考えられる。







図 2-38 テンションロッドのひずみの推移(試験体 BS)

試験体 AD では、袖壁の外側に配置したアンカーボルトでは引張降伏が生じたものの、袖壁の内側 に配置したアンカーボルトでは引張降伏が生じなかった。また、袖壁の外側に配置したアンカーボル トの引張ひずみが *R*=1/50rad サイクルでほぼ頭打ちとなっており、その原因として、水平接合部の接 着面に生じたずれの影響や、CLT 袖壁のせん断降伏によって、脚部の離間がそれ以上進展しなくなっ たことが考えられる。



### 2.5.7.2. CLT 袖壁端部の軸ひずみの推移

図 2-40 から図 2-42 に CLT 袖壁端部の軸ひずみの推移を示す。片持ち柱形式の試験体 AS、BS の場 合は *R*=1/100rad で 3000~5000µ 程度、逆対称形式の試験体 AD の場合は *R*=1/100rad で 2000~3000µ 程 度の圧縮ひずみが袖壁端に生じている。CLT の圧縮強度時のひずみ(縦圧縮の場合、座屈強度を使用) は、S60-3-3 で 3653µ、S60-3-4 で 3452µ であり、試験体 AS、BS では、*R*=1/100rad で座屈強度に相当 する軸ひずみが生じていることになる。



#### 2.5.7.3. CLT 袖壁の断面内の軸ひずみの推移

図 2-43 に示す位置に貼り付けたひずみゲージで計測した CLT 袖壁の R=1/400、1/200、1/100rad サイクルの一回目の正負各方向のピーク時の軸ひずみの分布を図 2-44、図 2-45 に示す。図中の水平線は、CLT を弾性材と考えた場合の圧縮強度到達時のひずみ  $\sigma_{B, clt}/E_{c, clt}$  ( $\sigma_{B, clt}$ : CLT の圧縮強度の補正値、 $E_{c, clt}$ : CLT の割線剛性)を示している。



正方向では加力方向に対して圧縮側となる北側袖壁の脚部のひずみを、負方向では加力方向に対し て引張側となる南側袖壁の脚部のひずみを比較すると、試験体 AS の方が試験体 BS よりも同一変形 角における圧縮ひずみが大きく、鉛直接合材の効果が伺える。また、試験体 AS、BS ではひずみ分布 がほぼ線形となっているのに対し、試験体 AD では袖壁端や柱際と比較して、中央部分の圧縮ひずみ が極端に小さく、ひずみ分布が特徴的である。この傾向は試験体 AD の北側袖壁の頂部(正方向載荷 時)や南側袖壁の頂部(負方向載荷時)でも確認できる。片持ち柱形式の載荷を行った試験体 AS、BS と比較して、逆対称形式の載荷を行った試験体 AD では、鉛直接合面を介して伝達されるせん断力が 大きく、袖壁のせん断変形が断面内の軸ひずみの分布に影響を及ぼした可能性がある。

なお、*R*=1/100rad 時点に  $\sigma_{B, ctl}/E_{c, ct}$ を上回る圧縮ひずみが発生していたのは、試験体 AS の正方向 載荷時のみであり、CLT 袖壁の圧縮強度を十分に発揮させるためには、大きな変形角が必要となるこ とが分かる。また、試験体 AS、AD の北側袖壁の脚部(正方向載荷時)や南側袖壁の脚部(負方向載 荷時)、試験体 AD の南側袖壁の頂部(正方向載荷時)や北側袖壁の頂部(負方向載荷時)では、水平 接合部のアンカーボルトの抵抗により、引張ひずみが生じたが、試験体 BS の北側袖壁(正方向載荷 時)や南側袖壁(負方向載荷時)では、引張ひずみは殆ど発生していなかった。

72


(c) 試験体 AD

図 2-44 CLT 袖壁の断面内のひずみの推移(正方向ピーク時、引張ひずみ:正、圧縮ひずみ:負)



図 2-45 CLT 袖壁の断面内のひずみの推移(負方向ピーク時、引張ひずみ:正、圧縮ひずみ:負)

# 2.5.8. 各部材に作用する軸力、せん断力の推定

# 2.5.8.1. アンカーボルト、テンションロッドの軸力の推移

図 2-47、図 2-48 にアンカーボルト、テンションロッドの軸ひずみから推定した引張力の推移を示 す。試験体 AS、AD に関しては、南北の袖壁の脚部および頂部の計4本のアンカーボルトの引張力の 合計値(4本のうち2本のひずみを計測)を、試験体BSに関しては、南北の袖壁際に設けた計2本の アンカーボルトの引張力の合計値(2本のひずみをいずれも計測)を示している。

図 2-46 に軸力の推定に用いた材料モデルを示す。アンカーボルトの材料特性はバイリニアでモデ ル化し、引張力のみを負担し、圧縮力の負担は無視することとしたが、引張降伏直後に水平接合面の ずれが生じ、計測される引張ひずみの値が頭打ちとなったため、引張降伏後のひずみ硬化の影響は考 慮しなかった。テンションロッドの材料特性もバイリニアでモデル化し、引張力のみを負担し、圧縮 力の負担は無視することとしたが、材料試験の結果を基に、引張降伏後のひずみ硬化を考慮した。

試験体 AS では、R=1/100rad において、アンカーボルトの引張力が降伏強度に到達しているが、そ れ以降のサイクルでは、アンカーボルトの引張力が徐々に低下しており、水平接合部の接着面のずれ の影響が生じている。試験体 AD では、袖壁の外側に設けたアンカーボルトが引張降伏したものの、 断面全体でみると、アンカーボルトの引張力は降伏強度に達しておらず、試験体 AS との相違が見ら れる。一方で、試験体 AS と同じく、水平接合部の接着面のずれの影響とみられるアンカーボルトの 引張力の低下が R=1/100rad 以降のサイクルで確認できる。







図 2-47 アンカーボルトの引張力の推定(試験体 AS、AD)

試験体 BS では、*R*=1/200rad 以降のサイクルの荷重変形関係の包絡線上では、降伏強度以上の引張力が発揮されていたものと考えられ、実験終了時まで、テンションロッドの引張力は増大し続けた。



図 2-48 テンションロッドの引張力の推定(試験体 BS)

# 2.5.8.2. CLT 袖壁、RC 柱に作用する軸力の推移

図 2-50、図 2-51、図 2-52 に RC 柱、CLT 袖壁の軸力の推移示す。図 2-44、図 2-45 で示したよう に、試験体 AS、BS と試験体 AD では、袖壁の各断面のひずみ分布に差異が見られた。そこで、試験 体 AS、BS では、図 2-44、図 2-45 中の直線に示すように、最小二乗法により、各変形角における南 北の袖壁のひずみ分布を線形で仮定した。試験体 AD では、図 2-44、図 2-45 中の折れ線に示すよう に、各地点におけるひずみを線形補間してひずみ分布を仮定した。これらのひずみ分布を用いて、袖 壁断面を袖壁せいの方向に 10 分割した断面解析により、CLT 袖壁の軸力を推定した。断面解析では、 図 2-49 に示すように、CLT の材料特性をバイリニアでモデル化し、座屈強度による頭打ちを行うと ともに、繰り返しの影響も考慮した。また、実験時の長期軸力から、試験体 AS、AD では南北の袖壁 の軸力を、試験体 BS では南北の袖壁の軸力に加え、図 2-48 で示したテンションロッドの引張力を差 し引くことで、RC 柱の軸力を推定した。



図 2-49 仮定した CLT の材料特性(引張:正、圧縮:負)

試験体 AS では、変形角の増大と共に、加力方向に対して圧縮側の袖壁(正方向:南側、負方向: 北側)に作用する圧縮軸力が増大しており、RC 柱の軸力負担が引張に転じている。一方、加力方向に 対して引張側の袖壁(正方向:北側、負方向:南側)に作用する引張軸力は、*R*=1/133rad 以降のサイ クルで生じた水平接合材の接着面のずれにより、変形の増大に伴って、アンカーボルトの降伏耐力を 下回った。また、曲げモーメントが小さい袖壁の頂部では、脚部と比較して、圧縮軸力や引張軸力の 負担が小さくなった。

試験体 BS でも、試験体 AS と同様に、当初は変形角の増大と共に、加力方向に対して圧縮側の袖壁 (正方向:南側、負方向:北側)の脚部に作用する圧縮軸力が増大したが、*R*=1/100rad サイクルで内 法スパン全体に鉛直接合面のひび割れが進展したため、柱と袖壁の一体性が失われ、袖壁に作用する 圧縮軸力が、袖壁の脚部では小さく、頂部では大きくなった。

試験体 AD では、加力方向に対して圧縮側の袖壁(正方向:南側脚部、北側頂部、負方向:北側脚 部、南側頂部)で、変形角の増大と共に、圧縮軸力が増大する傾向が見られたが、試験体 AS と比較 すると、増加の割合は緩やかであった。また、加力方向に対して引張側の袖壁(正方向:北側脚部、 南側頂部、負方向:南側脚部、北側頂部)における引張軸力は、試験体 AS と同様に、アンカーボル トの降伏耐力程度に留まっていた。









2.5.8.3. 鉛直接合部に作用するせん断力の推定

図 2-53 に RC 柱-CLT 袖壁間の鉛直接合部に作用するせん断力を示す。ここでは、図 2-50、図 2-51、図 2-52 で示した南北の袖壁の脚部と頂部の断面に作用する軸力の差分の絶対値を取ることで 鉛直接合部のせん断力を推定した。図中には、試験体 AS、AD に関しては、式(2.3)による CLT 袖壁の 鉛直断面のせん断耐力を、試験体 BS に関しては、式(2.3)によるせん断耐力に加え、文献[2-3]で提案さ れている RC-鉄骨間の接着耐力を用いた式(2.4)による RC 柱-CLT 袖壁間の仕口部における接着耐 力も示している。

いずれの試験体でも、変形角の増大に伴って、鉛直接合部に作用するせん断力が増加する傾向がみ られるが、試験体 AS、ADでは、CLT 袖壁の鉛直断面のせん断耐力(349kN)を大きく上回るせん断 力が RC 柱から CLT 袖壁に伝達されているが、これは鉛直接合材を CLT 袖壁の側面に接着接合して せん断力の伝達を行っていることが原因であり、詳細については後述する。一方、試験体 BS では、 *R*=1/200rad 時には、式(2.3)による CLT のせん断耐力(349kN)を超え、式(2.4)による接着耐力(419kN) に匹敵する大きさの鉛直せん断力が作用していたものの、鉛直接合面におけるひび割れの進展により、 *R*=1/100rad 時には鉛直接合面に作用するせん断力が低下したものと考えられる。

$${}_{wv}Q_{su} = t_w \cdot h_0 \cdot_t F_{sI}$$
(2.3)

$$_{wv}Q_{au} = t_w \cdot h_0 \cdot 0.38 \sqrt{_c F_c}$$

(2.4)

ここで、 $t_w$ : CLT 袖壁の板厚、 $h_0$ : CLT 袖壁の内法高さ、 $_tF_{sl}$ : CLT の面内せん断の基準強度、 $_sF_c$ : コンクリートの設計基準強度 (N/mm<sup>2</sup>) である。



図 2-53 RC 柱-CLT 袖壁間に作用する鉛直せん断力の推移

図 2-54 に、試験体 AS、AD の鉛直接合部を介して CLT 袖壁や RC スタブに伝達される鉛直せん断 力の最大値についての考え方を示す。鉛直接合部のせん断耐力に関しては、後述の 2.7.5 項で取り上げ るが、ここでは鉛直接合部が接着接合等によって十分なせん断耐力を有しているものと仮定する。鉛 直接合部から周辺部材に伝達される鉛直せん断力 vvoQuは、式(2.5)に示すように、断面④を介して CLT 袖壁内に伝達される wvQsu と断面⑤、⑥を介して、CLT 袖壁の上下の仕口面に伝達される vvlQu、vvuQu の和で表されるものと仮定する。それぞれの値は式(2.6)、(2.7)、(2.8)で与えられ、これらの和を計算す ると vvoQu の値は 733kN となる。図 2-53(a)、(c)に vvoQu の値を示しているが、実験における最大せん 断力と概ね対応していることから、ここで示した手法は鉛直接合部に作用する可能性がある最大のせ ん断力を推定する手法として概ね妥当なものと考えられる。

$${}_{vvo}Q_u = {}_{wv}Q_{su} + {}_{vvl}Q_u + {}_{vvu}Q_u$$

ここで、vvoQu:鉛直接合部の CLT 袖壁-CLT 袖壁、RC スタブ間で伝達される鉛直せん断力の最大値、vvvQsu:CLT 袖壁の鉛直断面のせん断耐力、vvlQu:鉛直接合材の接着部の下側に位置する断面の終局耐力、vvuQu:鉛直接合材の接着部の上側に位置する断面の終局耐力である。

$$_{wv}Q_{su} = t_w \cdot h_0 \cdot_t F_{sI}$$

(2.6)

(2.5)

ここで、 $t_w$ : CLT 袖壁の板厚(=90mm)、 $h_0$ : CLT 袖壁の内法高さ(=1700mm)、 $F_{sl}$ : CLT の面内せん断の基準強度(=2.3N/mm<sup>2</sup>)である。

$$V_{vvl}Q_u = t_w \cdot L_v \cdot_{tv} F_k$$

ここで、 $t_w$ : CLT 袖壁の板厚 (=90mm)、 $L_v$ : 鉛直接合材の長さ (=150mm)、 $t_v F_k$ : CLT の圧縮の基準強度を用いた鉛直方向の座屈強度 (=20.2N/mm<sup>2</sup>) である。

$$_{vvu}Q_u = \sum_{a} a_{s a} \sigma_y$$

(2.8)

(2.7)

ここで、 $\Sigma_{a}a_{s}$ : 鉛直接合材の接着面の上下に位置する水平接合部のアンカーボルトの断面積の和 (=2 本×166mm<sup>2</sup>)、 $a\sigma_{y}$ : 水平接合部に設置されたアンカーボルトの降伏強度 (=336 N/mm<sup>2</sup>) である。



図 2-54 鉛直接合部を介して CLT 袖壁、RC スタブに入力される鉛直せん断力の最大値の推定

# 2.5.8.4. CLT 袖壁に作用する水平せん断力の推定

図 2-55 に試験体の中央で高さ 1200mm の範囲(上下端に接している高さ 250mm の範囲では、CLT 袖壁端部の離間や水平接合部の影響が大きいものと考え、対象から除外した)で計測したせん断ひず みにせん断弾性係数(要素実験を実施していないため、ここでは文献[2-4]を参考に標準的な値として 500N/mm<sup>2</sup>と仮定)を乗じて求めた CLT 袖壁に作用する水平せん断力の推移を示す。なお、CLT 袖壁 に作用する水平せん断力は、CLT のせん断の基準強度(試験体 AS、AD では 2.3N/mm<sup>2</sup>、試験体 BS では 1.7N/mm<sup>2</sup>)を用いて算定したせん断耐力(試験体 AS、AD では 134kN、試験体 BS では 133kN)で 頭打ちとしたが、応力-ひずみ関係における繰り返しの履歴が及ぼす影響は考慮しなかった。



図 2-55 CLT 袖壁に作用する水平せん断力の推移

試験体 AS では、*R*=1/50rad サイクルまでは、CLT 袖壁に作用する水平せん断力は、CLT 袖壁のせん 断耐力を下回っており、北側、南側の袖壁に作用した最大の水平せん断力は、79kN、92kN であった。 その後の *R*=1/33rad サイクルでは、正方向載荷時の南側袖壁において、CLT 袖壁のせん断耐力に到達 している。また、加力方向に対して引張側の袖壁(正方向:北側、負方向:南側)では、水平せん断 力を殆ど負担していなかった。

試験体 BS では、計測を終了する *R*=1/33rad サイクルの正方向載荷時まで、CLT 袖壁に作用する水 平せん断力は、CLT 袖壁のせん断耐力を下回っており、北側、南側の袖壁に作用した最大の水平せん 断力は、97kN、99kN であった。また、試験体 AS と同様に、加力方向に対して引張側の袖壁(正方 向:北側、負方向:南側)では、水平せん断力を殆ど負担していなかった。

試験体 AD では、*R*=1/133rad サイクルで CLT 袖壁がせん断耐力(134kN)に到達し、早期に耐力を 発現した。しかしながら、後述の骨組解析で示すように、試験体 AD では、鉛直接合部から伝達され る鉛直方向のせん断力の影響によってせん断降伏が生じるため、断面内のせん断変形や水平せん断力 の分布が均一にならない(断面の外側では、内側(柱際)よりも負担できるせん断変形や水平せん断 力が小さくなる)。ここでは、断面全体で平均化されたせん断ひずみを用いて、水平せん断力の推定を 行っているため、このような断面内のせん断変形や水平せん断力の分布の影響を考慮することができ ず、CLT 袖壁に作用する水平せん断力を過大評価している可能性がある点に注意が必要である。

# 2.5.9. 等価粘性減衰定数の推移

図 2-56 に等価粘性減衰定数の推移を示す。ここでは実験の荷重変形関係から、式(2.9)を用いて等価 粘性減衰定数を算定した。片持ち柱形式の載荷を行った試験体 AS、BS よりも、逆対称形式の載荷を 行った試験体 AD の方が、全体的に等価粘性減衰定数の値は大きくなった。また、アンカーボルトが 早期に降伏する試験体 AS の方が、テンションロッドの降伏が遅い試験体 BS よりも、等価粘性減衰 定数の値は大きくなった。RC 柱主筋が降伏する *R*=1/100rad サイクルまでは、等価粘性減衰定数の値 はほぼ横ばいであり、*R*=1/50rad 以降のサイクルで急増する傾向が見られる。

図中には、式(2.10)による等価粘性減衰定数の計算値の推移も示している。式(2.10)は載荷実験と同 じく定常ループを想定した場合の等価粘性減衰定数に相当し、*R*=1/50rad を終点とする面積等価なバ イリニア置換によって求めた降伏点変形を基準に塑性率を算定した。片持ち柱形式の試験体 AS、BS では、同一変形角における2回目のサイクルにおいて、式(2.9)による実験値が式(2.10)による計算値を 下回るケースが見られている。その原因としては、CLT 袖壁を設置することで、RC 柱の曲げ耐力が 増大するが、その大部分がエネルギー消費を行わない曲げ圧縮軸力の寄与分によるものであったこと が考えられる。

$$exp h_{eq} = \frac{1}{4\pi} \frac{\Lambda W}{W}$$
ここで、 $\Delta W$ :履歴吸収エネルギー、 $W$ :ポテンシャルエネルギーとする。
(2.9)

$$_{cal}h_{eq} = \frac{1}{\pi}(1 - \frac{1}{\sqrt{\mu_y}})$$

(2.10)

ここで、μ<sub>y</sub>: *R*=1/50rad を終点とする面積等価なバイリニア置換によって求めた塑性率とする。



# 2.6. 骨組解析

### 2.6.1. はじめに

本節では、骨組解析用の二種類の解析モデルを作成し、実験結果との比較を行った。図2-57 に解析 モデルの一覧を示す。詳細モデルは、複数のブレース材や軸ばね、せん断ばねを組み合わせることで、 部材実験で確認された挙動を再現することを目的としている。一方、簡易モデルは、モデル化を行う 部材やばねの数を減らし、実務でも取り扱うことができるように配慮したものである。なお、Bタイ プでは、実験では片持ち形式の試験体 BS の載荷しか行っていないが、ここでは逆対称形式の試験体 BD (試験体の材料特性や長期荷重、テンションロッドの初期締付力は試験体 BS と共通とした)の解 析も別途行った。

今回の検討では、RC、CLTと材料特性の異なる二つの部材を組み合わせることになるため、水平変 形の増大に伴って推移する RC 柱、CLT 袖壁の作用軸力を適切に評価するためには、軸方向の変形の 整合性に配慮する必要がある。したがって、詳細モデル、簡易モデルのいずれについても、RC 柱に関 しては、材端に塑性ヒンジを与えたファイバーモデルで再現した。また、CLT 袖壁については、上下 端に支圧剛性、支圧耐力及びアンカーボルトの引張抵抗を再現可能な複数の軸ばね(詳細モデル)も しくはファイバーモデル(簡易モデル)を設け、曲げ変形の増大に伴って生じる軸方向の変形を評価 できるように配慮した。なお、RC 柱の塑性ヒンジ長さは、後述する架構実験と条件を揃える形で、柱 せい(=450mm)と同じ長さとした。図 2-19 に示す変位計を用いて計測した RC 柱の曲率分布を確認 すると、塑性ヒンジ長さを柱せいの半分(=225mm)とした方がむしろ近いが、本検討では、ファイ バーモデルに用いるコンクリートや鉄筋の材料構成則の調整は行わない方針としたため、実験の荷重 変形関係との整合を踏まえてこの長さとした。また、今回設定した塑性ヒンジ長さは、試験体の内法 高さ(1700mm)に対して大きい(450mm/1700mm=0.26)ため、今回使用したプログラムでは、フ ァイバーモデルの設置に伴う軸剛性や曲げ剛性の低下の影響を十分に補正できていない。そのため、 後述の検討では、RC 柱のファイバーモデルを取り除いた状態で初期剛性の計算を行っている。

試験体 AD で確認された CLT 袖壁のせん断降伏を再現するために、詳細モデルでは、CLT 袖壁をブ レースで置換した。ブレース置換を行うことで、CLT 袖壁に作用する水平せん断力によるせん断変形 だけでなく、RC 柱-CLT 袖壁間の鉛直接合面から伝達される鉛直方向のせん断力によるせん断変形 の再現も可能となる。また、CLT 袖壁に作用する鉛直方向のせん断力による降伏を再現するために、 CLT 袖壁を水平方向に5分割してブレース置換を行った。一方、簡易モデルでは、CLT 袖壁を1本の 線材としてモデル化しているため、鉛直方向のせん断力によって生じる CLT 袖壁のせん断変形は無視 している。

また、試験体 AS、ADでは、RC 柱-CLT 袖壁間の鉛直接合部が剛強であることから、水平抵抗を 行う際に、RC 柱と CLT 袖壁がある程度一体になって挙動することが期待できる。そこで、詳細モデ ルでは、RC 柱を4分割、CLT 袖壁を8分割し、両者を剛強に接合することで、RC 柱の塑性ヒンジで 生じる回転変形によって CLT 袖壁端に軸方向の変形が生じるようにモデル化を行った。一方で、骨組 解析においては、階の途中に節点を設ける場合、別の層としてモデル化を行う必要が生じる場合もあ る (例えば、詳細モデルでは、RC 柱及び CLT 袖壁を鉛直方向に4分割することから、1つの階を4つ の層としてモデル化を行う必要が生じてしまう)ことから、簡易モデルでは、鉛直方向の分割数を最 小限の2分割とした。なお、試験体 BS、BD に関しては、RC 柱と CLT 袖壁の間で鉛直せん断力の伝 達は行わないため、詳細モデル、簡易モデルとも鉛直方向の分割は必要ない。

解析では、実験と同様に、図中の節点1の位置に長期荷重Nを作用させた後に、試験体AS、BSで

84

は節点2に水平荷重*Q*を、試験体 AD、BD では節点2、3に水平荷重0.5*Q*を与える一方向の増分解 析を行った。節点1、2、3 は各試験体の反曲点高さと一致するように設定しているが、試験体 AD、 BD では、上スタブの回転を防止するために、節点1の回転を拘束している。層間変形角は、節点1に おける水平変位を下スタブ上端面からの高さ1700mm で除した値とした。



(b) 試験体 AS(簡易モデル)図 2-57 CLT 袖壁付き RC 柱のモデル(単位:mm)



図 2-57 CLT 袖壁付き RC 柱のモデル(単位:mm)



図 2-57 CLT 袖壁付き RC 柱のモデル(単位:mm)





### 2.6.2. 部材のモデル化

部材モデルは、RC 柱、CLT 袖壁、水平接合部(試験体 AS、AD のアンカーボルト含む)、鉛直接合 部(試験体 AS、AD のみ)、テンションロッド(試験体 BS、BD のみ)によって構成されている。以 下に各構成要素における復元力特性の設定方法を示す。今回の検討では、要素の材料試験を行った項 目に関しては、基本的に2.4 節で示した材料試験の剛性、強度を用いて、モデル化を行っている。

### 2.6.2.1. RC 柱

RC 柱の材端のファイバー要素は、図 2-58 に示すように、柱せいの方向に断面を 10 分割し、カバ ーコンクリート、コアコンクリート、軸方向鉄筋の3 種類の材料を用いてモデル化した。コンクリー トの応力ーひずみ関係は、高橋ら<sup>[2-5]</sup>が RC 造の片側柱付き壁の曲げ変形性能を評価する際に用いた Saatcioglu ら<sup>[2-6]</sup>による提案モデルを用いたが、使用した解析プログラムでは、両者の関係を関数で与 えることができないため、図 2-59 に示すように、応力ーひずみ関係上の数点を直線で結ぶ形で両者の 関係を定義した。また、コンクリートの引張応力の負担は考慮していない。図 2-59 に示すように、鉄 筋の応力ーひずみ関係はバイリニアでモデル化し、降伏後の勾配の傾きはゼロとした。

せん断ばねは、図 2-60 に示すように、せん断ひび割れ点、せん断耐力点を持つバイリニアでモデル 化した。せん断ひび割れ耐力、せん断耐力、せん断ばねの終局ひずみは以下の式で算定した。なお、 せん断耐力に関しては、実験データベースによる検証<sup>12-71</sup>によって、評価式が実験値を過小評価するこ とが報告されている。本検討では、実験時の挙動を再現することを目的としているため、RC 柱に作用 するせん断力がせん断耐力の計算値に早期に到達した場合、その後の挙動の追跡に支障をきたすこと になる。そこで、検証結果に基づき、RC 柱部材のせん断耐力について、計算値の 1.4 倍の値を用いる こととした。また、詳細モデルでは、柱脚から 450mm、850mm、1250mm の高さにおいて、RC 柱一 CLT 袖壁間の応力伝達ができるようにモデル化を行っている。そのため、通常の部材のように、部材 内の 1 箇所のみにせん断ばねを設けた場合、局所的な変形の増大によって、両者の応力伝達に支障を きたす可能性がある。そこで、最も応力状態が厳しい柱脚の軸力、せん断スパンを用いて、せん断ひ び割れ耐力、せん断耐力を計算し、柱脚から 225mm、650mm、1050mm、1475mm の高さに 4 本のせ ん断ばねを分散して設けることとした。

(せん断ひび割れ耐力[2-2])

$${}_{c}Q_{sc} = \varphi \sqrt{{}_{c}\sigma_{T}^{2} + {}_{c}\sigma_{Tc}\sigma_{0}} b_{c}D_{c}\frac{1}{\kappa_{s}}$$

(2.11)

ここで、 $\varphi$ :耐力係数、 $_{c\sigma_{T}}$ : コンクリートの引張強度(=0.33 $\sqrt{_{c}F_{c}}$ 、 $_{c}F_{c}$ : コンクリートの設計基準 強度(N/mm<sup>2</sup>))、 $_{c\sigma_{0}}$ : RC 柱の平均軸方向応力度(N/mm<sup>2</sup>)、 $b_{c}$ : RC 柱の幅(mm)、 $D_{c}$ : RC 柱のせい (mm)、 $\kappa_{s}$ :応力度法による形状係数(矩形断面の場合は 1.5)である。

(せん断耐力<sup>[2-2]</sup>)  ${}_{c}Q_{su} = \left\{ \frac{0.068_{c}p_{t}^{0.23}({}_{c}F_{c}+18)}{M/(Q\cdot d_{c})+0.12} + 0.85\sqrt{{}_{c}p_{wc}\sigma_{wy}} + 0.1_{c}\sigma_{0} \right\} b_{c}j_{c}$ (2.12)

ここで、 $p_t$ : RC 柱の引張鉄筋比(%)、 $cF_c$ : コンクリートの設計基準強度(N/mm<sup>2</sup>)、M/Q: M, Qはそれぞれ終局強度算定時における部材内の最大曲げモーメント及びせん断力(ただし、 $M/(Od_c)$ は、

 $M'(Qd_c) < 1$ のとき 1 とし、 $M'(Qd_c) > 3$ のとき 3 とする)(mm)、 $d_c$ : RC 柱の有効せい(mm)、 $p_w$ : RC 柱のせん断補強筋比(小数、中子筋を除く場合 0.012 を上限とする。ただし、せん断補強筋として中子筋を併用する場合やスパイラル筋を用いる場合には 0.015 を上限とすることができる。)、 $c\sigma_{wy}$ : RC 柱のせん断補強筋の降伏強度(N/mm<sup>2</sup>)、 $j_c$ : RC 柱の応力中心距離で 7 $d_c/8$  としてよい(mm)、 $c\sigma_0$ : RC 柱の平均軸方向応力度(= $N_c/(b_cD_c)$ )(N/mm<sup>2</sup>)で 0.4 $cF_c$ 以下である。

(せん断ばねの終局ひずみ)

$$_{c}\gamma_{su} = 0.004 - \frac{_{c}\mathcal{Q}_{su} \cdot \kappa_{e}}{_{c}G_{c} \cdot b_{c} \cdot D_{c}}$$

(2.13)

ここで、 $_{c}Q_{su}$ : RC 柱のせん断耐力、 $\kappa_{e}$ : エネルギー法による形状係数(矩形断面の場合は 1.2)、 $_{c}G_{c}$ : コンクリートのヤング係数 (N/mm<sup>2</sup>)、 $b_{c}$ : RC 柱の幅 (mm)、 $D_{c}$ : RC 柱のせい (mm) である。







図 2-60 せん断ばねの復元力特性(詳細モデル、簡易モデル)

また、詳細は後述するが、試験体 AS、AD では、CLT 袖壁端に作用する水平せん断力が、CLT 袖壁 に作用する圧縮軸力に摩擦係数(0.3~0.5 程度を想定)を乗じた値を上回る場合があるが、このよう な場合には、RC 柱の端部において、CLT 袖壁に作用するせん断力が RC 柱に伝達され、パンチングシ ア破壊が生じる恐れがある。そこで、このような場合には、RC 柱に作用するせん断力と CLT 袖壁に 作用するせん断力を足し合わせた設計用せん断力が、文献[2-8]に記載されている式(2.14)の RC 柱のパ ンチングシア耐力を上回ることを確認することとした。但し、RC 柱のせん断耐力式と同様に、計算式 の評価精度を考慮し、計算値を 1.4 倍した値を検討では用いている。

$${}_{c}Q_{pu} = K_{av} \cdot {}_{c}\tau_{0} \cdot {}_{c}b_{e} \cdot D_{c}$$

$$K_{av} = 0.58 / (0.76 + a_c / D_c)$$
(2.14)

(2.16)

(2.15)

ここで、 $cQ_{pu}$ : RC 柱のパンチングシア耐力、 $cb_e$ : パンチングを受ける RC 柱の直交材を考慮した有 効幅で RC 柱の幅としてよい (mm)、 $D_c$ : パンチングを受ける RC 柱のせい (mm)、 $a_c$ : CLT 袖壁 から RC 柱に伝達される水平せん断力が集中的に作用すると仮定した場合の作用点から水平断面まで の距離で $a_c/D_c = 1/3$ としてよい、 $cF_c$ : コンクリートの圧縮強度 (N/mm<sup>2</sup>)、 $\sigma_c$ :  $cp_gc\sigma_y+c\sigma_0$ 、 $cp_g$ :  $cb_e D_c$ に対する RC 柱の全主筋断面積の比、 $c\sigma_y$ : RC 柱主筋の降伏強度 (N/mm<sup>2</sup>)、 $c\sigma_0$ :  $N_c/(cb_cD_c)$ 、 $N_c$ : メカ ニズム時における RC 柱軸方向力で圧縮を正とする (N) である。

#### 2.6.2.2. CLT 袖壁

CLT 袖壁に関しては、詳細モデルではブレース置換によるモデル化を、簡易モデルでは線材による モデル化を行った。いずれも CLT のヤング係数には、2.4 節で示した一軸圧縮試験の結果を用いた。 CLT のせん断強度については、本検討では要素実験等は行っていないため、せん断の基準強度をその まま用いることとした。CLT のせん断弾性係数は、文献[2-4]に記載のある 500N/mm<sup>2</sup>を採用した。

図 2-61 に、詳細モデルにおける CLT 袖壁のモデル化の概要を示す。CLT 袖壁の分割数は、水平方向で5、鉛直方向で8 とした。水平方向の分割数は水平接合分の支圧ばねの本数(4本)に合わせて、また、鉛直方向の分割数は CLT 袖壁の軸剛性とせん断剛性を再現できるように、ブレースモデルの勾配が45 度に近い数値となるように決めた。モデル化の方法は、壁式鉄筋コンクリート造設計・計算規準・同解説<sup>12-9</sup>に記載された手法を参考とし、CLT 袖壁とブレース材によるせん断剛性、せん断耐力が一致するように、ブレース材の剛性と軸耐力を求めた。なお、ブレース置換の場合、対象とする部材のせん断剛性に加えて、軸剛性もしくは曲げ剛性のいずれかを再現することが可能である。ここでは、CLT 袖壁の長さがあまり長くないこと、片持ち載荷時の終局状況では、CLT 袖壁がほぼ一軸圧縮の状態となることから、CLT 袖壁の軸剛性とせん断剛性が等価になるようにモデル化することとした。ブレース材は、CLT 袖壁のせん断降伏後の挙動が再現できるように、図 2-62 に示すように、軸耐力に達した後は、一定の軸力を保持させる形とした。また、鉛直材は弾性、水平材は剛体とし、CLT 袖壁の軸耐力や曲げ耐力の評価は、材端の水平接合面に設けた軸ばねで行うこととした。

(CLT 袖壁の斜め材1本あたりの軸剛性)

ここで、 $_tG_c$ : CLT のせん断弾性係数、 $t_w$ : CLT 袖壁の厚さ、 $D_w$ : CLT 袖壁のせい、 $h_0$ : CLT 袖壁の内法高さである。

(CLT 袖壁の鉛直材1本あたりの軸剛性)

ここで、 $t_w$ : CLT 袖壁の厚さ、 $D_w$ : CLT 袖壁のせい、 $h_0$ : CLT 袖壁の内法高さ、 $E_c$ : CLT のヤング 係数である。

(CLT 袖壁の斜め材 1 本あたりの軸耐力)  

$$p_{b1} = 0.5 \cdot t_{wt} F_{sI} \cdot \sqrt{\left(\frac{D_w}{4}\right)^2 + \left(\frac{h_0}{8}\right)^2}$$
 (斜め材 1)  
 $p_{b2} = 0.5 \cdot t_{wt} F_{sI} \cdot \sqrt{\left(\frac{D_w}{8}\right)^2 + \left(\frac{h_0}{8}\right)^2}$  (斜め材 2)

(2.19)

(2.18)

(2.17)

ここで、 $t_w$ : CLT 袖壁の厚さ、 $D_w$ : CLT 袖壁のせい、 $h_0$ : CLT 袖壁の内法高さ、 $F_{sl}$ : CLT の面内せん断の基準強度である。





図 2-62 CLT 袖壁のブレース要素の復元力特性

簡易モデルでは、CLT 袖壁を1本の弾性材としてモデル化を行い、それぞれの材の中央に図2-63 に 示す剛塑性のせん断ばねを設置した。今回使用した解析プログラムでは、ヤング係数とポアソン比の 値からせん断弾性係数が自動計算されるが、ポアソン比の入力値に制限があるため、簡易モデルでは ヤング係数とせん断弾性係数の関係を正しく評価することができない。そこで、CLT 袖壁の線材とし てのモデル化において、せん断伝達に有効な断面積の低減を行い、部材としてのせん断剛性が適切に モデル化できるように配慮した。また、詳細モデルでは、ブレース置換を行うことにより、試験体 AS、 AD において、RC 柱-CLT 袖壁間の鉛直接合部から伝達される鉛直せん断力によって生じる CLT 袖 壁のせん断変形を再現可能だが、簡易モデルでは、線材によるモデル化を行っているため、このまま では評価が難しい。そこで、後述する鉛直接合部のせん断ばねに、CLT 袖壁の鉛直断面のせん断特性 を反映することとした。

(せん断耐力)

$$_{w}Q_{su} = t_{w}D_{wt}F_{sI}$$

(2.20)

ここで、 $t_w$ : CLT 袖壁の厚さ、 $D_w$ : CLT 袖壁のせい、 $_tF_{sl}$ : CLT の面内せん断の基準強度である。



図 2-63 CLT 袖壁のせん断ばねの復元力特性(簡易モデル)

### 2.6.2.3. 水平接合部

一般的な CLT 壁のモデル化と同様に、CLT 袖壁の材端には、支圧剛性 k を持つ非線形の複数の軸 ばねを設けた。

一般的な CLT 部材では、軸力比が高い状況で使用されることが殆どないため、文献[2-4]では、CLT 壁のせいを 4 分割した範囲のうち、材端に近い部分を有効支圧面と仮定し、材端の 2 箇所のみに CLT の支圧挙動を模擬した軸ばねを設けることとしている。詳細モデルでは、CLT 袖壁のせいを 4 分割し てモデル化を行うが、CLT 袖壁が圧縮耐力に近い軸力を受けて全断面が支圧面となることを想定し、 4 本の軸ばねを用いてモデル化を行うこととした。軸ばねの剛性には、文献[2-4]に記載のある壁パネ ルー基礎間の支圧剛性の実験値(15.6N/mm<sup>3</sup>)を用い、材料試験から推定した CLT の座屈強度に到達 した後は、一定の軸力を保持するものと仮定した。

簡易モデルでも、詳細モデルと同様に、支圧剛性 & を持つ非線形の複数の軸ばねを設けることとしたが、詳細モデルのように軸ばねを1本ずつ設置する形ではなく、ファイバー要素として、線材端部に集約する形でのモデル化を行った。CLT 袖壁の断面は、図2-65 に示すように10分割とし、試験体AS、AD に関しては、詳細モデルと同じように、アンカーボルトの引張負担を再現するための軸ばねを設けた。

(ファイバー要素もしくは軸ばね1本あたりの支圧耐力)

$${}_{v}p_{u} = \frac{1}{n_{s}}t_{w} \cdot D_{w} \cdot {}_{tv}F_{k}$$

(2.21) ここで、*n*<sub>s</sub>: CLT 袖壁におけるモデル化の際の断面の分割数、*t*<sub>w</sub>: CLT 袖壁の厚さ、*D*<sub>w</sub>: CLT 袖壁 のせい、<sub>w</sub>*F*<sub>k</sub>: CLT の圧縮の基準強度を用いた座屈強度(鉛直方向)である。

(ファイバー要素もしくは軸ばね1本あたりの支圧剛性)

$$k_{w} = \frac{1}{n_{s}} t_{w} \cdot D_{w} \cdot k$$

ここで、 $n_s$ : CLT 袖壁におけるモデル化の際の断面の分割数、 $t_w$ : CLT 袖壁の厚さ、 $D_w$ : CLT 袖壁の のせい、 $k_e$ : CLT の支圧剛性である。

(2.22)



図 2-64 水平接合面におけるファイバー要素

もしくは軸ばね1本あたりの支圧ばねの復元力特性(圧縮が正) アンカーボルト 2-M16(ABR490)



試験体 AS、AD に関しては、アンカーボルトの引張負担を再現するための軸ばねを設けた。軸ばねの軸変形は、アンカーボルトの軸ひずみに上下スタブへの埋め込み長さ(350mm)を乗じることで計算した。なお、加力実験時において、長期荷重作用後に計測したアンカーボルトの軸ひずみから算定した引張力を平均化したものを初期締付力 Tiとし、初期締付力 Tiに到達するまでは、アンカーボルトの軸変形が生じないものとした。また、材料試験結果から明らかなように、アンカーボルトでは、降伏後のひずみ硬化が生じるが、試験体 AS、AD はいずれも、アンカーボルトの降伏直後に水平接合部の接着面のずれが生じており、ひずみ硬化域に達するような大きなひずみは加力中に計測されていない。そこで、後述する試験体 BS のテンションロッドとは異なり、材料試験から求めた降伏強度に達した後は、一定の引張力を保持するものと仮定した。

(アンカーボルトの降伏耐力)

 ${}_{ha}P_{y} = {}_{h}n_{a} \cdot {}_{a}a_{s} \cdot {}_{a}\sigma_{y}$ 

ここで、 $hn_a: 水平接合部におけるアンカーボルトの本数、<math>aa_s: アンカーボルトの軸部の断面積、a\sigma_y:$ アンカーボルトの降伏強度である。

(2.23)

(2.24)

(アンカーボルトの初期剛性)

$$_{a}K_{1} = \frac{_{h}n_{a} \cdot _{a}a_{s} \cdot _{a}E_{s}}{L_{a}}$$

ここで、 $_hn_a: 水平接合部におけるアンカーボルトの本数、<math>_aa_s: アンカーボルトの軸部の断面積、_aE_s: アンカーボルトのヤング係数、<math>L_a: アンカーボルトの引張長さ(ナット間の距離)である。$ 



図 2-66 水平接合面のアンカーボルトの軸ばねの復元力特性(引張を正)

水平接合面では、解析で得られた存在応力を用いて、CLT 袖壁-上下のスタブ間の水平せん断力の 伝達に必要なせん断耐力が確保されているかどうかを確認する。このため、詳細モデルでは、水平接 合面に作用するせん断力を集計するためのせん断ばねは設けているが、ばね自体の設定は剛としてい る。また、簡易モデルでは、水平接合部を対象としたせん断ばねは特に設けていない。

試験体 AS、AD における CLT 袖壁-上下のスタブ間における水平せん断力の伝達要素としては、 ①摩擦による伝達、②アンカーボルトによる伝達、③RC 柱を介した伝達の 3 通りが考えられる。こ のうち、①に関しては、CLT 袖壁端に作用する曲げ圧縮力に摩擦係数(0.3~0.5 を想定)を乗じたも のがせん断耐力となり、CLT 袖壁端に作用するせん断力がせん断耐力を上回ると滑りが生じる。また、 水平接合面に引張軸力が作用する場合には、摩擦による抵抗には期待できない。なお、本実験では、 上下のスタブと CLT 袖壁の間にエポキシ樹脂を充填しており、接着面に隣接する上下スタブのコンク リートが引張破壊することで水平接合面の離間が生じる。コンクリートの破壊により、境界面には凸 凹が生じるため、通常の接触面と比較すると、より大きな摩擦係数が確保できるものと考えられる。 ②に関しては、アンカーボルトのダウエル効果に期待したものであるが、アンカーボルトに繰り返し 引張力が作用するとナットが緩むため、アンカーボルトと水平接合材が物理的に接触するためにある 程度の滑り変形が必要となること、アンカーボルトは引張抵抗に期待して設置するものであり、引張 軸力が作用するとせん断耐力が低下することから、②による抵抗分を陽な形で設計に盛り込むことは 適切ではない。③に関しては、試験体 AS、ADでは、RC 柱-CLT 袖壁間に鉛直接合部を設けており、 RC 柱-CLT 袖壁間で水平せん断力の伝達を行うことが可能である。そこで、①による水平せん断力 の伝達が困難な場合には、CLT 袖壁に作用する水平せん断力が鉛直接合部を介して RC 柱に伝達され る状況を想定し、RC 柱の検討で示したパンチングシア破壊の検討を行うものとする。

試験体 BS、BD における CLT 袖壁-上下のスタブ間における水平せん断力の伝達要素としては、① 摩擦による伝達、④滑り止めを介した伝達の2通りが考えられる。基本的には、滑り変形を伴わない ①による応力伝達の方が、仕口面のめり込み変形を伴う④による応力伝達よりも、せん断剛性が高い ものと推測されるため、④は①のバックアップとしての役割が期待される。

### 2.6.2.4. 鉛直接合部

試験体 AS、ADでは、CLT 袖壁に接着した山形鋼によって、RC 柱-CLT 袖壁間で鉛直せん断力の 伝達が行われる。後述する鉛直接合部の接着面におけるせん断耐力が、式(2.25)に示す CLT 袖壁の鉛 直断面のせん断耐力 (90mm×1700mm×2.28 N/mm<sup>2</sup>=349kN) と比較して十分に大きいことから、詳 細モデルでは、図 2-67(a)に示すように、鉛直接合面における変形が生じないものと仮定し、せん断 ばねを剛ばねとしてモデル化した。簡易モデルでは、CLT 袖壁を線材としてモデル化し、平面保持仮 定に基づく計算を行っているため、詳細モデルとは異なって、CLT 袖壁に作用する鉛直せん断力によ る変形を考慮することができない。本検討では、実験結果との整合性も踏まえ、図 2-67(b)に示すよ うに、CLT 袖壁に作用する鉛直せん断力による変形は考慮せず、式(2.25)に示す CLT 袖壁の鉛直断面 のせん断耐力のみを評価する形とした。2.5.8.3 で示したように、実際に鉛直接合部に作用するせん断 力は、式(2.25)に示す CLT 袖壁の鉛直断面のせん断耐力を上回るものと考えられるが、簡易モデルで はこのようなせん断応力の伝達状況を再現する方法がないため、式(2.25)に示す CLT 袖壁の鉛直断面 のせん断耐力を上限として解析モデルの設定を行っている。

なお、鉛直接合部のせん断耐力が CLT 袖壁の鉛直断面のせん断耐力より小さい場合や、鉛直接合部 のせん断変形を無視できない場合には、図 2-67 に示す復元力特性にその影響を含める必要がある。ま た、簡易モデルでは、RC 柱-CLT 袖壁間の境界面の位置にピンを設けている。RC 柱、CLT 袖壁の水 平せん断力の分担は、鉛直接合部に設けるピンの水平位置の影響を受ける。本検討では、実験結果と の整合性も踏まえ、詳細モデルと境界条件の統一を図るために同位置としている。

(CLT 袖壁の鉛直断面のせん断耐力)

$$_{wv}Q_{su} = t_{w} \cdot h_{0} \cdot {}_{t}F_{sI}$$

(2.25)

ここで、tw: CLT 袖壁の厚さ、ho: CLT 袖壁の内法高さ、tFsl: CLT の面内せん断の基準強度である。



RC 柱-CLT 袖壁間では、鉛直接合部を介して、鉛直方向のせん断力のみでなく、水平方向のせん 断力も伝達される可能性があるが、事前の解析により、鉛直接合部を介した水平せん断力の伝達量が あまり大きくないこと、鉛直接合部を介した水平せん断力の伝達を許容した場合、RC 柱と CLT 袖壁 の水平せん断力の大きさが材軸方向の高さ位置によって異なるため、せん断設計が煩雑になることを 踏まえ、鉛直接合部を介した水平せん断力の伝達は許容しないこととした。一方で、試験体 AS、AD の CLT 袖壁端では、CLT 袖壁に伝達される水平せん断力を鉛直接合部や RC 柱を介して、上下のスタ ブに伝達しているものと考えられるため、材端における水平方向のせん断力の伝達は許容するものと する。

# 2.6.2.5. テンションロッド

試験体 BS、BD のテンションロッドの軸ばねの応力-ひずみ関係は、図 2-68 に示すように、トリ リニアで与えた。軸ばねの軸変形は、アンカーボルトの軸ひずみに材長(1375mm)を乗じることで計 算した。なお、加力実験時において、長期荷重作用後に計測したテンションロッドの軸ひずみから算 定した引張力を平均化したものを初期締付力とし、初期締付力に到達するまでは、テンションロッド の軸変形が生じないものとした。また、材料試験結果から明らかなように、テンションロッドでは、 降伏後のひずみ硬化が生じる。そこで、材料試験の結果を基に、降伏後の剛性<sub>r</sub>K<sub>3</sub>を弾性時剛性<sub>r</sub>K<sub>2</sub>の 0.015 倍とし、有効(ねじ部の)断面積にテンションロッドの引張強度を乗じた値まで、テンションロ ッドの引張力が増大するものとした。

(テンションロッドの降伏耐力)

 $_{hr}P_{y} = {}_{h}n_{r} \cdot {}_{r}a_{s} \cdot {}_{r}\sigma_{y}$ 

(2.26)

(2.27)

ここで、 $hn_r: 水平接合部におけるテンションロッドの本数、<math>ra_s: テンションロッドの軸部の断面積、$  $r\sigma_y: テンションロッドの降伏強度である。$ 

$$_{hr}P_{u} = {}_{h}n_{r} \cdot {}_{r}a_{es} \cdot {}_{r}\sigma_{u}$$

ここで、hnr:水平接合部におけるテンションロッドの本数、raes:テンションロッドのねじ部の断面 積、rou:テンションロッドの引張強度である。 (テンションロッドの初期剛性)

$$_{r}K_{1} = \frac{_{h}n_{r} \cdot _{r}a_{s} \cdot _{r}E_{s}}{L_{r}}$$

ここで、hnr:水平接合部におけるテンションロッドの本数、ras:テンションロッドの軸部の断面積、 rEs:テンションロッドのヤング係数、Lr:テンションロッドの引張長さ(ナット間の距離)である。

(2.28)



図 2-68 テンションロッドの軸ばねの復元力特性

### 2.6.3. 解析結果

### 2.6.3.1. 荷重変形関係

図 2-69 から図 2-71 に、実験の荷重変形関係と詳細モデル、簡易モデルの解析結果との比較を示す。

<詳細モデル>

試験体 AS では *R*=1/100rad まで、試験体 BS、AD では *R*=1/50rad サイクルまでの実験の荷重変形関 係の包絡線を精度良く予測した。

試験体 AS では *R*=1/100rad 以降の荷重変形関係をやや過大に評価しているが、その原因としては、 水平接合部における接着面のずれが考えられる。図 2-47 に示すように、試験体 AS では *R*=1/100rad サ イクル以降、水平接合部の接着面のずれによって、アンカーボルトの引張力が徐々に低下しており、 *R*=1/50rad サイクルでは、降伏強度の半分となっている。後述する図 2-72 に示すアンカーボルトの引 張力を無視した場合の荷重変形関係を図 2-69(a) に重ねているが、実験の水平荷重は、*R*=1/50rad 時に、 アンカーボルトを考慮した場合と無視した場合の解析の水平荷重のちょうど平均程度となっており、 実験結果と対応していることが分かる。*R*=1/50rad サイクル以降は、アンカーボルトの引張力の過大評 価に加え、CLT 袖壁端部のラミナ間の接着面が破壊し、面外方向のはらみ出しが生じたことで、実験 の水平荷重を過大に評価したものと考えられる。

試験体 BS、AD では、*R*=1/50rad 以降の実験の耐力を過大評価しているが、その原因としては、試験体 BS では、*R*=1/50rad 以降のサイクルで確認された曲げ圧縮による CLT 袖壁の面外方向へのはらみ出しによる軸耐力の低下を、試験体 AD では、*R*=1/50rad 以降のサイクルで確認された材軸方向に配置された CLT 袖壁のせん断変形の増大に伴うせん断耐力の低下の影響を考慮できていない点が考えられる。

破壊形式については、RC 柱はいずれの試験体も曲げ降伏、CLT 袖壁は試験体 AS、BS が曲げ圧縮 破壊、試験体 AD がせん断破壊となっており、実験における観測結果と一致している。

# <簡易モデル>

試験体 AS、AD では *R*=1/100rad までの小変形時において、実験結果や詳細モデルによる解析結果と 比較して、水平剛性ややや低く評価した。試験体 BS では詳細モデルとほぼ同じ荷重変形関係が得ら れていることから、RC 柱-CLT 袖壁間の鉛直接合部のモデル化に課題が残ったものと思われる。詳 細モデルでは鉛直方向の分割数を4としているのに対し、簡易モデルでは鉛直方向の分割数を2とし ており、RC 柱端の塑性ヒンジ部の回転変形によって材軸方向の変形が強制される部材の長さに2倍 の差があるため、簡易モデルの方が CLT 袖壁に軸力が作用しにくく、小変形時の圧縮軸力の負担が小 さくなっている。一方で、*R*=1/100rad 付近まで変形が大きくなると、詳細モデルと簡易モデルで最大 荷重の差は殆ど見られなくなることから、ある程度変形が大きくなると、簡易モデルでも実験時の挙 動を概ね追跡できるものと思われる。

破壊形式については、RC 柱はいずれの試験体も曲げ降伏、CLT 袖壁は試験体 AS、BS が曲げ圧縮 破壊、試験体 AD がせん断破壊となっており、詳細モデルと同様に、実験における観測結果と一致し ている。



# 2.6.3.1. 初期剛性と特性点

表 2-29 に初期剛性と各特性点の実験値と解析値の比較を示す。

<初期剛性>

詳細モデルでは、実験値/解析値の比率が、試験体 AS で 1.00、試験体 BS で 0.91、試験体 AD で 0.87、全体の平均が 0.93 となり、実験結果を精度良く予測したが、今回の検討に用いたモデルは、RC 柱の材端に設けたファイバーモデルの材長(塑性ヒンジ長さ)が長いため、部材の弾性剛性に応じた 初期剛性が得られていない。そこで、RC 柱のファイバーモデルを取り除いた状態で算定した初期剛 性も表中に合わせて示す。詳細モデルの実験値/解析値の比率は、試験体 AS で 0.97、試験体 BS で 0.87 と片持ち柱形式の試験体では影響が小さかったが、逆対称形式で曲げモーメントの勾配が大きいの試験体 AD では 0.74 と影響が大きく、全体の平均は 0.86 となった。

簡易モデルでは、実験値/解析値の比率が、試験体 AS で 1.00、試験体 BS で 0.88、試験体 AD で 0.92、全体の平均が 0.93 となり、詳細モデルと同程度の評価精度を示した。一方で、詳細モデルと同様に、RC 柱のファイバーモデルを取り除いた状態で初期剛性を算定すると、実験値/解析値の比率 は、試験体 AS で 0.97、試験体 BS で 0.84、試験体 AD で 0.80、全体の平均は 0.87 となり、こちらも 詳細モデルと同程度の評価精度となった。

#### <最大耐力>

詳細モデルでは、実験値/解析値の比率が、*R*=1/100rad までの範囲では、試験体 AS で 1.02、試験 体 BS で 1.07、試験体 AD で 1.02、全体の平均が 1.03 となり、実験値と解析値が非常によく一致した。 また、*R*=1/50rad まで範囲を広げると、試験体 AS で 0.94、試験体 BS で 1.02、試験体 AD で 0.96、全 体の平均が 0.97 となり、こちらも実験値と解析値がよく一致しており、*R*=1/50rad までの挙動を概ね 捉えられていることが分かる。

簡易モデルでは、実験値/解析値の比率が、*R*=1/100rad までの範囲では、試験体 AS で 0.98、試験体 BS で 1.01、試験体 AD で 1.04、全体の平均が 1.01 となった。また、*R*=1/50rad まで範囲を広げる と、試験体 AS で 0.93、試験体 BS で 0.99、試験体 AD で 0.98、全体の平均が 0.97 となった。したが って、簡易モデルでも、詳細モデルと同程度の評価精度が期待できる。

#### <RC 柱の最外縁主筋の引張降伏時の変形角と水平荷重>

詳細モデルでは、変形角の実験値/解析値の比率は、試験体 AS で 1.79、試験体 BS で 1.97、試験体 AD で 1.44、全体の平均が 1.74 となり、実験結果を過小に評価した。最外縁主筋の引張降伏時の変形 角については、本解析では、柱主筋の上下スタブからの抜け出しを考慮しておらず、解析値が実験値 を過大評価したものと考えられる。一方で、水平荷重の実験値/解析値の比率は、試験体 AS で 1.19、試験体 BS で 1.17、試験体 AD で 1.05、全体の平均が 1.14 となり、十分な評価精度が期待できる。

簡易モデルでは、変形角の実験値/解析値の比率は、試験体 AS で 1.82、試験体 BS で 1.95、試験体 AD で 1.63、全体の平均が 1.80 となり、詳細モデルと同程度の評価精度となる。一方で、水平荷重の 実験値/解析値の比率は、試験体 AS で 1.21、試験体 BS で 1.13、試験体 AD で 1.12、全体の平均が 1.16 となり、詳細モデルと評価精度は同程度であった。

<アンカーボルトの引張降伏時の変形角と水平荷重>

詳細モデルでは、変形角の実験値/解析値の比率は、試験体 AS で 1.75、試験体 AD で 1.93、全体 の平均が 1.84 となり、実験結果を過小に評価した。また、水平荷重の実験値/解析値の比率について も、試験体 AS で 1.57、試験体 AD で 1.27、全体の平均が 1.42 となり、RC 柱の最外縁主筋の引張降 伏時と比較して、評価精度が低かった。乖離が生じた原因としては、実験では、CLT 袖壁-水平接合 材間の接着面でせん断変形が生じていた可能性があることや、解析では、エポキシ樹脂を充填した CLT 袖壁の水平接合面における引張負担を考慮していないため、CLT 袖壁の脚部の離間が早期に生じ、ア ンカーボルトの引張負担が実験と比較して生じやすい状況にあったことが考えられる。

簡易モデルでは、変形角の実験値/解析値の比率は、試験体 AS で 1.76、試験体 AD で 1.78、全体の平均が 1.77、水平荷重の実験値/解析値の比率は、試験体 AS で 1.61、試験体 AD で 1.29、全体の 平均が 1.45 となり、詳細モデルと同程度の評価精度となった。

<テンションロッドの引張降伏時の変形角と水平荷重>

詳細モデルでは、変形角の実験値/解析値の比率は、試験体 BS で 1.36 となり、試験体 AS、AD の アンカーボルトの引張降伏時の変形角よりも、評価精度が高かった。これは、試験体 BS では、テン ションロッドが滑り止めを介して、直接上下のスタブに固定されており、試験体の変形に直接テンシ ョンロッドが追随したためである。水平荷重の実験値/解析値の比率は、試験体 BS で 1.22 となり、 こちらも予測精度は比較的高かった。

簡易モデルでは、変形角の実験値/解析値の比率は、試験体 BS で 1.33、水平荷重の実験値/解析 値の比率は、試験体 BS で 1.19 となり、いずれも詳細モデルと同程度の評価精度となった。

|    |    | 初期剛性(kN/mm) |        | 最大荷重(R=1/100radまで) |            | 最大耐力(R=1/50radまで) |        |
|----|----|-------------|--------|--------------------|------------|-------------------|--------|
|    |    | ファイバー       | ファイバー  | R                  | Q<br>(LNI) | R                 | Q      |
|    |    | <i>8</i> 99 | なし     | (×10 rad)          | (KN)       | (×10 rad)         | (KN)   |
| AS | 実験 | 73          |        | 0.934              | 378        | 1.341             | 389    |
|    |    |             |        | -0.999             | -367       | -1.636            | -376   |
|    | 詳細 | 73          | 75     | 0.995              | 372        | 1.995             | 415    |
|    |    | (1.00)      | (0.97) | (0.97)             | (1.02)     | (0.75)            | (0.94) |
|    | 簡易 | 73          | 76     | 0.999              | 385        | 2.000             | 416    |
|    |    | (1.00)      | (0.97) | (0.97)             | (0.98)     | (0.74)            | (0.93) |
| BS | 実験 | 64          |        | 0.989              | 349        | 1.819             | 387    |
|    |    |             |        | -1.002             | -344       | -1.964            | -373   |
|    | 詳細 | 70          | 73     | 1.000              | 327        | 1.998             | 381    |
|    |    | (0.91)      | (0.87) | (1.00)             | (1.07)     | (0.95)            | (1.02) |
|    | 簡易 | 72          | 76     | 1.000              | 347        | 2.000             | 390    |
|    |    | (0.88)      | (0.84) | (1.00)             | (1.01)     | (0.95)            | (0.99) |
| AD | 実験 | 174         |        | 0.991              | 808        | 1.732             | 819    |
|    |    |             |        | -0.991             | -779       | -0.991            | -779   |
|    | 詳細 | 200         | 235    | 0.995              | 792        | 1.995             | 852    |
|    |    | (0.87)      | (0.74) | (1.00)             | (1.02)     | (0.68)            | (0.96) |
|    | 簡易 | 189         | 219    | 0.999              | 779        | 2.000             | 833    |
|    |    | (0.92)      | (0.80) | (0.99)             | (1.04)     | (0.68)            | (0.98) |

表 2-29 初期剛性と各特性点の比較(詳細モデル、簡易モデル)

|    |    | 主筋降伏                           |           | アンカーボルト降伏 |           | テンションロッド降伏 |           |
|----|----|--------------------------------|-----------|-----------|-----------|------------|-----------|
|    |    | R<br>( X 10 <sup>-2</sup> rad) | Q<br>(kN) | R<br>(    | Q<br>(kN) | R<br>(     | Q<br>(kN) |
| AS | 実験 | 0.860                          | 366       | 0.328     | 262       | -          | -         |
|    |    | -0.805                         | -335      | -0.412    | -294      | _          | -         |
|    | 詳細 | 0.465                          | 294       | 0.212     | 177       | _          | _         |
|    |    | (1.79)                         | (1.19)    | (1.75)    | (1.57)    | -          | -         |
|    | 簡易 | 0.458                          | 290       | 0.211     | 172       | -          | -         |
|    |    | (1.82)                         | (1.21)    | (1.76)    | (1.61)    | _          | -         |
|    | 実験 | 0.871                          | 330       | -         | -         | 0.358      | 229       |
| BS |    | -0.869                         | -273      | -         | -         | -0.360     | -230      |
|    | 詳細 | 0.441                          | 258       | -         | -         | 0.265      | 188       |
|    |    | (1.97)                         | (1.17)    | _         | -         | (1.36)     | (1.22)    |
|    | 簡易 | 0.447                          | 266       | -         | -         | 0.271      | 193       |
|    |    | (1.95)                         | (1.13)    | -         | -         | (1.33)     | (1.19)    |
| AD | 実験 | 0.838                          | 759       | 0.638     | 736       | _          | -         |
|    |    | -0.884                         | -748      | -0.656    | -708      | -          | -         |
|    | 詳細 | 0.595                          | 719       | 0.336     | 568       | -          | -         |
|    |    | (1.45)                         | (1.05)    | (1.93)    | (1.27)    | -          | -         |
|    | 簡易 | 0.528                          | 671       | 0.363     | 561       | -          | -         |
|    |    | (1.63)                         | (1.12)    | (1.78)    | (1.29)    | _          | _         |

#### 2.6.3.2. 袖壁、アンカーボルト、テンションロッドの有無を変数としたパラメトリック解析

ここまでの検討で、提案した詳細モデル、簡易モデルにより、CLT 袖壁付き RC 柱の実験時の挙動 を概ね再現できることが確認できた。ここでは、詳細モデルを用いて、実験試験体のモデルからアン カーボルトやテンションロッドを取り除いたモデル、加えて CLT 袖壁を取り除き RC 柱のみとしたモ デルとの比較検証を行い、補強効果を確認することとした。

図 2-72 に荷重変形関係を、表 2-30 に初期剛性と最大耐力の比較を示す。鉛直接合部を山形鋼で接合した A タイプでは、初期剛性については試験体 AS で 2.36 倍、試験体 AD で 1.35 倍、最大耐力については試験体 AS で 2.49 倍、試験体 AD で 1.70 倍に増大しており、載荷形式(片持ち、逆対称)によらず、高い補強効果が得られることが分かる。また、アンカーボルトの設置により、片持ち形式では最大耐力が2割程度増大しているが、逆対称形式では最大耐力の増大は1割程度に留まっており、効果が小さい。

一方、鉛直接合部を割愛した B タイプでは、片持ち形式の試験体 BS では初期剛性が 2.13 倍、最大 耐力が 2.29 倍に増大しており、試験体 AS とほぼ同等の補強効果が得られているが、逆対称形式の試 験体 BD では初期剛性が 1.13 倍、最大耐力が 1.17 倍と、試験体 AD と比較すると補強効果が半減して いる。また、逆対称形式の試験体 BD では、テンションロッドが降伏する際の変形角が 1/100rad を超 えており、最大耐力の増大効果も試験体 AD と同じく1 割程度と効果が小さかった。



図 2-72 水平荷重-変形角関係(詳細モデル)

|     |    |                    | 初期剛性    | 最大耐力(R=1/50radまで)            |           |
|-----|----|--------------------|---------|------------------------------|-----------|
|     |    |                    | (kN/mm) | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN) |
|     | AS | RC柱                | 32      | 1.994                        | 167       |
|     |    |                    | 75      | 2.000                        | 348       |
|     |    | RO柱FOLI袖壁          | (2.36)  | (1.00)                       | (2.09)    |
|     |    |                    | 75      | 1.995                        | 415       |
| 止性+ |    | RC柱+CLT袖壁+アンカーホルト  | (2.36)  | (1.00)                       | (2.49)    |
| 万行り | BS | RC柱                | 34      | 1.999                        | 166       |
|     |    | PO村+CIT加陸          | 73      | 1.999                        | 328       |
|     |    |                    | (2.13)  | (1.00)                       | (1.97)    |
|     |    |                    | 73      | 1.998                        | 381       |
|     |    | RC柱+CLT袖型+ナンジョンロット | (2.13)  | (1.00)                       | (2.29)    |
|     | AD | RC柱                | 175     | 2.000                        | 479       |
|     |    | PO村+CIT加陸          | 237     | 2.000                        | 740       |
|     |    | RO柱FOLI袖壁          | (1.35)  | (1.00)                       | (1.54)    |
|     |    |                    | 237     | 1.997                        | 815       |
| 举封我 |    | RC柱+CLT袖壁+アンカーホルト  | (1.35)  | (1.00)                       | (1.70)    |
| 迅刈朳 | BD | RC柱                | 175     | 1.998                        | 476       |
|     |    |                    | 199     | 1.994                        | 517       |
|     |    | RO柱FOLI袖壁          | (1.13)  | (1.00)                       | (1.08)    |
|     |    | PC社+이工地辟+구ンパッン・ロッド | 199     | 1.998                        | 560       |
|     |    | RO柱+OLI袖室+ナンジョンロット | (1.13)  | (1.00)                       | (1.17)    |

表 2-30 初期剛性と最大耐力の比較(詳細モデル)

### 2.6.3.3. 変形状況

図 2-73 に、詳細モデル、簡易モデルの R=1/50rad 時の変形状況を示す。

<試験体 AS>

詳細モデルでは、加力方向に対して圧縮側の CLT 袖壁の脚部で軸縮みが、引張側の CLT 袖壁の脚 部で断面全体の離間が生じており、作用する曲げモーメントが小さい頂部における変形は小さい。軸 ばね、せん断ばねが取り付く CLT 袖壁の端部の水平材は、圧縮側の脚部を除けばほぼ一直線上に位置 しており、平面保持仮定が概ね成立しているものと考えられる。簡易モデルでは、試験体頂部の回転 角が詳細モデルとほぼ等しく、少ない部材で実験時の挙動をある程度再現できている。また、圧縮側 の CLT 袖壁-RC 柱の鉛直接合部に生じているせん断変形は小さく、詳細モデルにおける CLT 袖壁の 変形状況ともある程度一致しているものと考えられる。

<試験体 BS>

詳細モデルでは、試験体 AS と同じく、加力方向に対して圧縮側の CLT 袖壁の脚部で軸縮みが、引 張側の CLT 袖壁では脚部及び頂部において断面全体の離間が生じており、試験体 AS と比較的良く似 た変形状況となっている。したがって、片持ち載荷の場合には、RC 柱-CLT 袖壁間の鉛直接合材の 有無が及ぼす影響は比較的小さいものと考えられるが、試験体 AS とは異なり、軸ばね、せん断ばね が取り付く CLT 袖壁の端部の全ての水平材がほぼ一直線上に位置していることから、平面保持仮定が 概ね成立しているものと考えられる。簡易モデルでは、試験体頂部の回転角が詳細モデルとほぼ一致 しており、少ない部材で実験時の挙動をある程度再現できている。



図 2-73 R=1/50rad 時の変形状況(×8倍)

# <試験体 AD>

詳細モデルでは、RC 柱-CLT 袖壁間の鉛直接合材を設けることで、特に柱際において、CLT 袖壁 のせん断変形が大きくなっており、変形状況が複雑になっている。軸ばね、せん断ばねが取り付く CLT 袖壁の端部では、CLT 袖壁内の左右の水平材が一直線上に配置されておらず、鉛直方向のせん断力に よって、平面保持仮定が成立しない状況になっているものと推定される。その結果、加力方向に対し て圧縮側の CLT 袖壁の脚部では、柱際に取り付く軸ばねの方が、圧縮縁に近い中央付近に取り付く軸 ばねよりも軸縮みが大きい状況になっている。この挙動は、図 2-44 で示した CLT 袖壁端部のひずみ 分布からも確認されており、CLT 袖壁が水平方向、鉛直方向の二方向からせん断力を受ける場合の特 徴的な挙動と考えられる。その結果、せん断降伏(図中の●のついたブレースは、耐力が頭打ちとな り、せん断降伏された状態が再現されている)が生じているのは柱際の要素のみで、CLT 袖壁の断面 全体がせん断降伏している訳ではない。一方、簡易モデルでは、RC 柱-CLT 袖壁間の鉛直接合材を 模擬したせん断ばねの耐力を CLT 袖壁の鉛直断面のせん断耐力によって頭打ちにすることで、鉛直せ ん断力によって生じる CLT 袖壁のせん断変形を模擬しようとしているが、詳細モデルのような平面保 持仮定が成立しない状況は再現されていないため、モデルとしての限界が見受けられる。また、CLT 袖壁のせん断降伏(図中の●)はモデル化上、断面全体で生じることとなり、詳細モデルとの差異が 見られるが、図 2-71 や表 2-29 に示すように、荷重変形関係上の両者の差は殆ど見られない。

# <試験体 BD>

詳細モデルでは、RC 柱-CLT 袖壁間の鉛直接合材がないため、CLT 袖壁に鉛直方向のせん断力が 作用せず、軸ばね、せん断ばねが取り付く CLT 袖壁の端部の水平材はほぼ一直線上に位置しており、 平面保持仮定が概ね成立しているものと考えられる。変形の増大に伴って、CLT 袖壁の端部が離間す ることで軸伸びが生じ、CLT 袖壁には圧縮軸力が、テンションロッドには引張力が作用する様子が変 形状況からも確認できる。また、簡易モデルは、詳細モデルと良く似た変形性状を示しており、A シ リーズよりもB シリーズの方が、詳細モデルと簡易モデルの差が小さいものと推測される。



図 2-73 R=1/50rad 時の変形状況(×8倍)
### 2.6.3.4. 曲げモーメント分布

図 2-74 に詳細モデル、簡易モデルの R=1/50rad 時の曲げモーメント分布を示す。試験体 AS、AD で は、CLT 袖壁から伝達される鉛直方向のせん断力が作用するため、RC 柱の曲げモーメント分布が不 連続となっているが、詳細モデル、簡易モデルのいずれを用いた場合にも、RC 柱の曲げモーメント分 布はほぼ一致した。RC 柱の反曲点高さは、試験体 AS では頂部に近い位置、試験体 AD、BD では試 験体の中心となっており、加力形式とほぼ対応する形となっている。一方で、試験体 BS に関しては、 試験体 AS と比較して反曲点高さが低く、柱頭では柱脚と逆向きの曲げモーメントが発生している。 図 2-25 で示したように、試験体 BS の載荷実験では、片持ちはり形式の曲げモーメントを与えたにも 関わらず、試験体の頂部において、逆対称載荷を行った場合に生じるような逆方向の曲げひび割れ、 曲げせん断ひび割れが確認されているが、ここで示した反曲点高さの違いからも、これらのひび割れ が発生した理由が説明できる。





### 2.6.3.5. 各部の負担応力

ここでは、詳細モデル、簡易モデルを対象に、図 2-75 に示す各部位に作用する軸力、せん断力の推移を示す。対象は、RC 柱の軸力  $N_{c1}$ 、 $N_{c3}$ 、せん断力  $Q_{c1}$ 、 $Q_{c2}$ 、 $Q_{c3}$ 、CLT 袖壁の軸力  $N_{w1} \sim N_{w4}$ 、せん断力  $Q_{w1} \sim Q_{w4}$ 、アンカーボルトの引張力  $T_{o1} \sim T_{o4}$ 、 $T_{i1} \sim T_{i4}$ 、テンションロッドの引張力  $T_1$ 、 $T_2$ および これらの和 T、RC 柱-CLT 袖壁間の鉛直方向のせん断力  $Q_{v1}$ 、 $Q_{v2}$ である。

なお、RC 柱の上下端に作用するせん断力 *Q*<sub>cl</sub>、*Q*<sub>c3</sub> は、RC 柱と隣接する CLT 袖壁のせん断力を足 し合わせたものであり、RC 柱におけるせん断応力度比の確認、RC 柱のパンチングシア破壊の確認(水 平接合部において、水平せん断力/曲げ圧縮力≦摩擦係数の関係が成立しない場合のみ)に用いる。

また、詳細モデルでは、CLT 袖壁を模擬したブレース要素に作用する軸方向力の鉛直成分を累加す





ることで、簡易モデルでは、CLT 袖壁の支圧特性を模擬した上下のファイバー要素のうち、水平方向の位置が同じ軸ばねが負担する軸力の差分を累積することで、CLT 袖壁の鉛直断面に作用する鉛直せん断力 *Q*wv1、*Q*wv2を算定している。



図 2-75 各部位に作用する軸力、せん断力の一覧

# (1) RC 柱、CLT 袖壁の軸力

図 2-76 に各部位に作用する軸力の推移を示す。試験体 AS、AD では、鉛直接合部を介した鉛直せん断力の伝達が RC 柱、CLT 袖壁間で行われるため、脚部と頂部で各断面に作用する軸力が異なっている。また、片持ちはり形式で載荷した試験体 AS、BS では、変形角の増大に伴って、加力方向に対して圧縮側の CLT 袖壁が負担する圧縮軸力が増大しているが、逆対称形式で載荷した試験体 AD、BD では、RC 柱及び CLT 袖壁の軸力変動は小さかった。

### <試験体 AS>

詳細モデルでは、圧縮側のCLT 袖壁に作用する軸力が最終的に圧縮耐力(1182kN)に到達したが、 簡易モデルでは、最大の圧縮軸力は1081kN(軸力比0.91)に留まった。また、RC 柱に作用する軸力 は、変形の増大に伴って圧縮側から引張側に移行するが、詳細モデルの方が RC 柱に作用する引張軸 力は大きくなった。いずれのモデルでも、引張側の CLT 袖壁に作用する引張軸力は、アンカーボルト の降伏強度(223kN)に到達していた。詳細モデルにおいて、CLT 袖壁、RC 柱の軸力変動が大きくな った理由として、RC 柱-CLT 袖壁間の鉛直接合部のモデル化の方法の違いが挙げられる。詳細は後 述するが、簡易モデルでは、鉛直接合部のせん断耐力を CLT 袖壁の鉛直断面のせん断耐力で頭打ちと しているが、詳細モデルでは、鉛直接合部から伝達された鉛直せん断力が、ブレース要素だけでなく、 上下端の軸ばねにも伝達されるため、鉛直接合部から伝達される鉛直せん断力が大きくなる。

#### <試験体 BS>

詳細モデルと簡易モデルの差が殆どなく、両者はよく一致した。圧縮側の CLT 袖壁の最大圧縮軸力 は詳細モデルで 907kN(軸力比 0.75)、簡易モデルで 915kN(軸力比 0.76)であり、鉛直接合部を設け た試験体 AS と比較して小さかったが、最終的に RC 柱に引張軸力が作用する点は共通であった。ま た、いずれのモデルでも、加力方向に対して引張側の CLT 袖壁際に設置したテンションロッド(降伏 強度 112kN)は引張降伏していた。

#### <試験体 AD>

詳細モデル、簡易モデルのいずれでも、アンカーボルトが R=1/250rad 付近で引張降伏した点は共通 であるが、詳細モデルでは外側、内側の両方が降伏したのに対し、簡易モデルでは外側のアンカーボ ルトのみが降伏した。前述した鉛直接合部のモデル化の方法の違いに加え、図 2-73 で示したように、 詳細モデルでは CLT 袖壁にせん断変形が生じることで、端部の平面保持仮定が崩れており、その結果、 アンカーボルトに強制される伸び量に差が生じたものと考えられる。また、詳細モデルではアンカー ボルトの降伏後も、CLT 袖壁に作用する圧縮軸力が漸増しており、アンカーボルトの降伏後はほぼ軸 力が一定となる簡易モデルとの違いが見られた。

### <試験体 BD>

試験体 BS と同様に、詳細モデルと簡易モデルの差は比較的小さいが、変形が大きくなるにつれ、 詳細モデルの方が、簡易モデルよりも、CLT 袖壁に作用する圧縮軸力が大きくなる傾向が見られた。 なお、試験体 BD でテンションロッドが引張降伏したのは、変形角が 1/100rad を超えた後であり、小 変形時の効果は不十分であった。 図 2-76 に、実験で計測した CLT 袖壁の軸ひずみ分布から推定した各部材に作用する軸力の推移を示す。なお、図中の凡例は、正方向載荷時を基準に解析結果と対応させている。

試験体 AS では、RC 柱の脚部に作用する軸力が *R*=1/100rad 時には引張側に転じているが、実験と 比較するとやや遅れるものの、数値解析でも同様の挙動が見られることが確認されている。また、加 力方向に対して圧縮側の袖壁では、脚部、頂部に作用する圧縮軸力がそれぞれ 1200kN、600kN 程度ま で増大する様子も捉えられているが、加力方向に対して引張側の袖壁では、変形角の増大に伴って、 水平接合部の接着面のせん断破壊が生じたため、数値解析と比較して、脚部に作用する引張軸力が小 さくなる(アンカーボルトの降伏強度が発揮できない状況になる)挙動が確認できる。

試験体 BS では、当初は RC 柱と CLT 袖壁が一体で挙動しているため、加力実験と異なり、RC 柱の 脚部と頂部に作用する圧縮軸力の値が異なっているが、鉛直接合部に沿った柱際のひび割れが発生す ると、両者の差が小さくなり、鉛直接合部における鉛直せん断力の伝達を無視した数値解析に近い傾 向を示すようになった。また、加力方向に対して圧縮側の袖壁に作用する圧縮軸力は、*R*=1/100rad 時 で 600kN 程度となり、数値解析の結果と概ね一致した。

試験体 AD では、試験体 AS、BS と比較して、RC 柱に作用する軸力の変動が小さく、数値解析でも その傾向が捉えられており、脚部 ( $N_{c1}$ ,  $N_{w1}$ ,  $N_{w3}$ ) については、実験と数値解析の結果が概ね対応し ているが、頂部では、引張側の CLT 袖壁の軸力 ( $N_{w2}$ ) が数値解析と対応しておらず、実験結果に問 題があるものと考えられるが、試験体 AS、BS と比較して、圧縮軸力の負担が小さくなる傾向は捉え られている。







### (2) RC 柱、CLT 袖壁の水平せん断力

図 2-77 に各部位に作用する水平せん断力の推移を示す。いずれの試験体でも、RC 柱、CLT 袖壁の 脚部及び頂部に作用する水平せん断力の大きさは等しい(鉛直接合部を介した水平せん断力の伝達は 許容していない)。

軸力が作用しない試験体 BS の加力方向に対して引張側の CLT 袖壁を除くと、CLT 袖壁には水平せ ん断力が作用しているが、試験体 AD の簡易モデル以外は、せん断の基準強度を用いた CLT 袖壁の水 平方向のせん断耐力(133kN)には到達していない。試験体 AD の詳細モデルにおいて、せん断力が CLT 袖壁のせん断耐力に到達していないことを、図 2-78 に示す R=1/50rad における試験体 AS、AD の 詳細モデルにおける軸ばね、せん断ばね、斜め材の負担軸力の分布を用いて説明する。CLT 袖壁のブ レース置換を行い、鉛直接合部を介した RC 柱-CLT 袖壁間の鉛直せん断力の伝達を行うこれらのモ デルでは、水平方向に分割した CLT 袖壁のうち、RC 柱に近い内側のブレース材はいずれも軸耐力 (上 下端は28kN、中央は26kN)に到達しており、せん断降伏が生じているが、RC 柱から離れた外側のブ レース材は軸耐力に到達していない。したがって、詳細モデルでは、CLT 袖壁の鉛直断面におけるせ ん断降伏が生じたことで、水平せん断力が頭打ちとなったものと考えられ、せん断降伏の評価を行う 上で注意が必要となる。なお、試験体 AS、AD におけるブレース材の軸力分布を比較すると、実験で は CLT 袖壁端部の曲げ圧縮破壊が生じた試験体 AS でも、RC 柱に近い内側のブレース材のほぼ全て が軸耐力に到達しており、試験体 AD と同様に、鉛直断面が概ねせん断降伏状態に達していた。この 際に CLT 袖壁が負担していた水平せん断力は 66kN であり、せん断耐力(133kN)を大きく下回って いる。したがって、軸力負担の大きい袖壁では、作用する水平せん断力が比較的小さい場合でも、CLT 袖壁に作用するせん断力がせん断耐力に到達する可能性がある。

また、建研式で載荷した試験体 BD では、片持ちはり形式で載荷した試験体 AS、BS、建研式で載荷した試験体 AD と比較して、CLT 袖壁に作用する水平せん断力がほぼ頭打ちになるまでの変形角が 大きくなった。詳細モデルと簡易モデルにおける CLT 袖壁の水平せん断力を比較すると、いずれの試 験体でも簡易モデルの方が大きめの値を示しており、その分、RC 柱の負担せん断力が小さく評価さ れている。

なお、加力方向に対して引張側の CLT 袖壁(AS: N<sub>w1</sub>、N<sub>w2</sub>、AD: N<sub>w1</sub>、N<sub>w4</sub>)でも、水平せん断力 が作用しているが、CLT 袖壁の端部では離間が生じており、CLT 袖壁の仕口面を介して、上下のスタ ブに直接せん断力を伝達することは困難と考えられる。実際には、隣接する RC 柱に介して、水平せ ん断力の伝達が行われているものと考えられるため、後述の検討では、RC 柱のパンチングシア耐力 の確認を行っている。

図 2-77 に、実験で計測した CLT 袖壁のせん断ひずみから推定した各部材に作用する水平方向のせん断力の推移を示す。なお、図中の凡例は、正方向載荷時を基準に解析結果と対応させている。実験で計測したせん断ひずみは、断面全体の平均的なものであり、図 2-78 に示すように、CLT 袖壁のせん断変形が内側と外側で異なることを考慮していない。そのため、詳細モデルにおける CLT 袖壁の水平せん断力をやや過大に評価する傾向が見られたが、同じく、断面内のせん断変形分布を考慮していない前易モデルの CLT 袖壁の水平せん断力は概ね評価可能であった。











#### (3) 鉛直接合部に作用する鉛直せん断力

図 2-79 に試験体 AS、AD の鉛直接合部に作用する鉛直方向のせん断力の推移を示す。ここで、2.5.8.3 で示した式(2.3)による CLT 袖壁の鉛直断面のせん断耐力は 349kN、式(2.5)による鉛直接合部に作用し 得る最大のせん断力 Qvu は 733kN となる。また、後述する 2.7.5 項で求められる鉛直接合部の鉛直せん断耐力は、試験体 AS で 894kN、試験体 AD で 776kN となる。

試験体 AS では、加力方向に対して圧縮側に位置する CLT 袖壁に取り付く鉛直接合部が負担するせん断力 ( $Q_{v2}$ ) が大きいが、簡易モデルでは、鉛直接合部のせん断ばねの上限である CLT 袖壁の鉛直断面のせん断耐力 (349kN) で頭打ちとしたのに対し、詳細モデルでは、せん断耐力を上回るせん断力が発生した。これは、図 2-78 で示したように、詳細モデルでは、RC 柱から CLT 袖壁への鉛直せん断力の伝達が、CLT 袖壁を模擬した斜め材 (図中の緑色の矢印) を介して行われるだけでなく、CLT 袖壁の上下端の水平材を介して、軸ばね (図中の赤色の矢印が CLT の圧縮ばね、アンカーボルトの引張ばね) に直接伝達されることによるものである。水平接合部における CLT の圧縮降伏とアンカーボルトの引張降伏が同時には起こらないため、式(2.5)による上限のせん断力  $Q_{vu}$  (733kN) には至らないものの、図 2-54 で示した伝達経路の一部が再現できているものと考えられる。また、試験体 AD に関しても、試験体 AS と同様に、簡易モデルでは、鉛直接合部のせん断ばねの上限である CLT 袖壁の鉛直断面のせん断耐力 (349kN) で頭打ちとしたのに対し、詳細モデルでは、せん断耐力を上回るせん断力が発生したが、式(2.5)による上限のせん断力  $Q_{vu}$  (733kN) は下回った。

図 2-79 に、実験で計測した CLT 袖壁の軸ひずみ分布から推定した鉛直接合部に作用する鉛直方向のせん断力の推移を示す。なお、図中の凡例は、正方向載荷時を基準に解析結果と対応させている。 試験体 AS、AD のいずれについても、鉛直方向のせん断力が CLT 袖壁の鉛直断面のせん断耐力 (349kN) を上回っている点については、詳細モデルの結果と一致しているが、実験の方が鉛直方向のせん断力 の最大値が大きく、式(2.5)による上限のせん断力 Q<sub>vu</sub> (733kN)を上回っていた。但し、図 2-79 の実 験結果からも明らかなように、実験値は、載荷方向や袖壁の位置によるばらつきが非常に大きい(試 験体 AD では、逆対称載荷を行っているので、本来、図中の Q<sub>v1</sub> と Q<sub>v2</sub> は比較的近い値になる必要が あるが、両者の差は大きい)ため、十分な信頼性が確保されているとは言い難い。また、2.6.3.1 で示 したように、詳細、簡易モデルによって求めた荷重変形関係は、実験の荷重変形関係の包絡線を概ね 評価できていることから、数値解析と実験の結果に不一致が見られたからといって、直ちに数値解析 の信頼性が損なわれるものではなく、数値解析の結果に基づいて、各部の設計を行っても支障ないも のと考えられる。

なお、試験体 BS に関しては、数値解析では、鉛直接合部におけるせん断力の伝達を考慮していないが、図 2-53 で示したように、加力実験では最大で 400kN 程度の鉛直せん断力が作用している。一方で、図 2-70 の荷重変形関係を見ると、*R*=1/100rad 付近まで、実験と解析の包絡線が概ね一致していることから、片持ち柱形式の載荷の場合は、鉛直接合部におけるせん断伝達の有無が荷重変形関係に及ぼす影響はそれほど大きくないものと考えられる。

121



### (4) CLT 袖壁に作用する鉛直せん断力

CLT 袖壁の上下の仕口面には軸方向力が分布して作用するため、CLT 袖壁の鉛直断面に作用する鉛 直せん断力の大きさは、鉛直断面を切り出す水平方向の位置によって異なる。そこで、詳細モデルで は、図 2-78 で示した CLT 袖壁を模擬したブレース要素に作用する軸方向力の鉛直成分を累加するこ とで、簡易モデルでは、CLT 袖壁の支圧特性を模擬した上下のファイバー要素のうち、水平方向の位 置が同じ要素が負担する軸力の差分を累加することで、CLT 袖壁の鉛直断面に作用する鉛直せん断力 *Q*wv1、*Q*wv2を算定した。また、簡易モデルにおいては、CLT 袖壁の上下端の支圧特性をファイバー要 素で模擬しているため、それぞれの要素が負担する軸力を抽出し、水平位置に応じて鉛直せん断力の 算出を行うことは煩雑である。そこで、本検討では、図 2-80 に示す考え方に基づき、CLT 袖壁の鉛直 せん断力を式(2.29)に基づいて推定することとした。

$$pQ_{wv1} = Q_{v1} + \max(0, N_{wc1} - T_{i1} + T_{i2} - \max(0, N_{wc1} + N_{wc2} - t_w \cdot D_w \cdot t_v F_k))$$
  
=  $\max(Q_{v1}, N_{wc2} + T_{o1} - T_{o2} - \max(0, N_{wc1} + N_{wc2} - t_w \cdot D_w \cdot t_v F_k))$   
$$pQ_{wv2} = Q_{v2} + \max(0, N_{wc4} - T_{i4} + T_{i3} - \max(0, N_{wc3} + N_{wc4} - t_w \cdot D_w \cdot t_v F_k))$$
  
=  $\max(Q_{v2}, N_{wc3} + T_{o4} - T_{o3} - \max(0, N_{wc3} + N_{wc4} - t_w \cdot D_w \cdot t_v F_k))$ 

ここで、 $pQ_{wv1}$ 、 $pQ_{wv2}$ : CLT 袖壁の鉛直断面に作用する鉛直せん断力の推定値、 $Q_{v1}$ 、 $Q_{v2}$ : **図 2-80** に示す RC 柱-CLT 袖壁間の鉛直方向のせん断力、 $N_{wc1}$ 、 $N_{wc2}$ 、 $N_{wc3}$ 、 $N_{wc4}$ : **図 2-80** に示す CLT 袖壁の 曲げ圧縮力(圧縮が正、軸方向力からアンカーボルトの引張力を差し引いたもの)、 $T_{o1}$ 、 $T_{o2}$ 、 $T_{o3}$ 、 $T_{o4}$ : **図 2-80** に示す CLT 袖壁の外側に取り付けたアンカーボルトの引張力(引張が正)、 $T_{i1}$ 、 $T_{i2}$ 、 $T_{i3}$ 、 $T_{i4}$ : **図 2-80** に示す CLT 袖壁の内側に取り付けたアンカーボルトの引張力(引張が正)、 $t_w$ : CLT 袖壁の厚 さ、 $D_w$ : CLT 袖壁のせい、 $vF_k$ : CLT の圧縮の基準強度を用いた座屈強度(鉛直方向)である。

(2.29)



図 2-80 CLT 袖壁の鉛直断面に作用する鉛直せん断力の推定

図 2-81 に、詳細モデルと簡易モデルにおける CLT 袖壁に作用する鉛直せん断力 *Q*wv1、*Q*wv2の推移 を示す。なお、いずれのモデルでも、荷重増分解析の各ステップにおいて、断面内で最も大きいせん 断力を抽出している。簡易モデルに関しては、式(2.29)による CLT 袖壁の鉛直断面のせん断力の推定 値 p*Q*wv1、p*Q*wv2 も示している。

詳細モデルでは、試験体 AS の加力方向に対して圧縮側に位置する CLT 袖壁(Q<sub>wv2</sub>) および試験体 AD の両側の CLT 袖壁(Q<sub>wv1</sub>、Q<sub>wv2</sub>) において、作用する鉛直せん断力が、CLT 袖壁のせん断耐力 (349kN) に到達し、頭打ちとなっている。これは、CLT 袖壁を模擬したブレース要素が軸降伏した ためである。試験体 BS、BD では、CLT 袖壁の鉛直せん断力は、CLT 袖壁のせん断耐力 (349kN) ま では到達しなかった。簡易モデルでは、鉛直せん断力によって生じる CLT 袖壁のせん断変形を考慮し ていないため、上記の試験体 AS、AD に加え、試験体 BS でも、CLT 袖壁に作用する鉛直せん断力が、CLT 袖壁のせん断耐力を上回った。

式(2.29)による CLT 袖壁の鉛直断面のせん断力の推定値  $pQ_{wv1}$ 、 $pQ_{wv2}$ は、逆対称載荷を行った試験体 AD、BD の鉛直せん断力  $Q_{wv1}$ 、 $Q_{wv2}$ を精度良く予測している。一方、片持ち柱形式の試験体 AS、BS に関しては、加力方向に対して圧縮側に位置する CLT 袖壁について、鉛直せん断力  $Q_{wv2}$ を推定値  $pQ_{wv2}$  が過大評価する結果となった。これは、式(2.29)では、図 2-80 に示すように、CLT 袖壁に作用する曲 げモーメントが逆対称分布となる状況を想定しているが、図 2-74 で示したように、試験体 AS、BS の CLT 袖壁では反曲点の位置が頂部に近く、CLT 袖壁頂部の曲げ圧縮領域が断面全体に幅広く分布した ことにより、実際には鉛直せん断力が低減されたものと考えられる。一方で、式(2.29)による CLT 袖 壁の鉛直断面のせん断力の推定値  $pQ_{wv1}$ 、 $pQ_{wv2}$ が CLT 袖壁の鉛直せん断力を上回る試験体 AS、BS、AD では、いずれも鉛直せん断力  $Q_{wv1}$ 、 $Q_{wv2}$ が CLT 袖壁の鉛直せん断力を上回っていることから、式 (2.29)は CLT 袖壁の鉛直断面に作用する鉛直せん断力自体を推定する手法としては精度に課題が残る が、CLT 袖壁の鉛直断面に作用する鉛直せん断力がせん断耐力を超えるかどうかを確認する手段とし ては有効なものと考えられる。



図 2-81 CLT 袖壁に作用する鉛直方向のせん断力



図 2-81 CLT 袖壁に作用する鉛直方向のせん断力

# (5) アンカーボルト、テンションロッドの引張力

図 2-82 に試験体 AS、AD のアンカーボルト、試験体 BS、BD のテンションロッドに作用する引張 力の推移を示す。これらの引張力に関しては、前述した(1) RC 柱、CLT 袖壁の軸力にも反映されてい るが、試験体 AS、AD に関しては、図 2-76 で示した実験値は、計測した CLT 袖壁の軸ひずみ分布か ら推定したものであり、評価精度が低いため、ここでは図 2-47 や図 2-48 で示したアンカーボルトや テンションロッドに貼付した軸ひずみから推定したものを実験結果として示した。

試験体 AS に関しては、詳細モデル、簡易モデルのいずれについても、加力方向に対して引張側の 脚部(北脚部)に位置するアンカーボルトの引張力を精度良く予測した。実験では、*R*=1/133rad サイ クル以降、水平接合部の山形鋼と CLT 袖壁側面の接着面の滑り挙動によって引張力の低下が生じてお り、解析結果との乖離が大きくなっている。また、数値解析では、加力方向に対して引張側の頂部(北 頂部)に位置するアンカーボルトの引張力が実験初期は増加するものの、途中から減少する挙動が確 認されているが、実験結果からはこのような挙動は確認されなかった。実験では、水平目地にエポキ シ樹脂で充填していたため、アンカーボルトではなく、水平目地部の接着面を介した引張力の伝達が 行われ、アンカーボルトに作用する引張力が軽減された可能性がある。

試験体 AD に関しては、詳細モデル、簡易モデルのいずれについても、加力方向に対して引張側の 脚部(北脚部)と加力方向に対して圧縮側の頂部(南頂部)に位置するアンカーボルトが最終的に全 て降伏したが、実験では、*R*=1/133rad サイクル以降、引張力がほぼ頭打ちとなり、両者に相違が見ら れた。試験体 AS と同様に、試験体 AD においても、水平接合部の山形鋼と CLT 袖壁側面の接着面の 滑り挙動が生じており、アンカーボルトの引張力が頭打ちとなったものと考えられる。詳細モデルと 簡易モデルの結果を比較すると、簡易モデルでは、鉛直接合部のせん断耐力を低く評価しているため、 アンカーボルトに作用する引張力の増加が遅いが、結果的に簡易モデルの方が実験結果との対応が良 かった。

試験体 BS に関しては、詳細モデルと簡易モデルの引張力-変形角関係がほぼ同じ形状を示してお り、実験結果とも概ね対応していることから、評価精度に問題がないことが確認できる。また、試験 体 BD に関しては、最終的に引張降伏するものの、逆対称載荷を行っているため、RC 柱のファイバー 要素にひび割れが生じ、曲げ変形による軸伸びが生じないと、テンションロッドに引張力が作用しな いため、効率的な補強とは言い難い。





図 2-82 アンカーボルト、テンションロッドに作用する軸力の推移

# (6) CLT 袖壁の水平せん断力/曲げ圧縮力

図 2-83 に、CLT 袖壁の水平接合部に作用する曲げ圧縮力(試験体 AS、AD では、断面に作用する 軸力にアンカーボルトの負担する引張軸力を足し合わせたもの、試験体 BS、BD では、断面に作用す る軸力そのもの)に対する水平方向のせん断力の比率の推移を示す。なお、試験体 AS、BS における 断面(*Q*w1/*N*wc1、*Q*w2/*N*wc2)及び試験体 AD における断面(*Q*w1/*N*wc1、*Q*w4/*N*wc4)では、加力方向に対し て引張側となる。このうち、試験体 BS に関しては、図 2-77 に示すように、引張側となる CLT 袖壁に は水平せん断力が作用しないため、せん断伝達を行う必要はない。一方、試験体 AS、AD に関しては、 図 2-77 に示すように、引張側となる CLT 袖壁についても水平せん断力が作用するため、RC 柱に水平 せん断力が伝達できるかどうかの確認を別途行うこととし、ここでの検討からは除外する。また、試 験体 BD に関しては、引張側となる断面はない(全ての断面に圧縮軸力が作用する)が、 $Q_{w1}/N_{wc1}$  と  $Q_{w2}/N_{wc2}$ 、 $Q_{w3}/N_{wc3}$ と $Q_{w4}/N_{wc4}$ は同じ値となるため、 $Q_{w2}/N_{wc2}$ 、 $Q_{w4}/N_{wc4}$ の推移は割愛している。

2.7.6.3 で後述するように、本検討では RC 部材と CLT 袖壁の間の摩擦係数を 0.5 と仮定して検討を 行っているが、試験体 AD の簡易モデルを除くと、いずれの試験体でも、水平せん断力/曲げ圧縮力 の比率が 0.5 を下回っており、この条件を満足している。したがって、試験体 BS、BD に関しては、 水平せん断力の伝達に支障がないことが確認できる。一方、試験体 AD に関しては、CLT 袖壁に作用 する水平せん断力を摩擦力のみでは伝達できない可能性があるため、2.7 節で後述する設計手法では、 簡略化のため、試験体 AS、AD に関しては、摩擦力による水平せん断力の伝達には期待せず、鉛直接 合部を介して、RC 柱に水平せん断力が伝達されるものと仮定して検討を行うこととした。



図 2-83 水平接合部における曲げ圧縮軸力に対する水平せん断力の比率



図 2-83 水平接合部における曲げ圧縮軸力に対する水平せん断力の比率

# (7) RC 柱のせん断応力度比

図 2-85 に RC 柱のせん断応力度比の推移を示す。ここでは、RC 柱に作用するせん断力(図 2-75、 図 2-77 の Q<sub>c2</sub>)を、RC 柱の幅(450mm)、応力中心間距離(7/8×400mm)、コンクリートの圧縮強度 で割った値と、腰壁、垂れ壁付きの RC はりの部材種別判定の方法を参考に、RC 柱、CLT 袖壁が負担 する全ての水平せん断力(図 2-75、図 2-77 の Q<sub>c1</sub>、Q<sub>c3</sub>)を、RC 柱の幅(450mm)、せい(450mm)、 コンクリートの圧縮強度で割った値の 2 通りとした。なお、図中には、RC 柱の部材種別判定で FA、 FB、FC の閾値となる 0.100、0.125、0.150 に線を引いている。

片持ち柱形式の載荷を行った試験体 AS、BS では、いずれの算定方法でも、せん断応力度比が 0.10 を下回り、FA の条件を満足していた。一方、逆対称載荷を行った試験体 AD、BD のうち、試験体 BD に関しては、せん断応力度比がわずかに 0.10 を下回っており、FA の条件を満足していたが、試験体 AD に関しては、せん断応力度比が 0.125 を上回っており、FC の判定となった。



(i)詳細モデル

(a)RC柱

(b) RC 柱+CLT 袖壁



(a)RC柱

(ii) 簡易モデル



図 2-84 柱のせん断応力度比の推移

# 2.6.3.6. 変形性能の評価

図 2-85 に詳細モデル、簡易モデルにおいて、曲げ圧縮力を受ける CLT 袖壁の最外縁の支圧ばねの 軸縮みー変形角関係を示す。詳細モデルでは圧縮縁から袖壁せいの 1/8 の位置に、簡易モデルでは圧 縮縁から袖壁せいの 1/20 の位置に支圧ばねが設置されており、両者は比較的近い位置にある。

試験体 AS、BS の載荷実験では、R=1/50rad サイクルにおいて、曲げ圧縮縁のラミナ間における接着 面の破壊が生じており、耐力低下が生じている。R=1/50rad における試験体 AS、BS の支圧ばねの軸縮 みは、詳細モデルでは 2~5mm 程度、簡易モデルでは 6~7mm に到達している。詳細モデルでは CLT 袖壁に作用する鉛直せん断力による変形を考慮しているため、支圧ばねに強制される軸縮みが全体的 に小さく評価されたものと考えられる。ここでは、実務での使用を想定した簡易モデルの結果(6~ 7mm)に着目すると、3層3プライの試験体 AS では袖壁厚(90mm)の7~8%、3層4プライの試験 体 BS では袖壁厚(120mm)の5~6%、また、CLT 袖壁の材軸方向のラミナの厚み(60mm)のみで考 えると、10~12%に相当する数値である。CLT 袖壁の厚さが変わった場合については今後の検討が必 要であるが、CLT 袖壁の曲げに対する変形性能を評価する上で、この軸縮みは一つの目安となるもの と考えられる。なお、詳細モデルでは CLT 袖壁の平面保持仮定が成立しない状況を許容していること に対し、簡易モデルでは CLT 袖壁の平面保持仮定が成立しない状況を許容していること めに簡易モデルで最外縁の支圧ばねの軸縮みの大きさを評価しておけば、耐力低下が生じるかどうか の判別が可能となる。

試験体 AD に関しては、支圧ばねの軸縮みが、試験体 AS、BS と比較して十分に小さいことから、 曲げ圧縮に起因するような損傷や耐力低下が確認されていない実験結果と整合している。なお、詳細 モデルでは、曲げ圧縮力を受ける CLT 袖壁の最外縁の支圧ばねよりも、RC 柱に最も近い最内縁の支 圧ばねの方がより大きな軸縮みが生じているが、簡易モデルではこのような挙動は再現できていない。 試験体 AD では、CLT 袖壁に大きなせん断変形が生じており、ラミナ間のずれが観測されていること から、交差面のずれ変形やねじり変形に起因するモードIIIの破壊が生じたものと考えられるが、実験 では大変形時まで顕著な耐力低下が生じていないことから、ある程度は靱性能に期待してもよいもの と判断できる。

また、実験を行っていない試験体 BD に関しては、試験体 AD と同様に、支圧ばねの軸縮みが、試験体 AS、BS と比較して小さいことから、曲げ圧縮に起因するような損傷や耐力低下は生じにくいものと推測される。



図 2-85 曲げ圧縮力を受ける CLT 袖壁の最外縁の支圧ばねの軸縮み - 変形角関係

### 2.7. 実験結果及び解析結果を踏まえた試験体の設計

本節では、実験結果及び解析結果を踏まえ、RC 部材-CLT 袖壁間の接合材や RC 部材の保証設計 を行う上での参考となるように、部材試験体の設計方法について記載する。ここでは、載荷実験を行 った試験体 AS、BS、AD に加え、参考として、骨組解析で検討対象とした試験体 BD(材料特性は試 験体 BS と共通だが、試験体 AD と同じく、逆対称載荷を行っている)も対象とする。なお、試験体 の設計に用いた材料強度と実強度に差が生じている場合もあるため、ここでは、設計時に参照可能な 情報(材料の基準強度や規格強度、弾性係数等の標準的な特性値等)に基づいて検討する場合を設計 値、材料試験の結果等、実態に応じた情報に基づき、実験結果の検証を目的とする場合を試験値と区 別して、議論を行う。なお、本節では、基本的に材料の実強度を用いた検討を行っていること、実験 結果を模擬することを目的としていることを踏まえ、保証設計において求められる設計用せん断力の 割り増しを行わずに検討を行っている点に注意されたい。

### 2.7.1. 材料強度

**表 2-31、表 2-32、表 2-33、表 2-34**に試験体の設計時に仮定した各材料の強度、ヤング係数、せん 断弾性係数を示す。なお、試験値に使用した実強度に関しては、2.4 節を参照されたい。

コンクリートの圧縮強度は、試験体 AD において、RC 柱のせん断余裕度が必要以上に高くならないように、目標の圧縮強度を 24N/mm<sup>2</sup> として設計した。

鉄筋のうち、曲げの検討時には、主筋の規格降伏強度を 1.1 倍した値を用いたが、パンチングの検 討時の主筋やせん断補強筋に関しては、規格降伏点強度そのものを用いた。アンカーボルト、テンシ ョンロット、水平接合材、鉛直接合材、滑り止めに関しては、鋼材の強度をそのまま用いた。ボルト (S45C)については、強度区分 6.8 とみなして検討を行った。

|    | 12 2 01 | <br>1 <b>4</b> 2 (19) 414 11 |       |       |
|----|---------|------------------------------|-------|-------|
|    |         | 圧縮強度                         | わいが夜粉 | せん断   |
|    |         | [目標]                         |       | 弾性係数  |
|    |         | (MPa)                        | (GFa) | (GPa) |
| コン | ·クリート   | 24.0                         | 22.8  | 9.8   |

表 2-31 コンクリートの材料特性(設計値)

|          | <b>活</b> 桁         | 降伏強度  | 引張強度                                                       | ヤング係数 |
|----------|--------------------|-------|------------------------------------------------------------|-------|
|          |                    | (MPa) | 金度 引張強度<br>(MPa)<br>5<br>5<br>0<br>5 490<br>0 600<br>5 490 | (GPa) |
|          | SD295A(せん断補強筋)     | 295   | -                                                          | 205   |
| 鉄筋       | SD345(主筋、パンチング検討時) | 345   | -                                                          | 205   |
|          | SD345(主筋、曲げ検討時)    | 380   | -                                                          | 205   |
| アンカーボルト  |                    | 225   | 400                                                        | 205   |
| テンションロッド | ABI(430B           | 525   | 450                                                        | 203   |
| 寸切りボルト   | S45C               | 420   | 600                                                        | 205   |
| 水平接合材    |                    |       |                                                            |       |
| 鉛直接合材    | SM490              | 325   | 490                                                        | 205   |
| 滑り止め     |                    |       |                                                            |       |

# 表 2-32 鋼材の材料特性(設計値)

ラミナに関しては、機械等級区分の値を、CLT に関しては実験対象とする3層3プライ、3層4プ ライの場合の値を示した。本検討では、試験体 BS において、CLT 袖壁の側面に滑り止めを設置して CLT 袖壁の挙動を制御するため、局所的なめり込みを防止するために、繊維直交方向に関してもある 程度の剛性や強度が求められる。そこで、同一等級構成を採用することとした。なお、ここでは、ラ ミナの厚さを30mm、ラミナの幅を122mm、各層のラミナの幅方向の数のうちの最小の値を5.3枚(≒ 645mm/122mm)として、基準となるせん断強度を算定しており、3 層 3 プライの場合で 2.3N/mm<sup>2</sup>、3 層 4 プライの場合で 1.7N/mm<sup>2</sup> としている。

|     | 圧縮強度                 | 圧縮弾性係数     | 引張強度                 | 引張弾性係数               |
|-----|----------------------|------------|----------------------|----------------------|
|     | (N/mm <sup>2</sup> ) | $(N/mm^2)$ | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) |
| M90 | 27.6                 | 9000       | 20.5                 | 9000                 |
| M60 | 21.6                 | 6000       | 16.0                 | 6000                 |
| M30 | 15.6                 | 3000       | 11.5                 | 3000                 |

表 2-33 ラミナの材料特性(設計値)

なお、地震力が作用した時に早期の耐力発現に繋がるため、CLT 袖壁にはできるだけ高い剛性と強 度を有する材料を用いることが好ましい。また、試験体 AD、AS では、アンカーボルトが負担する引 張力が CLT 袖壁を介して伝達されるため、アンカーボルトが降伏した時に CLT 袖壁が引張破壊しな いようにするために、ある程度の引張強度が必要である。一方で CLT の圧縮強度が大きいと、RC 柱 と CLT 袖壁の間の鉛直接合部に作用するせん断力が大きくなるため、接合部破壊の恐れが高まる。ゆ えに、CLT の強度は低すぎても、高すぎても不具合が生じる。ここでは、S60 と S90 の材料特性を示 しているが、より一般的に普及しており、接合部の必要耐力を S90 よりも低く設定できる S60 を用い ることとした。

表 2-35 に、以降の検討で用いる CLT 袖壁の座屈強度を示す。座屈強度は、表 2-12 に示す圧縮強度 と座屈強度の関係を用いて算定しているが、ここでは、境界条件が両端固定となるものと仮定し、座 屈長さを CLT 袖壁の高さ(1700mm)やせい(650mm)の半分としている。S60-3-3 に関しては、圧縮 の基準強度よりもやや低い値となったが、S60-3-4 に関しては、圧縮強度と座屈強度が一致した。

表 2-34 CLT 袖壁の材料特性(設計値)

|        |              | 南六士向       |       | 圧     | 縮     |       |       | 引     |       | せん断   |       |       |
|--------|--------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 板厚(mm) | 直文/7向<br>右动幅 | 強          | 強軸 弱軸 |       | 強軸    |       |       | 軸     | 面内    |       |       |       |
|        | (mm) 有効幅     | 17 x0 mm ) | 弾性係数  | 圧縮強度  | 弾性係数  | 圧縮強度  | 弾性係数  | 引張強度  | 弾性係数  | 引張強度  | 弾性係数  | せん断強度 |
|        |              | (1111)     | (GPa) | (MPa) |
| 3層4プライ | 120          | 60         | 3.0   | 8.1   | 3.0   | 8.1   | 3.0   | 6.0   | 3.0   | 6.0   | 0.5   | 1.7   |
| 3層3プライ | 90           | 30         | 4.0   | 10.8  | 2.0   | 5.4   | 4.0   | 8.0   | 2.0   | 4.0   | 0.5   | 2.3   |

(a) 同一等級構成 S60

\* せん断強度は、ラミナの幅を122mm、各層ラミナの幅方向の数の最小の値を5.3枚(≒645mm/122mm)として計算を行っている。

(b) 同一等級構成 S90

| 板厚(mm) |            | 南六士向 |       | 圧     | 縮     |       |       | 引     | 張     |       | せん断   |       |  |
|--------|------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
|        | 坂回(mm)     | 有効幅  | 強軸    |       | 弱軸    |       | 強軸    |       | 弱軸    |       | 面内    |       |  |
|        | 収/字(11111) |      | 弾性係数  | 圧縮強度  | 弾性係数  | 圧縮強度  | 弾性係数  | 引張強度  | 弾性係数  | 引張強度  | 弾性係数  | せん断強度 |  |
|        |            | (mm) | (GPa) | (MPa) |  |
| 3層4プライ | 120        | 60   | 4.5   | 10.4  | 4.5   | 10.4  | 4.5   | 7.7   | 4.5   | 7.7   | 0.5   | 1.7   |  |
| 3層3プライ | 90         | 30   | 6.0   | 13.8  | 3.0   | 6.9   | 6.0   | 10.3  | 3.0   | 5.1   | 0.5   | 2.3   |  |

\* せん断強度は、ラミナの幅を122mm、各層ラミナの幅方向の数の最小の値を5.3枚(≒645mm/122mm)として計算を行っている。

| 圧縮の基準<br>(N/mm |     | 圧縮の基準強度              | 部材試験の座屈強度            | ,    | L.   | le                 |                    |   | А    |   |      | lb  |
|----------------|-----|----------------------|----------------------|------|------|--------------------|--------------------|---|------|---|------|-----|
|                |     | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) |      | к    | (mm <sup>4</sup> ) | (mm <sup>2</sup> ) |   |      |   | (mm) |     |
| S60-3-3        | 縦圧縮 | 10.8                 | 10.5                 | 32.7 | 26.0 | 39487500           | 58500              | = | 650  | × | 90   | 850 |
| S60-3-3        | 横圧縮 | 10.8                 | 10.0                 | 37.5 | 8.7  | 3825000            | 51000              | = | 1700 | × | 30   | 325 |
| S60-3-4        | 縦圧縮 | 8.1                  | 8.1                  | 24.5 | 34.6 | 93600000           | 78000              | = | 650  | × | 120  | 850 |
| S60-3-4        | 横圧縮 | 8.1                  | 8.1                  | 18.8 | 17.3 | 30600000           | 102000             | = | 1700 | × | 60   | 325 |

表 2-35 CLT 袖壁の座屈強度(S60、設計値)

### 2.7.2. RC 柱の設計(共通)

# (1) 設計段階における検討

対象は、図 2-1 で示した想定建物の柱部分を縮尺 2/3 で取り出した 450mm 角断面の RC 柱である。 主筋は D19 を 16 本配筋し、帯筋は試験体 AS、AD の鉛直接合面にボルトを埋め込むためのスペース を設けることを考え、帯筋間隔をやや広め(座屈防止のため、主筋径の 6 倍以下には収める)に 4-D10@100 としている。

表 2-36 に RC 柱単体の水平耐力の算定結果を示す。曲げ終局時せん断力とせん断耐力は、式(2.30)、 (2.31)に基づいて計算した<sup>[2-2]</sup>。また、長期荷重は柱断面に対する軸力比として 0.1 としている。載荷形 式を片持ち柱形式、逆対称形式のいずれとした場合にも、RC 柱の曲げ降伏がせん断破壊に先行する ことを確認した。文献[2-7]では、せん断破壊した 288 体の柱試験体に対して式(2.31)を適用したとこ ろ、実験値/計算値の平均値が 1.37、変動係数が 0.17 となることが報告されており、本実験の RC 柱 を単独で載荷した場合にせん断破壊する恐れは小さいものと考えられる。

$$cN_{\min} \leq N_{c} < 0 \text{ O } \geq \underbrace{\textcircled{B}}_{c} M_{u} = 0.5 \, _{c} a_{g} \, _{c} \sigma_{y} g_{1} D_{c} + 0.5 N_{c} g_{1} D_{c}$$

$$0 \leq N_{c} \leq _{c} N_{b} \text{ O } \geq \underbrace{\textcircled{B}}_{c} M_{u} = 0.5 \, _{c} a_{g} \, _{c} \sigma_{y} g_{1} D_{c} + 0.5 N_{c} D_{c} \left(1 - \frac{N_{c}}{b_{c} D_{c} \, _{c} F_{c}}\right)$$

$$cN_{b} < N_{c} \leq _{c} N_{\max} \text{ O } \geq \underbrace{\textcircled{B}}_{c} M_{u} = (0.5 \, _{c} a_{g} \, _{c} \sigma_{y} g_{1} D_{c} + 0.024(1 + g_{1})(3.6 - g_{1}) b_{c} D_{c}^{2} \, _{c} F_{c}) \frac{c N_{\max} - N_{c}}{c N_{\max} - c N_{b}}$$

(2.30)

ここで、 $ca_g$ : RC 柱の主筋全断面積、 $c\sigma_y$ : RC 柱主筋の降伏強度、 $g_1$ : RC 柱の引張筋重心と圧縮筋 重心との距離の全せいに対する比、 $D_c$ : RC 柱のせい、 $N_c$ : RC 柱の軸方向力、 $b_c$ : RC 柱の幅、 $F_c$ : コ ンクリートの設計基準強度、 $cN_{max}$ : RC 柱の圧縮耐力、 $cN_{min}$ : RC 柱の引張耐力、 $cN_b$ : RC 柱の釣合軸 力(=0.22(1+ $g_1$ ) $b_cD_{cc}F_c$ )である。

$${}_{c}\mathcal{Q}_{su} = \left\{ \frac{0.068 {}_{c} p_{t}^{0.23} ({}_{c}F_{c} + 18)}{M / (Q \cdot d_{c}) + 0.12} + 0.85 \sqrt{{}_{c} p_{wc} \sigma_{wy}} + 0.1 {}_{c} \sigma_{0} \right\} b_{c} j_{c}$$

(2.31)

ここで、 $p_1$ : RC 柱の引張鉄筋比(%)、 $F_c$ : コンクリートの設計基準強度(N/mm<sup>2</sup>)、M/Q: M, Qはそれぞれ終局強度算定時における部材内の最大曲げモーメント及びせん断力(ただし、 $M/(Qd_c)$ は、 $M/(Qd_c)<1$ のとき1とし、 $M/(Qd_c)>3$ のとき3とする)(mm)、 $d_c$ : RC 柱の有効せい(mm)、 $p_w$ : RC 柱のせん断補強筋比(小数、中子筋を除く場合 0.012 を上限とする。ただし、せん断補強筋として中子筋を併用する場合やスパイラル筋を用いる場合には 0.015 を上限とすることができる。)、 $c_{Wy}$ : RC 柱のせん断補強筋の降伏強度(N/mm<sup>2</sup>)、 $j_c$ : RC 柱の応力中心距離で7 $d_c/8$ としてよい(mm)、 $c_{\sigma_0}$ : RC 柱の平均軸方向応力度(= $N_c/(b_c D_c)$ )(N/mm<sup>2</sup>)で0.4 $c_c$ 以下である。

|           |                                                                    | 出估  | 設調   | 计值   |      | 試測   | <b></b> |      |  |  |  |  |  |  |
|-----------|--------------------------------------------------------------------|-----|------|------|------|------|---------|------|--|--|--|--|--|--|
|           |                                                                    | 中世  | 片持ち  | 逆対称  | AS   | BS   | AD      | BD   |  |  |  |  |  |  |
| 曲げ耐力時の軸力  | Nc                                                                 | kN  | 486  | 486  | 601  | 591  | 603     | 591  |  |  |  |  |  |  |
| せん断スパン    | а                                                                  | m   | 2.40 | 0.85 | 2.40 | 2.40 | 0.85    | 0.85 |  |  |  |  |  |  |
| 曲げ終局モーメント | <sub>c</sub> M <sub>u</sub>                                        | kNm | 330  | 330  | 355  | 353  | 356     | 353  |  |  |  |  |  |  |
| 曲げ耐力時せん断力 | <sub>c</sub> Q <sub>mu</sub>                                       | kN  | 138  | 388  | 148  | 147  | 419     | 416  |  |  |  |  |  |  |
| せん断耐力     | <sub>c</sub> Q <sub>su</sub>                                       | kN  | 358  | 411  | 405  | 403  | 466     | 463  |  |  |  |  |  |  |
| 水平耐力      | Min( <sub>c</sub> Q <sub>mu</sub> , <sub>c</sub> Q <sub>su</sub> ) | kN  | 138  | 388  | 148  | 147  | 419     | 416  |  |  |  |  |  |  |
| せん断余裕度    | _00_mu                                                             |     | 2.60 | 1.06 | 2.74 | 2.74 | 1.11    | 1.11 |  |  |  |  |  |  |

表 2-36 RC 柱単体の水平耐力

表 2-37 に柱脚および柱頭で塑性ヒンジが形成された状況を想定した場合の付着応力 ctf と付着割裂 強度 cTou の比較<sup>[2-2]、[2-10]</sup>を示す。なお、設計値には RC 柱主筋の規格降伏強度を、試験値には RC 柱主筋の実強度を用いた。cTou/ctf は 1.0 を上回っており、付着割裂破壊の恐れがないことが確認できる。

$${}_{c}\tau_{f} = \frac{{}_{c}d_{b} \cdot \Delta\sigma}{4(L_{0} - d_{c})}$$

$${}_{c}\tau_{bu} = \alpha_{t} \left\{ (0.085b_{i} + 0.10)\sqrt{{}_{c}F_{c}} + k_{st} \right\} \quad (-段目主筋の場合)$$
(2.32)

(2.33)

ここで、 $_{cd_{b}}$ : RC 柱の主筋径、 $\Delta \sigma$ : 終局限界状態における部材両端部の主筋の応力度の差、 $L_{0}$ : 部材の内法長さ、 $d_{c}$ : RC 柱の有効せい、 $a_{t}$ : 上端筋に対する付着強度低減係数、 $b_{i}$ : 割裂線長さ比、 $_{c}F_{c}$ : コンクリートの設計基準強度(N/mm<sup>2</sup>)、 $k_{st}$ : 横補強筋の効果を示す係数である。

|       |                                                            | 畄伝       | 記手術  |      | 試験値  |      |      |  |
|-------|------------------------------------------------------------|----------|------|------|------|------|------|--|
|       | 定差長さして                                                     |          | 议訂唱  | AS   | BS   | AD   | BD   |  |
| 定着長さ  | L <sub>0</sub>                                             | m        | 1.7  | 1.7  | 1.7  | 1.7  | 1.7  |  |
| 付着強度  | <sub>c</sub> T <sub>bu</sub>                               | $N/mm^2$ | 4.2  | 4.4  | 4.4  | 4.4  | 4.4  |  |
| 付着応力  | cT f                                                       | $N/mm^2$ | 2.5  | 2.8  | 2.8  | 2.8  | 2.8  |  |
| 応力差   | Δσ                                                         | $N/mm^2$ | 690  | 766  | 766  | 766  | 766  |  |
| 付着余裕度 | <sub>c</sub> τ <sub>bu</sub> / <sub>c</sub> τ <sub>f</sub> |          | 1.67 | 1.59 | 1.58 | 1.59 | 1.58 |  |

表 2-37 RC 柱主筋の付着割裂破壊の検討

#### (2) 骨組解析の結果を基にした検討

2.6 節で示した骨組解析で得られた最大せん断力を用いて、RC 柱のせん断設計に支障がないかを確認する。表 2-38 に詳細モデルおよび簡易モデルを用いた場合の RC 柱の最大せん断力、せん断耐力とせん断余裕度の一覧を示す。なお、RC 柱の最大せん断力は、解析終了時までの最大値、せん断耐力は、全体変形角 *R*=2.0×10<sup>-2</sup>rad 時の軸力やせん断スパンを用いて計算している。骨組解析では、式(2.31)に示すせん断耐力式の評価精度を考慮して、計算値を 1.4 倍に割り増した値をせん断耐力としてモデル化を行ったが、ここでは、せん断耐力の割り増しは行っていない。

表 2-38 に示す最大せん断力は、表 2-36 で示した RC 柱単体の場合の曲げ降伏時せん断力と比較し て、逆対称載荷となる試験体 BD を除くと、片持ち柱形式の試験体 AS、BS で 2.0~2.3 倍、逆対称載 荷となる試験体 AD で 1.4~1.7 倍に増大しており、CLT 袖壁を設置することで、RC 柱のせん断負担 が大きくなっている。したがって、逆対称の曲げモーメント分布を想定するだけでは、CLT 袖壁が取 り付いた RC 柱のせん断設計を行う上で十分でないことが確認された。

また、RC 柱の部材種別判定に関係する項目として、RC 柱の軸応力度比、せん断応力度比がある。 軸応力度比については、図 2-76 で RC 柱の軸力分布を示したが、いずれの試験体でも、実験開始時の 圧縮軸力よりも小さくなるが、もしくは同程度に留まることが確認されている。本実験で試験体に作 用させた長期軸力は、RC 柱断面のコンクリート断面に対して 0.1 倍に留まるため、FA の条件を満足 している。また、せん断応力度比については、図 2-85 で示したように、試験体 AS、BS、BD では、 FA の条件となる 0.10 以下に留まったが、試験体 AD では、せん断応力度比が 0.15 を超えており、FC の条件を満足しなかった。

| 詳細モデル  |                                          | 畄位 | 試験値  |      |      | 館見工  | 畄位                                                                  | 試験値 |    |      |      |      |      |
|--------|------------------------------------------|----|------|------|------|------|---------------------------------------------------------------------|-----|----|------|------|------|------|
|        |                                          | 千匹 | AS   | BS   | AD   | BD   | 間勿に                                                                 | 十四  | AS | BS   | AD   | BD   |      |
| 最大せん断力 | <sub>c</sub> Q <sub>max</sub>            | kN | 339  | 337  | 694  | 456  | 最大せん断力 <sub>c</sub> Q <sub>max</sub>                                |     | kN | 298  | 333  | 563  | 442  |
| せん断耐力  | <sub>c</sub> Q <sub>su</sub>             | kN | 395  | 383  | 551  | 453  | せん断耐力 <sub>c</sub> Q <sub>su</sub>                                  |     | kN | 371  | 382  | 503  | 445  |
| せん断余裕度 | $_{\rm c}Q_{\rm su}/_{\rm c}Q_{\rm max}$ |    | 1.16 | 1.14 | 0.79 | 0.99 | せん断余裕度 <sub>c</sub> Q <sub>su</sub> / <sub>c</sub> Q <sub>max</sub> |     |    | 1.24 | 1.15 | 0.89 | 1.01 |

表 2-38 RC 柱の最大せん断力、せん断耐力とせん断余裕度(骨組解析)

# 2.7.3. RC 柱の設計 (パンチングシア破壊)

図 2-86 に、CLT 袖壁の水平接合部における摩擦抵抗が期待できない場合の水平抵抗機構を示す。 試験体 AS、AD では、図 2-76 で示したように CLT 袖壁に引張軸力が作用し、RC スタブとの間に離 間が生じるため、CLT 袖壁に作用する水平せん断力(図中の Qwl)を RC 部分に直接伝達できない。ま た、図 2-83 で示したように、圧縮軸力が作用する CLT 袖壁でも、水平せん断力/曲げ圧縮力の比率 が摩擦係数として想定している 0.5 を超えるケースが確認されており、CLT 袖壁に作用する水平せん 断力(図中の Qwr)の全てを水平接合部を介して伝達できる訳ではない。そこで、試験体 AS、AD で は、簡略化のため、RC 柱および CLT 袖壁に作用する水平せん断力の和(Qe+Qwl+Qwr)が、RC 柱のパ ンチングシア耐力を上回ることを確認する。なお、パンチング破壊の検討では、スパン中央で RC 柱 に作用しているせん断力と材端で CLT 袖壁から伝達されるせん断力は、本来分けて考えるべきである が、ここでは簡略化のため、両者が材端において同時に作用している状況を仮定することとした。

また、試験体 BS、BD では、図 2-83 で示したように、CLT 袖壁の水平せん断力/曲げ圧縮力の比率が摩擦係数として想定している 0.5 を十分に下回っているため、CLT 袖壁に作用する水平せん断力を摩擦抵抗のみで伝達できるものと考えられるが、バックアップとして、CLT 袖壁端に滑り止めを設けている。目地部分の損傷等の理由により、水平接合面における摩擦抵抗が期待できなくなった場合には、図 2-86 に示すように、RC 柱の側面を介したせん断伝達が行われるため、RC 柱の両側にある CLT 袖壁のうちの一方が負担する水平せん断力(図中の *Q*<sub>wl</sub>)のみが、RC 柱に作用することになる。そこで、試験体 BS、BD に関しても、RC 柱および CLT 袖壁に作用する水平せん断力の和(*Q*<sub>c</sub>+max (*Q*<sub>wl</sub>, *Q*<sub>wr</sub>))が、RC 柱のパンチングシア耐力を上回ることを確認する。



パンチング破壊の検討は、文献[2-8]に記載されている式(2.34)に基づいて行う。なお、評価精度も勘案し、ここでは、本文に記載された式(2.35)の下限式 Kmin ではなく、付録に記載された式(2.36)の平均

с

$$Q_{pu} = K_{av} \cdot {}_c \tau_0 \cdot {}_c b_e \cdot D_c$$

$$K_{\rm min} = 0.34 / (0.52 + a_c / D_c)$$

(2.34)

(2.35)

(2.36)

$$K_{av} = 0.58 / (0.76 + a_c / D_c)$$

$$c τ_0 = 0.98 + 0.1_c F_c + 0.85 σ_c (0 ≤ σ_c ≤ 0.33_c F_c - 2.75 𝔅)$$
  

$$c τ_0 = 0.22_c F_c + 0.49 \min(0.66_c F_c, σ_c) (0.33_c F_c - 2.75 < σ_c 𝔅)$$

(2.37) ここで、 $cQ_{pu}$ : RC 柱のパンチングシア耐力、 $b_e$ : パンチングを受ける RC 柱の直交材を考慮した有 効幅で RC 柱の幅としてよい(mm)、 $D_c$ : パンチングを受ける RC 柱のせい(mm)、 $a_c$ : CLT 袖壁 から RC 柱に伝達される水平せん断力が集中的に作用すると仮定した場合の作用点から水平断面まで の距離で $a_c/D_c = 1/3$ としてよい、 $cF_c$ : コンクリートの圧縮強度(N/mm<sup>2</sup>)、 $\sigma_c$ :  $cp_{gc}\sigma_y+c\sigma_0$ 、 $cp_g$ :  $cb_e D_c$ に対する RC 柱の全主筋断面積の比、 $c\sigma_y$ : RC 柱主筋の降伏強度(N/mm<sup>2</sup>)、 $c\sigma_0$ :  $N_c/(cb_e D_c)$ 、 $N_c$ : メカ ニズム時における RC 柱軸方向力で圧縮を正とする(N)である。

### (1) 設計段階における検討

設計段階では、CLT 袖壁の応力状態を推定することが難しいため、2.7.2 項に示す表 2-36 に示した RC 柱の水平耐力と、2.7.4 項に示す CLT 袖壁のせん断耐力の和が、RC 柱のパンチングシア耐力以下 であることを確認する。

表 2-39 に算定結果を示すが、RC 柱のパンチングシア耐力は非常に大きく、CLT 袖壁がせん断降伏 した場合でも、十分なせん断余裕度が確保できることから、全ての試験体において、摩擦抵抗が期待 できない場合でも、CLT 袖壁が負担する水平せん断力を RC 柱に伝達しても問題がないことが分かる。

| (a) itti時14 AS、 AD |                                       |     |      |      |      |      |  |  |  |  |  |
|--------------------|---------------------------------------|-----|------|------|------|------|--|--|--|--|--|
|                    |                                       | 畄仕  | 設調   | †値   | 試験値  |      |  |  |  |  |  |
|                    |                                       | 부교  | 片持ち  | 逆対称  | AS   | AD   |  |  |  |  |  |
| RC柱の水平耐力           | $Min(_{c}Q_{mu}, _{c}Q_{su})$         | kNm | 138  | 388  | 148  | 419  |  |  |  |  |  |
| CLTのせん断耐力          | kN                                    | 133 | 133  | 133  | 133  |      |  |  |  |  |  |
| パンチングシア耐力          | сQpu                                  | kN  | 1105 | 1105 | 1314 | 1317 |  |  |  |  |  |
| 入力せん断力             | $_{c}Q_{mu} + 2_{w}Q_{su}$            | kN  | 404  | 655  | 415  | 685  |  |  |  |  |  |
| せん断余裕度             | $_{c}Q_{pu}/(_{c}Q_{mu}+2_{w}Q_{su})$ |     | 2.73 | 1.69 | 3.17 | 1.92 |  |  |  |  |  |

表 2-39 RC 柱のパンチングシア耐力の確認(設計段階)

(b) 試験体 BS、BD

|           |                                      | 単位  | 設調   | 计值   | 試験値  |      |  |
|-----------|--------------------------------------|-----|------|------|------|------|--|
|           |                                      | 中世  | 片持ち  | 逆対称  | BS   | BD   |  |
| RC柱の水平耐力  | $Min(_{c}Q_{mu}, _{c}Q_{su})$        | kNm | 138  | 388  | 766  | 766  |  |
| CLTのせん断耐力 | wQsu                                 | kN  | 133  | 133  | 133  | 133  |  |
| パンチングシア耐力 | сQpu                                 | kN  | 1105 | 1105 | 1300 | 1300 |  |
| 入力せん断力    | $_{c}Q_{mu} + _{w}Q_{su}$            | kN  | 404  | 655  | 1033 | 1033 |  |
| せん断余裕度    | $_{c}Q_{pu}/(_{c}Q_{mu}+_{w}Q_{su})$ |     | 2.73 | 1.69 | 1.26 | 1.26 |  |

# (2) 骨組解析の結果を基にした検討

表 2-40 に骨組解析の応力を用いて計算した RC 柱のパンチングシア耐力と、入力せん断力の関係を示す。なお、パンチングシア耐力は、全体変形角 *R*=2.0×10<sup>-2</sup>rad 時の軸力を用いて計算している。ま

た、入力せん断力は、解析終了時までの試験体 AS、AD では、RC 柱と 2 枚の CLT 袖壁の水平せん断 力の和の最大値、試験体 BS、BD では、RC 柱と CLT 袖壁のうち一方の水平せん断力の和の最大値と した。いずれの試験体でも、表 2-39 で示した設計段階の検討と比較して、RC 柱に作用する入力せん 断力が増加しているが、RC 柱のパンチングシア耐力には十分な余裕があることが確認できる。

表 2-40 RC 柱のパンチングシア耐力の確認(骨組解析)

(a) 試験体 AS、AD

| =半4四 :        | 詳細モデル                              |    | 試験値  |      |    | 節見。                                                     | 畄佔                                 | 試験値 |      |      |
|---------------|------------------------------------|----|------|------|----|---------------------------------------------------------|------------------------------------|-----|------|------|
| <u>第</u> 十744 | 中世                                 | AS | AD   |      | 间勿 |                                                         | 半山                                 | AS  | AD   |      |
| パンチングシア耐力     | <sub>c</sub> Q <sub>pu</sub>       | kN | 1114 | 1279 |    | パンチングシア耐力                                               | <sub>c</sub> Q <sub>pu</sub>       | kN  | 1132 | 1310 |
| 入力せん断力        | $Q_c + Q_{wl} + Q_{wr}$            | kN | 431  | 877  |    | 入力せん断力 Q <sub>c</sub> +Q <sub>wl</sub> +Q <sub>wr</sub> |                                    | kN  | 426  | 834  |
| せん断余裕度        | $_{c}Q_{pu}/(Q_{c}+Q_{wl}+Q_{wr})$ |    | 2.59 | 1.46 |    | せん断余裕度                                                  | $_{c}Q_{pu}/(Q_{c}+Q_{wl}+Q_{wr})$ |     | 2.66 | 1.57 |

(b) 試験体 BS、BD

| 詳細モデル     |                                         | 用任 | 試験値  |      | 簡見エデル     |                                                                     |    | 試験値  |      |
|-----------|-----------------------------------------|----|------|------|-----------|---------------------------------------------------------------------|----|------|------|
|           |                                         | 中世 | BS   | BD   | 间勿        |                                                                     | 半世 | BS   | BD   |
| パンチングシア耐力 | <sub>c</sub> Q <sub>pu</sub>            | kN | 1146 | 1267 | パンチングシア耐力 | сQpu                                                                | kN | 1135 | 1240 |
| 入力せん断力    | $Q_{c} + max(Q_{wl}, Q_{wr})$           | kN | 417  | 511  | 入力せん断力    | $Q_c + max(Q_{wl}, Q_{wr})$                                         | kN | 417  | 513  |
| せん断余裕度    | $_{c}Q_{pu}/(Q_{c}+max(Q_{wl},Q_{wr}))$ |    | 2.75 | 2.48 | せん断余裕度    | $_{\rm c}Q_{\rm pu}/(Q_{\rm c}{+}{\rm max}(Q_{\rm wl},Q_{\rm wr}))$ |    | 2.72 | 2.42 |

### 2.7.4. CLT 袖壁の設計

# (1) 設計段階における検討

袖壁長さは柱せい(450mm)の約1.5 倍の650mmとする。当初は厚さ150mmの袖壁を用いること を想定していたが、CLT 袖壁の厚さが大きくなるほど、また、CLT 袖壁の長さが長くなるほど、試験 体 AD、AS では、鉛直接合部でせん断耐力を確保するのが難しくなるため、厚さ90mmのCLT 袖壁 を用いることとした。また、試験体 BS では、滑り止めへの水平せん断力の伝達をCLT 袖壁の仕口面 の支圧によって行う可能性があるため、繊維方向とほぼ同等な圧縮強度を確保し、支圧面の面積を小 さく抑えることができるように、外層と内層のラミナの数が等しい4 層のCLT 材を用いた。

CLT 袖壁の水平断面のせん断耐力を式(2.38)で算定すると、いずれの厚さの場合も 133kN (片側のみ)となる。ボルトや接合材を使って CLT 袖壁に相応の曲げモーメントを負担させることができれば、 表 2-36 で示した RC 柱と遜色ないせん断力の負担が期待できるが、設計段階では、CLT 袖壁にどの程 度のせん断力が作用するか想定することは難しい。

また、2.6 節の数値解析でも示したように、部材実験の CLT 袖壁には大きな圧縮軸力が作用するため、この状態で逆対称の曲げモーメントが作用すると、CLT 袖壁の鉛直断面に作用するせん断力が局所的に大きくなる。そこで、CLT 袖壁の鉛直断面のせん断耐力を式(2.39)で算定し、入力せん断力との比較を行うこととした。いずれの厚さの場合も鉛直断面のせん断耐力は 349kN となる。

$$_{w}Q_{su} = t_{w}D_{wt}F_{st}$$

(2.38)

(2.39)

ここで、 $t_w$ : CLT 袖壁の厚さ、 $D_w$ : CLT 袖壁のせい、 $_tF_{sl}$ : CLT の面内せん断の基準強度である。

$$_{wv}Q_{su} = t_{w}h_{0t}F_{sI}$$

ここで、tw: CLT 袖壁の厚さ、ho: CLT 袖壁の内法高さ、tFsl: CLT の面内せん断の基準強度である。

### (2) 骨組解析の結果を基にした検討

表 2-41 に骨組解析の結果から求めた CLT 袖壁の水平断面、鉛直断面に作用するせん断力の最大値 とせん断耐力の比較を示す。詳細モデルでは、鉛直断面の最大せん断力として、CLT 袖壁を模擬した ブレース要素に作用する軸方向力の鉛直成分を累加することで、図 2-81 で示した鉛直せん断力 Qwvi、 Qwv2 の最大値を用いた。簡易モデルでは、鉛直断面の最大せん断力として、式(2.29)による CLT 袖壁 の鉛直断面のせん断力の推定値 pQwv1、pQwv2 の最大値を用いた。

CLT 袖壁の水平断面では、簡易モデルの試験体 AD を除くと、最大せん断力がせん断耐力を下回っ ており、せん断耐力に到達していないように見えるが、鉛直断面のせん断余裕度を確認すると、詳細 モデルでは、試験体 AS、AD において、鉛直せん断力がせん断耐力にほぼ到達しており、試験体 BS、 BD におけるせん断余裕度も水平断面と比較して小さい。一方、簡易モデルについては、詳細モデル と異なり、鉛直断面に作用するせん断力が頭打ちとならないため、試験体 AS、BS、AD において、鉛 直断面のせん断余裕度が 1.0 を大きく下回っている。

| 詳細モデル |        |                             |    | 試験値  |      |      |      |  |  |  |  |
|-------|--------|-----------------------------|----|------|------|------|------|--|--|--|--|
|       |        |                             | 中世 | AS   | BS   | AD   | BD   |  |  |  |  |
|       | 最大せん断力 | wQmax                       | kN | 93   | 83   | 111  | 88   |  |  |  |  |
| 水平    | せん断耐力  | $_{\rm w} {\rm Q}_{\rm su}$ | kN | 133  | 133  | 133  | 133  |  |  |  |  |
|       | せん断余裕度 | $_{w}Q_{su}/_{w}Q_{max}$    |    | 1.44 | 1.61 | 1.21 | 1.52 |  |  |  |  |
|       | 最大せん断力 | $_{wv}Q_{max}$              | kN | 342  | 304  | 343  | 300  |  |  |  |  |
| 鉛直    | せん断耐力  | $_{\rm wv}Q_{\rm su}$       | kN | 349  | 349  | 349  | 349  |  |  |  |  |
|       | せん断余裕度 | wvQsu/wvQmax                |    | 1.02 | 1.15 | 1.02 | 1.16 |  |  |  |  |

表 2-41 CLT 袖壁の最大せん断力とせん断耐力の比較(骨組解析)

|        | 簡易モデル  |                              |    |      | 試験値  |      |      |  |  |  |  |  |
|--------|--------|------------------------------|----|------|------|------|------|--|--|--|--|--|
|        | 間刻とアル  |                              | 千匹 | AS   | BS   | AD   | BD   |  |  |  |  |  |
| 最大せん断力 |        | $_{\rm w}Q_{\rm max}$        | kN | 101  | 84   | 135  | 78   |  |  |  |  |  |
| 水平     | せん断耐力  | $_{\rm w} Q_{\rm su}$        | kN | 133  | 133  | 133  | 133  |  |  |  |  |  |
|        | せん断余裕度 | ${}_{w}Q_{su}/{}_{w}Q_{max}$ |    | 1.32 | 1.60 | 0.99 | 1.71 |  |  |  |  |  |
|        | 最大せん断力 | $_{p}Q_{wv}$                 | kN | 743  | 604  | 417  | 263  |  |  |  |  |  |
| 鉛直     | せん断耐力  | $_{\rm wv}Q_{\rm su}$        | kN | 349  | 349  | 349  | 349  |  |  |  |  |  |
|        | せん断余裕度 | $_{wv}Q_{su}/_{p}Q_{wv}$     |    | 0.47 | 0.58 | 0.84 | 1.33 |  |  |  |  |  |

# 2.7.5. 接合部の設計(試験体 AS、AD)

# 2.7.5.1. 詳細

図 2-87 に試験体 AS、AD の鉛直接合部の形状を示す。軸力及びせん断力に対する設計の考え方を示す。



### 2.7.5.2. 鉛直接合部の設計(水平せん断力に対する検討)

### (1) せん断耐力の算定

試験体 AS、AD では、CLT 袖壁の脚部にアンカーボルトを設置しており、図 2-83 で示したように、 CLT 袖壁に作用する全ての水平せん断力を上下の仕口面に作用する摩擦力だけでは伝達できない可能 性があることから、ここでは簡略化のため、鉛直接合部を介して、CLT 袖壁に作用する水平せん断力 が全て隣接する RC 柱部材に伝達可能かどうかを確認する。なお、鉛直接合部を介した水平せん断力 の伝達に関しては、現状では十分な知見がなく、仮定に基づいた提案を行っているため、今後の検証 が必要である。

式(2.40)に示す鉛直接合部の水平せん断耐力のうち、鉛直接合部の山形鋼-CLT 袖壁間の接着面の せん断耐力は式(2.41)で、寸切りボルトの降伏耐力は式(2.42)で、鉛直接合材のウェブの降伏耐力は式 (2.43)で、鉛直接合材のフランジの曲げ耐力時引張力は式(2.44)で求める。なお、式(2.44)では、鉛直接 合材に設けたスチフナーの寄与分を無視しているため、実際にはより高い耐力が得られるものと考え られる。ここでは簡略化のため、鉛直接合部の RC 柱-CLT 袖壁間に充填したエポキシ樹脂の接着に よる寄与分は無視することとした。また、水平接合部における軸耐力の検証で確認する山形鋼-CLT 袖壁間の接着面近傍における外層ラミナの繊維直交方向の引張破壊については、ここでは考慮しない。 水平せん断耐力として考慮する「寸切りボルト、フランジ、ウェブ、接着面」の範囲は、図 2-89 に示 すように、CLT 袖壁の内法高さの 0.50 倍を目安とした。

$$v_h Q_u = \min(v_{hr} Q_u, v_{ht} Q_y, v_{hw} Q_y, v_{hf} Q_u)$$

ここで、vhQu: 鉛直接合部の水平せん断耐力、vhaQu: 鉛直接合部の接着面のせん断耐力、vhtQy: 鉛直接合部の寸切りボルトの降伏耐力、vhwQy: 鉛直接合材のウェブの降伏耐力、vhtQu: 鉛直接合材のフランジの曲げ耐力時引張力である。

$$_{vha}Q_u = n_v \cdot (0.5h_j \cdot L_v - \sum A_h) \cdot f_r$$

ここで、 $n_v$ : 鉛直接合材の枚数 (=2 枚)、 $0.5h_j$ : 図 2-89 に示す範囲の山形鋼-CLT 袖壁間の接着面の高さ (=650mm)、 $L_v$ : 図 2-89 に示す範囲の山形鋼-CLT 袖壁間の接着面の長さ (=150mm)、 $\Sigma A_h$ : 鉛直接合部に設けた孔の面積 (=4×314mm<sup>2</sup>)、 $f_r$ : ラミナのローリングシア強度<sup>[24]</sup> (=1.5N/mm<sup>2</sup>) である。

$$_{vht}Q_y = 0.5_v n_t \cdot _t a_s \cdot _t \sigma_y$$

(2.42)

(2.40)

(2.41)

ここで、 $0.5_v n_t$ : 図 2-89 に示す範囲の鉛直接合部における寸切りボルトの本数 (=12 本)、 $a_s$ : 寸切りボルトの断面積 (=157mm<sup>2</sup>)、 $\sigma_y$ : 寸切りボルトの降伏強度である。

$$v_{hw}Q_y = n_v \cdot {}_v t_w \cdot (0.5_v L_w - \sum d_h) \cdot {}_{vw}\sigma_y$$
(2.43)

ここで、 $n_v$ : 鉛直接合材の枚数 (=2 枚)、 $_vt_w$ : 鉛直接合材のウェブの厚さ (=12mm)、 $0.5_vL_w$ : 図 2-89 に示す範囲の鉛直接合材のウェブの長さ (=650mm)、 $\Sigma A_h$ : 鉛直接合部に設けた孔の直径の和 (=2×20mm)、 $_{vw\sigma_y}$ : 鉛直接合材のウェブの降伏強度 (=325N/mm<sup>2</sup>) である。

$$_{vhf}Q_{u} = \frac{2 \cdot \frac{1}{4} (0.5_{v}L_{f}) \cdot _{v}t_{f}^{2} \cdot _{vf}\sigma_{v}}{_{v}L_{h}}$$

(2.44)

ここで、 $0.5_vL_f: 2 - 89$ に示す範囲の鉛直接合材のフランジの長さ(=650mm)、 $vf_f: 鉛直接合材の フランジの厚さ(=12mm)、<math>vf_y: 鉛直接合材のフランジの降伏強度(=325N/mm^2), vL_h: 鉛直接合材 のフランジに設けた寸切りボルトの重心位置からウェブ端部までの長さ(=78mm)である。$ 



図 2-89 試験体 AS、AD における水平せん断耐力の確認方法

|                         |                 | 1  | - 12 | 200  |      |                                                               |  |  |  |  |
|-------------------------|-----------------|----|------|------|------|---------------------------------------------------------------|--|--|--|--|
|                         |                 |    | 設計値  | 試験値  |      | 備老                                                            |  |  |  |  |
|                         |                 |    |      | AS   | AD   | 通う                                                            |  |  |  |  |
| 鉛直接合部の接着面のせん断耐力 vhaQ    |                 |    | 289  | 289  | 289  | =2枚×(150mm×650mm−4×314mm²)×1.5N/mm²                           |  |  |  |  |
| 鉛直接合部の寸切りボルトの降伏耐力       |                 | kN | 791  | 1    | -    | =12本×157mm <sup>2</sup> ×420N/mm <sup>2</sup>                 |  |  |  |  |
|                         |                 | kN | -    | 1017 | 1017 | =12本×157mm <sup>2</sup> ×540N/mm <sup>2</sup>                 |  |  |  |  |
| 鉛直接合材のウェブの降伏耐力          | $_{vhw}Q_{y}$   | kN | 4758 | 4758 | 4758 | =2枚×12mm×(650mm-2×20mm) ×325N/mm <sup>2</sup>                 |  |  |  |  |
| 鉛直接合材のフランジの<br>曲げ耐力時引張力 | $_{vhf}Q_{u}$   | kN | 195  | 195  | 195  | =2枚×1/4×650mm×(12mm) <sup>2</sup> ×325N/mm <sup>2</sup> /78mm |  |  |  |  |
| 鉛直接合部の水平せん断耐力           | $_{vh}Q_{u} \\$ | kN | 195  | 195  | 195  |                                                               |  |  |  |  |

表 2-42 鉛直接合部の水平せん断耐力

### (2) 設計段階における検討

設計段階では、CLT 袖壁から RC 柱にどの程度のせん断力が伝達されるか分からないため、ここでは、CLT 袖壁のせん断耐力 wQsu に見合うせん断力を鉛直接合部を介して伝達できるかどうかを確認する。表 2-43 に示すように、鉛直接合部の水平せん断耐力は、CLT 袖壁のせん断耐力を十分に上回っている。

$$_{w}Q_{su} = t_{w}D_{wt}F_{sI}$$

(2.45)

ここで、 $t_w$ : CLT 袖壁の厚さ、 $D_w$ : CLT 袖壁のせい、 ${}_tF_{sl}$ : CLT の面内せん断の基準強度である。

表 2-43 設計段階における鉛直接合部に作用する水平せん断力の検討

|               |                | 単位 | 設計値  | 備考                                                     |
|---------------|----------------|----|------|--------------------------------------------------------|
| CLT袖壁の水平せん断耐力 | ${}_{w}Q_{su}$ | kN | 133  | $=90$ mm $\times$ 650mm $\times$ 2.28N/mm <sup>2</sup> |
| 鉛直接合部の水平せん断耐力 | $_{vhi}Q_{u}$  | kN | 195  |                                                        |
| 検定比           |                |    | 1.46 |                                                        |

### (3) 骨組解析の結果を基にした検討

表 2-44 に試験体 AS、AD の骨組解析の結果から求めた鉛直接合部に作用する水平せん断力の最大 値 vhQmax を示す。ここでは、設計用せん断力の割増や、図 2-89 に示すような摩擦係数 µ による水平せ ん断力の伝達は考慮せず、解析結果から得られた CLT 袖壁に作用する水平せん断力をそのまま用い る。表 2-44 に示す引張脚部、圧縮頂部では、図 2-89 に示すように、CLT 袖壁に形成される圧縮スト ラットから伝達される水平せん断力が、CLT 袖壁側面の仕口部から直接 RC 柱に伝達されるため、検 討を行う必要はない。いずれのケースでも検定比は 1.0 を上回っており、せん断伝達を行う上で支障 はないものと考えられる。

表 2-44 骨組解析の結果を用いた鉛直接合部に作用する水平せん断力の検討

| 詳細モデル                                      |                   |    |      |      |      | 試馬   | <b>検値</b> |      |      |      |
|--------------------------------------------|-------------------|----|------|------|------|------|-----------|------|------|------|
|                                            |                   |    |      | A    | S    |      | AD        |      |      |      |
|                                            |                   |    | 引張脚部 | 引張頂部 | 圧縮脚部 | 圧縮頂部 | 引張脚部      | 引張頂部 | 圧縮脚部 | 圧縮頂部 |
| 数値解析における最大せん断力                             | $_{vh}Q_{max} \\$ | kN | 35   | 35   | 72   | 72   | 93        | 93   | 93   | 93   |
| 鉛直接合部の水平せん断耐力 <sub>vh</sub> Q <sub>u</sub> |                   | kN | 195  | 195  | 195  | 195  | 195       | 195  | 195  | 195  |
| 検定比                                        |                   |    | 検定不要 | 5.58 | 2.70 | 検定不要 | 検定不要      | 2.09 | 2.09 | 検定不要 |

|                    |                   |    | 試験値  |      |      |      |      |      |      |      |  |  |  |
|--------------------|-------------------|----|------|------|------|------|------|------|------|------|--|--|--|
| 簡易モデル              |                   | 単位 |      | A    | S    |      | AD   |      |      |      |  |  |  |
|                    |                   |    | 引張脚部 | 引張頂部 | 圧縮脚部 | 圧縮頂部 | 引張脚部 | 引張頂部 | 圧縮脚部 | 圧縮頂部 |  |  |  |
| 数値解析における最大せん断力     | $_{vh}Q_{max} \\$ | kN | 42   | 42   | 101  | 101  | 135  | 135  | 135  | 135  |  |  |  |
| 鉛直接合部の水平せん断耐力 vhQu |                   | kN | 195  | 195  | 195  | 195  | 195  | 195  | 195  | 195  |  |  |  |
| 検定比                |                   |    | 検定不要 | 4.59 | 1.94 | 検定不要 | 検定不要 | 1.45 | 1.45 | 検定不要 |  |  |  |
#### 2.7.5.3. 鉛直接合部の設計(鉛直せん断力に対する検討)

試験体 AD、AS では、RC 柱と CLT 袖壁を一体に近い形で挙動させるために、特に鉛直接合部に十 分なせん断耐力を与えることを目標とした。既往の実験結果<sup>例えば、[2-11]、[2-12]、[2-13]、[2-14]、[2-15]</sup>より、CLT 壁 では通常の実験では 3N/mm<sup>2</sup>程度、模型実験の場合は 4~6N/mm<sup>2</sup>程度の平均せん断強度が得られるこ とが示されている。高いせん断強度を得るための条件としては、①縦継ぎを行わないこと、②幅はぎ を行うこと、③ラミナの交差面でのずれ変形やせん断変形が生じないようにすることが報告されてい るが、本実験では、①の縦継ぎは行っていないが、②の幅はぎは行っていない。また、試験体 AD の 損傷状況から、モードIIIに該当する③のラミナの交差面のずれ変形が確認されており、ラミナ自体の せん断破壊は生じていないことから、数値解析では、せん断の基準強度(試験体 AS、AD では 2.3N/mm<sup>2</sup>、 試験体 BS では 1.7N/mm<sup>2</sup>) を CLT 袖壁のせん断強度に用いることで、実験の荷重変形関係の包絡線を 精度良く予測できたものと考えられる。

一方で、CLT と RC をエポキシで接着した場合、せん断強度はコンクリートの引張力で決まるため、 通常のコンクリートでは 2.0N/mm<sup>2</sup> 程度の強度しか得ることができず、CLT のせん断強度を十分に発 揮させることは難しい。また、木造で一般的に用いられている鋼板添え板ビス接合(例えば SB-150 を 用いた場合)でも、ビス(STS・C65)1本あたりの降伏強度が 3kN であるのに対し、CLT 袖壁の板厚 90mm、ビスの最小間隔 30mm であることを考えると、せん断強度は 2×3kN/90mm/30mm=2.2N/mm<sup>2</sup> に留まり、壁厚が大きくなるにつれ、せん断強度はさらに低下する。したがって、通常の接合部の仕 様では、CLT 袖壁をせん断破壊させるような応力を作用させることが難しいことが分かる。

部材実験では、RC 躯体と CLT 袖壁をできるだけ一体で挙動させ、構造性能がより高く向上するように、基本的に接合部の破壊を許容しない方針で、接合部の設計を行うこととした。ここでは、五十田らが検討を行った CLT 壁に接着した山形鋼を用いて、RC 躯体と CLT 袖壁を接着する方法を参考に、接合部の設計を行うこととする。図 2-90 に五十田らが提案した接合部詳細を示す<sup>[2-16]</sup>。



図 2-90 五十田らが提案した乾式工法による RC 躯体と CLT 袖壁の接合工法<sup>[2-16]</sup>

五十田らの検討では、上下の水平接合面に対して、接着工法が採用されており、CLT 壁と RC 躯体の間には密着性を確保するためのグラウトが充填されている。実験では、①平均せん断応力 2.0N/mm<sup>2</sup>付近で、スタブーグラウト間に滑りが発生した後にアンカー材が効き始め、②平均せん断応力 4.0N/mm<sup>2</sup>付近で、CLT 壁と山形鋼の接着部分でローリングシア破壊が生じている。ローリングシア強 度を 2.0N/mm<sup>2</sup>、山形鋼の高さを 50mm、板厚を 60mm とすると、平均せん断強度は 2×2.0N/mm<sup>2</sup>× 50mm/60mm=3.3N/mm<sup>2</sup>となり、凡そ実験結果と一致している(五十田らの研究では、ローリングシ ア強度に加え、表層ラミナのせん断強度も累加している)。なお、五十田らの研究では、CLT 壁に切欠 きを設けて CLT 壁と山形鋼の面を揃えている。このような加工を行うことで、CLT 壁から山形鋼に接 着面を介さずに圧縮力を直接伝達することが可能となるが、本実験では、CLT 袖壁に相応の引張応力 を負担させるため、最外縁の繊維直交方向のラミナに切欠きがあると、断面の引張強度が大幅に低下 してしまい、上記の余裕が確保できない可能性がある。また、五十田らの部材実験では、切欠きの有 無がせん断強度に及ぼす影響はあまり大きくなかったことから、本実験では、切欠きによる加工は行 っていない。

#### (1) せん断耐力の算定

図 2-91 に鉛直接合部のせん断耐力に関する考え方を示す。ここでは、鉛直接合部のせん断耐力は、 式(2.46)に示すように、RC 柱-CLT 袖壁間のせん断耐力と RC 柱-山形鋼-CLT 袖壁間のせん断耐力 のいずれか大きい方とする。前者は、式(2.47)に示す断面①を介して伝達される鉛直接合部の RC 柱-CLT 袖壁間で接着した仕口面のせん断耐力 vvcQu とする。後者は、式(2.48)に示す鉛直接合部の寸切り ボルトのせん断耐力 vvtQu、式(2.49)に示す鉛直接合部のウェブのせん断耐力 vvwQy、式(2.50)に示す鉛直 接合部の山形鋼-CLT 袖壁間の接着面におけるせん断耐力 vvaQu、式(2.51)に示す鉛直接合部の CLT 袖 壁内のラミナの接着耐力 vvgQu の最小値とする。なお、鉛直接合部においては、接合材の接着に用いた 寸切りボルト (8-M16) もせん断伝達に寄与するものと考えられるが、鉛直接合材に関しては十分な せん断耐力が確保できることが確認されたため、ここではせん断伝達要素としては取り扱わない。

式(2.47)は、文献[2-3]に示す RC-鉄骨間の接着耐力を用いた RC 柱と CLT 袖壁の仕口面の接着耐力 を示したもので、接着面近傍のコンクリートがせん断破壊するものと仮定してせん断耐力を求めたも のである。一方、式(2.48)は、文献[2-8]に記載されたあと施工アンカー(金属系、定着長がアンカー径 の 7 倍以上)のせん断耐力であり、RC 柱-山形鋼間の寸切りボルトがせん断耐力を発揮する際には ある程度大きなずれ変形が生じ、式(2.47)に示す断面①ではコンクリート部分のせん断破壊が生じ、最 大耐力の低下が既に生じているものと推測できることから、RC 柱-CLT 袖壁間と RC 柱-山形鋼-CLT 袖壁間で同時にせん断耐力に到達する可能性が低いものと考え、いずれか大きい方とすることと した。

断面②を介して伝達される式(2.50)に示す接着面のせん断耐力に関しては、接着面のせん断強度を仮 定する必要がある。本実験と同様に、CLTパネルの外層ラミナに山形鋼を接着した文献[2-16]の実験で は、接着面近傍でローリングシア破壊が生じるものとして、2.0N/mm<sup>2</sup>のせん断強度を仮定している。 一方で、文献[2-16]の実験では、せん断力が作用する方向と外層ラミナの繊維方向が直交となっている (そのためにローリングシア破壊が生じる)のに対し、本実験では、せん断力が作用する方向と外層 ラミナの繊維方向が一致しているため、ローリングシア破壊は生じない。したがって、2.0N/mm<sup>2</sup>のせ ん断強度は、接着面の耐力を安全側に評価する上では有効であるが、実際の接着面におけるせん断強 度は過小評価している可能性が高いものと考えられる。文献[2-17]では、本研究と同じスギ材を用いた 鋼材 - 木材接着部の静的せん断試験が行われており、繊維方向に載荷した場合には 6.57N/mm<sup>2</sup>、繊維 直交方向に載荷した場合には 1.59N/mm<sup>2</sup>のせん断強度が得られることが確認されている。破壊形式は いずれも木部の破壊であり、せん断強度は接着材の強度に依存していないが、繊維方向に載荷した場 合についてはばらつきが大きく、5~8N/mm<sup>2</sup>付近に分布している。したがって、木材ー鋼材間の接着 強度としては、安全側に見て、文献[2-16]の実験と同じく 4.0N/mm<sup>2</sup>を見込むこととした。 断面③を介して伝達される式(2.51)に示す鉛直接合部の CLT 袖壁内のラミナの接着耐力は、本実験 ではラミナの幅はぎを行っておらず、外層ラミナに伝達されたせん断力が内層ラミナを介して伝達さ れる必要があることから、せん断耐力として見込むこととした。ここでは、文献[2-4]において接合部 の設計に用いられている接着層のせん断強度 Fge (=1.15N/mm<sup>2</sup>)を用いた。

表 2-45 に、鉛直接合部の鉛直せん断耐力を示す。鉛直せん断耐力は、鉛直接合部の CLT 袖壁内の ラミナの接着耐力 wgQu で決定する。なお、式(2.51)では安全側の仮定として接合材の接着長さを計算 に用いたが、実状に応じて、接合材が取り付く全てのラミナの全幅(試験体 AS:230mm、試験体 AD: 200mm、図 2-6、図 2-8 参照)を実測し、接合材の接着長さの代わりに用いた計算結果も示している。

$$V_{vvi}Q_u = \max\left\{V_{vvc}Q_u, \min(V_{vvi}Q_u, V_{vvw}Q_y, V_{va}Q_u, V_{vvg}Q_u)\right\}$$

(2.46) ここで、wiQu:鉛直接合部のRC柱-CLT袖壁間の鉛直せん断耐力、wcQu:鉛直接合部のRC柱-CLT袖壁間で接着した仕口面のせん断耐力、wcQu:鉛直接合部の寸切りボルトのせん断耐力、wwQy: 鉛直接合部のウェブのせん断耐力、waQu:鉛直接合部の山形鋼-CLT袖壁間の接着面におけるせん断 耐力、wgQu:鉛直接合部のCLT袖壁内のラミナの接着耐力である。

$$_{wc}Q_{u} = t_{w} \cdot h_{0} \cdot 0.38 \sqrt{_{c}F_{c}}$$

ここで、 $t_w$ : CLT 袖壁の厚さ (=90mm)、 $h_0$ : CLT 袖壁の内法高さ (=1600mm)、 $_cF_c$ : コンクリートの設計基準強度である。

$${}_{vvt}Q_u = Min(0.7_t\sigma_y, 0.4\sqrt{{}_cE_c \cdot {}_cF_c}) \cdot \sum_t a_s$$
(2.48)

(2.47)

(2.49)

(2.50)

(2.51)

ここで、 $\sigma_y$ : 寸切りボルトの降伏強度 (N/mm<sup>2</sup>)、 $_{cE_c}$ : コンクリートのヤング係数 (N/mm<sup>2</sup>)、 $_{cF_c}$ : コンクリートの圧縮強度 (N/mm<sup>2</sup>)、 $_{a_s}$ : 寸切りボルトの断面積 (mm<sup>2</sup>) とする。

$${}_{vvw}Q_y = n_v \cdot {}_v t_w \cdot ({}_v L_w - \sum d_h) \cdot \frac{{}^{vw}\sigma_y}{\sqrt{3}}$$

ここで、 $n_v$ : 鉛直接合材の枚数(=2枚)、 $_vt_w$ : 鉛直接合材のウェブの厚さ(=12mm)、 $_vL_w$ : 鉛直接合材のウェブの長さ(=1300mm)、 $\Sigma d_h$ : 鋼材に設けた孔の直径の和(=80mm)、 $_{vw\sigma_y}$ : 鉛直接合材のウェブの降伏強度である。

$${}_{vva}Q_u = n_v \cdot (h_j \cdot L_v - \sum A_h) \cdot \sigma_{st}$$

ここで、 $n_v$ : 鉛直接合材の枚数(=2枚)、 $h_j$ : 鉛直接合部の高さ(=1300mm)、 $L_j$ : 鉛直接合材の長さ(=150mm)、 $\Sigma A_h$ : 鋼材に設けた孔の面積の和(=8×314mm<sup>2</sup>)、 $\sigma_{st}$ : 鋼材一木材間の接着強度である(=4.0 N/mm<sup>2</sup>)。

$$_{vvg}Q_u = n_v \cdot (h_0 \cdot L_v - \sum A_h) \cdot F_{ge}$$

ここで、 $n_v$ : 鉛直接合材の枚数(=2枚)、 $h_0$ : CLT 袖壁の高さ(=1700mm)、 $L_v$ : 鉛直接合材の長さ(=150mm)、 $\Sigma A_h$ : CLT に設けた孔の面積の和(=8×314mm<sup>2</sup>)、 $F_{ge}$ : CLT の接着層のせん断強度(=1.5 N/mm<sup>2</sup>)である。



図 2-91 鉛直接合部のせん断耐力の推定

| 表2-45 鉛直接合部の鉛直せん断 | 「耐力 |
|-------------------|-----|
|-------------------|-----|

|                                       |                               | 用任 | 設計値  | 試測   | 贪値   | <b>供</b> 孝                                                                                                                    |  |  |  |
|---------------------------------------|-------------------------------|----|------|------|------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                       |                               | 千匹 | 지미미  | AS   | AD   | כ <sup>.,</sup> נעו                                                                                                           |  |  |  |
| 小市拉人並み₽00分 ○17抽時間 な                   |                               |    | 285  | I    | -    | =90mm×1700mm×0.38×(24.0N/mm <sup>2</sup> ) <sup>0.5</sup>                                                                     |  |  |  |
| 超直接合部のRC柱 - CLI 袖壁間で<br>接着した仕口面のせん断耐力 | $_{vvc}Q_{u}$                 | kN | -    | 317  | -    | =90mm×1700mm×0.38×(29.7N/mm <sup>2</sup> ) <sup>0.5</sup>                                                                     |  |  |  |
| 近有した 正 山 田 の と た 岡 前 万                |                               |    | -    | -    | 317  | =90mm×1700mm×0.38×(29.8N/mm <sup>2</sup> ) <sup>0.5</sup>                                                                     |  |  |  |
|                                       |                               | kN | 1200 | -    | -    | =26本×157mm <sup>2</sup> ×min(0.7×420N/mm <sup>2</sup> , 0.4×(24.0N/mm <sup>2</sup> ×22.8kN/mm <sup>2</sup> ) <sup>0.5</sup> ) |  |  |  |
| 寸切りボルトのせん断耐力                          | $_{vvt}\boldsymbol{Q}_{u}$    | kN | -    | 1358 | -    | =26本×157mm <sup>2</sup> ×min(0.7×540N/mm <sup>2</sup> , 0.4×(29.7N/mm <sup>2</sup> ×23.3kN/mm <sup>2</sup> ) <sup>0.5</sup> ) |  |  |  |
|                                       |                               | kN | -    | -    | 1304 | =26本×157mm <sup>2</sup> ×min(0.7×540N/mm <sup>2</sup> , 0.4×(29.8N/mm <sup>2</sup> ×21.4kN/mm <sup>2</sup> ) <sup>0.5</sup> ) |  |  |  |
| 鉛直接合部のウェブのせん断耐力                       | vvwQy                         | kN | 5494 | 5494 | 5494 | =2本×12mm×(1300mm-4×20mm) ×325N/mm <sup>2</sup> /√3                                                                            |  |  |  |
| 鉛直接合部の山形鋼-CLT袖壁間の<br>接着面におけるせん断耐力     | <sub>vva</sub> Q <sub>u</sub> | kN | 1540 | 1540 | 1540 | =2枚×(150mm×1300mm-8×314mm <sup>2</sup> )×4.0N/mm <sup>2</sup>                                                                 |  |  |  |
|                                       |                               |    | 581  | -    | -    | =2枚×(150mm×1700mm−8×314mm²) ×1.15N/mm²                                                                                        |  |  |  |
| 新世接合部のULI 袖壁内のフミナの<br>培善耐力            | $_{vvg}Q_{u}$                 | kN | -    | 894  | -    | =2枚×(230mm×1700mm−8×314mm <sup>2</sup> ) ×1.15N/mm <sup>2</sup>                                                               |  |  |  |
|                                       |                               |    | -    | -    | 776  | =2枚×(200mm×1700mm−8×314mm <sup>2</sup> ) ×1.15N/mm <sup>2</sup>                                                               |  |  |  |
| 鉛直接合部のRC柱 – CLT袖壁間の<br>鉛直せん断耐力        | <sub>vvi</sub> Q <sub>u</sub> | kN | 581  | 894  | 776  |                                                                                                                               |  |  |  |

### (2) 設計段階における検討

設計段階では、2.5.8.3 で示した式(2.5)による鉛直接合部の CLT 袖壁-CLT 袖壁、RC スタブ間で伝達される鉛直せん断力の最大値 woQuを目安に鉛直接合部のせん断設計を行うこととする。表 2-46 に推定した鉛直せん断力の最大値 woQu と(1)で求めた鉛直接合部の鉛直せん断耐力の比較を示す。設計値が若干 1.0 を下回っているものの、推定される最大の鉛直せん断力に対して、必要なせん断耐力が概ね確保されていることが分かる。

|                                         |                               | 畄位 | =心=∔/店 | 試験値  |      | 備老                                                                                                               |  |
|-----------------------------------------|-------------------------------|----|--------|------|------|------------------------------------------------------------------------------------------------------------------|--|
|                                         |                               | 中山 | 到百次    | AS   | AD   | 用 つ                                                                                                              |  |
|                                         |                               |    | 602    | _    | _    | $=90$ mm $\times$ 1700 mm $\times$ 2.3N/mm <sup>2</sup> $+$ 90 mm $\times$ 150 mm $\times$ 10.5N/mm <sup>2</sup> |  |
| CLT袖壁-CLT袖壁, RCスタプ間で<br>伝達される鉛直せん断力の最大値 | vvoQu                         | kN | 002    |      |      | +2本×166mm <sup>2</sup> ×325N/mm <sup>2</sup>                                                                     |  |
|                                         |                               |    | -      | 736  | 726  | $=90$ mm $\times$ 1700 mm $\times$ 2.3N/mm <sup>2</sup> $+90$ mm $\times$ 150 mm $\times$ 20.2N/mm <sup>2</sup>  |  |
|                                         |                               |    |        |      | 730  | +2本×166mm <sup>2</sup> ×336N/mm <sup>2</sup>                                                                     |  |
| 鉛直接合部の鉛直せん断耐力                           | <sub>vvi</sub> Q <sub>u</sub> | kN | 581    | 894  | 776  |                                                                                                                  |  |
| 検定比                                     |                               |    | 0.97   | 1.21 | 1.05 |                                                                                                                  |  |

表 2-46 設計段階における鉛直接合部に作用する鉛直せん断力の検討

#### (3) 骨組解析の結果を基にした検討

表 2-47 に試験体 AS、AD の骨組解析の結果から求めた鉛直接合部に作用する鉛直方向のせん断力 の最大値と鉛直接合部の鉛直せん断耐力の比較を示す。

詳細モデルでは、骨組解析で求められる鉛直せん断力の最大値が、表 2-46 で示した鉛直せん断力の 推定値 voQuを下回っている。これは、図 2-78 で示したように、鉛直接合材の接着部の上下に位置す る断面が終局状態に到達していないことが原因であり、(2)で示した式(2.5)による検討では、鉛直接合 部に作用する鉛直せん断力を過大に評価する傾向があるものと考えられる。片持ち柱形式の試験体 AS の方が、逆対称載荷の試験体 AD よりも、鉛直接合部に作用するせん断力は大きくなるが、検定比は 1.0 を上回り、いずれも(1)で示した鉛直接合部の鉛直せん断耐力を下回っている。

簡易モデルでは、鉛直接合部を模擬したせん断ばねの復元力特性の設定において、鉛直接合部の鉛 直せん断耐力を CLT 袖壁の鉛直断面のせん断耐力で頭打ちとしている。そのため、いずれの試験体に おいても、鉛直接合部に作用するせん断力は CLT 袖壁の鉛直断面のせん断耐力に到達し、検定比が 1.0 となっている。前述したように、簡易モデルでは、鉛直接合部の鉛直せん断耐力が CLT 袖壁の鉛直断 面のせん断耐力を上回るケースについても荷重変形関係の評価精度は十分確保されているが、鉛直接 合部の負担せん断力を含め、各部の応力状態を十分に評価できない(適用範囲がある)点に注意が必 要である。

表 2-47 骨組解析の結果を用いた鉛直接合部に作用する鉛直せん断力の検討

| 詳細エデル          | 用任                 | 試験値  |      |     |  |  |
|----------------|--------------------|------|------|-----|--|--|
| 計和モリル          |                    | 半世   | AS   | AD  |  |  |
| 数値解析における最大せん断力 | $_{\nu\nu}Q_{max}$ | kN   | 613  | 719 |  |  |
| 鉛直接合部の鉛直せん断耐力  | $_{vvi}Q_{u}$      | kN   | 894  | 776 |  |  |
| 検定比            |                    | 1.46 | 1.08 |     |  |  |

| 節見エデル              |                                          | 畄佔 | 試馬   | 検値   | 供来                                                     |
|--------------------|------------------------------------------|----|------|------|--------------------------------------------------------|
|                    |                                          |    | AS   | AD   | VH 25                                                  |
| 数値解析における最大せん断力     | おける最大せん断力 <sub>vv</sub> Q <sub>max</sub> |    | 351  | 351  |                                                        |
| 鉛直接合部の鉛直せん断耐力 wvQu |                                          | kN | 349  | 349  | $=90$ mm $\times$ 650mm $\times$ 2.28N/mm <sup>2</sup> |
| 検定比                |                                          |    | 0.99 | 0.99 |                                                        |

#### 2.7.5.4. 水平接合部の設計(アンカーボルトの検討)

#### (1)軸耐力の算定

CLT 袖壁の端部では、4本のアンカーボルト(4-M16)に作用する引張力を、接着面を介して、CLT 袖壁に伝達する必要がある。ここでは、アンカーボルトの引張力(降伏耐力・引張耐力の規格値・実験値、文献[2-4]による判定用終局耐力)と、式(2.53)による CLT 袖壁の水平断面の引張耐力、式(2.54)による水平接合部の接着耐力、式(2.55)による水平接合部のウェブの降伏耐力、式(2.56)による水平接合部のフランジの曲げ耐力時引張力を比較する。

なお、接着面における木材ー鋼材間の接着強度は、鉛直接合部におけるせん断設計と同様に、引張 力が作用する方向と外層ラミナの繊維方向が一致するため、ローリングシア破壊は生じないものと仮 定し、安全側に見て、文献[2-16]の実験と同じく 4.0N/mm<sup>2</sup>を見込むこととした。また、鉛直接合部の 検討では、外層ラミナに伝達されたせん断力の一部を、内層ラミナに伝達できるかどうか接着層のせ ん断耐力の検証を行ったが、水平接合材の場合は、外層ラミナに伝達した引張力を内層ラミナに伝達 する必要がないため、CLT 袖壁自体の引張耐力のみを検討した。

$$_{hv}N_{u} = \min(_{wt}N_{u}, _{hva}N_{u}, _{hvw}N_{v}, _{hvf}N_{u})$$

(2.52) ここで、hvNu:水平接合部の軸耐力、wtNu:CLT 袖壁の水平断面の引張耐力、hvaNu:水平接合部の接 着耐力、hvwNy:水平接合部のウェブの降伏耐力、hvfNu:水平接合部のフランジの曲げ耐力時引張力で ある。

$$_{wt}N_u = t_w \cdot D_w \cdot _t F_t$$

ここで、 $t_w$ 、 $D_w$ : CLT 袖壁の幅 (=90mm)、せい (=650mm)、 $t_r$ : CLT の引張の基準強度 (=8.0N/mm<sup>2</sup>) である。

$$_{hva}N_u = n_h \cdot (L_h \cdot h_h - \sum A_h) \cdot \sigma_{st}$$

(2.54) ここで、 $n_h$ :水平接合材の数(=2 枚)、 $L_h$ :水平接合材の水平長さ(=550mm)、 $h_h$ :水平接合材の 鉛直長さ(=150mm)、 $\Sigma A_h$ :鋼材に設けた孔の面積の和(=4×314mm<sup>2</sup>)、 $\sigma_{st}$ :鋼材一木材間の接着強 度である(=4.0 N/mm<sup>2</sup>)。

$$_{hvw}N_y = n_h \cdot {}_h t_w \cdot ({}_h L_w - \sum d_h) \cdot {}_h \sigma_{wy}$$

ここで、 $n_h$ :水平接合材の数(=2枚)、 $v_{tw}$ :鉛直接合材のウェブの厚さ(=12mm)、 $_hL_w$ :水平接合材のウェブの長さ(=550mm)、 $\Sigma d_h$ :鋼材に設けた孔の直径の和(=2×20mm)、 $h\sigma_{wy}$ :鉛直接合材のウェブの降伏強度(=325N/mm<sup>2</sup>)である。

$${}_{hvf}Q_u = \frac{2 \cdot \frac{1}{4} ({}_hL_f) \cdot {}_ht_f^2 \cdot {}_{hf}\sigma_y}{{}_hL_h}$$

(2.56)

(2.55)

(2.53)

ここで、 $_hL_f$ :水平接合材のフランジの長さ(=550mm)、 $_ht_f$ :水平接合材のフランジの厚さ(=12mm)、  $_ht\sigma_y$ :水平接合材のフランジの降伏強度(=325N/mm<sup>2</sup>)、 $_hL_h$ :水平接合材のフランジに設けた寸切りボ ルトの重心位置からウェブ端部までの長さ(=38mm)である。 表 2-48 に、水平接合部の軸耐力を示す。水平接合部の軸耐力は、式(2.56)による水平接合部のフラ ンジの曲げ耐力時引張力で決まることになるが、図 2-88 に示すように、水平接合材にはフランジを補 強するためのスチフナーを設けて鋼板の面外方向の曲げ降伏を防止しているため、実際の軸耐力はこ れよりも大きい値になるものと考えられる。

|                     |                               |    | AS, | AD  | 佳老                                                                                                   |  |  |  |  |
|---------------------|-------------------------------|----|-----|-----|------------------------------------------------------------------------------------------------------|--|--|--|--|
|                     |                               | 中世 | 設計値 | 試験値 | 加ち                                                                                                   |  |  |  |  |
| CLT袖壁の水平断面の引張耐力     | ${}_{\rm wt}{\rm N}_{\rm u}$  | kN | 468 |     | =90mm × 650mm × 8.0N/mm <sup>2</sup>                                                                 |  |  |  |  |
| 水平接合部の接着耐力          | ${}_{\rm hva}{\sf N}_{\rm u}$ | kN | 65  | 50  | =2枚×(150mm×550mm−4×314mm <sup>2</sup> ) ×4.0N/mm <sup>2</sup>                                        |  |  |  |  |
| 水平接合部のウェブの降伏耐力      | ${}_{h\nu w}N_y$              | kN | 39  | 978 | $=2 \pm \times 12 \text{mm} \times (550 \text{mm} - 2 \times 20 \text{mm}) \times 325 \text{N/mm}^2$ |  |  |  |  |
| 水平接合部のフランジの曲げ耐力時引張力 | ${}_{\rm hvf}N_{\rm u}$       | kN | 339 |     | =2枚×1/4×550mm×(12mm) <sup>2</sup> ×325N/mm <sup>2</sup> /38mm                                        |  |  |  |  |
| 水平接合部の軸耐力           | ${}_{h\nu}N_u$                | kN | 33  | 39  |                                                                                                      |  |  |  |  |

表 2-48 水平接合部の軸耐力

(2) アンカーボルトの降伏耐力、引張耐力に対する検討

表 2-49 に水平接合部に設けたアンカーボルトの降伏耐力、引張耐力、判定用終局耐力<sup>[24]</sup>の一覧を 示す。表 2-48 と比較すると、水平接合部のフランジの曲げ耐力時引張力(339kN)は、アンカーボル トの引張耐力や判定用終局耐力を若干下回っており、耐力が不足しているが、図 2-88 に示すように、 水平接合材にはフランジを補強するためのスチフナーを設けて鋼板の面外方向の変形を拘束している こと、また、載荷実験においても、フランジが曲げ降伏するような挙動は確認されていないことから、 ここでは十分な耐力が確保されたものと判断する。

また、CLT 袖壁の水平断面の引張耐力(468kN)は、アンカーボルトの判定用終局耐力を上回って おり、載荷実験でも、CLT の引張破壊は生じなかった。一方で、水平接合部の接着耐力(650kN)に 関しては、アンカーボルトの判定用終局耐力と比較して2倍近くあり、計算上は十分な耐力を有して いるが、載荷実験では、接着面近傍の破壊が生じ、アンカーボルトに作用した引張力は、アンカーボ ルトの降伏耐力(223kN)程度に留まった。したがって、ここで示した条件を満足するだけでは、水平 接合部の軸耐力に関する設計は不十分と考えられる。

|              | 1       | ¥ /士 | AS, | AD  | <b>供</b> 老                                   |  |  |
|--------------|---------|------|-----|-----|----------------------------------------------|--|--|
|              | +       | 휘꼬   | 設計値 | 試験値 | V用·芍                                         |  |  |
| アンカーボルトの降伏耐力 | (規格値) k | kΝ   | 216 | -   | =4本×166mm <sup>2</sup> ×325N/mm <sup>2</sup> |  |  |
| アンカーボルトの引張耐力 | (規格値) k | kΝ   | 308 | -   | =4本×157mm <sup>2</sup> ×490N/mm <sup>2</sup> |  |  |
| アンカーボルトの降伏耐力 | (実強度) k | kΝ   | -   | 223 | =4本×166mm <sup>2</sup> ×336N/mm <sup>2</sup> |  |  |
| アンカーボルトの引張耐力 | (実強度) k | kΝ   | -   | 343 | =4本×157mm <sup>2</sup> ×546N/mm <sup>2</sup> |  |  |
| アンカーボルトの判定用終 | §局耐力 k  | kΝ   | 35  | 8   | =4本×89.5kN                                   |  |  |

表 2-49 水平接合部に設けたアンカーボルトの降伏耐力、引張耐力、判定用終局耐力の一覧

載荷実験で接着面近傍の破壊が生じた原因として、図 2-92 に示すように、アンカーボルトに引張力 が作用することで、水平接合材を介して CLT 袖壁の外層ラミナの表面に曲げモーメントに伴う引張力 が作用したものと考えられる。アンカーボルトが引張降伏する際に、CLT-接合材の接着面に作用す る最大の引張応力は、図 2-92 に示すような応力分布を仮定すると、式(2.57)で求められる。

木材の繊維直交方向の引張強度は、繊維方向の引張強度の1/10~1/20程度と言われている。外層ラ ミナの繊維方向の引張強度を16.0N/mm<sup>2</sup>、接着面近傍の破壊が生じた繊維直交の引張強度を1/10の 1.6N/mm<sup>2</sup>と仮定すると、式(2.57)で求められる最外縁の引張応力は2.7N/mm<sup>2</sup>となり、仮定した引張強 度を上回ることから、引張破壊が生じる可能性が高いものと考えられる。水平接合部には接着時に用 いたボルト(4-M16)をそのまま残していたため、接着面近傍の破壊が生じた後も、これらのボルトが 引張力の一部を負担することで、アンカーボルトの降伏直後まで接着面におけるせん断伝達が行われ たものと考えられるが、このような接合方法を用いる場合には、十分な注意が必要である。

σ<sub>1</sub>=2本×166mm<sup>2</sup>×336N/mm<sup>2</sup>(アンカーボルトの降伏強度)×50mm(接着面までの距離)
 / (1/6×550mm×(150mm)<sup>2</sup>)(接着面の断面二次モーメント)=2.7 N/mm<sup>2</sup>

(2.57)



(a) アンカーボルトによって生じるモーメント(b) CLT 袖壁と水平接合材の接着面の抵抗モーメント 図 2-92 接合材と CLT 袖壁との接着面に作用する引張応力

#### 2.7.6. 接合部の設計(試験体 BS、BD)

## 2.7.6.1. 詳細

図 2-93 に試験体 BS、BD の滑り止めの形状を示す。



#### 2.7.6.2. 鉛直接合部の設計

試験体 BS、BD では、鉛直接合部における応力伝達には期待しないが、ここでは参考として、式(2.58) に示す RC 柱と CLT 袖壁の接着面のせん断耐力(文献[2-3]のエポキシ樹脂を用いた接着接合部のせん 断耐力に関する論文を参照した)と、式(2.59)に示す CLT 袖壁の鉛直断面のせん断耐力とを比較する。

 ${}_{wv}Q_{au} = t_w \cdot h_0 \cdot 0.38 \sqrt{{}_cF_c}$ 

ここで、 $t_w$ : CLT 袖壁の厚さ (=120mm)、 $h_0$ : CLT 袖壁の内法高さ (=1700mm)、 $_cF_c$ : コンクリートの設計基準強度 (=29.2N/mm<sup>2</sup>) である。

(2.58)

(2.59)

$$_{w}Q_{su} = t_{w}D_{wt}F_{sI}$$

ここで、 $t_w$ : CLT 袖壁の厚さ (=120mm)、 $D_w$ : CLT 袖壁のせい (=650mm)、 $t_{sl}$ : CLT の面内せん 断の基準強度 (=1.71N/mm<sup>2</sup>) である。

RC 柱と CLT 袖壁の接着面のせん断耐力は 419kN、CLT 袖壁の鉛直断面のせん断耐力は 349kN とな り、計算上は仕口面の接着耐力が上回るが、載荷実験では鉛直目地に沿った亀裂が確認されており、 接着面の破壊が生じる結果となった。ここで、接着面のせん断強度は 2.1N/mm<sup>2</sup> であることから、試験 体 BS の CLT 袖壁の実際のせん断強度は、せん断の基準強度(1.7N/mm<sup>2</sup>)よりも高い値であった可能 性や、RC 柱の曲げ変形等の影響によって、接着面で離間が生じ、接着面のせん断耐力に影響を及ぼし た可能性が考えられる。

## 2.7.6.3. 水平接合部の設計(テンションロッドの検討)

試験体 BS、BD の滑り止めは、テンションロッド(2-M16)の引張力を伝達する上で、十分な引張 耐力を有しているものと考えられるため、検討を省略する。

#### 2.7.6.4. 水平接合部の設計(摩擦抵抗)

CLT 袖壁に作用する水平せん断力は、RC スタブを介して伝達されるか、RC 柱を介して伝達される

かのいずれかである。試験体 BS、BD では鉛直接合部を設けておらず、RC 柱を介して水平せん断力 を伝達することが困難であるため、RC スタブを介した水平せん断力の伝達機構の検討のみを行うも のとする。

試験体 BS、BD では、水平接合部に滑り止めを設けているが、主たるせん断抵抗要素として、CLT 袖壁に作用する曲げ圧縮力(水平接合材による引張負担がないので、ここでは断面に軸力と等しい) による摩擦抵抗を想定する。摩擦係数µに関しては、文献[2-4]では壁パネルに期待できる摩擦係数と して 0.3 が、また、文献[2-18]では、プレキャスト部材の間にモルタルを充填し、圧着接合する場合の 摩擦係数として 0.5 が与えられている。前者に関しては、地震上下動の影響も踏まえた振動台実験結 果等に基づく安全側の判断による値、後者に関しては、実験の下限値を地震時の繰り返し荷重の影響 を考慮して低減した値とされている。部材実験では、目地部分にエポキシ樹脂を充填しており、無収 縮モルタルを充填する後者よりも有利な条件になっているものと考えられることから、ここでは、摩 擦係数µとして 0.5 を採用する。

### (1) 設計段階における検討

設計段階では、CLT 袖壁にどの程度の曲げ圧縮力やせん断力が作用するか推定することは難しいが、 ここでは CLT 袖壁の水平接合部で想定されるせん断力/曲げ圧縮力の略算法を式(2.60)に示す。式 (2.60)の左辺は摩擦耐力、右辺は図 2-94 に示す CLT 袖壁の上下端が曲げ耐力に到達した時のせん断力 となり、摩擦耐力が曲げ耐力時せん断力を上回れば、水平せん断力の伝達が問題なく行われる。ここ で、式中の軸力 N<sub>w</sub>を両辺から削除し、軸力が最も小さい N<sub>w</sub>=0 時においても、式(2.60)を満足させる ことを考えると式(2.61)が導かれ、CLT 袖壁の形状 (D<sub>w</sub>/h<sub>0</sub>)のみで水平せん断力の伝達が可能かどう かを判断できる。試験体 BS、BD における CLT 袖壁の寸法比 (D<sub>w</sub>/h<sub>0</sub>) は 0.38 (=650mm/1700mm) と なり、上述した摩擦係数 0.5 を下回ることから、条件を常に満足するものと推測される。

$${}_{w}Q_{fu}(=\mu \cdot N_{w}) \ge {}_{w}Q_{mu}(=N_{w} \cdot (1 - \frac{N_{w}}{0.85 \cdot t_{w} \cdot {}_{tv}F_{k}}) \cdot \frac{D_{w}}{h_{0}})$$
(2.60)

$$\mu \ge \frac{D_w}{h_0}$$

(2.61)

但し、 $\mu$ :摩擦係数、 $N_w$ : CLT 袖壁の軸方向力、 $t_w$ : 袖壁の厚さ、 $D_w$ : 袖壁のせい、 $h_0$ : 袖壁の内法 高さ、 $t_vF_k$ : CLT の圧縮の基準強度を用いた座屈強度(鉛直方向)である。



図 2-94 CLT 袖壁の摩擦による水平せん断力の伝達条件

## (2) 骨組解析の結果を基にした検討

図 2-83 に示すように、試験体 BS、BD の骨組解析から求めたせん断力/曲げ圧縮力(軸力)の比率は、変形角の増大に伴って大きくなるが、詳細モデル、簡易モデルのいずれを用いた場合でも 0.30 程度で頭打ちとなり、上述した摩擦係数 0.5 を十分に下回る結果となったことから、必要な摩擦耐力 を確保できるものと考えられる。

#### 2.7.6.5. 水平接合部の設計(滑り止めの検討)

2.7.6.4 で示したように、試験体 BS、BD では、曲げ圧縮力による摩擦抵抗によって、CLT 袖壁に作 用する水平せん断力を RC スタブに伝達することが可能であるため、水平せん断力の伝達という観点 では、CLT 袖壁の材端に滑り止めを設ける必要はない。一方で、水平加力によって RC 部分に変形が 生じた場合に、CLT 袖壁が外れないようにするための拘束用の治具は何かしら必要となる。載荷実験 では、滑り止めに作用する水平せん断力の計測を行っておらず、骨組解析においても、摩擦抵抗によ るせん断伝達と支圧によるせん断伝達を切り分けて考えることは現状では難しい。そこで、安全側の 設計となるが、ここでは、CLT 袖壁に作用する水平せん断力が全て滑り止めに作用した場合にも、支 障がないことを確認することとする。

#### (1) せん断耐力の算定

滑り止めの水平せん断耐力 hhQu は、滑り止めにおける CLT の木口面の支圧耐力 hhbQu、滑り止めに おけるウェブのせん断降伏耐力 hhwQy、滑り止めにおける曲げ降伏時せん断力 hhtQy、滑り止めにおけ る PC 鋼棒のせん断耐力 hbsQu、滑り止め底面における PC 鋼棒の引張降伏時せん断力 hhtQu の最小値と する。なお、PC 鋼棒のせん断耐力 Qsu4 は、文献[2-8]のあと施工アンカー(金属系、定着長がアンカー 径の7倍以上)のせん断耐力式を用いて算定した。なお、後述するように、ここでは滑り止めが十分 なせん断耐力を有していることから、簡略化のため、テンションロッドから伝達される引張力の影響 は無視して、考察を行っている。

$$_{hh}Q_u = \min(_{hhb}Q_u, _{hhw}Q_y, _{hhf}Q_y, _{hhs}Q_u, _{hht}Q_u)$$

(2.62) ここで、hhQu:滑り止めの水平せん断耐力、hhbQu:滑り止めにおける CLT の木口面の支圧耐力、hhwQy: 滑り止めにおけるウェブのせん断降伏耐力、hhtQy:滑り止めにおける曲げ降伏時せん断力、hhsQu:滑 り止めにおける PC 鋼棒のせん断耐力、hhtQu:滑り止め底面における PC 鋼棒の引張降伏時せん断力で ある。

$$_{hhb}Q_u = t_w \cdot h_s \cdot _{th}F_k \tag{2.63}$$

$$_{hhw}Q_y = {}_st_w \cdot D_s \cdot \frac{{}_s\sigma_{wy}}{\sqrt{3}}$$
(2.64)

$$hhf Q_y = \frac{Z_s \cdot \sigma_{fy}}{0.5h_s}$$

$$hhs Q_u = Min(0.7_t \sigma_y, 0.4 \sqrt{_c E_c \cdot _c F_c}) \cdot \sum_t a_t$$
(2.66)

$$_{hht}Q_u = \frac{0.9\sum_t a_t \cdot {}_t \sigma_y \cdot d_s}{0.5h_s}$$

(2.67)

(2.65)

ここで、 $t_w$ : CLT 袖壁の壁厚(=120mm)、 $h_s$ : 滑り止めの高さ(=200mm)、 $hF_k$ : CLT の圧縮の基準 強度を用いた座屈強度(水平方向)、 $s_{t_w}$ : 滑り止めのウェブの厚さ(=12mm)、 $D_s$ : 滑り止めの全せい (=120mm)、 $s_{\sigma_{wy}}$ : 滑り止めのウェブの降伏強度(=325N/mm<sup>2</sup>)、 $s_{\sigma_{fy}}$ : 滑り止めのフランジの降伏強度 (=325N/mm<sup>2</sup>)、 $Z_s$ : 滑り止めの断面係数(=190426mm<sup>3</sup>)、 $t_{\sigma_y}$ : PC 鋼棒の降伏強度(=1080N/mm<sup>2</sup>)、  $cE_c$ : コンクリートのヤング係数(N/mm<sup>2</sup>)、 $cF_c$ : コンクリートの圧縮強度(N/mm<sup>2</sup>)、 $t_at$ : PC 鋼棒の断 面積(=2本×416mm<sup>2</sup>)、 $d_s$ : PC 鋼棒の重心位置から滑り止め端部までの距離(=60mm) とする。

表 2-50 滑り止めのせん断耐力

|                          |                        | 畄伝 | 記計値   | 試験値    | 備老                                                                                                                                                    |  |  |
|--------------------------|------------------------|----|-------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                          |                        | 主臣 | ショーロン | BS, BD | V⊞ 25                                                                                                                                                 |  |  |
| 滑り止めにおけるCLTの木口面の支圧耐力     | $_{\rm hhb} Q_{\rm u}$ | kN | 194   | 358    | =120mm×200mm×8.1N/mm <sup>2</sup> (設計時)、14.9N/mm <sup>2</sup> (実強度)                                                                                   |  |  |
| 滑り止めにおけるウェブのせん断降伏耐力      | $_{\rm hhw} Q_{\rm y}$ | kN | 27    | 0      | $=12$ mm $\times$ 120 mm $\times$ 325 N/mm <sup>2</sup> / $\sqrt{3}$                                                                                  |  |  |
| 滑り止めにおける曲げ耐力時せん断力        | $_{hhf}Q_{y} \\$       | kN | 619   |        | =190426mm <sup>3</sup> × 325N/mm <sup>2</sup> /(0.5 × 200mm)                                                                                          |  |  |
| 温り止めにおけるPC細椿のせく 断耐力      | $_{hhs}Q_{u}$          | kN | 246   | -      | $= 2 \pm \times 416 \text{mm}^2 \times \text{min}(0.7 \times 1080 \text{N/mm}^2, 0.4 \times (24.0 \text{N/mm}^2 \times 22.8 \text{kN/mm}^2)^{0.5})$   |  |  |
| 用う工めにおける「C調性のとん町両方」      |                        |    | -     | 273    | $= 2 \pm \times 416 \text{mm}^2 \times \text{min}(0.7 \times 1080 \text{N/mm}^2, \ 0.4 \times (29.2 \text{N/mm}^2 \times 23.0 \text{kN/mm}^2)^{0.5})$ |  |  |
| 滑り止め底面におけるPC鋼棒の引張降伏時せん断力 | $_{\rm hht} Q_{\rm u}$ | kN | 485   |        | =0.9×60mm×2本×416mm <sup>2</sup> ×1080N/mm <sup>2</sup> /(0.5×200mm)                                                                                   |  |  |
| 滑り止めの水平せん断耐力             | $_{\rm hh}Q_{\rm u}$   | kN | 194   | 270    |                                                                                                                                                       |  |  |

#### (2) 設計段階における検討

設計段階では、CLT 袖壁にせん断力がどの程度作用するか推定することが難しいため、ここでは、 CLT 袖壁がせん断降伏しているものとして、滑り止めの設計を行う。表 2-43 に示すように、滑り止め のせん断耐力は、CLT 袖壁のせん断耐力と比較して、十分に余裕があることが確認できる。

|              |                                                 | 用在 | ≕∿≕⊥/店 | 試顯   | <b></b> | 備老                                       |  |
|--------------|-------------------------------------------------|----|--------|------|---------|------------------------------------------|--|
|              |                                                 | 中山 |        | BS   | BD      | 加方                                       |  |
| 滑り止めの水平せん断耐力 | $_{\rm hh} {\cal Q}_{\rm u}$                    | kN | 194    | 270  | 270     |                                          |  |
| CLT袖壁のせん断耐力  | $_{\rm w} Q_{\rm su}$                           | kN | 133    | 133  | 133     | =120mm×650mm×1.7N/mm <sup>2</sup> (基準強度) |  |
| 余裕度          | $_{\rm hh} {\cal Q}_{\rm u/w} {\rm Q}_{\rm su}$ |    | 1.46   | 2.03 | 2.03    |                                          |  |

表 2-51 設計段階における滑り止めに作用する水平せん断力の検討

# (3) 骨組解析の結果を基にした検討

骨組解析の応力を用いて計算した CLT 袖壁の入力せん断力と滑り止めのせん断耐力の関係を表 2-52 に示す。表 2-43 で示した設計段階の検討と比較して、CLT 袖壁に作用する入力せん断力は小さ く、滑り止めのせん断耐力にも十分な余裕があることが確認できた。

| 詳細モデル        |                                                | 用任 | 試験値  |      |  | 筋見エデル        | 畄位                                             | 試験値 |      |      |
|--------------|------------------------------------------------|----|------|------|--|--------------|------------------------------------------------|-----|------|------|
|              |                                                | 中区 | BS   | BD   |  | 间勿てノル        |                                                | 半世  | BS   | BD   |
| 滑り止めの水平せん断耐力 | $_{\rm hh} Q_{\rm u}$                          | kN | 270  | 270  |  | 滑り止めの水平せん断耐力 | $_{\rm hh} Q_{\rm u}$                          | kN  | 270  | 270  |
| CLT袖壁の最大せん断力 | $_{w}Q_{max}$                                  | kN | 80   | 86   |  | CLT袖壁の最大せん断力 | $_{w}Q_{max}$                                  | kN  | 84   | 78   |
| 余裕度          | $_{\rm hh}{\cal Q}_{\rm u/w}{\rm Q}_{\rm max}$ |    | 3.37 | 3.13 |  | 余裕度          | $_{\rm hh}{\cal Q}_{\rm u/w}{\rm Q}_{\rm max}$ |     | 3.23 | 3.46 |

表 2-52 骨組解析の結果を用いた滑り止めに作用する水平せん断力の検討

### 2.8. まとめ

CLT 袖壁による RC 柱の補強効果を確認し、RC-CLT 間の水平接合部(CLT 袖壁-RC スタブ間) および鉛直接合部(CLT 袖壁-RC 柱間)の設計手法を提案することを目的とした部材実験、関連し た数値解析を実施した。

実験変数は、接合形式(水平接合面、鉛直接合面をできるだけ剛強に接合し、接合部分に大きな変形の発生を許容せず、早期の耐力発現を目指す方法(Aタイプ)と、施工性や可変性に配慮して、水 平接合面、鉛直接合面の接合をできるだけ簡素化する方法(Bタイプ))および載荷方法(想定建物の 1階を想定した片持ち柱形式の載荷(Sモード)、上層階を想定した逆対称載荷(Dモード))とした。

数値解析では、部材実験における挙動を再現するために、2 種類の解析モデル(詳細モデル、簡易 モデル)を用いた検討を実施した。詳細モデルでは、RC 柱-CLT 袖壁間の鉛直接合部を介した鉛直 せん断力の伝達による影響を考慮するために、CLT 袖壁の水平、鉛直方向における分割、水平、鉛直 方向からのせん断入力を考慮するためのブレース置換等を行っており、部材実験で確認された CLT 袖 壁の鉛直断面のせん断耐力を超える鉛直せん断力の伝達も再現可能となっている。一方、簡易モデル では、CLT 袖壁を線材に置換し、モデル化する部材数の低減を図っている。また、数値解析では、載 荷実験における検証を行っていない試験体 BD(接合を簡素化した逆対称載荷の試験体)も対象とし た。

得られた主な知見を以下に示す。

(載荷実験で得られた知見)

- 1. RC 柱試験体への CLT 袖壁の設置施工を実際に行い、施工手順の確認、整理を行った。RC-CLT 間の水平目地および鉛直目地の充填、試験体 AS、AD の山形鋼-CLT 間の接着にはエポキシ樹脂 を使用した。
- 2. 片持ち柱形式で載荷を行った試験体 AS、BS では CLT 袖壁の曲げ圧縮破壊が、逆対称載荷を行った AD 試験体では CLT 袖壁のせん断降伏が生じたが、いずれの試験体でも、曲げ降伏後 1/50 程度まではほぼ耐力低下がなく、実験終了時に最大耐力の 8 割以上の耐力を保持していた。袖壁の損傷によって、大きな耐力低下を示す従来の RC 袖壁付き柱と比較して、本実験の CLT 袖壁付き柱は、極めて靭性に富む挙動を示した。
- 3. 試験体 AS、AD では、実験終了時まで鉛直接合部に目立った損傷は確認されなかった。鉛直接合部に接合材を設けていない BS 試験体では、RC 柱-CLT 袖壁間で生じたずれ等の影響により、AS 試験体と比較して、*R*=1/100rad までの水平剛性が低くなった。
- 4. いずれの試験体でも、R=1/100rad サイクルまでは、残留ひび割れ幅が 0.05mm 以下に留まっている。本試験体の縮尺は 2/3 であり、寸法効果が損傷量に及ぼす影響について考える必要はあるが、この程度のサイクルまでであれば、直ちに修復が必要となるような目立った損傷が RC 柱には残らないことが確認された。
- 5. 各試験体の最大耐力は、RC 柱の曲げ終局強度時のせん断力の計算値の 2.0~2.6 倍となり、CLT 袖壁等の補強効果が確認できた。
- 6. RC 柱に関しては、いずれの試験体でも、変形の大部分を曲げ変形が占めており、せん断変形の 割合は小さく、特に片持ち柱形式の載荷を行った試験体 AS、BS ではその傾向が顕著であった。 一方、CLT 袖壁に関しては、片持ち柱形式の載荷を行った試験体 AS、BS では、変形の大部分を 曲げ変形が占めており、せん断変形の割合は比較的小さいが、逆対称載荷を行った試験体 AD で

は、変形の大部分をせん断変形が占めており、破壊性状との一致が見られた。

- 7. 試験体 AS、AD では、水平接合部の山形鋼-CLT 袖壁間の接着面におけるずれ変形が生じたため、アンカーボルトの引張ひずみが *R*=1/100rad サイクルで頭打ちとなり、引張力の伝達を行う上で課題が残った。
- 8. CLT 袖壁の軸ひずみの計測値から、片持ち柱形式の載荷を行った試験体 AS、BS では断面内で平 面保持がほぼ成立しているものの、逆対称載荷を行った試験体 AD では袖壁端や柱際と比較して、 中央部分の圧縮ひずみが極端に小さい特徴的なひずみ分布が確認され、平面保持仮定が成立して いなかった。逆対称形式の載荷を行った試験体 AD では、鉛直接合面を介して伝達されるせん断 力が大きく、袖壁のせん断変形が断面内の軸ひずみの分布に影響を及ぼした可能性がある。
- CLT 袖壁の軸ひずみの計測値から、CLT の応カーひずみ関係を仮定して、断面に作用する軸力を 推定した。試験体 AS では推定された圧縮軸力が特に大きく、計算上の軸耐力に到達しており、 軸力比が非常に高い状態で挙動していることが確認された。
- 10. CLT 袖壁の軸ひずみの計測値から求めた断面の軸力から、RC 柱-CLT 袖壁間の鉛直接合部に作用する鉛直せん断力を推定したところ、接合材を設けた AS、AD 試験体では CLT のせん断の基準強度を用いて算定した鉛直断面のせん断耐力を上回った。これは、鉛直接合部の山形鋼を CLT 袖壁の側面に接着したことにより、RC 柱-山形鋼-CLT 袖壁の上下の仕口面-RC スタブ間で鉛直せん断力の伝達が行われたことが原因と考えられる。
- 11. CLT 袖壁で計測したせん断ひずみから、CLT 袖壁に作用する水平せん断力の推定を行った。逆対 称載荷を行った試験体 AD では R=1/133rad サイクルで CLT 袖壁がせん断耐力に到達し、早期に 耐力を発現したが、片持ち柱形式の載荷を行った試験体 AS では R=1/33rad サイクルまで CLT 袖 壁のせん断耐力には到達しなかった。また、片持ち柱形式の載荷を行った試験体 BS では実験終 了時まで CLT 袖壁のせん断耐力には到達しなかった。なお、鉛直せん断力が作用する試験体 AS、 AD では、CLT 袖壁内のせん断ひずみの分布が内側と外側で異なるため、両者の平均的なせん断 ひずみから水平せん断力を推定する方法は妥当でない可能性がある。
- 12. 荷重変形関係から、各サイクルにおける等価粘性減衰定数の計算を行った。片持ち柱形式の載荷 を行った試験体 AS、BS では、R=1/100rad 以降のサイクルにおいて、定常ループを想定した塑性 率に基づく推定式の値を一部下回る場合があった。

(数値解析で得られた知見)

- 1. 詳細モデル、簡易モデルを適用する場合の各部位(RC 柱、CLT 袖壁、CLT 袖壁-RC スタブ間の 水平接合部、RC 柱-CLT 袖壁間の鉛直接合部、テンションロッド)のモデル化や復元力特性の 設定方法を整理した。
- 2. 詳細モデル、簡易モデルのいずれを用いた場合にも、全ての試験体の載荷実験の荷重変形関係の 包絡線に加え、初期剛性、*R*=1/100rad、1/50rad 時点の最大荷重、主筋降伏時の水平荷重、テンシ ョンロッド降伏時の水平荷重に関しては、いずれの解析モデルを用いた場合でも高い精度で予測 できることを示した。
- 3. 詳細モデルを用いて袖壁、アンカーボルト、テンションロッドの有無を変数としたパラメトリック解析を行い、解析変数が試験体の初期剛性や最大耐力に及ぼす影響を確認した。鉛直接合部を 山形鋼で接合した A タイプでは、初期剛性については試験体 AS で 2.36 倍、試験体 AD で 1.35 倍、最大耐力については試験体 AS で 2.49 倍、試験体 AD で 1.70 倍に増大しており、載荷形式

(片持ち、逆対称)によらず、高い補強効果が得られた。一方、鉛直接合部を割愛した B タイプ では、片持ち形式の試験体 BS では初期剛性が 2.13 倍、最大耐力が 2.29 倍に増大しており、試験 体 AS とほぼ同等の補強効果が得られているが、逆対称形式の試験体 BD では初期剛性が 1.13 倍、 最大耐力が 1.17 倍と、試験体 AD と比較すると補強効果が半減した。

- 4. 詳細モデルにおける各試験体の変形性状を確認したところ、試験体 AS、BS、BD では、CLT 袖壁の上下端面の支圧ばねの軸変形分布が比較的線形に近い形となったのに対し、鉛直接合部を設けた逆対称載荷を行った試験体 AD では、断面中央の圧縮ひずみが低減される特徴的な変形性状が確認され、実験で確認された挙動が再現された。
- 5. RC柱、CLT 袖壁に作用する軸力の推移を確認したところ、片持ちはり形式で載荷した試験体AS、 BS では変形角の増大に伴って、加力方向に対して圧縮側の CLT 袖壁が負担する圧縮軸力が増大 しているが、逆対称形式で載荷した試験体 AD、BD では RC 柱及び CLT 袖壁の軸力変動は小さ かった。試験体 AS、BS における CLT 袖壁を比較すると、鉛直接合部における鉛直せん断力の伝 達を行う試験体 AS の方が CLT 袖壁の最大圧縮軸力は大きく、簡易モデルと比較して、鉛直方向 の分割数が多く、鉛直接合部を介して伝達される鉛直せん断力が大きい詳細モデルでは、最終的 に CLT 袖壁の圧縮耐力に到達し、CLT 袖壁の軸ひずみの計測値から推定した実験結果の傾向と 概ね一致した。
- 6. CLT 袖壁の水平断面に作用する水平せん断力を、CLT のせん断の基準強度を用いたせん断耐力と 比較したところ、簡易モデルの試験体 AD 以外は、CLT 袖壁の水平断面のせん断耐力に到達して いなかった。一方、CLT 袖壁の鉛直断面に作用する鉛直せん断力の最大値を推定するための算定 式を提案し、CLT のせん断の基準強度を用いたせん断耐力と比較したところ、試験体 AS、BS、 AD では、鉛直せん断力の最大値がせん断耐力を上回っており、設計上の配慮が必要となること が明らかとなった。
- 7. 鉛直接合部を設けない試験体 BS、BD では、CLT 袖壁に作用する水平せん断力を曲げ圧縮力(= 軸力)で除した値が、摩擦係数の上限を想定した 0.5 を常に下回ることを確認した。したがって、 実験では、CLT 袖壁の端部に滑り止めを設けているが、実質的には摩擦抵抗のみで水平せん断力 の伝達が行えるものと考えられる。一方、鉛直接合部を設けた試験体 AS、AD では、水平接合面 にアンカーボルトを設けたこともあり、CLT 袖壁の曲げ圧縮力に対する水平せん断力の比率が一 部で 0.5 を上回るケースがあったため、CLT 袖壁に作用する水平せん断力が、鉛直接合部を介し て、RC 柱の脚部および頂部に伝達できることを確認することとした。
- 8. 試験体 AS、BS の載荷実験では、R=1/50rad サイクルにおいて、曲げ圧縮縁のラミナ間における接着面の破壊が生じており、耐力低下が生じている。そこで、数値解析において、R=1/50rad における試験体 AS、BS の支圧ばねの軸縮みを確認したところ、簡易モデルでは 6mm 程度となった。

(設計方法の提案に関する知見)

- 1. 部材実験の試験体を対象に、RC 柱、CLT 袖壁、CLT 袖壁-RC スタブ間の水平接合部、RC 柱-CLT 袖壁間の鉛直接合部における設計の考え方を示した。
- CLT 袖壁に作用する水平せん断力が、水平接合部における摩擦抵抗で伝達できない場合を想定し、 RC 柱の上下端に、RC 柱が負担するせん断力と CLT 袖壁が負担するせん断力の両方が作用する 状況を想定したパンチングシア破壊の検討方法を示した。

- 3. 試験体 AS、AD に関して、水平せん断力、鉛直せん断力に対する鉛直接合部の設計手法、引張軸 力に対する水平接合部の設計手法を示した。水平接合部において接着接合を行う場合には、実験 で確認された山形鋼-CLT 袖壁間の接着面の破壊が生じ、アンカーボルトに引張力が十分に伝達 されない恐れがあるので、設計時に配慮が必要となることが示した。
- 試験体 BS、BD に関して、CLT 袖壁に作用する水平せん断力が摩擦抵抗によって伝達できるかどうかを確認する方法を示した。また、バックアップとして CLT 袖壁端に設置する滑り止めの設計 手法を整理した。
- 5. 鉛直接合材を介して伝達される鉛直せん断力や、CLT 袖壁に作用する圧縮軸力が大きい場合には、 CLT 袖壁のせん断設計を水平断面のみでなく、鉛直断面でも行う必要があることを示した。

#### 2.9. 謝辞

本研究は、国土技術政策総合研究所の総合技術開発プロジェクト「新しい木質材料を活用した混構 造建築物の設計・施工技術の開発」(平成 29~令和 3 年度)によって実施しました。研究の実施に際 して、全体委員会(委員長:河野守教授)及び構造分科会(主査:五十田博教授)の委員の方々から 貴重な助言を賜りました。また、水平、鉛直接合部の設計、施工に関しては、(株)竹中工務店の福原武 史氏、ボンドエンジニアリング(株)の奥田充生氏にご指導・ご協力を賜りました。関係各位に心か ら謝意を表します。

#### 2.10. 参考文献

- [2-1] 日本住宅・木材技術センター:構造用木材の強度試験マニュアル、2011.3
- [2-2] 建築行政情報センター、日本建築防災協会:2015年度版建築物の構造関係技術基準解説書、2015.6
- [2-3] 宮内靖昌ほか: エポキシ樹脂を用いた接着接合部の力学特性に関する研究、コンクリート工学年 次論文集、Vol.23、No.1、pp.967-972、2001
- [2-4] 日本住宅・木材技術センター: 2016 年版 CLT を用いた建築物の設計施工マニュアル、2016.10
- [2-5] S.Takahashi, K. Yoshida, T.Ichinose, Y. Sanada, K.Matsumoto, H. Fukuyama, and H. Suwada, "Flexural Drift Capacity of Reinforced Concrete Wall with Limited Confinement," ACI Structural Journal, No.110-S10, pp. 95-104, 2013
- [2-6] Saatcioglu, M., and Razvi, S. R., "Strength and Ductility of Confined Concrete," Journal of Structural Engineering, ASCE, V. 118, No. 6, pp. 1590-1607, 1992
- [2-7] 向井智久ほか:実験データベースを用いた鉄筋コンクリート造部材の構造特性評価式の検証、国 立研究開発法人建築研究所 建築研究資料 No.175、2016.11
- [2-8] 日本建築防災協会: 既存鉄筋コンクリート造建築物の耐震診断基準・耐震改修設計指針・同解説、 2017
- [2-9] 日本建築学会:壁式鉄筋コンクリート造設計・計算規準・解説、2015.12
- [2-10] 日本建築学会:鉄筋コンクリート造建物の靱性保証型耐震設計指針・同解説、1999
- [2-11] 宮武敦ほか: スギを用いて製造したクロスラミネィティド・ティンバー (CLT) の強度性能 その1 試験の概要、日本建築学会大会学術講演梗概集、pp.115-116、2013.8
- [2-12] 荒木康弘ほか:スギを用いて製造したクロスラミネィティド・ティンバー(CLT)の強度性能 その8 (実大)面内せん断性能、日本建築学会大会学術講演梗概集、pp.129-130、2013.8
- [2-13] 渡部博ほか: スギを用いて製造したクロスラミネィティド・ティンバー (CLT) の強度性能 そ

の9 (小型) 面内せん断性能、日本建築学会大会学術講演梗概集、pp.131-132、2013.8

- [2-14] 中島昌一ほか: CLT の面内せん断性能に層構成とラミナ等級が与える影響、日本建築学会大会 学術講演梗概集、pp.25-26、2015.9
- [2-15] 槌本敬大ほか: CLT の面内せん断強度・弾性係数の試験法に関する考察、日本建築学会大会学 術講演梗概集、pp.111-112、2017.8
- [2-16]ドット・コーポレーション:平成27年度CLT等新たな製品・技術の開発・普及事業CLT等接合部データ等の収集木質材料を用いたRC造建築物耐震補強工法開発報告書、林野庁委託事業(No.229)、http://www.maff.go.jp/j/budget/yosan\_kansi/h27itaku\_seika\_butu/h27itaku\_seika\_ippan.html、2016.3
- [2-17] 佐々木貴信、薄木征三、キッシュ・ラヨシュ、小山田忠央:鋼材-木材接着の衝撃接着強さに 関する基礎的研究、土木学会第 60 回年次論文講演会、p.571-572、2005
- [2-18] 日本建築学会: 2009 年版プレストレストコンクリート造技術基準解説及び設計・計算例、2009

## 3. 架構実験

### 3.1. 設計の考え方

RC ラーメンに CLT 袖壁を挿入した場合、「RC はりのヒンジ形成位置を RC 柱フェイスから CLT 袖 壁フェイスに移動させるヒンジリロケーション効果」と「CLT 袖壁が取り付くことによる RC 柱の補 強効果」の二つが想定される。このうち、後者に関しては、2 章で示した部材実験により、CLT 袖壁 が取り付いた RC 柱における崩壊機構、構造特性に関する検討を実施した。本章では、前者と後者の 両方の検討を行うことを目的として架構実験を実施した。具体的には CLT 袖壁が取り付いた RC ラー メンの崩壊機構、水平剛性や最大耐力といった構造特性に関する検討を実施し、骨組解析におけるモ デル化の手法や RC ラーメン-CLT 袖壁間の接合部の設計手法の提案等を行う。



図 3-1 架構試験体における袖壁の補強効果のイメージ

対象は、想定建物の下層を取り出した2層1スパンの部分架構とする。試験体の形状や寸法は、RC 造非耐力壁が取り付いた架構の水平耐力や崩壊機構の評価を目的とした文献[3-1]の2層2スパン架構 の水平加力実験や、同じ架構試験体のRC造非耐力壁をUFCパネルで補強した文献[3-2]の水平加力実 験を参考に決めた。試験体の層数を2層とすることで、部材実験で検証した最下階におけるCLT 袖壁 付きRC柱の挙動の確認や、中間階において上下にCLT 袖壁が取り付いたRC はりの剛域や危険断面 位置の評価を行うことができる。本検討で対象とする想定建物は、実験試験体のような低層のものを 想定している訳ではないが、試験体の3階RC はりに隣接するCLT 袖壁が下側のみとなるため、境界 条件に配慮することで、中間階とは異なった最上階に近い挙動が得られるものと考えられる。そこで、 文献[3-1]、[3-2]では、3階柱の反曲点位置を再現するために、3階の中央高さ付近としていた水平加力 位置を同階のできるだけ低い位置に変更し、3階にCLT 袖壁を設けないことで、最上階におけるRC はりの挙動を検証することとした。表3-1に実験変数を示す。架構実験では3体の試験体の検証を行 う。試験体A、Bは、RC ラーメンにCLT 袖壁を設置した試験体であり、CLT 袖壁の接合方法が異な る。試験体Cは、CL 袖壁のないRC ラーメンであり、補強効果を検証するための試験体である。

試験体Aは、部材実験のAタイプを参考に、RC ラーメンと CLT 袖壁ができるだけ一体で挙動する ように接合部の設計を行った試験体である。但し、部材実験の試験体AS、ADの載荷実験において、 水平接合面、鉛直接合面に関する以下の課題が確認されている。そこで、これらの課題を解決するた めに、試験体Aでは、水平接合部、鉛直接合部の接合方法をドリフトピンに変更した。また、鉛直接 合部に関しては、RC 柱に取り付く RC はりの曲げ耐力を参考に、鉛直接合部の設計用せん断力を決定 し、CLT 袖壁がせん断破壊する前に、鉛直接合部がせん断降伏するようにした。これに伴い、鉛直接 合材の簡素化が可能となる。また、充填材に関しては、エポキシ樹脂から、より一般的な材料と思わ れる無収縮モルタルや不陸調整モルタルに変更し、構造性能に及ぼす影響を検証することとした。 ・アンカーボルトが引張降伏する水平接合部では、水平接合材である山形鋼と CLT 袖壁の接着面に 付加的な曲げモーメントが作用するため、接着面の強度を確保することが難しい。山形ではなく、 ダブル T 形の接合金物を用い、金物の 2 本のフランジ部分の間に CLT 袖壁を挟み込むようにすれ ば、このような付加的な曲げモーメントの影響が軽減されるものと考えられるが、今度は CLT 袖 壁と接合金物を押し付けるようにして接着することが難しくなるため、山形鋼と CLT 袖壁の接着 面の品質確保に問題が生じる可能性がある。

・RC 柱から鉛直方向のせん断力が作用する鉛直接合面に、CLT 袖壁のせん断強度に匹敵するせん 断力を伝達させるためには、鉛直接合材の寸法や断面を大きく設定する必要があり、現場での施工 性にも支障が出る恐れがある。また、部材実験の試験体を対象とした数値解析では、CLT 袖壁のせ ん断強度に匹敵するせん断力を鉛直接合材に作用させた場合、詳細モデルを用いた検討では問題な いものの、簡易モデルを用いた検討では評価精度に支障ができることが確認されていることから、 鉛直接合材のせん断耐力はある程度のところで頭打ちにして、完全には一体に挙動させない方が現 実的である。

・新築の場合は、接着や充填にエポキシ樹脂を使用しようとした場合、大臣認定等の特別な対応が 必要となる可能性がある。

試験体 B は、部材実験の B タイプを参考に、RC ラーメンと CLT 袖壁が独立に挙動することを許容 した試験体である。但し、両者にある程度の一体性を持たせるために、水平接合材として滑り止めは 設置している。また、試験体 A と同様に、エポキシ樹脂からより一般的な無収縮モルタルや不陸調整 モルタルに充填材を変更している。なお、試験体 B に関しては、部材実験では、CLT 袖壁端にテンシ ョンロッドを設置して、曲げ耐力に対する寄与分を考慮した。このようなシステムを架構に適用する 場合、1 階柱脚に関しては、テンションロッドによる柱曲げ耐力の増大効果が期待できるが、図 3-2 に 示すような一般階では、上下階から作用するテンションロッドの張力が打ち消し合うため、RC はり の危険断面位置を移動させる効果が期待できない。また、テンションロッドに生じる張力は、各階の 層間変形の大きさに応じて増大するものと考えられるが、部材実験を対象とした数値解析では、逆対 称形式の載荷を行った試験体 BD におけるテンションロッドの張力の増大が小さく、耐震要素として 必ずしも効果的でないため、架構実験ではテンションロッドは用いないこととした。

| 試験体名 | ○□Т抽辟回   | 接合   | 方法  | 充填   |      |  |  |  |  |  |  |  |  |
|------|----------|------|-----|------|------|--|--|--|--|--|--|--|--|
| 武灵平石 | ULT恤重序   | 水平   | 鉛直  | 水平   | 鉛直   |  |  |  |  |  |  |  |  |
| А    | 120mm    | ドリフ  | トピン | 無収縮  | 不陸調整 |  |  |  |  |  |  |  |  |
| В    | 12011111 | 滑り止め | なし  | モルタル | モルタル |  |  |  |  |  |  |  |  |
| С    | なし       | な    | L   | な    | L    |  |  |  |  |  |  |  |  |

表 3-1 実験変数



図 3-2 試験体 B で CLT 袖壁端にテンションロッドを使用した場合のイメージ

# 3.2. 試験体の概要

表 3-2 に実験試験体の概要を示す。

| 試験 | 12                                                                                          | 3 <b>7</b> 5                                                                               | P2-                        |                 | 水平接合部                             |                             |                 | 鉛直接合部                   |                              |             | 填            |
|----|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------|-----------------|-----------------------------------|-----------------------------|-----------------|-------------------------|------------------------------|-------------|--------------|
| 体名 | 杜                                                                                           | 栄                                                                                          | 袖壁                         | 金物              | RC−金物                             | 金物−CLT                      | 金物              | RC−金物                   | 金物−CLT                       | 水平接合部       | 鉛直接合部        |
| А  | 400mm × 400mm                                                                               | 300mm × 400mm                                                                              |                            | T形金物<br>(SS400) | アンカー<br>ボルト<br>2-M16<br>(ABR490B) | ドリフトピン<br>18-Φ12<br>(SS400) | T形金物<br>(SS400) | ボルト<br>12-M16<br>(S45C) | ドリフトピン<br>25- Φ12<br>(SS400) |             |              |
| в  | 主筋 16-D16<br>(SD345) p <sub>g</sub> =1.99%<br>帯筋 4-D10@100<br>(SD295A)p <sub>w</sub> =0.71% | 上,下端筋4-D16<br>(SD345)p <sub>t</sub> =0.74%<br>帯筋2-D10@100<br>(SD295A)p <sub>w</sub> =0.48% | 120mm × 640mm<br>(S60-3-4) | 滑り止め<br>(SS400) | ボルト<br>4-M20<br>(S45C)            | 支圧                          |                 | なし                      |                              | 無収縮<br>モルタル | 不陸調整<br>モルタル |
| С  |                                                                                             |                                                                                            | なし                         |                 | なし                                |                             |                 |                         |                              | な           | ι            |

表 3-2 実験試験体

# 3.2.1. 試験体の形状

図 3-3 に RC 柱の断面図を、図 3-4 に RC はりの断面図を、図 3-5 に RC スタブの断面図を示す。 試験体の縮尺は 2/3 で、補強対象となる柱は 400mm×400mm 角の寸法で、主筋は 16-D16、帯筋は加 力方向に対して 4-D10@100 としている。また、軸力導入用にアンボンド加工を施した PC 鋼棒を設け ている。はりは CLT 袖壁を固定するための水平接合材を取り付けるために、やや幅を大きくしており、 断面寸法は 300mm×400mm、上下端筋はそれぞれ 4-D16、あばら筋は 2-D10@100 とした。下スタブ の断面は、575mm×850mm とし、上下端筋はそれぞれ 6-D25 とした。なお、試験体 A、B では、打設 時に CLT 袖壁設置のための寸切りボルトやシース管を柱、はり、スタブに埋め込んでいる。









図 3-6、図 3-7、図 3-8 に各試験体の RC 部分の寸法図を、図 3-9、図 3-10、図 3-11 に各試験体の 配筋図を示す。いずれの試験体も柱間の中心距離は 3500mm、階高は 2000mm である。



図 3-6 試験体 A の RC 部分の寸法図(単位:mm)







図 3-9 試験体 A の RC 部分の配筋図(単位:mm)



図 3-10 試験体 B の RC 部分の配筋図(単位:mm)



図 3-11 試験体 C の RC 部分の配筋図(単位:mm)

試験体 A、B について、CLT 袖壁の設置状況を確認する。いずれの試験体も、CLT 袖壁の寸法は 120mm×640mm とした。これは、RC 柱のせい(400mm)に対して、1.5 倍程度の袖壁せいを目安とし たものである。

試験体 A の CLT 袖壁取り付け後の柱の断面図を図 3-12 に、はりの断面図を図 3-13 に、スタブの 断面図を図 3-14 に示す。試験体 A では、T 形の接合金物を水平接合部、鉛直接合部の両方に採用し ている。CLT 袖壁の水平接合材や鉛直接合材は、主に鉛直方向の軸力やせん断力を伝達することを想 定しているため、繊維直交方向となる内層ラミナに切り欠きを設けて、鋼板挿入を行い、ドリフトピ ンで固定している。また、水平接合材は RC はりやスタブに設けたシース管内にアンカーボルトを挿 入して、鉛直接合材は RC 柱に打設時に埋め込んだ寸切りボルトを用いて、RC ラーメンと接合してい る。



図 3-12 試験体 A の CLT 袖壁取り付け後の柱の断面図







図 3-14 試験体 A の CLT 袖壁取り付け後のスタブの断面図

試験体 B の CLT 袖壁取り付け後の柱の断面図を図 3-15 に、はりの断面図を図 3-16 に、スタブの 断面図を図 3-17 に示す。試験体 B では、滑り止めとなる水平接合材のみを設けており、鉛直接合部 には接合金物は設けていない。滑り止めは、RC はりやスタブに打設時に埋め込んだ寸切りボルトを 用いて、RC ラーメンと接合している。











図 3-17 試験体 B の CLT 袖壁取り付け後のスタブの断面図



図 3-18、図 3-19 に試験体 A、B の CLT 袖壁取り付け後の全景を示す。



図 3-19 試験体 B の CLT 袖壁取り付け後の全景

# 3.2.2. CLT 袖壁のラミナの配置

図 3-20、図 3-21 に今回使用した CLT 袖壁におけるラミナの割り付け状況を示す。今回使用したラ ミナの幅は 122mm を基準としており、最外縁のラミナの幅方向の数は 6 枚、中間層のラミナのせい 方向の数は 13~14 枚である。最外縁のラミナには、フィンガージョイントは設けておらず、縦継ぎは 行っていない。幅はぎ(厚さ方向の接着)については、今回の実験では行わなかった。



(a) 1F



図 3-20 試験体 A に使用した CLT 袖壁におけるラミナの割り付け(単位:mm)




(a) 1F



(b) 2F

図 3-21 試験体 B に使用した CLT 袖壁におけるラミナの割り付け(単位:mm)

# 3.3. 施工実験

# 3.3.1. CLT 袖壁の製作及び接合金物の設置

表 3-3 に、4 枚の CLT 袖壁(+材料試験片)の製作及び接合金物の設置に要した日数もしくは人工 を示す。試験体 A の CLT 袖壁については、仕口の加工や金物の取り付けに手作業が必要となってお り、B 試験体の CLT 袖壁と比較して、多くの日数が必要となっているため、施工性の改善が必要と考 えられる。

| 製作過程 | 製作方法 | 日数もしくは人工 |
|------|------|----------|
| 成形   | 機械加工 | 0.5 日    |
| 化口加丁 | 機械加工 | 1.0 日    |
| 江口加上 | 手加工  | 2.5 人工   |
| 金物取付 | 手加工  | 0.75 人工  |

表 3-3 CLT 袖壁の加工時の人工

## 3.3.2. 全体の工程について

本実験では、CLT 袖壁を設置する実験試験体2体(A、B)に対して、各階に2枚、それぞれの試験 体で計4枚のCLT 袖壁の設置、および鉛直、水平の目地へのモルタル充填、試験体Bに対して水平接 合材計10個の取り付けを行った。以下に作業の工程を示す。

| 作業   | 作業   | 作業 | 作業内容                                                |
|------|------|----|-----------------------------------------------------|
| 日    | 時間   | 人数 |                                                     |
| 6/18 | 4:00 | 2人 | RC 試験体への CLT 設置位置の墨出し、およびグラインダーを用いた RC 試験体の目荒らし     |
| 6/19 | 2:30 | 3人 | 同上                                                  |
|      | 4:00 | 1人 | プライマー塗布部への養生テープの貼り付け                                |
|      | 2:00 | 1人 | プライマー(1回目)塗布                                        |
| 6/21 | 1:00 | 1人 | プライマー (2回目) 塗布                                      |
|      | 2:00 | 1人 | CLT 袖壁を RC 試験体へ仮設置(試験体 A の 1 階、計 2 枚)               |
|      | 1:30 | 2人 | CLT 袖壁の設置位置合わせ                                      |
|      | 2:30 | 4人 | 鉛直目地(不陸調整モルタル)の充填、CLT 袖壁の設置(試験体 A の 1 階)            |
| 6/25 | 3:00 | 3人 | CLT 袖壁を RC 試験体へ仮設置(試験体 A の 2 階、試験体 B の 1、2 階、計 6 枚) |
|      | 1:30 | 4人 | 鉛直目地(不陸調整モルタル)の充填、CLT 袖壁の設置(試験体 A の 2 階)            |
|      | 2:00 | 4人 | 鉛直目地(不陸調整モルタル)の充填、CLT 袖壁の設置(試験体 B の1 階)             |
| 6/26 | 1:00 | 4人 | 鉛直目地(不陸調整モルタル)の充填、CLT 袖壁の設置(試験体 B の 2 階)            |
|      | 1:00 | 4人 | 水平目地の充填作業の準備(材料の準備)                                 |
|      | 1:30 | 4人 | 試験体 B の滑り止め金物および、試験体 A の最上階の鉄板設置                    |
|      | 1:30 | 3人 | 水平目地の充填作業の準備(アンカーボルトのリード線養生、鋼材の養生)                  |
| 6/27 | 2:30 | 4人 | 試験体Bの水平目地型枠の設置                                      |
|      |      |    | (型枠の加工、養生シール貼付、型枠へのホース取り付け含む)                       |
|      | 5:00 | 4人 | 試験体Aの水平目地型枠の設置                                      |
|      |      |    | (型枠の加工、養生シール貼付、型枠へのホース取り付け含む)                       |
| 6/28 | 2:00 | 4人 | CLT 袖壁をビニールで養生                                      |
|      | 1:30 | 4人 | A、B両試験体の水平目地モルタル充填                                  |
| 7/1  | 1:00 | 4人 | 水平目地型枠の脱型                                           |
|      | 0:30 | 2人 | 水平目地モルタル充填不良箇所の補修                                   |

表 3-4 作業工程(2019/6/18~7/1)

# 3.3.3. 作業の詳細について

**写真 3-1**に RC 試験体の墨出し、目荒らしの様子を示す。試験体の目荒らしは、RC 試験体-CLT 袖 壁間のモルタルを注入する箇所を対象にディスクグラインダーで行った。なお、スタブの上端面では、 はりの上端面と比較して、ブリージングの影響が大きく、コンクリート内の水分量が多かったため、 目荒らしを行った表面の凹凸が小さかった。



写真 3-1 墨出し、目荒らし

**写真 3-2** にプライマー塗布の様子を示す。写真に示すように、養生テープにより塗布部の養生を行い、RC 試験体と CLT 袖壁のモルタルが接触する部分にのみプライマーを塗布した。なお、袖壁の接合金物面にはプライマーは塗布しなかった。



写真 3-2 プライマー塗布部の養生、塗布の状況

**写真 3-3** に CLT 袖壁の仮設置の様子を示す。写真に示すように CLT と接合金物間をスチレンフォームにより養生し、モルタルが流入しないようにした。実験棟のクレーンにより、CLT 袖壁を設置位置まで移動させた。現場ではクレーンが使用できないこと、実大スケールでは更に重量が大きくなることなどを考えると、この施工手順は今後の検討課題である。

CLT 袖壁を仮設置位置まで移動した後、鉛直目地の不陸調整モルタル充填時の準備として、袖壁下 部には下から鋼板-リニアスライダー-鋼板-テフロンシートを設置した。この時、下部水平目地が 20mm 幅となるように調整している。



写真 3-3 CLT 袖壁の仮設置、水平目地下部に挿入したリニアスライダー

写真 3-4 に RC 柱への不陸調整目地用型枠の固定、モルタル練り、鉛直目地のモルタル充填、CLT 袖壁設置までの様子を示す。型枠は RC 柱に万力を用いて固定した。鉛直目地の設計幅は 10mm であ るが、CLT 袖壁を押し込んでいくことでモルタルを十分に充填することを想定し、型枠の厚さは 12mm とした。鉛直目地の不陸調整モルタルには RIS フィニッシュエース (デンカ株式会社製)を用いた。 固練りとしたモルタルをこてを用いて塗布し、CLT 袖壁を押し込んでいった。試験体 A では、接合金 物の孔が柱から突出させている寸切りボルトに通ることを確認し、接合金物とモルタルを接触させた。 ここで型枠を外し、寸切りボルトにナットを設置して、締めこんでいくことで、縦目地が約 10mm (は りや下スタブに貫通させるアンカーボルトが通るか確認できた位置)となるまで CLT 袖壁を押し込ん でいった。試験体 B では寸切りボルトがないため、木づちで叩き押し込んでいった。上下の水平目地 部に木製のくさびを打ち込んで固定した後、袖壁下部の鋼板、リニアスライダー類を抜き取り、スペ ーサーの代わりに、小さな固練りのモルタルを袖壁下部及び上部の中央位置に挿入して、水平目地幅 を確保した。最後に、鉛直目地からはみ出したモルタルを除去した。また、試験体Bでは固練りのモルタルをはりと滑り止め金物間の目地部に 5mm 敷き、不陸調整した。



写真 3-4 RC 柱への不陸調整目地用型枠の固定、モルタル練り、鉛直目地のモルタル充填、袖壁設置

写真 3-5 に試験体では鋼板のみとなる 3 階はり上の水平目地のモルタル充填状況を示す。実建物で は連層で CLT 袖壁が連なると想定される箇所であるが、試験体では下階までと条件を同じくするため に、鉛直目地に充填した不陸調整用モルタルによって試験体 A では 20mm を、試験体 B では 5mm を 確保した。



写真 3-5 3 階はり上の水平目地のモルタル充填状況

写真 3-6 にアンカーボルトの養生、水平目地用型枠およびその固定、水平目地のモルタル充填の様子を示す。

試験体Aのアンカーボルトは、実構造物において、可変性を持たせることを想定し、シース管内に はモルタルを流入させず、アンボンドとすることとした。そこで、写真に示すように、発泡ウレタン 棒を切断し、加工したものをアンカーボルトの周辺を囲うように配置した。型枠には水平方向の左右 の両端に塩ビパイプとホースを取り付けている。一方はモルタルを圧入するためのもの、もう一方は 空気抜きおよび充填の確認するためのものである。型枠設置後、ビニールにより、CLT 袖壁を養生し た。水平目地に充填する無収縮モルタルにはプレタスコン TYPE-IS (デンカ株式会社製)を用いた。 圧入は、圧入用ポンプにモルタルを移し、ポンプのレバーを押し引きすることで徐々に圧入していっ た。圧入しているホースとは反対側のホースにてモルタルの充填が確認されるまで圧入した。この時、 充填性を向上させるため、型枠を木づち等で叩いた。充填時にモルタルが漏れることはほとんどなか った。



写真 3-6 アンカーボルトの養生、水平目地用型枠およびその固定、水平目地のモルタル充填

**写真 3-7**に脱型後の水平目地のモルタル充填状況、その補修を示す。いくつかモルタルの充填不良 が確認された。そのため、縦目地に充填した不陸調整用モルタルを用いて、充填不良箇所を埋め、補 修した。





写真 3-7 脱型後の水平目地のモルタル充填状況、補修

# 3.3.4. ボルトの締め付け

試験体 A、B では、長期軸力の入力前に、水平接合材、鉛直接合材の固定に用いているアンカーボルトや寸切りボルトの締め付けを行い、初期トルクを導入した。

部材実験では、アンカーボルトの一次締め付けトルクである 60Nm を目標とした。これは、締め付け時に CLT 袖壁と接合材の接着面付近から異音がしたため、それ以上の締め付けを行わなかったためである。その結果、この際のアンカーボルトの計測ひずみの平均値は 300µ 程度となり、降伏ひずみ(1778µ)の 20%程度に留まっていた。

架構実験では、CLT 袖壁をより効果的に水平力に抵抗させることを意図し、CLT 袖壁に損傷を与えない範囲で、大きなトルクで締め付けを行うこととする。具体的な方法を以下に示す。

## 試験体 A

① 鉛直目地を横切る寸切りボルト(M16、S45C)に、トルク 70Nm で一次締め付けを行う。

- ② 水平目地を横切るアンカーボルト(M16、ABR490B)に、トルク 70Nm で一次締め付けを行う。
- ③ 鉛直目地を横切る寸切りボルト(M16、S45C)に、トルク 95Nm で本締め付けを行う。
- ④ 水平目地を横切るアンカーボルト(M16、ABR490B)に、計測ひずみが 900µ(降伏ひずみのほぼ

半分)となるように、本締めを行う。

# 試験体 B

水平目地を横切る寸切りボルト(M20、S45C)に、トルク 70Nm で一次締め付けを行う。
 水平目地を横切る寸切りボルト(M20、S45C)に、トルク 95Nm で本締め付けを行う。

表 3-5 に、上記④のアンカーボルトの本締め時の試験体 A の最大トルクの一覧を示す。最大トルク の平均値は 92Nm であり、上記③で行った寸切りボルトの本締め時の最大トルクとほぼ一致している。 表 3-6 に、上記②の寸切りボルト本締め時の試験体 B の最大トルクの一覧を示す。試験体 B では、RC はり内に定着した寸切りボルトにひずみゲージを貼り付けており、ひずみの計測を行っていたが、試 験体 A とは異なり、寸切りボルトが RC はり内で定着されているため、締め付け時の引張ひずみの増 大は小さかった。そこで、試験体 A のように、計測ひずみを基準とした締め付けは行わなかった。

| ゲージの名前 | トルク(Nm) |
|--------|---------|
| A1NE   | 96      |
| A1NW   | 86      |
| A2NE   | 112     |
| A2NW   | 78      |
| A3NE   | 70      |
| A3NW   | -       |
| A1SE   | 99      |
| A1SW   | 93      |
| A2SE   | 97      |
| A2SW   | 92      |
| A3SE   | 103     |
| A3SW   | 81      |
| 平均     | 92      |

表 3-5 試験体 A のアンカーボルトの本締め時のトルク

| ゲージの名前 | ひずみ (μ) |
|--------|---------|
| A1NN   | 39      |
| A1NS   | 45      |
| A2NN   | 23      |
| A2NS   | 17      |
| A3NN   | 59      |
| A3NS   | 52      |
| A4NN   | 43      |
| A4NS   | 57      |
| A1SS   | 166     |
| A1SN   | 79      |
| A2SS   | 76      |
| A2SN   | 23      |
| A3SS   | 150     |
| A3SN   | 48      |
| A4SS   | 67      |
| A4SN   | 40      |
| 平均     | 61      |

# 3.4. 材料試験

# 3.4.1. コンクリート

表 3-7 にコンクリートの圧縮、割裂試験の結果を、図 3-22、図 3-23、図 3-24 に圧縮試験における コンクリートの応力-ひずみ関係を示す。試験区間となる 1、2 階のコンクリートの圧縮強度の平均値 は試験体 A、B、C でそれぞれ、33.4N/mm<sup>2</sup>、35.3N/mm<sup>2</sup>、36.1N/mm<sup>2</sup>であり、試験体 A と試験体 C で は、8%程度の差が生じている。

| 試験体名 |      | 割線剛性                  | 圧縮強度                   | 割裂強度 | 材齢(日) |
|------|------|-----------------------|------------------------|------|-------|
|      |      | (kN/mm <sup>2</sup> ) | $(kN/mm^2)$ $(N/mm^2)$ |      |       |
|      | 下スタブ | 31.8                  | 36.1                   | 2.9  | 159   |
| Α    | 1階   | 階 29.7 33.1 2.9       |                        | 145  |       |
|      | 2階   | 30.4                  | 33.7                   | 2.9  | 125   |
|      | 下スタブ | 31.7                  | 36.9                   | 2.9  | 179   |
| в    | 1階   | 29.7                  | 35.3                   | 2.5  | 165   |
|      | 2階   | 30.8                  | 35.4                   | 3.1  | 145   |
|      | 下スタブ | 32.2                  | 39.1                   | 3.0  | 197   |
| С    | 1階   | 32.0                  | 36.3                   | 2.7  | 183   |
|      | 2階   | 32.0                  | 35.8                   | 3.0  | 163   |

表 3-7 コンクリートの試験結果



図 3-22 コンクリートの応カーひずみ関係(下スタブ)



図 3-24 コンクリートの応カーひずみ関係(2階)

# 3.4.2. モルタル

表 3-8 にモルタルの圧縮試験の結果を、図 3-25、図 3-26 に圧縮試験におけるモルタルの応力-ひ ずみ関係を示す。設計時には、鉛直目地用の不陸調整モルタルでは試験体に用いるコンクリートの圧 縮強度の 1.5 倍、水平目地用の無収縮モルタルでは試験体に用いるコンクリートの圧縮強度の 2.0 倍 を想定していたが、鉛直目地用の不陸調整モルタルの平均強度は 62.4N/mm<sup>2</sup>、水平目地用の無収縮モ ルタルの平均強度は 71.7N/mm<sup>2</sup> であり、試験体 A、B の 1、2 階のコンクリートの平均強度である 34.4N/mm<sup>2</sup>の 2 倍近い圧縮強度が得られた。

圧縮強度 割線剛性 試験体名  $(kN/mm^2)$  $(N/mm^2)$ 鉛直目地 25.4 54.3 А 水平目地 23.8 69.9 70.5 鉛直目地 25.6 В 水平目地 23.8 73.5

表 3-8 モルタルの試験結果



図 3-25 モルタル(鉛直目地用)の応カーひずみ関係



図 3-26 モルタル(水平目地用)の応カーひずみ関係

### 3.4.3. 鋼材

表 3-9 に鋼材の引張試験の結果を、図 3-27、図 3-28 に引張試験における鋼材の応力-ひずみ関係 を示す。なお、ドリフトピンには SS400 を用いたが、加工によって、500N/mm<sup>2</sup>を超える降伏強度が 得られている。また、下記表とは別に、RC 柱への軸力の導入に用いた PC 鋼棒 (M32)の弾性域にお ける引張試験(3 体)も別途実施しており、ヤング係数の平均値として 197kN/mm<sup>2</sup> が得られている。

|       | 試験 | 立てん        | お       | ヤング係数                 | 降伏強度       | 引張強度       | 降伏ひずみ |
|-------|----|------------|---------|-----------------------|------------|------------|-------|
|       | 体名 |            | 们俚      | (kN/mm <sup>2</sup> ) | $(N/mm^2)$ | $(N/mm^2)$ | (µ)   |
| D10   |    | 柱帯筋、大梁あばら筋 | SD295A  | 179                   | 337        | 447        | 1884  |
| D13   | 十语 | スタブせん断補強筋  | SD295A  | 179                   | 354        | 507        | 1981  |
| D16   | 六過 | 柱主筋、大梁主筋   | SD345   | 170                   | 382        | 564        | 2242  |
| D25   |    | スタブ主筋      | SD345   | 180                   | 376        | 568        | 2089  |
| Φ12   | А  | ドリフトピン*    | SS400   | 194                   | 510        | 570        | 2632  |
| M16   | А  | アンカーボルト*   | ABR490B | 206                   | 332        | 556        | 1615  |
| M16 - | А  | 寸切りボルト*    | S45C    | 182                   | 561        | 792        | 3085  |
| M20   | В  | 寸切りボルト*    | S45C    | 192                   | 566        | 765        | 2951  |

表 3-9 鉄筋、アンカーボルト、テンションロッドの試験結果

\*0.2%オフセット法による。



図 3-27 鉄筋の応カーひずみ関係



図 3-28 ドリフトピン、アンカーボルト、寸切りボルトの応カーひずみ関係

# 3.4.4. CLT パネル

# 3.4.4.1. 圧縮試験

構造用木材の強度試験マニュアルに従い、試験体の形状を決定した。試験体の全長は断面の短辺長 さの6倍としている。計測に関しては、相対する2材面の軸ひずみを計測した。計測長が短い場合、 ひずみの評価が局所的となる可能性があるため、ここでは、構造用木材の強度試験マニュアル<sup>[3-3]</sup>に従 い、短辺長さの4倍(480mm)を計測長とした変位計による計測値を行った。

|          | $(kN/mm^2)$          | $(N/mm^2)$                              | (µ)                                    |  |  |  |  |
|----------|----------------------|-----------------------------------------|----------------------------------------|--|--|--|--|
| 縦圧縮      | 3.75                 | 16.8                                    | 6004                                   |  |  |  |  |
| 横圧縮      | 3.78                 | 14.5                                    | 4931                                   |  |  |  |  |
|          | 変位計による<br>計測長<br>360 | - <b>•</b><br>72<br>- <b>•</b><br>160 ( | <sup>0</sup><br>立面図)                   |  |  |  |  |
| 18 –     | +<br>図 3-29          | 12<br>160<br>(<br>正縮試験)                 | o<br>断面図)<br>片の形状                      |  |  |  |  |
| 16       | ſ                    |                                         | S60-3-4                                |  |  |  |  |
| 14       | /                    |                                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |  |  |  |  |
| <u> </u> | /                    |                                         |                                        |  |  |  |  |
| 10 -     |                      |                                         |                                        |  |  |  |  |
| sss(N)   |                      |                                         |                                        |  |  |  |  |
| o stre   |                      |                                         |                                        |  |  |  |  |
| 4        |                      |                                         |                                        |  |  |  |  |
| 2        | /                    |                                         | No.3                                   |  |  |  |  |
| 0        |                      |                                         |                                        |  |  |  |  |
| 0        | 5000                 | 10000<br>strain(μ)                      | 15000 20000                            |  |  |  |  |
|          |                      |                                         |                                        |  |  |  |  |

表 3-10 CLT の試験結果(変位計による計測値を使用)

割線剛性 圧縮強度 圧縮強度時ひずみ





写真 3-8 縦圧縮試験の様子







写真 3-9 横圧縮試験の様子

表 3-11 に示す圧縮強度と座屈強度の関係を用いて、材料試験の結果(座屈強度)から、CLTの圧縮 強度を計算する。CLTの圧縮強度の計算結果を表 3-12 に示す。ここでは、材料試験片の境界条件が片 側固定、片側ピンとなることから、座屈長さを実際の試験片の長さの 0.7 倍とした。また、CLTの圧 縮強度を用いて、部材実験の検討に使用する CLTの座屈強度を計算する。CLT 袖壁の座屈強度の計算 結果を表 3-13 に示す。ここでは、袖壁の境界条件が両端固定となるものと仮定し、座屈長さを、縦圧 縮の場合は袖壁高さの 0.5 倍、横圧縮の場合は袖壁せいの 0.5 倍とした(横圧縮の場合は、滑り止めに 対する CLTの圧縮強度が問題となるため、縦圧縮の場合と同様に境界条件が両端固定であるものと仮 定した)。

表 3-11 圧縮材 (座屈)の材料強度<sup>[3-4]</sup>

| 有効細長比       | 圧縮材(座屈)の材料強度           |
|-------------|------------------------|
| λ≦30の場合     | tFc                    |
| 30<λ≦100の場合 | (1.3-0.01 λ )tFc       |
| 100<λの場合    | $(3000/\lambda^2)$ tFc |
|             |                        |

ここで、 $F_c$ : 圧縮に関する基準強度、 $\lambda$ : 有効細長比( $=l_b\sqrt{A/I_e}$ )、 $l_b$ : 座屈長さ、A: 強軸方向の 許容応力度を計算する場合は全断面積、弱軸方向の許容応力度を計算する場合は外層を除いた部分の 断面積、 $I_e$ : 強軸方向の許容応力度を計算する場合は全断面の断面二次モーメント、弱軸方向の許容応 力度を計算する場合は外層を除いた部分の断面二次モーメントとする。

| 表 3-12 ね | オ料試験から推定し | った CLT ( | の圧縮強度 |
|----------|-----------|----------|-------|
|----------|-----------|----------|-------|

|             | 推定した圧縮強度<br>(N/mm <sup>2</sup> ) | 材料試験の最大圧縮応力<br>(=座屈強度)<br>(N/mm <sup>2</sup> ) | λ    | Ie<br>(mm <sup>4</sup> ) |       |   | A<br>(mm²) |   |     | lb<br>(mm) |
|-------------|----------------------------------|------------------------------------------------|------|--------------------------|-------|---|------------|---|-----|------------|
| S60-3-4 縦圧縮 | 16.8                             | 16.8                                           | 14.5 | 23040000                 | 19200 | = | 160        | × | 120 | 504        |
| S60-3-4 横圧縮 | 14.5                             | 14.5                                           | 29.1 | 2880000                  | 9600  | = | 160        | × | 60  | 504        |

|             | 推定した圧縮強度<br>(N/mm <sup>2</sup> ) | 部材試験の座屈強度<br>(N/mm <sup>2</sup> ) | λ    | Ie<br>(mm <sup>4</sup> ) |       |   | A<br>(mm <sup>2</sup> ) |   |     | lb<br>(mm) |
|-------------|----------------------------------|-----------------------------------|------|--------------------------|-------|---|-------------------------|---|-----|------------|
| S60-3-4 縦圧縮 | 16.8                             | 16.8                              | 23.1 | 93600000                 | 78000 | Ш | 650                     | × | 120 | 800        |
| S60-3-4 横圧縮 | 14.5                             | 14.5                              | 18.8 | 28800000                 | 96000 | = | 1600                    | × | 60  | 325        |

表 3-13 架構実験の検討に使用する CLT の座屈

#### 3.4.4.2. 面内せん断試験

CLT 面内せん断試験の模式図を図 3-32、図 3-33 に示す。使用する試験片の寸法は幅 720mm、高さ 160mm である。試験体数は表面の繊維方向が平行のものと、直交のものを各 3 体ずつ用意した。また、 試験体名は表面の繊維方向が平行のものを S60-SP シリーズ、直交のものを S60-SO シリーズとした。 試験方法はスパン 320mm の逆対称 4 点荷重法で、載荷方法は単調載荷であり、試験時間が 10 分前後 となるように加力速度は 0.5mm/分とした。なお、加力終了は 0.8Pmax 以下まで荷重が低下したときと した。



図 3-33 S60-S0 シリーズの試験模式図

平均せん断応力度は、試験区間に作用するせん断力0.5Pを試験片の断面積(幅120mm×高さ160mm) で除した値とした。また、最大せん断応力度は、平均せん断応力度に形状係数1.5を乗じた値とした。

試験区間のせん断変形は、試験体の側面に斜め方向に設置した変位計によって計測し、せん断ひ ずみは以下の算定式で計算した。なお、せん断弾性係数は、平均せん断応力度-せん断ひずみ関係に おいて、平均せん断応力度の最大値の40%と60%に相当する点を結んだ時の傾きとした。

また、応力の下限値は母集団を正規分布と仮定した場合の信頼水準75%の95%下側許容限界値とし、 せん断弾性係数の下限値は信頼水準75%の50%下側許容限界値とした。

$$\gamma = \frac{\Delta q}{p} = \frac{\sqrt{\left(l + \delta_d\right)^2 - p^2} - q}{p}$$

*l、p、q、Aq* については、図 3-34 を参照されたい。



図 3-34 せん断ひずみ算出補足(単位:mm)

各シリーズにおける破壊性状を**写真 3-10** に示す。破壊性状は S60-SP シリーズではすべての試験 体で繊維平行方向のせん断破壊やローリングシア破壊が見られ、S60-SO シリーズでも同様にすべて の試験体でローリングシア破壊が見られた。

(3.1)



写真 3-10 試験体の破壊性状

各試験体の平均せん断カーせん断ひずみ関係を図 3-35 に、各試験体の特性値を表 3-14 に示す。表面の繊維方向をパラメータにとり、面内せん断試験を行ったが、平均せん断応力度は、層構成に関わらず概ね同程度の値を示した。また、せん断弾性係数に関しては、ばらつきがやや大きいものの、下限値は文献[3-4]に示されている 500N/mm<sup>2</sup>と比較すると、1.02 倍程度とほぼ同程度の値であった。

面内せん断試験では、ローリングシア破壊が確認されているため、モードⅢの破壊が生じたものと 考えられる。但し、材料試験片の高さが160mmと低く、各層のラミナの幅方向の数のうち最小の値が 160mm/122mm=1.31となり、架構実験に用いた袖壁とは各層のラミナの幅方向の数のうち最小の値が 650mm/122mm=5.33が異なっているため、面内せん断試験で得られたせん断強度をそのまま用いるの は適切ではない。そこで、材料試験片と袖壁のせん断の基準強度の比率と、実際のせん断強度の比率 が等しくなるものと仮定して、袖壁のせん断強度を決定することとした。



| 試験体名    | 平均せん断応力度                             | 最大せん断応力度                   | せん断弾性係数               |
|---------|--------------------------------------|----------------------------|-----------------------|
|         | $_{\rm ave} \tau_{\rm max} (N/mm^2)$ | $_{max}\tau_{max}(N/mm^2)$ | G(N/mm <sup>2</sup> ) |
| S60-SP1 | 2.48                                 | 3.71                       | 454.6                 |
| S60-SP2 | 3.13                                 | 4.70                       | 904.2                 |
| S60-SP3 | 3.02                                 | 4.53                       | 580.8                 |
| S60-SO0 | 2.99                                 | 4.48                       | 603.4                 |
| S60-SO1 | 2.87                                 | 4.30                       | 362.5                 |
| S60-SO2 | 2.68                                 | 4.02                       | 401.0                 |
| S60-SO3 | 2.95                                 | 4.43                       | 567.7                 |
| 平均      | 2.87                                 | 4.31                       | 553.5                 |
| 標準偏差    | 0.21                                 | 0.31                       | 167.3                 |
| 変動係数    | 0.07                                 | 0.07                       | 0.30                  |
| ばらつき係数  | 0.84                                 | 0.84                       | 0.92                  |
| 下限值     | 2.41                                 | 3.61                       | 508.1                 |

表 3-14 各特性值一覧

表 3-15 に推定した結果を示す。材料試験片におけるせん断強度の平均値に対するせん断の基準強度の比率は0.78 となり、せん断の基準強度に乗じている95%下限許容限界値算出係数(3/4=0.75)と近い値を示している。袖壁に関しても同じ比率となるように、せん断強度の平均値を決めると2.2N/mm<sup>2</sup>となる。したがって、以後の検討では、この推定した袖壁のせん断強度を用いることとする。

なお、部材試験では、面内せん断試験を行っていないため、骨組解析でもこのような推定は行って おらず、せん断の基準強度をそのまま用いたが、実験結果との整合は良かった。その一因としては、 部材実験では、S60-3-3を用いた試験体 AD で CLT 袖壁のせん断降伏が見られているが、破壊モード IIIによるせん断の基準強度(2.3N/mm<sup>2</sup>)が、破壊モード I (ラミナの繊維方向の破壊)によるせん断 の基準強度(2.7N/mm<sup>2</sup>)に近く、せん断試験によるせん断強度とせん断の基準強度に差が生じにくい 状況にあったと考えられること、S60-3-4を用いた試験体 BS では CLT 袖壁に作用するせん断力が小 さく、CLT 袖壁のせん断強度の影響が現れにくかったことが挙げられる。

|       | 各層のラミナの幅方向<br>の数のうち最小の値 | せん断の基準強度<br>(N/mm <sup>2</sup> ) | せん断強度の平均値<br>(N/mm <sup>2</sup> ) |
|-------|-------------------------|----------------------------------|-----------------------------------|
| 材料試験片 | 160mm/122mm=1.31        | 2.20                             | 2.87                              |
| 袖壁    | 650mm/122mm=5.33        | 1.72                             | 2.23(推定值)                         |
| 比率    |                         | 0.78                             | 0.78                              |

表 3-15 架構実験に用いる CLT 袖壁のせん断強度の推定

#### 3.4.4.3. 含水率、密度の計測

表 3-16、表 3-17、表 3-18 に、圧縮試験片、面内せん断試験片、ドリフトピン面圧試験片、ドリフトピン面圧試験片(内層のみ)を用いた CLT の密度と含水率の計測結果を示す。含水率の計測には高周波方式の木材水分計を用いた。試験片による違いは殆ど見られず、密度は 0.41~0.42g/cm<sup>3</sup>、含水率は 11~12%程度の値となった。この結果から、密度については一般的なスギ材の密度(0.38g/cm<sup>3</sup>)と同程度であり、含水率は日本農林規格で規定されている直交集成板の平均含水率 15%以下であることが確認できる。

| 試験体名             | 密度(g/cm <sup>3</sup> ) | 含水率(%) |
|------------------|------------------------|--------|
| S60-3-4 縦圧縮 No.2 | 0.442                  | 12.0   |
| S60-3-4 縦圧縮 No.3 | 0.433                  | 11.9   |
| S60-3-4 縦圧縮 No.5 | 0.424                  | 11.6   |
| S60-3-4 横圧縮 No.1 | 0.395                  | 12.8   |
| S60-3-4 横圧縮 No.2 | 0.417                  | 12.5   |
| S60-3-4 横圧縮 No.3 | 0.420                  | 12.6   |
| 平均               | 0.422                  | 12.2   |

表 3-16 密度、含水率の計測結果(圧縮試験片)

# 表 3-17 密度、含水率の計測結果(面内せん断試験片)

| 試験体名    | 密度(g/cm <sup>3</sup> ) | 含水率(%) |
|---------|------------------------|--------|
| S60-SP1 | 0.416                  | 12.8   |
| S60-SP2 | 0.434                  | 14.5   |
| S60-SP3 | 0.420                  | 12.9   |
| S60-SO0 | 0.421                  | 10.2   |
| S60-SO1 | 0.421                  | 11.0   |
| S60-SO2 | 0.420                  | 11.3   |
| S60-SO3 | 0.426                  | 10.4   |
| 平均      | 0.423                  | 12.1   |

表 3-18 密度、含水率の計測結果(ドリフトピン面圧試験片)

| 試験体名       | 密度(g/cm <sup>3</sup> ) | 含水率 (%) |
|------------|------------------------|---------|
| S60-DPC-O0 | 0.38                   | 10.3    |
| S60-DPC-O1 | 0.46                   | 12.0    |
| S60-DPC-O2 | 0.47                   | 12.3    |
| S60-DPC-O3 | 0.35                   | 9.5     |
| S60-DPC-P0 | 0.42                   | 11.5    |
| S60-DPC-P1 | 0.43                   | 10.5    |
| S60-DPC-P2 | 0.43                   | 11.8    |
| S60-DPC-P3 | 0.43                   | 11.3    |
| 平均         | 0.42                   | 11.1    |

表 3-19 密度、含水率の計測結果(ドリフトピン面圧試験片:内層のみ)

| 試験体名       | 密度(g/cm <sup>3</sup> ) | 含水率(%) |
|------------|------------------------|--------|
| S60-DPC-O0 | 0.40                   | 10.3   |
| S60-DPC-O1 | 0.44                   | 10.8   |
| S60-DPC-O2 | 0.41                   | 11.0   |
| S60-DPC-O3 | 0.38                   | 10.8   |
| S60-DPC-P0 | 0.42                   | 11.3   |
| S60-DPC-P1 | 0.42                   | 11.8   |
| S60-DPC-P2 | 0.42                   | 11.8   |
| S60-DPC-P3 | 0.41                   | 11.3   |
| 平均         | 0.41                   | 11.1   |

## 3.4.5. ドリフトピン面圧試験

# 3.4.5.1. 概要

ここでは、試験体 A の鋼板挿入ドリフトピン単位接合部の強度及び剛性の推定に必要な CLT ラミ ナの支圧強度及び剛性を要素実験によって確認する。ラミナの支圧強度及び剛性は、以下の手順で算 定した。

- ① 架構実験で用いた3層4プライ CLT を用いた面圧試験を行い、強度を求める。
- ② ①で行った各試験体から内層部分を切り出し、①と同様に面圧試験を行い、内層部分の支圧 強度及び剛性を求める。
- ③ CLT の支圧強度が構成するラミナの支圧強度の平均であると仮定し、下式に示す連立方程式 を立て、その解から繊維方向及び繊維直角方向の支圧強度及び剛性を求める。

$$2_{m}f_{o} + 2_{m}f_{i} = 4_{m}F_{all}$$

$$2_{m}f_{i} = 2_{m}F_{in}$$

$$2_{m}k_{o} + 2_{m}k_{i} = 4_{m}K_{all}$$

$$2_{m}k_{i} = 2_{m}K_{in}$$
(3.2)

(3.3)

ここで、 $_mF$ 、 $_mK$ : CLT の支圧強度 (N/mm<sup>2</sup>)、支圧剛性 (N/mm<sup>3</sup>)の実験値 (添字 *all*: CLT 全層、 *in*: CLT 内層のみ)、 $_mf$ 、 $_mk$ : ラミナの支圧強度 (N/mm<sup>2</sup>)、支圧剛性 (N/mm<sup>3</sup>)の実験値 (添字 *o*: 外層ラミナ、*i*: 内層ラミナ)である。

## 3.4.5.1. CLT 全層の面圧試験

実験パラメータは2ケースを設定し、各4体ずつ試験を行う。表 3-20、表 3-21 に各試験体の概要 を示す。表に示すように、各試験体上面にはドリフトピン径φ12の半円に相当する溝を加工している。 なお、CLT 外層ラミナの繊維方向が加力方向に対して平行方向のものを S60-DPC-P シリーズ、外層ラ ミナの繊維方向が加力方向に対して直交のものを S60-DPC-O シリーズと名付けた。

|           | ドリフトピン径  | 12mm    |
|-----------|----------|---------|
| S60-DPC-O | CLT 強度等級 | S60-3-4 |
| (横方向)     | 樹種       | スギ      |

表 3-20 S60-DPC-0 試験体概要

#### 表 3-21 S60-DPC-P 試験体概要



加力方法の模式図を図 3-36 に、変位計の設置状況を写真 3-11 に示す。加力は単調加力とし、加力 速度は 1mm/min で 15mm を超えるまで加力した。変位計による計測は、加力用治具-基盤間の絶対変 位と、加力用治具と試験体表面の相対変位の二つとした。また、面圧による圧縮応力度はロードセル で計測した値を用いて、下式によって算出した。初期剛性はロードセル計測値の最大値または 15mm 変位時の強度の 30%と 50%の値を結んだ直線の傾きとし、面圧強度は ASTM によって定義されてい る初期剛性の直線をドリフトピンの直径 (*d*) の 5%の長さだけ変位の正方向へ移動した直線と応力変 位関係との関係から導かれる強度<sup>[3-5]</sup> (5%offset 強度( $\sigma_{5\%offset}$ ))及び、Hwang らの報告にある 2%オフ セットさせた直線と応力変位関係の交点の強度(2%offset 強度( $\sigma_{2\%offset}$ ))]<sup>[3-6]</sup>によって評価した。





写真 3-11 変位計の設置状況

$$\sigma_{DPC} = \frac{P}{A}$$

ここで、 $\sigma_{DPC}$ : CLT の面圧強度 (N/mm<sup>2</sup>)、P: ロードセルで計測された荷重 (N)、 $A_d$ : ドリフトピンの水平投影面積 (mm<sup>2</sup>) とする。

(3.4)

写真 3-12、写真 3-13 に各試験体の破壊性状を、図 3-37、図 3-38 に各試験体の応力-変位関係を示 す。得られた応力-変位関係は、最大強度のないめり込み型の曲線となった。また、破壊性状につい ては、基本的にすべての試験体で同じような破壊性状が見られたが、S60-DPC-O シリーズの一部の試 験体ではめり込みによって表面のラミナが浮き上がるような破壊が見られた。また、S60-DPC-O1 試 験体では、加力部分の下部に節があり、あまりめり込まない状態で、繊維方向に亀裂が見られた。



(a) S60-DPC-00



(b) S60-DPC-01



(c) S60-DPC-02



(d) S60-DPC-03写真 3-12 ドリフトピン面圧試験における破壊性状(S60-DPC-0 シリーズ)



(a) S60-DPC-P0



(b) S60-DPC-P1



(c) S60-DPC-P2



(d) S60-DPC-P3写真 3-13 ドリフトピン面圧試験における破壊性状(S60-DPC-P シリーズ)



図 3-37 ドリフトピン面圧試験における応カー変形関係(S60-DPC-0 シリーズ)



図 3-38 ドリフトピン面圧試験における応力-変形関係(S60-DPC-P シリーズ)

表 3-22、表 3-23 に特性値の一覧を示す。ここで、δ<sub>R</sub>、δ<sub>A</sub>はそれぞれ加力用治具ー試験体表面の相 対変位、加力治具ー基盤間の絶対変位を示している。載荷方向が CLT 内層ラミナの繊維方向と一致す る S60-DPC-O シリーズの方が、繊維方向が CLT 外層ラミナの繊維方向と一致する S60-DPC-P シリー ズよりも、全体的に支圧強度が小さくなった。また、相対変位から求めた特性値と絶対変位から求め た特性値とを比較すると、最大耐力時の変形量には大きな差は見られないが、変形が小さい範囲では、 加力用治具ー試験体表面の相対変位の方が加力治具ー基盤間の絶対変位よりも小さい。これは、前者 は計測区間が短く、試験片のめり込み部周辺の変形が含まれていないことが関係しているものと思わ れるが、一方で変形が大きくなると、S60-DPC-O シリーズで見られた損傷(表面のラミナの浮き上が り)の影響が少なからず生じることが懸念される。したがって、以後の検討では、加力治具ー基盤間 の絶対変位を用いることとする。

| 学龄体友       | σ <sub>max</sub>  | σ <sub>R2%offset</sub> | σ <sub>R5%offset</sub> | δ <sub>Rmax</sub> | $\delta_{R2\%offset}$ | $\delta_{R5\%offset}$ |
|------------|-------------------|------------------------|------------------------|-------------------|-----------------------|-----------------------|
| 武阙平谷       | N/mm <sup>2</sup> | N/mm <sup>2</sup>      | N/mm <sup>2</sup>      | mm                | mm                    | mm                    |
| S60-DPC-O0 | 31.06             | 24.76                  | 26.18                  | 14.30             | 1.24                  | 1.62                  |
| S60-DPC-O1 | 39.34             | 28.26                  | 29.42                  | 13.81             | 0.92                  | 1.29                  |
| S60-DPC-O2 | 30.17             | 26.78                  | 28.75                  | 15.53             | 0.89                  | 1.28                  |
| S60-DPC-O3 | 26.68             | 22.57                  | 22.91                  | 17.00             | 0.80                  | 1.17                  |
| 平均         | 31.81             | 25.59                  | 26.81                  | 15.16             | 0.96                  | 1.34                  |
| S60-DPC-P0 | 35.74             | 29.58                  | 31.39                  | 15.30             | 1.09                  | 1.48                  |
| S60-DPC-P1 | 41.60             | 27.14                  | 27.92                  | 15.70             | 1.15                  | 1.53                  |
| S60-DPC-P2 | 32.32             | 29.11                  | 29.42                  | 15.14             | 1.11                  | 1.48                  |
| S60-DPC-P3 | 35.74             | 31.53                  | 31.38                  | 15.38             | 1.11                  | 1.46                  |
| 平均         | 36.35             | 29.34                  | 30.03                  | 15.38             | 1.12                  | 1.49                  |

表 3-22 相対変位から求めた特性値

表 3-23 絶対変位から求めた特性値

|            | σ <sub>max</sub>  | <b>σ</b> A2%offset | σ <sub>A5%offset</sub> | δ <sub>Amax</sub> | $\delta_{A2\%offset}$ | $\delta_{A5\%offset}$ |
|------------|-------------------|--------------------|------------------------|-------------------|-----------------------|-----------------------|
| 武殿14-石     | N/mm <sup>2</sup> | N/mm <sup>2</sup>  | N/mm <sup>2</sup>      | mm                | mm                    | mm                    |
| S60-DPC-O0 | 31.06             | 24.56              | 26.09                  | 14.04             | 1.65                  | 2.04                  |
| S60-DPC-O1 | 39.34             | 28.22              | 29.38                  | 14.17             | 1.17                  | 1.55                  |
| S60-DPC-O2 | 30.17             | 26.76              | 28.74                  | 15.87             | 1.21                  | 1.61                  |
| S60-DPC-O3 | 26.68             | 22.57              | 22.91                  | 15.11             | 1.06                  | 1.42                  |
| 平均         | 31.81             | 25.53              | 26.78                  | 14.80             | 1.27                  | 1.65                  |
| S60-DPC-P0 | 35.74             | 30.19              | 31.61                  | 15.50             | 1.45                  | 1.84                  |
| S60-DPC-P1 | 41.60             | 27.18              | 27.88                  | 15.76             | 1.29                  | 1.67                  |
| S60-DPC-P2 | 32.32             | 29.21              | 29.39                  | 15.24             | 1.31                  | 1.67                  |
| S60-DPC-P3 | 35.74             | 31.55              | 31.39                  | 15.49             | 1.31                  | 1.66                  |
| 平均         | 36.35             | 29.53              | 30.07                  | 15.50             | 1.34                  | 1.71                  |

# 3.4.5.1. CLT 内層の面圧試験

面圧試験の試験体から内層部分を切り出し、それらに対して再び面圧試験を行った。試験体寸法は、 ラミナの幅を基準としており、122mm×122mm×60mmである。写真 3-14 に各試験体の破壊性状を、 図 3-39 に各試験体の応力-変位関係を示す。得られた応力-変位関係は最大強度のないめり込み型 の曲線となった。S60-DPC-O0 試験体では、繊維方向に沿った集合型せん断破壊が見られた。S60-DPC-O0 試験体以外は基本的にすべての試験体で同じような破壊性状が見られた。また、S60-DPC-O シリ ーズのいくつかの試験体では強度が大きいものが見られるが、これはせん断面や加力位置に節があっ たことが原因と考えられる。



40-DPCOI

○:影響したと考えられる節の位置 (b) S60-DPC-01



(a) S60-DPC-00

():影響したと考えられる節の位置 (c) S60-DPC-02



(d) S60-DPC-03



(e) S60-DPC-P0



(g) S60-DPC-P2



(f) S60-DPC-P1



(h) S60-DPC-P3 写真 3-14 ドリフトピン面圧試験(内層のみ)における破壊性状



表 3-24、表 3-25 に試験結果の特性値を整理する。ここで、δ<sub>R</sub>及びδ<sub>A</sub>はそれぞれ、加力治具--試験 体表面の相対変位及び加力治具-基盤の絶対変位を意味する。載荷方向に対する CLT ラミナの繊維方 向の違いが支圧強度に及ぼす影響は小さかったが、節の影響が大きい S60-DPC-O1 試験体や S60-DPC-O2 試験体では、他の試験体と比較して、支圧強度が高めに出る傾向が見られた。

|            | $\sigma_{max}$    | σ <sub>R2%offset</sub> | σ <sub>R5%offset</sub> | $\delta_{Rmax}$ | $\delta_{R2\%offset}$ | $\delta_{R5\%offset}$ |
|------------|-------------------|------------------------|------------------------|-----------------|-----------------------|-----------------------|
| 武殿14-石     | N/mm <sup>2</sup> | N/mm <sup>2</sup>      | N/mm <sup>2</sup>      | mm              | mm                    | mm                    |
| S60-DPC-O0 | 20.70             | 20.26                  | 20.66                  | 1.11            | 0.72                  | 1.09                  |
| S60-DPC-O1 | 50.41             | 49.65                  | 50.37                  | 1.20            | 0.96                  | 1.33                  |
| S60-DPC-O2 | 60.91             | 60.34                  | 60.47                  | 1.31            | 1.17                  | 1.53                  |
| S60-DPC-O3 | 33.56             | 33.37                  | 33.38                  | 0.90            | 0.82                  | 1.18                  |
| 平均         | 41.39             | 40.91                  | 41.22                  | 1.13            | 0.92                  | 1.28                  |
| S60-DPC-P0 | 20.45             | 17.08                  | 17.91                  | 15.04           | 0.72                  | 1.10                  |
| S60-DPC-P1 | 27.21             | 14.95                  | 15.56                  | 15.01           | 2.04                  | 2.53                  |
| S60-DPC-P2 | 26.16             | 15.55                  | 16.09                  | 15.08           | 1.40                  | 1.80                  |
| S60-DPC-P3 | 26.86             | 15.72                  | 18.53                  | 12.94           | 1.07                  | 1.57                  |
| 平均         | 25.17             | 15.82                  | 17.02                  | 14.52           | 1.31                  | 1.75                  |

表 3-24 相対変位から求めた特性値(内層のみ)

表 3-25 絶対変位から求めた特性値(内層のみ)

| 計験仕力       | σ <sub>max</sub>  | σ <sub>A2%offset</sub> | σ <sub>A5%offset</sub> | δ <sub>Amax</sub> | $\delta_{A2\%offset}$ | $\delta_{A5\%offset}$ |
|------------|-------------------|------------------------|------------------------|-------------------|-----------------------|-----------------------|
| 武映14名      | N/mm <sup>2</sup> | N/mm <sup>2</sup>      | N/mm <sup>2</sup>      | mm                | mm                    | mm                    |
| S60-DPC-O0 | 20.70             | 20.00                  | 20.52                  | 1.07              | 0.56                  | 0.93                  |
| S60-DPC-O1 | 50.41             | 49.82                  | 50.36                  | 1.23              | 1.02                  | 1.38                  |
| S60-DPC-O2 | 60.91             | 60.44                  | 60.47                  | 1.48              | 1.34                  | 1.70                  |
| S60-DPC-O3 | 33.56             | 33.36                  | 33.38                  | 0.97              | 0.89                  | 1.25                  |
| 平均         | 41.39             | 40.91                  | 41.18                  | 1.19              | 0.95                  | 1.32                  |
| S60-DPC-P0 | 20.09             | 16.40                  | 17.77                  | 15.01             | 1.33                  | 1.78                  |
| S60-DPC-P1 | 27.78             | 14.95                  | 15.55                  | 15.07             | 2.48                  | 2.99                  |
| S60-DPC-P2 | 28.35             | 15.53                  | 16.09                  | 13.88             | 1.86                  | 2.27                  |
| S60-DPC-P3 | 26.86             | 15.39                  | 17.91                  | 14.62             | 1.76                  | 2.36                  |
| 平均         | 25.77             | 15.57                  | 16.83                  | 14.64             | 1.86                  | 2.35                  |

### 3.4.5.1. 支圧強度及び支圧剛性の推定

CLT 全層の面圧試験、CLT 内層の面圧試験の結果を用いて、式(3.2)、(3.3)を解き、各試験体の繊維 平行方向及び繊維直交方向の支圧強度と支圧剛性を計算した。表 3-26 に S60-DPC-O、S60-DPC-P シ リーズの各試験体で求めた支圧強度及び支圧剛性の計算結果を示す。計算には CLT 全層の面圧試験、 CLT 内層の面圧試験の各実験で計測された絶対変位から求めた 2%オフセット値を用いた。

S60-DPC-O シリーズと S60-DPC-P シリーズの全層面圧試験の結果を比較すると、 $F_{all}$ や  $K_{all}$ は比較的近い値を示しており、外層と内層のラミナの向きの影響はあまり大きくないことが分かる。したがって、本来であれば S60-DPC-O シリーズの内層と S60-DPC-P シリーズの外層、本来であれば S60-DPC-O シリーズの内層は良く似た支圧強度及び支圧剛性を示すべきであるが、実際にはそのような結果は得られていない。その原因としては、S60-DPC-O シリーズの内層面圧試験において、繊維平行方向の支圧強度 $f_i$ や支圧剛性 $k_i$ に大きなばらつきが生じたため、式(3.2)、(3.3)から推測される繊維直交方向の支圧強度 $f_6$ や支圧剛性 $k_o$ にも大きなばらつき(場合によっては負の数値)が生じたことが考えられる。一方、S60-DPC-P シリーズの内層面圧試験で得られた繊維平行方向

の支圧強度 fiや支圧剛性 ki のばらつきは小さく、また、内層が全層(CLT)の材料特性に及ぼす影響が比較的小さく抑えられているため、式(3.2)、(3.3)から推測される繊維直交方向の支圧強度 fo や支圧 剛性 ko は安定した数値を示している。

したがって、以降の架構実験における検討では、節の影響が小さく、信頼性の高い支圧剛性、支圧 強度が得られているものと考えられる S60-DPC-P シリーズの結果を用いて検討を進める。

| 計驗休夕         | F <sub>all</sub>  | $f_i$             | $f_{o}$           | K <sub>all</sub>  | k <sub>i</sub>    | k <sub>0</sub>    |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| 1八间央   午 / 口 | N/mm <sup>2</sup> | N/mm <sup>2</sup> | N/mm <sup>2</sup> | N/mm <sup>3</sup> | N/mm <sup>3</sup> | N/mm <sup>3</sup> |
| S60-DPC-O0   | 24.6              | 20.5              | 28.6              | 14.9              | 35.7              | -5.94             |
| S60-DPC-O1   | 28.2              | 50.4              | 6.08              | 24.1              | 48.8              | -0.60             |
| S60-DPC-O2   | 26.8              | 60.5              | -6.95             | 22.1              | 45.1              | -0.87             |
| S60-DPC-O3   | 22.6              | 33.4              | 11.8              | 21.3              | 37.5              | 5.10              |
| 平均           | 25.5              | 41.2              | 9.87              | 20.6              | 41.8              | -0.58             |
| S60-DPC-P0   | 30.2              | 16.4              | 44.0              | 20.8              | 12.33             | 29.3              |
| S60-DPC-P1   | 27.2              | 15.0              | 39.4              | 21.1              | 6.03              | 36.1              |
| S60-DPC-P2   | 29.2              | 15.5              | 42.9              | 22.3              | 8.35              | 36.2              |
| S60-DPC-P3   | 31.6              | 15.4              | 47.7              | 24.1              | 8.74              | 39.4              |
| 平均           | 29.5              | 15.6              | 43.5              | 22.1              | 8.86              | 35.3              |

表 3-26 実験値から求めた支圧強度及び剛性

#### 3.5. 鋼板挿入ドリフトピン接合部の剛性と耐力の評価

### 3.5.1.1. 概要

試験体Aでは、水平接合部、鉛直接合部に用いた鋼板挿入ドリフトピン接合部の剛性や耐力を評価 することが設計やモデル化で不可欠となるが、本研究では、接合部自体の要素実験は実施していない。 そこで、ドリフトピン1本あたりの特性値を数値解析によって求めた上で、その解析結果を用いて、 接合部の剛性や耐力の評価を行うものとする。なお、数値解析は、設計時に参照可能な情報(材料の 基準強度や規格強度、弾性係数等の標準的な特性値等)に基づいて検討する場合と、材料試験の結果 等、実態に応じた情報に基づき、実験結果の検証を目的とする場合に分けて考えることができる。こ こでは、前者を設計値、後者を試験値と区別して、議論を行うものとする。

## 3.5.1.2. 計算式を用いたドリフトピン1本あたりの降伏強度の評価

後述する 3.5.1.3 では、要素実験の結果を基に、鋼板挿入ドリフトピンの強度及び剛性を推定してい るが、構造設計時には、CLT やドリフトピンの実強度が明確でないこと、また、数値解析で強度の計 算を行うのは煩雑であることから、計算式等により、強度の概算を行うことが現実的である。ここで は、文献[3-7]を参考に、3 層 4 プライの場合の YET による降伏荷重の計算式を誘導した。以下に誘導 した算定式を示す。なお、文献[3-7]では5 層 5 プライの場合を対象としているため、ここでは、図 3-40 に示す最外縁の第1層のラミナを無視し、第1層のラミナに起因する破壊モードとなる Mode 2.2 や Mode 3.3 は計算対象としていない。また、Mode 2.1、3.1、3.2 に関しては、位置情報を示す x の値に条 件を設けており、条件を満足しない場合には当該する破壊モードは存在しないものと考える。

Mode 1

$$0 = \frac{P_y}{2} - f_2 \cdot t_2 \cdot d - f_3 \cdot t_3 \cdot d \quad \longrightarrow \quad P_y = 2(f_2 \cdot t_2 + f_3 \cdot t_3) \cdot d$$

(3.5)

Mode 2.1

$$\begin{cases} 0 = \frac{P_y}{2} + f_2 \cdot (t_2 - x) \cdot d - f_2 \cdot x \cdot d - f_3 \cdot t_3 \cdot d \\ 0 = M_y + f_2 \cdot (t_2 - x) \cdot d \cdot (\frac{t_2}{2} + \frac{x}{2} + t_3) - f_2 \cdot x \cdot d \cdot (\frac{x}{2} + t_3) - f_3 \cdot \frac{t_3^2}{2} \cdot d \\ \rightarrow \begin{cases} P_y = 2(-f_2 \cdot (t_2 - x)) \cdot d + f_2 \cdot x \cdot d + f_3 \cdot t_3 \cdot d) \\ f_2 \cdot d \cdot x^2 + 2f_2 \cdot d \cdot t_3 \cdot x + \left\{ -M_y - f_2 \cdot t_2 \cdot d \cdot (\frac{t_2}{2} + t_3) + f_3 \cdot \frac{t_3^2}{2} \cdot d \right\} = 0 \end{cases}$$
(3.6)

Mode 3.1

$$\begin{cases} 0 = \frac{P_y}{2} - f_3 \cdot x \cdot d \\ 0 = 2M_y - f_3 \cdot \frac{x^2}{2} \cdot d \end{cases} \xrightarrow{P_y = 2f_3 \cdot x \cdot d \\ x = 2\sqrt{\frac{M_y}{f_3 \cdot d}} \end{cases}$$

$$(3.7)$$

Mode 3.2

$$\begin{cases} 0 = \frac{P_y}{2} - f_2 \cdot x \cdot d - f_3 \cdot t_3 \cdot d \\ 0 = 2M_y - f_2 \cdot x \cdot d \cdot (\frac{x}{2} + t_3) - f_3 \cdot \frac{t_3^2}{2} \cdot d \end{cases} \longrightarrow \begin{cases} P_y = 2(f_2 \cdot x + f_3 \cdot t_3) \cdot d \\ \frac{f_2 \cdot d}{2} x^2 + f_2 \cdot t_3 \cdot d \cdot x - 2M_y + f_3 \cdot \frac{t_3^2}{2} \cdot d = 0 \end{cases}$$

$$(3.8)$$

Mode 2.1, Mode 3.2  $0 < x < t_2$ 

Mode 3.1

$$0 < x < \frac{t_3}{2}$$

(3.10) ここで、d:ドリフトピンの径 (=12mm)、F:ドリフトピンの曲げ強度、t<sub>2</sub>:外層の厚さ (=30mm)、 3: 内層の厚さ (=24mm)、f<sub>2</sub>:外層の支圧強度、f<sub>3</sub>: 内層の支圧強度、M<sub>y</sub>:ドリフトピンの曲げ降伏モ

(3.9)

 $t_3$ : 内層の厚さ (=24mm)、 $f_2$ : 外層の支圧強度、 $f_3$ : 内層の支圧強度、 $M_y$ : ドリフトピンの曲げ降伏モーメント (参考文献では全塑性モーメントとして  $F \cdot d^3/6$  が用いられているが、ここでは降伏点付近の比較的変形が小さい状況に着目するため、降伏モーメント  $\pi d^3/32 \cdot F$ を採用した)、x: ドリフトピン の回転中心や塑性ヒンジの位置情報を表わすための変数である。



図 3-40 5 層 5 プライの場合のドリフトピン接合部の破壊モード<sup>[3-7]</sup>
表 3-27 に、上記の計算式で求めたドリフトピン1本あたりの降伏荷重を示す。ここでは、支圧強度 及び曲げ強度に基準強度を用いた場合(設計値)と、材料試験の結果を用いた場合(試験値)の結果 について示す。なお、スギの基準支圧強度は、文献[3-8]より、繊維方向で19.4N/mm<sup>2</sup>、繊維直交方向 で9.7N/mm<sup>2</sup>、ドリフトピンの曲げ強度は235N/mm<sup>2</sup>とした。また、材料試験の結果を用いる場合には、 スギの支圧強度は、繊維方向で43.5N/mm<sup>2</sup>、繊維直交方向で15.6N/mm<sup>2</sup>、ドリフトピンの曲げ強度は 510N/mm<sup>2</sup>とした。

表中に示すように、いずれのケースでも、降伏荷重は Mode 2.1 (ドリフトピン中央に塑性ヒンジが 形成され、回転変形するドリフトピンにより木材にめり込み降伏が生じる状態)で決定し、最外縁の ラミナが繊維方向となるケース1では、ドリフトピン1本あたりの降伏荷重の設計値、試験値はそれ ぞれ 8.5kN、16.3kN、最外縁のラミナが繊維直交方向となるケース2では、設計値、試験値を用いた 場合のドリフトピン1本あたりの降伏荷重はそれぞれ 11.1kN、23.9kN となった。

|          | 設計                         | 计值                         | 試測                         | <b>険値</b>                  |  |  |  |
|----------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
|          | ケース1                       | ケース2                       | ケース1                       | ケース2                       |  |  |  |
|          | $f_2 = 19.4 \text{N/mm}^2$ | $f_2 = 9.7 \text{N/mm}^2$  | $f_2 = 43.5 \text{N/mm}^2$ | $f_2 = 15.6 \text{N/mm}^2$ |  |  |  |
|          | $f_3 = 9.7 \text{N/mm}^2$  | $f_3 = 19.4 \text{N/mm}^2$ | $f_3 = 15.6 \text{N/mm}^2$ | $f_3 = 43.5 \text{N/mm}^2$ |  |  |  |
|          | F=235N/mm <sup>2</sup>     | F=235N/mm <sup>2</sup>     | F=510N/mm <sup>2</sup>     | F=510N/mm <sup>2</sup>     |  |  |  |
| Py       | 8.5kN/本                    | 11.1kN/本                   | 16.3kN/本                   | 23.9kN/本                   |  |  |  |
| Mode 1   | 19.6                       | 18.2                       | 40.3                       | 36.3                       |  |  |  |
| Mode 2.1 | 8.5                        | 11.1                       | 16.3                       | 23.9                       |  |  |  |
| Mode 3.1 | _                          | _                          | —                          | —                          |  |  |  |
| Mode 3.2 | 8.9                        | 12.1                       | 17.5                       | 26.8                       |  |  |  |

表 3-27 計算式によるドリフトピン1本あたりの降伏荷重

ケース1:外層が繊維方向、内層が繊維直交方向、ケース2:外層が繊維直交方向、内層が繊維方向

#### 3.5.1.3. 数値解析によるドリフトピン1本あたりの荷重変形関係の評価

接合部設計で必要となる鋼板挿入ドリフトピン単位接合部の荷重変形関係を弾塑性モデルによって 求めた。図 3-41 に解析モデルを示す。ドリフトピンははり要素で置換し、ラミナの支圧を表現した単 軸ばねの配置間隔(120mm/40分割=3mm)ごとにモデル化した。なお、ドリフトピン(φ12)に作 用する曲げモーメントが鋼材の降伏モーメント(=πd<sup>3</sup>/32・F、d:ドリフトピンの直径、F:ドリフト ピンの曲げ降伏強度)で頭打ちになるように、はり要素の両端には塑性ヒンジを設けている。また、 鋼板が挿入される中央の12mmの範囲には単軸ばねは設けず、荷重 Pを4分割して4つの節点に与え て増分解析を行うことで、荷重 Pと中央に最も近い節点の変位δの関係を求めた。なお、3.5.1.2と同 様に、ラミナの外層、内層をそれぞれ繊維方向、繊維直交方向とする解析ケース1と、ラミナの外層、 内層をそれぞれ繊維直交方向、繊維方向とする解析ケース2を対象とした。材料の特性値としては、 ラミナの支圧強度、剛性、ドリフトピンの曲げ強度に基準値や標準的な値を用いた設計値と、材料試 験の結果を用いた試験値の2通りとし、解析ケース1、2と組み合わせた計4通りついての解析を実 施した。



ラミナの支圧を表現する単軸ばねはバイリニアでモデル化した。ラミナの支圧強度に関しては、設計値は、文献[3-8]の基準支圧強度のスギの値(繊維方向:19.4N/mm<sup>2</sup>、繊維直交方向:9.7N/mm<sup>2</sup>)、試験値は、面圧試験の結果から繊維方向を43.49N/mm<sup>2</sup>、繊維直角方向を15.57 N/mm<sup>2</sup>とした。ラミナの 支圧剛性に関しては、設計値は、文献[3-9]より、繊維方向を式(3.11)から36.9N/mm<sup>3</sup>、繊維直交方向を 式(3.12)から10.9N/mm<sup>3</sup>とした。試験値は、面圧試験の結果から、繊維方向を35.3N/mm<sup>3</sup>、繊維直角方 向を8.86N/mm<sup>3</sup>とした。支圧の初期剛性に対する二次剛性の比率*p*に関しては、繊維方向に関しては、 面圧試験から求めることができなかったため、設計値、試験値とも、文献[3-9]より0とした。繊維直 交方向に関しては、面圧試験から求めた値(0.11)が、文献[3-9]による値(1/8.8=0.11)がほぼ等しい 値であったため、繊維方向と同様に、設計値、試験値のいずれについても、文献[3-9]の値を用いた。 図 3-42 に単軸ばねの荷重変形関係を示す。なお、単軸ばねのモデル化では、図中に示した支圧応力に ドリフトピンの径(12mm)と単軸ばねの間隔(3mm)を乗じた支圧力を軸ばねに与えている。

$$k_{s0} = \frac{E_w}{3.16 + 10.9d}$$

$$k_{s90} = \frac{k_{s0}}{3.4}$$
(3.11)

(3.12)

ここで、 $E_w$ : 木材の繊維方向のヤング係数 (N/mm<sup>2</sup>) で、文献[3-4]におけるラミナ M60A の圧縮弾性 係数 (6000N/mm<sup>2</sup>) とした、d: ドリフトピンの径 (mm) である。



表 3-28、図 3-43 に解析結果を示す。初期剛性は、荷重変位関係から最大荷重 *P*<sub>max</sub>(20mm 変位時荷 重)の 0.1 倍の点と 0.4 倍の点を結んだ直線の傾きとした。降伏耐力は 5%オフセット値によって求め た。また、二次剛性は、変位 20mm 時点での荷重と変形を基に求めた。なお、図中には、表 3-27 で示

した評価式による降伏荷重の計算値も合わせて示している。 設計値と試験値を比較すると、降伏耐力に関しては、ケース1で1.5倍、ケース2で1.8倍となって おり、ケース2の方が両者の差が大きくなっている。また、内層の方が外層と比較して変形量が大き

おり、ケース2の方が両者の差が大きくなっている。また、内層の方が外層と比較して変形量が大きいため、支圧強度到達後も耐力上昇が望める繊維直交方向が内層にあるケース1の方が、外層にあるケース2よりも降伏耐力到達後の荷重の増大が大きくなっている。

また、3.5.1.2 で示した評価式による降伏耐力と比較すると、数値解析における塑性ヒンジの形成箇 所は鋼板挿入箇所のみであり、評価式で崩壊機構として想定した Mode 2.1 と一致した。一方で、評価 式は、ケース1 に関しては数値解析の降伏耐力を概ね評価できているのに対し、ケース2 に関しては 数値解析の結果を過大に評価する傾向が見られており、不整合が見られた。数値解析では、内層の単 軸ばねは支圧強度に概ね到達しているが、繊維方向では支圧強度到達後の耐力上昇がないため、変形 量が大きくなっても、耐力の増大が見られない。加えて、外層の単軸ばねに、負担応力が支圧強度に 到達していないものがあることに加え、変形量が小さいことによって、繊維直交方向における支圧強 度到達後の耐力上昇にも期待できないため、評価式で想定した応力状況が再現できておらず、評価式 の値が大きくなったものと考えられる。したがって、ケース2 に関しては、評価式の値を用いる場合 には、降伏耐力をやや過大に評価する可能性がある点に注意が必要である。

|                       | 設計                         | 汁値                         | 試測                         | <b>)</b>                   |
|-----------------------|----------------------------|----------------------------|----------------------------|----------------------------|
|                       | ケース1                       | ケース2                       | ケース1                       | ケース2                       |
|                       | $f_2 = 19.4 \text{N/mm}^2$ | $f_2 = 9.7 \text{N/mm}^2$  | $f_2 = 43.5 \text{N/mm}^2$ | $f_2 = 15.6 \text{N/mm}^2$ |
|                       | $E_2 = 36.9 \text{N/mm}^3$ | $E_2 = 10.9 \text{N/mm}^3$ | $E_2 = 35.3 \text{N/mm}^3$ | $E_3 = 8.85 \text{N/mm}^3$ |
|                       | $p_2=0$                    | $p_2=1/8.8$                | $p_2=0$                    | $p_3 = 1/8.8$              |
|                       | $f_3 = 9.7 \text{N/mm}^2$  | $f_3 = 19.4 \text{N/mm}^2$ | $f_3 = 15.6 \text{N/mm}^2$ | $f_3 = 43.5 \text{N/mm}^2$ |
|                       | $E_3 = 10.9 \text{N/mm}^3$ | $E_3 = 36.9 \text{N/mm}^3$ | $E_3 = 8.85 \text{N/mm}^3$ | $E_2 = 35.3 \text{N/mm}^3$ |
|                       | $p_3 = 1/8.8$              | <i>p</i> <sub>3</sub> =0   | $p_3 = 1/8.8$              | $p_2=0$                    |
|                       | $F=235 \text{N/mm}^2$      | $F=235 \text{N/mm}^2$      | F=510N/mm <sup>2</sup>     | F=510N/mm <sup>2</sup>     |
| 初期剛性(kN/mm)           | 5.43                       | 21.60                      | 6.27                       | 20.44                      |
| 二次剛性(kN/mm)           | 0.24                       | 0.10                       | 0.44                       | 0.34                       |
| 初期剛性に対する<br>二次剛性の比率   | 0.05                       | 0.00                       | 0.07                       | 0.02                       |
| 5%offset 降伏耐力<br>(kN) | 7.50                       | 8.86                       | 11.6                       | 15.9                       |
| 5%offset 変位 (mm)      | 1.38                       | 0.41                       | 1.85                       | 0.78                       |
| 20mm 変形時荷重<br>(kN)    | 11.9                       | 10.8                       | 19.6                       | 22.5                       |

表 3-28 ドリフトピン1本あたりの特性値

ケース1:外層が繊維方向、内層が繊維直交方向、ケース2:外層が繊維直交方向、内層が繊維方向



図 3-43 ドリフトピン1本あたりの荷重-変位関係

#### 3.5.1.4. 鋼板挿入ドリフトピン接合部の耐力と剛性の評価

#### (1) 水平接合部、鉛直接合部の耐力と荷重-変形関係

ここでは、ドリフトピン1本あたりの耐力、剛性から、水平接合部、鉛直接合部の耐力、剛性を決 定する。各ドリフトピンが先穴に密着するような精密な施工を行った場合には、接合部の耐力は、各 ドリフトピンの耐力の和としてもよいとされているが、複数のドリフトピンを使用する場合で、力の 作用条件、使用状況、施工精度によって、ドリフトピン1本あたりの耐力が低下する恐れがある場合 には、耐力の適切な低減が求められる。ここでは、ドリフトピン1本あたりの耐力を低減する場合と、 低減を行わない場合の2通りについて、算定を行うこととした。耐力を低減する場合には、文献[3-8] の式(3.13)に則って計算した。1列のドリフトピン本数による低減係数には、表 3-29 に示す値を用い ることができるが、試験体Aの鉛直接合部では1列に最大で13本のドリフトピンが設置されており、 その本数が多いため、表には対応する低減係数が記載されていない。そこで、表 3-29 の値を考える上 で参考にされた文献[3-8]に記載された実験結果から得られた実験式(3.14)を用いて算定することとし た。なお、この実験式で想定している主材厚とボルト径の比(*I/d*)は8であるが、試験体Aにおける 比は9となっており、両者に大きな差がないことに加え、評価としては安全側となることから、主材 厚と接合具径の比(*I/d*)が8の時の式を用いて計算した低減係数とした。

$$P_{uj} = \sum_{i=1}^{m} {}_{j} K_n \cdot n_i \cdot {}_{d} p_y$$

(3.13) ここで、 $_{d}p_{y}$ :単位接合部の降伏せん断耐力(ドリフトピンの単位接合部の降伏荷重は、数値解析で 求めた(1)の荷重変形関係から定めた)、 $n_{i}$ :1列のドリフトピン本数、 $_{j}K_{n}$ :1列のドリフトピン本数に よる耐力の低減係数で、**表 3-29** 及び式(3.14)による(降伏モードはIII)。

$$_{i}K_{n} = n_{i}^{-0.081}$$

(3.14)

ここで、<sub>i</sub>Kn:1列のドリフトピン本数による耐力の低減係数、n:1列のドリフトピン本数とする。

| 単位接合部の | 1 列の接合具本数 (n <sub>i</sub> ) |      |      |      |  |  |  |  |  |  |
|--------|-----------------------------|------|------|------|--|--|--|--|--|--|
| 降伏モード  | 1~2                         | 3~4  | 5~6  | 7~10 |  |  |  |  |  |  |
| Ι      | 1.0                         | 0.90 | 0.80 | 0.70 |  |  |  |  |  |  |
| П、Ш    | 1.0                         | 0.92 | 0.85 | 0.80 |  |  |  |  |  |  |
| IV     | 1.0                         | 0.95 | 0.90 | 0.90 |  |  |  |  |  |  |

表 3-29 1 列の接合具本数 (n<sub>i</sub>) による耐力の低減係数 (<sub>i</sub> K<sub>i</sub>)<sup>[3-8]</sup>



図 3-44 1 列の接合具本数と耐力低減係数の関係<sup>[3-8]</sup>

単位接合部の荷重変位関係にケース1の結果を用いた、水平接合部の荷重一変位関係、特性値を図 3-45(a)、表3-30に、鉛直接合部の荷重一変位関係、特性値を図3-46(a)、表3-31に示す。水平接合 部(一列あたりの最大のドリフトピンの本数4本)のせん断耐力の低減係数は表3-29より0.92、鉛直 接合部(一列あたりの最大のドリフトピンの本数13本)のせん断耐力の低減係数は式(3.14)より0.81 としている。

図 3-45 (b)、図 3-46 (b)に、水平接合部(のドリフトピン接合部部分、アンカーボルトのモデル化は 別途実施)、鉛直接合部の復元力特性をバイリニアでモデル化した場合の結果を示す。なお、後述する 架構実験の骨組解析では、実験の最大耐力を骨組解析が過小評価しているため、ここでは、低減係数 は考慮せず、本数倍した場合の結果のみを示している。骨組解析では、図 3-45 (b)、図 3-46 (b)に示す 荷重変形関係を用いてモデル化を行った。



(a)解析結果



図 3-45 水平接合部の荷重変位関係とモデル化

|                |             | 設言   | 汁値        | 試験値   |       |  |
|----------------|-------------|------|-----------|-------|-------|--|
|                |             | 低減あり | 低減あり 低減なし |       | 低減なし  |  |
|                | 初期剛性(kN/mm) | 90.0 | 97.8      | 103.8 | 112.8 |  |
| 粉储积托           | 二次剛性(kN/mm) | 3.9  | 4.2       | 7.3   | 7.9   |  |
| <u>家</u> 们但用年初 | 降伏耐力(kN)    | 124  | 135       | 192   | 209   |  |
|                | 最大耐力(kN)    | 197  | 214       | 324   | 352   |  |
| 評価式            | 降伏耐力(kN)    | 140  | 153       | 271   | 294   |  |

表 3-30 水平接合部の各特性値



(a)解析結果

(b)モデル化

図 3-46 鉛直接合部の荷重変位関係とモデル化

|                |             | 設言    | +値    | 試験値   |       |  |
|----------------|-------------|-------|-------|-------|-------|--|
|                |             | 低減あり  | 低減なし  | 低減あり  | 低減なし  |  |
|                | 初期剛性(kN/mm) | 125.0 | 135.8 | 144.1 | 156.7 |  |
| 粉荷砌坨           | 二次剛性(kN/mm) | 5.4   | 5.9   | 10.1  | 11.0  |  |
| <u>家</u> 们但一件们 | 降伏耐力(kN)    | 172   | 187   | 267   | 290   |  |
|                | 最大耐力(kN)    | 273   | 297   | 450   | 489   |  |
| 評価式            | 降伏耐力(kN)    | 195   | 212   | 376   | 409   |  |

表 3-31 鉛直接合部の各特性値

#### (2) 鉛直接合部における水平せん断力の伝達

後述する試験体Aを対象とした骨組解析では、CLT 袖壁に作用する水平せん断力を、RC スタブや RC はりではなく、RC 柱に伝達するものと仮定し、この応力伝達は鉛直接合部を介して行われるもの と考えている。ここでは、鉛直接合部に水平せん断力が作用する場合のドリフトピンのせん断降伏耐 力の確認を行う。

表 3-32 に評価式、数値解析で求めた解析ケース2(外層が繊維直交方向、内層が繊維方向)の場合のドリフトピン1本あたりの降伏耐力に本数(25本)を乗じた鉛直接合部のせん断降伏耐力を示す。

|      |          | 設計   | 計値   | 試測   | <b>検値</b> |
|------|----------|------|------|------|-----------|
|      |          | 低減あり | 低減なし | 低減あり | 低減なし      |
| 数值解析 | 降伏耐力(kN) | —    | 221  | —    | 399       |
| 評価式  | 降伏耐力(kN) | _    | 278  | _    | 598       |

表 3-32 鉛直接合部の各特性値(水平力に対する降伏耐力)

#### 3.6. 加力実験

#### 3.6.1. 載荷方法

図 3-47 に加力装置図を示す。加力方法はいずれの試験体も共通である。2 本の 700kN センターホ ールジャッキを用いて、柱断面に対する軸力比が 0.10 となるように、長期荷重を作用させた後に、2 本の 1000kN 水平ジャッキを用いて水平荷重を作用させた。この際、水平ジャッキに作用する水平荷 重は、南北のジャッキで同じ値となるように制御した。長期荷重は、材料試験結果を基に、いずれの 試験体でも 535kN とした。柱の軸力比に換算すると、試験体 A では 0.100 に相当するが、試験体 B、 C では、試験体 A よりも加力実験の時期が遅く、コンクリートの圧縮強度が増大したため、それぞれ 0.095、0.093 とやや小さい値となっている。水平加力の高さは、下スタブ上端面から 4275mm とした。

加力は、正負交播の漸増繰り返し載荷とし、反力床に緊結した計測フレームに取り付けた変位計を 用いて計測した水平変位(但し、下スタブのずれ変形を差し引いたもの)を、3 階はりの中心高さ 3800mm で除した変形角 *R* で制御した。

加力サイクルは、R=±1/800rad で1回、R=±1/400、±1/200、±1/133、±1/100、±1/50、±1/33、 ±1/25rad で2回ずつ繰り返した後、R=+1/20rad まで押切載荷を行った。



図 3-47 加力装置図(単位:mm)

#### 3.6.2. 計測計画

図 3-48 に水平変位の計測に用いた変位計の設置位置を示す。加力の制御に用いた水平変位を計測 するための変位計は、3 階はりの中心高さに設置した。図 3-49、図 3-50、図 3-51 に RC 柱、RC はり、 CLT 袖壁の曲げ変形、せん断変形の計測に用いた変位計の設置位置を示す。計測点数の制約のため、 変位計による計測は、試験体の北半分のみとした。図 3-52 に RC 柱-CLT 袖壁間の鉛直接合部の離間 量やずれ量を計測するために設置した変位計の位置を示す。試験体 A では、鉛直接合用のドリフトピ ンを避けるように変位計を設置したため、離間量やずれ量の計測長さが 275mm と比較的長く、計測 値に CLT 袖壁自体の曲げ変形やせん断変形が含まれる点に注意が必要である。

図 3-53、図 3-54、図 3-55 に柱主筋、帯筋、アンカーボルトに貼付したひずみゲージの位置を、図 3-56、図 3-57 に袖壁表面に貼付したひずみゲージの位置を示す。なお、試験体 B では、鉛直接合部 近傍における CLT 袖壁のせん断応力を計測するために、柱フェイスに最も近い計測位置において、 CLT の軸方向だけでなく、直交方向及び斜め方向のひずみの計測も行っている。

表 3-33、表 3-34、表 3-35 に各実験における計測項目の一覧を示す。







図 3-49 RC 柱の曲げ変形、せん断変形の計測用変位計の位置(単位:mm)





図 3-51 CLT 袖壁の曲げ変形、せん断変形の計測用変位計の位置(単位:mm)



図 3-52 柱-袖壁間の離間、ずれの計測用変位計の位置(単位:mm)













図 3-57 試験体 B の袖壁に貼付したひずみゲージの位置(単位:mm)

| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 計測項目                                                                                                                                                                                                                                                                                                     | 名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 校正係数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 単位                                                                         | メジャー<br>モード                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | センサ<br>モード                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 計測機器名                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ゲージ<br>No. | インサート<br>距離                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 軸力北側                                                                                                                                                                                                                                                                                                     | NN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kN                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>水平力</u> 北側<br>水平変位(3F) 北側                                                                                                                                                                                                                                                                             | QN<br>3HN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | kN                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SDP-300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 水平変位(2F) 北側                                                                                                                                                                                                                                                                                              | 2HN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SDP-300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 水平変位(1F) 北側                                                                                                                                                                                                                                                                                              | 1HN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 面外変位 北                                                                                                                                                                                                                                                                                                   | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 軸変位 北柱 北側(脚部)                                                                                                                                                                                                                                                                                            | VCN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          | VCN2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          | VCN3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          | VCN4<br>VCN5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          | VCN6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 動亦位 北井 北側(頂部)                                                                                                                                                                                                                                                                                            | VCN7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 軸変位 北柱 南側(脚部)                                                                                                                                                                                                                                                                                            | VCN8<br>VCN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          | VCN2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          | VCN3<br>VCN4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 625<br>250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          | VCN5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          | VCN6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 軸変位 北柱 南側(頂部)                                                                                                                                                                                                                                                                                            | VCN7<br>VCN8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | せん断変位 北柱 北上(脚部)                                                                                                                                                                                                                                                                                          | DCN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          | DCN2<br>DCN3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-50<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 559<br>673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          | DCN4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          | DCN5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          | DCN6<br>DCN7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | <u>メンヤー</u><br>メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 559<br>673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | せん断変位 北柱 北上(頂部)                                                                                                                                                                                                                                                                                          | DCN8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | せん断変位 北柱 南上(脚部)                                                                                                                                                                                                                                                                                          | DCS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          | DCS2<br>DCS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CDP-50<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          | DCS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          | DCS5<br>DCS6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 673<br>559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          | DCS7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | せん断変位 北柱 南上(頂部)                                                                                                                                                                                                                                                                                          | DCS8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                 | DJN1<br>DJS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 境界要素 離間 下 1F                                                                                                                                                                                                                                                                                             | HJL1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>境界要素 離間 上 1F</u>                                                                                                                                                                                                                                                                                      | HJU1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> 現外安条 せん断変位 北工 2F</u><br>境界要素 せん断変位 南上 2F                                                                                                                                                                                                                                                             | DJIN2<br>DJS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 境界要素 離間 下 2F                                                                                                                                                                                                                                                                                             | HJL2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 境界要素 離間 上 2F                                                                                                                                                                                                                                                                                             | HJU2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 軸力 南側                                                                                                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kN                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 水平力 南側                                                                                                                                                                                                                                                                                                   | QS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kN                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>水平変位(3F) 南側</u><br>水平変位(2F) 南側                                                                                                                                                                                                                                                                        | 2HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SDP-300<br>SDP-300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 水平変位(1F) 南側                                                                                                                                                                                                                                                                                              | 1HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 56<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 面外変位 南                                                                                                                                                                                                                                                                                                   | OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 56<br>57<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 面外変位 南                                                                                                                                                                                                                                                                                                   | OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                         | メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -          | 075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 56<br>57<br>58<br>59<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 面外変位 南<br>軸変位 2F梁 北側(下端)外側                                                                                                                                                                                                                                                                               | OS<br>HBB1<br>HBB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm<br>mm                                                                   | メジャー<br>メジャー<br>メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CDP-50<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -          | 275<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 56<br>57<br>58<br>59<br>60<br>61                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 面外変位 南<br>軸変位 2F梁 北側(下端)外側                                                                                                                                                                                                                                                                               | OS<br>HBB1<br>HBB2<br>HBB3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.005<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mm<br>mm<br>mm                                                             | メジャー<br>メジャー<br>メジャー<br>メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | 275<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 56<br>57<br>58<br>59<br>60<br>61<br>62<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側                                                                                                                                                                                                                                                           | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.005<br>0.002<br>0.002<br>0.002<br>0.005<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mm<br>mm<br>mm<br>mm<br>mm                                                 | メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 275<br>200<br>200<br>350<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側                                                                                                                                                                                                                   | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB5<br>HBT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.005<br>0.002<br>0.002<br>0.002<br>0.005<br>0.005<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mm<br>mm<br>mm<br>mm<br>mm<br>mm                                           | メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-50<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 275<br>200<br>200<br>350<br>600<br>275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>64<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                       | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(下端)内側                                                                                                                                                                                                                                       | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB5<br>HBT1<br>HBT2<br>HBT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.005<br>0.002<br>0.002<br>0.002<br>0.005<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm                                     | メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 275<br>200<br>200<br>350<br>600<br>275<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>65<br>66<br>67                                                                                                                                                                                                                                                                                                                                                                                                                                 | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側                                                                                                                                                                                                                                       | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB5<br>HBT1<br>HBT2<br>HBT3<br>HBT4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.005<br>0.002<br>0.002<br>0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm                               | メジャー<br>メジャー-<br>メジジャー-<br>メジジャー-<br>メジジャー-<br>メジジャー-<br>メジジャー-<br>メジジャー-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>65<br>66<br>67<br>68                                                                                                                                                                                                                                                                                                                                                                                                                           | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 2F梁 北側(上端)外側                                                                                                                                                                                                                   | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB5<br>HBT1<br>HBT2<br>HBT3<br>HBT4<br>HBT5<br>UDD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm                   | ×ジャー<br>×ジャー<br>×ジャー<br>×ジャー<br>×ジャー<br>×ジャー<br>×ジャー<br>×ジャー<br>×ジャー<br>×ジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>C |            | 275<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>65<br>66<br>67<br>68<br>69<br>70                                                                                                                                                                                                                                                                                                                                                                                                               | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 3F梁 北側(下端)外側                                                                                                                                                                           | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB5<br>HBT1<br>HBT2<br>HBT3<br>HBT4<br>HBT5<br>HBB6<br>HBB7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.005<br>0.002<br>0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | ×ジャー<br>×ジャー<br>×ジャー<br>×ジャー<br>×ジャー<br>×ジャー<br>×ジャー<br>×ジャー<br>×ジャー<br>×ジャー<br>×ジャー<br>×ジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                        |            | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           71                                                                                                                                                                                                                                                                                                | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 3F梁 北側(下端)外側                                                                                                                                                                                               | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB3<br>HBT1<br>HBT2<br>HBT3<br>HBT4<br>HBT5<br>HBB6<br>HBB7<br>HBB8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.005<br>0.002<br>0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm             | ×ジャー<br>×ジャーー<br>×ジジャーー<br>×ジジャャーー<br>×ジジャャーー<br>×ジジャャーー<br>×ジジャャーー<br>×ジジャャーー<br>×ジジャャーー<br>×ジジャャーー<br>×ジジャャーー<br>×ジジャャーー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           71           72                                                                                                                                                                                                                                                                                   | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側                                                                                                                                                                           | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB3<br>HBT1<br>HBT2<br>HBT4<br>HBT5<br>HBB6<br>HBB7<br>HBB8<br>HBB9<br>HBB9<br>HBB9<br>HBB9<br>HBB9<br>HBB9<br>HBB9<br>HBB9<br>HBB9<br>HBB9<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HB7<br>HB7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.005<br>0.002<br>0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | x<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                        |            | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>275<br>200<br>200<br>350<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           71           72           73           74                                                                                                                                                                                                                                                         | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 2F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側                                                                                                                                                       | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB3<br>HBB3<br>HBB5<br>HBT1<br>HBT2<br>HBT3<br>HBT4<br>HBT5<br>HBB6<br>HBB7<br>HBB8<br>HBB9<br>HBB10<br>HBT6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.005<br>0.002<br>0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | × ++++<br>× ++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           71           72           73           74                                                                                                                                                                                                                                                         | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)内側<br>軸変位 3F梁 北側(上端)外側                                                                                                                                                       | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB3<br>HBB3<br>HBB5<br>HBB5<br>HBB5<br>HBB7<br>HBB6<br>HBB7<br>HBB10<br>HBT6<br>HBT7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm                   | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                        |            | 275<br>200<br>200<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>200<br>350<br>600<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           71           72           73           74           75           76                                                                                                                                                                                                                               | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 3F梁 北側(下端)内側<br>軸変位 3F梁 北側(下端)外側                                                                                                                                                                           | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB3<br>HBB3<br>HBB7<br>HBB5<br>HBB7<br>HBB6<br>HBB7<br>HBB10<br>HBT6<br>HBT7<br>HBT8<br>HBT9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. | E E E E E E E E E E E E E E E E E E E                                      | x<br>x<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                        |            | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           71           72           73           74           75           76           77           78                                                                                                                                                                                                     | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 3F梁 北側(下端)内側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(上端)外側                                                                                                                                                       | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB3<br>HBB3<br>HBB7<br>HBT3<br>HBT4<br>HBT4<br>HBT6<br>HBB9<br>HBB9<br>HBB10<br>HBT9<br>HBT9<br>HBT10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | ×>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50                                                        |            | 275<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>350<br>600<br>350<br>600<br>275<br>200<br>350<br>600<br>350<br>600<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           71           72           73           74           75           76           77           78           79                                                                                                                                                                                        | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 3F梁 北側(下端)内側<br>軸変位 3F梁 北側(下端)内側<br>軸変位 3F梁 北側(下端)内側<br>軸変位 3F梁 北側(上端)内側<br>軸変位 3F梁 北側(上端)内側                                                                                                               | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB3<br>HBB3<br>HBB7<br>HBT3<br>HBT4<br>HBT3<br>HBT4<br>HBT6<br>HBB9<br>HBB9<br>HBB10<br>HBT0<br>DBS1<br>DBS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | ×ジャー<br>×ジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー<br>×ジジャー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                        |            | 275<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>350<br>600<br>350<br>600<br>275<br>200<br>350<br>600<br>372<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>200<br>275<br>200<br>200<br>200<br>275<br>200<br>200<br>200<br>275<br>200<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20 |
| 56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           71           72           73           74           75           77           78           79           80           81                                                                                                                                                                           | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 3F梁 北側(下端)内側<br>軸変位 3F梁 北側(下端)内側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(上端)外側<br>軸変位 3F梁 北側(上端)外側                                                                                                               | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB4<br>HBB4<br>HBT3<br>HBT3<br>HBT4<br>HBT5<br>HBB6<br>HBB7<br>HBB7<br>HBB8<br>HBB7<br>HBB7<br>HBB8<br>HBB7<br>HBT9<br>HBT0<br>DBS1<br>DBS2<br>DBS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | ×>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                        |            | 275<br>200<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>350<br>600<br>275<br>200<br>350<br>600<br>275<br>200<br>350<br>600<br>372<br>320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           73           74           75           76           77           78           79           80           81           82                                                                                                                                                                           | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(上端)外側<br>軸変位 3F梁 北側(上端)外側                                                                                                                                   | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB3<br>HBT4<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT6<br>HBT6<br>HBT7<br>HBT8<br>HBT9<br>HBT0<br>DBS1<br>DBS2<br>DBS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | ×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                        |            | 275<br>200<br>200<br>350<br>200<br>200<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>350<br>600<br>372<br>275<br>200<br>275<br>200<br>275<br>200<br>202<br>3430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>65<br>66<br>67<br>68<br>69<br>70<br>70<br>71<br>72<br>73<br>74<br>75<br>76<br>77<br>77<br>78<br>79<br>80<br>81<br>82<br>83                                                                                                                                                                                                                                                                                                                     | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(上端)外側<br>軸変位 3F梁 北側(上端)外側<br>軸変位 2F梁 北側(上端)内側<br>軸変位 2F梁 北側(上端)内側<br>も変位 2F梁 北側(北上)内側<br>せん断変位 2F梁 北側(北上)内側                                                 | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB3<br>HBB3<br>HBB3<br>HBB3<br>HBT3<br>HBT4<br>HBT3<br>HBT3<br>HBT6<br>HBB9<br>HBB9<br>HBB9<br>HBB10<br>HBT6<br>HBT7<br>HBT8<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | ×>+<br>×>+<br>×>>+<br>×>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>+<br>>>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4G | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                        |            | 275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           71           72           73           74           75           76           77           78           80           81           82           83           84                                                                                                                                    | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 3F梁 北側(下端)内側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(上端)外側<br>軸変位 3F梁 北側(上端)外側<br>せん断変位 2F梁 北側(上端)内側<br>しば)か側                                                                                                    | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB3<br>HBB3<br>HBB3<br>HBB3<br>HBT1<br>HBT3<br>HBT4<br>HBT3<br>HBT6<br>HBB9<br>HBB9<br>HBB10<br>HBT6<br>HBT7<br>HBT8<br>HBT9<br>HBT10<br>DBS1<br>DBS2<br>DBS4<br>DBS1<br>DBN1<br>DBN2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | xy<br>xyy<br>xyyy<br>xyyyy<br>xyyyyy<br>xyyyyy<br>xyyyyy<br>xyyyyy<br>xyyyyy<br>xyyyyy<br>xyyyyy<br>xyyyyy<br>xyyyyy<br>xyyyyy<br>xyyyyy<br>xyyyyy<br>xyyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyyy<br>xyy | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                        |            | 275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>66<br>63<br>64<br>66<br>67<br>70<br>71<br>72<br>73<br>74<br>75<br>76<br>77<br>78<br>80<br>81<br>82<br>83<br>84<br>85<br>86                                                                                                                                                                                                                                                                                                                     | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 3F梁 北側(下端)内側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(上端)外側<br>軸変位 3F梁 北側(上端)外側<br>せん断変位 2F梁 北側(北上)外側<br>せん断変位 2F梁 北側(北上)内側<br>せん断変位 2F梁 北側(北上)外側                                             | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB3<br>HBB3<br>HBB3<br>HBB3<br>HBT1<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT4<br>HBT3<br>HBB6<br>HBB7<br>HBB8<br>HBB9<br>HBB9<br>HBB10<br>HBT6<br>HBT7<br>HBT7<br>HBT8<br>HBT9<br>HBT10<br>DBS1<br>DBS2<br>DBS3<br>DBS4<br>DBS5<br>DBN2<br>DBN2<br>DBN2<br>DBN2<br>DBN2<br>DBN2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | ×>+<br>×>>+<br>×>>+<br>×>>>+<br>×>>>+<br>×>>>++<br>×>>>+<br>×>>>++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4G | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                        |            | 275<br>200<br>200<br>205<br>200<br>275<br>200<br>275<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>350<br>200<br>200<br>350<br>200<br>201<br>350<br>200<br>203<br>350<br>200<br>275<br>200<br>200<br>200<br>275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 56           57           58           59           60           61           62           63           64           65           66           67           68           70           73           74           75           76           77           78           80           81           82           83           84           87           88                                                                                                                                                 | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 2F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(上端)外側<br>軸変位 3F梁 北側(上端)外側<br>せん断変位 2F梁 北側(北上)外側<br>せん断変位 2F梁 北側(北上)外側                                                                   | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB3<br>HBB3<br>HBB3<br>HBT1<br>HBT3<br>HBT3<br>HBT3<br>HBT4<br>HBT3<br>HBT6<br>HBB9<br>HBB10<br>HBT6<br>HBT7<br>HBT7<br>HBT6<br>HBT7<br>HBT7<br>HBT8<br>HBT9<br>HBT10<br>DBS1<br>DBS2<br>DBS3<br>DBS4<br>DBS4<br>DBN4<br>DBN4<br>DBN5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | ×>+<br>×>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>>+<br>×>>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>>+<br>×>>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>>>+<br>×>>>+<br>>>+<br>>>+<br>>>+<br>>>+<br>>>+<br>>>+<br>>>+<br>>>+<br>>>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4G | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                        |            | 275<br>200<br>200<br>275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 56           57           58           59           60           61           62           63           64           65           66           67           70           74           75           76           77           78           79           80           81           82           84           85           86           87           88           89                                                                                                                                    | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 2F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(上端)外側<br>セム断変位 2F梁 北側(上端)外側<br>せん断変位 2F梁 北側(北上)外側<br>セム断変位 2F梁 北側(南上)外側                                                                 | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB3<br>HBT4<br>HBT3<br>HBT4<br>HBT3<br>HBT4<br>HBT5<br>HBB6<br>HBB7<br>HBB6<br>HBB7<br>HBT6<br>HBT7<br>HBT6<br>HBT7<br>HBT6<br>HBT7<br>HBT7<br>HBT9<br>HBT10<br>DBS1<br>DBS2<br>DBS3<br>DBN4<br>DBN5<br>DBN5<br>DBN5<br>DBN5<br>DBN5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | ×>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4G | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                        |            | 275<br>200<br>200<br>600<br>275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 56           57           58           59           60           61           62           63           64           65           66           67           70           71           72           73           74           75           76           77           80           81           82           83           86           87           88           87           88           90           90                                                                                             | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(上端)外側<br>世ん断変位 2F梁 北側(北上)外側<br>せん断変位 2F梁 北側(南上)外側<br>せん断変位 3F梁 北側(南上)外側                                                                 | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB4<br>HBB5<br>HBT3<br>HBT4<br>HBT5<br>HBB6<br>HBB7<br>HBB6<br>HBB7<br>HBB7<br>HBB7<br>HBB8<br>HBB7<br>HBB7<br>HBB7<br>HBT6<br>HBT7<br>HBT8<br>HBT7<br>HBT8<br>HBT9<br>HBT0<br>DBS1<br>DBS3<br>DBS4<br>DBS5<br>DBN1<br>DBN2<br>DBS6<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7<br>DBS7 | 0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | ×>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4G | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                        |            | 275<br>200<br>200<br>205<br>205<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 56           57           58           59           60           61           62           63           64           65           66           67           71           72           73           74           75           76           77           78           80           84           85           86           87           88           90           91           92                                                                                                                       | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 3F梁 北側(下端)内側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(上端)外側<br>世ん断変位 2F梁 北側(上端)外側<br>せん断変位 2F梁 北側(北上)外側<br>せん断変位 2F梁 北側(北上)外側<br>世ん断変位 3F梁 北側(北上)外側                                           | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB5<br>HBT1<br>HBT2<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>DBS3<br>DBS4<br>DBS5<br>DBS4<br>DBS5<br>DBS4<br>DBS5<br>DBS4<br>DBS5<br>DBS4<br>DBS5<br>DBS4<br>DBS5<br>DBS5<br>DBS4<br>DBS5<br>DBS5<br>DBS4<br>DBS5<br>DBS5<br>DBS4<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5<br>DBS5                                                                                                                                 | 0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | ×>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4G | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                        |            | 275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 56           57           58           59           60           61           62           63           64           65           66           67           73           74           75           76           77           78           80           81           82           83           84           85           86           89           90           91           92           93                                                                                                          | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 2F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(上端)外側<br>軸変位 3F梁 北側(上端)外側<br>せん断変位 2F梁 北側(北上)外側<br>せん断変位 2F梁 北側(北上)外側<br>せん断変位 3F梁 北側(北上)外側<br>しん断変位 3F梁 北側(北上)外側                       | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB5<br>HBT1<br>HBT2<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT6<br>HBT6<br>HBT7<br>HBT6<br>HBT7<br>HBT8<br>HBT9<br>HBT10<br>DBS1<br>DBS2<br>DBS3<br>DBS4<br>DBS5<br>DBS4<br>DBS5<br>DBS7<br>DBS8<br>DBS9<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>DBS10<br>D                                                                                         | 0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | ×>+<br>×>>+<br>×>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>>+<br>×>>>>++<br>×>>>>>++<br>×>>>>>++++<br>×>>>>>>>>>>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4G | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                        |            | 275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>600<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 56           57           58           59           60           61           62           63           64           65           66           67           73           74           75           77           78           77           80           81           82           83           84           85           86           90           91           92           93           94                                                                                                          | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(上端)外側<br>世ん断変位 2F梁 北側(上端)外側<br>せん断変位 2F梁 北側(北上)外側<br>せん断変位 3F梁 北側(北上)外側<br>せん断変位 3F梁 北側(北上)外側                                           | OS<br>HBE1<br>HBE2<br>HBE3<br>HBE3<br>HBE4<br>HBE3<br>HBE3<br>HBE3<br>HBE5<br>HBE5<br>HBE5<br>HBE6<br>HBE7<br>HBE6<br>HBE7<br>HBE8<br>HBE9<br>HBE9<br>HBE9<br>HBE10<br>HBT6<br>HBT7<br>HBT6<br>HBT7<br>HBT8<br>HBT9<br>HBT9<br>HBT10<br>DBS1<br>DBS2<br>DBS3<br>DBS4<br>DBS5<br>DBN1<br>DBN2<br>DBN2<br>DBN3<br>DBN4<br>DBS5<br>DBS7<br>DBS9<br>DBS10<br>DBN7<br>DBN7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | ×>+<br>×>>+<br>×>>+<br>×>>+<br>×>>+<br>×>>+<br>×>>++<br>×>>++++<br>×>>++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4G | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                        |            | 275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 56           57           58           59           60           61           62           63           64           65           66           67           73           74           75           76           77           78           83           84           85           86           89           90           91           92           93           94           95           96                                                                                                          | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 2F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(上端)外側<br>軸変位 3F梁 北側(上端)外側<br>せん断変位 2F梁 北側(北上)外側<br>せん断変位 2F梁 北側(北上)外側<br>せん断変位 3F梁 北側(北上)外側<br>せん断変位 3F梁 北側(北上)外側                       | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB3<br>HBB4<br>HBB3<br>HBT1<br>HBT2<br>HBT3<br>HBT4<br>HBT3<br>HBT4<br>HBT3<br>HBT6<br>HBT6<br>HBT7<br>HBB8<br>HBT9<br>HBT10<br>DBS1<br>DBS2<br>DBS3<br>DBS4<br>DBS5<br>DBN1<br>DBN2<br>DBS5<br>DBN4<br>DBS5<br>DBS7<br>DBS8<br>DBS9<br>DBS10<br>DBN7<br>DBN8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | ×>+<br>×>>+<br>×>>>+<br>×>>>+<br>×>>>++<br>×>>>>++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4G | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                        |            | 275<br>200<br>200<br>207<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           71           72           73           74           75           76           77           78           80           81           82           83           84           87           88           890           91           92           93           94           95           96           97 | 面外変位 南<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)外側<br>軸変位 2F梁 北側(下端)内側<br>軸変位 2F梁 北側(上端)外側<br>軸変位 2F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(下端)外側<br>軸変位 3F梁 北側(上端)外側<br>せん断変位 2F梁 北側(北上)外側<br>せん断変位 2F梁 北側(北上)外側<br>せん断変位 2F梁 北側(北上)外側<br>せん断変位 3F梁 北側(北上)外側<br>せん断変位 3F梁 北側(北上)外側 | OS<br>HBB1<br>HBB2<br>HBB3<br>HBB3<br>HBB3<br>HBB3<br>HBB3<br>HBB3<br>HBT1<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBT3<br>HBB6<br>HBB9<br>HBB9<br>HBB9<br>HBB9<br>HBB9<br>HBB7<br>HBT6<br>HBT7<br>HBT6<br>HBT7<br>HBT7<br>HBT8<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9<br>HBT9                                                                                                                                                                                                                                                                                                                                                                 | 0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. | mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | ×> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4G | CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                        |            | 275<br>200<br>200<br>205<br>200<br>205<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| CH.<br>No. | 計測項目                                  | 名称               | 校正係数  | 単位     | メジャー<br>モード | センサ<br>モード             | 計測機器名             | ゲージ<br>No. | インサート<br>距離 |
|------------|---------------------------------------|------------------|-------|--------|-------------|------------------------|-------------------|------------|-------------|
| 100        | 軸変位 1F壁 北側(脚部)                        | VWN1             | 0.005 | mm     | メジャー        | 4GAGE                  | CDP-50            |            | 550         |
| 101        |                                       | VWN2<br>VWN3     | 0.002 | mm     | メジャー        | 4GAGE<br>4GAGE         | CDP-25<br>CDP-25  |            | 625         |
| 103        |                                       | VWN4             | 0.002 | mm     | メジャー        | 4GAGE                  | CDP-25            |            | 625         |
| 104        | 軸変位 2F壁 北側(頂部)                        | VWN5<br>VWN6     | 0.002 | mm     | メジャー        | 4GAGE<br>4GAGE         | CDP-25<br>CDP-25  |            | 500<br>625  |
| 106        | 軸変位 1F壁 南側(脚部)                        | VWS1             | 0.002 | mm     | メジャー        | 4GAGE                  | CDP-50            |            | 550         |
| 107        |                                       | VWS2             | 0.002 | mm     | メジャー        | 4GAGE                  | CDP-25            |            | 500<br>625  |
| 109        |                                       | VWS3<br>VWS4     | 0.002 | mm     | メジャー        | 4GAGE                  | CDP-25            |            | 625         |
| 110        | 하고는 이며 국제(주전)                         | VWS5             | 0.002 | mm     | メジャー        | 4GAGE                  | CDP-25            |            | 500         |
| 112        | <u> </u>                              | DWN1             | 0.002 | mm     | メジャー        | 4GAGE<br>4GAGE         | CDP-25<br>CDP-50  |            | 680         |
| 113        |                                       | DWN2             | 0.002 | mm     | メジャー        | 4GAGE                  | CDP-25            |            | 640         |
| 114        |                                       | DWN3<br>DWN4     | 0.002 | mm     | メジャー        | 4GAGE<br>4GAGE         | CDP-25<br>CDP-25  |            | 742         |
| 116        |                                       | DWN5             | 0.002 | mm     | メジャー        | 4GAGE                  | CDP-25            |            | 640         |
| 117        | せん断 2F壁 北側上(頂部)<br>せん断 1F壁 北側上(脚部)    | DWN6<br>DWS1     | 0.002 | mm     | メジャー        | 4GAGE<br>4GAGE         | CDP-25<br>CDP-50  |            | 742<br>680  |
| 119        |                                       | DWS2             | 0.002 | mm     | メジャー        | 4GAGE                  | CDP-25            |            | 640         |
| 120        |                                       | DWS3             | 0.002 | mm     | メジャー        | 4GAGE                  | CDP-25            |            | 742         |
| 122        |                                       | DWS5             | 0.002 | mm     | メジャー        | 4GAGE                  | CDP-25            |            | 640         |
| 123        | せん断 2F壁 北側上(頂部)                       | DWS6             | 0.002 | mm     | メジャー        | 4GAGE                  | CDP-25            |            | 742         |
| 124        | パネル北 軸方向 柱側                           | WN1              | 0.939 | μ      | メジャー        | 1G3W120Ω               | CLT用              |            |             |
| 126        |                                       | WN2              | 0.939 | μ      | メジャー        | 1G3W120Ω               | CLT用              |            |             |
| 127        |                                       | WN3<br>WN4       | 0.939 | μ<br>μ | メジャー        | 1G3W120Ω<br>1G3W120Ω   | CLT用<br>CLT用      |            |             |
| 129        |                                       | WN5              | 0.939 | μ      | メジャー        | 1G3W120Ω               | CLT用              |            |             |
| 130        |                                       | WN6<br>WN7       | 0.939 | μ      | メジャー        | 1G3W120Ω<br>1G3W120Ω   | CLT用<br>CLT用      |            |             |
| 132        |                                       | WN8              | 0.939 | μ      | メジャー        | 1G3W120Ω               | CLT用              |            |             |
| 133        |                                       | WN9<br>WN10      | 0.939 | μ      | メジャー        | 1G3W120Ω               | CLT用              |            |             |
| 135        |                                       | WN10<br>WN11     | 0.939 | μ      | メジャー        | 1G3W120 Ω              | CLT用              |            |             |
| 136        |                                       | WN12             | 0.939 | μ      | メジャー        | 1G3W120Ω               | CLT用              |            |             |
| 137        |                                       | WN13<br>WN14     | 0.939 | μ      | メジャー        | 1G3W120Ω               | CLT用<br>CLT用      |            |             |
| 139        |                                       | WN15             | 0.939 | μ      | メジャー        | 1G3W120Ω               | CLT用              |            |             |
| 140        |                                       | WN16<br>WN17     | 0.939 | μ<br>μ | メジャー        | 1G3W120 Ω<br>1G3W120 Ω | CLT用<br>CLT用      |            |             |
| 142        |                                       | WN18             | 0.939 | μ      | メジャー        | 1G3W120Ω               | CLT用              |            |             |
| 143        |                                       | WN19<br>WN20     | 0.939 | μ<br>u | メジャー        | 1G3W120 Ω<br>1G3W120 Ω | CLT用<br>CLT用      |            |             |
| 145        |                                       | WN21             | 0.939 | μ      | メジャー        | 1G3W120Ω               | CLT用              |            |             |
| 146        |                                       | WN22<br>WN23     | 0.939 | μ      | メジャー        | 1G3W120Ω               | CLT用              |            |             |
| 148        | パネル北 軸方向 中央側                          | WN24             | 0.939 | μ      | メジャー        | 1G3W120 Ω              | CLT用              |            |             |
| 149        | DC细技 北側                               | DN-f             | 0.049 |        | 15:40-      | 102W1200               | 雄族田               | 0          |             |
| 151        | PC鋼棒 北側                               | PN-b             | 0.948 | μ      | メジャー        | 1G3W120 Ω              | 鉄筋用               | 1          |             |
| 152        | <u> </u>                              | C1NN-f           | 0.948 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用               | 2          |             |
| 153        | 杜主肋 IF 脚部 北侧北端<br>柱主筋 1F 脚部 北側南端      | C1NN-b<br>C1NS-f | 0.948 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用               | 4          |             |
| 155        | 柱主筋 1F脚部 北側南端                         | C1NS-b           | 0.948 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用               | 5          |             |
| 156        |                                       | C2NN-f<br>C2NN-b | 0.948 | μ      | メジャー        | 1G3W120Ω<br>1G3W120Ω   | 鉄筋用               | 7          |             |
| 158        | 柱主筋 1F中央 北側南端                         | C2NS-f           | 0.948 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用               | 8          |             |
| 159        |                                       | C2NS-b<br>C3NN-f | 0.948 | μ      | メジャー        | 1G3W120 Ω<br>1G3W120 Ω | <u>鉄筋用</u><br>鉄筋用 | 9<br>10    |             |
| 161        | 柱主筋 1F中央 北側北端                         | C3NN-b           | 0.948 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用               | 11         |             |
| 162        |                                       | C3NS-f<br>C3NS-b | 0.948 | μ      | メジャー        | 1G3W120 Ω<br>1G3W120 Ω | 鉄筋用 鉄筋用           | 12         |             |
| 164        | 柱主筋 1F頂部 北側北端                         | C4NN-f           | 0.948 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用               | 14         |             |
| 165        | <u> 柱主筋 1F頂部 北側北端</u> は主筋 1F頂部 北側南端   | C4NN-b<br>C4NS-f | 0.948 | μ      | メジャー        | 1G3W120Ω               | <u>鉄筋用</u><br>鉄筋用 | 15         |             |
| 167        | 柱主筋 1F頂部 北側南端                         | C4NS-b           | 0.948 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用               | 17         |             |
| 168        | <u> 柱主筋 2F脚部 北側北端</u> は主筋 2F脚部 北側北端   | C5NN-f           | 0.948 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用 鉄筋用           | 18         |             |
| 170        | 柱主筋 2F脚部 北側南端                         | C5NS-f           | 0.948 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用               | 20         |             |
| 171        | 柱主筋 2F脚部 北側南端                         | C5NS-b           | 0.948 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用               | 21         |             |
| 172        | <u>柱主版 2F中央 北側北端</u><br>柱主筋 2F中央 北側北端 | C6NN-b           | 0.948 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用               | 23         |             |
| 174        | 柱主筋 2F中央 北側南端                         | C6NS-f           | 0.948 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用               | 24         |             |
| 175        |                                       | C6NS-b<br>C7NN-f | 0.948 | μ<br>μ | メジャー        | 1G3W120Ω<br>1G3W120Ω   | <u> </u>          | 25         |             |
| 177        | 柱主筋 2F中央 北側北端                         | C7NN-b           | 0.948 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用               | 27         |             |
| 178        | <u> </u>                              | C7NS-f<br>C7NS-b | 0.948 | μ      | メジャー        | 1G3W120 Ω<br>1G3W120 Ω | 鉄筋用 鉄筋用           | 28         |             |
| 180        | 柱主筋 2F頂部 北側北端                         | C8NN-f           | 0.948 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用               | 30         |             |
| 181        | <u> 枉王筋 2F頂部 北側北端</u> 村主筋 2F頂部 北側南端   | C8NN-b<br>C8NS-f | 0.948 | μ      | メジャー        | 1G3W120Ω<br>1G3W120Ω   | 鉄筋用<br>鉄筋甲        | 31<br>32   |             |
| 183        | 柱主筋 2F頂部 北側南端                         | C8NS-b           | 0.948 | μ      | メジャー        | 1G3W120 Ω              | 鉄筋用               | 33         |             |
| 184        | 柱帯筋 1F脚部 北側                           | CS1N             | 0.948 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用               | 34         |             |
| 186        | 柱带筋 1F頂部 北側                           | CS3N             | 0.948 | μ      | メジャー        | 1G3W120 Ω              | 鉄筋用               | 36         |             |
| 187        | 柱帯筋 2F脚部 北側                           | CS4N             | 0.948 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用               | 37         |             |
| 189        | <u> </u>                              | CS6N             | 0.948 | μ<br>μ | メジャー        | 1G3W120Ω               | <u> </u>          | 39         |             |
| 190        | 梁下端筋 2F 北側北端                          | B1L-f            | 0.943 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用               | 40         |             |
| 191        | <u>采 ∩ 辅肋 2h 北側北</u> 5<br>梁下端筋 2F 北側  | BIL-b<br>B2L-f   | 0.943 | μ<br>μ | メジャー        | 1G3W120Ω<br>1G3W120Ω   | <u> </u>          | 41         |             |
| 193        | 梁下端筋 2F 北側                            | B2L-b            | 0.943 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用               | 43         |             |
| 194<br>195 | <u>梁下端筋 2F 北側</u><br>梁下端筋 2F 北側       | B3L-f<br>B3L-h   | 0.943 | μ      | メジャー        | 1G3W120Ω<br>1G3W120Ω   | <u> </u>          | 44<br>45   |             |
| 196        | 梁下端筋 2F 北側南端                          | B4L-f            | 0.943 | μ      | メジャー        | 1G3W120 Ω              | 鉄筋用               | 46         |             |
| 197        | <u>梁下端筋 2F 北側南端</u><br>梁上端筋 25 北側北端   | B4L-b<br>B1U-f   | 0.943 | μ      | メジャー        | 1G3W120Ω               | 鉄筋用 鉄筋用           | 47         |             |
| 199        | <u> </u>                              | B1U-b            | 0.943 | μ<br>μ | メジャー        | 1G3W120 Ω              | 鉄筋用               | 49         |             |

| CH.<br>No. | 計測項目                                                   | 名称               | 校正係数  | 単位      | メジャー<br>モード         | センサモード                 | 計測機器名                 | ゲージ<br>No. | インサート<br>距離 |
|------------|--------------------------------------------------------|------------------|-------|---------|---------------------|------------------------|-----------------------|------------|-------------|
| 200        | 梁上端筋 2F 北側                                             | B2U-f            | 0.943 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 50         | ME FILL     |
| 201        | 梁上端筋 2F 北側<br>梁上端筋 2F 北側                               | B2U-b<br>B3U-f   | 0.943 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用 鉄筋用               | 51         |             |
| 203        | 梁上端筋 2F 北側                                             | B3U-b            | 0.943 | μ       | メジャー                | 1G3W120 Ω              | 鉄筋用                   | 53         |             |
| 204        | <u>梁上端筋 2F 北側南端</u>                                    | B4U-f            | 0.943 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 54         |             |
| 205        | <u> </u>                                               | B40-b<br>BS1     | 0.943 | μ<br>μ  | メジャー                | 1G3W120Ω<br>1G3W120Ω   | 鉄筋用                   | 56         |             |
| 207        | 梁あばら筋 2F 北側                                            | BS2              | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 57         |             |
| 208        | <u> </u>                                               | BS3<br>B9I -f    | 0.948 | μ       | メジャー                | 1G3W120 Ω<br>1G3W120 Ω | <u>鉄筋用</u><br>鉄筋用     | 58<br>59   |             |
| 210        | 梁下端筋 3F 北側北端                                           | B9L-b            | 0.943 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 60         |             |
| 211        | <u>梁下端筋 3F 北側</u>                                      | B10L-f           | 0.943 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 61         | -           |
| 212        | 梁下端筋 3F 北侧<br>梁下端筋 3F 北側                               | B10L-b<br>B11L-f | 0.943 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 63         |             |
| 214        | 梁下端筋 3F 北側                                             | B11L-b           | 0.943 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 64         |             |
| 215        | <u>采 下                             </u>                | B12L-f<br>B12L-b | 0.943 | μ<br>u  | メジャー                | 1G3W120Ω<br>1G3W120Ω   | <u> </u>              | 66         |             |
| 217        | 梁上端筋 3F 北側北端                                           | B9U-f            | 0.943 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 67         |             |
| 218        | <u>梁上端筋 3F 北側北端</u><br>梁上端筋 3F 北側                      | B9U-b<br>B10U-f  | 0.943 | μ       | メジャー                | 1G3W120Ω<br>1G3W120Ω   | <u>鉄筋用</u><br>鉄筋用     | 68         |             |
| 220        | 梁上端筋 3F 北側                                             | B10U-b           | 0.943 | μ       | メジャー                | 1G3W120 Ω              | 鉄筋用                   | 70         |             |
| 221        | <u>梁上端筋 3F 北側</u><br>激 ト端筋 2F 北側                       | B11U-f           | 0.943 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 71         |             |
| 222        | <u>采上端肋 3F 北侧</u><br>梁上端筋 3F 北側南端                      | B11U-b<br>B12U-f | 0.943 | μ       | メジャー                | 1G3W120Ω<br>1G3W120Ω   | 鉄筋用                   | 72         |             |
| 224        | 梁上端筋 3F 北側南端                                           | B12U-b           | 0.943 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 74         |             |
| 225        | <u>※あばら筋 3F 北側</u><br>梁あばら筋 3F 北側                      | BS7<br>BS8       | 0.948 | μ       | メジャー                | 1G3W120 Ω<br>1G3W120 Ω | <u>鉄筋用</u><br>鉄筋用     | 75         |             |
| 227        | 梁あばら筋 3F 北側                                            | BS9              | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 77         |             |
| 228        | アンカーボルト 15 北市                                          |                  | 9900  |         | X                   | 1G3W120 O              | 鋼材田                   |            |             |
| 230        | アンカーボルト 1F 北東                                          | AINE-T           | 0.966 | μ       | メジャー                | 1G3W120Ω               | 鋼材用                   |            |             |
| 231        | アンカーボルト 1F 北西                                          | A1NW-f           | 0.966 | μ       | メジャー                | 1G3W120Ω               | 鋼材用                   |            |             |
| 232        | <u>アンカーホルト 1F 北西</u><br>アンカーボルト 2F 北東                  | A1NW-b<br>A2NE-f | 0.966 | μ<br>μ  | メンヤー<br>メジャー        | 1G3W120Ω<br>1G3W120Ω   | <u> 鋼材用</u><br>鋼材用    |            |             |
| 234        | アンカーボルト 2F 北東                                          | A2NE-b           | 0.966 | μ       | メジャー                | 1G3W120 Ω              | 鋼材用                   |            |             |
| 235        | アンカーボルト 2F 北西<br>アンカーボルト 2F 北西                         | A2NW-f           | 0.966 | μ       | メジャー                | 1G3W120Ω               | 鋼材用<br>鋼材用            |            |             |
| 230        | アンカーボルト 3F 北東                                          | A3NE-f           | 0.966 | μ       | メジャー                | 1G3W120Ω               | 鋼材用                   |            |             |
| 238        | アンカーボルト 3F 北東                                          | A3NE-b           | 0.966 | μ       | メジャー                | 1G3W120Ω               | 鋼材用                   |            |             |
| 239        | <u>アンカーボルト 3F 北西</u><br>アンカーボルト 3F 北西                  | A3NW-t<br>A3NW-b | 0.966 | μ       | メジャー                | 1G3W120 Ω<br>1G3W120 Ω | 到<br>初<br>和<br>初<br>日 |            |             |
| 241        |                                                        | 7.0111 0         | 0.000 | ~       |                     | T don't Lo x           | A41:3713              |            |             |
| 242        |                                                        |                  |       |         |                     |                        |                       |            |             |
| 244        |                                                        |                  |       |         |                     |                        |                       |            |             |
| 245        |                                                        |                  |       |         |                     |                        |                       |            |             |
| 246        |                                                        |                  |       |         |                     |                        |                       |            |             |
| 248        |                                                        |                  |       |         |                     |                        |                       |            |             |
| 249        | PC细基 南側                                                | PS-f             | 0 948 | "       | メジャー                | 1G3W120 Q              | 鉄筋田                   | 78         |             |
| 251        | PC鋼棒 南側                                                | PS-b             | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 79         |             |
| 252        | <u>     柱主筋 1F脚部 南側南端</u> 拉主矢 15脚部 南側南端                | C1SS-f           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 80         |             |
| 253        |                                                        | CISS-B<br>CISN-f | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 82         |             |
| 255        | <u>柱主筋 1F脚部 南側北端</u>                                   | C1SN-b           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 83         |             |
| 256        | <u> </u>                                               | C2SS-f<br>C2SS-b | 0.948 | μ       | メジャー                | 1G3W120Ω<br>1G3W120Ω   | 鉄筋用                   | 84<br>85   |             |
| 258        | 柱主筋 1F中央 南側北端                                          | C2SN-f           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 86         |             |
| 259        | <u>柱主筋 1F中央 南側北端</u><br>柱主筋 1E由央 南側南端                  | C2SN-b<br>C3SS-f | 0.948 | μ       | メジャー                | 1G3W120Ω<br>1G3W120Ω   | 鉄筋用 鉄筋用               | 87         | -           |
| 261        | 杜主筋 1F中央 南側南端                                          | C3SS-b           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 89         |             |
| 262        | <u>     柱主筋 1F中央 南側北端</u>                              | C3SN-f           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 90         |             |
| 263        |                                                        | C4SS-f           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 91         |             |
| 265        | 柱主筋 1F頂部 南側南端                                          | C4SS-b           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 93         |             |
| 266        | <u> </u>                                               | C4SN-f<br>C4SN-b | 0.948 | μ<br>μ  | メンヤー<br>メジャー        | 1G3W120Ω<br>1G3W120Ω   | <u> </u>              | 94<br>95   |             |
| 268        | 柱主筋 2F脚部 南側南端                                          | C5SS-f           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 96         |             |
| 269        | 柱主筋 2F脚部 南側南端<br>柱主筋 2F脚部 南側北端                         | C5SS-b<br>C5SN-f | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用 鉄筋甲               | 97<br>98   |             |
| 271        | 柱主筋 2F脚部 南側北端                                          | C5SN-b           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 99         |             |
| 272        | <u> 柱主筋 2F中央 南側南端</u>                                  | C6SS-f           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 100        |             |
| 273        | <u> </u>                                               | C6SN-f           | 0.948 | μ       | メジャー                | 1G3W120Ω               | <u> </u>              | 102        |             |
| 275        | 柱主筋 2F中央 南側北端                                          | C6SN-b           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 103        |             |
| 276        | <u> 柱主筋 2F中央 南側南端</u>                                  | C7SS-f           | 0.948 | μ       | メジャー                | 1G3W120Ω<br>1G3W120Ω   | <u>鉄筋用</u><br>鉄筋甲     | 104        |             |
| 278        | 柱主筋 2F中央 南側北端                                          | C7SN-f           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 106        |             |
| 279        | 柱主筋 2F中央 南側北端                                          | C7SN-b           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 107        |             |
| 280        | <u> 1 エエ励 2 「現</u> 部   111     111  <br>柱主筋 2 F頂部 南側南端 | C8SS-b           | 0.948 | μ<br>μ  | メジャー                | 1G3W120Ω               | <u> </u>              | 108        |             |
| 282        | 柱主筋 2F頂部 南側北端                                          | C8SN-f           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 110        |             |
| 283<br>284 | <u> </u>                                               | C8SN-b<br>CS1S   | 0.948 | μ<br>11 | メジャー<br>メジャー        | 1G3W120Ω<br>1G3W120Ω   | <u> </u>              | 111        |             |
| 285        | 柱带筋 1F中央 南側                                            | CS2S             | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 113        |             |
| 286        | 柱帯筋 1F頂部 南側<br>柱帯筋 2F脚部 南側                             | CS3S             | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用 鉄筋甲               | 114        |             |
| 288        | <u>柱带筋 2F中央</u> 南側                                     | <u>CS5S</u>      | 0.948 | μ       | メジャー                | 1G3W120 Ω              | 鉄筋用                   | 116        |             |
| 289        | 柱带筋 2F頂部 南側                                            | CS6S             | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 117        |             |
| 290        | <u> </u>                                               | B5L-f<br>B5L-b   | 0.943 | μ<br>μ  | メンヤー<br>メジャー        | 1G3W120Ω<br>1G3W120Ω   | <u> </u>              | 118        |             |
| 292        | 梁下端筋 2F 南側                                             | B6L-f            | 0.943 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 120        |             |
| 293        | <u>梁下端筋 2F 南側</u><br>梁下端筋 25 南側                        | B6L-b<br>B7L-f   | 0.943 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用 鉄路田               | 121        |             |
| 295        | <u>梁下端筋 2F 南側</u>                                      | B7L-b            | 0.943 | μ       | メジャー                | 1G3W120 Ω              | 鉄筋用                   | 123        |             |
| 296        | 梁下端筋 2F 南側北端                                           | B8L-f            | 0.943 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用                   | 124        |             |
| 297        | <u>米 下                                   </u>          | B8L-b<br>B5U-f   | 0.943 | μ<br>μ  | <u>メンヤー</u><br>メジャー | 1G3W120Ω<br>1G3W120Ω   | <u> </u>              | 125        |             |
| 299        | 梁上端筋 2F 南側南端                                           | B5U-b            | 0.943 | μ.      | メジャー                | 1G3W120 Q              | 鉄筋用                   | 127        |             |

| CH.        | 計測項目                                  | 名称               | 校正係数  | 単位       | メジャー         | センサ                    | 計測機器名             | ゲージ | んけート |
|------------|---------------------------------------|------------------|-------|----------|--------------|------------------------|-------------------|-----|------|
| 300        | 梁上端筋 2F 南側                            | B6U-f            | 0.943 | μ        | メジャー         | 1G3W120Ω               | 鉄筋用               | 128 |      |
| 301        | <u>梁上端筋 2F 南側</u><br>※上端筋 2F 南側       | B6U-b<br>B7U-f   | 0.943 | μ        | メジャー         | 1G3W120Ω               | 鉄筋用 鉄筋用           | 129 |      |
| 302        | <u>来工编励 2F</u> 南侧<br>梁上端筋 2F 南側       | B7U-b            | 0.943 | μ        | メジャー         | 1G3W120 Ω              | 鉄筋用               | 130 |      |
| 304        | <u>梁上端筋 2F 南側北端</u>                   | B8U-f            | 0.943 | μ        | メジャー         | 1G3W120Ω               | 鉄筋用               | 132 |      |
| 305        | <u> </u>                              | BS4              | 0.943 | μ        | メジャー         | 1G3W120Ω<br>1G3W120Ω   | 鉄筋用               | 133 |      |
| 307        | 梁あばら筋 2F 南側                           | BS5              | 0.948 | μ        | メジャー         | 1G3W120Ω               | 鉄筋用               | 135 |      |
| 308        | <u> </u>                              | BS6<br>B131-f    | 0.948 | μ        | メジャー         | 1G3W120Ω<br>1G3W120Ω   | <u>鉄筋用</u><br>鉄筋田 | 136 |      |
| 310        | <u>梁下端筋 3F 南側南端</u>                   | B13L-b           | 0.943 | μ        | メジャー         | 1G3W120 Ω              | 鉄筋用               | 138 |      |
| 311        | <u>梁下端筋 3F 南側</u><br>激素端筋 2F 南側       | B14L-f           | 0.943 | μ        | メジャー         | 1G3W120Ω               | 鉄筋用               | 139 |      |
| 312        | <u>業下端筋 3F 南側</u><br>梁下端筋 3F 南側       | B14L-6<br>B15L-f | 0.943 | μ        | メジャー         | 1G3W120Ω               | 鉄筋用               | 140 |      |
| 314        | 梁下端筋 3F 南側                            | B15L-b           | 0.943 | μ        | メジャー         | 1G3W120Ω               | 鉄筋用               | 142 |      |
| 315        | <u> </u>                              | B16L-f<br>B16L-b | 0.943 | μ        | メジャー         | 1G3W120 Ω              | 鉄筋用<br>鉄筋田        | 143 | -    |
| 317        | 梁上端筋 3F 南側南端                          | B13U-f           | 0.943 | μ        | メジャー         | 1G3W120 Ω              | 鉄筋用               | 145 |      |
| 318        | <u>梁上端筋 3F 南側南端</u><br>激 ト端筋 25 南側    | B13U-b           | 0.943 | μ        | メジャー         | 1G3W120Ω               | 鉄筋用               | 146 |      |
| 320        | 梁工编版 3F 南侧<br>梁上端筋 3F 南側              | B140-f<br>B14U-b | 0.943 | μ        | メジャー         | 1G3W120Ω               | 鉄筋用               | 147 |      |
| 321        | <u>梁上端筋 3F 南側</u>                     | B15U-f           | 0.943 | μ        | メジャー         | 1G3W120Ω               | 鉄筋用               | 149 |      |
| 322        | <u>梁上端筋 3F 南側</u><br>梁上端筋 3F 南側北端     | B15U-b<br>B16U-f | 0.943 | μ        | メジャー         | 1G3W120 Ω<br>1G3W120 Ω | 鉄筋用 鉄筋用           | 150 |      |
| 324        | 梁上端筋 3F 南側北端                          | B16U-b           | 0.943 | μ        | メジャー         | 1G3W120Ω               | 鉄筋用               | 152 |      |
| 325        | <u>梁あばら筋 3F 南側</u><br>※あばら筋 2F 南側     | BS10<br>BS11     | 0.948 | μ        | メジャー         | 1G3W120Ω               | 鉄筋用               | 153 |      |
| 320        | <u>来のはらか 3F 角側</u><br>梁あばら筋 3F 南側     | BS12             | 0.948 | μ        | メジャー         | 1G3W120Ω               | 鉄筋用               | 155 |      |
| 328        | 24 u ± ++ ++ +> 100                   |                  | 0.000 | <u> </u> |              | 100000000              | 0.75              |     |      |
| 329        | ハイル 開 軸万 回                            | WS1<br>WS2       | 0.939 | μ        | メンヤー<br>メジャー | 1G3W120Ω<br>1G3W120Ω   | CLT用<br>CLT用      |     |      |
| 331        |                                       | WS3              | 0.939 | μ        | メジャー         | 1G3W120Ω               | CLT用              |     |      |
| 332        |                                       | WS4              | 0.939 | μ        | メジャー         | 1G3W120Ω               | CLT用              |     |      |
| 3334       |                                       | WS5<br>WS6       | 0.939 | μ        | メジャー         | 1G3W120Ω               | CLT用              |     |      |
| 335        |                                       | WS7              | 0.939 | μ        | メジャー         | 1G3W120Ω               | CLT用              |     |      |
| 336<br>337 |                                       | WS8<br>WS9       | 0.939 | μ        | メンヤー<br>メジャー | 1G3W120Ω<br>1G3W120Ω   | CLT用<br>CLT用      |     |      |
| 338        |                                       | WS10             | 0.939 | μ        | メジャー         | 1G3W120Ω               | CLT用              |     |      |
| 339        |                                       | WS11             | 0.939 | μ        | メジャー         | 1G3W120Ω               | CLT用              |     |      |
| 340        |                                       | WS12<br>WS13     | 0.939 | μ        | メジャー         | 1G3W120 Ω              | CLT用              |     |      |
| 342        |                                       | WS14             | 0.939 | μ        | メジャー         | 1G3W120Ω               | CLT用              |     |      |
| 343<br>344 |                                       | WS15<br>WS16     | 0.939 | μ        | メジャー         | 1G3W120Ω<br>1G3W120Ω   | CLT用<br>CLT用      |     |      |
| 345        |                                       | WS17             | 0.939 | μ        | メジャー         | 1G3W120Ω               | CLT用              |     |      |
| 346        |                                       | WS18             | 0.939 | μ        | メジャー         | 1G3W120Ω               | CLT用              |     |      |
| 347        |                                       | WS19<br>WS20     | 0.939 | μ        | メジャー         | 1G3W120Ω               | CLT用<br>CLT用      |     |      |
| 349        |                                       | WS21             | 0.939 | μ        | メジャー         | 1G3W120Ω               | CLT用              |     |      |
| 350<br>351 |                                       | WS22<br>WS23     | 0.939 | μ        | メジャー         | 1G3W120 Ω<br>1G3W120 Ω | CLT用<br>CLT用      |     |      |
| 352        | パネル南 軸方向 中央側                          | WS24             | 0.939 | μ        | メジャー         | 1G3W120Ω               | CLT用              |     |      |
| 353        | マンカーギルト 15 南東                         | A1SE_f           | 0.066 |          | 150-         | 102W1200               | 细壮田               |     |      |
| 355        | アンカーボルト 1F 南東                         | A1SE-b           | 0.966 | μ        | メジャー         | 1G3W120 Ω              | 鋼材用               |     |      |
| 356        | アンカーボルト 1F 南西                         | A1SW-f           | 0.966 | μ        | メジャー         | 1G3W120Ω               | 鋼材用               |     |      |
| 357        | <u>アンカーホルト 1F 南西</u><br>アンカーボルト 2F 南東 | A1SW-b<br>A2SE-f | 0.966 | μ        | メジャー         | 1G3W120Ω<br>1G3W120Ω   | 到 材 用<br>鋼 材 用    |     |      |
| 359        | アンカーボルト 2F 南東                         | A2SE-b           | 0.966 | μ        | メジャー         | 1G3W120Ω               | 鋼材用               |     |      |
| 360        | <u>アンカーボルト 2F 南西</u><br>アンカーボルト 2F 南西 | A2SW-f           | 0.966 | μ        | メジャー         | 1G3W120Ω               | <u>鋼材用</u><br>鋼材用 |     |      |
| 362        | アンカーボルト 3F 南東                         | A3SE-f           | 0.966 | μ        | メジャー         | 1G3W120 Ω              | 鋼材用               |     |      |
| 363        | <u>アンカーボルト 3F 南東</u>                  | A3SE-b           | 0.966 | μ        | メジャー         | 1G3W120Ω               | 鋼材用               |     |      |
| 364        | <u>アンカーホルト 3F 南西</u><br>アンカーボルト 3F 南西 | A3SW-t<br>A3SW-b | 0.966 | μ<br>μ   | メジャー         | 1G3W120Ω<br>1G3W120Ω   | <u>鋼材用</u><br>鋼材用 |     |      |
| 366        |                                       |                  |       |          |              |                        |                   |     |      |
| 367        |                                       |                  |       |          |              |                        |                   |     |      |
| 369        |                                       |                  |       |          |              |                        |                   |     |      |
| 370        |                                       |                  |       |          |              |                        |                   |     |      |
| 372        |                                       |                  |       |          |              |                        |                   |     |      |
| 373        |                                       |                  |       |          |              |                        |                   |     |      |
| 374 375    |                                       |                  |       |          |              |                        |                   |     |      |
| 376        |                                       |                  |       |          |              |                        |                   |     |      |
| 377        |                                       |                  |       |          |              |                        |                   |     |      |
| 378        |                                       |                  |       |          |              |                        |                   |     |      |
| 380        |                                       |                  |       |          |              |                        |                   |     |      |
| 381        |                                       |                  |       |          |              | -                      |                   |     |      |
| 383        |                                       |                  |       |          |              |                        |                   |     |      |
| 384        |                                       |                  |       |          |              |                        |                   |     |      |
| 386        |                                       |                  |       |          |              |                        |                   |     |      |
| 387        |                                       |                  |       |          |              |                        |                   |     |      |
| 388        |                                       |                  |       |          |              |                        |                   |     |      |
| 390        |                                       |                  |       |          |              |                        |                   |     |      |
| 391        |                                       |                  |       |          |              |                        |                   |     |      |
| 392        |                                       |                  |       | L        |              |                        |                   |     |      |
| 394        |                                       |                  |       | [        | -            |                        |                   |     |      |
| 395<br>396 |                                       |                  |       |          |              |                        |                   |     |      |
| 397        |                                       |                  |       |          |              |                        |                   |     |      |
| 398        |                                       |                  |       |          |              |                        |                   |     |      |
| 555        |                                       | 1                | 1     | 1        |              |                        | 1                 |     |      |

| CH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 計測項目                                                                                                                                                                                                                                                                                                                                           | 名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 校正係数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 単位                                                                                     | メジャー                                                                                                                                                                                                                                                 | センサ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 計測機器名                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ゲージ          | 化サート                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 軸力 北側                                                                                                                                                                                                                                                                                                                                          | NN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kN                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -            |                                                                                                                                                                                                                                                                                                                                                          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 水平力 北側                                                                                                                                                                                                                                                                                                                                         | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | kN                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -            |                                                                                                                                                                                                                                                                                                                                                          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 水平変位(3F) 北側<br>水平変位(2F) 北側                                                                                                                                                                                                                                                                                                                     | 3HN<br>2HN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SDP-300<br>SDP-300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _            |                                                                                                                                                                                                                                                                                                                                                          |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 水平変位(1F) 北側                                                                                                                                                                                                                                                                                                                                    | 1HN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -            |                                                                                                                                                                                                                                                                                                                                                          |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                                                                                                                                                                                                                                                                                                                                          |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 面外変位 北                                                                                                                                                                                                                                                                                                                                         | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _            |                                                                                                                                                                                                                                                                                                                                                          |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |                                                                                                                                                                                                                                                      | TOTOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 001 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                                                                                                                                                                                                                                                                                                          |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 軸変位 北柱 北側(脚部)                                                                                                                                                                                                                                                                                                                                  | VCN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 550                                                                                                                                                                                                                                                                                                                                                      |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                | VCN2<br>VCN3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | <u>×ジャー</u>                                                                                                                                                                                                                                          | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CDP-50<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 500<br>625                                                                                                                                                                                                                                                                                                                                               |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                | VCN4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 250                                                                                                                                                                                                                                                                                                                                                      |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                | VCN5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 625                                                                                                                                                                                                                                                                                                                                                      |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                | VCN6<br>VCN7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 500<br>625                                                                                                                                                                                                                                                                                                                                               |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 軸変位 北柱 北側(頂部)                                                                                                                                                                                                                                                                                                                                  | VCN8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 250                                                                                                                                                                                                                                                                                                                                                      |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 軸変位 北柱 南側(脚部)                                                                                                                                                                                                                                                                                                                                  | VCN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 550                                                                                                                                                                                                                                                                                                                                                      |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                | VCN2<br>VCN3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CDP-50<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 500<br>625                                                                                                                                                                                                                                                                                                                                               |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                | VCN4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 250                                                                                                                                                                                                                                                                                                                                                      |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                | VCN5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 625                                                                                                                                                                                                                                                                                                                                                      |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                | VCN6<br>VCN7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 500<br>625                                                                                                                                                                                                                                                                                                                                               |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 軸変位 北柱 南側(頂部)                                                                                                                                                                                                                                                                                                                                  | VCN8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 250                                                                                                                                                                                                                                                                                                                                                      |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | せん断変位 北柱 北上(脚部)                                                                                                                                                                                                                                                                                                                                | DCN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 604                                                                                                                                                                                                                                                                                                                                                      |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                | DCN2<br>DCN3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CDP-50<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 559<br>673                                                                                                                                                                                                                                                                                                                                               |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                | DCN4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 354                                                                                                                                                                                                                                                                                                                                                      |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                | DCN5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 673                                                                                                                                                                                                                                                                                                                                                      |
| 30<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                | DCN6<br>DCN7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm<br>mm                                                                               | <u></u><br>メジャー                                                                                                                                                                                                                                      | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 559<br>673                                                                                                                                                                                                                                                                                                                                               |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | せん断変位 北柱 北上(頂部)                                                                                                                                                                                                                                                                                                                                | DCN8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 354                                                                                                                                                                                                                                                                                                                                                      |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | せん断変位 北柱 南上(脚部)                                                                                                                                                                                                                                                                                                                                | DCS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 604                                                                                                                                                                                                                                                                                                                                                      |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                | DCS2<br>DCS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CDP-50<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 673                                                                                                                                                                                                                                                                                                                                                      |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                | DCS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 354                                                                                                                                                                                                                                                                                                                                                      |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                | DCS5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 673                                                                                                                                                                                                                                                                                                                                                      |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                | DCS6<br>DCS7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 673                                                                                                                                                                                                                                                                                                                                                      |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | せん断変位 北柱 南上(頂部)                                                                                                                                                                                                                                                                                                                                | DCS8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 354                                                                                                                                                                                                                                                                                                                                                      |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>境界要素 せん断変位 北上 1F</u><br>接用要素 サイ 断変位 南上 1F                                                                                                                                                                                                                                                                                                   | DJN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 571                                                                                                                                                                                                                                                                                                                                                      |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> 現外安素 200 夏世 用土 1</u><br>境界要素 離間 下 1F                                                                                                                                                                                                                                                                                                       | HJL1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 571                                                                                                                                                                                                                                                                                                                                                      |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 境界要素 離間 上 1F                                                                                                                                                                                                                                                                                                                                   | HJU1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 571                                                                                                                                                                                                                                                                                                                                                      |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 境界要素 せん断変位 北上 2F                                                                                                                                                                                                                                                                                                                               | DJN2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 275                                                                                                                                                                                                                                                                                                                                                      |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> 現外安系 200 夏世 用土 2</u><br>境界要素 離間 下 2F                                                                                                                                                                                                                                                                                                       | HJL2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | メジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 275                                                                                                                                                                                                                                                                                                                                                      |
| 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 境界要素 離間 上 2F                                                                                                                                                                                                                                                                                                                                   | H.II.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm                                                                                     | *ジャー                                                                                                                                                                                                                                                 | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 275                                                                                                                                                                                                                                                                                                                                                      |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                | 11002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        | ///                                                                                                                                                                                                                                                  | Tartal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 001 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                                                                                                                                                                                                                                                                                                          |
| 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 軸力 南側                                                                                                                                                                                                                                                                                                                                          | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LN .                                                                                   | 1.22                                                                                                                                                                                                                                                 | AGAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00. 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _            |                                                                                                                                                                                                                                                                                                                                                          |
| 49<br>50<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>軸力</u> 南側<br>水平力 南側                                                                                                                                                                                                                                                                                                                         | NS<br>QS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kN<br>kN                                                                               | メジャー<br>メジャー                                                                                                                                                                                                                                         | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -            |                                                                                                                                                                                                                                                                                                                                                          |
| 49<br>50<br>51<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>軸力</u> 南側<br>水平力 南側<br>水平変位(3F)南側                                                                                                                                                                                                                                                                                                           | NS<br>QS<br>3HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.333<br>0.491<br>-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kN<br>kN<br>mm                                                                         | メジャー<br>メジャー<br>メジャー                                                                                                                                                                                                                                 | 4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SDP-300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                          |
| 49<br>50<br>51<br>52<br>53<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 軸力 南側<br>水平力 南側<br>水平変位(3F) 南側<br>水平変位(2F) 南側<br>水平変位(1F) 南側                                                                                                                                                                                                                                                                                   | NS<br>QS<br>3HS<br>2HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kN<br>kN<br>mm<br>mm                                                                   | メジャー<br>メジャー<br>メジャー<br>メジャー                                                                                                                                                                                                                         | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDP-300<br>SDP-300<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            |                                                                                                                                                                                                                                                                                                                                                          |
| 49<br>50<br>51<br>52<br>53<br>54<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 軸力 南側<br>水平力 南側<br>水平変位(3F) 南側<br>水平変位(2F) 南側<br>水平変位(1F) 南側                                                                                                                                                                                                                                                                                   | NS<br>QS<br>3HS<br>2HS<br>1HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kN<br>kN<br>mm<br>mm<br>mm                                                             | メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー                                                                                                                                                                                                         | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SDP-300<br>SDP-300<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            |                                                                                                                                                                                                                                                                                                                                                          |
| 49<br>50<br>51<br>52<br>53<br>54<br>55<br>56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 軸力 南側<br>水平力 南側<br>水平変位(3F) 南側<br>水平変位(2F) 南側<br>水平変位(1F) 南側                                                                                                                                                                                                                                                                                   | NS<br>QS<br>3HS<br>2HS<br>1HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | kN<br>kN<br>mm<br>mm                                                                   | メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー                                                                                                                                                                                                                 | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SDP-300<br>SDP-300<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            |                                                                                                                                                                                                                                                                                                                                                          |
| 49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 軸力 南側<br>水平力 南側<br>水平変位(3F) 南側<br>水平変位(2F) 南側<br>水平変位(1F) 南側<br>面外変位 南                                                                                                                                                                                                                                                                         | NS<br>QS<br>3HS<br>2HS<br>1HS<br>OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.302<br>0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kN<br>kN<br>mm<br>mm<br>mm                                                             | xジャー<br>xジャー<br>xジャー<br>xジャー<br>xジャー                                                                                                                                                                                                                 | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SDP-300<br>SDP-300<br>CDP-25<br>CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                                                                                                                                                                                                                                                                                                          |
| 49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>軸力 南側</li> <li>水平支力 南側</li> <li>水平支位(3F) 南側</li> <li>水平支位(2F) 南側</li> <li>水平支位(1F) 南側</li> <li>面外支位 南</li> <li>動勢変位 南</li> <li>軸変位 2F梁 北側(下端)外側</li> </ul>                                                                                                                                                                            | NS<br>QS<br>3HS<br>2HS<br>1HS<br>0S<br>HBB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.005<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kN<br>kN<br>mm<br>mm<br>mm<br>mm                                                       | メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー                                                                                                                                                                                                         | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SDP-300<br>SDP-300<br>CDP-25<br>CDP-50<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br><br><br> | 275                                                                                                                                                                                                                                                                                                                                                      |
| 49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>軸力 南側</li> <li>水平力 南側</li> <li>水平変位(3F) 南側</li> <li>水平変位(2F) 南側</li> <li>水平変位(1F) 南側</li> <li>面外変位 南</li> <li>              面外変位 南         </li> <li>             軸変位 2F梁 北側(下端)外側      </li> </ul>                                                                                                                                   | NS<br>QS<br>3HS<br>2HS<br>1HS<br>0S<br>HBB1<br>HBB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.002<br>0.005<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm                                                 | メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー                                                                                                                                                                                                 | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SDP-300<br>SDP-300<br>CDP-25<br>CDP-50<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -            | 275                                                                                                                                                                                                                                                                                                                                                      |
| 49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 軸力 南側<br>水平力 南側<br>水平変位(3F) 南側<br>水平変位(2F) 南側<br>水平変位(1F) 南側<br>面外変位 南<br>軸変位 2F梁 北側(下端)外側                                                                                                                                                                                                                                                     | NS<br>QS<br>3HS<br>2HS<br>1HS<br>0S<br>HBB1<br>HBB2<br>HBB3<br>HBB4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.002<br>0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー                                                                                                                                                                                         | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SDP-300<br>SDP-300<br>CDP-25<br>CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -            | 275<br>200<br>200<br>350                                                                                                                                                                                                                                                                                                                                 |
| 49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>軸力 南側<br/>水平力 南側<br/>水平変位(3F) 南側<br/>水平変位(2F) 南側<br/>水平変位(1F) 南側</li> <li>面外変位 南</li> <li>動変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)内側</li> </ul>                                                                                                                                                                                       | NS<br>QS<br>3HS<br>2HS<br>1HS<br>0S<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm                   | メジャー           メジャー | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SDP-300<br>SDP-300<br>CDP-25<br>CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 275<br>200<br>200<br>350<br>600                                                                                                                                                                                                                                                                                                                          |
| 49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>軸力 南側<br/>水平力 南側<br/>水平変位(3F) 南側<br/>水平変位(2F) 南側<br/>水平変位(1F) 南側</li> <li>面外変位 南</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)内側</li> <li>軸変位 2F梁 北側(上端)外側</li> </ul>                                                                                                                                                             | NS<br>QS<br>3HS<br>2HS<br>1HS<br>0S<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB5<br>HBT1<br>UDT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | メジジャー<br>メジジジャー<br>メジジジャー<br>メジジジャー<br>メジジジャー<br>メジジャー<br>メジジャー<br>メジジャー<br>メジジャー<br>メジジャー<br>メジジジャー                                                                                                                                                 | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25  |              | 275<br>200<br>200<br>350<br>600<br>275                                                                                                                                                                                                                                                                                                                   |
| 49           50           51           52           53           54           55           56           57           58           59           60           61           62           63           64           65           66                                                                                                                                                                                                                                                                                                                           | <ul> <li>軸力 南側<br/>水平力 南側<br/>水平変位(3F) 南側<br/>水平変位(2F) 南側<br/>水平変位(1F) 南側</li> <li>面外変位 南</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)内側</li> <li>軸変位 2F梁 北側(上端)外側</li> </ul>                                                                                                                                                             | NS           QS           3HS           2HS           1HS           0S           HBB1           HBB2           HBB3           HBB4           HBT1           HBT3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | x<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y                                                                                                                                                                                   | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>200                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{r} 1 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ 57 \\ 58 \\ 59 \\ 60 \\ 61 \\ 62 \\ 63 \\ 64 \\ 65 \\ 66 \\ 67 \\ 7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                | NS<br>QS<br>3HS<br>2HS<br>1HS<br>0S<br>0S<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB5<br>HBT1<br>HBT2<br>HBT3<br>HBT4<br>HBT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0 | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | x<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y                                                                                                                                                                                   | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350                                                                                                                                                                                                                                                                                              |
| 49           50           51           52           53           54           55           56           57           58           59           60           61           62           63           64           65           66           67           68           69                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                | NS<br>QS<br>3HS<br>2HS<br>1HS<br>0S<br>0S<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBT1<br>HBT2<br>HBT3<br>HBT4<br>HBT3<br>HBT4<br>HBT5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.002<br>0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0 |                                                                                        | ×××+++<br>××××++++<br>××××++++<br>××××++++++++++                                                                                                                                                                                                     | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} 10\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 69\\ 70\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>軸力 南側<br/>水平方 南側<br/>水平変位(3F) 南側<br/>水平変位(2F) 南側<br/>水平変位(1F) 南側</li> <li>面外変位 南</li> <li>動水空位 京</li> <li>動変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(上端)外側</li> <li>軸変位 2F梁 北側(下端)内側</li> <li>軸変位 2F梁 北側(下端)内側</li> <li>軸変位 2F梁 北側(下端)外側</li> </ul>                                                                                         | NS<br>QS<br>3HS<br>2HS<br>1HS<br>0S<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB3<br>HBB4<br>HBT2<br>HBT3<br>HBT4<br>HBT5<br>HBB6<br>HBB6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0 |                                                                                        | ××××××××××××××××××××××××××××××××××××××                                                                                                                                                                                                               | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200                                                                                                                                                                                                                                             |
| 10         10           50         51           52         53           54         55           56         57           58         59           60         61           62         63           64         65           66         67           68         69           70         71                                                                                                                                                                                                                                                                     | <ul> <li>軸力 南側<br/>水平力 南側<br/>水平変位(3F) 南側<br/>水平変位(2F) 南側<br/>水平変位(1F) 南側</li> <li>面外変位 南</li> <li>動変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(上端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> </ul>                                                                                                                                   | NS           QS           3HS           2HS           1HS           0S           HBB1           HBB2           HBB3           HBB4           HBB5           HBT1           HBT3           HBT4           HBT5           HBB6           HBB7           HBB7           HBB6           HB7           HB86           HB7           HB86           HB7           HB86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0 |                                                                                        | × +                                                                                                                                                                                                                                                  | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200                                                                                                                                                                                                                               |
| 10         10           50         51           52         53           54         55           56         57           58         59           60         61           62         63           64         65           66         67           70         71           72         73                                                                                                                                                                                                                                                                     | <ul> <li>軸力 南側<br/>水平力 南側<br/>水平変位(3F) 南側<br/>水平変位(2F) 南側</li> <li>水平変位(1F) 南側</li> <li>面外変位 南</li> <li>動変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(上端)外側</li> <li>軸変位 2F梁 北側(下端)内側</li> <li>軸変位 2F梁 北側(下端)内側</li> <li>軸変位 3F梁 北側(下端)内側</li> </ul>                                                                          | NS<br>NS<br>QS<br>2HS<br>2HS<br>1HS<br>0S<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB5<br>HBB4<br>HBT3<br>HBT4<br>HBT4<br>HBT4<br>HBT6<br>HBB6<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB8<br>HBB6<br>HBB6<br>HBB6<br>HBB6<br>HBB6<br>HBB7<br>HBB6<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HBB7<br>HB7<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.002<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002     |                                                                                        | × +                                                                                                                                                                                                                                                  | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25  |              | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>200<br>350<br>600                                                                                                                                                                                                                               |
| 49           50           51           52           53           54           55           56           57           58           59           60           61           62           63           64           65           66           67           68           70           71           72           73           74                                                                                                                                                                                                                                | <ul> <li>軸力 南側<br/>水平力 南側<br/>水平変位(3F) 南側<br/>水平変位(2F) 南側<br/>水平変位(1F) 南側</li> <li>面外変位 南</li> <li>動変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)内側</li> <li>軸変位 2F梁 北側(下端)内側</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 3F梁 北側(下端)外側</li> </ul>                                                                                                         | NS           NS           QS           JHS           2HS           HBB1           HBB2           HBB3           HBB3           HBT1           HBT3           HBT4           HBB5           HBB6           HBB7           HB88           HB89           HB89           HB86           HB89           HB86           HB86           HB89           HB86           HB87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.302<br>0.333<br>0.491<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0 |                                                                                        | × +                                                                                                                                                                                                                                                  | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275                                                                                                                                                                                                                               |
| 10         10           50         51           52         53           54         55           55         56           57         58           60         61           62         63           64         65           66         66           67         68           69         70           71         72           73         74           75         74                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                | NS           NS           QS           JHS           2HS           IHS           OS           HBB1           HBB2           HBB3           HBB5           HBT1           HBT3           HBT4           HBT5           HBB6           HBB7           HB88           HB89           HB810           HBT6           HBT6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0 |                                                                                        | ×××++<br>××××++<br>××××++<br>××××++<br>××××+++<br>××××+++<br>××××++++<br>××××++++<br>××××+++++<br>××××++++++                                                                                                                                         | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25  |              | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>275<br>200<br>275<br>200<br>350<br>600<br>275<br>200<br>350<br>600<br>275<br>200                                                                                                                                                                                                                        |
| 10         10           50         51           52         53           54         55           55         56           57         58           59         60           61         62           63         64           65         66           66         66           67         68           69         70           71         72           73         74           75         76           77         76                                                                                                                                             | <ul> <li>軸力 南側<br/>水平方 南側<br/>水平変位(3F) 南側<br/>水平変位(2F) 南側<br/>水平変位(1F) 南側</li> <li>面外変位 南</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 3F梁 北側(下端)外側</li> <li>軸変位 3F梁 北側(下端)外側</li> </ul>                                                                                                         | NS           NS           QS           3HS           2HS           1HS           0S           HBB1           HBB2           HBB4           HBB5           HB7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.302<br>0.333<br>0.491<br>-0.03<br>-0.03<br>-0.02<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. |                                                                                        | × +++<br>× +++++++++++++++++++++++++++++++                                                                                                                                                                                                           | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SDP-300           SDP-300           SDP-300           CDP-25           CDP-25 <td< td=""><td></td><td>275<br/>200<br/>200<br/>200<br/>205<br/>200<br/>205<br/>200<br/>200<br/>200<br/>20</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 275<br>200<br>200<br>200<br>205<br>200<br>205<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                 |
| 49           50           51           52           53           54           55           56           57           58           59           60           61           62           63           64           65           66           67           68           69           71           72           73           74           75           76           77           78                                                                                                                                                                            | <ul> <li>軸力 南側<br/>水平力 南側<br/>水平変位(3F) 南側<br/>水平変位(2F) 南側<br/>水平変位(1F) 南側</li> <li>面外変位 南</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 3F梁 北側(下端)外側</li> <li>軸変位 3F梁 北側(下端)外側</li> <li>軸変位 3F梁 北側(下端)内側</li> <li>軸変位 3F梁 北側(下端)内側</li> </ul>                                                     | NS           QS           3HS           2HS           1HS           0S           0BB1           HBB2           HBB4           HBB5           HB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.302<br>0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0 |                                                                                        | × ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SDP-300           SDP-300           SDP-300           CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 275<br>200<br>200<br>200<br>275<br>200<br>275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                       |
| 19           50           51           52           53           54           55           56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           74           75           76           77           78           79           70                                                                                                                                                                            | <ul> <li>軸力 南側<br/>水平力 南側<br/>水平変位(3F) 南側<br/>水平変位(2F) 南側<br/>水平変位(1F) 南側</li> <li>面外変位 南</li> <li>面外変位 南</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)内側</li> <li>軸変位 2F梁 北側(下端)内側</li> <li>軸変位 3F梁 北側(下端)内側</li> <li>軸変位 3F梁 北側(下端)内側</li> <li>軸変位 3F梁 北側(下端)内側</li> <li>軸変位 3F梁 北側(上端)内側</li> <li>軸変位 3F梁 北側(上端)内側</li> </ul>           | NS           NS           QS           3HS           2HS           1HS           0S           HBB1           HBB2           HBB3           HBB4           HBB5           HB1           HB1           HB2           HB3           HB4           HB5           HB7           HB7           HB8           HB8           HB8           HB8           HB7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0 |                                                                                        | × ++++<br>× × ++++++++++++++++++++++++++++                                                                                                                                                                                                           | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25  |              | 275<br>200<br>200<br>200<br>275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                     |
| 10         10           50         51         52           53         54         55           56         57         57           57         57         56           60         61         62           63         66         66           67         70         71           72         76         77           77         78         79           80         81         81                                                                                                                                                                               | <ul> <li>軸力 南側<br/>水平力 南側<br/>水平変位(3F) 南側<br/>水平変位(2F) 南側</li> <li>水平変位(2F) 南側</li> <li>水平変位(1F) 南側</li> <li>面外変位 南</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 3F梁 北側(下端)外側</li> <li>軸変位 3F梁 北側(下端)外側</li> <li>軸変位 3F梁 北側(上端)外側</li> <li>軸変位 3F梁 北側(上端)外側</li> </ul> | NSC           NS         QS           QS         3HS           2HS         1HS           OS         BB1           HBB2         HBB3           HBB3         HBB4           HBB5         HBT1           HBT3         HBT4           HBT5         HBB6           HBB7         HBB8           HBB9         HBT6           HBT6         HBT9           HBT0         DBS1           DBS2         DBS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0 |                                                                                        | xyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy                                                                                                                                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25  |              | 275<br>200<br>200<br>200<br>275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                     |
| 10         10           50         51         52           53         54         55           56         57         57           57         57         56           60         61         62           63         66         66           66         66         66           67         68         9           70         71         72           73         74         75           76         77         78           80         81         82                                                                                                          | <ul> <li>軸力 南側<br/>水平力 南側<br/>水平変位(3F) 南側<br/>水平変位(2F) 南側</li> <li>水平変位(2F) 南側</li> <li>水平変位(1F) 南側</li> <li>面外変位 南</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 3F梁 北側(下端)外側</li> <li>軸変位 3F梁 北側(下端)外側</li> <li>軸変位 3F梁 北側(下端)外側</li> <li>軸変位 3F梁 北側(上端)外側</li> </ul>                           | NSC           NS         QS           QS         3HS           2HS         1HS           0S         8           HBB1         4882           HBB2         4883           HBB3         4884           HBB5         4885           HBT1         4874           HBT3         4884           HBB6         4889           HBB6         4889           HB86         4889           HB76         4877           HB710         DBS1           DBS2         DBS3           DBS3         DBS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.002<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002     |                                                                                        | × ++++<br>× × ++++++++++++++++++++++++++++                                                                                                                                                                                                           | 4GAGE           4GAGE </td <td>SDP-300<br/>SDP-300<br/>SDP-300<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25</td> <td></td> <td>275<br/>200<br/>200<br/>205<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>20</td>                                                | SDP-300<br>SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25 |              | 275<br>200<br>200<br>205<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                 |
| 19           50           51           52           53           54           55           56           57           58           59           60           61           62           63           64           67           76           77           78           79           80           81           82           83                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                | NSC           NS         QS           QS         3HS           2HS         1HS           0S         0S           HBB1         HBB2           HBB2         HBB3           HBB3         HBB4           HBB5         HBT1           HBT4         HBT5           HBB6         HBB7           HB86         HBB9           HBT6         HBT7           HBT8         HBT9           HBT0         DBS1           DBS3         DBS4           DBS4         DBS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0 |                                                                                        | ××××××××××××××××××××××××××××××××××××××                                                                                                                                                                                                               | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDP-300           SDP-300           SDP-300           CDP-25           CDP-25 <td< td=""><td></td><td>275<br/>200<br/>200<br/>350<br/>200<br/>275<br/>200<br/>200<br/>275<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>20</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 275<br>200<br>200<br>350<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                         |
| 49           50           51           52           53           54           55           57           58           59           60           61           62           63           64           65           66           67           68           70           71           72           73           74           75           76           80           81           82           83           84                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                | NS           NS           QS           3HS           2HS           1HS           OS           HBB1           HBB2           HBB3           HBB4           HBB5           HB1           HB1           HB84           HB85           HB14           HB15           HB86           HB87           HB88           HB89           HB810           HB17           HB18           HB19           HB10           B8110           B811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.302<br>0.333<br>0.491<br>-0.03<br>-0.03<br>-0.02<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. |                                                                                        | × ++++<br>× ++++++++++++++++++++++++++++++                                                                                                                                                                                                           | 4GAGE           4GAGE </td <td>SDP-300           SDP-300           SDP-300           CDP-25           <td< td=""><td></td><td>275<br/>200<br/>200<br/>350<br/>200<br/>200<br/>275<br/>200<br/>200<br/>200<br/>200<br/>275<br/>200<br/>200<br/>200<br/>275<br/>200<br/>200<br/>275<br/>200<br/>200<br/>350<br/>600<br/>372<br/>200<br/>200<br/>350<br/>600<br/>275<br/>200<br/>350<br/>600<br/>275<br/>200<br/>200<br/>350<br/>200<br/>200<br/>200<br/>350<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>2</td></td<></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SDP-300           SDP-300           SDP-300           CDP-25           CDP-25 <td< td=""><td></td><td>275<br/>200<br/>200<br/>350<br/>200<br/>200<br/>275<br/>200<br/>200<br/>200<br/>200<br/>275<br/>200<br/>200<br/>200<br/>275<br/>200<br/>200<br/>275<br/>200<br/>200<br/>350<br/>600<br/>372<br/>200<br/>200<br/>350<br/>600<br/>275<br/>200<br/>350<br/>600<br/>275<br/>200<br/>200<br/>350<br/>200<br/>200<br/>200<br/>350<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>2</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 275<br>200<br>200<br>350<br>200<br>200<br>275<br>200<br>200<br>200<br>200<br>275<br>200<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>350<br>600<br>372<br>200<br>200<br>350<br>600<br>275<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>200<br>200<br>200<br>350<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2 |
| 19           50           51           52           53           54           55           56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           71           72           73           74           75           76           777           78           79           80           81           82           83           84                                                                                |                                                                                                                                                                                                                                                                                                                                                | NS           NS           QS           3HS           2HS           1HS           0S           BB1           HBB2           HBB4           HBB5           HB1           HB1           HB1           HB2           HB1           HB2           HB1           HB2           HB1           HB1           HB2           HB1           HB2           HB2           HB2           HB3           HB4           HB5           HB10           HB10           HB110           DB51           DB52           DB53           DB10           DB10           DB11           DB12           DB13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.302<br>0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0 |                                                                                        | $\chi$                                                                                                                                                                                                                                               | 4GAGE           4GAGE </td <td>SDP-300           SDP-300           SDP-300           CDP-25           <td< td=""><td></td><td>275<br/>200<br/>200<br/>200<br/>275<br/>200<br/>200<br/>275<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>20</td></td<></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SDP-300           SDP-300           SDP-300           CDP-25           CDP-25 <td< td=""><td></td><td>275<br/>200<br/>200<br/>200<br/>275<br/>200<br/>200<br/>275<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>20</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 275<br>200<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                |
| 19           50           51           52           53           54           55           56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           71           72           76           777           78           79           80           81           82           83           84           85           86                                                                                             |                                                                                                                                                                                                                                                                                                                                                | NS           NS           QS           3HS           2HS           1HS           0S           HBB1           HBB2           HBB3           HBB4           HBB5           HB1           HB1           HB1           HB2           HB1           HB5           HB1           DB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0 |                                                                                        | × ++++<br>× × × ++++++++++++++++++++++++++                                                                                                                                                                                                           | 4GAGE           4GAGE </td <td>SDP-300<br/>SDP-300<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25</td> <td></td> <td>275<br/>200<br/>200<br/>200<br/>200<br/>200<br/>275<br/>220<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>20</td> | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25  |              | 275<br>200<br>200<br>200<br>200<br>200<br>275<br>220<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                       |
| 19           50           51           52           53           54           55           56           57           58           60           61           62           63           64           65           66           67           68           69           70           71           72           73           74           80           81           82           83           84           85           86           87           88                                                                                                           |                                                                                                                                                                                                                                                                                                                                                | NS           NS           QS           3HS           2HS           1HS           0S           HBB1           HBB2           HBB3           HBB4           HBB5           HBT2           HBT4           HBT5           HBB6           HBB6           HBB7           HBB8           HBB6           HB76           HB78           HB70           DB51           DB52           DB11           DB12           DB11           DB11      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0 |                                                                                        | xyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy                                                                                                                                                                                                               | 4GAGE           4GAGE </td <td>SDP-300           SDP-300           SDP-300           CDP-25           <td< td=""><td></td><td>275<br/>200<br/>200<br/>200<br/>275<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>20</td></td<></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SDP-300           SDP-300           SDP-300           CDP-25           CDP-25 <td< td=""><td></td><td>275<br/>200<br/>200<br/>200<br/>275<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>20</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 275<br>200<br>200<br>200<br>275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                     |
| 19           50           51           52           53           54           55           56           57           58           56           61           62           63           64           65           66           67           76           77           74           75           80           77           81           82           83           86           87           88           90                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                | NSC           NS           QS           JHS           2HS           IHS           OS           HBB1           HBB2           HBB3           HBB4           HBB5           HBT1           HBT3           HBT6           HBB7           HB86           HB71           HB73           HB74           HB75           HB88           HB89           HB76           HB71           HB76           HB77           HB88           HB78           HB79           HB710           HB710           HB711           HB72<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0 |                                                                                        | $\chi' = \chi' + $                                                                                                                                                                                   | 4GAGE           4GAGE </td <td>SDP-300<br/>SDP-300<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25</td> <td></td> <td>275<br/>200<br/>200<br/>205<br/>200<br/>275<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>20</td>         | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25  |              | 275<br>200<br>200<br>205<br>200<br>275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                              |
| 49           50           51           52           53           54           55           56           57           58           60           61           62           63           64           65           66           67           68           69           70           71           78           80           81           82           83           84           85           86           890           90           91           92                                                                                                          |                                                                                                                                                                                                                                                                                                                                                | NSC           NS           QS           3HS           2HS           1HS           OS           HBB1           HBB2           HBB3           HBB4           HBB5           HB1           HB1           HB2           HB8           HB8           HB1           HB1           HB1           HB2           HB1           HB2           HB1           HB2           HB1           HB1           HB2           HB1           HB1           HB1           HB1           HB1           HB1           HB2           HB3           DB3           DB3           DB3           DB3           DB3           DB3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.302<br>0.333<br>0.491<br>-0.03<br>-0.03<br>-0.03<br>-0.02<br>0.005<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0 |                                                                                        | $\chi$                                                                                                                                                                                                                                               | 4GAGE           4GAGE </td <td>SDP-300           SDP-300           SDP-300           CDP-25           <td< td=""><td></td><td>275<br/>200<br/>200<br/>350<br/>200<br/>200<br/>275<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>20</td></td<></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SDP-300           SDP-300           SDP-300           CDP-25           CDP-25 <td< td=""><td></td><td>275<br/>200<br/>200<br/>350<br/>200<br/>200<br/>275<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>20</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 275<br>200<br>200<br>350<br>200<br>200<br>275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                       |
| 19           50           51           52           53           54           55           57           58           60           61           62           63           64           65           66           67           68           69           70           73           74           75           76           80           81           82           83           84           87           90           91           92           93                                                                                                           |                                                                                                                                                                                                                                                                                                                                                | NSC           NS           QS           3HS           2HS           1HS           OS           HBB1           HBB2           HBB3           HBB4           HBB5           HBT1           HBT2           HBT3           HBT4           HBT5           HB86           HBB7           HB88           HB89           HB10           BS10           DBS2           DBS3           DBN3           DBN4           DBS6           DBS7           DBS8           DBS10           DBS10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.302<br>0.333<br>0.491<br>-0.03<br>-0.03<br>-0.02<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0. |                                                                                        | x'y'' + - x'' + - x'y'' + x'y'' + x'y'' +                                                                                    | 4GAGE           4GAGE </td <td>SDP-300           SDP-300           SDP-300           CDP-25           <td< td=""><td></td><td>275<br/>200<br/>200<br/>350<br/>600<br/>275<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>20</td></td<></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SDP-300           SDP-300           SDP-300           CDP-25           CDP-25 <td< td=""><td></td><td>275<br/>200<br/>200<br/>350<br/>600<br/>275<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>20</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                              |
| 19           50           51           52           53           54           55           56           57           58           60           61           62           63           64           65           66           67           68           69           70           71           72           73           74           75           76           777           77           78           79           80           81           82           83           84           85           88           890           90           93           94 |                                                                                                                                                                                                                                                                                                                                                | NS           NS           QS           3HS           2HS           1HS           0S           HBB1           HBB2           HBB3           HBB4           HB54           HB74           HB75           HB80           HB810           HB76           HB710           DB511           DB52           DB531           DB532           DB10           DB10           DB110           DB52           DB53           DB54           DB550           DB551           DB540           DB551           DB540           DB551           DB540           DB551           DB540           DB550           DB540           DB550           DB540           DB556           DB540           DB540           DB540           DB540           DB540           DB540           DB540 <t< td=""><td>0.302<br/>0.303<br/>0.491<br/>-0.03<br/>-0.03<br/>-0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0.002<br/>0</td><td></td><td><math>\chi</math></td><td>4GAGE           4GAGE           4GAGE<!--</td--><td>SDP-300           SDP-300           SDP-300           CDP-25           <td< td=""><td></td><td>275<br/>200<br/>200<br/>200<br/>200<br/>275<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>20</td></td<></td></td></t<> | 0.302<br>0.303<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0 |                                                                                        | $\chi$                                                                                                                                                                                                                                               | 4GAGE           4GAGE </td <td>SDP-300           SDP-300           SDP-300           CDP-25           <td< td=""><td></td><td>275<br/>200<br/>200<br/>200<br/>200<br/>275<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>20</td></td<></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SDP-300           SDP-300           SDP-300           CDP-25           CDP-25 <td< td=""><td></td><td>275<br/>200<br/>200<br/>200<br/>200<br/>275<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>20</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 275<br>200<br>200<br>200<br>200<br>275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                              |
| 19           50           51           52           53           54           55           56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           71           72           76           77           78           79           80           81           82           83           84           85           86           87           90           91           92           93           94           95   |                                                                                                                                                                                                                                                                                                                                                | NS           NS           QS           3HS           2HS           1HS           0S           HBB1           HBB2           HBB3           HBB4           HB54           HB74           HB75           HB86           HB76           HB78           HB79           HB70           DB51           DB53           DB53           DB53           DB53           DB53           DB53           DB53           DB54           DB55           DB10           DB510           DB530           DB540           DB510           DB510<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0 |                                                                                        | $\chi$                                                                                                                                                                                                                                               | 4GAGE           4GAGE </td <td>SDP-300<br/>SDP-300<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25<br/>CDP-25</td> <td></td> <td>275<br/>200<br/>200<br/>200<br/>200<br/>275<br/>220<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>20</td>         | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25  |              | 275<br>200<br>200<br>200<br>200<br>275<br>220<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                              |
| 19           50           51           52           53           54           55           56           57           58           60           61           62           63           64           65           66           67           68           69           70           71           72           76           77           78           79           80           81           82           83           84           85           86           87           99           91           92           93           94           95           96   |                                                                                                                                                                                                                                                                                                                                                | NS           NS           QS           3HS           2HS           1HS           0S           HBB1           HBB2           HBB3           HBB4           HBB5           HB1           HB1           HB2           HB1           HB2           HB1           HB2           HB1           HB2           HB1           HB1           HB1           HB1           HB2           HB1           HB2           HB1           HB2           HB1           HB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.002<br>0.333<br>0.491<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0 |                                                                                        | $\chi$                                                                                                                                                                                                                                               | 4GAGE           4GAGE </td <td>SDP-300           SDP-300           SDP-300           CDP-25           <td< td=""><td></td><td>275<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>20</td></td<></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SDP-300           SDP-300           SDP-300           CDP-25           CDP-25 <td< td=""><td></td><td>275<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>200<br/>20</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                 |

| CH.<br>No. | 計測項目                                           | 名称               | 校正係数  | 単位      | メジャー<br>モード         | センサ<br>モード             | 計測機器名             | ゲージ<br>No. | インサート<br>距離 |
|------------|------------------------------------------------|------------------|-------|---------|---------------------|------------------------|-------------------|------------|-------------|
| 100        | 軸変位 1F壁 北側(脚部)                                 | VWN1             | 0.005 | mm      | メジャー                | 4GAGE                  | CDP-50            |            | 550         |
| 101        |                                                | VWN2<br>VWN3     | 0.002 | mm      | メジャー                | 4GAGE<br>4GAGE         | CDP-25<br>CDP-25  |            | 625         |
| 103        |                                                | VWN4             | 0.002 | mm      | メジャー                | 4GAGE                  | CDP-25            |            | 625         |
| 104        | 軸変位 2F壁 北側(頂部)                                 | VWN5<br>VWN6     | 0.002 | mm      | メジャー                | 4GAGE<br>4GAGE         | CDP-25<br>CDP-25  |            | 500<br>625  |
| 106        | 軸変位 1F壁 南側(脚部)                                 | VWS1             | 0.005 | mm      | メジャー                | 4GAGE                  | CDP-50            |            | 550         |
| 107        |                                                | VWS2             | 0.002 | mm      | メジャー                | 4GAGE<br>4GAGE         | CDP-25<br>CDP-25  |            | 500<br>625  |
| 109        |                                                | VWS4             | 0.002 | mm      | メジャー                | 4GAGE                  | CDP-25            |            | 625         |
| 110        | <b>動亦位 25時 南側(頂部)</b>                          | VWS5             | 0.002 | mm      | メジャー                | 4GAGE                  | CDP-25            |            | 500         |
| 112        |                                                | DWN1             | 0.002 | mm      | メジャー                | 4GAGE<br>4GAGE         | CDP-25<br>CDP-50  |            | 680         |
| 113        |                                                | DWN2             | 0.002 | mm      | メジャー                | 4GAGE                  | CDP-25            |            | 640         |
| 114        |                                                | DWN3<br>DWN4     | 0.002 | mm      | メジャー                | 4GAGE<br>4GAGE         | CDP-25<br>CDP-25  |            | 742         |
| 116        |                                                | DWN5             | 0.002 | mm      | メジャー                | 4GAGE                  | CDP-25            |            | 640         |
| 117        | せん断 2F壁 北側上(頂部)<br>せん断 1F壁 北側上(脚部)             | DWN6<br>DWS1     | 0.002 | mm      | メジャー                | 4GAGE<br>4GAGE         | CDP-25<br>CDP-50  |            | 742<br>680  |
| 119        |                                                | DWS2             | 0.002 | mm      | メジャー                | 4GAGE                  | CDP-25            |            | 640         |
| 120        |                                                | DWS3             | 0.002 | mm      | メジャー                | 4GAGE                  | CDP-25<br>CDP-25  |            | 742         |
| 122        |                                                | DWS5             | 0.002 | mm      | メジャー                | 4GAGE                  | CDP-25            |            | 640         |
| 123        | せん断 2F壁 北側上(頂部)                                | DWS6             | 0.002 | mm      | メジャー                | 4GAGE                  | CDP-25            |            | 742         |
| 125        | パネル北 軸方向 柱側                                    | WN1              | 0.939 | μ       | メジャー                | 1G3W120Ω               | CLT用              |            |             |
| 126        |                                                | WN2              | 0.939 | μ       | メジャー                | 1G3W120Ω               | CLT用              |            |             |
| 127        |                                                | WN4              | 0.939 | μ       | メジャー                | 1G3W120Ω               |                   |            |             |
| 129        |                                                | WN5              | 0.939 | μ       | メジャー                | 1G3W120Ω               | CLT用              |            |             |
| 130        |                                                | WN6<br>WN7       | 0.939 | μ<br>μ  | メンヤー<br>メジャー        | 1G3W120Ω<br>1G3W120Ω   | CLI用<br>CLT用      |            |             |
| 132        |                                                | WN8              | 0.939 | μ       | メジャー                | 1G3W120Ω               | CLT用              |            |             |
| 133        |                                                | WN9<br>WN10      | 0.939 | μ       | メジャー                | 1G3W120Ω<br>1G3W120Ω   | CLT用<br>CLT用      |            |             |
| 135        |                                                | WN11             | 0.939 | μ       | メジャー                | 1G3W120Ω               | CLT用              |            |             |
| 136        |                                                | WN12<br>WN13     | 0.939 | μ       | メジャー                | 1G3W120Ω               | CLT用              |            |             |
| 138        |                                                | WN14             | 0.939 | μ       | メジャー                | 1G3W120 Ω              | CLT用              |            |             |
| 139        |                                                | WN15             | 0.939 | μ       | メジャー                | 1G3W120Ω               | CLT用              |            |             |
| 140        |                                                | WN16<br>WN17     | 0.939 | μ       | メジャー                | 1G3W120Ω               | CLT用<br>CLT用      |            |             |
| 142        |                                                | WN18             | 0.939 | μ       | メジャー                | 1G3W120Ω               | CLT用              |            |             |
| 143        |                                                | WN19<br>WN20     | 0.939 | μ<br>μ  | メジャー                | 1G3W120Ω<br>1G3W120Ω   | CLT用<br>CLT用      |            |             |
| 145        |                                                | WN21             | 0.939 | μ       | メジャー                | 1G3W120Ω               | CLT用              |            |             |
| 146        |                                                | WN22<br>WN23     | 0.939 | μ       | メジャー                | 1G3W120Ω<br>1G3W120Ω   | CLT用<br>CLT用      |            |             |
| 148        | パネル北 軸方向 中央側                                   | WN24             | 0.939 | μ       | メジャー                | 1G3W120Ω               | CLT用              |            |             |
| 149        | PC细棒 北側                                        | PN-f             | 0.948 |         | メジャー                | 1G3W120 O              | 鉄筋田               | 0          |             |
| 151        | PC鋼棒 北側                                        | PN-b             | 0.948 | μ       | メジャー                | 1G3W120 Ω              | 鉄筋用               | 1          |             |
| 152        | <u> </u>                                       | C1NN-f           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用               | 2          |             |
| 153        | <u>杜主肋 IF脚部 北側北端</u><br>柱主筋 1F脚部 北側南端          | C1NN-B<br>C1NS-f | 0.948 | μ       | メジャー                | 1G3W120 Ω              | 鉄筋用               | 4          |             |
| 155        | 柱主筋 1F脚部 北側南端                                  | C1NS-b           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用               | 5          |             |
| 150        | <u>杜主肋 IF中央 北側北端</u><br>柱主筋 1F中央 北側北端          | C2NN-t<br>C2NN-b | 0.948 | μ       | メジャー                | 1G3W120 Ω              | 鉄筋用               | 7          |             |
| 158        | 柱主筋 1F中央 北側南端                                  | C2NS-f           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用               | 8          |             |
| 159<br>160 |                                                | C2NS-b<br>C3NN-f | 0.948 | μ       | メジャー                | 1G3W120 Ω<br>1G3W120 Ω | 鉄筋用               | 9<br>10    |             |
| 161        | 柱主筋 1F中央 北側北端                                  | C3NN-b           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用               | 11         |             |
| 162        |                                                | C3NS-f<br>C3NS-b | 0.948 | μ       | メジャー                | 1G3W120 Ω<br>1G3W120 Ω | <u>鉄筋用</u><br>鉄筋用 | 12         |             |
| 164        | 柱主筋 1F頂部 北側北端                                  | C4NN-f           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用               | 14         |             |
| 165        | <u> 柱主筋 1F頂部 北側北端</u> は主筋 1F頂部 北側南端            | C4NN-b<br>C4NS-f | 0.948 | μ       | メジャー                | 1G3W120Ω<br>1G3W120Ω   | <u>鉄筋用</u><br>鉄筋田 | 15         |             |
| 167        | 柱主筋 1F頂部 北側南端                                  | C4NS-b           | 0.948 | μ       | メジャー                | 1G3W120 Ω              | 鉄筋用               | 17         |             |
| 168        | 柱主筋 2F脚部 北側北端<br>柱主筋 2F脚部 北側北端                 | C5NN-f           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用<br>鉄筋甲        | 18         |             |
| 170        | 柱主筋 2F脚部 北側南端                                  | C5NS-f           | 0.948 | μ       | メジャー                | 1G3W120 Ω              | 鉄筋用               | 20         |             |
| 171        | 柱主筋 2F脚部 北側南端                                  | C5NS-b           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用 鉄筋用           | 21         |             |
| 173        | <u> </u>                                       | C6NN-b           | 0.948 | μ       | メジャー                | 1G3W120 Ω              | 鉄筋用               | 23         |             |
| 174        | 柱主筋 2F中央 北側南端                                  | C6NS-f           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用               | 24         |             |
| 1/5        | <u>杜主版 2F中</u> 央 北側用峏<br><u>柱主筋 2F中</u> 央 北側北端 | C7NN-f           | 0.948 | μ       | メジャー                | 1G3W120 Ω              | <u> </u>          | ∠5<br>26   |             |
| 177        | 柱主筋 2F中央 北側北端                                  | C7NN-b           | 0.948 | μ       | メジャー                | 1G3W120 Ω              | 鉄筋用               | 27         |             |
| 179        | <u>杜土肋 2F甲央 北側南</u> 端<br>柱主筋 2F中央 北側南端         | C7NS-f<br>C7NS-b | 0.948 | μ<br>μ  | <u>メンヤー</u><br>メジャー | 1G3W120Ω<br>1G3W120Ω   | <u> </u>          | 28         |             |
| 180        | 柱主筋 2F頂部 北側北端                                  | C8NN-f           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用               | 30         |             |
| 181        | <u> </u>                                       | C8NN-b<br>C8NS-f | 0.948 | μ       | メンヤー<br>メジャー        | 1G3W120Ω<br>1G3W120Ω   | <u> </u>          | 31         |             |
| 183        | 柱主筋 2F頂部 北側南端                                  | C8NS-b           | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用               | 33         |             |
| 184<br>185 | <u> </u>                                       | CS1N<br>CS2N     | 0.948 | μ<br>11 | メジャー<br>メジャー        | 1G3W120Ω<br>1G3W120Ω   | <u>鉄筋用</u><br>鉄筋用 | 34<br>35   |             |
| 186        | 柱带筋 1F頂部 北側                                    | CS3N             | 0.948 | μ       | メジャー                | 1G3W120 Ω              | 鉄筋用               | 36         |             |
| 187        | 柱帯筋 2F脚部 北側<br>柱帯筋 2F巾ヰ 北側                     | CS4N<br>CS5N     | 0.948 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用 鉄筋用           | 37         |             |
| 189        | 柱带筋 2F頂部 北側                                    | CS6N             | 0.948 | μ       | メジャー                | 1G3W120 Ω              | 鉄筋用               | 39         |             |
| 190        | 梁下端筋 2F 北側北端<br>漆下端筋 2F 北側北端                   | B1L-f            | 0.943 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用               | 40         |             |
| 191        | <u>未 □ ****助 2F 北</u> 側北漸<br>梁下端筋 2F 北側        | B1L-b<br>B2L-f   | 0.943 | μ<br>μ  | メジャー                | 1G3W120Ω               | <u> </u>          | 41         |             |
| 193        | 梁下端筋 2F 北側                                     | B2L-b            | 0.943 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用               | 43         |             |
| 194<br>195 | <u> </u>                                       | B3L-f<br>B3L-b   | 0.943 | μ       | メンヤー<br>メジャー        | 1G3W120Ω<br>1G3W120Ω   | <u> </u>          | 44<br>45   |             |
| 196        | 梁下端筋 2F 北側南端                                   | B4L-f            | 0.943 | μ       | メジャー                | 1G3W120Ω               | 鉄筋用               | 46         |             |
| 197<br>198 | <u>梁下端筋 2F 北側南端</u><br>梁上端筋 2F 北側北端            | B4L-b<br>B1U-f   | 0.943 | μ<br>11 | メジャー<br>メジャー        | 1G3W120Ω<br>1G3W120Ω   | <u> </u>          | 47<br>48   |             |
| 199        | 梁上端筋 2F 北側北端                                   | B1U-b            | 0.943 | î,      | メジャー                | 1G3W120 Q              | 鉄筋用               | 49         |             |

| CH.        | 計測項目                                              | 名称                | 校正係数  | 単位      | メジャー         | センサ                  | 計測機器名             | ゲージ        |
|------------|---------------------------------------------------|-------------------|-------|---------|--------------|----------------------|-------------------|------------|
| 200        | 梁上端筋 2F 北側                                        | B2U-f             | 0.943 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 50         |
| 201        | 梁上端筋 2F 北側                                        | B2U-b             | 0.943 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 51         |
| 202        | <u> </u>                                          | B3U-b             | 0.943 | μ       | メジャー         | 1G3W120 Ω            | 鉄筋用               | 53         |
| 204        | 梁上端筋 2F 北側南端                                      | B4U-f             | 0.943 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 54         |
| 205        | <u>※上端筋 2F 北側南端</u><br>梁あばら筋 2F 北側                | B4U-b<br>BS1      | 0.943 | μ       | メジャー         | 1G3W120Ω<br>1G3W120Ω | <u>鉄筋用</u><br>鉄筋用 | 55<br>56   |
| 207        | 梁あばら筋 2F 北側                                       | BS2               | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 57         |
| 208        | <u> 梁あばら筋 2F 北側</u><br>梁下端筋 3F 北側北端               | BS3<br>B91-f      | 0.948 | μ       | メジャー         | 1G3W120Ω<br>1G3W120Ω | 鉄筋用 鉄筋用           | 58         |
| 210        | 梁下端筋 3F 北側北端                                      | B9L-b             | 0.943 | μ       | メジャー         | 1G3W120 Ω            | 鉄筋用               | 60         |
| 211        | <u>梁下端筋 3F 北側</u><br>激素端筋 2F 北側                   | B10L-f            | 0.943 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 61         |
| 212        | <u> </u>                                          | B10L-6<br>B11L-f  | 0.943 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 63         |
| 214        | 梁下端筋 3F 北側                                        | B11L-b            | 0.943 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 64         |
| 215        | <u> </u>                                          | B12L-t<br>B12L-b  | 0.943 | μ       | メジャー         | 1G3W120Ω<br>1G3W120Ω | <u>鉄助用</u><br>鉄筋用 | 65<br>66   |
| 217        | 梁上端筋 3F 北側北端                                      | B9U-f             | 0.943 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 67         |
| 218        | <u>梁上端筋 3F 北側北端</u><br>梁上端筋 3F 北側                 | B9U-b<br>B10U-f   | 0.943 | μ       | メジャー         | 1G3W120Ω<br>1G3W120Ω | <u>鉄筋用</u><br>鉄筋用 | 68<br>69   |
| 220        | 梁上端筋 3F 北側                                        | B10U-b            | 0.943 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 70         |
| 221        | <u>梁上端筋 3F 北側</u><br>※上端筋 35 北側                   | B11U-f            | 0.943 | μ       | メジャー         | 1G3W120Ω             | <u>鉄筋用</u><br>鉄筋用 | 71         |
| 223        | 梁上端筋 3F 北側南端                                      | B12U-f            | 0.943 | μ       | メジャー         | 1G3W120 Ω            | 鉄筋用               | 73         |
| 224        | <u>梁上端筋 3F 北側南端</u><br>激素(ぎ) 数 25 北側              | B12U-b            | 0.943 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 74         |
| 225        | <u>来のはら初 3F 北闽</u><br>梁あばら筋 3F 北側                 | BS8               | 0.948 | μ       | メジャー         | 1G3W120 Ω            | 鉄筋用               | 76         |
| 227        | 梁あばら筋 3F 北側                                       | BS9               | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 77         |
| 228        | 寸切りボルト 1F 北北車                                     | A1NN-f            | 0.948 | "       | メジャー         | 1G3W120 O            | 鉄筋用               | 156        |
| 230        | 寸切りボルト 1F 北北東                                     | A1NN-b            | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 157        |
| 231        | <u>す切りボルト 1F 北南東</u><br>す切りボルト 1F 北南車             | A1NS-f            | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用<br>鉄筋田        | 158        |
| 233        | 寸切りボルト 2F 北北東下                                    | A2NN-f            | 0.948 | μ       | メジャー         | 1G3W120 Ω            | 鉄筋用               | 160        |
| 234        | <u> 寸切りボルト 2F 北北東下</u>                            | A2NN-b            | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 161        |
| 230<br>236 | <u> </u>                                          | AZINS-T<br>A2NS-b | 0.948 | μ       | <u>メジャー</u>  | 1G3W120Ω<br>1G3W120Ω | <u> </u>          | 162        |
| 237        | 寸切りボルト 2F 北北東上                                    | A3NN-f            | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 164        |
| 238        | <u> </u>                                          | A3NN-b<br>A3NS-f  | 0.948 | μ       | メジャー         | 1G3W120Ω<br>1G3W120Ω | <u>鉄助用</u><br>鉄筋用 | 165        |
| 240        | 寸切りボルト 2F 北南東上                                    | A3NS-b            | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 167        |
| 241        | <u>す切りボルト 3F 北北東</u><br>す切りボルト 3F 北北東             | A4NN-f<br>A4NN-b  | 0.948 | μ       | メジャー         | 1G3W120Ω<br>1G3W120Ω | <u>鉄筋用</u><br>鉄筋用 | 168        |
| 243        | す切りボルト 3F 北南東                                     | A4NS-f            | 0.948 | μ       | メジャー         | 1G3W120 Ω            | 鉄筋用               | 170        |
| 244        | 寸切りボルト 3F 北南東                                     | A4NS-b            | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 171        |
| 245        |                                                   |                   |       |         |              |                      |                   |            |
| 247        |                                                   |                   |       |         |              |                      |                   |            |
| 240        |                                                   |                   |       |         |              |                      |                   |            |
| 250        | PC鋼棒 南側                                           | PS-f              | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 78         |
| 251        |                                                   | C1SS-f            | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 79<br>80   |
| 253        | 柱主筋 1F脚部 南側南端                                     | C1SS-b            | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 81         |
| 254        | <u> </u>                                          | C1SN-f<br>C1SN-b  | 0.948 | μ       | メジャー         | 1G3W120Ω<br>1G3W120Ω | <u>鉄筋用</u><br>鉄筋用 | 82<br>83   |
| 256        | 柱主筋 1F中央 南側南端                                     | C2SS-f            | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 84         |
| 257        | 柱主筋 1F中央 南側南端     は主筋 1F中央 南側北端                   | C2SS-b<br>C2SN-f  | 0.948 | μ       | メジャー         | 1G3W120Ω<br>1G3W120Ω | 鉄筋用 鉄筋用           | 85         |
| 259        | 柱主筋 1F中央 南側北端                                     | C2SN-b            | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 87         |
| 260        | <u>     柱主筋 1F中央 南側南端</u> 柱主筋 1E中央 南側南端           | C3SS-f            | 0.948 | μ       | メジャー         | 1G3W120Ω             | <u>鉄筋用</u><br>鉄筋用 | 88         |
| 262        | 柱主筋 1 F中央 南側北端                                    | C3SN-f            | 0.948 | μ       | メジャー         | 1G3W120 Ω            | 鉄筋用               | 90         |
| 263        | <u>柱主筋 1F中央 南側北端</u>                              | C3SN-b            | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 91         |
| 265        | <u> 柱主版 IF現部 用側用端</u><br>柱主筋 1F頂部 南側南端            | C4SS-t<br>C4SS-b  | 0.948 | μ       | <u>メジャー</u>  | 1G3W120Ω             | <u> </u>          | 92         |
| 266        | 柱主筋 1F頂部 南側北端                                     | C4SN-f            | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 94         |
| 267        | <u>杜土肋 Ⅰ□貝部 南側北</u> 聏<br>柱主筋 2F脚部 南側南端            | C5SS-f            | 0.948 | μ       | メジャー         | 1G3W120Ω<br>1G3W120Ω | <u> </u>          | 95<br>96   |
| 269        | 柱主筋 2F脚部 南側南端                                     | C5SS-b            | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 97         |
| 270        | <u> </u>                                          | C5SN-f<br>C5SN-b  | 0.948 | μ<br>μ  | メジャー<br>メジャー | 1G3W120Ω<br>1G3W120Ω | <u> </u>          | 98<br>99   |
| 272        | 柱主筋 2F中央 南側南端                                     | C6SS-f            | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 100        |
| 273        | <u> </u>                                          | C6SS-b<br>C6SN-f  | 0.948 | μ       | メジャー<br>メジャー | 1G3W120Ω<br>1G3W120Ω | 鉄筋用<br>鉄筋用        | 101        |
| 275        | 柱主筋 2F中央 南側北端                                     | C6SN-b            | 0.948 | μ       | メジャー         | 1G3W120 Ω            | 鉄筋用               | 103        |
| 276        | 柱主筋 2F中央 南側南端                                     | C7SS-f            | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 104        |
| 278        | <u> 柱主筋 2F中央 南側北端</u>                             | C7SN-f            | 0.948 | μ       | メジャー         | 1G3W120 Ω            | 鉄筋用               | 105        |
| 279        | 柱主筋 2F中央 南側北端                                     | C7SN-b            | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 107        |
| 280        | <u>杜主励 ∠F 退</u> 部 剤側剤漸<br><u>柱主筋</u> 2F頂部 南側南端    | C8SS-b            | 0.948 | μ       | <u>メジャー</u>  | 1G3W120Ω             | <u> </u>          | 108        |
| 282        | 柱主筋 2F頂部 南側北端                                     | C8SN-f            | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 110        |
| 283<br>284 | <u> </u>                                          | C8SN-b<br>CS1S    | 0.948 | μ<br>μ  | メジャー<br>メジャー | 1G3W120Ω<br>1G3W120Ω | <u> </u>          | 111        |
| 285        | 柱帯筋 1F中央 南側                                       | CS2S              | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 113        |
| 286        | 柱帯筋 1F頂部 南側<br>柱帯筋 2F脚部 南側                        | CS3S<br>CS4S      | 0.948 | μ<br>11 | メジャー<br>メジャー | 1G3W120Ω<br>1G3W120Ω | 鉄筋用<br>鉄筋甲        | 114        |
| 288        | 柱带筋 2F中央 南側                                       | CS5S              | 0.948 | μ       | メジャー         | 1G3W120 Ω            | 鉄筋用               | 116        |
| 289        | 柱帯筋 2F頂部 南側<br>塗下端路 2F 南側南端                       | CS6S              | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 117        |
| 290        | <u>未 1 地版 2F 用</u> 側用 <sup>1</sup> 梁下 端筋 2F 南側 南端 | B5L-t<br>B5L-b    | 0.943 | μ       | メジャー         | 1G3W120Ω             | <u> </u>          | 119        |
| 292        | 梁下端筋 2F 南側<br>梁下端紋 ac 吉岡                          | B6L-f             | 0.943 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 120        |
| 293<br>294 | <u> </u>                                          | B6L-b<br>B7L-f    | 0.943 | μ<br>μ  | メジャー         | 1G3W120Ω<br>1G3W120Ω | <u> </u>          | 121        |
| 295        | 梁下端筋 2F 南側                                        | B7L-b             | 0.943 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 123        |
| 296<br>297 | <u> </u>                                          | B8L-f<br>B8L-h    | 0.943 | μ       | メジャー<br>メジャー | 1G3W120Ω<br>1G3W120Ω | <u>鉄筋用</u><br>鉄筋用 | 124<br>125 |
| 298        | 梁上端筋 2F 南側南端                                      | B5U-f             | 0.943 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 126        |
| 299        | 梁上端筋 2F 南側南端                                      | B5U-b             | 0.943 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 127        |

| CH.        | 計測項目                                | 名称               | 校正係数  | 単位     | メジャー         | センサ                  | 計測機器名             | ゲージ<br>No  |
|------------|-------------------------------------|------------------|-------|--------|--------------|----------------------|-------------------|------------|
| 300        | 梁上端筋 2F 南側                          | B6U-f            | 0.943 | μ      | メジャー         | 1G3W120Ω             | 鉄筋用               | 128        |
| 301        | <u>梁上端筋 2F 南側</u><br>梁上端筋 2F 南側     | B6U-b<br>B7U-f   | 0.943 | μ      | メジャー         | 1G3W120Ω<br>1G3W120Ω | 鉄筋用<br>鉄筋用        | 129        |
| 303        | 梁上端筋 2F 南側                          | B7U-b            | 0.943 | μ      | メジャー         | 1G3W120Ω             | 鉄筋用               | 131        |
| 304        | <u>梁上端筋 2F 南側北端</u><br>激上端筋 25 南側北端 | B8U-f            | 0.943 | μ      | メジャー         | 1G3W120Ω             | 鉄筋用               | 132        |
| 305        | <u>来工端版 25 南側北端</u><br>梁あばら筋 2F 南側  | BS4              | 0.943 | μ      | メジャー         | 1G3W120 Ω            | 鉄筋用               | 133        |
| 307        | <u>梁あばら筋 2F 南側</u><br>アキレビミ ない 吉 側  | BS5              | 0.948 | μ      | メジャー         | 1G3W120Ω             | 鉄筋用               | 135        |
| 308        | <u>業めはら助 2F 南側</u><br>梁下端筋 3F 南側南端  | B13L-f           | 0.948 | μ      | メジャー         | 1G3W120Ω<br>1G3W120Ω | <u> </u>          | 136        |
| 310        | 梁下端筋 3F 南側南端                        | B13L-b           | 0.943 | μ      | メジャー         | 1G3W120Ω             | 鉄筋用               | 138        |
| 311        | <u>※下端筋 3F 南側</u><br>梁下端筋 3E 南側     | B14L-f<br>B14L-b | 0.943 | μ      | メジャー         | 1G3W120Ω<br>1G3W120Ω | <u>鉄筋用</u><br>鉄筋用 | 139        |
| 313        | 梁下端筋 3F 南側                          | B15L-f           | 0.943 | μ      | メジャー         | 1G3W120Ω             | 鉄筋用               | 141        |
| 314        | <u>梁下端筋 3F 南側</u><br>梁下端筋 25 南側北端   | B15L-b           | 0.943 | μ      | メジャー         | 1G3W120Ω             | <u>鉄筋用</u><br>鉄筋用 | 142        |
| 316        | 梁下端筋 3F 南側北端                        | B16L-b           | 0.943 | μ      | メジャー         | 1G3W120 Ω            | 鉄筋用               | 144        |
| 317        | <u>梁上端筋 3F 南側南端</u>                 | B13U-f           | 0.943 | μ      | メジャー         | 1G3W120Ω             | 鉄筋用               | 145        |
| 318        | <u> </u>                            | B130-b<br>B140-f | 0.943 | μ      | メジャー         | 1G3W120Ω<br>1G3W120Ω | <u> </u>          | 146        |
| 320        | 梁上端筋 3F 南側                          | B14U-b           | 0.943 | μ      | メジャー         | 1G3W120Ω             | 鉄筋用               | 148        |
| 321        | <u>梁上端筋 3F 南側</u><br>梁上端筋 3E 南側     | B15U-f<br>B15U-b | 0.943 | μ      | メジャー         | 1G3W120Ω<br>1G3W120Ω | <u>鉄筋用</u><br>鉄筋用 | 149        |
| 323        | 梁上端筋 3F 南側北端                        | B16U-f           | 0.943 | μ      | メジャー         | 1G3W120Ω             | 鉄筋用               | 151        |
| 324        | <u>梁上端筋 3F 南側北端</u>                 | B16U-b<br>BS10   | 0.943 | μ      | メジャー         | 1G3W120Ω             | <u>鉄筋用</u><br>鉄筋用 | 152        |
| 326        | <u>来めばら筋 3F 南側</u><br>梁あばら筋 3F 南側   | BS10<br>BS11     | 0.948 | μ      | メジャー         | 1G3W120 Ω            | 鉄筋用               | 155        |
| 327        | 梁あばら筋 3F 南側                         | BS12             | 0.948 | μ      | メジャー         | 1G3W120Ω             | 鉄筋用               | 155        |
| 328        | パネル南 軸方向 柱側                         | WS1              | 0.939 | μ      | メジャー         | 1 <u>G3W</u> 120Ω    | <u>CL</u> T用      |            |
| 330        |                                     | WS2              | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              |            |
| 331<br>332 |                                     | WS3<br>WS4       | 0.939 | μ<br>μ | メンヤー<br>メジャー | 1G3W120Ω<br>1G3W120Ω | CLT用<br>CLT用      |            |
| 333        |                                     | WS5              | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              |            |
| 334        |                                     | WS6              | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              |            |
| 336        |                                     | WS8              | 0.939 | μ      | メジャー         | 1G3W120 Ω            | CLT用              |            |
| 337        |                                     | WS9              | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              |            |
| 339        |                                     | WS10             | 0.939 | μ      | メジャー         | 1G3W120 Ω            | CLT用              |            |
| 340        |                                     | WS12             | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              |            |
| 341        |                                     | WS13<br>WS14     | 0.939 | μ      | メジャー         | 1G3W120Ω<br>1G3W120Ω | CLT用<br>CLT用      |            |
| 343        |                                     | WS15             | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              |            |
| 344        |                                     | WS16<br>WS17     | 0.939 | μ      | メジャー         | 1G3W120Ω<br>1G3W120Ω |                   |            |
| 346        |                                     | WS18             | 0.939 | μ      | メジャー         | 1G3W120 Ω            | CLT用              |            |
| 347        |                                     | WS19             | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              |            |
| 349        |                                     | WS20<br>WS21     | 0.939 | μ      | メジャー         | 1G3W120 Ω            | CLT用              |            |
| 350        |                                     | WS22             | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              |            |
| 351        | パネル南 軸方向 中央側                        | WS23<br>WS24     | 0.939 | μ      | メジャー         | 1G3W120Ω             |                   |            |
| 353        |                                     |                  |       | ~      |              |                      |                   |            |
| 354        | <u> </u>                            | A1SS-f           | 0.948 | μ      | メジャー         | 1G3W120Ω<br>1G3W120Ω | <u>鉄筋用</u><br>鉄筋用 | 172        |
| 356        | 寸切りボルト 1F 南北東                       | A1SN-f           | 0.948 | μ      | メジャー         | 1G3W120Ω             | 鉄筋用               | 174        |
| 357        | す切りボルト 1F 南北東                       | A1SN-b           | 0.948 | μ      | メジャー         | 1G3W120Ω             | 鉄筋用               | 175        |
| 359        | す切りボルト 2F 南南東下                      | A2SS-b           | 0.948 | μ      | メジャー         | 1G3W120 Ω            | 鉄筋用               | 177        |
| 360        | <u> </u>                            | A2SN-f           | 0.948 | μ      | メジャー         | 1G3W120Ω             | 鉄筋用               | 178        |
| 362        | <u></u>                             | A3SS-f           | 0.948 | μ      | メジャー         | 1G3W120 Ω            | 鉄筋用               | 180        |
| 363        | <u>す切りボルト 2F 南南東上</u>               | A3SS-b           | 0.948 | μ      | メジャー         | 1G3W120Ω             | 鉄筋用               | 181        |
| 364        | <u></u>                             | A3SN-t<br>A3SN-b | 0.948 | μ      | メジャー         | 1G3W120Ω<br>1G3W120Ω | <u> </u>          | 182        |
| 366        | 寸切りボルト 3F 南南東                       | A4SS-f           | 0.948 | μ      | メジャー         | 1G3W120Ω             | 鉄筋用               | 184        |
| 367<br>368 | <u></u>                             | A4SS-b<br>A4SN-f | 0.948 | μ      | メジャー<br>メジャー | 1G3W120Ω<br>1G3W120Ω | <u>鉄筋用</u><br>鉄筋用 | 185<br>186 |
| 369        | 寸切りボルト 3F 南北東                       | A4SN-b           | 0.948 | μ      | メジャー         | 1G3W120 Ω            | 鉄筋用               | 187        |
| 370        |                                     |                  |       |        |              |                      |                   |            |
| 372        | パネル北 水平、斜め方向                        | WN1-H            | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              |            |
| 373        |                                     | WN1-D            | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              | ┝──┤       |
| 375        |                                     | WN4-D            | 0.939 | μ      | メジャー         | 1G3W120 Ω            | CLT用              |            |
| 376        |                                     | WN7-H            | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              | $\vdash$   |
| 378        |                                     | WN10-H           | 0.939 | μ      | <u>メジャー</u>  | 1G3W120Ω<br>1G3W120Ω | CLT用<br>CLT用      |            |
| 379        |                                     | WN10-D           | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              |            |
| 380<br>381 |                                     | WN13-H<br>WN13-D | 0.939 | μ      | メンヤー<br>メジャー | 1G3W120Ω<br>1G3W120Ω | CLT用<br>CLT用      |            |
| 382        |                                     | WN16-H           | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              |            |
| 383        |                                     | WN16-D<br>WN19-H | 0.939 | μ      | メジャー         | 1G3W120Ω<br>1G3W120Ω | CLT用<br>CI T甲     |            |
| 385        |                                     | WN19-D           | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              |            |
| 386        | パネル南 水平、斜め方向                        | WS1-H            | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              | ┝──┤       |
| 388        |                                     | WS1-D<br>WS4-H   | 0.939 | μ      | メジャー         | 1G3W120 Ω            |                   |            |
| 389        |                                     | WS4-D            | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              |            |
| 390<br>391 |                                     | WS7-H<br>WS7-D   | 0.939 | μ      | メンヤー<br>メジャー | 1G3W120Ω<br>1G3W120Ω | CLT用<br>CLT用      |            |
| 392        |                                     | WS10-H           | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              |            |
| 393<br>394 |                                     | WS10-D<br>WS13-H | 0.939 | μ      | メジャー         | 1G3W120Ω<br>1G3W120Ω | CLT用<br>CLT用      |            |
| 395        |                                     | WS13-D           | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              |            |
| 396        |                                     | WS16-H           | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              |            |
| 398        |                                     | WS19-H           | 0.939 | μ      | メジャー         | 1G3W120 Ω            | CLT用              |            |
| 399        |                                     | WS19-D           | 0.939 | μ      | メジャー         | 1G3W120Ω             | CLT用              |            |

| CH.<br>No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 計測項目                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 校正係数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 単位                                                                                           | メジャー<br>モード                                                                                        | センサ<br>モード                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 計測機器名                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ゲージ<br>No. | インサート<br>距離                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 軸力北側                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kN                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1          |                                                                                                                                                                                                                                                            |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 水平力 北側<br>水平変位(3F) 北側                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3HN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mm                                                                                           | メジャー                                                                                               | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SDP-300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                                                                                                                                                                                                                                                            |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 水平変位(2F) 北側                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2HN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SDP-300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                                                                                                                                                                                                                                                            |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>水半変位(1F) 北側</u><br>鉛直変位(3F) 北側                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1HN<br>3VN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _          |                                                                                                                                                                                                                                                            |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 鉛直変位(2F) 北側                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2VN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -          |                                                                                                                                                                                                                                                            |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 面外変位 北                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -          |                                                                                                                                                                                                                                                            |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 軸変位 北柱 北側(脚部)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VCN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 550                                                                                                                                                                                                                                                        |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VCN2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 500                                                                                                                                                                                                                                                        |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VCN3<br>VCN4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 250                                                                                                                                                                                                                                                        |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VCN5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 625                                                                                                                                                                                                                                                        |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VCN8<br>VCN7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 625                                                                                                                                                                                                                                                        |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>軸変位 北柱 北側(頂部)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VCN8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 250                                                                                                                                                                                                                                                        |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 粗发位 北柱 用則(脚部)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VCN1<br>VCN2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CDP-50<br>CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 500                                                                                                                                                                                                                                                        |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VCN3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 625                                                                                                                                                                                                                                                        |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VCN4<br>VCN5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 625                                                                                                                                                                                                                                                        |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VCN6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 500                                                                                                                                                                                                                                                        |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 軸変位 北柱 南側(頂部)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VCN7<br>VCN8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 625<br>250                                                                                                                                                                                                                                                 |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | せん断変位 北柱 北上(脚部)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DCN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 604                                                                                                                                                                                                                                                        |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DCN2<br>DCN3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CDP-50<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 559<br>673                                                                                                                                                                                                                                                 |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DCN4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 354                                                                                                                                                                                                                                                        |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DCN5<br>DCN6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 673<br>559                                                                                                                                                                                                                                                 |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DCN7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 673                                                                                                                                                                                                                                                        |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | せん断変位 北柱 北上(頂部)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DCN8<br>DCS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-25<br>CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 354                                                                                                                                                                                                                                                        |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DCS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 559                                                                                                                                                                                                                                                        |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DCS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 673                                                                                                                                                                                                                                                        |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DCS5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 673                                                                                                                                                                                                                                                        |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DCS6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 559<br>673                                                                                                                                                                                                                                                 |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | せん断変位 北柱 南上(頂部)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DCS8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 354                                                                                                                                                                                                                                                        |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                                                                                                                                                                                                                                            |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                                                                                                                                                                                                                                            |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                                                                                                                                                                                                                                            |
| 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                                                                                                                                                                                                                                            |
| 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                           | メジャー                                                                                               | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                                                                                                                                                                                                            |
| 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                                                                                                                                                                                                                                                            |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ++ + + /m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              | 138.                                                                                               | 10105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                                                                                                                                                                                                                                                            |
| 50<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 軸力 南側<br>水平力 南側                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NS<br>QS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.333 0.491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kN<br>kN                                                                                     | メジャー<br>メジャー                                                                                       | 4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -          |                                                                                                                                                                                                                                                            |
| 50<br>51<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 軸力 南側<br>水平力 南側<br>水平変位(3F) 南側                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NS<br>QS<br>3HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.333<br>0.491<br>-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kN<br>kN<br>mm                                                                               | メジャー<br>メジャー<br>メジャー                                                                               | 4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SDP-300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                            |
| 50<br>51<br>52<br>53<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 軸力 南側<br>水平力 南側<br>水平変位(3F) 南側<br>水平変位(2F) 南側<br>水平変位(1F) 南側                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NS<br>QS<br>3HS<br>2HS<br>1HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | kN<br>kN<br>mm<br>mm                                                                         | メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー                                                               | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SDP-300<br>SDP-300<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                                                                                                                                                                                                                            |
| 50<br>51<br>52<br>53<br>54<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 軸力 南側<br>水平方 南側<br>水平変位(3F) 南側<br>水平変位(2F) 南側<br>水平変位(1F) 南側<br>鉛直変位(3F) 北側                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NS<br>QS<br>3HS<br>2HS<br>1HS<br>3VS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | kN<br>kN<br>mm<br>mm                                                                         | メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー                                                               | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SDP-300<br>SDP-300<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                                                                                                                                                                                                                            |
| 50<br>51<br>52<br>53<br>54<br>55<br>56<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 軸力 南側<br>水平力 南側<br>水平変位(3F) 南側<br>水平変位(2F) 南側<br>水平変位(1F) 南側<br>鉛直変位(3F) 北側<br>鉛直変位(2F) 北側<br>面外変位 南                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS<br>QS<br>3HS<br>2HS<br>1HS<br>3VS<br>2VS<br>0S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kN<br>kN<br>mm<br>mm<br>mm                                                                   | メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー                                                       | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SDP-300<br>SDP-300<br>CDP-25<br>CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                                                                                                                                                                                                                                            |
| 50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>軸力 南側</li> <li>水平力 南側</li> <li>水平変位(3F) 南側</li> <li>水平変位(2F) 南側</li> <li>水平変位(2F) 南側</li> <li>鉛直変位(3F) 北側</li> <li>鉛直変位(3F) 北側</li> <li>面外変位 南</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NS<br>QS<br>3HS<br>2HS<br>1HS<br>3VS<br>2VS<br>OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kN<br>kN<br>mm<br>mm<br>mm                                                                   | メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー                                                               | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SDP-300<br>SDP-300<br>CDP-25<br>CDP-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 275                                                                                                                                                                                                                                                        |
| 50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NS<br>QS<br>3HS<br>2HS<br>1HS<br>3VS<br>2VS<br>OS<br>HBB1<br>HBB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.333<br>0.491<br>-0.03<br>-0.002<br>0.005<br>0.005<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm                                                       | ×ジャー<br>×ジャー<br>×ジャー<br>メジャー<br>メジャー<br>メジャー<br>×ジャー                                               | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SDP-300<br>SDP-300<br>CDP-25<br>CDP-50<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 275                                                                                                                                                                                                                                                        |
| 50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>軸力 南側</li> <li>水平力 南側</li> <li>水平変位(3F) 南側</li> <li>水平変位(2F) 南側</li> <li>水平変位(1F) 南側</li> <li>鉛直変位(2F) 北側</li> <li>鉛直変位(2F) 北側</li> <li>鉛直変位(2F) 北側</li> <li>動外変位 南</li> <li>軸変位 2F梁 北側(下端)外側</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NS<br>QS<br>3HS<br>2HS<br>1HS<br>2VS<br>QS<br>2VS<br>OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm                                           | メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー                                       | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SDP-300<br>SDP-300<br>CDP-25<br>CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 275<br>200<br>200                                                                                                                                                                                                                                          |
| 50           51           52           53           54           55           56           57           58           59           60           61           62           63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>軸力 南側</li> <li>水平力 南側</li> <li>水平支位(3F) 南側</li> <li>水平支位(2F) 南側</li> <li>水平支位(1F) 南側</li> <li>鉛直支位(2F) 北側</li> <li>鉛直支位(2F) 北側</li> <li>鉛直支位(2F) 北側</li> <li>勤素位 南</li> <li>軸支位 2F梁 北側(下端)外側</li> <li>軸支位 2F梁 北側(下端)内側</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NS<br>QS<br>3HS<br>2HS<br>1HS<br>2VS<br>QVS<br>QS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.333<br>0.491<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.005<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm                               | メジャー<br>メジジャー<br>メジジャー<br>メジジャー<br>メジジャー<br>メジジャー<br>メジジャー<br>メジジャー<br>メジジャー                       | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDP-300<br>SDP-300<br>CDP-25<br>CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -          | 275<br>200<br>200<br>350<br>600                                                                                                                                                                                                                            |
| 50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NS<br>QS<br>3HS<br>2HS<br>1HS<br>2VS<br>QVS<br>OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB5<br>HBT1<br>UDT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.333<br>0.491<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm                               | メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジャー<br>メジジャー<br>メジジャー<br>メジジャー<br>メジジャー<br>メジジャー<br>メジジャー | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SDP-300<br>SDP-300<br>CDP-25<br>CDP-50<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 275<br>200<br>200<br>350<br>600<br>275                                                                                                                                                                                                                     |
| 50           51           52           53           54           55           56           57           58           59           60           61           62           63           64           65           66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>軸力 南側</li> <li>水平力 南側</li> <li>水平変位(3F) 南側</li> <li>水平変位(2F) 南側</li> <li>水平変位(2F) 南側</li> <li>水平変位(2F) 市側</li> <li>鉛直変位(2F) 北側</li> <li>鉛直変位(2F) 北側</li> <li>動作変位 南</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NS<br>QS<br>3HS<br>2HS<br>1HS<br>2VS<br>QVS<br>OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB4<br>HBT2<br>HBT3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.333<br>0.491<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | ×ジジャー<br>メジジャー<br>メジジャー<br>メジジャー<br>メジジャー<br>メジジャー<br>メジジャー<br>メジジャー<br>メジジャー<br>メジジャー             | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>200                                                                                                                                                                                                       |
| 50           51           52           53           54           55           56           57           58           59           60           61           62           63           64           65           66           67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NS<br>QS<br>3HS<br>2HS<br>1HS<br>2VS<br>QVS<br>QS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB3<br>HBB4<br>HBT1<br>HBT2<br>HBT3<br>HBT4<br>HBT4<br>HBT5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | × 5 +                                                                                              | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>200<br>350                                                                                                                                                                                         |
| 50           51           52           53           54           55           56           57           58           59           60           61           62           63           64           65           66           67           68           69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>軸力 南側</li> <li>水平力 南側</li> <li>水平変位(3F) 南側</li> <li>水平変位(2F) 南側</li> <li>水平変位(2F) 南側</li> <li>水平変位(2F) 市側</li> <li>鉛直変位(2F) 北側</li> <li>鉛直変位(2F) 北側</li> <li>動変位(2F) 北側</li> <li>動変位(2F) 北側</li> <li>軸変位(2F) 北側(下端)外側</li> <li>軸変位(2F梁) 北側(下端)外側</li> <li>軸変位(2F梁) 北側(下端)外側</li> <li>軸変位(2F梁) 北側(下端)外側</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NS           QS           3HS           2HS           1HS           3VS           2VS           OS           HBB1           HBB2           HBB3           HBB4           HBB5           HBT1           HBT3           HBT5           HBB6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | × 5 + + + + + + + + + + + + + + + + + +                                                            | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275                                                                                                                                                                                  |
| 50           51           52           53           54           55           56           57           58           59           60           61           62           63           64           65           66           67           68           69           70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>軸力 南側</li> <li>水平力 南側</li> <li>水平支位(3F) 南側</li> <li>水平支位(2F) 南側</li> <li>水平支位(2F) 南側</li> <li>水平支位(2F) 市側</li> <li>鉛直支位(2F) 北側</li> <li>鉛直支位(2F) 北側</li> <li>鉛直支位(2F) 北側</li> <li>動支位(2F) 北側</li> <li>軸支位(2F) 北側</li> <li>軸支位(2F) 北側(下端)外側</li> <li>軸支位(2F梁 北側(下端))</li> <li>軸支位(2F梁 北側(下端))</li> <li>軸支位(2F梁 北側(下端))</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NS<br>QS<br>3HS<br>2HS<br>1HS<br>2VS<br>QVS<br>QS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB3<br>HBT1<br>HBT3<br>HBT4<br>HBT3<br>HBT4<br>HBT5<br>HBB6<br>HBB7<br>HBB7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.333<br>0.491<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm             | × 5 +                                                                                              | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>275<br>200<br>275<br>200                                                                                                                                                                                  |
| 50           51           52           53           54           55           56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           71           72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>軸力 南側</li> <li>水平力 南側</li> <li>水平変位(3F) 南側</li> <li>水平変位(2F) 南側</li> <li>水平変位(2F) 南側</li> <li>水平変位(2F) 市側</li> <li>松直変位(2F) 北側</li> <li>鉛直変位(2F) 北側</li> <li>鉛直変位(2F) 北側</li> <li>面外変位 南</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS<br>QS<br>3HS<br>2HS<br>1HS<br>2VS<br>0S<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB3<br>HBT1<br>HBT3<br>HBT4<br>HBT4<br>HBT5<br>HBB6<br>HBB7<br>HBB8<br>HBB9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.333<br>0.491<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | ×++++<br>×××+++<br>×××++++<br>×××++++++++++++++                                                    | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>275<br>200<br>350                                                                                                                                                      |
| 50           51           52           53           54           55           56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           71           72           73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>軸力 南側<br/>水平力 南側</li> <li>水平支位(3F) 南側</li> <li>水平支位(2F) 南側</li> <li>水平支位(2F) 南側</li> <li>水平支位(2F) 南側</li> <li>松直支位(3F) 北側</li> <li>鉛直支位(2F) 北側</li> <li>鉛直支位(2F) 北側</li> <li>面外支位 南</li> <li>軸支位 2F梁 北側(下端)外側</li> <li>軸支位 2F梁 北側(下端)外側</li> <li>軸支位 2F梁 北側(下端)外側</li> <li>軸支位 2F梁 北側(下端)外側</li> <li>軸支位 3F梁 北側(下端)外側</li> <li>軸支位 3F梁 北側(下端)内側</li> <li>軸支位 3F梁 北側(下端)内側</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NS<br>QS<br>3HS<br>2HS<br>1HS<br>2VS<br>0S<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB3<br>HBT4<br>HBT4<br>HBT4<br>HBT4<br>HBT4<br>HBB6<br>HBB7<br>HBB8<br>HBB9<br>HBB9<br>HBB9<br>HBB10<br>HBB76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.333<br>0.491<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | × × × + + + + + + + + + + + + + + + + +                                                            | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25 |            | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                          |
| 10         50           50         51           52         53           54         55           56         57           58         59           60         61           62         63           64         65           66         67           68         69           70         71           72         73           74         75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>軸力 南側<br/>水平力 南側</li> <li>水平支位(3F) 南側</li> <li>水平支位(2F) 南側</li> <li>水平支位(2F) 南側</li> <li>水平支位(2F) 南側</li> <li>鉛直支位(3F) 北側</li> <li>鉛直支位(2F) 北側</li> <li>面外支位 南</li> <li>軸支位 2F梁 北側(下端)外側</li> <li>軸支位 2F梁 北側(下端)外側</li> <li>軸支位 2F梁 北側(下端)外側</li> <li>軸支位 2F梁 北側(下端)外側</li> <li>軸支位 3F梁 北側(下端)内側</li> <li>軸支位 3F梁 北側(下端)内側</li> <li>軸支位 3F梁 北側(下端)内側</li> <li>軸支位 3F梁 北側(下端)内側</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NS<br>QS<br>3HS<br>2HS<br>1HS<br>2VS<br>OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB3<br>HBB4<br>HBB5<br>HBT1<br>HBT3<br>HBT4<br>HBT4<br>HBB6<br>HBB7<br>HBB6<br>HBB7<br>HBB9<br>HBB10<br>HBT6<br>HBT7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.333<br>0.491<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | ××××××××××××××××××××××××××××××××××××××                                                             | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SDP-300           SDP-300           CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                          |
| 73           50           51           52           53           54           55           56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           74           75           76           72           73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>軸力 南側<br/>水平力 南側</li> <li>水平支位(3F) 南側</li> <li>水平支位(2F) 南側</li> <li>水平支位(2F) 南側</li> <li>水平支位(2F) 市側</li> <li>鉛直支位(3F) 北側</li> <li>鉛直支位(2F) 北側</li> <li>面外支位南</li> <li>軸支位(2F) 北側</li> <li>車支位(2F) 北側</li> <li>車支位(2F) 北側(下端)外側</li> <li>軸支位(2F梁 北側(下端)外側</li> <li>軸支位(2F梁 北側(下端)外側</li> <li>軸支位(3F梁 北側(下端))外側</li> <li>軸支位(3F梁 北側(下端))外側</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NS<br>QS<br>3HS<br>2HS<br>1HS<br>2VS<br>OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB3<br>HBB4<br>HBB3<br>HBT4<br>HBT3<br>HBT4<br>HBT3<br>HBT4<br>HBB6<br>HBB6<br>HBB7<br>HBB6<br>HBB7<br>HBB10<br>HBT7<br>HBT8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | ××××××××××××××××××××××××××××××××××××××                                                             | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25 |            | 275<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>200<br>200<br>200                                                                                       |
| 70         50           50         51           52         53           53         54           55         56           57         58           59         60           61         62           63         64           65         66           67         76           73         74           75         76           77         78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>軸力 南側<br/>水平力 南側</li> <li>水平支位(3F) 南側</li> <li>水平支位(2F) 南側</li> <li>水平支位(2F) 南側</li> <li>鉛直支位(2F) 北側</li> <li>鉛直支位(2F) 北側</li> <li>鉛直支位(2F) 北側</li> <li>輸支位(2F) 北側</li> <li>輸支位(2F) 北側</li> <li>(下端)外側</li> <li>軸支位(2F梁 北側(下端))外側</li> <li>軸支位(2F梁 北側(下端))外側</li> <li>軸支位(2F梁 北側(下端))外側</li> <li>軸支位(3F梁 北側(下端))外側</li> <li>軸支位(3F梁 北側(下端))外側</li> <li>軸支位(3F梁 北側(上端))</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NS<br>QS<br>3HS<br>2HS<br>1HS<br>2VS<br>OS<br>HBB1<br>HBB2<br>HBB3<br>HBB4<br>HBB3<br>HBB4<br>HBB3<br>HBT4<br>HBT3<br>HBT4<br>HBT3<br>HBT4<br>HBB6<br>HBB7<br>HBB6<br>HBB7<br>HBB6<br>HBB7<br>HBB7<br>HBB7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | ××××××××××××××××××××××××××××××××××××××                                                             | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50 |            | 275<br>200<br>200<br>350<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>200<br>600<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                          |
| 75           50           51           52           53           54           55           56           57           58           59           60           61           62           63           64           65           66           67           68           69           70           74           75           76           77           78           79           60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>軸力 南側<br/>水平支位(3F) 南側<br/>水平支位(3F) 南側</li> <li>水平支位(3F) 南側</li> <li>水平支位(3F) 南側</li> <li>水平支位(1F) 南側</li> <li>鉛直支位(2F) 北側</li> <li>鉛直支位(2F) 北側</li> <li>鉛直支位(2F) 北側</li> <li>勤支位(2F) 北側</li> <li>勤支位(2F) 北側(下端)外側</li> <li>軸支位(2F梁 北側(下端)内側</li> <li>軸支位(2F梁 北側(下端)外側</li> <li>軸支位(3F梁 北側(下端)外側</li> <li>軸支位(3F梁 北側(下端))外側</li> <li>軸支位(3F梁 北側(上端))外側</li> <li>軸支位(3F梁 北側(上端))</li> <li>軸支位(3F梁 北側(上端))</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NS           QS           3HS           2HS           1HS           3VS           2VS           OS           HBB1           HBB2           HBB3           HBB4           HBB5           HBT1           HBT2           HBT3           HBT4           HBT5           HBB7           HBB8           HBB10           HBT8           HBT9           HBT10           DBS110                                                                                                                                                                                                                                                                                                                                                                                     | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx                                                             | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25 |            | 275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                   |
| 10         50           50         51           52         53           54         55           56         57           58         59           60         61           62         63           64         65           67         68           69         70           71         72           73         74           75         76           77         78           79         80           81         81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>軸力 南側<br/>水平支位(3F) 南側<br/>水平支位(3F) 南側<br/>水平支位(2F) 南側</li> <li>水平支位(2F) 南側</li> <li>水平支位(1F) 南側</li> <li>鉛直支位(2F) 北側</li> <li>鉛直支位(2F) 北側</li> <li>鉛直支位(2F) 北側</li> <li>範支位 2F梁 北側(下端)外側</li> <li>軸支位 2F梁 北側(下端) 外側</li> <li>軸支位 2F梁 北側(下端) 外側</li> <li>軸支位 3F梁 北側(下端) 外側</li> <li>軸支位 3F梁 北側(下端) 外側</li> <li>軸支位 3F梁 北側(下端) 外側</li> <li>軸支位 3F梁 北側(下端) 外側</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NS           QS           3HS           2HS           1HS           3VS           2VS           0S           HBB1           HBB2           HBB3           HBB4           HBB5           HBT1           HBT2           HBT3           HBT4           HBT5           HBB7           HBB8           HBB10           HBT8           HBT9           HBT10           DBS1           DBS2           DBS3                                                                                                                                                                                                                                                                                                                                                         | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | xxxxx<br>xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx                                                          | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25 |            | 275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                   |
| 10         50           51         52           53         54           55         56           57         55           58         59           60         61           62         63           64         65           66         67           70         73           74         75           77         78           79         80           81         82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NS           QS           3HS           2HS           1HS           3VS           2VS           OS           HBB1           HBB2           HBB3           HBB4           HBB5           HBT1           HBT3           HBT6           HBB7           HBB8           HBB7           HBB8           HBT6           HBT7           HBT8           HBT9           HBT10           DBS1           DBS3           DBS4                                                                                                                                                                                                                                                                                                                                           | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002 | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | xxxxx<br>xxxxx<br>xxxxxx<br>xxxxxxxxxxxxxxxxxxx                                                    | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25 |            | 275<br>200<br>200<br>205<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                   |
| 10         50           51         52           53         54           55         56           57         55           58         59           60         61           62         63           64         65           66         67           70         73           74         75           76         77           78         80           81         82           83         84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NS           QS           3HS           2HS           1HS           3VS           2VS           OS           HBB1           HBB2           HBB3           HBB4           HBB5           HBT1           HBT3           HBT4           HBT5           HBB6           HBB7           HBB8           HBT6           HBT7           HBT8           HBT9           HBT10           DBS1           DBS3           DBS4           DBS5           DBS1                                                                                                                                                                                                                                                                                                             | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002 | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | xxxxx<br>xxxxxx<br>xxxxxxxxxxxxxxxxxxxxxxxxx                                                       | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25 |            | 275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>600<br>275<br>200<br>600<br>350<br>600<br>332<br>200<br>2430<br>520<br>2320<br>532                                                                |
| 10         50           51         52           53         54           55         55           56         57           58         59           60         61           62         63           64         66           67         77           73         74           75         76           77         78           80         81           82         83           84         85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>軸力 南側<br/>水平支位 (3F) 南側<br/>水平支位 (2F) 南側<br/>水平支位 (2F) 南側<br/>鉛直支位 (2F) 北側<br/>鉛直支位 (2F) 北側</li> <li>鉛直支位 (2F) 北側</li> <li>鉛直支位 (2F) 北側</li> <li>範支位 (2F) 北側</li> <li>範支位 2F梁 北側(下端)外側</li> <li>軸支位 2F梁 北側(下端)外側</li> </ul> <li>軸支位 2F梁 北側(下端)外側</li> <li>軸支位 3F梁 北側(下端)外側</li> <li>軸支位 3F梁 北側(下端)外側</li> <li>軸支位 3F梁 北側(下端)外側</li> <li>电支位 3F梁 北側(下端)外側</li> <li>电支位 3F梁 北側(上端)外側</li> <li>电支位 3F梁 北側(上端)外側</li> <li>电支位 2F梁 北側(上端)外側</li> <li>セム断支位 2F梁 北側(上端)外側</li> <li>セム断支位 2F梁 北側(北上)内側</li> <li>セム断支位 2F梁 北側(北上)内側</li> <li>セム断支位 2F梁 北側(北上)内側</li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NS           QS           3HS           2HS           1HS           3VS           2VS           OS           HBB1           HBB2           HBB3           HBB4           HB53           HB73           HB74           HB75           HB86           HB87           HB87           HB79           HB70           HB710           DBS11           DBS2           DBS3           DBS4           DBS5           DBN1           DBN2                                                                                                                                                                                                                                                                                                                           | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm | ××××××××××××××××××××××××××××××××××××××                                                             | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25 |            | 275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>2350<br>200<br>2430<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2                 |
| 10         50           50         51           52         53           54         55           55         56           57         58           59         60           61         62           63         64           65         70           73         74           72         73           74         75           76         77           78         80           81         82           83         84           85         86           87         87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NS           QS           3HS           2HS           1HS           3VS           2VS           OS           HBB1           HBB2           HBB3           HBB4           HBB5           HBT1           HBT3           HBT4           HBT5           HBB6           HBB7           HBB7           HBB8           HBB7           HB76           HB710           HB7110           DBS11           DBS2           DBS3           DBN1           DBN2           DBN1           DBN2           DBN3           DBN4                                                                                                                                                                                                                                              | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | ××××××××××××××××××××××××××××××××××××××                                                             | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25 |            | 275<br>200<br>200<br>205<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>600<br>275<br>200<br>600<br>275<br>200<br>350<br>600<br>350<br>350<br>320<br>320<br>320<br>322<br>320<br>322<br>320                                             |
| 75           50           51           52           53           54           55           56           57           58           59           60           61           62           63           64           65           66           67           70           71           72           73           74           75           76           77           80           81           82           83           84           85           86           87           88           87           88           86           87           88           86           87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>軸力 南側<br/>水平支位(3F) 南側<br/>水平支位(2F) 南側<br/>水平支位(2F) 南側<br/>水平支位(1F) 南側<br/>鉛直変位(2F) 北側<br/>鉛直変位(2F) 北側</li> <li>鉛直変位(2F) 北側</li> <li>鉛直変位(2F) 北側</li> <li>全国</li> <li>動水変位(F) 北側</li> <li>主動素位 2F梁 北側(下端) 外側</li> <li>軸変位 2F梁 北側(下端) 外側</li> <li>軸変位 2F梁 北側(下端) 外側</li> <li>軸変位 2F梁 北側(下端) 外側</li> <li>軸変位 3F梁 北側(下端) 外側</li> <li>軸変位 3F梁 北側(下端) 外側</li> <li>セん断変位 2F梁 北側(上端) 小側</li> <li>セん断変位 2F梁 北側(小上) 小側</li> <li>セん断変位 2F梁 北側(南上) 小側</li> <li>セん断変位 2F梁 北側(南上) 小側</li> <li>セん断変位 2F梁 北側(南上) 小側</li> <li>セん断変位 2F梁 北側(南上) 小側</li> <li>セム 断変位 2F梁 北側(南上) 小山 (南上) 小山 (南上) 小山 (南上) 小山 (南上) 小山 (南上) (南山)</li> <li>ビム (西索 4 小山 (西上) (西山) (西山)</li> <li>ビム (西索 4 小山 (西上) (西山) (西山)</li> <li>ビム (西索 4 小山) (西山) (田)</li> <li>ビム (西索 4 小山) (田) (田)</li> <li>ビム (西索 4 小山) (田)</li> <li>ビム (田 4 小山) (田)</li> <li>ビム (田 5 小山) (田 5 小山) (田)</li> <li>ビム (田 5 小山) (田)</li> <li>ビム (田 5 小山) (田 5 小山)</li> <li>ビム (田 5 小山)</li> </ul> | NS           QS           3HS           2HS           1HS           3VS           2VS           OS           HBB1           HBB2           HBB3           HBB4           HBB5           HBT1           HBT2           HBT3           HBT4           HBT5           HBB6           HBB7           HBB7           HBB7           HB76           HB77           HB76           HB77           HB78           HB79           HB70           HB71           DBS1           DBS2           DBS3           DBN1           DBN2           DBN1           DBN2           DBN4           DBN4           DBN5                                                                                                                                                        | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | ××××××××××××××××××××××××××××××××××××××                                                             | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25 |            | 275<br>200<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>350<br>600<br>320<br>320<br>320<br>320<br>320<br>320<br>320<br>320<br>320<br>3                          |
| 750<br>50<br>51<br>52<br>53<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>57<br>55<br>57<br>55<br>57<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>軸力 南側<br/>水平支位(3F) 南側<br/>水平支位(2F) 南側<br/>水平支位(2F) 南側<br/>水平支位(1F) 南側<br/>鉛直変位(2F) 北側<br/>鉛直変位(2F) 北側</li> <li>鉛直変位(2F) 北側</li> <li>鉛直変位(2F) 北側</li> <li>全国</li> <li>主人間</li> <li>三、北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 2F梁 北側(下端)外側</li> <li>軸変位 3F梁 北側(下端)外側</li> <li>セム断変位 2F梁 北側(上端)外側</li> <li>セム断変位 2F梁 北側(上)外側</li> <li>セム断変位 2F梁 北側(南上)内側</li> <li>セム断変位 3F梁 北側(南上)内側</li> <li>セム断変位 3F梁 北側(南上)内側</li> <li>セム断変位 3F梁 北側(市上)外側</li> <li>ビム断変位 3F梁 北側(市上)</li> <li>ビム断変位 3F梁 北側(市上)</li> <li>ビム断変位 3F梁 北側(市上)</li> <li>ビム</li> <li>ビム</li> <li>ビム</li> <li>ビム</li> <li>ビム</li> <li>ビー</li> </ul>                                                                                                    | NS           QS           3HS           2HS           1HS           3VS           2VS           OS           HBB1           HBB2           HBB3           HBB4           HBB5           HBT1           HBT3           HBT6           HBB7           HBB7           HBB8           HBB9           HBB10           HBT6           HBT9           HBT10           DBS1           DBS2           DBS3           DBN1           DBN2           DBN1           DBN2           DBN4           DBN5           DBN4           DBN5           DBN4           DBN5                                                                                                                                                                                                   | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | ××××××××××××××××××××××××××××××××××××××                                                             | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SDP-300           SDP-300           CDP-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 275<br>200<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>2350<br>600<br>275<br>200<br>200<br>350<br>350<br>350<br>350<br>350<br>320<br>320<br>320<br>320<br>320<br>322<br>320<br>322<br>322         |
| 75<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>65<br>66<br>67<br>68<br>66<br>67<br>70<br>71<br>72<br>73<br>74<br>75<br>76<br>80<br>81<br>82<br>83<br>84<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NS           QS           3HS           2HS           1HS           3VS           2VS           OS           HBB1           HBB2           HBB3           HBB4           HBB5           HBT1           HBT3           HBT4           HBT5           HBB6           HBB7           HBB7           HBB7           HBT6           HBT7           HBT6           HBT9           HBT10           DBS1           DBS2           DBS3           DBN1           DBN2           DBN1           DBS7           DBS8           DBS7           DBS8           DBS6           DBS7                                                                                                                                                                                     | 0.333<br>0.491<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | ××××××××××××××××××××××××××××××××××××××                                                             | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25 |            | 275<br>200<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>2350<br>200<br>200<br>2350<br>200<br>2320<br>350<br>350<br>600<br>275<br>200<br>205<br>205<br>200<br>205<br>205<br>200<br>205<br>205<br>20 |
| 75<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>65<br>57<br>75<br>76<br>60<br>61<br>62<br>63<br>66<br>67<br>77<br>78<br>88<br>80<br>81<br>77<br>78<br>77<br>78<br>77<br>78<br>77<br>78<br>77<br>79<br>78<br>80<br>81<br>82<br>83<br>84<br>85<br>80<br>90<br>91<br>92<br>93<br>83<br>83<br>85<br>85<br>85<br>87<br>88<br>88<br>88<br>88<br>88<br>89<br>90<br>93<br>83<br>83<br>83<br>83<br>83<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NS           QS           3HS           2HS           1HS           3VS           2VS           OS           HBB1           HBB2           HBB3           HBB4           HBB5           HBT1           HBT3           HBT4           HBT5           HBB6           HBB7           HBB6           HBT6           HBT7           HBT8           HBT9           HBT0           DBS1           DBS2           DBS3           DBN1           DBN2           DBN3           DBN4           DBS7           DBS8           DBS9           DBS10                                                                                                                                                                                                                   | 0.333<br>0.491<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | ××××××××××××××××××××××××××××××××××××××                                                             | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50<br>CDP-50 |            | 275<br>200<br>200<br>200<br>275<br>200<br>200<br>275<br>200<br>200<br>200<br>275<br>200<br>200<br>200<br>255<br>200<br>200<br>2350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350                                                          |
| 75<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>65<br>77<br>78<br>60<br>60<br>61<br>62<br>63<br>66<br>66<br>67<br>77<br>78<br>88<br>80<br>90<br>91<br>92<br>93<br>94<br>92<br>93<br>94<br>4<br>55<br>55<br>55<br>57<br>58<br>57<br>58<br>57<br>58<br>57<br>58<br>57<br>58<br>57<br>58<br>57<br>58<br>57<br>58<br>57<br>58<br>57<br>58<br>57<br>58<br>57<br>58<br>57<br>58<br>57<br>58<br>57<br>58<br>57<br>58<br>57<br>57<br>58<br>57<br>58<br>57<br>58<br>57<br>57<br>58<br>57<br>57<br>58<br>57<br>57<br>58<br>57<br>57<br>58<br>57<br>57<br>58<br>57<br>57<br>58<br>57<br>57<br>58<br>57<br>57<br>58<br>57<br>57<br>58<br>57<br>57<br>57<br>58<br>57<br>57<br>58<br>57<br>57<br>57<br>57<br>58<br>57<br>57<br>57<br>58<br>57<br>57<br>58<br>57<br>57<br>58<br>57<br>57<br>58<br>57<br>57<br>57<br>58<br>57<br>57<br>58<br>57<br>57<br>58<br>57<br>57<br>57<br>58<br>57<br>57<br>57<br>57<br>58<br>57<br>57<br>57<br>57<br>58<br>58<br>57<br>77<br>77<br>77<br>77<br>78<br>80<br>81<br>82<br>88<br>88<br>89<br>90<br>90<br>91<br>92<br>93<br>99<br>93<br>94<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NS           QS           3HS           2HS           1HS           3VS           2VS           OS           HBB1           HBB2           HBB3           HBB4           HB55           HBT1           HB74           HB75           HB76           HB77           HB88           HB89           HB810           HB76           HB77           HB78           HB79           HB70           HB71           DB81           DB82           DB83           DB84           DB85           DBN2           DB83           DB84           DB85           DB85 | 0.333<br>0.491<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | ××××××××××××××××××××××××××××××××××××××                                                             | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25 |            | 275<br>200<br>200<br>200<br>275<br>200<br>600<br>275<br>200<br>200<br>350<br>600<br>275<br>200<br>200<br>2350<br>200<br>2350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350                                                                |
| 10         50           50         51           52         53           54         55           56         57           58         59           60         61           62         63           64         65           66         67           70         73           74         75           76         77           77         78           79         80           81         82           83         84           85         86           87         90           91         92           93         93           94         95           96         66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>軸力 南側<br/>水平支位(3F) 南側<br/>水平支位(2F) 南側<br/>水平支位(2F) 南側<br/>鉛直支位(2F) 北側</li> <li>鉛直支位(2F) 北側</li> <li>鉛直支位(2F) 北側</li> <li>室位(2F) 北側</li> <li>室位(2F) 北側</li> <li>室位(2F) 北側</li> <li>室位(2F) 北側</li> <li>室位(2F) 北側</li> <li>三、北側(下端)外側</li> <li>軸支位(2F梁 北側(下端))外側</li> <li>軸支位(2F梁 北側(下端))外側</li> <li>軸支位(2F梁 北側(下端))外側</li> <li>軸支位(3F梁 北側(下端))外側</li> <li>軸支位(3F梁 北側(下端))外側</li> <li>軸支位(3F梁 北側(上端))外側</li> <li>セム断支位(2F梁 北側(上端))外側</li> <li>セム断支位(2F梁 北側(上端))</li> <li>セム断支位(2F梁 北側(北上))</li> <li>セム断支位(2F梁 北側(市上))</li> <li>セム断支位(3F梁 北側(北上))</li> <li>セム断支位(3F梁 北側(北上))</li> <li>セム断支位(3F梁 北側(北上))</li> <li>セム断支位(3F梁 北側(北上))</li> <li>セム断支位(3F梁 北側(北上))</li> <li>ロ(北)</li> <li>ロ(北)</li></ul>                                                                                                                                                                   | NS           QS           3HS           2HS           1HS           3VS           2VS           OS           HBB1           HBB2           HBB3           HBB4           HBB3           HBT1           HBT3           HBT4           HBT5           HBB6           HBB7           HBB7           HBB8           HBB7           HB70           HB71           HB71           HB73           HB74           HB75           HB80           HB71           HB71           HB73           HB74           HB75           HB77           HB78           HB79           HB710           DB51           DB52           DB10           DB10           DB10           DB10           DB10           DB10           DB10           DB10           DB10           DB10 | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | ××××××××××××××××××××××××××××××××××××××                                                             | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25 |            | 275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                   |
| 10         50           50         51           52         53           54         55           56         60           61         62           63         64           65         66           67         76           773         74           775         78           70         71           72         75           81         82           82         86           87         79           80         86           87         99           90         91           92         93           94         95           96         96           97         90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>軸力 南側<br/>水平支位 (2F) 南側<br/>水平支位 (2F) 南側<br/>水平支位 (2F) 南側<br/>鉛直支位 (2F) 北側<br/>鉛直支位 (2F) 北側<br/>鉛直支位 (2F) 北側</li> <li>鉛直支位 (2F) 北側</li> <li>鉛直支位 (2F) 北側</li> <li>全位 2F梁 北側(下端)外側</li> <li>軸支位 2F梁 北側(下端)外側</li> <li>軸支位 2F梁 北側(下端)外側</li> <li>軸支位 2F梁 北側(下端)外側</li> <li>軸支位 3F梁 北側(下端)外側</li> <li>軸支位 3F梁 北側(下端)外側</li> <li>軸支位 3F梁 北側(下端)外側</li> <li>セム断支位 2F梁 北側(上端)外側</li> <li>セム断支位 2F梁 北側(上端)外側</li> <li>セム断支位 2F梁 北側(上))</li> <li>セム断支位 2F梁 北側(市上))</li> <li>セム断支位 3F梁 北側(北上))</li> <li>セム断支位 3F梁 北側(市上))</li> <li>セム断支位 3F梁 北側(北上))</li> <li>セム 新安位 3F梁 北側(北))</li> <li>モン 5F梁 北側(北))</li> </ul>                                                                                                                                                                                                                                                                                                                | NS           QS           3HS           2HS           1HS           3VS           2VS           0S           HBB1           HBB2           HBB3           HBB4           HBE5           HBT1           HBT2           HBT3           HBT4           HBT5           HBB7           HBB8           HBB7           HBT8           HBT9           HBT10           DBS1           DBS2           DBS3           DBN1           DBN3           DBN4           DBS6           DBS7           DBS8           DBS8           DBN6           DBN6           DBN6           DBN6           DBN8           DBN8           DBN8           DBN8           DBN8           DBN8                                                                                           | 0.333<br>0.491<br>-0.03<br>-0.03<br>-0.002<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN<br>kN<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm<br>mm       | ××××××××××××××××××××××××××××××××××××××                                                             | 4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE<br>4GAGE | SDP-300<br>SDP-300<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25<br>CDP-25 |            | 275<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                   |

| CH.<br>No. | 計測項目                                    | 名称               | 校正係数  | 単位      | メジャー<br>モード  | センサ<br>モード           | 計測機器名             | ゲージ<br>No. | インサート<br>距離 |
|------------|-----------------------------------------|------------------|-------|---------|--------------|----------------------|-------------------|------------|-------------|
| 100        |                                         |                  |       |         |              |                      |                   |            | P=134       |
| 101        |                                         |                  |       |         |              |                      |                   |            |             |
| 103        |                                         |                  |       |         |              |                      |                   |            |             |
| 104        |                                         |                  |       |         |              |                      |                   |            |             |
| 106        |                                         |                  |       |         |              |                      |                   |            |             |
| 107        |                                         |                  |       |         |              |                      |                   |            |             |
| 109        |                                         |                  |       |         |              |                      |                   |            |             |
| 110        |                                         |                  |       |         |              |                      |                   |            |             |
| 112        |                                         |                  |       |         |              |                      |                   |            |             |
| 113        |                                         |                  |       |         |              |                      |                   |            |             |
| 115        |                                         |                  |       |         |              |                      |                   |            |             |
| 117        |                                         |                  |       |         |              |                      |                   |            |             |
| 118        |                                         |                  |       |         |              |                      |                   |            |             |
| 120        |                                         |                  |       |         |              |                      |                   |            |             |
| 121        |                                         |                  |       |         |              |                      |                   |            |             |
| 122        |                                         |                  |       |         |              |                      |                   |            |             |
| 124        |                                         |                  |       |         |              |                      |                   |            |             |
| 125        |                                         |                  |       |         |              |                      |                   |            |             |
| 127        |                                         |                  |       |         |              |                      |                   |            |             |
| 120        |                                         |                  |       |         |              |                      |                   |            |             |
| 130        |                                         |                  |       |         |              |                      |                   |            |             |
| 132        |                                         |                  |       |         |              |                      |                   |            |             |
| 133        |                                         |                  |       |         |              |                      |                   |            |             |
| 135        |                                         |                  |       |         |              |                      |                   |            |             |
| 136        |                                         |                  |       |         |              |                      |                   |            |             |
| 138        |                                         |                  |       |         |              |                      |                   |            |             |
| 139        |                                         |                  |       |         |              |                      |                   |            |             |
| 141        |                                         |                  |       |         |              |                      |                   |            |             |
| 142        |                                         |                  |       |         |              |                      |                   |            |             |
| 144        |                                         |                  |       |         |              |                      |                   |            |             |
| 145        |                                         |                  |       |         |              |                      |                   |            |             |
| 147        |                                         |                  |       |         |              |                      |                   |            |             |
| 148        |                                         |                  |       |         |              |                      |                   |            |             |
| 150        | PC鋼棒 北側                                 | PN-f             | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 0          |             |
| 151        | PC鋼棒 北侧<br>柱主筋 1F脚部 北側北端                | C1NN-f           | 0.948 | μ       | メジャー         | 1G3W120Ω<br>1G3W120Ω | 鉄筋用               | 2          |             |
| 153        | 柱主筋 1F脚部 北側北端                           | C1NN-b           | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 3          |             |
| 154        | 杜主肋 IF 脚部 北側角端<br>柱主筋 1F 脚部 北側南端        | C1NS-b           | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 4<br>5     |             |
| 156        | <u> </u>                                | C2NN-f           | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 6          |             |
| 157        | 柱主筋 1F中央 北侧南端                           | C2NN=b<br>C2NS=f | 0.948 | μ       | メジャー         | 1G3W120 Ω            | 鉄筋用               | 8          |             |
| 159        | <u>     柱主筋 1F中央 北側南端</u> 柱主筋 1E中央 北側本端 | C2NS-b           | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用 鉄筋用           | 9          |             |
| 161        | 柱主筋 1F中央 北側北端                           | C3NN-b           | 0.948 | μ       | メジャー         | 1G3W120 Ω            | 鉄筋用               | 11         |             |
| 162        | <u>     柱主筋 1F中央 北側南端</u>               | C3NS-f           | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 12         |             |
| 164        | 柱主筋 1F頂部 北側北端                           | C4NN-f           | 0.948 | μ       | メジャー         | 1G3W120 Ω            | 鉄筋用               | 14         |             |
| 165        | <u>柱主筋 1F頂部 北側北端</u><br>柱主筋 1F頂部 北側南端   | C4NN-b<br>C4NS-f | 0.948 | μ       | メジャー         | 1G3W120Ω             | <u>鉄筋用</u><br>鉄筋用 | 15         |             |
| 167        | 柱主筋 1F頂部 北側南端                           | C4NS-b           | 0.948 | μ       | メジャー         | 1G3W120 Ω            | 鉄筋用               | 17         |             |
| 168        | <u>柱主筋 2F脚部 北側北端</u><br>柱主筋 2F脚部 北側北端   | C5NN-f           | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用<br>鉄筋用        | 18         |             |
| 170        | 柱主筋 2F脚部 北側南端                           | C5NS-f           | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 20         |             |
| 171        | <u>柱主筋 2F脚部 北側南端</u><br>柱主筋 2F中央 北側北端   | C5NS-b<br>C6NN-f | 0.948 | μ       | メジャー         | 1G3W120Ω<br>1G3W120Ω | <u>鉄筋用</u><br>鉄筋用 | 21         |             |
| 173        | 柱主筋 2F中央 北側北端                           | C6NN-b           | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 23         |             |
| 174        | <u>柱主筋 2F中央 北側南端</u><br>柱主筋 2F中央 北側南端   | C6NS-f<br>C6NS-b | 0.948 | μ<br>11 | メジャー<br>メジャー | 1G3W120Ω<br>1G3W120Ω | 鉄筋用<br>鉄筋甲        | 24<br>25   |             |
| 176        | 柱主筋 2F中央 北側北端                           | C7NN-f           | 0.948 | μ       | メジャー         | 1G3W120 Ω            | 鉄筋用               | 26         |             |
| 177        | <u>柱主筋 2F中央 北側北端</u><br>柱主筋 2F中央 北側南端   | C7NN-b<br>C7NS-f | 0.948 | μ       | メジャー<br>メジャー | 1G3W120Ω<br>1G3W120Ω | <u>鉄筋用</u><br>鉄筋用 | 27<br>28   |             |
| 179        | 柱主筋 2F中央 北側南端                           | C7NS-b           | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 29         |             |
| 180<br>181 | <u> </u>                                | C8NN-f<br>C8NN-b | 0.948 | μ<br>μ  | メジャー<br>メジャー | 1G3W120Ω<br>1G3W120Ω | <u> </u>          | 30<br>31   |             |
| 182        | 柱主筋 2F頂部 北側南端                           | C8NS-f           | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 32         |             |
| 183<br>184 | <u> </u>                                | C8NS-b<br>CS1N   | 0.948 | μ<br>μ  | メジャー<br>メジャー | 1G3W120Ω<br>1G3W120Ω | <u> </u>          | 33<br>34   |             |
| 185        | 柱带筋 1F中央 北側                             | CS2N             | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 35         |             |
| 186        | <u> </u>                                | CS3N<br>CS4N     | 0.948 | μ<br>μ  | メンヤー<br>メジャー | 1G3W120Ω<br>1G3W120Ω | <u> </u>          | 36         |             |
| 188        | 柱带筋 2F中央 北側                             | CS5N             | 0.948 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 38         |             |
| 189<br>190 | <u> </u>                                | CS6N<br>B1L-f    | 0.948 | μ<br>μ  | メジャー<br>メジャー | 1G3W120Ω<br>1G3W120Ω | <u> </u>          | 39<br>40   |             |
| 191        | 梁下端筋 2F 北側北端                            | B1L-b            | 0.943 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 41         |             |
| 192<br>193 | <u> </u>                                | B2L-f<br>B2L-b   | 0.943 | μ       | メジャー<br>メジャー | 1G3W120Ω<br>1G3W120Ω | <u> </u>          | 42 43      |             |
| 194        | 梁下端筋 2F 北側                              | B3L-f            | 0.943 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 44         |             |
| 195<br>196 | <u>梁下端筋 2F 北側</u><br>梁下端筋 2F 北側南端       | B3L-b<br>B4L-f   | 0.943 | μ       | メジャー<br>メジャー | 1G3W120Ω<br>1G3W120Ω | <u>鉄筋用</u><br>鉄筋用 | 45<br>46   |             |
| 197        | 梁下端筋 2F 北側南端                            | B4L-b            | 0.943 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用               | 47         |             |
| 198        | <u>梁上端筋 2F 北側北端</u><br>梁上端筋 2F 北側北端     | B1U-f<br>B1U-b   | 0.943 | μ       | メジャー         | 1G3W120Ω             | 鉄筋用 鉄筋用           | 48         |             |

| CH.        | 計測項目                                    | 名称               | 校正係数  | 単位      | メジャー         | センサ                    | 計測機器名             | ゲージ      | インサート |
|------------|-----------------------------------------|------------------|-------|---------|--------------|------------------------|-------------------|----------|-------|
| 200        | 梁上端筋 2F 北側                              | B2U-f            | 0.943 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 50       | 正常性   |
| 201        | <u>梁上端筋 2F 北側</u><br>梁上端筋 2F 北側         | B2U-b<br>B3U-f   | 0.943 | μ       | メジャー         | 1G3W120 Ω<br>1G3W120 Ω | 鉄筋用<br>鉄筋用        | 51<br>52 |       |
| 203        | 梁上端筋 2F 北側                              | B3U-b            | 0.943 | μ       | メジャー         | 1G3W120 Ω              | 鉄筋用               | 53       |       |
| 204        | <u>梁上端筋 2F 北側南端</u><br>梁上端筋 2F 北側南端     | B4U-f<br>B4U-b   | 0.943 | μ<br>'' | メジャー         | 1G3W120Ω<br>1G3W120Ω   | <u>鉄筋用</u><br>鉄筋用 | 54<br>55 |       |
| 206        | 梁あばら筋 2F 北側                             | BS1              | 0.948 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 56       |       |
| 207        | <u>※あばら筋 2F 北側</u><br>梁あばら筋 2F 北側       | BS2<br>BS3       | 0.948 | μ       | メジャー<br>メジャー | 1G3W120 Ω<br>1G3W120 Ω | <u>鉄筋用</u><br>鉄筋用 | 57<br>58 |       |
| 209        | 梁下端筋 3F 北側北端                            | B9L-f            | 0.943 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 59       |       |
| 210        | <u>梁下端筋 3F 北側北端</u><br>梁下端筋 3F 北側       | B9L-b<br>B10I-f  | 0.943 | μ<br>'' | メジャー         | 1G3W120Ω<br>1G3W120Ω   | <u>鉄筋用</u><br>鉄筋用 | 60<br>61 |       |
| 212        | 梁下端筋 3F 北側                              | B10L-b           | 0.943 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 62       |       |
| 213        | <u>梁下端筋 3F 北側</u><br>梁下端筋 3F 北側         | B11L-f<br>B11L-b | 0.943 | μ       | メジャー         | 1G3W120 Ω<br>1G3W120 Ω | 鉄筋用<br>鉄筋用        | 63<br>64 |       |
| 215        | 梁下端筋 3F 北側南端                            | B12L-f           | 0.943 | μ       | メジャー         | 1G3W120 Ω              | 鉄筋用               | 65       |       |
| 216        | <u>梁下端筋 3F 北側南端</u><br>梁上端筋 3F 北側北端     | B12L-b<br>B9U-f  | 0.943 | μ       | メジャー         | 1G3W120Ω               | <u>鉄筋用</u><br>鉄筋用 | 66<br>67 |       |
| 218        | 梁上端筋 3F 北側北端                            | B9U-b            | 0.943 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 68       |       |
| 219        | <u>梁上端筋 3F 北側</u><br>梁上端筋 3F 北側         | B10U-f<br>B10U-b | 0.943 | μ       | メジャー         | 1G3W120Ω<br>1G3W120Ω   | 鉄筋用 鉄筋用           | 69<br>70 |       |
| 221        | 梁上端筋 3F 北側                              | B11U-f           | 0.943 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 71       |       |
| 222        | <u>梁上端筋 3F 北側</u><br>梁上端筋 3F 北側南端       | B11U-b<br>B12U-f | 0.943 | μ       | メジャー         | 1G3W120Ω<br>1G3W120Ω   | <u>鉄筋用</u><br>鉄筋用 | 72       |       |
| 224        | 梁上端筋 3F 北側南端                            | B12U-b           | 0.943 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 74       |       |
| 225        | <u>梁あばら筋 3F 北側</u><br>塗あばら筋 3F 北側       | BS7<br>BS8       | 0.948 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用 鉄筋用           | 75       |       |
| 227        | 梁あばら筋 3F 北側                             | BS9              | 0.948 | μ       | メジャー         | 1G3W120 Ω              | 鉄筋用               | 77       |       |
| 228        |                                         |                  |       |         |              |                        |                   |          |       |
| 230        |                                         |                  |       |         |              |                        |                   |          |       |
| 231        |                                         |                  |       |         |              | <u> </u>               |                   |          |       |
| 233        |                                         |                  |       |         |              |                        |                   |          |       |
| 234        |                                         |                  |       |         |              |                        |                   |          |       |
| 236        |                                         |                  |       |         |              |                        |                   |          |       |
| 237        |                                         |                  |       |         |              |                        |                   |          |       |
| 239        |                                         |                  |       |         |              |                        |                   |          |       |
| 240        |                                         |                  |       |         |              |                        |                   |          |       |
| 242        |                                         |                  |       |         |              |                        |                   |          |       |
| 243        |                                         |                  |       |         |              |                        |                   |          |       |
| 245        |                                         |                  |       |         |              |                        |                   |          |       |
| 246        |                                         |                  |       |         |              |                        |                   |          |       |
| 248        |                                         |                  |       |         |              |                        |                   |          |       |
| 249<br>250 | PC鋼棒 南側                                 | PS-f             | 0.948 | "       | メジャー         | 1G3W120 Q              | 鉄筋用               | 78       |       |
| 251        | PC鋼棒 南側                                 | PS-b             | 0.948 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 79       |       |
| 252        | <u>     柱主筋 1F脚部 南側南端</u> 柱主筋 1F脚部 南側南端 | C1SS-f           | 0.948 | μ       | メジャー         | 1G3W120Ω               | <u>鉄筋用</u><br>鉄筋用 | 80       |       |
| 254        | 柱主筋 1F脚部 南側北端                           | C1SN-f           | 0.948 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 82       |       |
| 255        | <u>柱主筋 1F脚部 南側北端</u><br>柱主筋 1F中央 南側南端   | C1SN-b<br>C2SS-f | 0.948 | μ<br>'' | メジャー         | 1G3W120Ω<br>1G3W120Ω   | <u>鉄筋用</u><br>鉄筋用 | 83<br>84 |       |
| 257        | 柱主筋 1F中央 南側南端                           | C2SS-b           | 0.948 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 85       |       |
| 258        | <u>     柱主筋 1F中央 南側北端</u> 柱主筋 1E中央 南側北端 | C2SN-f           | 0.948 | μ       | メジャー         | 1G3W120Ω               | <u>鉄筋用</u><br>鉄筋用 | 86       |       |
| 260        | 柱主筋 1F中央 南側南端                           | C3SS-f           | 0.948 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 88       |       |
| 261        | <u>柱主筋 1F中央 南側南端</u><br>柱主筋 1E中央 南側北端   | C3SS-b<br>C3SN-f | 0.948 | μ       | メジャー         | 1G3W120Ω<br>1G3W120Ω   | 鉄筋用<br>鉄筋用        | 89<br>90 |       |
| 263        | 柱主筋 1F中央 南側北端                           | C3SN-b           | 0.948 | μ       | メジャー         | 1G3W120 Ω              | 鉄筋用               | 91       |       |
| 264        | <u>     柱主筋 1F頂部 南側南端</u> 柱主筋 1E頂部 南側南端 | C4SS-f           | 0.948 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用 鉄筋用           | 92       |       |
| 266        | 柱主筋 1F頂部 南側北端                           | C4SN-f           | 0.948 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 94       |       |
| 267        | <u>     柱主筋 1F頂部 南側北端</u> 柱主筋 2F期部 南側南端 | C4SN-b           | 0.948 | μ       | メジャー         | 1G3W120Ω               | <u>鉄筋用</u><br>鉄筋甲 | 95<br>96 |       |
| 269        | 柱主筋 2F脚部 南側南端                           | C5SS-b           | 0.948 | μ       | メジャー         | 1G3W120 Ω              | 鉄筋用               | 97       |       |
| 270        | <u>柱主筋 2F脚部 南側北端</u><br>柱主筋 2F脚部 南側北端   | C5SN-f           | 0.948 | μ<br>'' | メジャー<br>メジャー | 1G3W120Ω<br>1G3W120Ω   | <u>鉄筋用</u><br>鉄筋甲 | 98<br>99 |       |
| 272        | 柱主筋 2F中央 南側南端                           | C6SS-f           | 0.948 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 100      |       |
| 273        | <u>柱主筋 2F中央 南側南端</u><br>柱主筋 2F中央 南側北端   | C6SS-b<br>C6SN-f | 0.948 | μ       | メジャー<br>メジャー | 1G3W120Ω<br>1G3W120Ω   | <u>鉄筋用</u><br>鉄筋甲 | 101      |       |
| 275        | 柱主筋 2F中央 南側北端                           | C6SN-b           | 0.948 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 103      |       |
| 276        | <u>柱主筋 2F中央 南側南端</u><br>柱主筋 2F由央 南側南端   | C7SS-f           | 0.948 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用<br>鉄筋甲        | 104      |       |
| 278        | 柱主筋 2F中央 南側北端                           | C7SN-f           | 0.948 | μ       | メジャー         | 1G3W120 Ω              | 鉄筋用               | 106      |       |
| 279        | <u>柱主筋 2F中央 南側北端</u><br>柱主筋 2F頂部 南側南端   | C7SN-b<br>C8SS-f | 0.948 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用<br>鉄筋甲        | 107      |       |
| 281        | 柱主筋 2F頂部 南側南端                           | C8SS-b           | 0.948 | μ       | メジャー         | 1G3W120 Ω              | 鉄筋用               | 109      |       |
| 282        | <u>柱主筋 2F頂部 南側北端</u><br>柱主筋 2F頂部 南側北端   | C8SN-f           | 0.948 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 110      |       |
| 284        | <u> </u>                                | CS1S             | 0.948 | μ<br>μ  | メジャー         | 1G3W120 Ω              | 鉄筋用               | 112      |       |
| 285        | 柱帯筋 1F中央 南側                             | CS2S             | 0.948 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 113      |       |
| 287        | 柱带筋 2F脚部 南側                             | CS4S             | 0.948 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 115      |       |
| 288        | 柱帯筋 2F中央 南側                             | CS5S             | 0.948 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 116      |       |
| 209        | <u>梁下端筋 2F 南側南端</u>                     | B5L-f            | 0.948 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 118      |       |
| 291        | 梁下端筋 2F 南側南端<br>波下端筋 ac 声例              | B5L-b            | 0.943 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 119      |       |
| 292        | <u>米 ∩ 喃肋 2F</u> 南側<br>梁下端筋 2F 南側       | B6L-t<br>B6L-b   | 0.943 | μ<br>μ  | メジャー         | 1G3W120Ω<br>1G3W120Ω   | <u> </u>          | 120      |       |
| 294        | <u>梁下端筋 2F 南側</u>                       | B7L-f            | 0.943 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 122      |       |
| 295<br>296 | <u>采下端筋 2F 南側</u><br>梁下端筋 2F 南側北端       | B8L-f            | 0.943 | μ<br>μ  | メジャー<br>メジャー | 1G3W120Ω<br>1G3W120Ω   | <u> </u>          | 123      |       |
| 297        | 梁下端筋 2F 南側北端                            | B8L-b            | 0.943 | μ       | メジャー         | 1G3W120Ω               | 鉄筋用               | 125      |       |
| 298<br>299 | <u>采上端筋 2F 南側南端</u><br>梁上端筋 2F 南側南端     | В5U-f<br>В5U-b   | 0.943 | μ<br>μ  | メジャー<br>メジャー | 1G3W120Ω<br>1G3W120Ω   | <u> </u>          | 126      |       |

| CH.        | 計測項目                                    | 名称               | 校正係数  | 単位 | メジャー               | センサ                  | 計測機器名             | ゲージ        | インサート    |
|------------|-----------------------------------------|------------------|-------|----|--------------------|----------------------|-------------------|------------|----------|
| NO.<br>300 | 梁上端筋 2F 南側                              | B6U-f            | 0.943 | μ  | <u>モート</u><br>メジャー | <u>+</u>             | 鉄筋用               | NO.<br>128 | - 距離     |
| 301        | 梁上端筋 2F 南側<br>梁上端筋 2F 南側                | B6U-b            | 0.943 | μ  | メジャー               | 1G3W120Ω             | 鉄筋用               | 129        |          |
| 302        | <u>采工端肋 2F 南側</u><br>梁上端筋 2F 南側         | B7U-f<br>B7U-b   | 0.943 | μ  | メジャー               | 1G3W120Ω             | 鉄筋用               | 130        |          |
| 304        | 梁上端筋 2F 南側北端                            | B8U-f            | 0.943 | μ  | メジャー               | 1G3W120Ω             | 鉄筋用               | 132        |          |
| 305        | <u> 采工 5 日前 1 日前 1 5 年</u> 梁 あばら筋 2F 南側 | B8U-b<br>BS4     | 0.943 | μ  | メジャー               | 1G3W120Ω<br>1G3W120Ω | 鉄筋用               | 133        |          |
| 307        | 梁あばら筋 2F 南側                             | BS5              | 0.948 | μ  | メジャー               | 1G3W120Ω             | 鉄筋用               | 135        |          |
| 308        | <u> </u>                                | BS6<br>B13L-f    | 0.948 | μ  | メジャー               | 1G3W120Ω<br>1G3W120Ω | <u> </u>          | 136        |          |
| 310        | 梁下端筋 3F 南側南端                            | B13L-b           | 0.943 | μ  | メジャー               | 1G3W120Ω             | 鉄筋用               | 138        |          |
| 311        | <u> </u>                                | B14L-f<br>B14L-b | 0.943 | μ  | メジャー<br>メジャー       | 1G3W120Ω<br>1G3W120Ω | <u>鉄筋用</u><br>鉄筋用 | 139<br>140 |          |
| 313        | 梁下端筋 3F 南側                              | B15L-f           | 0.943 | μ  | メジャー               | 1G3W120Ω             | 鉄筋用               | 141        |          |
| 314        | <u> </u>                                | B15L-b<br>B16L-f | 0.943 | μ  | メジャー               | 1G3W120Ω<br>1G3W120Ω | 鉄筋用 鉄筋用           | 142        |          |
| 316        | 梁下端筋 3F 南側北端                            | B16L-b           | 0.943 | μ  | メジャー               | 1G3W120Ω             | 鉄筋用               | 144        |          |
| 317        | <u>梁上端筋 3F 南側南端</u><br>梁上端筋 3F 南側南端     | B13U-f<br>B13U-b | 0.943 | μ  | メジャー               | 1G3W120Ω             | <u>鉄筋用</u><br>鉄筋用 | 145        |          |
| 319        | 梁上端筋 3F 南側                              | B14U-f           | 0.943 | μ  | メジャー               | 1G3W120Ω             | 鉄筋用               | 147        |          |
| 320        | <u>梁上端筋 3F 南側</u><br>アト端筋 3F 南側         | B14U-b<br>B15U-f | 0.943 | μ  | メジャー               | 1G3W120Ω             | 鉄筋用 鉄筋用           | 148        |          |
| 322        | <u>梁上端筋 3F 南側</u>                       | B15U-b           | 0.943 | μ  | メジャー               | 1G3W120 Ω            | 鉄筋用               | 150        |          |
| 323        | <u>梁上端筋 3F 南側北端</u><br>※上端筋 3E 南側北端     | B16U-f           | 0.943 | μ  | メジャー               | 1G3W120Ω             | <u>鉄筋用</u><br>鉄筋用 | 151        |          |
| 325        | <u>来工業的 57 南國北</u><br>梁あばら筋 3F 南側       | BS10             | 0.948 | μ  | メジャー               | 1G3W120 Ω            | 鉄筋用               | 153        |          |
| 326        | 梁あばら筋 3F 南側<br>※あげら笠 25 南側              | BS11             | 0.948 | μ  | メジャー               | 1G3W120Ω             | 鉄筋用               | 154        |          |
| 328        | 木のゆうめ パ 用関                              | 0312             | 0.040 | μ  | · / ·              | 100112032            | 3人 州刀 /円          | 100        |          |
| 329        |                                         |                  |       |    |                    |                      |                   |            |          |
| 331        |                                         |                  |       |    |                    |                      |                   |            |          |
| 332        |                                         |                  |       |    |                    |                      |                   |            |          |
| 333        |                                         |                  |       |    |                    |                      |                   |            |          |
| 335        |                                         |                  |       |    |                    |                      |                   |            |          |
| 337        |                                         |                  |       |    |                    |                      |                   |            |          |
| 338        |                                         |                  |       |    |                    |                      |                   |            |          |
| 340        |                                         |                  |       |    |                    |                      |                   |            |          |
| 341        |                                         |                  |       |    |                    |                      |                   |            |          |
| 343        |                                         |                  |       |    |                    |                      |                   |            |          |
| 344        |                                         |                  |       |    |                    |                      |                   |            |          |
| 346        |                                         |                  |       |    |                    |                      |                   |            |          |
| 347        |                                         |                  |       |    |                    |                      |                   |            |          |
| 349        |                                         |                  |       |    |                    |                      |                   |            |          |
| 350        |                                         |                  |       |    |                    |                      |                   |            |          |
| 352        |                                         |                  |       |    |                    |                      |                   |            |          |
| 353<br>354 |                                         |                  |       |    |                    |                      |                   |            |          |
| 355        |                                         |                  |       |    |                    |                      |                   |            |          |
| 356        |                                         |                  |       |    |                    |                      |                   |            |          |
| 358        |                                         |                  |       |    |                    |                      |                   |            |          |
| 359<br>360 |                                         |                  |       |    |                    |                      |                   |            |          |
| 361        |                                         |                  |       |    |                    |                      |                   |            |          |
| 362        |                                         |                  |       |    |                    |                      |                   |            |          |
| 364        |                                         |                  |       |    |                    |                      |                   |            |          |
| 365        |                                         |                  |       |    |                    |                      |                   |            | <u> </u> |
| 367        |                                         |                  |       |    |                    |                      |                   |            |          |
| 368<br>369 |                                         |                  |       |    |                    |                      |                   |            |          |
| 370        |                                         |                  |       |    |                    |                      | -                 |            |          |
| 3/1<br>372 |                                         |                  |       |    |                    |                      |                   |            |          |
| 373        |                                         |                  |       |    |                    |                      |                   |            |          |
| 375        |                                         |                  |       |    |                    |                      |                   |            |          |
| 376        |                                         |                  |       |    |                    |                      |                   |            |          |
| 378        |                                         |                  |       |    |                    |                      |                   |            |          |
| 379        |                                         |                  |       |    |                    |                      |                   |            |          |
| 381        |                                         |                  |       |    |                    |                      |                   |            |          |
| 382        |                                         |                  | 1     |    |                    |                      |                   |            |          |
| 384        |                                         |                  |       |    |                    |                      |                   |            |          |
| 385<br>386 |                                         |                  |       |    |                    |                      |                   |            |          |
| 387        |                                         |                  |       |    |                    |                      |                   |            |          |
| 388<br>389 |                                         |                  |       | -  |                    |                      |                   |            |          |
| 390        |                                         |                  |       |    |                    |                      |                   |            |          |
| 391<br>392 |                                         |                  |       |    |                    |                      |                   |            |          |
| 393        |                                         |                  |       |    |                    |                      |                   |            |          |
| 394<br>395 |                                         |                  |       |    |                    |                      |                   |            |          |
| 396        |                                         |                  |       |    |                    |                      |                   |            |          |
| 397<br>398 |                                         |                  |       |    |                    |                      |                   |            |          |
| 399        |                                         |                  |       |    |                    |                      |                   |            |          |

#### 3.6.3. 損傷状況

**写真 3-15** に各試験体のサイクルピーク時の全景写真を示す。いずれの試験体でも、試験体設計時の 想定通り、1 階柱脚と2、3 階はり端に塑性ヒンジが形成される全体崩壊機構が形成されていることが 分かる。以降は、試験体ごとに損傷状況を確認する。

(i) 試験体 A





(a) R=1/100

(b) R=1/25



(a) R=1/100



(b) R=1/25



(a) R=1/100

(b) R=1/25

(iii) 試験体 C 写真 3-15 試験体の損傷状況(全景) 3.6.3.1. 試験体 A

図 3-58 に各変形角繰り返し載荷後に観察されたひび割れの状況を、写真 3-16 から写真 3-18 に全体変形角 *R*=1/100rad、1/50rad、1/25rad 時の塑性ヒンジ部の損傷状況を示す。

*R*=1/1600rad サイクルではひび割れの観測は行っていないものの、他の試験体の観測結果より、RC はりには既に曲げひび割れが発生していたものと思われる。

*R*=1/800rad サイクルでは 2、3Fの RC はりにおいて、CLT 袖壁と接する部分で曲げひび割れが発生したのに加え、加力方向に対して引張側の RC 柱の 1F 脚部でも、曲げひび割れの発生が確認された。

*R*=1/400rad サイクルでは2、3FのRC はりにおいて、スパン内を含めた新たな曲げひび割れの発生 や既存の曲げひび割れの進展が見られると共に、加力方向に対して圧縮側のRC 柱の 1F 脚部でも、曲 げひび割れが発生した。また、加力方向に対して圧縮側のRC 柱に取り付く CLT 袖壁の 1F 脚部、加 力方向に対して引張側のRC 柱に取り付く CLT 袖壁の 2F 頂部では、無収縮モルタルを充填した水平 目地における離間が確認された。

*R*=1/200rad サイクルでは 2、3F の RC はりにおいて、曲げひび割れの本数が増加すると共に、スパン内の曲げひび割れが曲げせん断ひび割れに進展した。RC 柱でも 1F 脚部の曲げひび割れの本数が増加した。また、加力方向に対して圧縮側の RC 柱に取り付く CLT 袖壁では、1F 脚部の離間が袖壁全体に進展すると共に、1F 頂部や 2F 脚部でも水平目地の離間が確認された。

*R*=1/133rad サイクルでは 2F の RC 柱において曲げひび割れの発生が確認された。また、2、3F の水 平目地が開閉を繰り返すことで、充填した無収縮モルタルに縦方向のひび割れが生じ、部分的に剥落 する箇所が出始めた。その後のサイクルでも、無収縮モルタルの剥落が確認されたが、応力伝達に支 障をきたすような大規模な剥落は確認されなかった。一方で、比較的小さい変形角で無収縮モルタル の剥落が生じ始めていることから、モルタルの剥落を防止するためには、水平目地内に金網を挿入し たり、繊維を混入したモルタルを使用したりする等の対応が必要になるものと考えられる。また、CLT 袖壁の 1F 脚部の水平目地では、アンカーボルトが塑性変形することで残留変形が生じ、接合用の鉄 板とナットの間に隙間が見られるようになった。

*R*=1/100rad サイクルでは 1、2Fの RC 柱-CLT 袖壁間の鉛直目地でも、部分的に離間が生じている 箇所が確認されたが、鉛直接合部自体に関しては、それ以降のサイクルで、目視で確認できるような 顕著な損傷は確認できなかった。また、2F 柱はり接合部にせん断ひび割れが発生した。

*R*=1/50rad サイクルでは加力方向に対して圧縮側の RC 柱の 1F 脚部において、コンクリートに圧縮 ひび割れが生じた。また、1F の柱頭部にも RC 柱の曲げひび割れが発生するようになり、1F 柱の反曲 点の位置が 2F 柱はり接合部に近い位置となっていることが想定される。CLT 袖壁では 1F 脚部のドリ フトピン接合部において、ドリフトピンに沿った水平方向の亀裂やしわが発生した(**写真 3-19**)が、 それまでのサイクルでは、CLT 袖壁には目立った損傷は見られなかった。

*R*=1/33rad サイクルでは加力方向に対して圧縮側の RC 柱の 1F 脚部において、曲げ圧縮によるカバーコンクリートの剥落が生じた(写真 3-20)。また、2、3F の RC はりでもひび割れの開閉に伴うカバーコンクリートの剥落が見られた。

*R*=1/25rad サイクルでは 2、3F の RC はりにおいて、曲げ圧縮によるカバーコンクリートやコアコン クリートの剥落が目立つようになり、RC はり主筋の座屈も確認された(写真 3-21)。また、1 回目の 負方向載荷時に加力方向に対して圧縮側の RC 柱に取り付く CLT 袖壁において、アンカーボルトの引 張力が作用する 1F 脚部のドリフトピン接合部でラミナの破断が生じた(写真 3-22)。2 回目の正方向 載荷時にも同様に、加力方向に対して圧縮側の RC 柱に取り付く CLT 袖壁において、1F 脚部のドリフ トピン接合部でラミナの破断が生じた。

RC はりに発生したひび割れは、内法スパン内では曲げせん断ひび割れ、CLT 袖壁内では曲げひび 割れが多く、コンクリートの剥落の大部分が CLT 袖壁の端部周辺で生じていた。後述する試験体 B と 比較すると、柱際の RC はりの損傷が軽微に抑えられていたが、これは、試験体 A では CLT 袖壁に作 用する軸力が、RC はりと鉛直接合部を介して伝達されるのに対し、試験体 B では RC はりのみを介 して伝達されるため、試験体 B の方が柱際における RC はりの損傷が大きくなったものと考えられる。



![](_page_247_Figure_0.jpeg)

図 3-58 試験体 A のひび割れ図

![](_page_248_Picture_0.jpeg)

3F はり

![](_page_248_Picture_2.jpeg)

2F はり

![](_page_248_Picture_4.jpeg)

1F 柱脚 写真 3-16 試験体 A の塑性ヒンジ部の損傷状況(R=1/100)

![](_page_249_Picture_0.jpeg)

3F はり

![](_page_249_Picture_2.jpeg)

2F はり

![](_page_249_Picture_4.jpeg)

1F 柱脚 写真 3-17 試験体 A の塑性ヒンジ部の損傷状況(R=1/50)

![](_page_250_Picture_0.jpeg)

3F はり

![](_page_250_Picture_2.jpeg)

2F はり

![](_page_250_Picture_4.jpeg)

1F 柱脚 写真 3-18 試験体 A の塑性ヒンジ部の損傷状況(R=1/25)

![](_page_251_Picture_0.jpeg)

写真 3-19 ドリフトピン接合部の圧縮しわ(R=1/50)

![](_page_251_Picture_2.jpeg)

写真3-20 RC柱のカバーコンクリートの剥落(R=1/33)

![](_page_251_Picture_4.jpeg)

写真 3-21 RC はりのカバーコンクリートの剥落 (R=1/25)


写真 3-22 ドリフトピン接合部の破壊(R=1/25)

3.6.3.2. 試験体 B

図 3-59 に各変形角繰り返し載荷後に観察されたひび割れの状況を、写真 3-23 から写真 3-25 に全体変形角 *R*=1/100rad、1/50rad、1/25rad 時の塑性ヒンジ部の損傷状況を示す。

R=1/1600rad サイクルでは 2F、3Fの RC はりに曲げひび割れが発生していることを確認した。

*R*=1/800rad サイクルでは、加力方向に対して引張側の RC 柱の 1F 脚部でも、曲げひび割れの発生が確認された。

*R*=1/400rad サイクルでは 2、3F の RC はりにおいて、スパン内を含めた新たな曲げひび割れの発生 や既存の曲げひび割れの進展が見られると共に、スパン内の曲げひび割れが曲げせん断ひび割れに進 展した。また、加力方向に対して圧縮側の RC 柱の 1F 脚部でも、曲げひび割れが発生した。加力方向 に対して圧縮側の RC 柱に取り付く CLT 袖壁の 1F 脚部、加力方向に対して引張側の RC 柱に取り付 く CLT 袖壁の 2F 頂部では、無収縮モルタルを充填した水平目地における離間が確認された。なお、 試験体 B では CLT 袖壁の端部に滑り止めを設けているが、RC はりの変形に伴い、CLT 袖壁の仕口面 と滑り止めの間に隙間が生じている箇所も確認されている(**写真 3-26**)。

R=1/200rad サイクルでは RC 柱でも 1F 脚部の曲げひび割れの本数が増加した。また、加力方向に対して圧縮側の RC 柱に取り付く CLT 袖壁では、2F 脚部でも水平目地の離間が確認された。加えて、加力方向に対して引張側の RC 柱に取り付く CLT 袖壁では、1、2F において、RC 柱-CLT 袖壁間の 鉛直目地に亀裂が入り、離間が生じていることが確認された(写真 3-27)。

*R*=1/133rad サイクルでは 2F の RC 柱において曲げひび割れの発生が確認された。また、2F 柱はり 接合部にせん断ひび割れが発生した。2、3F の水平目地が開閉を繰り返すことで、充填した無収縮モ ルタルに縦方向のひび割れが生じ、部分的に剥落する箇所が出始め(**写真 3-28**)、その後のサイクル では、無収縮モルタルが剥落する範囲が拡大する傾向が見られた。比較的小さい変形角で無収縮モル タルの剥落が生じ始めていることから、モルタルの剥落を防止するためには、水平目地内に金網を挿 入したり、繊維を混入したモルタルを使用したりする等の対応が必要になるものと考えられる。

R=1/100rad サイクルでは CLT 袖壁の仕口面が滑り止めにめり込む様子が確認された。

*R*=1/50rad サイクルでは加力方向に対して圧縮側の RC 柱の 1F 脚部において、コンクリートに圧縮 ひび割れが生じた。また、1F の柱頭部にも RC 柱の曲げひび割れが発生するようになり、1F 柱の反曲 点の位置が 2F 柱はり接合部に近い位置となっていることが想定される。CLT 袖壁では、仕口面が滑 り止めにめり込み、ラミナにしわが発生する様子が確認された。一方で、以後のサイクルを含めて、 滑り止めのずれは確認されなかった。

*R*=1/33rad サイクルでは加力方向に対して圧縮側の RC 柱の 1F 脚部において、曲げ圧縮によるカバーコンクリートの剥落が生じた。また、2、3F の RC はりでもひび割れの開閉や曲げ圧縮によるカバーコンクリートの剥落が見られた(写真 3-28)。CLT 袖壁では、水平目地と接する端部で、部分的に 亀裂が入っていることが確認された。

*R*=1/25rad サイクルでは RC はり主筋の座屈も確認された(写真 3-30)。RC はりは、2F の剥落は軽 微であり、3F の損傷が大きかった。また、CLT 袖壁の損傷は、滑り止めと接する部分の圧縮しわと、 水平目地と接する部分の局所的な圧縮しわや亀裂に留まり、顕著な損傷は見られなかった(写真 3-31)。

試験体 B では、試験体 A とは異なり、CLT 袖壁と接する部分でも RC はりに曲げせん断ひび割れが 多く見られ、コンクリートの剥落の大部分が RC 柱際で生じていた。試験体 A では CLT 袖壁に作用す る軸力が RC はりと鉛直接合部を介して伝達されるのに対し、試験体 B では RC はりのみを介して伝 達されるため、試験体 B の方が柱際における RC はりの損傷が大きくなったものと考えられる。





図 3-59 試験体 B のひび割れ図



3F はり



2F はり



1F 柱脚 写真 3-23 試験体 B の塑性ヒンジ部の損傷状況(R=1/100)



3F はり



2F はり



1F 柱脚 写真 3-24 試験体 B の塑性ヒンジ部の損傷状況(R=1/50)



3F はり



2F はり



1F 柱脚 写真 3-25 試験体 B の塑性ヒンジ部の損傷状況(R=1/25)



写真 3-26 滑り止め-CLT 袖壁間の離間(R=1/400)



写真 3-27 鉛直目地における離間(R=1/200)



写真 3-28 水平目地の亀裂(R=1/133)



写真 3-29 RC はりの損傷 (R=1/33)



写真 3-30 RC はり主筋の座屈(R=1/25)



写真 3-31 CLT 袖壁の圧縮しわ及び亀裂(R=1/25)

3.6.3.3. 試験体 C

図 3-60 に各変形角繰り返し載荷後に観察されたひび割れの状況を、写真 3-32 から写真 3-34 に全体変形角 *R*=1/100rad、1/50rad、1/25rad 時の塑性ヒンジ部の損傷状況を示す。

R=1/1600rad サイクルでは 2F、3Fの RC はりに曲げひび割れが発生していることを確認した。

*R*=1/400rad サイクルでは 2、3F の RC はりにおいて、スパン内を含めた新たな曲げひび割れの発生 や既存の曲げひび割れの進展が見られると共に、曲げひび割れが曲げせん断ひび割れに進展した。ま た、加力方向に対して圧縮側の RC 柱の 1F 脚部でも、曲げひび割れの発生が確認された。

*R*=1/200rad サイクルでは 3F の RC はりでせん断ひび割れが確認され、加力方向に対して引張側の RC 柱の 1F 脚部でも曲げひび割れが発生した。

R=1/133rad サイクルでは 2Fの RC 柱において曲げひび割れの発生が確認された。

R=1/100rad サイクルではひび割れの開閉に伴うRCはりのカバーコンクリートの剥落が確認された。

*R*=1/50rad サイクルでは RC はり端や、加力方向に対して圧縮側の RC 柱の 1F 脚部において、コン クリートに圧縮ひび割れが生じた。1F の柱頭部にも RC 柱の曲げひび割れが発生するようになり、1F 柱の反曲点の位置が 2F 柱はり接合部に近い位置となっていることが想定される。また、2F 柱はり接 合部にせん断ひび割れが発生した。

*R*=1/33rad サイクルでは加力方向に対して引張側の RC 柱の 1F 脚部でも、曲げ圧縮によるカバーコンクリートの剥落が生じた。また、3F の RC はりでは、上端部のかぶりコンクリートに浮きが生じた(写真 3-35)。

*R*=1/25rad サイクルでは 2、3Fの RC はり主筋の座屈も確認された(写真 3-36)。また、*R*=1/20rad の 押切載荷時には、2Fの RC はりのあばら筋の 135°フックが 90°程度まで開いている様子も確認され ている(写真 3-37)。







3F はり



2F はり



1F 柱脚 写真 3-32 試験体 C の塑性ヒンジ部の損傷状況(R=1/100)



3F はり



2F はり



1F 柱脚 写真 3-33 試験体 C の塑性ヒンジ部の損傷状況(R=1/50)



3F はり



2F はり



1F 柱脚 写真 3-34 試験体 C の塑性ヒンジ部の損傷状況(R=1/25)



写真 3-35 RC はりのかぶりコンクリートの浮き (R=1/33)



写真 3-36 RC はり主筋の座屈(R=1/25)



写真 3-37 RC はりあばら筋のフックの開き(R=1/20)

## 3.6.3.4. 目地部分の損傷

写真 3-38、写真 3-39 に R=1/50rad における試験体 A、B の 1F 袖壁の目地部分の損傷状況を示す。 部材実験では、水平接合部の目地の充填にエポキシ樹脂を用いたため、目地部の損傷は確認されてい ない。一方、架構実験では、水平接合部の目地の充填に無収縮モルタルを用いたが、試験体 A では、 写真 3-38 に示すように、鉛直接合部を設けたことで、1 階袖壁頂部の水平目地の開閉が抑制され、実 験終了時まで目地部の顕著な損傷が確認されなかったが、試験体 B では、写真 3-39 に示すように、1 階袖壁頂部の水平目地の開閉が繰り返されたことで、モルタルに多数のひび割れが生じている。した がって、試験体 B に関しては、水平目地が損傷を受けたことで、CLT 袖壁の仕口面におけるめり込み 変形が緩和されたことにより、CLT 袖壁の損傷が軽減された可能性がある。



写真 3-38 試験体 A の 1F 袖壁における目地部分の損傷状況(R=1/25)



写真 3-39 試験体 Bの 1F 袖壁における目地部分の損傷状況(R=1/25)

#### 3.6.3.5. ひび割れ幅の推移

表 3-36 に各試験体の柱、はりにおける最大ひび割れ幅、残留ひび割れ幅の推移を示す。ここで、最 大ひび割れ幅は、各サイクルの2回目の負方向加力時のサイクルピークにおいて観測した最大のひび 割れ幅を、残留ひび割れ幅は、同サイクルの負方向加力後の除荷時(水平荷重ゼロ時)に観測した最 大のひび割れ幅を示しており、曲げひび割れとせん断ひび割れに分類して計測した。また、表 3-37 に は、柱、はりを階ごとに分類した計測の詳細を示す。

補修の目安となる残留ひび割れ幅として 0.2~0.3mm を想定し、実験試験体の縮尺 2/3 を乗じて、寸 法効果の影響を簡易的に評価すると、本実験では 0.15~0.20mm 程度が修復の目安となるひび割れ幅 となる。いずれの試験体でも、はりでは 1/200rad のサイクルで目安となるひび割れ幅に到達したが、 柱では 1/50rad のサイクルまで目安のひび割れ幅には到達しなかった。全体変形角と最大ひび割れ幅、 残留ひび割れ幅の関係を見ると、1/100rad のサイクル付近までは、いずれの試験体もほぼ同様の傾向 を示していたが、1/50rad のサイクルに到達すると、袖壁を設けることで、はりの変形角が大きくなっ た試験体 A、B の方が、袖壁のない試験体 C と比較して、最大ひび割れ幅、残留ひび割れ幅共に大き くなる傾向が見られた。

|           |    |            | 柱    |      | 梁    |                                                                                         |      |  |  |
|-----------|----|------------|------|------|------|-----------------------------------------------------------------------------------------|------|--|--|
|           |    | А          | В    | С    | А    | В                                                                                       | С    |  |  |
| 1 / 900   | 最大 | -          | -    | Ι    | 0.2  | 0.15                                                                                    | 0.2  |  |  |
| -1/800    | 残留 | Η          | Ι    | Ι    | 0.1  | 0.1                                                                                     | 0.1  |  |  |
| -1/400    | 最大 | 0.05<br>未満 | 0.05 | -    | 0.35 | 0.5                                                                                     | 0.35 |  |  |
| 2         | 残留 | 0          | 0    | -    | 0.1  | 0.15                                                                                    | 0.1  |  |  |
| -1/200    | 最大 | 0.05       | 0.1  | 0.05 | 0.5  | 0.7                                                                                     | 0.55 |  |  |
| 2         | 残留 | 0          | 0    | 0    | 0.15 | 梁<br>B<br>0.15<br>0.1<br>0.5<br>0.7<br>0.7<br>0.2<br>1.1<br>0.5<br>2<br>1.1<br>6<br>3.9 | 0.2  |  |  |
| -1/133    | 最大 | 0.1        | 0.15 | 0.1  | 1.2  | 1.1                                                                                     | 1.9  |  |  |
| 2         | 残留 | 0          | 0    | 0    | 0.5  | 0.5                                                                                     | 1.4  |  |  |
| -1/100    | 最大 | 0.1        | 0.25 | 0.25 | 2    | 2                                                                                       | 2    |  |  |
| 2         | 残留 | 0          | 0    | 0    | 1.5  | 1.1                                                                                     | 1.4  |  |  |
| 1 /50 @   | 最大 | 1.1        | 0.7  | 0.7  | 5    | 6                                                                                       | 4    |  |  |
| -1/50 (2) | 残留 | 0.65       | 0.35 | 0.25 | 4.5  | 3.9                                                                                     | 3    |  |  |

表 3-36 各サイクルにおける最大ひび割れ幅、残留ひび割れ幅のまとめ(単位:mm)

# 表 3-37 各サイクルにおける最大ひび割れ幅、残留ひび割れ幅の推移(単位:mm)

| A試験体   |    |            | ł       | Ì  |         |      | ~11     | <b>办</b> |         |            | ŧ       | Ì          |         | 梁          |         |            |            |
|--------|----|------------|---------|----|---------|------|---------|----------|---------|------------|---------|------------|---------|------------|---------|------------|------------|
|        |    | 1F         | 1F北     |    | 2F北     |      | 北       | 3F       | 北       | 1F南        |         | 2F南        |         | 2F         | 南       | 2F         | 南          |
|        |    | 曲げ         | せん<br>断 | 曲げ | せん<br>断 | 曲げ   | せん<br>断 | 曲げ       | せん<br>断 | 曲げ         | せん<br>断 | 曲げ         | せん<br>断 | 曲げ         | せん<br>断 | 曲げ         | せん<br>断    |
| -1/800 | 最大 | _          | -       | _  | -       | 0.2  | _       | 0.2      | -       | 0.05<br>未満 | -       | -          | -       | 0.05       | -       | 0.05       | -          |
| -1/800 | 残留 | -          | -       | -  | -       | 0.05 | -       | 0.1      | -       | 0          | -       | -          | -       | 0          | -       | 0          | -          |
| -1/400 | 最大 | 0.05<br>未満 | -       | _  | -       | 0.25 | _       | 0.35     | 0.05    | 0.05<br>未満 | -       | -          | -       | 0.1        | -       | 0.1        | -          |
| 2      | 残留 | 0          | -       | -  | -       | 0.1  | _       | 0.1      | 0.05    | 0          | -       | -          | -       | 0.05<br>未満 | -       | 0.05<br>未満 | -          |
| -1/200 | 最大 | 0.05<br>未満 | -       | -  | -       | 0.3  | 0.2     | 0.5      | 0.3     | 0.05       | _       | -          | -       | 0.15       | 0.05    | 0.2        | 0.1        |
| 2      | 残留 | 0          | -       | -  | -       | 0.1  | 0.1     | 0.15     | 0.05    | 0          | -       | -          | -       | 0.05<br>未満 | 0.05    | 0.05<br>未満 | 0.05<br>未満 |
| -1/133 | 最大 | 0.1        | -       | -  | -       | 0.75 | 0.25    | 1.2      | 0.5     | 0.05       | Ι       | 0.05       | -       | 0.6        | 0.1     | 0.5        | 0.2        |
| 2      | 残留 | 0          | -       | -  | -       | 0.15 | 0.1     | 0.5      | 0.1     | 0          |         | 0          | -       | 0.4        | 0.05    | 0.3        | 0.05       |
| -1/100 | 最大 | 0.1        | -       | -  | -       | 1.6  | 0.4     | 2        | 0.5     | 0.1        |         | 0.05       | -       | 1.5        | 0.2     | 0.8        | 0.3        |
| 2      | 残留 | 0          | -       | -  | -       | 0.75 | 0.1     | 1.5      | 0.1     | 0          |         | 0,05<br>未満 | -       | 0.9        | 0.05    | 0.7        | 0.05       |
| -1/50  | 最大 | 1.1        | -       | -  | -       | 5    | 1.5     | 4        | 0.7     | 0.95       | _       | 0.1        | -       | 2.5        | 0.5     | 5          | 1.2        |
| 2      | 残留 | 0.65       | -       | -  | -       | 4.5  | 0.35    | 3.5      | 0.2     | 0.5        | -       | 0,05<br>未満 | -       | 1.3        | 0.15    | 2.5        | 0.2        |

| B試験体        |    | 柱    |         |      |         | 梁    |         |      |         | 柱    |         |      |         | 梁          |         |      |         |
|-------------|----|------|---------|------|---------|------|---------|------|---------|------|---------|------|---------|------------|---------|------|---------|
|             |    | 1F   | 1F北     |      | 2F北     |      | 北       | 3F北  |         | 1F南  |         | 2F南  |         | 2F         | 南       | 2F   | 南       |
|             |    | 曲げ   | せん<br>断 | 曲げ         | せん<br>断 | 曲げ   | せん<br>断 |
|             | 最大 | -    | -       | -    | -       | 0.1  | _       | 0.15 | -       | -    | _       | -    | -       | 0.05       | _       | 0.05 | -       |
| -1/800      | 残留 | -    | -       | -    | -       | 0.05 | -       | 0.1  | -       | -    | -       | -    | -       | 0          | -       | 0    | -       |
| -1/400<br>② | 最大 | -    | -       | -    | -       | 0.2  | -       | 0.5  | -       | 0.05 | _       | -    | -       | 0.1        | -       | 0.1  | -       |
|             | 残留 | -    | -       | -    | -       | 0.05 | -       | 0.15 | -       | 0    |         | -    | -       | 0.05<br>未満 | -       | 0.05 | -       |
| -1/200      | 最大 | 0.1  | -       | -    | -       | 0.45 | 0.2     | 0.7  | 0.2     | 0.1  | _       | -    | -       | 0.15       | 0.05    | 0.2  | -       |
| 2           | 残留 | 0    | -       | -    | -       | 0.05 | 0.1     | 0.2  | 0.05    | 0    |         | -    | -       | 0.05<br>未満 | 0.05    | 0.05 | -       |
| -1/133      | 最大 | 0.15 | -       | 0.15 | -       | 0.5  | 0.25    | 1.1  | 0.25    | 0.15 | _       | 0.1  | -       | 0.15       | 0.15    | 1    | -       |
| 2           | 残留 | 0    | -       | 0    | -       | 0.05 | 0.1     | 0.35 | 0.05    | 0    |         | 0    | -       | 0.05<br>未満 | 0.05    | 0.5  | -       |
| -1/100      | 最大 | 0.2  | -       | 0.25 | -       | 1.2  | 0.3     | 1.6  | 0.25    | 0.15 | I       | 0.2  | 1       | 0.35       | 0.2     | 2    | -       |
| 2           | 残留 | 0    | -       | 0    | -       | 0.5  | 0.1     | 1.1  | 0.1     | 0    | -       | 0    | -       | 0.2        | 0.05    | 0.8  | -       |
| -1/50       | 最大 | 0.55 | -       | 0.3  | -       | 1.9  | 0.3     | 4.8  | 0.35    | 0.7  | _       | 0.2  | 0.15    | 2          | 0.2     | 6    | -       |
| 2           | 残留 | 0.3  | -       | 0.05 | -       | 1.3  | 0.1     | 3.9  | 0.1     | 0.35 | -       | 0.05 | 0       | 0.9        | 0.05    | 3.5  | -       |

|             |    |      | ł       | ŧ    |         |            | -          | 2<br>K |         |      | ŧ       | ŧ    |         | 梁          |         |            |         |  |
|-------------|----|------|---------|------|---------|------------|------------|--------|---------|------|---------|------|---------|------------|---------|------------|---------|--|
| C試験体        |    | 1F   | 1F北     |      | 2F北     |            | 2F北        |        | 3F北     |      | 1F南     |      | 2F南     |            | 2F南     |            | 2F南     |  |
|             |    | 曲げ   | せん<br>断 | 曲げ   | せん<br>断 | 曲げ         | せん<br>断    | 曲げ     | せん<br>断 | 曲げ   | せん<br>断 | 曲げ   | せん<br>断 | 曲げ         | せん<br>断 | 曲げ         | せん<br>断 |  |
| -1/800      | 最大 | -    | -       | -    | -       | 0.1        | -          | 0.2    | _       | _    | -       | -    | -       | 0.05       | -       | 0.05       | -       |  |
|             | 残留 | -    | -       | -    | -       | 0.05<br>未満 | -          | 0.1    | _       | _    | -       | -    | -       | 0.05<br>未満 | -       | 0          | -       |  |
| -1/400<br>② | 最大 | -    | -       | -    | -       | 0.15       | -          | 0.35   | I       | Ι    |         | -    | -       | 0.1        | -       | 0.15       | Ι       |  |
|             | 残留 | -    | -       | -    | -       | 0.05       | _          | 0.1    | -       | _    | _       | _    | -       | 0.05<br>未満 | -       | 0.05<br>未満 | -       |  |
| -1/200      | 最大 | 0.05 | -       | -    | -       | 0.2        | 0.05       | 0.55   | 0.2     | 0.05 |         | -    | -       | 0.2        | -       | 0.3        | 0.1     |  |
| 2           | 残留 | 0    | -       | -    | -       | 0.05       | 0          | 0.2    | 0.1     | 0    | _       | _    | -       | 0.05<br>未満 | -       | 0.1        | 0.05    |  |
| -1/133      | 最大 | 0.1  | -       | 0.1  | -       | 0.95       | 0.1        | 1.9    | 0.25    | 0.1  | -       | 0.05 | -       | 0.6        | -       | 1          | 0.15    |  |
| 2           | 残留 | 0    | -       | 0    | -       | 0.6        | 0.05<br>未満 | 1.4    | 0.1     | 0    |         | 0    | -       | 0.3        | -       | 0.8        | 0.05    |  |
| -1/100      | 最大 | 0.15 | -       | 0.25 | -       | 1.6        | 0.1        | 2      | 0.3     | 0.15 | Ι       | 0.05 | -       | 1          | -       | 2          | 0.2     |  |
| 2           | 残留 | 0    | -       | 0    | -       | 1.3        | 0.05       | 1.4    | 0.1     | 0    | -       | 0    | -       | 0.5        | -       | 1.1        | 0.05    |  |
| -1/50       | 最大 | 0.6  | -       | 0.3  | -       | 2          | 0.15       | 4      | 0.3     | 0.7  | _       | 0.15 | _       | 2          | _       | 4          | 0.2     |  |
| 2           | 残留 | 0.25 | -       | 0    | -       | 1.5        | 0.05       | 3      | 0.1     | 0.25 | _       | 0    | -       | 1.5        | -       | 2.5        | 0.05    |  |

#### 3.6.4. 荷重変形関係と補強効果の比較

図 3-61、図 3-62、図 3-63 に各試験体の荷重変形関係を示す。なお、各図には、最大耐力点に加え、 柱主筋、はり主筋、はりあばら筋、アンカーボルトの降伏点も示している。また、これらの特性点を まとめたものを表 3-38 に示す。なお、全ての試験体の柱帯筋、滑り止めの固定に使用した試験体 B の 寸切りボルトの引張降伏は生じなかった。

試験体 A では、 $R=0.3\sim0.6\times10^{-2}$ rad 付近で、加力方向に対して圧縮側の RC 柱に取り付く CLT 袖壁 の 1F 脚部や 2F 脚部(1F 頂部)に設置したアンカーボルトが引張降伏した後、加力方向に対して引張 側の RC 柱に取り付く CLT 袖壁の 2F 頂部に設置したアンカーボルトが引張降伏した。その後、R=0.5 $\sim 0.6\times10^{-2}$ rad 付近で、2、3F の RC はりの主筋が相次いで降伏した。RC 柱の主筋は、全体変形角が  $R=1.0\times10^{-2}$ rad を超えてから降伏した箇所が多かった。なお、3F の RC はりでは、R=1/50rad サイクル においてあばら筋の降伏が生じている。

試験体 B では、滑り止めの固定に使用した寸切りボルトは降伏しておらず、 $R=0.4\sim0.7\times10^{-2}$ rad 付 近で、2、3F の RC はりの主筋が降伏した。試験体 A でははり主筋の降伏が  $R=0.5\sim0.6\times10^{-2}$ rad 付近 で集中して生じたのに対し、試験体 B でははり主筋が降伏した時の全体変形角にばらつきがあること から、水平接合材や鉛直接合材を設けていない試験体 B では、材端の位置によって CLT 袖壁による RC はりの拘束条件に差が生じたものと考えられる。RC 柱の主筋は、試験体 A と同様に、全体変形角 が  $R=1.0\times10^{-2}$ rad を超えてから降伏した箇所が多かった。なお、2、3F の RC はりでは、R=1/50rad、 1/25rad サイクルにおいてあばら筋の降伏が生じている。

試験体 C では、 $R=0.4\sim0.6\times10^{-2}$ rad 付近で、2、3F の RC はりの主筋が降伏したが、試験体 A、B と 比較して、はり主筋の降伏時の変形角に顕著な差は見られなかった。RC 柱の主筋は、試験体 A、B と 同様に、全体変形角が  $R=1.0\times10^{-2}$ rad を超えてから降伏した。なお、3F の RC はりでは、R=1/25rad サ イクルにおいてあばら筋の降伏が生じている。

ここからは、試験体 A、B の補強効果について検証する。図 3-64 に各試験体の包絡線の比較を示 す。表 3-38 に示すように、各試験体の初期剛性は、試験体 A で 48.0kN/mm、試験体 B で 46.0kN/mm となっており、試験体 C の 28.5kN/mm に対して、それぞれ 1.68 倍、1.61 倍である。各実験の実施時 期が異なるため、コンクリートの圧縮強度やヤング係数には差異があるが、いずれの試験体に関して も、CLT 袖壁の設置によって、初期剛性が大幅に増大していることが分かる。また、最大耐力に関し ては、試験体 A で 493kN、試験体 B で 403kN となっており、試験体 C の 275kN に対して、それぞれ 1.79 倍、1.47 倍と高い補強効果が得られていることが分かる。

274







図 3-62 水平荷重-変形角関係(試験体 B)



図 3-63 水平荷重-変形角関係(試験体 C)



図 3-64 包絡線の比較

## 表 3-38 各特性点における荷重と変形

| 如期副時 |                 | 最大荷重(R=1/100radまで) | 最大荷重(R=1/50radまで) | 最大耐力                         |           |  |  |
|------|-----------------|--------------------|-------------------|------------------------------|-----------|--|--|
|      | 初新画注<br>(kN/mm) | Q<br>(kN)          | Q<br>(kN)         | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN) |  |  |
| А    | 40.0            | 405                | 469               | 3.925                        | 493       |  |  |
|      | 48.0            | -400               | -472              | -2.918                       | -490      |  |  |
| D    | 46.0            | 335                | 399               | 3.975                        | 403       |  |  |
| В    | 40.0            | -328               | -381              | -4.005                       | -393      |  |  |
| с    | 00 F            | 220                | 260               | 4.001                        | 275       |  |  |
|      | 28.5            | -220               | -255              | -2.915                       | -269      |  |  |

# (a) 初期剛性と最大耐力

### (b) 柱主筋、はり主筋の降伏点

|   | 1F引張側柱主筋降伏                   |           | 1F圧縮側柱主筋降伏                   |           | 2F梁下並                        | 2F梁下端筋降伏  |                              | 端筋降伏      | 3F梁下站                        | 湍筋降伏      | 3F梁上端筋降伏                     |           |
|---|------------------------------|-----------|------------------------------|-----------|------------------------------|-----------|------------------------------|-----------|------------------------------|-----------|------------------------------|-----------|
|   | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN) |
|   | 1.358                        | 434       | 0.955                        | 400       | 0.601                        | 347       | 0.619                        | 352       | 0.493                        | 322       | 0.541                        | 323       |
| А | -                            | -         | -1.001                       | -400      | -0.608                       | -346      | -0.587                       | -340      | -0.478                       | -314      | -0.465                       | -309      |
| Б | 1.354                        | 362       | 1.207                        | 347       | 0.743                        | 285       | 0.650                        | 294       | 0.414                        | 253       | 0.549                        | 262       |
| В | -1.150                       | -315      | -0.999                       | -291      | -0.747                       | -313      | -0.577                       | -275      | -0.412                       | -233      | -0.453                       | -246      |
| ~ | 1.509                        | 247       | 1.111                        | 225       | 0.533                        | 185       | 0.606                        | 197       | 0.436                        | 172       | 0.446                        | 174       |
| U | -1.361                       | -237      | -1.011                       | -217      | -0.539                       | -182      | -0.468                       | -169      | -0.498                       | -181      | -0.486                       | -181      |

|   | 柱帯領                          | <b></b>   | 2F梁あば                        | ら筋降伏      | 3F梁あばら筋降伏                    |           |  |  |  |  |  |  |  |
|---|------------------------------|-----------|------------------------------|-----------|------------------------------|-----------|--|--|--|--|--|--|--|
|   | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN) | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN) | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN) |  |  |  |  |  |  |  |
| А | -                            | -         | -                            | -         | 0.141                        | -120      |  |  |  |  |  |  |  |
| В | -                            | -         | -2.917                       | -337      | 1.459                        | 365       |  |  |  |  |  |  |  |
| С | -                            | -         | -                            | -         | 0.622                        | 132       |  |  |  |  |  |  |  |
| - | -                            |           |                              |           |                              |           |  |  |  |  |  |  |  |

### (c) 帯筋、あばら筋の降伏点

\*あばら筋の降伏は、A試験体では1/50radサイクル、B試験体では1/50radサイクル、1/25radサイク ル、C試験体では1/25radサイクルの繰り返し載荷時に生じている。

1Fアンカーボルト降伏 2Fアンカーボルト降伏 3Fアンカーボルト降伏 R R R Q Q Q (kN) (kN) (kN) (×10<sup>-2</sup>rad)  $(\times 10^{-2} rad)$ (×10<sup>-2</sup>rad) 0.403 283 0.356 265 0.601 347 A -0.377 -275 -0.417 -290 -0.447 -302

## (d)アンカーボルトの降伏点

#### 3.6.5. 柱はりの主筋、せん断補強筋、アンカーボルト、寸切りボルトの降伏状況

図 3-65、図 3-66、図 3-67 に各サイクル終了時の各試験体の RC 柱はりの主筋及びせん断補強筋、 アンカーボルト、寸切りボルトの降伏箇所(ひずみゲージの貼付位置)を示す。なお、柱せん断補強 筋に関しては、載荷中の引張降伏は確認されていない。

試験体 A では、R=1/200rad 時に CLT 袖壁端に設けた水平接合部のアンカーボルトや、RC はり主筋の一部が引張降伏している。RC はり主筋の引張降伏は CLT 袖壁端でも確認されており、最終的に RC はり主筋の引張降伏は、CLT 袖壁と接する広い範囲に及んでいる。また、R=1/100rad では RC 柱主筋の引張降伏が、R=1/50rad 時には 3F はりのせん断補強筋の引張降伏が確認されている。

試験体 B では、CLT 袖壁の端部に設けた滑り止めを固定するための寸切りボルトの引張降伏は確認 されなかった。試験体 A と同じように、*R*=1/200rad 時に RC はりの主筋の一部が引張降伏している。 RC はり主筋の引張降伏は CLT 袖壁端でも確認されており、最終的に RC はり主筋の引張降伏は、CLT 袖壁と接する広い範囲に及んでいる。また、*R*=1/50rad では RC 柱主筋の引張降伏や 3F はりのせん断 補強筋の引張降伏が確認されている。

試験体 C では、他の試験体と同じように、*R*=1/200rad 時に RC はり主筋の一部が引張降伏している が、引張降伏した位置は、柱際に集中している。その後、スパン中央に向かって RC はり主筋が引張 降伏する範囲が広がっていくが、試験体 A、B と比較すると、その範囲は狭かった。また、*R*=1/100rad では RC 柱主筋の引張降伏が、*R*=1/25rad 時には 3F はりのせん断補強筋の引張降伏が確認されている。

以上を踏まえると、CLT 袖壁を設置した試験体では、比較的早期に CLT 袖壁端でも RC はり主筋の 引張降伏が生じており、塑性化の範囲が CLT 袖壁と接する部分のほぼ全域に及ぶため、CLT 袖壁を設 置しない試験体よりも、RC はりの塑性ヒンジが長くなっている可能性がある。また、試験体 A、B で は、CLT 袖壁端部よりも内側の RC はり主筋にはひずみゲージを貼付していないため、RC はりの実 際の塑性化の範囲がさらにスパン内側まで広がっている可能性がある。



図 3-65 各変形サイクル終了時における降伏状況(試験体 A)



図 3-66 各変形サイクル終了時における降伏状況(試験体 B)



図 3-67 各変形サイクル終了時における降伏状況(試験体 C)

## 3.6.6. 変形成分

## 3.6.6.1.1、2 階の層間変形角の比較

図 3-68 に 1、2 階の層間変形角と全体変形角の比較を示す。いずれの試験体でも、各階の層間変形 角と全体変形角の間に比例に近い関係があり、1 階と比較して 2 階の層間変形角が大きくなっている ことから、1 階柱脚、各階はりの材端に塑性ヒンジが形成される全体崩壊形が形成されているものと 推測される。



図 3-68 1、2 階の層間変形角と全体変形角の比較

## 3.6.6.2. RC はりの軸方向の変形量の推移

図 3-69 に、試験体の両側に設置した変位計で計測した 2、3F はり中心高さにおける水平変位の差分から求めた 2、3F はりの軸方向の変形量の推移を示す。R=1/100rad 付近までは、2F はりで 5mm、3F はりで 10mm 程度の伸び量に留まっているが、その後の R=1/50rad サイクルの繰り返し載荷時に軸伸び量が急増した。

図 3-70 に、2、3F はりの軸伸び量をはりの材長(ここでは、内法スパン 3100mm とした)で除して 求めた 2、3F はりの軸ひずみの推移を示す。試験体 A、B では、*R*=1/33rad サイクルにおいて、2F で 1%程度、3F でも 1.5%程度の軸伸びが生じている。

軸伸び量の大きさは、試験体A、B、Cの順に大きくなった。したがって、CLT 袖壁を設置し、RC はりの塑性ヒンジの形成箇所がスパンの内側に移動した試験体ほど、RC はりの軸伸び量が大きく、 加力方向に対して、圧縮側と引張側の柱の水平変位量に大きな差が生じている。



#### 3.6.6.3. RC 柱の変形成分

図 3-71、図 3-72 に全体変形角と変位計で計測した 1、2F の RC 柱の曲げ変形角、せん断変形角、 曲げ変形角とせん断変形角の和の関係を示す。なお、1F の RC 柱の各変形角は基礎スタブ上端面から 高さ 1925mm までの範囲、2F の RC 柱の各変形角は高さ 1925mm から 3925mm までの範囲で計算し ている。

IFのRC柱の変形を見ると、正方向載荷時と比較して、負方向載荷時の変形角が大きくなっている。 これはRCはりの軸伸びにより、加力方向に対して圧縮側のRC柱の方が、加力方向に対して引張側 のRC柱と比較して、水平変形量が大きくなることが原因である。いずれの試験体でも、全体変形角 の増大に伴って、せん断変形が増大する傾向は見られるが、変形角全体に占める割合は曲げ変形が大 きく、IF柱脚に形成された塑性ヒンジによる崩壊機構が形成されていることが確認できる。

2FのRC柱の変形を見ると、IFのRC柱と比較して変形角が小さく、試験体Bの正方向を除けば、 全体変形角が増大してもほぼ頭打ちとなっていることが分かる。したがって、2Fでは崩壊機構の形成 に影響するような塑性ヒンジはRC柱に発生していないことが確認できる。





## 3.6.6.4. RC はりの変形成分

図 3-73、図 3-74 に全体変形角と変位計で計測した 2、3FのRC はりの曲げ変形角、せん断変形角、曲げ変形角とせん断変形角の和の関係を示す。なお、各変形角は、試験体の中央から柱側に 1625mm までの範囲(RC 柱フェイス位置から 75mm 柱はり接合部内に入り込んだ位置)で計算している。

2FのRCはりに関しては、1FのRC柱と同じように、載荷方向によって、RCはりの変形角に差が 生じており、加力方向に対して引張側のRC柱に取り付く正方向載荷時よりも、加力方向に対して圧 縮側のRC柱に取り付く負方向載荷時の方が、変形角がやや大きくなる傾向が見られた(試験体Cで も同様の傾向が見られているため、原因は不明)。また、曲げ変形角と比較してせん断変形角が小さく、 全体変形角の増大に伴ってほぼ頭打ちとなる傾向が見られることから、RCはりに塑性ヒンジが形成 される全体崩壊機構が形成されていることが確認できる。

3FのRCはりに関しては、試験体A、Cに関しては、2FのRCはりと比較すると、載荷方向による RCはりの変形角の差は小さく、2FのRCはりと同様に、曲げ変形角と比較してせん断変形角が小さ く、全体変形角の増大に伴ってほぼ頭打ちとなる傾向が見られることから、RCはりに塑性ヒンジが 形成される全体崩壊機構が形成されていることが確認できる。一方、試験体Bでは、加力方向に対し て引張側のRC柱に取り付く正方向載荷時に、RCはりのせん断変形角が頭打ちとならず、全体変形角 の増大に伴って増加する傾向が見られる。試験体Bでは、試験体Aと異なり、正方向載荷時にCLT 袖壁に作用する圧縮軸力が、2、3FのRCはりのみを介してRC柱に伝達されるため、RCはりの負担 が大きくなるが、RCはりの損傷状況やここで示したせん断変形成分の比較から、2Fよりも3Fの方が RCはりのせん断負担が大きく、より厳しい条件となっていることが推測できる。



#### 3.6.6.5. CLT 袖壁の変形成分

図 3-75、図 3-76 に全体変形角と変位計で計測した 1、2F の CLT 袖壁の曲げ変形角、せん断変形角、 曲げ変形角とせん断変形角の和の関係を示す。なお、1F の CLT 袖壁の各変形角は基礎スタブ上端面 から高さ 1675mm までの範囲、2F の RC 柱の各変形角は高さ 1925mm から 3675mm までの範囲で計 算している。CLT 袖壁の変形を見ると、いずれの試験体でも、全体変形角の増大に伴って、せん断変 形が増大する傾向は見られるが、曲げ変形とせん断変形の割合は、試験体ごと、また、載荷方向ごと に異なっている。

1 階の CLT 袖壁に関しては、試験体 A では、正方向載荷時(加力方向に対して引張側の RC 柱に取り付く場合)には曲げ変形が卓越するが、負方向載荷時(加力方向に対して圧縮側の RC 柱に取り付く場合)には、せん断変形の割合が大きくなる傾向が見られる。一方、試験体 B では、載荷方向による差は小さく、せん断変形の割合も比較的大きい。2 階の CLT 袖壁に関しては、試験体 A では、正方向載荷時にはせん断変形の割合がほぼ一致しており、全体的にせん断変形の割合が大きいことが分かる。一方で、試験体 B に関しては、正方向載荷時には試験体 A と同様にせん断変形の割合が大きいが、負方向載荷時には曲げ変形の割合が大きくなっている。以上の結果より、CLT 袖壁に関しては、載荷方向や CLT 袖壁が設置されている階によって、CLT 袖壁の応力状況が大きく異なっていることから、曲げ変形、せん断変形の割合にもばらつきが見られるものと考えられる。









#### 3.6.6.6. 鉛直接合面におけるせん断変形

図 3-77、図 3-78 に式(3.15)、(3.16)によって求めた RC 柱-CLT 袖壁間の鉛直接合面のせん断変形の 推移を示す。式(3.15)は、図 3-52 で示した鉛直接合面における水平方向の計測区間(275mm)に設置 した変位計の計測値から求めたせん断変形をそのまま示したもの、式(3.16)は、上記から図 3-49、図 3-51 で示した隣接する RC 柱および CLT 袖壁のせん断変形を差し引き、鉛直接合面におけるせん断 変形を抽出したものとなる。式(3.15)、(3.16)によるせん断変形に、試験体 B では殆ど差は見られない が、試験体 A では比較的差が大きいため、式(3.16)による算定方法を採用している。

$$\delta_{s1}' = \frac{\sqrt{h_j^2 + (l_{jc} + l_{jw})^2}}{2 \cdot h_j} (\delta_{j2} - \delta_{j1})$$

$$\delta_{s1} = \frac{\sqrt{h_j^2 + (l_{jc} + l_{jw})^2}}{2 \cdot h_j} (\delta_{j2} - \delta_{j1}) - \frac{\sqrt{h_c^2 + l_c^2}}{2 \cdot h_c \cdot l_c} (\delta_{c2} - \delta_{c1}) \cdot l_{jc} - \frac{\sqrt{h_w^2 + l_w^2}}{2 \cdot h_w \cdot l_w} (\delta_{w2} - \delta_{w1}) \cdot l_{jw}$$
(3.15)
$$(3.16)$$

ここで、 $h_j$ : 鉛直接合部の計測区間の高さ(=550mm)、 $l_{jc}$ 、 $l_{jw}$ : 鉛直接合部の計測区間のうちの RC 柱 部分の長さ(=75mm)、CLT 袖壁部分の長さ(=200mm)、 $h_c$ 、 $l_c$ : RC 柱の計測区間の高さ(=550mm)、長さ (=250mm)、 $h_w$ 、 $l_w$ : CLT 袖壁の計測区間の高さ(=550mm)、長さ(=400mm)、 $\delta_{j1\sim j2}$ 、 $\delta_{c1\sim c2}$ 、 $\delta_{w1\sim w2}$ : 変位 計による 1F の鉛直接合部、RC 柱、CLT 袖壁の対角方向の変形量(mm)である。

試験体Aでは、CLT 袖壁が加力方向に対して圧縮側のRC 柱に取り付く負方向載荷時よりも、CLT 袖壁が加力方向に対して引張側のRC 柱に取り付く正方向載荷時のせん断変形量がやや大きかった。 これは、正方向載荷時の方がCLT 袖壁が負担する圧縮軸力が大きいため、鉛直接合部に作用するせん 断力も大きくなったものと考えられる。式(3.16)による鉛直接合部のせん断変形は最大で2.4mm 程度 であった。材料試験の結果に基づいた数値解析で求めたドリフトピン接合部の荷重変形関係を見ると、 5%オフセット降伏耐力時の変位が1.85mm となっていることから、載荷実験で鉛直接合部のドリフト ピン接合部に生じたせん断力は、降伏耐力程度であったものと推測される。

試験体 B では、RC 柱-CLT 袖壁間でずれが生じたことにより、試験体 A よりもせん断変形量が大 きく、最大で 12.6mm のせん断変形が生じている。CLT 袖壁が加力方向に対して引張側の RC 柱に取 り付く正方向載荷時には 2F、CLT 袖壁が加力方向に対して圧縮側の RC 柱に取り付く負方向載荷時に は 1F のずれ量が大きくなっており、試験体 A と同様に、載荷方向によって異なる傾向が見られた。



(a) 試験体 A(b) 試験体 B図 3-77 式(3.15)による鉛直接合面におけるせん断変形量の推移



図 3-78 式(3.16)による鉛直接合面におけるせん断変形量の推移

## 3.6.6.7. 鉛直接合面における離間

図 3-79 に RC 柱-CLT 袖壁間の鉛直接合部の離間量の推移を示す。試験体 A では、最大でも離間 量は 1.0mm 以下に留まっており、鉛直接合部を設けることで、離間がコントロールされていることが 分かる。一方、試験体 B では離間量が最大で 3.5mm 程度と、試験体 A の 3 倍以上の離間が生じてい た。試験体 B では CLT 袖壁端に滑り止めを設けているものの、鉛直接合部に充填した無収縮モルタル の亀裂に沿ってずれ変形が生じることで、試験体 A よりも離間量が大きく、且つ、離間量と全体変形 角の関係が不連続になったものと考えられる。





図 3-80 にはりにおいて、曲率、回転角の計測に用いた変位計の位置を示す。計測範囲は、スパンの 中央から 1625mm までの範囲であり、柱フェイスから 75mm 柱側に入り込んだ位置までを計測してい る。計測区間は、2、3 階のはりをそれぞれ 5 分割した計 10 区間であり、2 階の柱側から 1~10 までの 区間名で区別している。


図 3-80 はりの曲率、回転角の測定(試験体 A の場合、単位:mm)

図 3-81 に荷重変形関係の包絡線上における各計測区間の回転角  $\theta_1 \sim \theta_{10}$ の推移を示す。試験体 C で は計測範囲 1、2 や計測範囲 6、7 の回転角が大きく、はり端に変形が集中しているのに対し、試験体 A では計測範囲 4、9 の回転角が、試験体 B では計測区間 3、8 の回転角が大きくなっており、塑性ヒ ンジの位置が袖壁端に移動する傾向が捉えられている。

なお、試験体 B の計測区間 8 や、試験体 C の計測区間 6 では、全体変形角の増減と連動しない形 で、負方向に大きな回転角が生じている。これは、全体変形角の増大に伴い、3F はりの上端の伸び量 が下端の伸び量と比べて大きくなったことが原因である。試験体 A では、アンカーボルトの拘束によ って、3F はり上端の伸び量の増大が抑えられており、試験体 B、C とは挙動が異なっている。



(c) 試験体 C 図 3-81 各試験体のはりの回転角

各計測区間の回転角と曲率を用いて、以下の算定式ではりの塑性ヒンジ長さの推定を行った。本検 討では、各計測区間における最大の曲率を用いて、塑性ヒンジ長さの推定を行うため、計測区間の設 定(長さや位置)に依存した結果となる点に注意されたい。例えば、本実験における計測区間の最小 値は 200mm となるため、ここで示した方法で推定できる最低の塑性ヒンジ長さは 200mm (はりせいの 0.5 倍) となる。なお、柱については、想定される塑性ヒンジ長さ (0.5~1.0*D*c、*D*c は柱せいで 400mm) に対して、柱脚の計測区間の長さ (525mm) が長いため、塑性ヒンジ長さの推定は行わない。

$$L_{p,2F} = \frac{|\theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5|}{Max(|\phi_1|, |\phi_2|, |\phi_3|, |\phi_4|, |\phi_5|)}$$

$$L_{p,3F} = \frac{|\theta_6 + \theta_7 + \theta_8 + \theta_9 + \theta_{10}|}{Max(|\phi_6|, |\phi_7|, |\phi_8|, |\phi_9|, |\phi_{10}|)}$$
(3.17)

(3.18)

ここで、 $\theta_1$ 、 $\theta_2$ 、 $\theta_3$ 、 $\theta_4$ 、 $\theta_5$ : 2F はりの計測区間 1~5 で計測された回転角、 $\varphi_1$ 、 $\varphi_2$ 、 $\varphi_3$ 、 $\varphi_4$ 、 $\varphi_5$ : 2F はりの計測区間 1~5 で計測された曲率、 $\theta_6$ 、 $\theta_7$ 、 $\theta_8$ 、 $\theta_9$ 、 $\theta_{10}$ : 3F はりの計測区間 6~10 で計測された回転角、 $\varphi_6$ 、 $\varphi_7$ 、 $\varphi_8$ 、 $\varphi_9$ 、 $\varphi_{10}$ : 3F はりの計測区間 6~10 で計測された曲率である。

図 3-82 に 2、3F のはりの塑性ヒンジ長さの推定値を示す。ここでは水平荷重-全体変形角関係の 包絡線上の計測点の計測値を用いた結果のみを示した。いずれの試験体においても、全体変形角が小 さい範囲では、弾性変形が各計測範囲に生じるため、見かけ上の塑性ヒンジ長さははりせいの 2 倍 (800mm)を超える値となるが、R=1/133rad サイクルで概ね全てのはりのはり主筋が引張降伏し、は りの曲げ変形が塑性ヒンジに集中し始めると、塑性ヒンジの長さが短くなった。試験体 B の 3F はり の負方向載荷時のみ、R=1/100rad 以降のサイクルでも、塑性ヒンジ長さの大幅な減少が見られ、最終 的にはりせいの 0.5 倍 (200mm) 程度まで短くなった。その他のはり端では、はりせいの 1 倍 (400mm) から 1.5 倍(600mm) に集約する場合が多かった。試験体 C では、塑性ヒンジ長さは、いずれのはり 端でもはりせいの1倍(400mm)程度になったのに対し、試験体A、Bでは、載荷方向、はり端の位 置によって、塑性ヒンジ長さが異なっており、試験体 A では、負方向載荷時の 2F はり端でははりせ いの2倍(800mm)程度と塑性ヒンジ長さが最も長くなるのに対し、その他の場合にははりせいの1 倍(400mm)程度に留まった。一方、試験体Bでは、正方向載荷時の塑性ヒンジ長さははりせいの1 倍(400mm)程度と試験体 C と殆ど同じであったが、負方向載荷時(R=1/50rad までのサイクルに限 る)の塑性ヒンジ長さははりせいの 1.5 倍となり、試験体 C とは異なる傾向を示した。なお、はりせ いの 1.5 倍の長さ(600mm)は、袖壁長さ(650mm)に近い値となっており、塑性ヒンジ長さは、は りせいだけでなく、袖壁長さの影響も受けているものと考えられる。



291

次に、はりに取り付けた曲げ変形角算定用の変位計の計測値を用いて、以下の算定式ではりの塑性 ヒンジ位置の推定を行った。2階、3階のはりの回転角は以下の算定式で求められる。

$$\theta_{2F} = \theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5 \tag{3.19}$$

$$\theta_{3F} = \theta_6 + \theta_7 + \theta_8 + \theta_9 + \theta_{10}$$

(3.20)

(3.22)

(3.24)

ここで、 $\theta_1$ 、 $\theta_2$ 、 $\theta_3$ 、 $\theta_4$ 、 $\theta_5$ : 2F はりの計測区間 1~5 で計測された回転角、 $\theta_6$ 、 $\theta_7$ 、 $\theta_8$ 、 $\theta_9$ 、 $\theta_{10}$ : 3F はりの計測区間 6~10 で計測された回転角である。

スパン中央における2階、3階のはりの曲げ変形は以下の算定式で求められる。

$${}_{b}\delta_{2F} = \theta_{1} \cdot \left(\frac{l_{1}}{2} + l_{2} + l_{3} + l_{4} + l_{5}\right) + \theta_{2} \cdot \left(\frac{l_{2}}{2} + l_{3} + l_{4} + l_{5}\right) + \theta_{3} \cdot \left(\frac{l_{3}}{2} + l_{4} + l_{5}\right) + \theta_{4} \cdot \left(\frac{l_{4}}{2} + l_{5}\right) + \theta_{5} \cdot \frac{l_{5}}{2}$$

$$(3.21)$$

$${}_{b}\delta_{3F} = \theta_{6} \cdot \left(\frac{l_{6}}{2} + l_{7} + l_{8} + l_{9} + l_{10}\right) + {}_{b}\theta_{7} \cdot \left(\frac{l_{7}}{2} + l_{8} + l_{9} + l_{10}\right) + \theta_{8} \cdot \left(\frac{l_{8}}{2} + l_{9} + l_{10}\right) + \theta_{9} \cdot \left(\frac{l_{9}}{2} + l_{10}\right) + \theta_{10} \cdot \frac{l_{10}}{2}$$

ここで、b1、b2、b3、b4、b5:2Fはりの計測区間 1~5の長さ、b6、b7、b8、bb、b10:3Fはりの計測 区間 6~10の長さである。

はりの回転角とスパン中央における曲げ変形の関係から、2階、3階のはりの塑性ヒンジ位置の座標 (スパン中央を x=0、袖壁が取り付く北側柱芯を x=-1750mm とした場合)は、以下の算定式で求められる。

$$x_{p,2F} = -\frac{b\delta_{2F}}{\theta_{2F}}$$

$$L_{p,3F} = -\frac{b\delta_{3F}}{\theta_{3F}}$$
(3.23)

図 3-83 に 2、3F のはりの塑性ヒンジの座標の推定値を示す。ここでは、横軸が試験体の水平方向の座標となっており、袖壁フェイスの位置をx=-900mm、柱フェイスの位置をx=-1550mm としている。 また、推定した塑性ヒンジの位置がちょうど塑性ヒンジの範囲の中心となるように、塑性ヒンジの座 標に先程求めた塑性ヒンジ長さの半分を足し引きして求めた塑性ヒンジの範囲も図中に合わせて示す。

塑性ヒンジ長さと同様に、全体変形角が小さい範囲では、弾性変形が各計測範囲に生じるため、見かけ上の塑性ヒンジの位置は、スパン中央よりとなるが、*R*=1/133rad サイクルで概ね全てのはりのはり主筋が引張降伏し、はりの曲げ変形が塑性ヒンジに集中し始めると、塑性ヒンジの位置は柱フェイスよりとなり、全体変形角の増大に伴う座標の変動も小さくなった。

試験体 C では、塑性ヒンジの範囲の一端が柱フェイス位置と概ね重なっており、柱フェイス位置に 危険断面を設ける一般的な考え方と整合している。また、いずれのはり端でも塑性ヒンジ長さははり せい(400mm)と同程度となることから、通常の骨組解析の手法で評価可能なものと考えられる。

試験体A、Bに関しても、正方向載荷時の3Fはり端や負方向載荷時の2Fはり端では、柱フェイス 位置が塑性ヒンジの範囲の一端と概ね重なっており、試験体Cと同様の傾向を示しているが、試験体 Bの正方向載荷時の3Fはり端を除くと、塑性ヒンジ長さははりせいの1.5倍(600mm)~2.0倍(800mm) 程度まで達しており、特に塑性ヒンジ長さの大きい試験体 A の負方向載荷時の 2F はり端では、袖壁 内から飛び出すように塑性ヒンジが形成されていることが分かる。また、正方向載荷時の 2F はり端 や負方向載荷時の 3F はり端では、塑性ヒンジの長さは 1.0 倍(400mm)~1.5 倍(600mm)程度であ るが、塑性ヒンジの範囲の一端が柱フェイス位置よりも内側に移動しており、柱フェイス位置には塑 性ヒンジが形成されない結果となった。



図 3-84、図 3-85、図 3-86 に、R=1/33rad 時のはり端の損傷状況に、塑性ヒンジのおおよその長さと 位置を重ねた図を示す。繰り返し載荷の影響により、載荷方向とそれに対応するはり端の損傷の関係 が分かりにくくなっている箇所はあるが、いずれの試験体でも、計測結果から求めた塑性ヒンジの範

囲(図中の矢印)と、はりの損傷箇所が概ね対応していることが分かる。

以上の結果より、はりの塑性ヒンジの位置や長さは、試験体や載荷方向ごとに異なるため、袖壁が 取り付くはり端の状況を適切にモデル化する必要がある。



(c) 2F 負方向(d) 2F 正方向図 3-84 実験の損傷状況との比較(試験体 A、1/33rad サイクル)



(c) 2F 負方向(d) 2F 正方向図 3-85 実験の損傷状況との比較(試験体 B、1/33rad サイクル)



(c) 2F 負方向
 (d) 2F 正方向
 図 3-86 実験の損傷状況との比較(試験体 C、1/33rad サイクル)

### 3.6.6.9. RC はりのせん断変形成分

図 3-87 にはりにおいて、せん断ひずみ、せん断変形の計測に用いた変位計の位置を示す。計測範囲 は、スパンの中央から 1625mm までの範囲であり、柱フェイスから 75mm 柱側に入り込んだ位置まで を計測している。計測区間は、2、3 階のはりをそれぞれ 5 分割した計 10 区間であり、2 階の柱側から 1~10 までの区間名で区別している。



図 3-87 はりのせん断ひずみ、せん断変形の測定(試験体 A の場合、単位:mm)

図 3-88 に荷重変形関係の包絡線上の各計測区間のせん断ひずみの推移を示す。試験体 C では計測 範囲 1、2 や計測範囲 6、7 のせん断ひずみが大きく、はり端に変形が集中しているのに対し、試験体 A では計測範囲 4、8、9 のせん断ひずみが、試験体 B では計測範囲 1、2 や計測範囲 6、7 に加え、計 測区間 3、8 のせん断ひずみが大きくなっており、回転角と同様に、せん断ひずみに関しても、袖壁の 挿入によって、スパン内側の値が大きくなる傾向が捉えられている。











(c) 試験体 C 図 3-88 各試験体のはりのせん断ひずみ

## 3.6.7. 各部位のひずみの推移

# 3.6.7.1. アンカーボルトの軸ひずみの推移

図 3-89、図 3-90 に試験体 A のアンカーボルトに貼付したひずみゲージを用いて計測した軸ひずみの推移を示す。なお、アンカーボルトの引張降伏は、いずれの階でも、*R*=1/200rad サイクルの前後で確認されているが、構造上、繰り返し載荷時に圧縮力の負担ができないため、一度、引張ひずみが生じると、同一サイクルでは、ひずみがほぼ横ばいとなっていることが分かる。引張ひずみの大きさは、CLT 袖壁脚部の離間が生じる 1F が最も大きく、RC はりの変形が下側のみ拘束される 3F、RC はりの変形が上下から拘束される 2F の順に小さくなった。





図 3-89 アンカーボルトの軸ひずみの推移(試験体 A、東側)

図 3-90 アンカーボルトの軸ひずみの推移(試験体 A、西側)

## 3.6.7.2. 寸切りボルトの軸ひずみの推移

図 3-91、図 3-92 に試験体 B の滑り止めの固定に用いた寸切りボルトに貼付したひずみゲージを用 いて計測した軸ひずみの推移を示す。材料試験で得られた寸切りボルトの降伏ひずみは 2951µ であり、 本実験では寸切りボルトの引張降伏は確認されていない。引張ひずみの大きさは、スパン内側よりも スパン外側の方が大きく、CLT 袖壁から滑り止めに水平せん断力が作用することにより、滑り止めの 脚部に曲げモーメントが作用していることが確認できる。そのため、加力方向に対して引張側の RC 柱に CLT 袖壁が取り付く正方向載荷時の北側と負方向載荷時の南側で、特に引張ひずみが大きくなっ ている。







図 3-92 寸切りボルトの軸ひずみの推移(試験体 B、スパン外側)

#### 3.6.7.3. RC 柱と CLT 袖壁の断面内の軸ひずみの分布

図 3-93 から図 3-95 に、ひずみゲージで計測した試験体 A の正方向載荷時の各サイクルのピーク時における RC 柱及び CLT 袖壁の断面内の軸ひずみの分布を示す。

加力方向に対して引張側となる 2F 北側の RC 柱と CLT 袖壁では、脚部(y=2125mm) では CLT 袖 壁の内側に、頂部(y=3475mm) では CLT 袖壁の外側に圧縮ひずみが発生しており、CLT 袖壁内に圧 縮ストラットが形成されているものと考えられる。その結果、頂部(y=3475mm) では、RC 柱と CLT 袖壁の軸ひずみの分布がやや不連続となっている。

加力方向に対して引張側となる 1F 北側の RC 柱と CLT 袖壁では、脚部から頂部まで CLT 袖壁の断 面全体で圧縮ひずみが生じているが、危険断面に近い y=125mm の高さではなく、少し上の y=575mm の高さにおけるひずみが大きくなっている。その原因としては、試験体 A では、CLT 袖壁の端部にド リフトピンを用いた水平接合部を設けているため、材端に近い y=125mm の高さでは、ドリフトピン を介して、内部に挿入した鋼板にも圧縮軸力の一部が伝達され、その結果、y=125mm の高さよりも y=575mm の高さの方が CLT 袖壁に作用する圧縮軸力が大きくなった可能性が考えられる。断面内の 軸ひずみはほぼ直線上に分布しており、鉛直接合部を設けたことで平面保持仮定が概ね成立する状況 となっているものと考えられる。

加力方向に対して圧縮側となる 2F 南側の RC 柱と CLT 袖壁では、脚部(y=2125mm)では CLT 袖 壁の外側に、頂部(y=3475mm)では CLT 袖壁の内側に圧縮ひずみが発生しており、CLT 袖壁内に圧 縮ストラットが形成されているものと考えられるが、2F 北側と比較するとそのひずみは小さい。CLT 袖壁の外側に圧縮ひずみが生じる脚部(y=2125mm)では、RC 柱と CLT 袖壁の軸ひずみの分布がやや 不連続となっている。

加力方向に対して圧縮側となる 1F 南側の RC 柱と CLT 袖壁では、頂部(y=1475mm)を除くと、 CLT 袖壁には圧縮ひずみがほとんど生じていない。CLT 袖壁の端部にはドリフトピンを介した水平接 合部を設けているため、脚部 (y=575mm)では、CLT 袖壁に引張ひずみが生じている。ここで、y=125mm の高さでは CLT 袖壁に殆ど引張ひずみが生じていない理由としては、1F 北側と同じように、内部に 挿入した鋼板が引張軸力を負担するため、y=125mm の高さでは、CLT 袖壁に殆ど引張力が作用してい ない可能性が考えられる。また、y=125mm の高さでは、RC 柱と CLT 袖壁の軸ひずみの分布も不連続 である。











(ii) 1F

図 3-94 R=+1/100rad 時のひずみ分布(試験体 A)



図 3-95 R=+1/50rad 時のひずみ分布(試験体 A)

図 3-96 から図 3-98 に、ひずみゲージで計測した試験体 B の正方向載荷時の各サイクルのピーク時 における RC 柱及び CLT 袖壁の断面内の軸ひずみの分布を示す。鉛直接合部を設けていない試験体 B では、いずれの材端においても、*R*=1/100rad 付近から RC 柱と CLT 袖壁の軸ひずみの分布が不連続と なっており、材端によっては直線上にひずみが分布していた試験体 A との差異が見られた。また、い ずれの CLT 袖壁でも、脚部と頂部で CLT 袖壁に生じる圧縮ひずみの位置が内側と外側で入れ替わっ ており、CLT 袖壁内に圧縮ストラットが形成されているものと考えられる。なお、試験体 B では引張 軸力を伝達できるような水平接合部も設けていないため、CLT 袖壁には引張ひずみが殆ど生じていな い。

加力方向に対して引張側となる 2F 北側の RC 柱と CLT 袖壁では、脚部や頂部で計測された圧縮ひ ずみの値が、試験体 A よりも試験体 B の方が大きく、試験体 B では鉛直接合部を介した応力伝達が 期待できない分、CLT 袖壁の端部に作用する圧縮応力が大きくなっているものと考えられる。

加力方向に対して引張側となる 1F 北側の RC 柱と CLT 袖壁では、試験体 A と同様に、脚部から頂 部まで CLT 袖壁の断面全体で圧縮ひずみが生じていたが、ドリフトピンを介した水平接合部を設けた 試験体 A とは異なり、危険断面に近い y=125mm の高さにおいて、圧縮ひずみが最大となった。



















(ii) 1F







### 3.6.8. 各部材に作用する軸力、せん断力の推定

## 3.6.8.1. アンカーボルトに作用する引張力の推移

図 3-100 に、試験体 A のアンカーボルトに作用する引張力の推移を示す。なお、アンカーボルトの 引張力は、CLT 袖壁端に設けられた各 2 本のアンカーボルトのうち、東側の 1 本に貼り付けたひずみ ゲージによる計測値を用いて引張力を算定し、これを 2 倍した値を用いている。

図 3-99 に軸力の推定に使用したアンカーボルトの材料モデルを示す。アンカーボルトの材料特性は、バイリニアでモデル化し、引張力のみを負担し、圧縮力の負担は無視することとした。

加力方向に対して圧縮側の RC 柱に取り付く北側の CLT 袖壁の負方向載荷時、南側の CLT 袖壁の 正方向載荷時では、1 階および 2 階のアンカーボルトが引張降伏しているのに対し、3 階のアンカー ボルトには引張力がほとんど生じていない。なお、1 階では全体変形角の増大に伴い、CLT 袖壁脚部 の離間が増大するにつれ、アンカーボルトの引張力が増大を続けるが、2 階ではアンカーボルトの引 張力は降伏耐力でほぼ頭打ちとなっている。加力方向に対して引張側の RC 柱に取り付く北側の CLT 袖壁の正方向載荷時、南側の CLT 袖壁の負方向載荷時では、1、2 階のアンカーボルトには引張力がほ とんど生じておらず、3 階のアンカーボルトが引張降伏している。1 階と比較すると応力増分は小さい が、3 階のアンカーボルトでもひずみ硬化に伴う引張力の増大が確認されている。



図 3-99 仮定したアンカーボルトの材料特性(引張:正、圧縮:負)



### 3.6.8.2. CLT 袖壁に作用する軸力の推移

図 3-102 に荷重変形関係の包絡線上の計測点を対象にした CLT 袖壁に作用する軸力の推移を示す。 CLT 袖壁に作用する軸力は、3.6.7.3 で示した CLT 袖壁の各断面内のひずみ分布がほぼ直線上に分布し ていることを考慮して、最小2乗法によって、線形のひずみ分布を仮定し、袖壁断面を袖壁せいの方 向に 10 分割した断面解析により、CLT 袖壁の軸力を推定した。断面解析では、図 3-99(a)に示すよう に、CLT の材料特性をバイリニアでモデル化し、圧縮強度を頭打ちにし、繰り返しの影響も考慮した。 ここでは、各階の CLT 袖壁の上下端に近い断面(y=125mm、1475mm、2125mm、3475mm)と、中央 寄りの断面(y=575mm、1025mm、2575mm、3025mm)を対象に推定を行った。

図 3-101 に軸力の推定に使用した CLT の材料モデルを示す。CLT の圧縮特性は、材料特性をバイリニアでモデル化し、座屈強度を頭打ちにし、繰り返しの影響も考慮した。



図 3-101 仮定した CLT の材料特性(引張:正、圧縮:負)

試験体Aでは、繰り返し載荷の影響はあるものの、全体変形角の増大に伴って、CLT 袖壁の負担する圧縮軸力が漸増する傾向が確認されている。また、CLT 袖壁に作用する圧縮軸力は、CLT の材料試験結果から求めた座屈強度(16.8N/mm<sup>2</sup>)による圧縮耐力(1310kN)を下回っていた。

各断面に作用する圧縮軸力を比較すると、各階の CLT 袖壁の中央寄りの断面のひずみ分布から推定 した圧縮軸力の方が、各階の CLT 袖壁の上下端に近い断面のひずみ分布から推定した圧縮軸力よりも 大きくなる傾向が確認された。試験体 A では RC 柱-CLT 袖壁間の鉛直接合部を介した応力伝達が行 われるため、上下端に近い断面の方が中央寄りの断面よりも作用する圧縮軸力が大きくなるものと思 われるが、CLT 袖壁の端部に鋼板挿入ドリフトピンによる水平接合部を設けているため、CLT 袖壁に 作用する圧縮軸力の一部が、ドリフトピンを介して、水平接合部の鋼板に伝達されているものと考え られる。そのため、CLT 袖壁の上下端に近い断面(y=125mm、1475mm、2125mm、3475mm)では、 CLT 袖壁の軸ひずみが小さくなり、CLT 袖壁が本来負担している圧縮軸力を過小評価している可能性 があるものと考えられる。中央寄りの断面(y=575mm、1025mm、2575mm、3025mm)でも、水平接合 部の影響はないものの、断面の一部に水平接合部と同じく鋼板挿入ドリフトピンを採用した鉛直接合 部が設けられているため、その影響は無視できないが、CLT 袖壁の軸力を評価する際には、中央寄り の断面(y=575mm、1025mm、2575mm、3025mm)の値を用いることとする。

1、2FのCLT 袖壁に作用する圧縮軸力の最大値はそれぞれ 1021kN、312kN であり、1F に作用する 圧縮軸力は CLT 袖壁の圧縮耐力(CLT の材料試験結果から求めた座屈強度(16.8N/mm<sup>2</sup>)に断面積を 乗じた 1310kN)の8割に相当している。また、1F 脚部では、最大で 100kN 程度の引張軸力が作用し ているが、図 3-100 で示したアンカーボルトの降伏強度は 110kN であり、図 3-100 で示したひずみ硬 化による引張力の増分を考えると、CLT 袖壁に作用する引張軸力としてはやや小さいものの、アンカ ーボルトの実験結果とも凡そ整合しているものと思われる。

試験体 B でも、いずれの断面でも、繰り返し載荷の影響はあるものの、全体変形角の増大に伴って、 CLT 袖壁の負担する圧縮軸力が漸増する傾向が確認されている。各断面に作用する圧縮軸力を比較す ると、各階の CLT 袖壁の上下端に近い断面のひずみ分布から推定した圧縮軸力の方が、各階の CLT 袖 壁の中央寄りの断面のひずみ分布から推定した圧縮軸力よりも大きくなる傾向が確認され、試験体 A とは異なる傾向を示した。したがって、試験体 B では、CLT 袖壁の軸力を評価する際には、上下端に 近い断面 (y=125mm、1475mm、2125mm、3475mm)の値を用いることとする。

1、2FのCLT 袖壁に作用する圧縮軸力の最大値はそれぞれ 708kN、524kN であり、1F に作用する圧 縮軸力はCLT 袖壁の圧縮耐力(CLT の材料試験結果から求めた座屈強度(16.8N/mm<sup>2</sup>)に断面積を乗 じた 1310kN)の5割に相当している。1FのCLT 袖壁が負担する圧縮軸力は、試験体 B よりも試験体 A の方が大きくなったが、逆に 2FのCLT 袖壁が負担する圧縮軸力は、試験体 B の方が試験体 A より も大きくなり、特に鉛直接合部の有無が CLT 袖壁の軸力負担に及ぼす影響が大きいことが確認され た。また、試験体 B では、水平接合材が引張力を負担しないため、小変形時を除けば、CLT 袖壁には 引張軸力が殆ど作用しなかった。





(i) 試験体 A

図 3-102 CLT 袖壁の軸力の推移(引張軸力:正、圧縮軸力:負)

#### 3.6.8.3. 鉛直接合部に作用するせん断力の推定

試験体 A、B に関して、鉛直接合部に作用するせん断力の推定を行う。方法①は、図 3-102 で求めた CLT 袖壁の各断面に作用する軸力の差分から、RC 柱-CLT 袖壁間に生じる鉛直方向のせん断力の推移を推定する方法である。ここでは、上下端に近い断面(y=125mm、1475mm、2125mm、3475mm)の値の差分を用いた場合と、中央寄りの断面(y=575mm、1025mm、2575mm、3025mm)の値を用いた場合の2 通りとした。方法②は、試験体 A を対象に、図 3-78 で示した式(3.16)による鉛直接合部のせん断変形が、全て鋼板挿入ドリフトピン接合部で生じたものと仮定し、図 3-46(b)、表 3-31 で示した鋼板挿入ドリフトピンの数値解析の結果を基にモデル化した鉛直接合部の復元力特性のバイリニアモデルを用いて、鉛直方向のせん断力の推移を推定する方法である。

図中には、式(3.25)、(3.26)に示す鋼板挿入ドリフトピン接合部の降伏耐力 vdvQy、終局耐力 vdvQu、式 (3.27)に示す CLT 袖壁の鉛直断面のせん断耐力 wvQsu、式(3.28)に示す RC 柱-CLT 袖壁間のコンクリートのせん断耐力 wvQauを示す。

$$_{vdv}Q_v = {}_v n_d \cdot {}_{dv}p_v$$

(3.25)

(3.26)

(3.27)

(3.28)

ここで、<sub>vnd</sub>:鉛直接合部におけるドリフトピンの本数、<sub>dvpy</sub>:ドリフトピン1本あたりの鉛直方向の 降伏強度である。

$$_{vdv}Q_u = {}_{v}n_d \cdot {}_{dv}p_u$$

ここで、、*n*<sub>d</sub>:鉛直接合部におけるドリフトピンの本数、*dvp*<sub>u</sub>:ドリフトピン1本あたりの鉛直方向の終局強度(ここでは、数値解析における 20mm 変形時の荷重としてよい)である。

$${}_{wv}Q_{su} = t_{w} \cdot h_0 \cdot {}_t F_{sI}$$

ここで、 $t_w$ : CLT 袖壁の厚さ、 $h_0$ : CLT 袖壁の内法高さ、 $tF_{sl}$ : CLT の面内せん断の基準強度である。

 $_{wv}Q_{au} = t_w \cdot h_0 \cdot 0.38 \sqrt{_c F_c}$ 

ここで、 $t_w$ : CLT 袖壁の板厚、 $h_0$ : CLT 袖壁の内法高さ、 $F_{sl}$ : CLT の面内せん断の基準強度、 $F_c$ : コンクリートの設計基準強度 (N/mm<sup>2</sup>、ここでは1階と2階のコンクリートの圧縮強度の平均値とした)である。

図 3-103、図 3-104 に、方法①、方法②で推定した鉛直接合部に作用するせん断力の推移を示す。 試験体 A に関して、方法②によって推定した北側の鉛直接合部では、小変形時には、負方向載荷時(加 力方向に対して圧縮側の RC 柱に取り付く場合)の方が、正方向載荷時(加力方向に対して引張側の RC 柱に取り付く場合)と比較して、全体変形の増大に伴う鉛直せん断力の増加が大きいが、負方向載 荷時は *R*=1/100rad 前後から鉛直せん断力の増加が鈍化するのに対し、正方向載荷時は *R*=1/100rad 以 降も全体変形角の増大に伴って鉛直せん断力が増加し、最終的に鋼板挿入ドリフトピン接合部の降伏 耐力 vdvQv に凡そ到達している。

一方、方法①によって推定した試験体 A の北側の鉛直接合部では、正方向載荷時に関しては、1、 2F の大小が逆転しているものの、中央寄りの断面で計測された値が方法②で推定した値に近い値を示 している一方、負方向載荷時に関しては、上下端に近い断面で計測された値が方法②に近い値を示し ており、CLT 袖壁に作用する軸力の大きさによって、鉛直接合部に作用するせん断力を推定する際に 適切な断面の位置が異なる結果となった。また、正方向載荷時の 2F では、*R*=2.0×10<sup>-2</sup>rad 以降、鉛直 接合部に作用するせん断力が、鋼板挿入ドリフトピン接合部の終局耐力 vdvQu 近くまで増大している が、図 3-77 で示した鉛直接合部のせん断変形の推移や実験試験体の損傷状況から、鉛直接合部に作用 するせん断力が鋼板挿入ドリフトピン接合部の降伏耐力 vdvQy を大きく上回っていたとは考えにくい。 方法②に関しては、鉛直接合部のせん断変形が、全て鋼板挿入ドリフトピン接合部で生じたものと仮 定しているため、鉛直接合部に作用するせん断力を過大に評価している可能性はあるが、方法①に関 しては、水平接合部及び鉛直接合部に設けた鋼板挿入ドリフトピンの影響を受け、断面内のひずみが 適切に計測できていない可能性が高く、軸力の差分から求められる鉛直接合部に作用するせん断力の 推定値のばらつきが大きくなっているものと考えられる。したがって、本実験では、鋼板挿入ドリフ トピンを接合部に用いた試験体Aの鉛直せん断力の推定は、方法②で行うのが適切であると考えられ る。

試験体 B に関しては、方法②による推定を行うことができないため、ここでは方法①による結果を 考察する。試験体 B では、滑り止め以外の接合金物を用いていないため、試験体 A と比較すると、方 法①による推定精度は高いものと思われる。図 3-103 より、全体変形角の増大に伴って、鉛直接合部 に充填したモルタルに亀裂が入ると、鉛直接合部に作用するせん断力が急激に低下する傾向が確認で きる。鉛直接合部に作用するせん断力は、部材実験の試験体 BS の鉛直接合部に作用するせん断力の 評価に用いた、式(3.28)に示す RC 柱-CLT 袖壁間のコンクリートのせん断耐力 wvQau<sup>[3-10]</sup>には到達して いない。これは、部材実験の試験体 BS では、鉛直目地の充填にエポキシ樹脂を用いたため、RC 柱側 のコンクリートが接着面においてせん断強度を発揮したが、架構実験の試験体 B では、鉛直目地の充 填にモルタルを用いたため、RC 柱側のコンクリートがせん断強度を発揮する前に、充填したモルタ ルに亀裂が発生したものと考えられる。したがって、試験体 B では、モルタルを充填した鉛直接合部 に何かしらの耐力を見込むことは難しいものと考えられる。



図 3-103 RC 柱-CLT 袖壁間に作用する鉛直せん断力の推移(方法①)



図 3-104 RC 柱-CLT 袖壁間に作用する鉛直せん断力の推移(方法②)

## 3.6.8.4. CLT 袖壁に作用する水平せん断力の推定

図 3-105 に CLT 袖壁において、せん断ひずみの計測に用いた変位計の位置を示す。計測範囲は、各階の高さ 550mm の計測範囲とした。図中に示すように、その上下の区間でも、せん断ひずみの計測は行っているが、CLT 袖壁端部の離間や水平接合部の影響が大きいものと考え、ここでは対象から除外した。



図 3-105 CLT 袖壁のせん断ひずみの測定(試験体 A の場合、単位:mm)

図 3-106 に上記のせん断ひずみに、せん断弾性係数(要素実験の結果を基に 553N/mm<sup>2</sup> とした)を 乗じて求めた CLT 袖壁に作用する水平せん断力の推移を示す。なお、CLT 袖壁に作用する水平せん断 力は、要素実験で求めた CLT のせん断強度 2.2N/mm<sup>2</sup> を用いて算定した式(3.29)によるせん断耐力 173kN で頭打ちとしたが、繰り返しの履歴が及ぼす影響は考慮しなかった。また、試験体 A では、鉛 直接合部を介して、鉛直せん断力の伝達が行われるため、断面内のせん断ひずみの分布が均一でない (部材実験の試験体 AD のように、柱フェイス側のせん断ひずみが大きく、袖壁フェイス側のせん断 ひずみが大きくなる)可能性がある。したがって、ここで示した手法では、CLT 袖壁に作用する水平 せん断力を過大評価している可能性があるため、試験体Aの水平せん断力の推定値は参考値とし、以 後の検討には用いないものとする。

 $_{w}Q_{su} = t_{w}D_{wt}F_{sI}$ 

ここで、 $t_w$ : CLT 袖壁の厚さ、 $D_w$ : CLT 袖壁のせい、 $F_{sl}$ : CLT の面内せん断の基準強度である。

試験体Bでは、加力方向に対して引張側のRC柱に取り付く正方向載荷時の値が、加力方向に対し て圧縮側の RC 柱に取り付く負方向載荷時の値を上回っており、1、2F ともほぼ同じせん断力を負担 していた。CLT 袖壁のせん断応力度の最大値は 1.48N/mm<sup>2</sup>(1F) であり、式(3.29)によるせん断耐力に は到達しておらず、弾性的な挙動を示したものと考えられる。CLT 袖壁に作用する水平せん断力の最 大値は、正方向で116kN、負方向で53kN(いずれも1F)となり、両者の和は169kNとなる。試験体 Bの正負載荷時の最大耐力の平均値は 398kN であることから、CLT 袖壁が 1F で負担する水平せん断 力の割合は、試験体全体に作用する水平せん断力の4割程度であったものと推測できる。また、試験 体Bと試験体Cの正負載荷時の最大耐力の平均値の差分(126kN)が、上述したCLT 袖壁の水平せん 断力の最大値の和(169kN)に近い値となることから、試験体 B では、CLT 袖壁の設置により増大し た水平せん断力の大部分を、CLT 袖壁が負担したものと推測される。





#### 3.6.8.5. 滑り止めに作用する水平せん断力の推定

試験体 B の寸切りボルトに貼付したひずみゲージの計測値を用いて、図 3-107、式(3.30)に示す曲げ モーメントの釣合に基づき、滑り止めに作用する水平方向のせん断力の推定を行った。滑り止めの側 面に作用する水平せん断力 Q の作用位置は三角形分布を仮定して、滑り止めの高さ(150mm)の 2/3 倍(100mm)とした。なお、載荷中、寸切りボルトは降伏しなかったため、寸切りボルトに作用する 引張力は、計測したひずみに寸切りボルトのヤング係数と断面積を乗じることで求めた。

$$Q = \frac{T_1 \cdot 0.9 \cdot 106_{mm} + T_2 \cdot 0.9 \cdot 36_{mm}}{100_{mm}}$$

(3.30)

(3.29)

ここで、*T*<sub>1</sub>:スパン外側に配置された寸切りボルトの引張力、*T*<sub>2</sub>:スパン内側に配置された寸切り ボルトの引張力とする。



図 3-107 滑り止めに作用するせん断力Qの推定(単位:mm)

図 3-108 に、式(3.30)を用いて算定した滑り止めに作用する水平せん断力の推移を示す。CLT 袖壁の 断面内の軸ひずみ分布より、CLT 袖壁には斜め方向の圧縮ストラットが形成されているものと考えら れることから、ストラットの支点となる、「北側の袖壁では、正方向載荷時には1、2Fの脚部、負方向 載荷時には1、2Fの頂部」、「南側の袖壁では、正方向載荷時には1、2Fの頂部、負方向載荷時には1、 2Fの脚部」の滑り止めに作用する水平せん断力が大きくなるものと推測される。

滑り止めがストラットの支点に位置しない場合(北側の袖壁では、正方向載荷時には1、2Fの頂部、 負方向載荷時には1、2Fの脚部、南側の袖壁では、正方向載荷時には1、2Fの脚部、負方向載荷時に は1、2Fの頂部)には、全体変形角が増大するにつれ、RC はりの変形が大きくなり、CLT 袖壁の仕 口面と滑り止めの間に離間が生じるため、滑り止めには水平せん断力が殆ど作用しなくなるものと考 えられるが、図 3-108 を見ると、滑り止めがストラットの支点に位置していない場合にも、滑り止め に作用する水平せん断力が増大するケースが見られる。これは、滑り止めに水平せん断力が作用して いるのではなく、寸切りボルトが RC はりのせん断補強筋として抵抗することで、見かけ上、滑り止 めに作用するせん断力が増大しているものと考えられる。このような現象は、滑り止めの位置によら ず生じる可能性があるため、図 3-108 に示す滑り止めに作用する水平せん断力の推定値は参考値とし、 以後の検討には用いないものとする。

なお、滑り止めがストラットの支点に位置する場合(北側の袖壁では、正方向載荷時には1、2Fの 脚部、負方向載荷時には1、2Fの頂部、南側の袖壁では、正方向載荷時には1、2Fの頂部、負方向載 荷時には1、2Fの脚部)には、滑り止めに最大で60~80kN程度の水平せん断力が作用しているが、 図 3-106 で示した CLT 袖壁のせん断変形から求めた水平せん断力は最大で100kN程度となることか ら、CLT 袖壁に作用する水平せん断力が、滑り止めと曲げ圧縮力によって生じる摩擦によって伝達さ れることを考えると整合性は成り立っている。

312



## 3.6.9. 等価粘性減衰定数の推移

図 3-109 に等価粘性減衰定数の推移を示す。ここでは実験の荷重変形関係から、式(3.31)を用いて等価粘性減衰定数を算定した。*R*=1/133rad 付近のサイクルまでは、いずれの試験体もほぼ同等の等価粘性減衰定数の値を示しているが、それ以降のサイクルについては、袖壁を設けた試験体 A、B よりも、袖壁のない試験体 C の方が、等価粘性減衰定数が大きくなっている。試験体 A、B では、袖壁の寄与により、最大耐力が増大したことが確認されているが、袖壁の挙動が弾性的であったため、袖壁を設けていない試験体 C と比較して、等価粘性減衰定数が小さくなったものと考えられる。また、試験体 A では、袖壁端にアンカーボルトを設置していたが、圧縮力の負担ができなかったため、繰り返しによるエネルギー消費が十分に行われず、アンカーボルトを設置していなかった試験体 B とほぼ同等の等価粘性減衰定数を示したものと考えられる。

図中には、式(3.32)による等価粘性減衰定数の計算値の推移も示している。式(3.31)は載荷実験と同 じく定常ループを想定した場合の等価粘性減衰定数に相当し、*R*=1/50rad を終点とする面積等価なバ イリニア置換によって求めた降伏点変形を基準に塑性率を算定した。いずれの試験体でも、同一変形 角における2回目のサイクルにおいて、式(3.31)による実験値が式(3.32)による計算値を上回っている。 ている。試験体A、B、C は層数が2層と少ないが、建物の層数が増えれば、CLT 袖壁付き RC 柱に対 する RC はりのポテンシャルエネルギーの割合が増加し、等価粘性減衰定数に及ぼす影響を小さくで きるものと考えられる

$$exp h_{eq} = \frac{1}{4\pi} \frac{\Lambda W}{W}$$
ここで、 $\Delta W$ : 履歴吸収エネルギー、 $W$ : ポテンシャルエネルギーとする。
$$cal h_{eq} = \frac{1}{\pi} (1 - \frac{1}{\sqrt{\mu}})$$
(3.31)

(3.32)

ここで、μ: R=1/50rad を終点とする面積等価なバイリニア置換によって求めた塑性率とする。



### 3.7. 骨組解析

#### 3.7.1. はじめに

架構実験で確認された挙動を再現するために、骨組解析用の解析モデルを作成した。ここでは、実験結果を精緻に再現するための詳細モデル(図3-110、図3-112)と、実務設計への適用を視野に入れた簡易モデル(図3-111、図3-113)の二種類について検討を行う。CLT 袖壁を設置していない試験体C(図3-114)については、詳細モデル、簡易モデルの区別はない。なお、本報告書では、試験体A、Bの1階袖壁を省略したケースについても骨組解析による検証を行っているが、加力実験による検証 は行っておらず、参考の取り扱いとなるため、付録の3.9節に掲載している。

今回の検討では、RC、CLTと材料特性の異なる二つの部材を組み合わせることになるため、軸方向の変形の整合性にも配慮し、RC 柱に関しては、部材実験やその数値解析、架構実験の結果を踏まえ、詳細モデル、簡易モデルのいずれについても、前述した部材実験と条件を揃える形で、材端に柱せい

(=400mm)と同じ長さの塑性ヒンジを与えたファイバーモデルで再現した。本検討では、ファイバ ーモデルに用いるコンクリートや鉄筋の材料構成則の調整を行っていないため、実験の荷重変形関係 との整合を踏まえてこの長さとしたが、今回設定した塑性ヒンジ長さは、試験体の内法高さ(1600mm) に対して大きい(400mm/1600mm=0.25)ため、今回使用したプログラムでは、ファイバーモデルの 設置に伴う軸剛性や曲げ剛性の低下の影響を十分に補正できていない。そのため、後述の検討では、 RC 柱のファイバーモデルを取り除いた状態で初期剛性の計算を行っている。

CLT 袖壁については、部材実験で確認された CLT 袖壁のせん断降伏を再現するために、詳細モデル ではブレースで置換した。ブレース置換を行うことで、CLT 袖壁に作用する水平せん断力によるせん 断変形だけでなく、RC 柱-CLT 袖壁間の鉛直接合面から伝達される鉛直方向のせん断力によるせん 断変形の再現も可能となる。RC 柱、CLT 袖壁のモデル化の方法は、基本的に部材実験と同様であり、 CLT 袖壁の水平方向の分割数を 5、RC 柱の鉛直方向の分割数を 4、CLT 袖壁の鉛直方向の分割数を 8 としている。一方、簡易モデルでは、RC 柱と同じ1本の線材でのモデル化を行った。

RC はりに関しては、通常の構造計算と同じように、軸力の影響を無視した評価を行った。実験で は、図 3-69、図 3-70 で示したように、繰り返し載荷によって、RC はりの曲げひび割れや主筋の降伏 が生じると軸伸びが生じ、図 3-71、図 3-72 で示したように、加力方向に対して圧縮側と引張側の柱 で水平変形量に差が生じるが、本解析では、RC はりの弾性の軸方向変形は考慮しているものの、RC はりのせん断ばねや曲げばねの復元力特性を設定する際には、軸力の影響を無視している。これは、 軸力の影響を考慮する場合、RC 柱と同じようにある程度の長さを持ったファイバー要素を設置する 必要があるが、試験体 A、B の詳細モデルでは、RC はりと CLT 袖壁が接する部分において、両者を 複数のばねを用いて接合する必要があるため、RC はりを材軸方向に分割する必要がある。 そのため、 RC はりに一定以上の塑性ヒンジ長さを有するファイバー要素を設置することが難しく、今回の検討 では、構造計算で一般的に用いられる曲げばねを採用することとした。なお、実験結果からは、CLT 袖壁を取り付けた試験体 A、B では、RC はりの CLT 袖壁と接する部分でも主筋の降伏が広範囲に渡 って見られ、柱せいの1.0~2.0倍(400~800mm)程度の範囲に曲げ変形による回転角が分布する傾向 が確認されている。 そこで、 本検討では、 各はり端の RC 柱フェイス位置、 CLT 袖壁フェイス位置 (た だし、危険断面の入り込みを考慮し、詳細モデルでは袖壁せいの 1/8 倍入り込んだ位置、簡易モデル では勅使川原らの手法に基づいて算定した袖壁端の最大モーメント点に対応する距離 La だけ入り込 んだ位置とする)に菅野式による剛性低下率を考慮した曲げばねを設けることとした。

RC はり-CLT 袖壁間の水平接合面では、CLT 袖壁の支圧、アンカーボルトの引張による挙動を再

現する必要がある。詳細モデルではRCはりを材軸方向に分割し、複数の軸ばねを用いて、RCはりと CLT 袖壁を接続したが、簡易モデルでは端部の回転挙動が再現できるように、長さを限りなく0に近 い値としたファイバーモデルを用いたモデル化を行うこととした。また、水平接合面におけるせん断 伝達に関しては、CLT 袖壁が負担する水平せん断力が RC はりに伝達されるものとした。この際、CLT 袖壁内に斜め方向の圧縮ストラットが形成されている状況を想定し、せん断ばねを柱際もしくは袖壁 際のいずれかに設けることとした。CLT 袖壁から RC はりに伝達される水平せん断力によって、RC は りには曲げモーメントが発生するため、RC はりの変形が拘束される効果も期待できる。一方で、試験 体Aにおいて、RCはり-CLT 袖壁間の離間が生じる場合や、試験体Bにおいて、水平目地部の無収 縮モルタルの損傷が拡大した場合など、CLT 袖壁に作用する水平せん断力の伝達を摩擦抵抗のみで行 えない場合には、RC はりではなく、RC 柱を介した水平せん断力の伝達を行う必要がある。そのため、 RC 柱に伝達される水平せん断力の割合が大きい場合には、CLT 袖壁が負担する水平せん断力が RC は りに伝達されるものと仮定することで、架構の水平剛性や水平耐力を過大評価する可能性がある点に 注意が必要である。また、このような場合には、部材実験の試験体と同じように、RC 柱に伝達される 水平せん断力によって脆性的な破壊が生じないか(パンチング破壊の検討)を別途検討する必要があ る。なお、軸力とせん断力の二軸相関関係を再現可能なばねモデルを用いる場合には、CLT 袖壁の仕 口面に作用する曲げ圧縮力の大きさに応じて、伝達可能な水平せん断力を決定することができるため、 CLT 袖壁と RC はり、RC 柱の両方にせん断ばねを接続することによって、応力伝達機構を再現する ことができるものと考えられる。

RC 柱-CLT 袖壁間の鉛直接合面に関しては、各層ごとに高さ方向に詳細モデルでは4分割、簡易 モデルでは2分割し、RC 柱と CLT 袖壁をせん断ばねを介して接続した。そのため、いずれのモデル でも、一貫計算ソフトでモデル化を行う際には、ダミー階を設ける等の配慮が必要となる可能性があ る。なお、鉛直接合部においては、部材実験と同様に、鉛直方向のせん断力の伝達は許容するが、水 平方向のせん断力の伝達は許容しない。このことにより、RC 柱、CLT 袖壁に作用する水平せん断力 が各階で一定となるため、各部材のモデル化や実験結果の検定の負担が軽減されるものと思われる。 なお、部材実験では、接着接合した鉛直接合材-CLT 袖壁間の変形は考慮しなかったが、架構実験の モデル化では、要素実験を基にモデル化を行ったドリフトピンのせん断力-せん断変形関係を採用し ている。

数値解析では、実験と同様に、RC柱の頂部の節点に長期荷重Nを作用させた後に、水平荷重Qを 均等に作用させ、一方向の増分解析を行った。全体変形角は、実験と同様に、3階梁中心高さにおけ る柱はり接合部内の節点の水平変位の平均値をその位置での高さ(=3800mm)で除すことで求めた。

316



図 3-110 試験体 A のモデル化(詳細モデル)





図 3-112 試験体 B のモデル化(詳細モデル)



図 3-113 試験体 B のモデル化(簡易モデル)



## 3.7.2. 架構のモデル化

架構モデルは、RC 柱、RC はり、CLT 袖壁、水平接合部、鉛直接合部によって構成されている。以下に各構成要素における復元力特性の設定方法を示す。今回の検討では、要素の材料試験を行った項目に関しては、基本的に 3.4 節で示した材料試験の剛性、強度を用いて、モデル化を行っている。

## 3.7.2.1. RC 柱

試験体Aについては、RC柱を詳細モデルでは層ごとに4分割、簡易モデルでは層ごとに2分割した。分割数を増やすことで、RC柱の塑性ヒンジ位置における回転変形をCLT袖壁に効率的に伝達することが可能となるが、節点数が増え、層の途中に節点を設けることで、使用するソフトウェアによってはダミー階を設ける必要が配慮が必要となることも想定されるため、簡易モデルでは詳細モデルと比較して分割数を半分としている。試験体Bについては、詳細モデル、簡易モデルのいずれについても、層ごとの分割は行っていない。なお、計算の簡略化を図るため、モデル化上は、RC柱-CLT袖

壁間の鉛直接合部を介した水平せん断力の伝達は許容せず、RC 柱に作用するせん断力の値は各層で 等しい値とする。

RC 柱は線材でモデル化し、各階の脚部及び頂部には軸力および曲げモーメントに対応するファイ バー要素を、各線材の中央にはせん断力に対応するせん断ばねを設置する。RC 柱に関しては、ファイ バー要素の代わりに軸ばね及び曲げばねを適用することも可能であるが、CLT 袖壁の材端に支圧特性 を評価するためのファイバー要素を設置することを踏まえ、RC 柱の材端にもファイバー要素を用い ることとした。RC 柱の材端のファイバー要素は、図 3-115 に示すように、柱せいの方向に断面を 10 分割し、カバーコンクリート、コアコンクリート、軸方向鉄筋の3 種類の材料を用いてモデル化した。 コンクリートの応力ーひずみ関係は、高橋ら<sup>[3-11]</sup>が RC 造の片側柱付き壁の曲げ変形性能を評価する 際に用いた Saatcioglu ら<sup>[3-12]</sup>による提案モデルを用いたが、使用した解析プログラムでは、両者の関係 を関数で与えることができないため、図 3-116 に示すように、応力ーひずみ関係上の数点を直線で結 ぶ形で両者の関係を定義した。また、コンクリートの引張応力の負担は考慮していない。図 3-116 に 示すように、鉄筋の応力ーひずみ関係はバイリニアでモデル化し、降伏後の勾配の傾きはゼロとした。

せん断ばねは、図 3-117 に示すように、せん断ひび割れ点、せん断耐力点を持つバイリニアでモデ ル化した。せん断ひび割れ耐力、せん断耐力は以下の式で算定した。なお、せん断耐力に関しては、 実験データベースによる検証<sup>[3-13]</sup>によって、評価式が実験値を過小評価することが報告されている。 本検討では、実験時の挙動を再現することを目的としているため、RC 柱に作用するせん断力がせん 断耐力の計算値に早期に到達した場合、その後の挙動の追跡に支障をきたすことになる。そこで、検 証結果に基づき、RC 柱部材のせん断耐力について、計算値の 1.4 倍の値を用いることとした。

なお、試験体Aについては、CLT 袖壁と鉛直接合部を介して接合する関係で1本の柱を4分割して モデル化を行っているため、通常の部材のように、部材内の1箇所のみにせん断ばねを設けた場合、 局所的な変形の増大によって、両者の応力伝達に支障をきたす可能性がある。そこで、最も応力状態 が厳しい柱脚の軸力、せん断スパンを用いて、せん断ひび割れ耐力、せん断耐力を計算し、柱脚から 200mm、600mm、1000mm、1400mmの高さに同じ復元力特性を持つ4本のせん断ばねを分散して設け ることとした。

(せん断ひび割れ耐力[3-14])

$${}_{c}Q_{sc} = \varphi \sqrt{{}_{c}\sigma_{T}^{2} + {}_{c}\sigma_{T} {}_{c}\sigma_{0}} b_{c}D_{c}\frac{1}{\kappa_{s}}$$

(3.33)

ここで、 $\varphi$ :耐力係数、 $_{o\sigma_{T}}$ : コンクリートの引張強度 (= $0.33\sqrt{_{c}F_{c}}$ 、 $_{c}F_{c}$ : コンクリートの設計基準 強度 (N/mm<sup>2</sup>))、 $_{o\sigma_{0}}$ : RC 柱の平均軸方向応力度 (N/mm<sup>2</sup>)、 $b_{c}$ : RC 柱の幅 (mm)、 $D_{c}$ : RC 柱のせい (mm)、 $\kappa_{s}$ :応力度法による形状係数 (矩形断面の場合は 1.5) である。

(せん断耐力<sup>[3-14]</sup>)  ${}_{c}Q_{su} = \left\{ \frac{0.068_{c}p_{t}^{-0.23}({}_{c}F_{c}+18)}{M/(Q\cdot d_{c})+0.12} + 0.85\sqrt{{}_{c}p_{wc}\sigma_{wy}} + 0.1_{c}\sigma_{0} \right\} b_{c}j_{c}$ 

(3.34)

ここで、 $p_t$ : RC 柱の引張鉄筋比(%)、 $F_c$ : コンクリートの設計基準強度(N/mm<sup>2</sup>)、M/Q: M, Qはそれぞれ終局強度算定時における部材内の最大曲げモーメント及びせん断力(ただし、 $M/(Qd_c)$ は、 $M/(Qd_c)$ <1のとき1とし、 $M/(Qd_c)$ >3のとき3とする)(mm)、 $d_c$ : RC 柱の有効せい(mm)、 $p_w$ : RC

柱のせん断補強筋比(小数、中子筋を除く場合 0.012 を上限とする。ただし、せん断補強筋として中 子筋を併用する場合やスパイラル筋を用いる場合には 0.015 を上限とすることができる。)、 $\sigma_{wy}$ : RC 柱のせん断補強筋の降伏強度 (N/mm<sup>2</sup>)、 $j_c$ : RC 柱の応力中心距離で 7 $d_c/8$  としてよい (mm)、 $\sigma_0$ : RC 柱の平均軸方向応力度 (= $N_c/(b_c D_c)$ ) (N/mm<sup>2</sup>) で 0.4 $_cF_c$ 以下である。

(せん断ばねの終局ひずみ)

$$_{c}\gamma_{su} = 0.004 - \frac{_{c}Q_{su} \cdot \kappa_{e}}{_{c}G_{c} \cdot b_{c} \cdot D_{c}}$$

(3.35)

ここで、 $_{c}Q_{su}$ : RC 柱のせん断耐力、 $\kappa_{e}$ : エネルギー法による形状係数(矩形断面の場合は 1.2)、 $_{c}G_{c}$ : コンクリートのヤング係数 (N/mm<sup>2</sup>)、 $b_{c}$ : RC 柱の幅 (mm)、 $D_{c}$ : RC 柱のせい (mm) である。









(b)軸方向鉄筋





図 3-117 RC 柱のせん断ばねの復元力特性

また、詳細は後述するが、試験体 A では、CLT 袖壁端に作用する水平せん断力が、CLT 袖壁に作用 する圧縮軸力に摩擦係数(0.3~0.5 程度を想定)を乗じた値を上回る場合があり、試験体 B でも、架 構の変形が大きくなり、水平目地に充填したモルタルの損傷が大きくなると、摩擦耐力を十分に確保 することが難しくなる可能性がある。このような場合には、RC 柱の端部において、CLT 袖壁に作用 する水平せん断力が RC 柱に伝達され、パンチングシア破壊が生じる恐れがある。そこで、RC 柱に作 用するせん断力と CLT 袖壁に作用するせん断力を足し合わせたものに対して、文献[3-14]に記載され ている式(3.36)の RC 柱のパンチングシア耐力を上回ることを確認することとした。但し、RC 柱のせ ん断耐力式と同様に、計算式の評価精度を考慮し、計算値を 1.4 倍した値を検討では用いている。

(パンチングシア耐力[3-14])

 ${}_{c}Q_{pu} = K_{av} \cdot {}_{c}\tau_{0} \cdot {}_{c}b_{e} \cdot D_{c}$   $K_{av} = 0.58 / (0.76 + a_{c} / D_{c})$   ${}_{c}\tau_{0} = 0.98 + 0.1_{c}F_{c} + 0.85\sigma_{c}$   $(0 \le \sigma_{c} \le 0.33_{c}F_{c} - 2.75 \text{ (0)時)}$  (3.37)

(3.38)

 $_{c}\tau_{0} = 0.22_{c}F_{c} + 0.49\min(0.66_{c}F_{c},\sigma_{c})$  (0.33 $_{c}F_{c} - 2.75 < \sigma_{c}$  () () ()

ここで、 $_{c}Q_{pu}$ : RC 柱のパンチングシア耐力、 $_{c}b_{e}$ : パンチングを受ける RC 柱の直交材を考慮した有 効幅で RC 柱の幅としてよい (mm)、 $D_{c}$ : パンチングを受ける RC 柱のせい (mm)、 $a_{c}$ : CLT 袖壁 から RC 柱に伝達される水平せん断力が集中的に作用すると仮定した場合の作用点から水平断面まで の距離で $a_{c}/D_{c}$ =1/3 としてよい、 $_{c}F_{c}$ : コンクリートの圧縮強度 (N/mm<sup>2</sup>)、 $\sigma_{c}$ :  $_{pgc}\sigma_{y}+_{c}\sigma_{0}$ 、 $_{e}p_{g}$ :  $_{c}b_{e}$   $D_{c}$ に対する RC 柱の全主筋断面積の比、 $_{c}\sigma_{y}$ : RC 柱主筋の降伏強度 (N/mm<sup>2</sup>)、 $_{c}\sigma_{0}$ :  $N_{c}/(_{c}b_{e}D_{c})$ 、 $N_{c}$ : メカ ニズム時における RC 柱軸方向力で圧縮を正とする (N) である。

### 3.7.2.2. RC はり

RC はりに関しては、一つのスパン内にせん断ばね、曲げばねを複数設けた。これは、CLT 袖壁の設置による RC はりのヒンジリロケーション効果を再現するためのもので、RC はりのせん断力、曲げモーメント分布が CLT 袖壁と接する部分で不連続となることを踏まえたものである。複数のばねを用いる煩雑さはあるが、CLT 袖壁フェイス近傍に塑性ヒンジを形成させるために必要となる十分な反力が CLT 袖壁端から得られない場合には、RC 柱フェイス位置に塑性ヒンジが形成されることとなり、塑性ヒンジの形成位置が自動的に判別されるメリットがある。なお、通常の構造設計と同じように、RC はりに作用する軸力の影響は無視してモデル化を行う。

詳細モデルでは、RC はりを1スパンごとに9分割し、RC はり内のせん断力分布、曲げモーメント 分布を再現することを目標とした。なお、実験結果より、CLT 袖壁と接する部分についても、RC はり の変形が大きくなるケースが複数確認されたため、スパン内に剛域は設定せず、全ての線材のせん断 変形および曲げ変形を考慮した。一方、簡易モデルでは、詳細モデルと比較して、1 スパンごとの分 割数を 3 に減らしており、CLT 袖壁内の応力伝達機構を簡略化して再現するため、RC 柱フェイス位 置や CLT 袖壁フェイス近傍を除くと、RC はりに作用するせん断力や曲げモーメントを正しく評価す ることができない。そこで、CLT 袖壁と RC はりが接続される位置に剛域を設けることとし、CLT 袖 壁と接する部分の変形は、材端の曲げばねに集約することとした。

曲げばねは、詳細モデル、簡易モデルのいずれについても、1 スパンごとに RC 柱フェイス位置と CLT 袖壁フェイス位置近傍の計4か所に設けることとした。詳細モデルでは、CLT 袖壁の水平断面を
四分割して支圧ばねを設置するため、スパン中央の曲げばねの位置は、CLT 袖壁フェイス位置から内 側に袖壁せいの 1/8 だけ入り込んだ位置(最外縁の支圧ばねのスパン内側)とする。一方、簡易モデ ルでは、今阪らが提案した RC 造の二次壁付き架構における最大モーメント点(塑性ヒンジ位置)の 推定手法<sup>[3-15]</sup>を参考に、CLT 袖壁フェイス位置から曲げばねまでの距離 L<sub>b</sub>を以下の式で推定すること とした。

$$L_b = -0.5_b L_0 + \sqrt{(0.5_b L_0)^2 + \frac{2_b M_u}{t F_k \cdot t_w}}$$

(3.39)

(3.40)

(3.41)

ここで、 $L_b$ : CLT 袖壁端から RC はりの危険断面位置までの距離、 $_bL_0$ : CLT 袖壁のフェイス間の内 法スパン、 $_bM_u$ : RC はりの曲げ終局モーメント、 $_hF_k$ : CLT の圧縮の基準強度を用いた座屈強度(鉛直 方向)、 $t_w$ : CLT 袖壁の壁厚である。

図 3-118、図 3-119 に、RC はりの曲げばねの復元力特性を示す。曲げひび割れ点、曲げ終局モーメント点を持つトリリニアモデルとし、曲げ終局モーメント到達後の耐力上昇は考慮しない。

(曲げひび割れモーメント[3-14])

$$_bM_{cr} = 0.56\sqrt{_cF_c \cdot _bZ_e}$$

ここで、<sub>c</sub>F<sub>c</sub>: コンクリートの設計基準強度、<sub>b</sub>Z<sub>c</sub>: 鉄筋を考慮した RC はりの断面係数である。

(曲げ終局モーメント<sup>[3-14]</sup>) <sub>b</sub> $M_{\mu} = 0.9_{b}a_{t} \cdot {}_{b}\sigma_{v} \cdot d_{b}$ 

ここで、 $ba_t$ : RC はりの引張鉄筋の断面積、 $b\sigma_y$ : RC はり主筋の降伏強度、 $d_b$ : RC はりの有効せいである。

(降伏点剛性低下率[3-14])

 $\alpha_{y} = \begin{cases} (0.043 + 1.64n_{e\,b}\,p_{t} + 0.043a\,/\,D_{b})(d_{b}\,/\,D_{b}) & (2.0 \le a\,/\,D_{b} \le 5.0) \\ (-0.0836 + 0.159a\,/\,D_{b})(d_{b}\,/\,D_{b}) & (1.0 \le a\,/\,D_{b} \le 2.0) \end{cases}$ 

(3.42)

ここで、 $n_e$ : ヤング係数比、 $_bp_t$ : RC はりの引張鉄筋比、 $a/D_b$ : RC はりのせん断スパン、 $d_b$ : RC はりの有効せい、 $D_b$ : RC はりのせいである。

図 3-118 に示す詳細モデルでは、RC 柱フェイス位置における曲げ降伏時回転角は、後述する曲げ モーメント分布等を参考に、部材長(7/8・D<sub>w</sub>)に渡って、曲げモーメント分布が等分布であるものと 仮定し、以下の算定式によって求める。なお、降伏点剛性低下率に関しては、せん断スパン比を適用 範囲の上限値(*a*/D<sub>b</sub>=5.0)と一致するものとして、計算を行う。

$${}_{b}\theta'_{y} = {}_{b}M_{y}\frac{1-\alpha_{y}}{\alpha_{y}}\frac{\frac{7}{8}D_{w}}{2{}_{c}E_{c}\cdot{}_{b}I_{e}}$$

(3.43)

ここで、 ${}_{b}M_{y}$ : RC はりの曲げ降伏モーメントで、ここでは曲げ終局モーメント ${}_{b}M_{u}$ と等しいものと 仮定する、 $D_{w}$ : CLT 袖壁のせい、 $a_{y}$ : RC はりの降伏点剛性低下率、 ${}_{c}E_{c}$ : コンクリートのヤング係数、  ${}_{b}I_{c}$ : RC はりの鉄筋を考慮した断面二次モーメントである。

また、詳細モデルの CLT 袖壁フェイス近傍における曲げ降伏時回転角は、部材長を bL0+2Lb とし、

逆対称の曲げモーメント分布を仮定して、以下の算定式によって求める。

$${}_{b}\theta'_{y} = {}_{b}M_{y}\frac{1-\alpha_{y}}{\alpha_{y}}\frac{{}_{b}L_{0} + \frac{1}{4}D_{w}}{6{}_{c}E_{c} \cdot {}_{b}I_{e}}$$

(3.44)

ここで、 ${}_{b}M_{y}$ : RC はりの曲げ降伏モーメントで、ここでは曲げ終局モーメント ${}_{b}M_{u}$ と等しいものと 仮定する、 ${}_{b}L_{0}$ : CLT 袖壁のフェイス間の内法スパン、 $D_{w}$ : CLT 袖壁のせい、 $\alpha_{y}$ : RC はりの降伏点剛 性低下率、 ${}_{c}E_{c}$ : コンクリートのヤング係数、 ${}_{b}I_{e}$ : RC はりの鉄筋を考慮した断面二次モーメントであ る。



(a) RC 柱フェイス、CLT 袖壁フェイス近傍 図 3-118 RC はりの曲げばねの復元力特性(詳細モデル)

図 3-119 に示す簡易モデルでは、CLT 袖壁フェイス近傍の曲げばねは剛塑性モデルとしたが、RC 柱フェイスの曲げばねについては、弾性変形を含む弾塑性モデルとした。簡易モデルの RC 柱フェイス 位置における曲げひび割れ時回転角は、部材長(*D*w-*L*b)に渡って、曲げモーメント分布が等分布で あるものと仮定し、以下の算定式によって求める。

$${}_{b}\theta_{cr} = {}_{b}M_{cr}\frac{D_{w}-L_{b}}{2_{c}E_{c}\cdot{}_{b}I_{e}}$$

ここで、 ${}_{b}M_{cr}$ : RC はりの曲げひび割れモーメント、 $D_{w}$ : CLT 袖壁のせい、 $L_{b}$ : CLT 袖壁端から RC はりの危険断面位置までの距離、 ${}_{c}E_{c}$ : コンクリートのヤング係数、 ${}_{b}I_{e}$ : RC はりの鉄筋を考慮した断面二次モーメントである。

簡易モデルの RC 柱フェイス位置における曲げ降伏時回転角は、部材長  $(D_w - L_b)$  に渡って、曲げ モーメント分布が等分布であるものと仮定し、以下の算定式によって求める。なお、降伏点剛性低下 率<sup>[3-14]</sup>に関しては、せん断スパン比を適用範囲の上限値  $(a/D_b=5.0)$  と一致するものとして、計算を行 う。

$${}_{b}\theta_{y} = {}_{b}M_{y}\frac{D_{w}-L_{b}}{2\alpha_{y}\cdot{}_{c}E_{c}\cdot{}_{b}I_{e}}$$

(3.46)

(3.45)

ここで、 ${}_{b}M_{y}$ : RC はりの曲げ降伏モーメントで、ここでは曲げ終局モーメント ${}_{b}M_{u}$ と等しいものと 仮定する、 $D_{w}$ : CLT 袖壁のせい、 $L_{b}$ : CLT 袖壁端から RC はりの危険断面位置までの距離、 $a_{y}$ : RC は りの降伏点剛性低下率、 ${}_{c}E_{c}$ : コンクリートのヤング係数、 ${}_{b}I_{e}$ : RC はりの鉄筋を考慮した断面二次モ ーメントである。

簡易モデルの CLT 袖壁フェイス近傍における曲げ降伏時回転角は、部材長を<sub>b</sub>L<sub>0</sub>+2L<sub>b</sub>とし、逆対称の曲げモーメント分布を仮定して、以下の算定式によって求める。

$${}_{b}\theta_{y} = {}_{b}M_{y}\frac{1-\alpha_{y}}{\alpha_{y}}\frac{{}_{b}L_{0}+2L_{b}}{6{}_{c}E_{c}\cdot{}_{b}I_{e}}$$

(3.47) ここで、 ${}_{b}M_{y}$ : RC はりの曲げ降伏モーメントで、ここでは曲げ終局モーメント ${}_{b}M_{u}$ と等しいものと 仮定する、 ${}_{b}L_{0}$ : CLT 袖壁のフェイス間の内法スパン、 $L_{b}$ : CLT 袖壁端から RC はりの危険断面位置ま での距離、 $a_{y}$ : RC はりの降伏点剛性低下率、 ${}_{c}E_{c}$ : コンクリートのヤング係数、 ${}_{b}I_{e}$ : RC はりの鉄筋を 考慮した断面二次モーメントである。



詳細モデルでは、一つのスパンにつき、RC 柱フェイス位置に2箇所、CLT 袖壁フェイス近傍に2箇 所、スパン中央に1箇所の計5か所にせん断ばねを設ける。RC はりの曲げばねに菅野式を用いるこ とを踏まえて、RC はりのせん断変形は線材の弾性変形のみを考慮し、図 3-120 に示すように、各せ ん断ばねの復元力特性は剛塑性モデルで再現する。一方、簡易モデルでは、一つのスパンにつき、RC 柱フェイス位置に2箇所、スパン中央に1箇所の計3か所にせん断ばねを設ける。詳細モデルでは自 動計算される CLT 袖壁フェイス近傍の2箇所については、簡易モデルでは直接せん断力を求めること ができないため、これらの位置では、せん断破壊が生じているかどうかの確認を別途行うものとする。 また、簡易モデルでは、CLT 袖壁内の RC はりのせん断力分布を再現できないため、CLT 袖壁内の RC はり要素のせん断変形は無視することとした。簡易モデルでも、図 3-121 に示すように、弾性変形を 含まない剛塑性モデルを用いた。

なお、RC はりのせん断耐力は、実験データベースによる検証<sup>[3-13]</sup>によって、評価式が実験値を過小 評価することが報告されている。本検討では、実験時の挙動を再現することを目的としているため、 RC はりに作用するせん断力がせん断耐力の計算値に早期に到達した場合、その後の挙動の追跡に支 障をきたすことになる。そこで、検証結果に基づき、RC はり部材のせん断耐力についても、計算値の 1.4 倍の値を用いることとした。また、RC 柱フェイスに関しては、CLT 袖壁から伝達される鉛直方向 のせん断力がせん断スパンが非常に小さい状況で作用するため、上述したせん断耐力式<sup>[3-14]</sup>だけでな く、下記のパンチングシア耐力式<sup>[3-16]</sup>を用いてもよいものとした。但し、RC はりのせん断耐力式と同 様に、計算式の評価精度を考慮し、計算値を 1.4 倍した値を検討では用いている。

(せん断耐力<sup>[3-14]</sup>)  ${}_{b}Q_{su} = \left\{ \frac{0.068_{b} p_{t}^{0.23} ({}_{c}F_{c} + 18)}{M / (Qd_{b}) + 0.12} + 0.85 \sqrt{{}_{b} p_{w b} \sigma_{wy}} \right\} b_{b} j_{b}$ 

(3.48)

ここで、 $bp_i$ : 引張鉄筋比(%)、 $cF_c$ : コンクリートの設計基準強度(N/mm<sup>2</sup>)、M/Q: M、Qはそれぞれ終局強度算定時における部材内の最大曲げモーメント及びせん断力(ただし、 $M/(Qd_b)$ は、 $M/(Qd_b) < 1$ のとき1とし、 $M/(Qd_b) > 3$ のとき3とする)(mm)、 $d_b$ : はりの有効せい(mm)、 $bp_w$ : せん断補強筋比(小数、中子筋を除く場合 0.012を上限とする。ただし、せん断補強筋として中子筋を併用する場合やスパイラル筋を用いる場合には0.015を上限とすることができる。)、 $b\sigma_{wy}$ : せん断補強筋の降伏強度(N/mm<sup>2</sup>)、 $b_b$ : はり幅(mm)、 $j_b$ : 応力中心距離で7 $d_b$ /8としてよい(mm)である。



図 3-120 RC はりのせん断ばねの復元力特性(詳細モデル)



$${}_{b}\mathcal{Q}_{pu} = K_{av} \cdot {}_{b}\tau_{0} \cdot {}_{b}b_{e} \cdot D_{b}$$

$$K_{av} = 0.58 / (0.76 + a_{b}/D_{b})$$

$${}_{b}\tau_{0} = 0.98 + 0.1_{c}F_{c} + 0.85\sigma_{b} \qquad (0 \le \sigma_{b} \le 0.33_{c}F_{c} - 2.75 \text{ (DF)})$$

$${}_{b}\tau_{0} = 0.22_{c}F_{c} + 0.49 \min(0.66_{c}F_{c}, \sigma_{b}) \qquad (0.33_{c}F_{c} - 2.75 < \sigma_{b} \text{ (DF)})$$

$$(3.51)$$

ここで、 ${}_{b}Q_{pu}$ : RC はりのパンチングシア耐力、 ${}_{b}b_{e}$ : パンチングを受ける RC はりの直交材を考慮した有効幅で RC はりの幅としてよい (mm)、 $D_{b}$ : パンチングを受ける RC はりのせい (mm)、 $a_{b}$ : CLT 袖壁から RC はりに伝達される鉛直せん断力が集中的に作用すると仮定した場合の作用点から鉛直断面までの距離で $a_{b}/D_{b}=1/3$ としてよい、 ${}_{e}F_{e}$ : コンクリートの設計基準強度 (N/mm<sup>2</sup>)、 $\sigma_{b}$ :  ${}_{b}p_{g}b\sigma_{y}$ 、 ${}_{b}p_{g}$ :  ${}_{b}b_{e}D_{b}$ に対するはりの全主筋断面積の比、 ${}_{b}\sigma_{y}$ : RC はり主筋の降伏強度 (N/mm<sup>2</sup>) である。

3.7.2.3. CLT 袖壁

詳細モデルでは、部材実験の結果を基に、RC 柱-CLT 袖壁間の鉛直接合面から伝達される鉛直方

向のせん断力によって、CLT 袖壁がせん断変形する影響を考慮するために、CLT 袖壁をブレースで置換した。CLT 袖壁の分割数は、水平方向で5、鉛直方向で8とした。水平方向の分割数は水平接合分の支圧ばねの本数(4本)に合わせて、また、鉛直方向の分割数はCLT 袖壁の軸剛性とせん断剛性を再現できるように、ブレースモデルの勾配が45度に近い数値となるように決めた。なお、ブレース置換の場合、対象とする部材のせん断剛性に加えて、軸剛性もしくは曲げ剛性のいずれかを再現することが可能である。ここでは、CLT 袖壁の長さがあまり長くないこと、引張側の柱に取り付く CLT 袖壁では、CLT 袖壁がほぼ一軸圧縮の状態となることから、CLT 袖壁の軸剛性とせん断剛性が等価になるようにモデル化することとした。

モデル化の方法は、壁式鉄筋コンクリート造設計・計算規準・同解説<sup>[3-17]</sup>に記載された手法を参考と し、CLT 袖壁とブレース材によるせん断剛性、せん断耐力が一致するように、ブレース材の剛性と軸 耐力を求めた。次に CLT 袖壁とブレース材の軸剛性が一致するように、鉛直材の剛性を求めた。ブレ ース材は、CLT 袖壁のせん断降伏後の挙動が再現できるように、図 3-123 に示すように、軸耐力に達 した後は、一定の軸力を保持させる形とした。また、鉛直材は弾性とし、CLT 袖壁の軸耐力や曲げ耐 力の評価は、材端の水平接合面に設けた軸ばねで行うこととした。

なお、部材実験とは異なり、CLT 袖壁のせん断剛性、強度には、材料試験の結果を用いた。

(CLT 袖壁の斜め材1本あたりの軸剛性)

$$k_{b1} = \frac{{}_{t}G_{c}}{2} \frac{t_{w}((\frac{D_{w}}{4})^{2} + (\frac{h_{0}}{8})^{2})}{\frac{D_{w}}{4} \cdot \frac{h_{0}}{8}} \quad (斜め材 1, \boxtimes 3-122 \,$$
家照)  

$$k_{b2} = \frac{{}_{t}G_{c}}{2} \frac{t_{w}((\frac{D_{w}}{8})^{2} + (\frac{h_{0}}{8})^{2})}{\frac{D_{w}}{8} \cdot \frac{h_{0}}{8}} \quad ( 斜め材 2, \boxtimes 3-122 \,$$
家照)

ここで、 $_tG_c$ : CLT のせん断弾性係数、 $t_w$ : CLT 袖壁の厚さ、 $D_w$ : CLT 袖壁のせい、 $h_0$ : CLT 袖壁の内法高さである。

(3.52)

(3.53)

(CLT 袖壁の鉛直材1本あたりの軸剛性)

ここで、 $t_w$ : CLT 袖壁の厚さ、 $D_w$ : CLT 袖壁のせい、 $h_0$ : CLT 袖壁の内法高さ、 $E_c$ : CLT のヤング 係数である。

(CLT 袖壁の斜め材1本あたりの軸耐力)

$$p_{b1} = 0.5 \cdot t_{wt} F_{sl} \cdot \sqrt{(\frac{D_w}{4})^2 + (\frac{h_0}{8})^2} \quad (斜め村1)$$

$$p_{b2} = 0.5 \cdot t_{wt} F_{sl} \cdot \sqrt{(\frac{D_w}{8})^2 + (\frac{h_0}{8})^2} \quad (斜め村2)$$

(3.54) ここで、 $t_w$ : CLT 袖壁の厚さ、 $D_w$ : CLT 袖壁のせい、 $h_0$ : CLT 袖壁の内法高さ、 $F_{sl}$ : CLT の面内せ

ん断の基準強度である。



図 3-122 CLT 袖壁のブレース置換時の斜め材、鉛直材の位置



簡易モデルでは、CLT 袖壁を線材モデルで再現した。各層における分割数は RC 柱と同じとし、簡 易モデルのうち、A タイプでは各層で2分割とし、B タイプでは分割は行わないものとした。また、 RC 柱-CLT 袖壁間の鉛直接合部では、水平方向のせん断力の伝達は許容しないため、CLT 袖壁に作

用する水平せん断力の値も各層で等しい値となる。

簡易モデルでは、各線材の中央にせん断力に対応するせん断ばねを設ける。CLT 袖壁の脚部および 頂部には軸力および曲げモーメントに対応する支圧特性を再現するためのファイバー要素を設置する 必要があるが、その内容については後述の水平接合部に関する説明で触れる。

図 3-124 に簡易モデルに用いるせん断ばねの復元力特性を示す。なお、CLT に関しては、通常、骨 組解析ソフトで設定できるポアソン比 v'の範囲では、CLT 袖壁の軸剛性や曲げ剛性とせん断剛性(CLT マニュアル<sup>[34]</sup>に記載のある 500N/mm<sup>2</sup>を目安とする)を両立させることができない。そこで、本解析 では、せん断の有効断面積を調整することで、軸剛性や曲げ剛性とせん断剛性の間の整合を図り、せ (せん断耐力)

 ${}_wQ_{su} = t {}_wD {}_w {}_tF_{sI}$ 

ここで、*t*<sub>w</sub>: CLT 袖壁の厚さ、*D*<sub>w</sub>: CLT 袖壁のせい、<sub>t</sub>*F*<sub>sl</sub>: CLT の面内せん断の基準強度である。



## 3.7.2.4. 水平接合部

詳細モデルでは、通常の CLT 壁のモデル化と同様に、CLT 袖壁の材端に支圧剛性 & を持つ非線形 の複数の軸ばねを設けた。一般的な CLT 部材では、軸力比が高い状況で使用されることが殆どないた め、CLT マニュアル<sup>[34]</sup>では、CLT 壁のせいを 4 分割した範囲のうち、材端に近い部分を有効支圧面と 仮定し、材端の 2 箇所のみに CLT の支圧挙動を模擬した軸ばねを設けることとしている。本検討で も、CLT 袖壁のせいを 4 分割してモデル化を行うが、CLT 袖壁が圧縮耐力に近い軸力を受けて全断面 が支圧面となることを想定し、4 本の軸ばねを用いてモデル化を行うこととした。図 3-125(a) に支圧 ばねの復元力特性を示す。軸ばねの剛性には、CLT マニュアル<sup>[34]</sup>に記載のある壁パネルー基礎間の支 圧剛性の実験値(15.6N/mm<sup>3</sup>)を用いた。材料試験から推定した CLT の座屈強度に到達した後は、一 定の軸力を保持するものと仮定した。

簡易モデルでは、支圧特性を再現するためのファイバー要素を設けた。簡易モデルでは、詳細モデルとは異なり、ファイバー要素の本数を増やすことで、RCはりの分割数も増やす必要はないので、断面の分割数はRC柱と同じ10とした。図3-125(b)にファイバー要素の復元力特性を示すが、断面の分割数が異なることを除けば、詳細モデルとモデル化の方法は同じである。

(ファイバー要素1本あたりの支圧耐力)

$$_{w}p_{u} = \frac{1}{n_{s}}t_{w} \cdot D_{w} \cdot _{tv}F_{k}$$

ここで、 $n_s$ : CLT 袖壁におけるモデル化の際の断面の分割数、 $t_w$ : CLT 袖壁の厚さ、 $D_w$ : CLT 袖壁 のせい、 $t_v F_k$ : CLT の圧縮の基準強度を用いた座屈強度(鉛直方向)である。

(ファイバー要素1本あたりの支圧剛性)

$$k_w = \frac{1}{n_s} t_w \cdot D_w \cdot k_e$$

(3.57)

(3.56)

(3.55)

ここで、 $n_s$ : CLT 袖壁におけるモデル化の際の断面の分割数、 $t_w$ : CLT 袖壁の厚さ、 $D_w$ : CLT 袖壁のである。

また、詳細モデル、簡易モデルのいずれについても、試験体 A では、アンカーボルトの引張負担を 再現するための軸ばねを設けた。軸ばねの復元力特性は、図 3-126(a) に示すアンカーボルトの復元力 特性に、図 3-126(b) に示すドリフトピンの復元力特性を累加することで求めた。この際、軸ばねの軸 変形は、アンカーボルトのヤング係数に上下スタブへの埋め込み長さ(1F:482mm、2、3F:504mm) を乗じることで計算した。また、加力実験では、実験開始前にアンカーボルトの締め付けを行ってい るが、アンカーボルトにはひずみゲージを貼り付けており、締め付け前から計測を行っている。アン カーボルトの復元力特性のモデル化では、長期荷重加力後のアンカーボルトの引張ひずみの平均値を 用いて計算した初期引張力 *T*<sub>i</sub> を考慮し、初期引張力 *T*<sub>i</sub> に達するまでは引張変形が生じないものとし た。また、アンカーボルトの軸部の断面積を用いて算定される降伏強度 Σ*a*<sub>s</sub>*o*<sub>y</sub> に到達した後は、ひず み硬化の影響を考慮し、材料試験の結果を基に、アンカーボルトの材料特性から求められる初期剛性 *aK*<sub>1</sub> の 0.015 倍の剛性 *K*<sub>3</sub> を与え、アンカーボルトのねじ部の断面積を用いて算定される引張強度まで 強度上昇することとした。

ドリフトピンの復元力特性に関しては、図 3-45 で示した各材料の試験値を用いた数値解析で求めたドリフトピン単体の降伏点、最大強度点 (変形が 20mm 生じたときの荷重)の変形と荷重を用いて、バイリニアでモデル化した。ここでは、5%オフセット値により求められる点を降伏強度点 ( $_{dv}\delta_{y}, _{dv}p_{y}$ )、20mm 変位時を終局強度点 ( $_{dv}\delta_{u}, _{dv}p_{u}$ )とした。なお、初期剛性は終局強度  $_{dv}p_{u}$ の 0.1 倍の点と 0.4 倍の点を結んだ直線の傾きとした。

$${}_{ha}P_{y} = {}_{h}n_{a} \cdot {}_{a}a_{s} \cdot {}_{a}\sigma_{y}$$

ここで、 $hn_a: 水平接合部におけるアンカーボルトの本数、<math>aa_s: アンカーボルトの軸部の断面積、aoy: アンカーボルトの降伏強度である。$ 

(アンカーボルトの引張耐力)  

$$_{ha}P_{u} = {}_{h}n_{a} \cdot {}_{a}a_{es} \cdot {}_{a}\sigma_{u}$$
(3.59)

ここで、 $hn_a: 水平接合部におけるアンカーボルトの本数、<math>aaes: アンカーボルトのねじ部の断面積、 a\sigmau: アンカーボルトの引張強度である。$ 

(アンカーボルトの初期剛性)

$$_{a}K_{1} = \frac{_{h}n_{a}\cdot _{a}a_{s}\cdot _{a}E_{s}}{L_{a}}$$

(3.60)

(3.61)

(3.58)

ここで、 $hn_a: 水平接合部におけるアンカーボルトの本数、ac_s: アンカーボルトの軸部の断面積、aE_s: アンカーボルトのヤング係数、<math>L_a: アンカーボルトの引張長さ(ナット間の距離)である。$ 

(ドリフトピンの降伏耐力)

$$_{hdv}P_{y} = {}_{h}n_{d} \cdot {}_{dv}p_{y}$$

ここで、hnd:水平接合部におけるドリフトピンの本数、dvpy:ドリフトピン1本あたりの鉛直方向の 降伏強度である。

(ドリフトピンの終局耐力)

 $_{hdv}P_u = {}_h n_d \cdot {}_{dv} p_u$ 

ここで、hnd:水平接合部におけるドリフトピンの本数、dvpu:ドリフトピン1本あたりの鉛直方向の 終局強度である。

(3.62)



水平接合部におけるせん断伝達に関しては、実験結果との整合性も踏まえ、詳細モデル、簡易モデルのいずれについても、また、試験体 A、B のいずれについても、CLT 袖壁に作用する水平せん断力を RC はりに直接伝達する形とした。なお、詳細モデルでは、CLT 袖壁内に圧縮ストラットが形成される状況を想定し、図 3-110、図 3-112 に示すように、加力方向を考慮して、上下の仕口面で異なる水平位置にせん断ばねを設置している。

なお、試験体Aに関しては、アンカーボルトによる引張力や鉛直接合部から伝達される鉛直せん断 力が作用するため、試験体Bと異なり、摩擦のみで全ての水平せん断力を伝達できない可能性がある。 本来であれば、RC はりへの伝達分に摩擦係数による上限を設け、残りの水平せん断力は鉛直接合部 を介して RC 柱に伝達するようにモデル化を行うことが望ましいが、このようなモデル化を行うこと は難しいため、鉛直接合部が水平せん断力を伝達する上で十分なせん断耐力を有している場合には、 CLT 袖壁に作用する水平せん断力を全て RC はりに伝達してもよいものとした。

## 3.7.2.5. 鉛直接合部

試験体Aでは、CLT 袖壁に取り付けたドリフトピンによって、RC 柱-CLT 袖壁間で鉛直せん断力の伝達が行われる。ここでは、鉛直接合部におけるドリフトピン以外の構成要素(接合金物や寸切り

ボルト、CLT 袖壁等)に関しては、変形が十分に小さいものと考え、せん断ばねの復元力特性として ドリフトピンの変形のみを考慮することとした。図 3-46 で示した各材料の試験値を用いた数値解析 で求めたドリフトピン単体の降伏点、最大強度点(変形が 20mm 生じたときの荷重)の変形と荷重を 用いて、モデル化を行った。ドリフトピンの復元力特性に関しては、数値解析で求めたドリフトピン 単体の荷重変形関係の変形と荷重を用いて、バイリニアでモデル化した。ここでは、5%オフセット値 により求められる点を降伏強度点(dvðy、dvpy)、20mm 変位時を終局強度点(dvðu、dvpu)とした。なお、 初期剛性は終局強度 dvpu の 0.1 倍の点と 0.4 倍の点を結んだ直線の傾きとした。

詳細モデルでは、鉛直接合部を3分割しており、計3本のせん断ばねが必要となるため、図3-127 に示すドリフトピンの復元力特性のせん断力を3で割った復元力特性を使用した。一方、簡易モデル では、鉛直接合部から伝達される鉛直せん断力によって、CLT 袖壁の鉛直断面に作用するせん断力が せん断耐力に達する状況を想定するために、図3-128(b)に示すように、ドリフトピンの降伏耐力や終 局耐力が、CLT 袖壁の鉛直断面のせん断耐力を上回る場合には、その時点で耐力を頭打ちとし、一定 の耐力を保持するものとした。なお、試験体Aでは、鉛直接合部を介した水平せん断力の伝達は行わ ない(鉛直接合部の軸ばねの剛性はゼロとする)ようにモデル化を行う。これにより、RC柱、CLT 袖 壁に作用する水平せん断力が各階で一定となるため、各部材のモデル化や実験結果の検定の負担が軽 減される。



図 3-127 鉛直接合面のせん断ばねの復元力特性(詳細モデル)



(a) ドリフトピンの終局耐力が CLT 袖壁の
 (b) ドリフトピンの終局耐力が CLT 袖壁の
 鉛直断面のせん断耐力を下回る場合
 図 3-128 鉛直接合面のせん断ばねの復元力特性(簡易モデル)

 $\delta_v$ 

 $d_v \delta_u$ 

#### 3.7.3. 解析結果

#### 3.7.3.1. 実験における荷重変形関係と特性点の比較

図 3-129、図 3-130 に荷重変形関係の実験結果と詳細モデル、簡易モデルによる解析結果の比較を 示す。なお、試験体 C は CLT 袖壁が取り付いていないので、詳細モデル、簡易モデルの分類はない。 また、図 3-131 には詳細モデルと簡易モデルの荷重変形関係の比較を、図 3-132 には実験結果と詳細 モデル、簡易モデルの包絡線の比較を示す。また、表 3-39 に初期剛性と各特性点の比較を示す。

CLT 袖壁で補強した試験体 A、B では、いずれの解析モデルについても、実験初期の水平剛性は概 ね評価できているが、全体変形角 R=1/200rad 付近から、実験結果との乖離が大きくなり、実験の水平 耐力を過小評価する傾向が見られた。また、CLT 袖壁を設置していない試験体 C では、全体変形角 R=1/100rad 付近までは実験の荷重変形関係を精度良く予測したが、それ以降の水平耐力はやや低めに 評価した。

初期剛性に関しては、解析値に対する実験値の比率が、試験体 A、B の平均は 1.16(詳細モデル)、 1.04(簡易モデル)と実験の水平剛性を小さく評価したのに対し、試験体Cは0.83と実験の水平剛性 を大きく評価しており、CLT 袖壁の設置の有無で異なる傾向を示した。なお、今回の検討に用いたモ デルは、RC 柱の材端に設けたファイバーモデルの材長(塑性ヒンジ長さ)が長いため、部材の弾性剛 性に応じた初期剛性が得られていない。そこで、RC 柱のファイバーモデルを削除して初期剛性を確 認したところ、解析値に対する実験値の比率が、試験体A、Bの平均は1.10(詳細モデル)、1.00(簡 易モデル)となり、評価精度が向上したが、試験体Cは0.75と実験結果との乖離が大きくなった。文 |献[3-13]で報告されているように、RC 試験体の構造実験を行うと、初期剛性の実験値は計算値を下回 る場合が多く、試験体Cの結果もこれに沿ったものである。試験体A、Вでは、実験初期においては、 充填したモルタル類の粘着力等によって、両者が一体に近い形で挙動しているものと推測されるが、 数値解析では RC ラーメンと CLT 袖壁を別々にモデル化しているため、このような挙動が再現されな い。また、試験体 A では、CLT 袖壁-RC 柱間の鉛直接合部のせん断ばねに、材料試験の結果を基に 実施した数値解析の結果を用いたドリフトピンの復元力特性を用いているが、最大荷重の 0.1 倍と 0.4 倍の点を結ぶ形で初期剛性を決定しているため、実験初期においては、鉛直接合部のせん断剛性を過 小評価している可能性がある。以上の理由により、結果的に実験結果を精度良く予測したものと考え られる。

また、R=1/100rad、1/50radまでの最大荷重、実験終了時までの最大耐力に関しては、解析値に対す る実験値の比率が、試験体A、Bの平均は1.14、1.21、1.17(詳細モデル)、1.06、1.13、1.12(簡易モ デル)と実験の最大荷重、最大耐力を全体的に低く評価する傾向が見られた。一方、試験体Cにおけ る解析値に対する実験値の比率は、0.99、1.13、1.19となっており、R=1/100rad時については評価精度 が高いものの、水平変形が大きくなるにつれ、試験体A、Bと同程度の評価精度を示すようになった。 試験体A、B、Cで、実験の最大荷重、最大耐力を過小に評価した理由としては、RC柱にファイバー 要素を用いたが、鉄筋の引張降伏後のひずみ硬化を考慮していない以下が考えられる。また、試験体 A、Bに関しては、CLT 袖壁の材料特性に用いた圧縮強度やせん断強度が、CLT 袖壁自体の部材実験 から得られたものでなく、3.4.4 項で示した要素実験によって得られたものを基準としていたため、材 料強度を過小評価していた可能性がある。そこで、参考として、CLTの座屈強度およびせん断強度を 1.5 倍した場合の解析結果を図 3-133 に示す。CLT の材料強度を 1.5 倍したモデルでは、水平変形が大 きくなるにつれ、最大荷重が増大する傾向が見られるが、R=1/100rad付近までは元々のモデルとの差 は小さく、CLT の材料強度を修正しただけでは、実験結果との差を十分に説明することができない。

335

現状では、実験結果を過大に評価することはないので、安全側の評価が可能ではあるが、評価精度に は課題が残っている。

RC 柱の 1 階脚部における最外縁主筋の引張降伏は、実験では  $R=1.0\sim1.5\times10^{-2}$ rad で生じたが、解 析では  $R=0.5\sim0.7\times10^{-2}$ rad 付近で生じた。実験値/計算値の比率は、試験体 A で 1.91 (詳細モデル)、 1.88 (簡易モデル)、試験体 B で 1.88 (詳細モデル)、2.05 (簡易モデル)、試験体 C で 1.92 となり、引 張降伏時の変形角には 2 倍近い差が生じた。部材実験でも実験値と解析値の間に同様の傾向が確認さ れているが、その原因としては、本解析では、柱主筋の上下スタブからの抜け出しを考慮していない ため、解析値が実験値を過大評価したものと考えられる。また、引張降伏時の水平荷重については、 実験値/計算値の比率は、試験体 A で 1.30 (詳細モデル)、1.24 (簡易モデル)、 試験体 B で 1.26 (詳 細モデル)、1.27 (簡易モデル)、試験体 C で 1.12 となり、R=1/100rad までの荷重変形関係の評価精度 と関連していた。

RC はりの 2、3 階における上端筋、下端筋の引張降伏の変形角は、実験では試験体 A で  $R=0.5\sim0.6$ ×10<sup>-2</sup>、試験体 B で  $R=0.4\sim0.7\times10^{-2}$ 、試験体 C で  $R=0.4\sim0.6\times10^{-2}$ rad と柱主筋よりも小さい値となったが、解析では試験体 A で  $R=0.3\sim0.5\times10^{-2}$ 、試験体 B で  $R=0.2\sim0.5\times10^{-2}$ 、試験体 C で  $R=0.3\sim0.4\times10^{-2}$ rad となり、柱主筋の場合と同様に、全体的に降伏時の変形を小さめに評価する傾向が見られた。

実験値/計算値の比率は、試験体 A で 1.44 (詳細モデル)、1.52 (簡易モデル)、試験体 B で 1.55 (詳 細モデル)、1.61 (簡易モデル)、試験体 C で 1.34 となり、CLT 袖壁を設置した試験体では、評価精度 が若干低下する傾向が見られた。また、引張降伏時の水平荷重に関しては、実験値/計算値の比率は、 試験体 A で 1.30 (詳細モデル)、1.25 (簡易モデル)、試験体 B で 1.31 (詳細モデル)、1.24 (簡易モデ ル)、試験体 C で 1.04 となり、RC 柱と同様に、*R*=1/100rad までの荷重変形関係の評価精度と関連して いた。

試験体 A のアンカーボルトについては、離間量が大きい 1F では、引張降伏時の変形角の実験値/ 解析値の比率が 0.76 (詳細モデル、簡易モデル)、引張降伏時の水平荷重の実験値/解析値の比率が 0.93 (詳細モデル)、0.88 (簡易モデル)となり、実験結果を概ね評価できたが、離間量が小さい 2、3F については、詳細モデル、簡易モデルのいずれについても、十分な精度で評価することが難しく、課 題が残った。

|   |          | 初期剛性(kN/mm) |             | 最大荷重(R=1/100radまで) | 最大荷重(R=1/50radまで) | 最大耐力                         |           |  |
|---|----------|-------------|-------------|--------------------|-------------------|------------------------------|-----------|--|
|   |          | ファイバー<br>あり | ファイバー<br>なし | Q<br>(kN)          | Q<br>(kN)         | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN) |  |
| A | 実験       | 48.0        |             | 405                | 469               | 3.92                         | 493       |  |
|   |          |             |             | -400               | -472              | -2.92                        | -490      |  |
|   | 詳細       | 41.2        | 43.3        | 355                | 396               | 5.22                         | 418       |  |
|   |          | (1.16)      | (1.11)      | (1.14)             | (1.19)            | (0.66)                       | (1.18)    |  |
|   | 簡易       | 46.1        | 48.1        | 378                | 419               | 4.23                         | 435       |  |
|   |          | (1.04)      | (1.00)      | (1.07)             | (1.13)            | (0.93)                       | (1.13)    |  |
| в | 実験       | 46.0        |             | 335                | 399               | 3.97                         | 403       |  |
|   |          |             |             | -328               | -381              | -4.00                        | -393      |  |
|   | 詳細       | 40.0        | 41.8        | 292                | 327               | 4.83                         | 349       |  |
|   |          | (1.15)      | (1.10)      | (1.15)             | (1.22)            | (0.83)                       | (1.16)    |  |
|   | 簡易       | 44.0        | 45.7        | 318                | 354               | 3.34                         | 363       |  |
|   |          | (1.05)      | (1.01)      | (1.05)             | (1.12)            | (1.20)                       | (1.11)    |  |
| с | 実験       | 28.5        |             | 220                | 260               | 4.00                         | 275       |  |
|   |          |             |             | -220               | -255              | -2.92                        | -269      |  |
|   | 詳細<br>簡易 | 34.4        | 38.1        | 221                | 230               | 2.43                         | 231       |  |
|   |          | (0.83)      | (0.75)      | (0.99)             | (1.13)            | (1.42)                       | (1.19)    |  |

# (a) 初期剛性と最大荷重

# (b) 柱主筋、はり主筋の降伏点

|   |    | 1F引張側柱主筋降伏              |        | 1F圧縮側柱主筋降伏              |        | 2F梁下端筋降伏              |        | 2F梁上端筋降伏                |        | 3F梁下端筋降伏                |        | 3F梁上端筋降伏              |        |
|---|----|-------------------------|--------|-------------------------|--------|-----------------------|--------|-------------------------|--------|-------------------------|--------|-----------------------|--------|
|   |    | R                       | Q      | R                       | Q      | R                     | Q      | R                       | Q      | R                       | Q      | R                     | Q      |
|   |    | (×10 <sup>-2</sup> rad) | (kN)   | (×10 <sup>-2</sup> rad) | (kN)   | (×10 <sup></sup> rad) | (kN)   | (×10 <sup>-2</sup> rad) | (kN)   | (×10 <sup>-2</sup> rad) | (kN)   | (×10 <sup></sup> rad) | (kN)   |
|   | 宇睦 | 1.358                   | 434    | 0.955                   | 400    | 0.601                 | 347    | 0.619                   | 352    | 0.493                   | 322    | 0.541                 | 323    |
| А | 大歌 | -                       | -      | -1.001                  | -400   | -0.608                | -346   | -0.587                  | -340   | -0.478                  | -314   | -0.465                | -309   |
|   | 詳細 | 0.558                   | 310    | 0.703                   | 331    | 0.453                 | 284    | 0.424                   | 274    | 0.308                   | 223    | 0.356                 | 246    |
|   |    | (2.43)                  | (1.40) | (1.39)                  | (1.21) | (1.33)                | (1.22) | (1.42)                  | (1.26) | (1.57)                  | (1.42) | (1.41)                | (1.28) |
|   | 飾見 | 0.570                   | 328    | 0.697                   | 348    | 0.407                 | 286    | 0.423                   | 291    | 0.304                   | 239    | 0.354                 | 264    |
|   | 间勿 | (2.38)                  | (1.32) | (1.37)                  | (1.15) | (1.48)                | (1.21) | (1.46)                  | (1.21) | (1.62)                  | (1.35) | (1.53)                | (1.22) |
| в | 実験 | 1.354                   | 362    | 1.207                   | 347    | 0.743                 | 285    | 0.650                   | 294    | 0.414                   | 253    | 0.549                 | 262    |
|   |    | -1.150                  | -315   | -0.999                  | -291   | -0.747                | -313   | -0.577                  | -275   | -0.412                  | -233   | -0.453                | -246   |
|   | 詳細 | 0.582                   | 254    | 0.687                   | 268    | 0.469                 | 233    | 0.353                   | 205    | 0.287                   | 183    | 0.350                 | 205    |
|   |    | (2.15)                  | (1.33) | (1.61)                  | (1.19) | (1.59)                | (1.28) | (1.74)                  | (1.38) | (1.44)                  | (1.32) | (1.43)                | (1.24) |
|   | 簡易 | 0.583                   | 272    | 0.681                   | 288    | 0.477                 | 252    | 0.351                   | 220    | 0.285                   | 195    | 0.346                 | 218    |
|   |    | (2.32)                  | (1.33) | (1.77)                  | (1.20) | (1.56)                | (1.13) | (1.85)                  | (1.33) | (1.45)                  | (1.29) | (1.59)                | (1.20) |
|   | 実験 | 1.509                   | 247    | 1.111                   | 225    | 0.533                 | 185    | 0.606                   | 197    | 0.436                   | 172    | 0.446                 | 174    |
| с |    | -1.361                  | -237   | -1.011                  | -217   | -0.539                | -182   | -0.468                  | -169   | -0.498                  | -181   | -0.486                | -181   |
|   | 詳細 | 0.629                   | 205    | 0.682                   | 210    | 0.416                 | 180    | 0.411                   | 180    | 0.340                   | 165    | 0.340                 | 165    |
|   | 簡易 | (2.28)                  | (1.18) | (1.56)                  | (1.05) | (1.29)                | (1.02) | (1.31)                  | (1.02) | (1.38)                  | (1.07) | (1.37)                | (1.07) |

(c)アンカーボルトの降伏点

|   |         | 1Fアンカー                       | ボルト降伏     | 2Fアンカー                       | ボルト降伏     | 3Fアンカーボルト降伏                  |           |  |
|---|---------|------------------------------|-----------|------------------------------|-----------|------------------------------|-----------|--|
|   |         | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN) | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN) | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN) |  |
|   | 実験      | 0.403                        | 283       | 0.356                        | 265       | 0.601                        | 347       |  |
|   |         | -0.377                       | -275      | -0.417                       | -290      | -0.447                       | -302      |  |
|   | =关 幺田   | 0.511                        | 300       | 1.330                        | 372       | 4.111                        | 416       |  |
| ~ | 1 日十 水田 | (0.76)                       | (0.93)    | (0.29)                       | (0.75)    | (0.13)                       | (0.78)    |  |
|   | 簡易      | 0.512                        | 316       | 1.099                        | 386       | -                            | -         |  |
|   |         | (0.76)                       | (0.88)    | (0.35)                       | (0.72)    | -                            | -         |  |











図 3-133 CLT の圧縮強度、せん断強度を 1.5 倍した場合の解析結果(詳細モデル)

3.7.3.2. 変形状況

図 3-136、図 3-135、図 3-136 に各解析モデルの *R*=1/50rad 時の変形状況を示す。いずれの試験体、 いずれの解析モデルについても、1F 柱脚、2、3F のはり端に塑性ヒンジが形成される全体崩壊形が形 成されており、加力実験の状況と概ね対応した。

CLT 袖壁を設置した試験体 A、B の詳細モデルによる変形状況を確認すると、軸ばねが取り付く CLT 袖壁の上下端の水平材はほぼ一直線上に位置しており、部材実験の試験体 AD で見られたような RC 柱から伝達される鉛直せん断力による CLT 袖壁のせん断変形は大きくなく、平面保持仮定が概ね成立していたものと考えられる。試験体 A では、CLT 袖壁端にアンカーボルトを設定しているため、試験体 B と比較して、RC はりと CLT 袖壁の間の水平接合部の離間が小さく抑えられている。試験体 B では、RC はりと CLT 袖壁の間の水平接合部が離間することで、CLT 袖壁が剛体回転するような形で変形している様子が確認できる。CLT 袖壁のせん断変形が小さいため、詳細モデルと簡易モデルの変形状況に大きな差は見られなかった。



図 3-134 R=1/50rad 時の変形状況(試験体 A、×8 倍)



図 3-135 R=1/50rad 時の変形状況(試験体 B、×8倍)



図 3-136 R=1/50rad 時の変形状況(試験体 C、×8 倍)

## 3.7.3.3. 曲げモーメント分布

図 3-139、図 3-138、図 3-139 に各解析モデルの *R*=1/50rad 時の曲げモーメント分布を示す。試験体 A では、試験体 B、C と異なり、CLT 袖壁から伝達される鉛直方向のせん断力が作用するため、RC 柱 の曲げモーメント分布が不連続となっている。

最初に詳細モデルの曲げモーメント分布に着目すると、CLT 袖壁を設置した試験体 A、B では、圧 縮側の RC 柱に CLT 袖壁が取り付く範囲④、⑤では、RC はりの曲げモーメントがほぼ等しくなり、 せん断力が殆ど作用しない純曲げに近い状況となった。引張側の RC 柱に CLT 袖壁が取り付く範囲 ①、②では、CLT 袖壁による RC はりのヒンジリロケーション効果が限定的な試験体 B の 3F はりで は、試験体 C と同様に、RC 柱フェイス位置の曲げモーメントが最大となるのに対し、その他のはり 端では、RC 柱フェイス位置や CLT 袖壁フェイス位置の曲げモーメントが大きく、範囲④、⑤と異な り、多少の勾配は見られるものの、純曲げに近い曲げモーメント分布が得られていることが分かる。 したがって、3.7.2.2 で示した RC 柱フェイス位置の曲げばねの曲げ降伏時回転角の設定方法は、妥当 であったものと考えられる。

一方、簡易モデルの曲げモーメント分布に着目すると、RC柱については、詳細モデルと反曲点高さ が概ね一致していることが分かるが、RCはりについては、1本の線材としてモデル化している CLT 袖壁との接合部分において、曲げモーメント分布が不連続となっており、詳細モデルとの相違が見ら れる。一方で、詳細モデルで見られた RC柱フェイス位置やCLT 袖壁フェイス位置の曲げモーメント が大きくなる傾向は、簡易モデルでも再現されており、3.7.2.2 で示したように、CLT 袖壁と接する部 分の RC はりの変形は、純曲げの曲げモーメント分布を仮定した RC柱フェイス位置の曲げばねの復 元力特性に反映されているため、簡易モデルでも、詳細モデルの曲げモーメント分布がある程度再現 されているものと考えられる。







図 3-139 R=1/50rad 時の曲げモーメント分布(試験体 C)

## 3.7.3.4. 各部の負担応力

図 3-140、図 3-141 に示す各部位に作用する軸力、せん断力の推移を示す。対象は、RC 柱の軸力 (1F:1 $N_{c1}\sim_1N_{c6}$ 、2F:2 $N_{c1}\sim_2N_{c6}$ )、せん断力(1F:1 $Q_{c1}\sim_1Q_{c6}$ 、2F:2 $Q_{c1}\sim_2Q_{c6}$ )、RC はりのせん断力 (2F:2 $Q_{b1}\sim_2Q_{b5}$ 、3F:3 $Q_{b1}\sim_3Q_{b5}$ )、曲げモーメント(2F:2 $M_{b1}$ 、2 $M_{b2}$ 、2 $M_{b4}$ 、2 $M_{b5}$ 、3F:3 $M_{b1}$ 、3 $M_{b2}$ 、 3 $M_{b4}$ 、3 $M_{b5}$ )、CLT 袖壁の軸力(1F:1 $N_{w1}\sim_1N_{w6}$ 、2F:2 $N_{w1}\sim_2N_{w6}$ )、水平せん断力(1F:1 $Q_{w2}$ 、1 $Q_{w5}$ 、 2F:2 $Q_{w2}$ 、2 $Q_{w5}$ )、鉛直せん断力(1F:1 $Q_{wv1}$ 、1 $Q_{wv2}$ 、2F:2 $Q_{wv1}$ 、2 $Q_{wv2}$ )、アンカーボルトの引張力(1F: 1 $T_1$ 、1 $T_2$ 、2F:2 $T_1$ 、2 $T_2$ 、3F:3 $T_1$ 、3 $T_2$ )、RC 柱-CLT 袖壁間の鉛直方向のせん断力(1F:1 $Q_{v1}$ 、1 $Q_{v2}$ 、 2F:2 $Q_{v1}$ 、2 $Q_{v2}$ )である。

なお、RC 柱の上下端に作用するせん断力(1F: 1*Q*c1、1*Q*c3、1*Q*c4、1*Q*c6、2F: 2*Q*c1、2*Q*c3、2*Q*c4、2*Q*c6) は RC 柱と隣接する CLT 袖壁のせん断力を足し合わせたものであり、RC 柱におけるせん断応力度比、 RC 柱のパンチングシア破壊の確認に用いる。

また、詳細モデルでは、CLT 袖壁を模擬したブレース要素に作用する軸方向力の鉛直成分を累加することで、簡易モデルでは、CLT 袖壁の支圧特性を模擬した上下のファイバー要素のうち、水平方向の位置が同じ軸ばねが負担する軸力の差分を累積することで、CLT 袖壁の鉛直断面に作用する鉛直せん断力 1*Q*wv1、1*Q*wv2、2*Q*wv1、2*Q*wv2を算定している。



図 3-140 各部位に作用する軸力、せん断力の一覧(試験体 A)



図 3-141 各部位に作用する軸力、せん断力の一覧(試験体 B)

## (1) RC 柱、CLT 袖壁の軸力

図 3-142 に RC 柱に作用する軸力の推移を示す。CLT 袖壁を挿入した試験体 A、B では、試験体 C と比較して、RC 柱の軸力変動が大きく、また、加力方向に対して引張側の RC 柱 ( $_{1}N_{c1}\sim_{1}N_{c3}$ 、 $_{2}N_{c1}\sim_{2}N_{c3}$ ) では、作用する軸力が一定とならず、水平変形の増大に伴って、引張軸力が増加し続ける傾向が見られた。RC 柱の軸力変動は、鉛直接合部がある試験体 A の方が鉛直接合部のない試験体 B よりも大きく、また、CLT 袖壁を線材でモデル化した簡易モデルの方が CLT 袖壁をブレースで置換した詳細モデルよりも大きくなる傾向が見られた。これは、CLT 袖壁に作用する鉛直せん断力によるせん断変形の有無による影響と考えられる。



図 3-143 に CLT 袖壁に作用する軸力の推移を示す。試験体 B では、試験体 A と異なり、いずれの CLT 袖壁にも圧縮軸力が作用している。一方、試験体 A では、RC 柱から伝達される鉛直せん断力が 作用するため、加力方向に対して引張側の RC 柱に取り付く CLT 袖壁(1Nw1、2Nw1)では、脚部にお ける圧縮軸力が試験体 B の CLT 袖壁に作用する圧縮軸力よりも大きくなっている。また、試験体 A では、CLT 袖壁の端部にアンカーボルトを設置しているため、加力方向に対して圧縮側の RC 柱に取 り付く CLT 袖壁(1Nw4、1Nw6、2Nw4)では、CLT 袖壁に引張軸力が作用している。また、RC 柱の軸力 の推移と同様に、CLT 袖壁を線材でモデル化した簡易モデルの方が CLT 袖壁をブレースで置換した詳 細モデルよりも CLT 袖壁の軸力変動が大きくなる傾向が見られた。



図 3-143 CLT 袖壁に作用する軸力の推移

図 3-144 に、図 3-102 で示した実験で計測した CLT 袖壁の軸ひずみ分布から推定した CLT 袖壁に 作用する軸力の推移について、正方向載荷時の値を抽出して示す。なお、試験体 A では水平接合部に 設けた鋼板挿入ドリフトピンの影響を避けるために、中央寄りの断面 (y=575mm、1025mm、2575mm、 3025mm)の軸ひずみ分布を用いた場合、試験体 B ではより危険断面に近い上下端に近い断面 (y=125mm、1475mm、2125mm、3475mm)の軸ひずみ分布を用いた場合の結果を示している。

試験体 A については、詳細モデル、簡易モデルのいずれについても、加力方向に対して引張側の CLT 袖壁の IF 脚部(<sub>1</sub>N<sub>w1</sub>)が実験結果と概ね対応しているが、IF 頂部や 2F 脚部(<sub>1</sub>N<sub>w3、2</sub>N<sub>w1</sub>)では 圧縮軸力をやや過大に評価している印象を受ける。この原因としては、加力実験では CLT 袖壁の軸力 を表面に貼り付けたひずみゲージの計測値から推定しているが、試験体Aでは、鋼板挿入ドリフトピンを用いた水平、鉛直接合部を設けているため、断面内のひずみ分布が不連続となっており、推定精度に課題があることに加え、CLT 袖壁に作用する軸力の大きさは、RC はりや鉛直接合部に作用する鉛直せん断力の大きさによって変動するため、試験体の脚部を除くと、実験結果の予測が難しかった可能性がある。

一方、水平、鉛直接合部に接合材を設けていない試験体 B については、加力方向に対して引張側の CLT 袖壁の 1F(1Nw1、1Nw3)を含めた全ての断面において、実験結果と解析結果が概ね対応している ものと思われる。



(a) 試験体 A(b) 試験体 B図 3-144 CLT 袖壁に作用する軸力の推移(実験結果、正方向載荷時)

## (2) RC 柱、CLT 袖壁の水平せん断力

図 3-145、図 3-146 に RC 柱、CLT 袖壁に作用する水平せん断力の推移を示す。なお、RC 柱に関しては、スパン内で作用する水平せん断力(1*Q*e2、1*Q*e5、2*Q*e2、2*Q*e5)と、パンチング破壊の検討に用いる 材端部分の水平せん断力(1*Q*e1、1*Q*e3、1*Q*e4、1*Q*e6、2*Q*e1、2*Q*e3、2*Q*e4、2*Q*e6: RC 柱と CLT 袖壁の水平せん断力を単純累加したもの)の両方を示している。

RC 柱に作用する水平せん断力は、変形角の増大に伴って増加するが、試験体 A、B の加力方向に対 して圧縮側 ( $_1Q_{c4}\sim_1Q_{c6}, _2Q_{c4}\sim_2Q_{c6}$ ) や試験体 C では、R=1/100rad 以降は概ね一定となるのに対し、 試験体 A、B の加力方向に対して引張側 ( $_1Q_{c1}\sim_1Q_{c3}, _2Q_{c1}\sim_2Q_{c3}$ ) では、R=1/100rad 以降も水平せん断 力が増大を続けた。また、CLT 袖壁に作用する水平せん断力についても、加力方向に対して圧縮側 ( $_1Q_{w5}, _2Q_{w5}$ ) については、R=1/100rad 以降はほぼ一定となるが、加力方向に対して引張側 ( $_1Q_{w2}, _2Q_{w2}$ ) につ いては、R=1/100rad 以降も水平せん断力が増大を続けた。したがって、図 3-129、図 3-130 で示した 詳細モデル、簡易モデルの荷重変形関係で見られた R=1/100rad 以降の水平荷重の増加は、加力方向に 対して引張側の RC 柱や CLT 袖壁による水平せん断力の負担増加によるものと考えられる。なお、 CLT 袖壁に作用する水平せん断力は、式(3.29)で示した CLT の水平断面のせん断耐力 (173kN) には到 達していなかった。



図 3-145 RC 柱に作用する水平方向のせん断力の推移



図 3-146 CLT 袖壁に作用する水平方向のせん断力の推移

図 3-147 に、図 3-106 で示した実験で計測した CLT 袖壁のせん断ひずみから推定した各部材に作用 する水平方向のせん断力の推移を示す。

試験体Aについては、詳細モデル、簡易モデルのいずれについても、加力方向に対して引張側のRC 柱に取り付くCLT 袖壁では、1、2Fの水平せん断力(1Qw2、2Qw2)が概ね一致する傾向を示したが、 実験では1Fと比較して2Fの水平せん断力が大きく、最終的に水平断面のせん断耐力(173kN)に到 達しており、両者の間に乖離が見られた。また、加力方向に対して圧縮側のRC柱に取り付くCLT 袖 壁では、実験では1、2Fの水平せん断力が100~150kN程度であったのに対し、詳細モデル、簡易モ デルでは、1、2Fの水平せん断力の大きさは最大でも70kN程度に留まり、変形角の増大に伴って両者 の差が大きくなった。実験では、CLT 袖壁の全体のせん断変形から水平方向のせん断力の算定を行っ ているため、CLT 袖壁に作用する鉛直方向のせん断力の影響によって、断面内のせん断ひずみに分布 が生じていた場合、CLT 袖壁に作用する水平方向のせん断力を過大評価している可能性がある。仮に、 断面内のせん断ひずみの分布に応じて、水平方向のせん断力の推定を行った場合には、実験と数値解 析の差が小さくなる可能性がある。

一方で、試験体 B では、数値解析は、加力方向に対して引張側 ( $_1Q_{w2}$ 、 $_2Q_{w2}$ )、圧縮側 ( $_1Q_{w5}$ 、 $_2Q_{w5}$ ) のいずれの場合についても、数値解析によって、実験の傾向を概ね捉えることができた。



(b) 試験体 B 図 3-147 CLT 袖壁に作用する水平方向のせん断力の推移(実験結果の比較)

## (3) 鉛直接合部に作用する鉛直せん断力

図 3-148 に試験体 A の鉛直接合部に作用する鉛直方向のせん断力の推移を示す。なお、同図中に は、図 3-104 に示した鉛直接合部に設けたせん断変形の計測値から(方法②で)推定した鉛直せん断 力も合わせて示す。ここで、vdvQyは、式(3.25)で求めた鋼板挿入ドリフトピン接合部の降伏耐力(290kN) である。

加力方向に対して引張側では、全体変形角が小さい場合には、2F(2Q<sub>v1</sub>)の方が 1F(1Q<sub>v1</sub>)よりも 鉛直せん断力が大きいが、変形が大きくなるにつれ、詳細モデルでは両者が一致する傾向を示したの に対し、簡易モデルでは 1F の鉛直せん断力が大きな値を示す傾向が見られた。一方で、実験では、 *R*=1/100rad 付近で 2F の鉛直接合部に作用するせん断力が不連続となっている箇所はあるが、1、2F の 鉛直接合部が同じような勾配で増大しており、詳細モデルに近い履歴が得られたものと考えられる。 簡易モデルでは、CLT 袖壁の鉛直方向の分割数が少なく、鉛直せん断力によって生じるせん断変形を 考慮できないため、各部の応力伝達経路が局所的となり、鉛直接合部に作用する鉛直せん断力にも上 下階でばらつきが生じやすくなったものと考えられる。

また、加力方向に対して圧縮側では、 2F (2*Q*v2)の方が 1F (1*Q*v1)よりも鉛直せん断力が大きくなる傾向が見られたが、実験では両者の大小関係が逆転していた。一方で、詳細モデル、簡易モデルのいずれについても、実験で作用した鉛直せん断力の大きさをある程度の精度で評価できていた。

なお、鉛直接合部の設計では、内法スパン内に作用する RC はりのせん断力の 2 倍を目安にしたが、 図 3-152 で後述する試験体 A のスパン中央の RC はりのせん断力 (2Qb3、3Qb3) が 100kN 前後である のに対し、加力方向に対して引張側 (1Qv1、2Qv1) では 200~300kN とやや過小に、加力方向に対して 圧縮側(1Qv2、2Qv2)では100~150kNとやや過大に評価した。上記の仮定では、加力方向に対して圧縮側のように、CLT 袖壁が RC はりのヒンジリロケーションによって生じる軸力のみを主に負担するケースを対象としたものであり、加力方向に対して引張側のように、水平変形の増大に伴って CLT 袖壁に作用する圧縮軸力が増加し続けるケースは対象としていない。そのため、CLT 袖壁が RC はりのヒンジリロケーションによって生じる軸力のみ負担するケースを対象とするケースに限定すれば、鉛直接合部に作用する鉛直せん断力を安全側に評価できるものと考えられる。





## (4) CLT 袖壁に作用する鉛直せん断力

図 3-150 に CLT 袖壁の鉛直断面に作用する鉛直せん断力の推移を示す。なお、いずれのモデルで も、荷重増分解析の各ステップにおいて、断面内で最も大きいせん断力を抽出している。CLT 袖壁の 上下の仕口面には軸方向力が分布して作用するため、CLT 袖壁の鉛直断面に作用する鉛直せん断力の 大きさは、鉛直断面を切り出す水平方向の位置によって異なる。そこで、詳細モデルでは、CLT 袖壁 を模擬したブレース要素に作用する軸方向力の鉛直成分を累加することで、簡易モデルでは、CLT 袖 壁の支圧特性を模擬した上下のファイバー要素のうち、水平方向の位置が同じ要素が負担する軸力の 差分を累加することで、CLT 袖壁の鉛直断面に作用する鉛直せん断力(1Qwv1、1Qwv2、2Qwv1、2Qwv2) を算定した。

なお、上記のように、ブレース要素やファイバー要素の負担軸力から、鉛直せん断力を算定する方法は煩雑であるため、ここでは、CLT 袖壁の鉛直せん断力(p1Qwv1、p1Qwv2、p2Qwv1、p2Qwv2)を、図 3-149(a)

に示す式(3.63)、もしくは図 3-149(b)に示す式(3.64)のいずれかに基づいて推定し、上記の鉛直せん断力 ( $_1Q_{wv1}$ 、 $_1Q_{wv2}$ 、 $_2Q_{wv1}$ 、 $_2Q_{wv2}$ ) と比較した。いずれの式を用いた場合にも、鉛直せん断力は同じ値と なる。上下の仕口面に作用する曲げ圧縮力の合計が CLT 袖壁の軸耐力 ( $t_w \cdot D_w \cdot {}_{th}F_k$ )を上回る場合に は、図 3-149(c)に示すように、全ての曲げ圧縮力が鉛直せん断力として断面内に作用しないので、式 (3.63)、式(3.64)において、鉛直せん断力を低減している。

(スパン内側の応力を用いて算定する場合)

 $p_{1}Q_{wv1} = \max({}_{1}Q_{v1}, {}_{1}N_{wc1} + {}_{2}T_{1} - {}_{1}T_{1} - \max(0, {}_{1}N_{wc1} + {}_{1}N_{wc3} - t_{w} \cdot D_{w} \cdot {}_{th}F_{k}))$   $p_{1}Q_{wv2} = \max({}_{1}Q_{v2}, {}_{1}N_{wc6} + {}_{1}T_{2} - {}_{2}T_{2} - \max(0, {}_{1}N_{wc4} + {}_{1}N_{wc6} - t_{w} \cdot D_{w} \cdot {}_{th}F_{k}))$   $p_{2}Q_{wv1} = \max({}_{2}Q_{v1}, {}_{2}N_{wc1} + {}_{3}T_{1} - {}_{2}T_{1} - \max(0, {}_{2}N_{wc1} + {}_{2}N_{wc3} - t_{w} \cdot D_{w} \cdot {}_{th}F_{k}))$   $p_{2}Q_{wv2} = \max({}_{2}Q_{v2}, {}_{2}N_{wc6} + {}_{2}T_{2} - {}_{3}T_{2} - \max(0, {}_{2}N_{wc4} + {}_{2}N_{wc6} - t_{w} \cdot D_{w} \cdot {}_{th}F_{k}))$ 

(スパン外側の応力を用いて算定する場合)  

$$p_1 Q_{wv1} = {}_1 Q_{v1} + \max(0, {}_1 N_{wc3} - \max(0, {}_1 N_{wc1} + {}_1 N_{wc3} - t_w \cdot D_w \cdot {}_{th} F_k))$$
  
 $p_1 Q_{wv2} = {}_1 Q_{v2} + \max(0, {}_1 N_{wc4} - \max(0, {}_1 N_{wc4} + {}_1 N_{wc6} - t_w \cdot D_w \cdot {}_{th} F_k))$   
 $p_2 Q_{wv1} = {}_2 Q_{v1} + \max(0, {}_2 N_{wc3} - \max(0, {}_2 N_{wc1} + {}_2 N_{wc3} - t_w \cdot D_w \cdot {}_{th} F_k))$   
 $p_2 Q_{wv2} = {}_2 Q_{v2} + \max(0, {}_2 N_{wc4} - \max(0, {}_2 N_{wc4} + {}_2 N_{wc6} - t_w \cdot D_w \cdot {}_{th} F_k))$ 

(3.63)

(3.64)

但し、1*N*wc1、1*N*wc3、1*N*wc4、1*N*wc6、: 1FのCLT 袖壁に作用する曲げ圧縮力、2*N*wc1、2*N*wc3、2*N*wc4、2*N*wc6: 2FのCLT 袖壁に作用する曲げ圧縮力、1*T*1、2*T*1、3*T*1、1*T*1、2*T*1、3*T*1: アンカーボルトに作用する引張力、1*Q*v1、1*Q*v2、2*Q*v1、2*Q*v2: RC 柱-CLT 袖壁間の鉛直接合部に作用する鉛直せん断力である。

CLT 袖壁の鉛直断面に作用する鉛直せん断力は、水平変形の増大に伴って増加するが、詳細モデル では、CLT 袖壁のブレース置換を行い、軸方向力の制限を行うことで、試験体 A では加力方向に対し て引張側の 1F 及び 2F の CLT 袖壁 ( $_1Q_{wv1}$ 、 $_2Q_{wv1}$ )、試験体 B では加力方向に対して引張側の 1F の CLT 袖壁 ( $_1Q_{wv1}$ ) において、作用する鉛直せん断力が、式(3.27)で示した CLT 袖壁の鉛直断面のせん 断耐力  $_{wv}Q_{su}$  (428kN) で頭打ちとなった。図 3-134、図 3-135 の *R*=1/50rad における変形図を見ると、 これらの CLT 袖壁では RC 柱近傍のブレース要素が軸耐力に到達しており、鉛直せん断力によるせん 断降伏が生じることが分かる。一方、簡易モデルでは、CLT 袖壁を1本の線材としてモデル化してお り、このような挙動が再現できないため、上記の CLT 袖壁において、作用する鉛直せん断力がせん断 耐力  $_{wv}Q_{su}$  (428kN) を上回る挙動が確認されており、降伏条件が満足されていないことになるため、 注意が必要となる。なお、試験体 B には、鉛直接合部を設けておらず、RC 柱から鉛直せん断力が入 力される訳ではないが、図 3-143 に示したように、これらの CLT 袖壁では比較的大きな圧縮軸力が作 用している。

CLT 袖壁の鉛直断面に作用する鉛直せん断力(1*Q*wv1、1*Q*wv2、2*Q*wv1、2*Q*wv2)と、式(3.63)もしくは式 (3.64)で求めた CLT 袖壁の鉛直せん断力(p1*Q*wv1、p1*Q*wv2、p2*Q*wv1、p2*Q*wv2)を比較すると、CLT 袖壁に 作用する圧縮軸力が特に大きい加力方向に対して引張側の 1F の CLT 袖壁(1*Q*wv1)については、詳細 モデル、簡易モデルのいずれについても、式(3.63)もしくは式(3.64)は、鉛直せん断力を過大評価して おり、精度良く予測することは難しいが、安全側の評価となっているため、設定したせん断耐力を上 回るかどうかの判定には活用できる。また、その他の断面については、式(3.63)もしくは式(3.64)によ る推定結果と解析結果が概ね対応している。以上の結果より、式(3.63)もしくは式(3.64)を用いた判定 を行うことで、鉛直断面に作用する鉛直せん断力がせん断耐力を上回るかどうかを判定することは可 能である。





図 3-150 CLT 袖壁に作用する鉛直方向のせん断力

## (5) RC はりのせん断力

図 3-152 に RC はりに作用するせん断力の推移を示す。なお、簡易モデルでは、CLT 袖壁を1本の 線材としてモデル化を行っているため、CLT 袖壁のフェイス位置近傍に作用するせん断力(2Q<sub>62</sub>、2Q<sub>64</sub>、 3Q<sub>62</sub>、3Q<sub>64</sub>)を解析結果から直接得ることができない。そこで、図 3-151 に示すように、CLT 袖壁端に 全ての曲げ圧縮力が作用するものと仮定して、以下の算定式によって、必要なせん断力を計算するこ ととした。また、表 3-40 に RC はりに作用する最大のせん断力を示す。

 ${}_{2}Q_{b2} = {}_{2}N_{w1} + {}_{1}T_{1} - {}_{2}Q_{b3}$   ${}_{2}Q_{b4} = {}_{1}N_{w2} + {}_{2}T_{2} - {}_{2}Q_{b4}$   ${}_{3}Q_{b2} = {}_{2}T_{1} - {}_{3}Q_{b3}$   ${}_{3}Q_{b4} = {}_{2}N_{w2} - {}_{2}Q_{b3}$ 

(3.65)

ここで、 ${}_{2}Q_{b2}$ 、 ${}_{3}Q_{b2}$ :加力方向に対して引張側の RC 柱に取り付く CLT 袖壁のフェイス位置近傍に おける 2、3 階の RC はりのせん断力、 ${}_{2}Q_{b4}$ 、 ${}_{3}Q_{b4}$ :加力方向に対して圧縮側の RC 柱に取り付く CLT 袖壁のフェイス位置近傍における 2、3 階の RC はりのせん断力、 ${}_{2}Q_{b3}$ 、 ${}_{3}Q_{b3}$ :スパン中央に作用する 2、3 階の RC はりのせん断力、 ${}_{2}N_{w1}$ :加力方向に対して引張側の RC 柱に取り付く CLT 袖壁の 1 階脚 部に作用する圧縮軸力、 ${}_{1}N_{w2}$ 、 ${}_{2}N_{w2}$ :加力方向に対して圧縮側の RC 柱に取り付く CLT 袖壁の 1、2 階 頂部に取り付くアンカーボルトの引張力、 ${}_{2}T_{2}$ :加力方向に対して圧縮側の RC 柱に取り付く CLT 袖壁の 1、2 階


図 3-151 CLT 袖壁のフェイス位置近傍のせん断力の推定(試験体 A の場合)

試験体 A、B、C のスパン中央に作用するせん断力 ( $_{2}Q_{b3}$ 、 $_{3}Q_{b3}$ ) は、RC はりが曲げ降伏するとせん 断力が頭打ちとなる。スパン中央で RC はりに作用するせん断力の大きさは、試験体 C と比較して、 試験体 A で 1.6~1.7 倍程度、試験体 B で 1.2~1.7 倍程度となっており、CLT 袖壁の設置に伴うヒンジ リロケーションの効果が確認できる。なお、試験体 A、B では、RC はりの水平方向の位置によって、 RC はりに作用するせん断力の大きさが異なっている。加力方向に対して引張側の RC 柱に取り付く RC はり端に作用するせん断力 ( $_{2}Q_{b1}$ 、 $_{2}Q_{b2}$ 、 $_{3}Q_{b2}$ ) は、スパン中央に作用するせん断力 ( $_{2}Q_{b3}$ 、  $_{3}Q_{b3}$ ) と比較して、試験体 A で 1.7~4.7 倍程度、試験体 B で 5.0~5.9 倍程度まで増加している。また、 これらの断面では、R=1/100rad 以降も水平変形の増大に伴って、せん断力が増加する傾向が見られる ため、設計時の配慮が必要になる。一方、加力方向に対して圧縮側の RC 柱に取り付く RC はり端に 作用するせん断力 ( $_{2}Q_{b4}$ 、 $_{2}Q_{b5}$ 、 $_{3}Q_{b4}$ 、 $_{3}Q_{b5}$ ) は、スパン中央のせん断力 ( $_{2}Q_{b3}$ 、 $_{3}Q_{b3}$ ) と同程度か、そ れよりも小さい値に留まった。

今回の検討では、計算式の評価精度に応じて、RC はりのせん断耐力を 1.4 倍してモデル化を行って いるが、実際の設計ではこのような割り増しを行うことはないため、鉛直接合部によるせん断伝達が 期待できる試験体 A の方が RC はりのせん断設計を行う上では有利である。

|       | 詳細刊      | Eデル   | 簡易-      | Eデル   |
|-------|----------|-------|----------|-------|
| 試験体 A | RC 柱フェイス | スパン中央 | RC 柱フェイス | スパン中央 |
| 2F    | 395      | 97    | 489      | 104   |
| 3F    | 164      | 97    | 226      | 104   |
| 試験体 B | RC 柱フェイス | スパン中央 | RC 柱フェイス | スパン中央 |
| 2F    | 552      | 98    | 610      | 103   |
| 3F    | 413      | 75    | 402      | 81    |
| 試験体C  | RC 柱フェイス | スパン中央 | RC 柱フェイス | スパン中央 |
| 2F    |          | (     | 62       |       |
| 3F    |          |       | 61       |       |

表 3-40 RC はりに作用する最大せん断力(単位:kN)



図 3-152 RC はりに作用するせん断力の推移

# (6) RC はりの曲げモーメント

図 3-153 に RC はりに作用する曲げモーメントの推移を示す。試験体 A では、加力方向に対して引 張側に位置する 2F の RC 柱フェイス位置 (2*M*<sub>b1</sub>) における曲げ降伏がやや遅れるものの、その他の断 面については、試験体 C と同様に、*R*=1/200rad 付近で曲げ降伏が生じており、いずれのはり端におい ても、RC 柱フェイス位置と CLT 袖壁フェイス近傍に二つの塑性ヒンジが形成されていることが確認 できる。

試験体 B では、加力方向に対して圧縮側に位置する 2F の CLT 袖壁フェイス近傍(2Mb4)における

曲げ降伏がやや遅れる傾向があり、加力方向に対して引張側に位置する 3F の CLT 袖壁フェイス近傍 (3*M*<sub>b2</sub>)における曲げ降伏が生じない点が試験体 A と異なっているが、その他の断面については、試験体 C と同様に、*R*=1/200rad 付近で曲げ降伏が生じている。

なお、RC はりの曲げモーメント分布の推移については、詳細モデル、簡易モデルの相違による影響 は小さかった。



図 3-153 RC はりに作用する曲げモーメントの推移

### (7) アンカーボルトの引張力

図 3-154 にアンカーボルトの引張力の推移を示す。ここでは、 図 3-100 で示したアンカーボルト に貼付したひずみゲージの値を基に推定したアンカーボルトの引張力(正方向載荷時の包絡線上の結 果を抽出したもの)も合わせて示す。

実験ではアンカーボルトの初期締付を行うことにより、実験開始時に初期張力が発生しているのに 対し、解析ではアンカーボルトの初期張力までの軸剛性を無限大(復元力特性の骨格曲線を剛塑性) としており、初期挙動に差が生じているが、加力方向に対して圧縮側の RC 柱に取り付く CLT 袖壁の IF アンカーボルト(172)については、詳細モデル、簡易モデルのいずれについても、降伏時(hvaQy) の変形角や降伏後のひずみ硬化域も含めて、実験時の挙動を概ね再現できている。一方、加力方向に 対して圧縮側の RC 柱に取り付く CLT 袖壁の 2F アンカーボルト(272)、加力方向に対して引張側の RC 柱に取り付く CLT 袖壁の 3F アンカーボルト(371)については、アンカーボルトが引張降伏する 前に、引張力が頭打ちとなる傾向が見られ、降伏強度に近い引張力が作用しているものの、降伏時の 変形角を精度良く評価することが難しかった。アンカーボルトに作用する引張力は、CLT 袖壁-RC ラ ーメン間に設ける水平せん断力伝達用のばねの位置等の影響によって変動し、RC はりではなく、RC 柱に軸ばねとして取り付けた場合には、水平せん断力による曲げモーメントが RC はりに伝達されず、 アンカーボルトの引張力が増加することが確認されている。一方で、このようなモデル化を行った場 合、試験体全体の水平剛性や水平耐力を実験結果と比較して過小評価する傾向も確認されているため、 より多くの項目が実験結果と適合するようなモデル化の方法を検討することが今後の課題である。



図 3-154 アンカーボルトの引張力の推移(試験体 A)

### (8) CLT 袖壁の水平せん断力/曲げ圧縮力

図 3-155 に、CLT 袖壁の水平接合部に作用する曲げ圧縮力(試験体 A では、断面に作用する軸力に アンカーボルトの負担する引張軸力を足し合わせたもの、試験体 B では、断面に作用する軸力そのも の)に対する水平方向のせん断力の比率の推移を示す。

文献[3-18]では、プレキャスト部材の間にモルタルを充填し、圧着接合する場合の摩擦係数として 0.50 が与えられており、本試験体でも同程度の摩擦係数が期待できるものと考えられる。試験体 B で は、全ての断面において、曲げ圧縮力に対する水平せん断力の比が、RC 部材と CLT 袖壁の間の摩擦 係数として設定した 0.5 を下回っており、水平せん断力の伝達に支障がないことが確認できる。

一方、試験体Aでは、曲げ圧縮力に対する水平せん断力の比が 0.5 を下回った断面は、CLT 袖壁の 8 つの断面のうち、詳細モデルは3 つ( $_1Q_{w1}/_1N_{wc1}, _1Q_{w3}/_1N_{wc3}, _2Q_{w1}/_2N_{wc1}$ )、簡易モデルは2 つ( $_1Q_{w1}/_1N_{wc1}, _1Q_{w3}/_1N_{wc3}$ ) に留まるため、3.8 節で後述する設計手法では、簡略化のため、摩擦力による水平せん断力の伝達には期待せず、鉛直接合部を介して、RC 柱に水平せん断力が伝達されるものと仮定して検討を行うこととした。



図 3-155 水平接合部における曲げ圧縮軸力に対する水平せん断力の比率

## (9) RC 柱のせん断応力度比

図 3-156 に RC 柱のせん断応力度比の推移を示す。ここでは、RC 柱に作用するせん断力(図 3-140、 図 3-141 の 1Qc2、1Qc5、2Qc2、2Qc5)を、RC 柱の幅(400mm)、応力中心間距離(7/8×358mm)、コン クリートの圧縮強度で割った値と、腰壁、垂れ壁付きの RC はりの部材種別判定の方法を参考に、RC 柱、CLT 袖壁が負担する全ての水平せん断力(図 3-140、図 3-141 の  $_1Q_{c1}$ 、 $_1Q_{c3}$ 、 $_1Q_{c4}$ 、 $_2Q_{c1}$ 、 $_2Q_{c3}$ 、 $_2Q_{c4}$ 、 $_2Q_{c6}$ )を、RC 柱の幅(400mm)、せい(400mm)、コンクリートの圧縮強度で割った値の2 通りとした。なお、図中には、RC 柱の部材種別判定で FA、FB、FC の閾値となる 0.100、0.125、0.150 に線を引いている。

本試験体は1スパンの試験体であり、RCはりやCLT袖壁が片側にしか取り付いておらず、図3-137、 図 3-138、図 3-139 で示したように、RC柱の曲げモーメント分布が片持ちに近いことから、いずれの 試験体でも FA の条件を満足していた。



図 3-156 柱のせん断応力度比の推移

## (10) RC はりのせん断応力度比

図 3-157 に RC はりのせん断応力度比の推移を示す。ここでは、RC はりに作用する水平せん断力 を、RC はりの幅(300mm)、有効せい(7/8×358mm)、コンクリートの圧縮強度で割ることで、せん 断応力度比を求めた。なお、図中には、RC はりの部材種別判定で FA、FB の閾値となる 0.150 に線を 引いている。CLT 袖壁の圧縮軸力が RC はりの鉛直せん断力として作用する RC 柱フェイス位置(2Qb1、 3Qb1)のせん断応力度比が大きく、試験体 A、B のいずれについても、せん断応力度比が 0.150 を上回 り、FB の判定となった。



## 3.7.3.5. RC はりに設けた曲げばねの回転角

図 3-158 に、試験体 A、B、C における RC はりの曲げばねの回転角の推移を示す。図中の凡例(2F: 20b1、20b2、20b4、20b5、3F:30b1、30b2、30b4、30b5)は、図 3-140、図 3-141 で示した曲げモーメントの計 算位置(2F:2Mb1、2Mb2、2Mb4、2Mb5、3F:3Mb1、3Mb2、3Mb4、3Mb5)と対応している。

試験体 A、B では、RC はりの端部について、RC 柱フェイスと CLT 袖壁フェイス近傍の2 箇所に曲 げばねを設置しているため、それぞれの曲げばねに回転角が生じる。そのため、RC はりの変形性能を 評価する上で、それぞれの曲げばねに生じる回転角の大きさを把握しておくことは重要である。今回 の解析では、図中に示す詳細モデルと簡易モデルで、回転角に大きな差異は見られない。なお、比較 のために、試験体 C の解析結果も示すが、同試験体では、CLT 袖壁やそれに対応した RC はりの曲げ ばねを設けていないため、はり端の回転角は全て RC 柱フェイス位置で生じている。

試験体 A では、いずれのはり端についても CLT 袖壁フェイス近傍の曲げばね ( $_{2}\theta_{b2}$ 、 $_{2}\theta_{b4}$ 、 $_{3}\theta_{b2}$ 、 $_{3}\theta_{b4}$ ) に大部分の変形が集中しており、RC はりのヒンジリロケーションの効果が表れている。CLT 袖壁フェイス近傍の曲げばねに生じる回転角は、全体変形角とほぼ比例する形で増加しており、はり端による差はあまり見られない。一方、RC 柱フェイスの曲げばね ( $_{2}\theta_{b1}$ 、 $_{2}\theta_{b5}$ 、 $_{3}\theta_{b1}$ 、 $_{3}\theta_{b5}$ ) では、加力方向に対して圧縮側の RC 柱に取りつくはり端の回転角 ( $_{2}\theta_{b5}$ 、 $_{3}\theta_{b5}$ ) は、全体変形角 0.5×10<sup>-2</sup>rad 付近でほぼ 頭打ちとなっているのに対し、加力方向に対して引張側の RC 柱に取りつくはり端の回転角 ( $_{2}\theta_{b1}$ 、 $_{3}\theta_{b1}$ ) は、全体変形角の増加に伴って増加する傾向は見られるものの、全体変形角 3.0×10<sup>-2</sup>rad 到達時 点で、1.0×10<sup>-2</sup>rad を下回っていた。

試験体 B では、試験体 A と異なり、はり端によって、CLT 袖壁フェイス近傍と RC 柱フェイスの曲 げばねの回転角の割合が大きく異なっている。CLT 袖壁フェイス近傍の曲げばね ( $_{2}\theta_{b2}, _{2}\theta_{b4}, _{3}\theta_{b2}, _{3}\theta_{b4}$ ) のうち、回転角が集中しているのは、加力方向に対して圧縮側の RC 柱に取り付く 3F のはり端 ( $_{3}\theta_{b4}$ ) のみであり、その他のはり端では RC 柱フェイスの曲げばね ( $_{2}\theta_{b1}, _{2}\theta_{b5}, _{3}\theta_{b1}, _{3}\theta_{b5}$ ) でも相応の回転角 が生じている。特に加力方向に対して引張側の RC 柱に取り付く 3F のはり端 ( $_{3}\theta_{b1}$ ) では、回転角の 大部分が RC 柱フェイスで生じており、ヒンジリロケーションの効果は表れていない。



図 3-158 柱フェイス位置、袖壁フェイス位置における RC はりの回転角の推移

解析結果の妥当性を検証するため、実験結果との比較を行う。図 3-159 に加力実験における RC は りの RC 柱フェイス、CLT 袖壁フェイス近傍の変形角の推移を示す。ここでは、図 3-80、図 3-87 で 示した計測区間①~ ⑩で求めた回転角、せん断ひずみを用いて、RC 柱フェイス、CLT 袖壁フェイス 近傍の変形角を以下の式で算定した。試験体 C における RC はりの変形の大部分が計測区間①、②、 ⑥、⑦に集中していたことから、RC 柱はり接合部内を含む長さ 475mm の計測区間①、②、 ⑥、⑦に集中していたことから、RC 柱はり接合部内を含む長さ 475mm の計測区間①、②、 ⑥、⑦で 求められる式(3.66)、(3.68)による変形角を RC 柱フェイス、長さ 1150mm の計測区間③、④、 ⑤、⑧、 ⑩、⑪で求められる式(3.67)、(3.69)による変形角を CLT 袖壁フェイス近傍の変形を見なすこととした。 なお、実験における「変形角」には、曲げ、せん断といった全ての変形が含まれているが、簡易モデ ルの RC 柱フェイスの曲げばねを除き、解析で得られた「回転角」には線材としてモデル化した部分 の弾性変形が含まれていないため、実験と解析における変形の定義は厳密には異なるが、ここでは大 まかな傾向をつかむことを目的として、そのまま比較を行っている。

図 3-158 で示した解析結果と比較すると、解析では、CLT 袖壁フェイス近傍における変形をやや大 きく、RC 柱フェイスにおける変形をやや小さく評価する傾向が見られるものの、解析結果は実験に おける RC はりの変形角の傾向を全体的に捉えており、詳細モデル、簡易モデルのいずれを用いる場 合にも、曲げばねの回転角を RC はりの変形性能の評価に用いることができるものと考えられる。

$${}_{b}R_{2F,column} = \left(\theta_{1} \cdot \left(\frac{l_{1}}{2} + l_{2}\right) + \theta_{2} \cdot \frac{l_{2}}{2} + \gamma_{1} \cdot l_{1} + \gamma_{2} \cdot l_{2}\right) / \left(l_{1} + l_{2}\right)$$

$${}_{b}R_{2F,wing wall} = \left(\theta_{3} \cdot \left(\frac{l_{3}}{2} + l_{4} + l_{5}\right) + \theta_{4} \cdot \left(\frac{l_{4}}{2} + l_{5}\right) + \theta_{5} \cdot \frac{l_{5}}{2} + \gamma_{3} \cdot l_{3} + \gamma_{4} \cdot l_{4} + \gamma_{5} \cdot l_{5}\right) / \left(l_{3} + l_{4} + l_{5}\right)$$

$$(3.66)$$

$$(3.67)$$

$${}_{b}R_{3F,column} = \left(\theta_{6} \cdot \left(\frac{l_{6}}{2} + l_{7}\right) + \theta_{7} \cdot \frac{l_{7}}{2} + \gamma_{6} \cdot l_{6} + \gamma_{7} \cdot l_{7}\right) / \left(l_{6} + l_{7}\right)$$
(3.68)

$${}_{b}R_{3F,wing\ wall} = \left(\theta_{8} \cdot \left(\frac{l_{8}}{2} + l_{9} + l_{10}\right) + \theta_{9} \cdot \left(\frac{l_{9}}{2} + l_{10}\right) + \theta_{10} \cdot \frac{l_{10}}{2} + \gamma_{8} \cdot l_{8} + \gamma_{9} \cdot l_{9} + \gamma_{10} \cdot l_{10}\right) / \left(l_{8} + l_{9} + l_{10}\right)$$

$$(3.69)$$

ここで、b1、b2、b3、b4、b5:2Fはりの計測区間 1~5の長さ、b6、b7、b8、b9、b10:3Fはりの計測 区間 6~10の長さ、 $\theta_1$ 、 $\theta_2$ 、 $\theta_3$ 、 $\theta_4$ 、 $\theta_5$ :2Fはりの計測区間 1~5で計測された回転角、 $\theta_6$ 、 $\theta_7$ 、 $\theta_8$ 、 $\theta_9$ 、 $\theta_{10}$ :3Fはりの計測区間 6~10で計測された回転角、 $\gamma_1$ 、 $\gamma_2$ 、 $\gamma_3$ 、 $\gamma_4$ 、 $\gamma_5$ :2Fはりの計測区間 1~5で計測されたせん断ひずみ、 $\gamma_6$ 、 $\gamma_7$ 、 $\gamma_8$ 、 $\gamma_9$ 、 $\gamma_{10}$ :3Fはりの計測区間 6~10で計測されたせん断ひずみである。



(c) 試験体 C 図 3-159 柱フェイス位置、袖壁フェイス位置における RC はりの変形角の推移(実験結果)

## 3.7.3.6. RC はりに設けた曲げばねが近接する場合の対応

今回対象とした試験体 A、B では、図 3-158、図 3-159 で示したように、実験、解析のいずれにつ いても、一部のはり端を除き、CLT 袖壁フェイス近傍の曲げばねに相応の回転が生じたが、本試験体 よりも CLT 袖壁の長さが短い場合や厚さが薄い場合など、袖壁の効果が不十分な場合には、RC はり のヒンジリロケーションの効果が限定的となり、RC 柱フェイス位置の曲げばねに回転が集中する可 能性がある。この際、図 3-110~図 3-113 で示した詳細モデルや簡易モデルにおける RC 柱フェイス 位置と CLT 袖壁フェイス位置の間の距離(Dw-Lb)が短いと、RC 柱フェイス位置に設ける曲げばね の降伏時回転角が非常に小さい値となり、早期に曲げ降伏が生じると共に、曲げ降伏後の塑性率の評 価が難しくなる可能性がある。実際には、RC 柱フェイスと CLT 袖壁フェイス近傍の塑性ヒンジが一 体に近い挙動を示すものと考えられるが、一つの曲げばねに集約すると RC はりの曲げモーメント分 布の再現が難しくなることから、ここでは暫定的な対応として、RC 柱フェイス位置と CLT 袖壁フェ イス位置の間の距離 (D<sub>w</sub>-L<sub>b</sub>) が RC はりのせい D<sub>b</sub>を下回る場合には、ヒンジリロケーションの効果 が限定的となるものと考え、以下に示す曲げばね近接モデルによるモデル化を行うことを提案する。 なお、曲げばね近接モデルを用いる場合には、RC 柱フェイルの曲げばねに回転角が集中し、CLT 袖 壁フェイス近傍に設けた剛塑性の復元力特性を持つ曲げばねには、回転角がほとんど生じないことを 確認する必要がある。 CLT 袖壁フェイス近傍に設けた曲げばねに回転角が集中する場合には、3.7.2 項 で示した通常のモデル化を行えばよい。

曲げばね近接モデルでは、詳細モデル、簡易モデルのいずれの場合についても、RC 柱フェイス位置 における曲げばねの復元力特性を、図 3-160(a)に示すように、曲げひび割れ発生後に塑性変形が生じ るトリリニアとする。なお、簡易モデルでは、RC 柱フェイス位置と CLT 袖壁フェイス位置の間の長 さ ( $D_w - L_b$ )の線材を剛体としてモデル化を行うため、図 3-160(a)に示すように、弾性変形を考慮し、 曲げひび割れ発生までは回転角が生じないものと仮定すると、その区間の変形を無視することになる が、ここで示す手法は長さ ( $D_w - L_b$ )が短いケースを対象としているため、許容することとする。曲 げ降伏時回転角は、RC はりのヒンジリロケーションの効果を無視して、式(3.70)で算定する。この際、 RC はりの降伏点剛性低下率を算定する際に必要となるせん断スパン比を、RC はりの材端に作用する 最大のせん断力と曲げモーメントから算定すると、せん断スパン比が小さくなり、剛性低下率を過小 に、降伏時回転角を過大に評価してしまう可能性があるため、ここでは RC はりの内法スパンの半分 を RC はりのせいで除した値を採用する。また、CLT 袖壁フェイス近傍における曲げばねの復元力特 性は、図 3-160(b)に示す剛塑性モデルとし、ヒンジリロケーションによる剛性増大効果は見込まない ものの、RC はりに作用する曲げモーメントが曲げ終局モーメントで頭打ちとなるように配慮する。

$${}_{b}\theta_{y}' = {}_{b}M_{y}\frac{1-\alpha_{y}}{\alpha_{y}}\frac{{}_{b}L_{0}+2D_{w}}{6{}_{c}E_{c}\cdot{}_{b}I_{e}}$$

(3.70) ここで、 $_{b}M_{y}$ : RC はりの曲げ降伏モーメントで、ここでは曲げ終局モーメント $_{b}M_{u}$ と等しいものと 仮定する、 $_{b}L_{0}$ : CLT 袖壁のフェイス間の内法スパン、 $D_{w}$ : CLT 袖壁のせい、 $a_{y}$ : RC はりの降伏点剛 性低下率、 $_{e}E_{e}$ : コンクリートのヤング係数、 $_{b}I_{e}$ : RC はりの鉄筋を考慮した断面二次モーメントであ る。

372



本来は適用範囲外であるが、参考として、試験体 A、B の RC はりの復元力特性に曲げばね近接モ デルを採用した場合の RC 柱フェイス、CLT 袖壁フェイス近傍における RC はりの回転角の推移を図 3-161 に示す。曲げばね近接モデルでは、CLT 袖壁フェイス近傍の曲げばね(2062、2064、3062、3064)の 復元力特性を剛塑性とするため、これらの曲げばねでは曲げ降伏が生じるまで回転角は生じないが、 曲げ降伏が生じた後の各曲げばねにおける回転角の推移は、図 3-158 で示した通常のモデル化を行っ た場合とあまり変わらないことが分かる。

また、図 3-162 に試験体 A、B の RC はりの復元力特性に曲げばね近接モデルを採用した場合と通 常のモデル化を行った場合の水平荷重-全体変形角の関係を示す。曲げばね近接モデルを採用した場 合には、CLT 袖壁フェイス近傍における塑性変形を RC 柱フェイスの曲げばねに含める形でモデル化 を行うことになるため、通常のモデル化を行った場合よりも、全体の荷重変形関係の水平剛性をやや 高めに評価する傾向があるが、1F 柱脚および各階のはり端が曲げ降伏し、水平耐力がほぼ頭打ちとな ると、両者がほぼ一致することが分かる。また、図中に示す実験の荷重変形関係との乖離も見られな いことから、曲げばね近接モデルを作用した場合にも、建築物の地震時の挙動をある程度推定できる ものと考えられる。







図 3-162 解析における荷重変形関係(曲げばね近接モデルを用いた場合との比較)

# 3.7.3.7. 変形性能の評価

図 3-163、図 3-164 に試験体 A、B の詳細モデル、簡易モデルにおいて、CLT 袖壁最外縁の支圧ば ね(詳細モデルに関しては、支圧ばねの位置を図 3-165 に示す)の軸縮み一変形角関係を示す。詳細 モデルでは圧縮縁から袖壁せいの 1/8 の位置に、簡易モデルでは圧縮縁から袖壁せいの 1/20 の位置に 支圧ばねが設置されており、両者は比較的近い位置にある。

試験体 A の載荷実験では、*R*=1/50rad サイクルにおいて、1F 袖壁脚部のドリフトピン接合部におい て、ドリフトピンに沿った CLT の水平方向の亀裂やしわが発生した。また、*R*=1/25rad サイクルでは、 アンカーボルトの引張力が作用する 1F 袖壁脚部のドリフトピン接合部でラミナの破断が生じている。 一方、試験体 B の載荷実験では、実験終了時まで、CLT 袖壁には顕著な損傷は見られなかった。以上 の実験結果より、CLT 袖壁の曲げ圧縮破壊により、*R*=1/50rad 付近で耐力低下が生じた部材実験の試験 体 AS、BS と比較すると、架構試験体 A、B は、より靱性に富む挙動を示したものと考えられる。

図 3-163、図 3-164 において、詳細モデルにおける試験体 A、B の 1F 袖壁脚部の支圧ばねの軸縮み  $\delta_{c1}$ を見ると、本実験と同じ 3 層 4 プライの CLT 袖壁を用いた部材試験体 BS の数値解析において、 CLT 袖壁の損傷によって最大耐力の低下が生じた時の支圧ばねの軸縮み(6mm)に到達したのは、い ずれの試験体でも R=1/25rad 付近であり、試験体 A、B の変形性能を概ね評価できている。一方、簡 易モデルでは、詳細モデルと比較して、支圧ばねの軸縮みが大きく、いずれの試験体でも、R=1/50rad 付近で部材実験において、最大耐力の低下が生じた時の支圧ばねの軸縮み(6mm)に到達している。 詳細モデルでは、CLT 袖壁に作用する鉛直せん断力によるせん断変形を考慮しているため、その分、 袖壁脚部の支圧ばねの軸縮み  $\delta_{c1}$ が低減されたのに対し、簡易モデルでは、このようなせん断変形を考 慮していないため、袖壁脚部の支圧ばねに変形が集中したものと考えられる。



(a) 詳細モデル

(b) 簡易モデル

図 3-163 曲げ圧縮力を受ける CLT 袖壁の最外縁の支圧ばねの軸縮みー変形角関係(試験体 A)



(a) 詳細モデル

(b)簡易モデル

図 3-164 曲げ圧縮力を受ける CLT 袖壁の最外縁の支圧ばねの軸縮みー変形角関係(試験体 B)





### 3.8. 実験結果及び解析結果を踏まえた試験体の設計

本節では、実験結果及び解析結果を踏まえ、RC 部材-CLT 袖壁間の接合材や RC 部材の保証設計 を行う上での参考となるように、架構試験体の設計方法について記載する。なお、試験体の設計に用 いた材料強度と実強度に差が生じている場合もあるため、ここでは、設計時に参照可能な情報(材料 の基準強度や規格強度、弾性係数等の標準的な特性値等)に基づいて検討する場合を設計値、材料試 験の結果等、実態に応じた情報に基づき、実験結果の検証を目的とする場合を試験値と区別して、議 論を行う。本節では、基本的に材料の実強度を用いた検討を行っていること、実験結果を模擬するこ とを目的としていることを踏まえ、保証設計において求められる設計用せん断力の割り増しを行わず に検討を行っている点に注意されたい。

### 3.8.1. 材料強度

表 3-41、表 3-42、表 3-43、表 3-44 に試験体の設計時に用いた各材料の強度、ヤング係数、せん断 弾性係数の一覧を示す。なお、材料試験結果を基にした実強度に関しては、3.4 節を参照されたい。

コンクリートの圧縮強度は、部材実験(24N/mm<sup>2</sup>)よりも高い30N/mm<sup>2</sup>とした。部材実験では、試 験体 AD ではせん断に関する条件が比較的厳しくなるように、せん断余裕度が 1.0 程度となるように 設計を行ったが、架構実験では、いずれの試験体においても、柱脚およびはり端の曲げ降伏による全 体崩壊機構が形成されるように、各部材のせん断余裕度を十分に確保する必要がある。そこで、逆対 称曲げモーメントが作用した時に、せん断余裕度が 1.1 程度は確保されるように配慮し、コンクリー トの圧縮強度をやや高めに設定した。

鉄筋のうち、曲げの検討時には、主筋の規格降伏強度を 1.1 倍した値を用いたが、パンチングの検 討時の主筋やせん断補強筋に関しては、規格降伏点強度そのものを用いた。アンカーボルト、テンシ ョンロット、水平接合材、鉛直接合材、滑り止めに関しては、鋼材の強度をそのまま用いた。ボルト に関しては、強度区分 6.8 とみなして検討を行った。

|        | 圧縮強度<br>[目標]<br>(MPa) | ヤング係数<br>(GPa) | せん断弾性係数<br>(GPa) |
|--------|-----------------------|----------------|------------------|
| コンクリート | 30.0                  | 25.5           | 10.9             |

表 3-41 コンクリートの材料特性(設計値)

| 表 | 3–42 | 鋼材の材料特性 | (設計値) |
|---|------|---------|-------|
|   |      |         |       |

|         | <b>1</b> 元 米石      | 降伏強度  | 引張強度  | ヤング係数 |
|---------|--------------------|-------|-------|-------|
|         | 但规                 | (MPa) | (MPa) | (GPa) |
|         | SD295A(せん断補強筋)     | 295   | -     | 205   |
| 鉄筋      | SD345(主筋、パンチング検討時) | 345   | -     | 205   |
|         | SD345(主筋、曲げ検討時)    | 380   | -     | 205   |
| アンカーボルト | ABR490B            | 325   | 490   | 205   |
| 寸切りボルト  | S45C               | 420   | 600   | 205   |
| 水平接合材   |                    |       |       |       |
| 鉛直接合材   | 66400              | 225   | 400   | 205   |
| 滑り止め    | 33400              | 235   | 400   | 205   |
| ドリフトピン  |                    |       |       |       |

ラミナに関しては機械等級区分の値を、CLT に関しては実験対象とする3層4プライ(同一等級構成)の値を示した。ここでは、ラミナの厚さを30mm、ラミナの幅を122mm、各層のラミナの幅方向の数のうちの最小の値を5.3枚(≒640mm/122mm)として、基準となるせん断強度を算定している。 表3-45に、以降の検討で用いるCLT 袖壁の座屈強度を示す。座屈強度は、表3-11に示す圧縮強度と 座屈強度の関係を用いて算定しているが、ここでは、架構試験体における境界条件が両端固定となる ものと仮定し、座屈長さをCLT 袖壁の高さ(1600mm)やせい(650mm)の半分としているため、圧 縮強度と座屈強度は一致している。

|     | 圧縮強度                 | 圧縮弾性係数               | 引張強度                 | 引張弾性係数               |
|-----|----------------------|----------------------|----------------------|----------------------|
|     | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) |
| M90 | 27.6                 | 9000                 | 20.5                 | 9000                 |
| M60 | 21.6                 | 6000                 | 16.0                 | 6000                 |
| M30 | 15.6                 | 3000                 | 11.5                 | 3000                 |

表 3-43 ラミナの材料特性(設計値)

| 表 3-44 | CLT 袖壁の材料特性 | (同一等級構成 S60. | 設計値) |
|--------|-------------|--------------|------|
|        |             |              |      |

|        |            | 直态专向         |       | )II   | 利日    |       |       | ול    | 饭     |       | -127  | U 10/1 |
|--------|------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
|        | 板厚(mm)     | 直文//问<br>右动幅 | 強軸    |       | 弱     | 軸     | 強     | 軸     | 弱     | 軸     | 面     | 内      |
|        | "以子(11111) | (mm)         |       | 圧縮強度  | 弾性係数  | 圧縮強度  | 弾性係数  | 引張強度  | 弾性係数  | 引張強度  | 弾性係数  | せん断強度  |
|        |            | (1111)       | (GPa) | (MPa)  |
| 3層4プライ | 120        | 60           | 3.0   | 8.1   | 3.0   | 8.1   | 3.0   | 6.0   | 3.0   | 6.0   | 0.5   | 1.7    |

\* せん断強度は、ラミナの幅を122mm、各層ラミナの幅方向の数の最小の値を5.3枚(≒640mm/122mm)として計算を行っている。

|             | 圧縮の基準強度<br>(N/mm <sup>2</sup> ) | λ   | k    | Ie<br>(mm <sup>4</sup> ) |          |       | A<br>(mm <sup>2</sup> ) |      |   | lb<br>(mm) |     |
|-------------|---------------------------------|-----|------|--------------------------|----------|-------|-------------------------|------|---|------------|-----|
| S60-3-4 縦圧縮 | 8.1                             | 8.1 | 23.1 | 34.6                     | 93600000 | 78000 | Ш                       | 650  | × | 120        | 800 |
| S60-3-4 横圧縮 | 8.1                             | 8.1 | 18.8 | 17.3                     | 28800000 | 96000 | =                       | 1600 | × | 60         | 325 |

表 3-45 CLT 袖壁の座屈強度(S60、設計値)

## 3.8.2. RC 柱の設計(共通)

# (1) 設計段階における検討

対象は、図 3-3 で示した想定建物の柱部分を縮尺 2/3 で取り出した 400mm 角断面の RC 柱である。 主筋は D16 を 16 本配筋し、帯筋は試験体 A の鉛直接合面にボルトを埋め込むためのスペースを設け ることを考え、帯筋間隔をやや広め(座屈防止のため、主筋径の 6 倍以下には収める)に 4-D10@100 とする。試験体の設計段階では、RC ラーメン内の曲げモーメント分布が不明であるため、ここでは安 全側の考え方として、長期荷重が作用した状態で、せん断設計が最も厳しくなる逆対称の曲げモーメ ント分布を想定して、RC 柱の設計を行っている。

表 3-46 に RC 柱単体の水平耐力の算定結果を示す。ここでは柱の内法長さを 1600mm とし、せん断 スパンをその半分の 800mm としている。曲げ終局時せん断力とせん断耐力は、式(3.71)、(3.72)に基づ いて計算した<sup>[3-14]</sup>。また、設計時の長期荷重は、柱断面に対する軸力比を 0.1 として算定している。

設計段階では、RC 柱の曲げ降伏がせん断破壊に先行することを保証するため、せん断余裕度の目 安を1.25 としていたが、材料の実強度を用いて再計算した場合でも、RC 柱のせん断余裕度は1.25 以 上確保されており、RC 柱がせん断破壊する恐れは小さいものと考えられる。

$$cN_{\min} \leq N_{c} < 0 \ \mathcal{O} \geq \overset{*}{\geq} \\ {}_{c}M_{u} = 0.5_{c}a_{gc}\sigma_{y}g_{1}D_{c} + 0.5N_{c}g_{1}D_{c} \\ 0 \leq N_{c} \leq {}_{c}N_{b} \ \mathcal{O} \geq \overset{*}{\geq} \\ {}_{c}M_{u} = 0.5_{c}a_{gc}\sigma_{y}g_{1}D_{c} + 0.5N_{c}D_{c}(1 - \frac{N_{c}}{b_{c}D_{cc}F_{c}}) \\ {}_{c}N_{b} < N_{c} \leq {}_{c}N_{\max} \ \mathcal{O} \geq \overset{*}{\geq} \\ {}_{c}M_{u} = (0.5_{c}a_{gc}\sigma_{y}g_{1}D_{c} + 0.024(1 + g_{1})(3.6 - g_{1})b_{c}D_{c}^{2} {}_{c}F_{c}) \frac{cN_{\max} - N_{c}}{cN_{\max} - {}_{c}N_{b}}$$
(3.71)

ここで、 $ca_g$ : RC 柱の主筋全断面積、 $c\sigma_y$ : RC 柱主筋の降伏強度、 $g_1$ : RC 柱の引張筋重心と圧縮筋 重心との距離の全せいに対する比、 $D_c$ : RC 柱のせい、 $N_c$ : RC 柱の軸方向力、 $b_c$ : RC 柱の幅、 $F_c$ : コ ンクリートの設計基準強度、 $N_{max}$ : RC 柱の圧縮耐力、 $N_{min}$ : RC 柱の引張耐力、 $N_b$ : RC 柱の釣合軸 力(=0.22(1+g\_1)b\_cD\_ccF\_c) である。

$${}_{c}Q_{su} = \left\{ \frac{0.068 {}_{c}p_{t}^{0.23} ({}_{c}F_{c} + 18)}{M / (Q \cdot d_{c}) + 0.12} + 0.85 \sqrt{{}_{c}p_{wc}\sigma_{wy}} + 0.1 {}_{c}\sigma_{0} \right\} b_{c}j_{c}$$

(3.72)

ここで、 $p_t$ : RC 柱の引張鉄筋比(%)、 $c_c$ : コンクリートの設計基準強度(N/mm<sup>2</sup>)、M/Q: M, Qはそれぞれ終局強度算定時における部材内の最大曲げモーメント及びせん断力(ただし、 $M/(Qd_c)$ は、 $M/(Qd_c)<1$ のとき1とし、 $M/(Qd_c)>3$ のとき3とする)(mm)、 $d_c$ : RC 柱の有効せい(mm)、 $c_{Pw}$ : RC 柱のせん断補強筋比(小数、中子筋を除く場合 0.012 を上限とする。ただし、せん断補強筋として中子筋を併用する場合やスパイラル筋を用いる場合には 0.015 を上限とすることができる。)、 $c_{wy}$ : RC 柱のせん断補強筋の降伏強度(N/mm<sup>2</sup>)、 $j_c$ : RC 柱の応力中心距離で7 $d_c/8$ としてよい(mm)、 $c_0$ : RC 柱の平均軸方向応力度(= $N_c/(b_c D_c)$ )(N/mm<sup>2</sup>)で0.4 $c_c$ 以下である。

|           |                                                             |     |      |      |      | 試測   | 贪値   |      |      |
|-----------|-------------------------------------------------------------|-----|------|------|------|------|------|------|------|
|           |                                                             | 単位  | 設計値  | /    | 4    |      | В    |      | 0    |
|           |                                                             |     |      | 1F   | 2F   | 1F   | 2F   | 1F   | 2F   |
| 曲げ終局モーメント | сMu                                                         | kNm | 230  | 240  | 241  | 241  | 241  | 241  | 241  |
| 曲げ耐力時の軸力  |                                                             | kN  | 480  | 535  | 535  | 535  | 535  | 535  | 535  |
| 曲げ耐力時せん断力 | <sub>c</sub> Q <sub>mu</sub>                                | kN  | 287  | 300  | 301  | 301  | 301  | 302  | 301  |
| せん断耐力     | <sub>c</sub> Q <sub>su</sub>                                | kN  | 352  | 377  | 379  | 384  | 385  | 388  | 386  |
| 水平耐力      | $Min(_{c}Q_{mu}, _{c}Q_{su})$                               | kN  | 287  | 300  | 301  | 301  | 301  | 302  | 301  |
| せん断余裕度    | <sub>c</sub> Q <sub>su</sub> / <sub>c</sub> Q <sub>mu</sub> |     | 1.23 | 1.25 | 1.26 | 1.28 | 1.28 | 1.29 | 1.28 |

表 3-46 RC 柱単体の水平耐力とせん断余裕度

表 3-47 に柱脚および柱頭で塑性ヒンジが形成された状況を想定した場合の付着応力  $_{ctf}$ と付着割裂 強度  $_{ctou}$ の比較<sup>[3-14]、[3-19]</sup>を示す。なお、設計値には RC 柱主筋の規格降伏強度を、試験値には RC 柱主筋の実強度を用いた。いずれの場合でも、 $_{ctou}/_{ctf}$ は 1.0 を上回っており、付着割裂破壊の恐れがない ことが確認できる。

$${}_{c}\tau_{f} = \frac{{}_{c}d_{b}\Delta\sigma}{4(L_{0} - d_{c})}$$

$${}_{c}\tau_{bu} = \alpha_{t} \left\{ (0.085b_{i} + 0.10)\sqrt{{}_{c}F_{c}} + k_{st} \right\} \quad (-段目主筋の場合)$$
(3.73)

(3.74)

ここで、 $d_b$ : RC 柱の主筋径、 $\Delta \sigma$ : 終局限界状態における部材両端部の主筋の応力度の差、 $L_0$ : 部材の内法長さ、 $d_c$ : RC 柱の有効せい、 $a_t$ : 上端筋に対する付着強度低減係数、 $b_i$ : 割裂線長さ比、 $_cF_c$ : コンクリートの設計基準強度(N/mm<sup>2</sup>)、 $k_{st}$ : 横補強筋の効果を示す係数である。

|       |                                                            |                   |      |      |      | 試馬   | 贠値   |      |      |
|-------|------------------------------------------------------------|-------------------|------|------|------|------|------|------|------|
|       | 単位                                                         | 設計値               | /    | 4    | E    | 3    | (    | С    |      |
|       |                                                            |                   |      | 1F   | 2F   | 1F   | 2F   | 1F   | 2F   |
| 定着長さ  | L <sub>0</sub>                                             | m                 | 1.6  | 1.6  | 1.6  | 1.6  | 1.6  | 1.6  | 1.6  |
| 付着強度  | <sub>c</sub> T <sub>bu</sub>                               | $N/mm^2$          | 5.0  | 5.1  | 5.1  | 5.2  | 5.2  | 5.2  | 5.2  |
| 付着応力  | <sub>c</sub> T f                                           | N/mm <sup>2</sup> | 2.2  | 2.5  | 2.5  | 2.5  | 2.5  | 2.5  | 2.5  |
| 応力差   | Δσ                                                         | $N/mm^2$          | 690  | 764  | 764  | 764  | 764  | 764  | 764  |
| 付着余裕度 | <sub>c</sub> τ <sub>bu</sub> / <sub>c</sub> τ <sub>f</sub> |                   | 2.24 | 2.07 | 2.08 | 2.11 | 2.11 | 2.12 | 2.11 |

表 3-47 RC 柱主筋の付着割裂破壊の検討

### (2) 骨組解析の結果を基にした検討

3.7 節で示した骨組解析で得られた最大せん断力を用いて、RC 柱のせん断設計に支障がないかを確認する。表 3-48 に RC 柱の最大せん断力、せん断耐力とせん断余裕度の一覧を示す。なお、RC 柱の最大せん断力は、今回解析を実施した全体変形角  $R=5.5\times10^2$ rad までの最大値、せん断耐力は、全体変形角  $R=2.0\times10^2$ rad 時の軸力やせん断スパンを用いて計算している。骨組解析では、式(3.72)に示すせん断耐力式の評価精度を考慮して、計算値を 1.4 倍に割り増した値をせん断耐力としてモデル化を行ったが、ここでは、せん断耐力の割り増しは行っていない。

表 3-48 に示す最大せん断力は、表 3-46 で示したせん断設計が最も厳しくなる逆対称の曲げモーメント分布を想定した場合のせん断力と比較して小さく、骨組解析を行い、CLT 袖壁の影響を考慮した場合でもせん断余裕度には問題がないことが確認できた。

|        |                                          |    | 試験値    |      |      |      |      |      |      |      |      |      |      |      |
|--------|------------------------------------------|----|--------|------|------|------|------|------|------|------|------|------|------|------|
| ≕★∞□工  | <b>≓</b> .u.                             | 畄位 |        | 1    | 4    |      |      |      | 3    |      |      | (    | С    |      |
| 詳細モナル  |                                          | 中世 | 引張側 圧縮 |      | 宿側   | 引引   | 長側   | 圧約   | 宿側   | 引引   | 長側   | 圧約   | 宿側   |      |
|        |                                          |    | 1F     | 2F   | 1F   | 2F   | 1F   | 2F   | 1F   | 2F   | 1F   | 2F   | 1F   | 2F   |
| 最大せん断力 | $_{\rm c}Q_{\rm max}$                    | kN | 114    | 139  | 155  | 113  | 97   | 142  | 127  | 103  | 112  | 113  | 122  | 118  |
| せん断耐力  | <sub>c</sub> Q <sub>su</sub>             | kΝ | 266    | 311  | 361  | 351  | 281  | 318  | 347  | 342  | 334  | 337  | 354  | 347  |
| せん断余裕度 | $_{\rm c}Q_{\rm su}/_{\rm c}Q_{\rm max}$ |    | 2.33   | 2.24 | 2.33 | 3.12 | 2.90 | 2.25 | 2.73 | 3.33 | 2.99 | 3.00 | 2.91 | 2.93 |

表 3-48 RC 柱の最大せん断力、せん断耐力とせん断余裕度(骨組解析)

| 簡易モデル    |                                          | 畄位 | А    |           |      |      |        | I    | 3    |      |      | (    | 0    |      |
|----------|------------------------------------------|----|------|-----------|------|------|--------|------|------|------|------|------|------|------|
| 間易モナル 単位 |                                          |    | 引引   | 長側        | 圧約   | 宿側   | 引張側 圧縮 |      | 宿側   | 引張側  |      | 圧縮側  |      |      |
|          |                                          | 1F | 2F   | 1F        | 2F   | 1F   | 2F     | 1F   | 2F   | 1F   | 2F   | 1F   | 2F   |      |
| 最大せん断力   | $_{\rm c}Q_{\rm max}$                    | kN | 101  | 135       | 157  | 102  | 94     | 150  | 124  | 100  | 112  | 113  | 122  | 118  |
| せん断耐力    | <sub>c</sub> Q <sub>su</sub>             | kN | 256  | 256 306 3 |      | 350  | 276    | 314  | 349  | 342  | 334  | 337  | 354  | 347  |
| せん断余裕度   | $_{\rm c}Q_{\rm su}/_{\rm c}Q_{\rm max}$ |    | 2.55 | 2.27      | 2.31 | 3.45 | 2.93   | 2.09 | 2.80 | 3.43 | 2.99 | 3.00 | 2.91 | 2.93 |

# 3.8.3. RC 柱の設計 (パンチングシア破壊)

図 3-166 に CLT 袖壁の水平接合部における摩擦抵抗が期待できない場合のせん断伝達機構のイメ ージを示す。試験体 A では、CLT 袖壁と RC スタブ、RC はりとの間に離間が生じた場合や、離間が 生じない場合でも、図 3-155 で示したように、CLT 袖壁の水平せん断力/曲げ圧縮力の比率が摩擦係 数として想定している 0.5を超える場合には、水平接合部を介したせん断伝達を行うことができない。 このような場合、鉛直接合部を介して、CLT 袖壁に作用する水平せん断力を RC 柱に伝達する必要が 生じる。そのため、図 3-166 (a) に示すように、RC 柱の両端には、元々負担しているせん断力 (図中 の *Q*<sub>c</sub>) に加え、CLT 袖壁が負担する水平せん断力 (図中の *Q*<sub>w</sub>) が作用する。そこで、試験体 A では、 RC 柱および CLT 袖壁に作用する水平せん断力の和 (*Q*<sub>c</sub>+*Q*<sub>w</sub>) が、RC 柱のパンチングシア耐力を上回 ることを確認する。なお、パンチング破壊の検討では、スパン中央で RC 柱に作用しているせん断力 と材端で CLT 袖壁から伝達されるせん断力は、本来分けて考えるべきであるが、ここでは簡略化のた め、両者が材端において同時に作用している状況を仮定することとした。

また、試験体 B については、CLT 袖壁の水平せん断力/曲げ圧縮力の比率が摩擦係数として想定し ている 0.5 を十分に下回っているため、CLT 袖壁に作用する水平せん断力を摩擦抵抗のみで伝達でき るものと考えられるが、バックアップとして、CLT 袖壁端に滑り止めを設けている。目地部分の損傷 等の理由により、図 3-166 (b) に示すように、水平接合面における摩擦抵抗が期待できなくなった場合 には、RC 柱の側面を介したせん断伝達が行われるため、CLT 袖壁に作用する水平せん断力(図中の  $Q_w$ )が、RC 柱の一端(図中では頂部)に作用することになる。そこで、試験体 B に関しても、RC 柱 および CLT 袖壁に作用する水平せん断力の和 ( $Q_c+Q_w$ )が、RC 柱のパンチングシア耐力を上回るこ とを確認する。



図 3-166 水平接合面における摩擦抵抗が期待できない場合のせん断伝達機構(架構試験体)

パンチング破壊の検討は、文献[3-16]に記載されている式(3.75)に基づいて行う。なお、評価精度も 勘案し、ここでは、本文に記載された式(3.76)の下限式  $K_{\min}$  ではなく、付録に記載された式(3.77)の平 均式  $K_{av}$ を用いることとした。

$${}_{c}Q_{pu} = K_{av} \cdot {}_{c}\tau_{0} \cdot {}_{c}b_{e} \cdot D_{c}$$

$$(3.75)$$

$$K_{\min} = 0.34 / (0.52 + a_c / D_c)$$

$$K_{av} = 0.58 / (0.76 + a_c / D_c)$$

(3.76)

(3.77)

(3.78)

$$c\tau_{0} = 0.98 + 0.1_{c}F_{c} + 0.85\sigma_{c} \qquad (0 \le \sigma_{c} \le 0.33_{c}F_{c} - 2.75 \text{ (DF)})$$
  
$$c\tau_{0} = 0.22_{c}F_{c} + 0.49\min(0.66_{c}F_{c},\sigma_{c}) \qquad (0.33_{c}F_{c} - 2.75 < \sigma_{c} \text{ (DF)})$$

ここで、 $cQ_{pu}$ : RC 柱のパンチングシア耐力、 $b_e$ : パンチングを受ける RC 柱の直交材を考慮した有 効幅で RC 柱の幅としてよい (mm)、 $D_c$ : パンチングを受ける RC 柱のせい (mm)、 $a_c$ : CLT 袖壁 から RC 柱に伝達される水平せん断力が集中的に作用すると仮定した場合の作用点から水平断面まで の距離で $a_c/D_c = 1/3$ としてよい、 $F_c$ : コンクリートの圧縮強度 (N/mm<sup>2</sup>)、 $\sigma_c$ :  $cp_{gc}\sigma_y+c\sigma_0$ 、 $p_g$ :  $b_e D_c$ に対する RC 柱の全主筋断面積の比、 $\sigma_y$ : RC 柱主筋の降伏強度 (N/mm<sup>2</sup>)、 $c\sigma_0$ :  $N_c/(cb_cD_c)$ 、 $N_c$ : メカ ニズム時における RC 柱軸方向力で圧縮を正とする (N) である。

# (1) 設計段階における検討

設計段階では、CLT 袖壁の応力状態を推定することが難しいため、3.8.2 項の表 3-46 に示した RC 柱の水平耐力と、3.8.6 項に示す CLT 袖壁のせん断耐力の和が、RC 柱のパンチングシア耐力以下であることを確認する。

表 3-49 に算定結果を示すが、RC 柱のパンチングシア耐力は非常に大きく、CLT 袖壁がせん断降伏 した場合でも、十分なせん断余裕度が確保できることから、全ての試験体において、摩擦抵抗が期待 できない場合でも、CLT 袖壁が負担する水平せん断力を RC 柱に伝達しても問題がないことが分かる。

|           |                                             |    |      |      | 試馬   | 検値   |      |
|-----------|---------------------------------------------|----|------|------|------|------|------|
|           |                                             | 単位 | 設計値  | 1    | 4    | I    | 3    |
|           |                                             |    |      | 1F   | 2F   | 1F   | 2F   |
| RC柱の水平耐力  | $_{c}Q_{max} = Min(_{c}Q_{mu}, _{c}Q_{su})$ | kN | 287  | 300  | 301  | 301  | 301  |
| CLTのせん断耐力 | wQsu                                        | kN | 133  | 173  | 173  | 173  | 173  |
| 入力せん断力    | $_{c}Q_{mu}+_{w}Q_{su}$                     | kN | 420  | 474  | 474  | 474  | 474  |
| パンチングシア耐力 | <sub>c</sub> Q <sub>pu</sub>                | kN | 970  | 1084 | 1114 | 1116 | 1132 |
| 余裕度       | $_{c}Q_{pu}/(_{c}Q_{max}+_{w}Q_{su})$       |    | 2.31 | 2.29 | 2.35 | 2.35 | 2.39 |

表 3-49 RC 柱のパンチングシア耐力の確認(設計段階)

## (2) 骨組解析の結果を基にした検討

表 3-50 に骨組解析の応力を用いて計算した RC 柱のパンチングシア耐力と、入力せん断力の関係を 示す。なお、パンチングシア耐力は、全体変形角 R=2.0×10<sup>-2</sup>rad 時の軸力を用いて計算している。ま た、入力せん断力は、解析終了時までの RC 柱と CLT 袖壁の水平せん断力の和の最大値とした。いず れの試験体でも、逆対称の曲げモーメント分布を仮定していた表 3-49 で示した設計段階の検討と比 較して、RC 柱に作用する入力せん断力は減少しており、RC 柱のパンチングシア耐力には十分な余裕 があることが確認できる。

|                             |                              |    | 試験値  |      |      |      |      |      |      |      |  |  |  |
|-----------------------------|------------------------------|----|------|------|------|------|------|------|------|------|--|--|--|
| =¥\$                        | 四キ デル                        | 畄伝 |      | /    | Ą    |      |      |      | 3    |      |  |  |  |
| р† /                        | <i>∓</i> 1⊻                  | 引引 | 長側   | 圧約   | 宿側   | 引引   | 長側   | 圧約   | 宿側   |      |  |  |  |
|                             |                              | 1F | 2F   | 1F   | 2F   | 1F   | 2F   | 1F   | 2F   |      |  |  |  |
| 入力せん断力                      | $Max(Q_c+Q_w)$               | kN | 226  | 260  | 193  | 167  | 195  | 155  | 243  | 123  |  |  |  |
| パンチングシア耐力                   | <sub>c</sub> Q <sub>pu</sub> | kN | 666  | 987  | 1133 | 1089 | 739  | 903  | 1135 | 1117 |  |  |  |
| 余裕度 $_cQ_{pu}/Max(Q_c+Q_w)$ |                              |    | 2.95 | 3.80 | 5.87 | 6.53 | 3.78 | 5.84 | 4.67 | 9.10 |  |  |  |

表 3-50 RC 柱のパンチングシア耐力の確認(骨組解析)

|           |                               |    |      |      |      | 試馬   | 倹値   |      |      |      |
|-----------|-------------------------------|----|------|------|------|------|------|------|------|------|
| 笛         | 畄位                            |    | /    | 4    |      |      |      | 3    |      |      |
| [1] :     | 푸ഥ                            | 引引 | 長側   | 圧約   | 宿側   | 引引   | 長側   | 圧約   | 宿側   |      |
|           |                               |    | 1F   | 2F   | 1F   | 2F   | 1F   | 2F   | 1F   | 2F   |
| 入力せん断力    | $Max(Q_c+Q_w)$                | kΝ | 232  | 277  | 205  | 169  | 206  | 248  | 156  | 125  |
| パンチングシア耐力 | <sub>c</sub> Q <sub>pu</sub>  | kN | 608  | 983  | 1134 | 1089 | 710  | 929  | 1139 | 1118 |
| 余裕度       | $_{c}Q_{pu}/Max(Q_{c}+Q_{w})$ |    | 2.62 | 3.55 | 5.53 | 6.44 | 3.45 | 3.75 | 7.32 | 8.93 |

#### 3.8.4. RC はりの設計

# (1) 設計段階における検討

図 3-4 で示した断面 300mm×400mm の RC はりを検討対象とする。D16 を上下端筋としてそれぞれ4本ずつ配筋し、あばら筋は2-D10@100 とした。表 3-51 に RC はりの水平耐力の算定結果を示す。

ここでは、骨組解析の結果を踏まえ、スパン中央と RC 柱フェイス位置に分類して RC はりのせん 断設計について検討する。スパン中央に関しては、試験体 A、B に関しては、袖壁際に塑性ヒンジが 形成される場合(内法長さ 1800mm)を、試験体 C に関しては、柱際に塑性ヒンジが形成される場合

(内法長さ 3100mm)を想定してせん断設計を行っている。曲げ終局時せん断力とせん断耐力は、式 (3.79)、(3.80)に基づいて計算した。RC はりのせん断余裕度は十分に確保されており、RC はりがせん 断破壊する恐れは小さいことが確認できる。一方、RC 柱フェイスでは、スパン中央と比較して、より 大きなせん断力が発生する可能性があることが骨組解析の結果から確認されているが、設計段階にお ける検討でこのせん断力の大きさを仮定することは難しいため、3.7 節で示したような骨組解析によ る検討が必要となる。

$$_{b}M_{u} = 0.9 _{b}a_{t} \cdot _{b}\sigma_{v} \cdot d_{b}$$

せん断余裕度

(3.79)

ここで、 $ba_t$ : RC はりの引張鉄筋の断面積、 $b\sigma_y$ : RC はり主筋の降伏強度、 $d_b$ : RC はりの有効せいである。

$${}_{b}Q_{su} = \left\{ \frac{0.068_{b}p_{t}^{0.23}({}_{c}F_{c} + 18)}{M/(Qd_{b}) + 0.12} + 0.85\sqrt{{}_{b}p_{wb}\sigma_{wy}} \right\} b_{b}j_{b}$$

(3.80)

ここで、 $bp_i$ : 引張鉄筋比(%)、 $F_c$ : コンクリートの設計基準強度(N/mm<sup>2</sup>)、M/Q: M、Qはそれぞれ終局強度算定時における部材内の最大曲げモーメント及びせん断力(ただし、 $M/(Qd_b)$ は、 $M/(Qd_b) < 1$ のとき1とし、 $M/(Qd_b) > 3$ のとき3とする)(mm)、 $d_b$ : はりの有効せい(mm)、 $bp_w$ : せん断補強筋比(小数、中子筋を除く場合 0.012を上限とする。ただし、せん断補強筋として中子筋を併用する場合やスパイラル筋を用いる場合には0.015を上限とすることができる。)、 $b\sigma_{wy}$ : せん断補強筋の降伏強度(N/mm<sup>2</sup>)、 $b_b$ : はり幅(mm)、b: 応力中心距離で7 $d_b$ /8 としてよい(mm)である。

| 2001 1010 | · · · · · · · · · · · · · · · · ·       |     |     |     |     |     |         |     |     |
|-----------|-----------------------------------------|-----|-----|-----|-----|-----|---------|-----|-----|
|           |                                         |     |     |     |     | 試測  | <b></b> |     |     |
|           |                                         | 単位  | 設計値 | ,   | 4   |     | В       | (   | С   |
|           |                                         |     |     | 2F  | 3F  | 2F  | 3F      | 2F  | 3F  |
| 内法長さ      |                                         | m   | 1.8 | 1.8 | 1.8 | 1.8 | 1.8     | 3.1 | 3.1 |
| 曲げ終局モーメント | Mu                                      | kNm | 97  | 98  | 98  | 98  | 98      | 98  | 98  |
| 曲げ耐力時せん断力 | Q <sub>mu</sub>                         | kN  | 108 | 109 | 109 | 109 | 109     | 63  | 63  |
| せん断耐力     | Q <sub>su</sub>                         | kN  | 204 | 211 | 212 | 216 | 216     | 199 | 198 |
| 水平耐力      | Min(Q <sub>mu</sub> , Q <sub>su</sub> ) | kN  | 108 | 109 | 109 | 109 | 109     | 63  | 63  |

 $Q_{su}/Q_{mu}$ 

表 3-51 RC はり単体の水平耐力とせん断余裕度(スパン中央)

表 3-52 に RC はりの両端(設計時、試験体 A、B では定着長を 1800mm、試験体 C では定着長を 3100mm としている)に塑性ヒンジが形成された状況を想定した場合の付着応力  $\tau_{f}$ (計算には鉄筋の 降伏強度を使用)と付着割裂強度  $\tau_{0u}$ の比較を示す。なお、設計値には RC はり主筋の規格降伏強度を、 試験値には RC はり主筋の実強度を用いた。いずれの場合も  $\tau_{0u}/\tau_{f}$ は 1.0 を上回っており、付着割裂 破壊の恐れがないことが確認できる。

1.89

1.94

1.96

1.99

1.99

3.16

3.14

$${}_{b}\tau_{f} = \frac{{}_{b}d_{b}\Delta\sigma}{4(L_{0} - d_{b})}$$

$${}_{b}\tau_{bu} = \alpha_{t} \left\{ (0.085b_{i} + 0.10)\sqrt{{}_{c}F_{c}} + k_{st} \right\} \quad (-段目主筋の場合)$$
(3.81)

(3.82)

ここで、 $bd_b$ : RC はりの主筋径、 $\Delta \sigma$ : 終局限界状態における部材両端部の主筋の応力度の差、 $L_0$ : 部材の内法長さ、 $d_b$ : RC はりの有効せい、 $\alpha_t$ : 上端筋に対する付着強度低減係数、 $b_i$ : 割裂線長さ比、  $_cF_c$ : コンクリートの設計基準強度(N/mm<sup>2</sup>)、 $k_{st}$ : 横補強筋の効果を示す係数である。

|       |                                                            |                   |      |      |      | 試馬   | 贠値   |      |      |
|-------|------------------------------------------------------------|-------------------|------|------|------|------|------|------|------|
|       |                                                            | 単位                | 設計値  | /    | 4    | E    | 3    | (    | C    |
|       |                                                            |                   |      | 2F   | 3F   | 2F   | 3F   | 2F   | 3F   |
| 定着長さ  | L <sub>0</sub>                                             | m                 | 1.8  | 1.8  | 1.8  | 1.8  | 1.8  | 3.1  | 3.1  |
| 付着強度  | <sub>b</sub> τ <sub>bu</sub>                               | N/mm <sup>2</sup> | 3.3  | 3.2  | 3.3  | 3.3  | 3.3  | 3.4  | 3.4  |
| 付着応力  | <sub>b</sub> T <sub>f</sub>                                | N/mm <sup>2</sup> | 1.9  | 2.1  | 2.1  | 2.1  | 2.1  | 1.1  | 1.1  |
| 応力差   | Δσ                                                         | N/mm <sup>2</sup> | 690  | 764  | 764  | 764  | 764  | 764  | 764  |
| 付着余裕度 | <sub>b</sub> τ <sub>bu</sub> / <sub>b</sub> τ <sub>f</sub> |                   | 1.72 | 1.53 | 1.54 | 1.57 | 1.57 | 3.02 | 3.01 |

表 3-52 RC はり主筋の付着割裂破壊の検討

## (2) 骨組解析の結果を基にした検討

3.7 節で示した骨組解析で得られた最大せん断力を用いて、RC はりのせん断設計に支障がないかを 確認する。表 3-53、表 3-54 に RC はりの最大せん断力、せん断耐力とせん断余裕度の一覧を示す。 なお、RC はりの最大せん断力は、今回解析を実施した全体変形角 R=5.5×10<sup>2</sup>rad までの最大値、せん 断耐力は、全体変形角 R=2.0×10<sup>2</sup>rad 時の軸力やせん断スパンを用いて計算している。

骨組解析では、式(3.80)に示すせん断耐力式の評価精度を考慮して、計算値を 1.4 倍に割り増した値 をせん断耐力としてモデル化を行ったが、ここでは、せん断耐力の割り増しは行っていない。また、 RC 柱フェイス位置では、CLT 袖壁から伝達される鉛直方向の曲げ圧縮力によって、RC はりに作用す るせん断力が局所的に大きくなる。そこで、文献[3-16]に記載されている式(3.83)に基づいてパンチン グシア耐力を算定し、RC はりに作用するせん断力を上回るかどうかの確認を別途行うこととした。 なお、パンチング破壊の検討では、スパン中央で RC はりに作用しているせん断力と材端で CLT 袖壁 から伝達されるせん断力は、本来分けて考えるべきであるが、ここでは簡略化のため、両者が材端に おいて同時に作用している状況を仮定することとした。評価精度も勘案し、ここでは、本文に記載さ れた式(3.84)の下限式 *K*min ではなく、付録に記載された式(3.85)の平均式 *K*av を用いることとした。

$${}_{b}Q_{pu} = K_{av} \cdot {}_{b}\tau_{0} \cdot {}_{b}b_{e} \cdot D_{b}$$

$$K_{\min} = 0.34 / (0.52 + a_b / D_b)$$

$$(3.84)$$

$$K_{av} = 0.58 / (0.76 + a_b / D_b)$$

$$\begin{aligned} & (3.85) \\ {}_{b}\tau_{0} = 0.98 + 0.1_{c}F_{c} + 0.85\sigma_{b} \\ {}_{b}\tau_{0} = 0.22_{c}F_{c} + 0.49\min(0.66_{c}F_{c},\sigma_{b}) \\ (0.33_{c}F_{c} - 2.75 < \sigma_{b} \oslash B) \end{aligned}$$

(3.86)

(3.83)

ここで、 ${}_{b}Q_{pu}$ : RC はりのパンチングシア耐力、 ${}_{bbe}$ : パンチングを受ける RC はりの直交材を考慮した有効幅で RC はりの幅としてよい (mm)、 $D_{b}$ : パンチングを受ける RC はりのせい (mm)、 $a_{b}$ : CLT 袖壁から RC はりに伝達される鉛直せん断力が集中的に作用すると仮定した場合の作用点から鉛

直断面までの距離で $a_b/D_b=1/3$ としてよい、 ${}_{c}F_{c}: = = > 2$ のりートの設計基準強度(N/mm<sup>2</sup>)、 $\sigma_{b}: {}_{b}p_{gb}\sigma_{y}$ 、  ${}_{b}p_{g}: {}_{b}b_{e}D_{b}$ に対するはりの全主筋断面積の比、 ${}_{b}\sigma_{y}: RC$ はり主筋の降伏強度(N/mm<sup>2</sup>)である。

スパン中央に作用するせん断力は、RC はりの塑性ヒンジ位置が CLT 袖壁フェイス位置から CLT 袖壁内に入り込むため、表 3-51 で示した設計段階の値と同程度か若干小さい値となっている。一方、 RC 柱フェイス位置で作用するせん断力の大きさは、1F 袖壁や鉛直接合部の有無によって大きく異なっている。

加力方向に対して圧縮側の RC 柱に取り付く RC はりでは、RC はりに作用するせん断力の大部分を CLT 袖壁が負担するため、RC はりに作用するせん断力が小さくなっており、せん断設計を行う上で 問題とならないことが分かる。一方で、加力方向に対して引張側の RC 柱に取り付く RC はりでは、 CLT 袖壁に作用する軸力が RC はりにせん断力として伝達されると共に、3.7 節の図 3-152 で示した ように、試験体の水平耐力がほぼ頭打ちとなった後も、RC はりに作用するせん断力が増大し続けた ため、CLT 袖壁がない場合と比較して数倍のせん断力が作用している。せん断スパン比が短くなるた め、式(3.80)による RC はりのせん断耐力の計算値も増大するものの、せん断設計は厳しくなり、骨組 解析で行ったせん断耐力の割り増しを行わない場合には、RC 柱フェイス位置において、試験体 A の 2Fはり、試験体Bの2、3Fはりでせん断耐力が不足し、せん断破壊の判定となった。一方で、実験試 験体では、RC はりが CLT 袖壁と接する部分でせん断破壊するような挙動が確認されていないことか ら、式(3.83)に基づいてパンチングシア耐力を算定したところ、いずれの試験体においても余裕度の改 善は見られたが、試験体Aの簡易モデルや試験体Bの詳細、簡易モデルでは、依然として1.0を下回 っていることから、実際の設計においては、RC 柱フェイス位置において、RC はりに作用するせん断 力が過度とならないように、RC ラーメンと CLT 袖壁の強度のバランスに配慮する必要がある。なお、 詳細モデルと簡易モデルの結果を比較すると、CLT 袖壁をブレース置換した詳細モデルの方が、2、3F の RC はりに作用するせん断力が低減される傾向が見られたことから、RC はりのせん断設計におい ては、簡易モデルによる評価は安全側となることが確認できた。

|                 |                                                              |    | 試馬         | 検値           |
|-----------------|--------------------------------------------------------------|----|------------|--------------|
|                 |                                                              |    | 2F         | 3F           |
| 詳細,簡易日<br>(試験体C | Εデル<br>)                                                     | 単位 | スパン<br>中央  | スパン<br>中央    |
|                 |                                                              |    | $_2Q_{b3}$ | $_{3}Q_{b3}$ |
| 最大せん断力          | ${}_{b}Q_{max}$                                              | kN | 62         | 61           |
| せん断耐力           | <sub>b</sub> Q <sub>su</sub>                                 | kN | 205        | 204          |
| せん断余裕度          | <sub>b</sub> Q <sub>su</sub> / <sub>b</sub> Q <sub>max</sub> |    | 3.32       | 3.32         |

表 3-53 RC はりの最大せん断力、せん断耐力とせん断余裕度(骨組解析、試験体 C)

|           |                              |    |            |            |            |            | 試馬                           | 剣値           |              |              |              |              |  |  |
|-----------|------------------------------|----|------------|------------|------------|------------|------------------------------|--------------|--------------|--------------|--------------|--------------|--|--|
|           |                              |    |            |            | 2F         |            |                              |              |              | 3F           |              |              |  |  |
| 詳細モデ      | ル                            | 畄仕 | 引引         | 長側         | 7 1824     | 圧約         | 宿側                           | 引引           | 長側           | 7 1824       | 圧約           | 宿側           |  |  |
| (試験体A     | )                            | 半山 | RC柱        | CLT        |            | CLT        | RC柱                          | RC柱          | CLT          |              | CLT          | RC柱          |  |  |
|           |                              |    | フェイス       | 袖壁内        | Ŧĸ         | 袖壁内        | フェイス                         | フェイス         | 袖壁内          | Ψ×           | 袖壁内          | フェイス         |  |  |
|           |                              |    | $_2Q_{b1}$ | $_2Q_{b2}$ | $_2Q_{b3}$ | $_2Q_{b4}$ | <sub>2</sub> Q <sub>b5</sub> | $_{3}Q_{b1}$ | $_{3}Q_{b2}$ | $_{3}Q_{b3}$ | $_{3}Q_{b4}$ | $_{3}Q_{b5}$ |  |  |
| 最大せん断力    | ${}_{b}Q_{max}$              | kΝ | 395        | 149        | 97         | 32         | 68                           | 164          | 38           | 97           | 29           | 21           |  |  |
| せん断耐力     | ${}_{b}Q_{su}$               | kN | 363        | 199        | 208        | 199        | 199                          | 249          | 200          | 208          | 200          | 200          |  |  |
| せん断余裕度    | ${}_{b}Q_{su}/{}_{b}Q_{max}$ |    | 0.92       | 1.33       | 2.13       | 6.17       | 2.92                         | 1.52         | 5.30         | 2.15         | 6.78         | 9.56         |  |  |
| パンチングシア耐力 | <sub>b</sub> Q <sub>pu</sub> | kN | 480        | -          | -          | -          | 480                          | 484          | -            | -            | -            | 484          |  |  |
| 余裕度       | ${}_{b}Q_{pu}/{}_{b}Q_{max}$ |    | 1.21       | -          | -          | -          | 7.06                         | 2.94         | _            | _            | -            | 23.13        |  |  |

表 3-54 RC はりの最大せん断力、せん断耐力とせん断余裕度(骨組解析)

|           |                                                              |    |                              |                              |            | 試験値        |            |              |              |                              |              |              |  |  |
|-----------|--------------------------------------------------------------|----|------------------------------|------------------------------|------------|------------|------------|--------------|--------------|------------------------------|--------------|--------------|--|--|
|           |                                                              |    |                              |                              | 2F         |            |            |              |              | 3F                           |              |              |  |  |
| 簡易モデ      | ル                                                            | 出任 | 引引                           | 長側                           | 7 1001     | 圧約         | 宿側         | 弓弓           | 長側           | 7 1821                       | 圧約           | 宿側           |  |  |
| (試験体A     | .)                                                           | 中世 | RC柱                          | CLT                          | ムハン        | CLT        | RC柱        | RC柱          | CLT          | 山山                           | CLT          | RC柱          |  |  |
|           |                                                              |    | フェイス                         | 袖壁内                          |            | 袖壁内        | フェイス       | フェイス         | 袖壁内          |                              | 袖壁内          | フェイス         |  |  |
|           |                                                              |    | <sub>2</sub> Q <sub>b1</sub> | <sub>2</sub> Q <sub>b2</sub> | $_2Q_{b3}$ | $_2Q_{b4}$ | $_2Q_{b5}$ | $_{3}Q_{b1}$ | $_{3}Q_{b2}$ | <sub>3</sub> Q <sub>b3</sub> | $_{3}Q_{b4}$ | $_{3}Q_{b5}$ |  |  |
| 最大せん断力    | ${}_{b}Q_{max}$                                              | kN | 489                          | 253                          | 104        | 25         | 73         | 226          | 37           | 104                          | 20           | 20           |  |  |
| せん断耐力     | <sub>b</sub> Q <sub>su</sub>                                 | kN | 373                          | 294                          | 212        | 199        | 199        | 297          | 199          | 213                          | 200          | 200          |  |  |
| せん断余裕度    | ${}_{b}Q_{su}/{}_{b}Q_{max}$                                 |    | 0.76                         | 1.16                         | 2.05       | 7.92       | 2.71       | 1.32         | 5.30         | 2.06                         | 10.09        | 10.09        |  |  |
| パンチングシア耐力 | <sub>b</sub> Q <sub>pu</sub>                                 | kN | 480                          | -                            | -          | -          | 480        | 484          | -            | -                            | -            | 484          |  |  |
| 余裕度       | <sub>b</sub> Q <sub>pu</sub> / <sub>b</sub> Q <sub>max</sub> |    | 0.98                         | _                            | _          | _          | 6.55       | 2.15         | -            | _                            | -            | 24.43        |  |  |

|           |                                                              |    |            |            |            |            | 試馬         | <b>倹値</b>    |              |              |              |              |
|-----------|--------------------------------------------------------------|----|------------|------------|------------|------------|------------|--------------|--------------|--------------|--------------|--------------|
|           |                                                              |    |            |            | 2F         |            |            |              |              | 3F           |              |              |
| 詳細モデ      | ル                                                            | 用任 | 引引         | 長側         | 7          | 圧約         | 宿側         | 引引           | 長側           | 7.000        | 圧約           | 宿側           |
| (試験体B     | ;)                                                           | 半山 | RC柱        | CLT        | 中央         | CLT        | RC柱        | RC柱          | CLT          | レントン         | CLT          | RC柱          |
|           |                                                              |    | フェイス       | 袖壁内        |            | 袖壁内        | フェイス       | フェイス         | 袖壁内          |              | 袖壁内          | フェイス         |
|           |                                                              |    | $_2Q_{b1}$ | $_2Q_{b2}$ | $_2Q_{b3}$ | $_2Q_{b4}$ | $_2Q_{b5}$ | $_{3}Q_{b1}$ | $_{3}Q_{b2}$ | $_{3}Q_{b3}$ | $_{3}Q_{b4}$ | $_{3}Q_{b5}$ |
| 最大せん断力    | ${}_{b}Q_{max}$                                              | kN | 552        | 230        | 98         | 54         | 119        | 412          | 75           | 75           | 21           | 20           |
| せん断耐力     | <sub>b</sub> Q <sub>su</sub>                                 | kN | 385        | 250        | 212        | 203        | 203        | 385          | 263          | 203          | 203          | 203          |
| せん断余裕度    | ${}_{b}Q_{su}/{}_{b}Q_{max}$                                 |    | 0.70       | 1.08       | 2.17       | 3.75       | 1.70       | 0.93         | 3.51         | 2.71         | 9.69         | 10.09        |
| パンチングシア耐力 | ьQpu                                                         | kN | 494        | -          | -          | -          | 494        | 495          | -            | -            |              | 495          |
| 余裕度       | <sub>b</sub> Q <sub>pu</sub> / <sub>b</sub> Q <sub>max</sub> |    | 0.89       | _          | _          | _          | 4.14       | 1.20         |              | _            | -            | 24.56        |

|           |                                                              |    |            | 試験値        |            |            |            |              |              |              |              |              |  |  |
|-----------|--------------------------------------------------------------|----|------------|------------|------------|------------|------------|--------------|--------------|--------------|--------------|--------------|--|--|
|           |                                                              |    |            |            | 2F         |            |            | 3F           |              |              |              |              |  |  |
| 簡易モデ      | ル                                                            | 畄位 | 引引         | 長側         | マパン        | 圧約         | 宿側         | 引引           | 長側           | マパン          | 圧約           | 宿側           |  |  |
| (試験体B     | )                                                            | 루ഥ | RC柱        | CLT        | 山中         | CLT        | RC柱        | RC柱          | CLT          | 山中           | CLT          | RC柱          |  |  |
|           |                                                              |    | フェイス       | 袖壁内        | 17         | 袖壁内        | フェイス       | フェイス         | 袖壁内          |              | 袖壁内          | フェイス         |  |  |
|           |                                                              |    | $_2Q_{b1}$ | $_2Q_{b2}$ | $_2Q_{b3}$ | $_2Q_{b4}$ | $_2Q_{b5}$ | $_{3}Q_{b1}$ | $_{3}Q_{b2}$ | $_{3}Q_{b3}$ | $_{3}Q_{b4}$ | $_{3}Q_{b5}$ |  |  |
| 最大せん断力    | ${}_{b}Q_{max}$                                              | kN | 610        | 222        | 103        | 51         | 124        | 402          | 81           | 81           | 19           | 19           |  |  |
| せん断耐力     | ${}_{\rm b}{\rm Q}_{\rm su}$                                 | kN | 385        | 276        | 217        | 203        | 203        | 385          | 264          | 203          | 203          | 203          |  |  |
| せん断余裕度    | ${}_{b}Q_{su}/{}_{b}Q_{max}$                                 |    | 0.63       | 1.24       | 2.11       | 3.97       | 1.63       | 0.96         | 3.27         | 2.52         | 10.44        | 10.44        |  |  |
| パンチングシア耐力 | <sub>b</sub> Q <sub>pu</sub>                                 | kN | 494        | -          | -          | -          | 494        | 495          | -            | -            | -            | 495          |  |  |
| 余裕度       | <sub>b</sub> Q <sub>pu</sub> / <sub>b</sub> Q <sub>max</sub> |    | 0.81       | _          | -          | -          | 3.97       | 1.23         | _            | _            | -            | 25.42        |  |  |

### 3.8.5. RC 柱はり接合部の設計

柱はり接合部内における RC はり主筋の定着強度の確認を行った。RC はり主筋の定着長さは、上端筋よりも下端筋の方が短く、315mm である。ここでは、大地震時の安全確保のための検討として、式(3.87)の必要定着長さが定着長さを下回ることを確認した<sup>[3-20]</sup>。表 3-55 に RC はり主筋の定着長さ $l_a$ と必要定着長さ $l_{ab}$ の算定結果を示す。なお、設計値は RC はり主筋の規格降伏強度、試験値は RC はり主筋の実強度を用いて算定した。定着長さ $l_a$ は、必要定着長さ $l_{ab}$ 及び柱せい(400mm)の 3/4 倍(300mm)を上回っており、本実験において、RC はり主筋の定着部破壊が生じる恐れは小さいものと考えられる。

$$l_{ab} = \alpha \frac{S\sigma_t d_b}{10 f_b}$$

(3.87)

ここで、 $\alpha$ :横補強筋で拘束されたコア内に定着する場合は 1.0、それ以外の場合は 1.25 とする、S: 必要定着長さの修正係数、 $\sigma_t$ : 仕口面における鉄筋の応力度、 $d_b$ : 異形鉄筋の呼び名に用いた数値、 $f_b$ : 付着割裂の基準となる強度である。

|        |                 |    |      |      |      | 試賬   | 剣値   |      |      |
|--------|-----------------|----|------|------|------|------|------|------|------|
|        |                 |    | 設計値  | /    | Ą    | E    | 3    | (    | 0    |
|        |                 |    |      | 1F   | 2F   | 1F   | 2F   | 1F   | 2F   |
| 定着長さ   | l <sub>a</sub>  | mm | 315  | 315  | 315  | 315  | 315  | 315  | 315  |
| 必要定着長さ | l <sub>ab</sub> | mm | 234  | 248  | 246  | 240  | 240  | 237  | 238  |
| 余裕度    | $ _{a}/ _{ab}$  |    | 1.35 | 1.27 | 1.28 | 1.31 | 1.31 | 1.33 | 1.32 |

表 3-55 RC はり主筋の柱はり接合部内における定着長さの確認

次に、柱はり接合部のせん断設計として、式(3.88)による柱はり接合部のせん断耐力が、式(3.89)に よる入力せん断力を上回ることを確認した<sup>[3-14]、[3-19]</sup>。なお、設計段階では、式(3.89)における  $Q_{eu}$ (上 下階の柱に作用する水平せん断力)が不明なため、安全側の配慮として  $Q_{eu}=0$  としたが、せん断耐力 は入力せん断力を十分に上回っており、必要な耐力が確保されていることが確認できた。十分な余裕 度があることが確認できたため、ここでは骨組解析の結果を用いた検討は省略する。

また、柱際にはりの塑性ヒンジが形成されるものと仮定した場合の柱はり接合部の曲げ耐力比は、 表 3-46の柱の曲げ終局モーメントと表 3-51のはりの曲げ終局モーメントを用いると、(2×230kNm× (2.0m/1.6m))/(97kNm×(3.5m/3.1m))=5.3となる。

$$V_{iU} = \kappa \varphi F_i b_i D_i$$

(3.88)

ここで、 $\kappa$ : 柱はり接合部の形状による係数、 $\varphi$ : 直交壁の有無による補正係数、 $F_j$ : 柱はり接合部のせん断強度の基準値、 $b_j$ : 柱はり接合部の有効幅、 $D_j$ : 柱せい、又は 90° 折曲げ筋水平投影長さである。

$$Q_{DiU} = \alpha \{T_U + T_U' - Q_{cU}\}$$

(3.89)

ここで、 $\alpha$ :応力割増係数で 1.1 以上とする、 $T_U$ :はり主筋とはりの曲げ耐力に有効な範囲内のスラブ筋の材料強度に基づく引張力、 $T_U$ :はり曲げ降伏時に一方のはり端に生ずる引張力(ト形及び L 形の柱はり接合部では0とする)、 $Q_{cU}$ :柱はり接合部に接続する上下柱のはり曲げ降伏時せん断力の平均値である。

|        |                            |    |      |      |      | 試馬   | 贪値   |      |      |
|--------|----------------------------|----|------|------|------|------|------|------|------|
|        |                            | 単位 | 設計値  | ,    | 4    | -    | 3    | (    | 2    |
|        |                            |    |      | 1F   | 2F   | 1F   | 2F   | 1F   | 2F   |
| 入力せん断力 | $Q_{DjU}$ ( $Q_{cU} = 0$ ) | kN | 341  | 343  | 343  | 343  | 343  | 343  | 343  |
| せん断耐力  | V <sub>jU</sub>            | kN | 568  | 608  | 616  | 636  | 637  | 649  | 642  |
| 余裕度    | $V_{jU}/Q_{DjU}$           |    | 1.66 | 1.77 | 1.79 | 1.85 | 1.86 | 1.89 | 1.87 |

表 3-56 RC 柱はり接合部のせん断耐力の確認

# 3.8.6. CLT 袖壁の設計

# (1) 設計段階における検討

袖壁長さは柱せい(400mm)の約1.5倍の650mmとする。CLT 袖壁には S60-3-4を用いた。今回の 実験では、試験体 B において、滑り止めへの水平せん断力の伝達を CLT 袖壁の仕口面の支圧によって 行う可能性があるため、繊維方向とほぼ同等な圧縮強度を確保し、支圧面の面積を小さく抑えること ができるように、外層と内層のラミナの数が等しい4層の CLT 材を用いた。

CLT 袖壁には、RC はりの塑性ヒンジ位置を柱フェイス位置から CLT 袖壁端に移動させる役割が期 待される。詳細モデルでは、CLT 袖壁の端部から CLT 袖壁せい(650mm)の 1/8(81.25mm)だけ入 った位置で塑性ヒンジが形成されるものと考えていることから、CLT 袖壁の圧縮軸耐力の 1/8 倍が、 表 3-51 で示した CLT 袖壁を設けた場合(内法スパンを 1800mm とした場合)に RC はりに作用する 可能性がある最大のせん断力を上回る必要がある。表 3-57 に示すように、設計段階では、表 3-45 で 示した CLT の圧縮の基準強度に基づく座屈強度が 8.1N/mm<sup>2</sup> と小さいため、CLT 袖壁の圧縮軸耐力の 1/8 倍は、RC はりの最大せん断力を下回ったが、表 3-13 で示した圧縮試験結果に基づく座屈強度を 用いた場合には、CLT 袖壁の圧縮軸耐力の 1/8 倍は、RC はりの最大せん断力を十分に上回ることが確 認できた。

また、簡易モデルでは、CLT 袖壁フェイス位置から曲げばねまでの距離 L<sub>b</sub> を式(3.39)で算定している。表 3-58 に示すように、L<sub>b</sub>の設計値と試験値は、表 3-57 で示した詳細モデルの場合と同様に、CLT 袖壁せい(650mm)の1/8(81.25mm)を前後する値となった。

|                  | 畄位         | 記計店      | 試験値  |      |      |
|------------------|------------|----------|------|------|------|
|                  | 半匹         | 议訂唱      | А    | В    |      |
| CLTの圧縮強度(座屈強度)   | $_{tv}F_k$ | $N/mm^2$ | 8.1  | 16.8 | 16.8 |
| CLT袖壁の圧縮軸耐力の1/8倍 |            | kN       | 79   | 164  | 164  |
| RCはりの最大せん断力      | Qb         | kN       | 108  | 109  | 109  |
| 余裕度              |            |          | 0.73 | 1.51 | 1.51 |

表 3-57 CLT 袖壁の圧縮軸耐力の確認

表 3-58 RC はりにおける CLT 袖壁フェイス位置から曲げばねまでの距離 4

|                            | 畄位             | 記手店 | 試験値 |    |    |
|----------------------------|----------------|-----|-----|----|----|
|                            | 半世             | 议訂삩 | А   | В  |    |
| CLT袖壁フェイス位置から<br>曲げばねまでの距離 | L <sub>b</sub> | mm  | 105 | 52 | 52 |

CLT 袖壁の水平断面のせん断耐力は、式(3.90)で算定できる。CLT のせん断強度に表 3-44 に示した 基準強度(1.7N/mm<sup>2</sup>)を用いた場合は 133kN、表 3-14 で示した材料試験結果(2.2N/mm<sup>2</sup>)を用いた 場合は 174kN となる。各階に 2 枚ずつ CLT 袖壁を設置することを考えると、CLT 袖壁によって伝達 可能な水平せん断力の大きさは、表 3-39 で示した骨組解析における試験体 C の最大耐力 (231kN) と 同程度であり、せん断伝達要素としても大いに期待できるが、設計段階では、CLT 袖壁にどの程度の せん断力が作用するか想定することは難しい。

 $_{w}Q_{su} = t_{w}D_{wt}F_{sI}$ 

(3.90)

ここで、 $t_w$ : CLT 袖壁の厚さ、 $D_w$ : CLT 袖壁のせい、 $t_{F_{sl}}$ : CLT の面内せん断の基準強度である。

また、3.7 節の数値解析でも示したように、架構材実験の CLT 袖壁には大きな圧縮軸力が作用する ため、CLT 袖壁の鉛直断面に作用するせん断力が局所的に大きくなる。そこで、CLT 袖壁の鉛直断面 のせん断耐力を式(3.91)で算定し、入力せん断力との比較を行うこととした。CLT のせん断強度に**表** 3-44 に示した基準強度(1.7N/mm<sup>2</sup>)を用いた場合は 328kN、表 3-14 で示した材料試験結果(2.2N/mm<sup>2</sup>) を用いた場合は 428kN となる。

$$_{wv}Q_{su} = t_{w}h_{0t}F_{sI}$$

(3.91)

ここで、 $t_w$ : CLT 袖壁の厚さ、 $h_0$ : CLT 袖壁の内法高さ、 $_tF_{sl}$ : CLT の面内せん断の基準強度である。

## (2) 骨組解析の結果を基にした検討

表 3-59 に骨組解析の結果から求めた CLT 袖壁の水平断面、鉛直断面に作用する最大せん断力と、 せん断耐力の比較(CLT のせん断強度には表 3-14 で示した材料試験結果(2.2N/mm<sup>2</sup>)を使用)を示 す。

いずれの試験体、いずれのモデルでも水平断面では最大せん断力がせん断耐力を下回っている。し かしながら、鉛直断面に関しては、加力方向に対して引張側の RC 柱に取り付く CLT 袖壁において、 詳細モデルでは最大せん断力がせん断耐力と概ね一致しており、せん断強度に到達している。また、 簡易モデルでは最大せん断力がせん断耐力を上回っており、いずれもせん断破壊の判定となっている。 試験体 A、B の加力実験では、CLT 袖壁の鉛直方向のせん断破壊は生じていないことから、鉛直断面 に作用するせん断力がせん断耐力に到達したとしても直ちに脆性的な破壊が生じる訳ではないが、せ ん断破壊の判定となることについて、何らかの説明は必要になるものと考えられる。なお、ここで示 した最大せん断力は、詳細モデルでは、CLT 袖壁を模擬したブレース要素に作用する軸方向力の鉛直 成分を累加することで、簡易モデルでは、CLT 袖壁の支圧特性を模擬した上下のファイバー要素のう ち、水平方向の位置が同じ要素が負担する軸力の差分を累加することで求めたものであるが、実務設 計において、このような煩雑な計算を行うことは負荷が大きい。3.7 節で示した式(3.63)、式(3.64)のい ずれかを用いれば、鉛直断面に作用するせん断力を、CLT 袖壁の軸力比が小さい場合には精度良く、 CLT 袖壁の軸力比が大きい場合は安全側に評価できる。

また、1F に CLT 袖壁を設置しない場合については、水平、鉛直断面のいずれについても、最大せん 断力に対するせん断耐力の余裕度が2倍以上確保されており、検定を行う上で問題がないことが分か る。

391

| 詳細モデル |        | 単位                                       | 試験値 |      |      |      |      |      |      |      |      |
|-------|--------|------------------------------------------|-----|------|------|------|------|------|------|------|------|
|       |        |                                          | А   |      |      |      | В    |      |      |      |      |
|       |        |                                          | 引張側 |      | 圧縮側  |      | 引張側  |      | 圧縮側  |      |      |
|       |        |                                          | 1F  | 2F   | 1F   | 2F   | 1F   | 2F   | 1F   | 2F   |      |
| 水平    | 最大せん断力 | $_{\rm w}Q_{\rm max}$                    | kN  | 116  | 121  | 39   | 55   | 109  | 101  | 28   | 21   |
|       | せん断耐力  | ${}_{w}Q_{su}$                           | kN  | 174  | 174  | 174  | 174  | 174  | 174  | 174  | 174  |
|       | せん断余裕度 | $_{\rm w}Q_{\rm su}/_{\rm w}Q_{\rm max}$ |     | 1.51 | 1.44 | 4.42 | 3.19 | 1.59 | 1.72 | 6.32 | 8.41 |
| 鉛直    | 最大せん断力 | $_{wv}Q_{max}$                           | kN  | 419  | 418  | 134  | 188  | 422  | 340  | 90   | 68   |
|       | せん断耐力  | $_{wv}Q_{su}$                            | kN  | 428  | 428  | 428  | 428  | 428  | 428  | 428  | 428  |
|       | せん断余裕度 | $_{wv}Q_{su}/_{wv}Q_{max}$               |     | 1.02 | 1.02 | 3.19 | 2.27 | 1.01 | 1.26 | 4.74 | 6.31 |

表 3-59 CLT 袖壁の最大せん断力とせん断耐力の比較(骨組解析)

| 簡易モデル |        |                                          | 試験値 |      |      |      |      |      |      |      |      |
|-------|--------|------------------------------------------|-----|------|------|------|------|------|------|------|------|
|       |        | 単位                                       | А   |      |      |      | В    |      |      |      |      |
|       |        |                                          | 引引  | 引張側  |      | 圧縮側  |      | 引張側  |      | 圧縮側  |      |
|       |        |                                          | 1F  | 2F   | 1F   | 2F   | 1F   | 2F   | 1F   | 2F   |      |
| 水平    | 最大せん断力 | $_{\rm w}Q_{\rm max}$                    | kN  | 138  | 142  | 49   | 67   | 127  | 98   | 31   | 26   |
|       | せん断耐力  | $_{\rm w} Q_{\rm su}$                    | kN  | 174  | 174  | 174  | 174  | 174  | 174  | 174  | 174  |
|       | せん断余裕度 | $_{\rm w}Q_{\rm su}/_{\rm w}Q_{\rm max}$ |     | 1.26 | 1.23 | 3.53 | 2.58 | 1.37 | 1.78 | 5.55 | 6.77 |
| 鉛直    | 最大せん断力 | $_{wv}Q_{max}$                           | kN  | 551  | 452  | 146  | 195  | 537  | 325  | 88   | 74   |
|       | せん断耐力  | wvQsu                                    | kN  | 428  | 428  | 428  | 428  | 428  | 428  | 428  | 428  |
|       | せん断余裕度 | $_{wv}Q_{su}\!/_{wv}Q_{max}$             |     | 0.78 | 0.95 | 2.93 | 2.20 | 0.80 | 1.32 | 4.87 | 5.78 |

# 3.8.7. 接合部の設計(試験体 A)

# 3.8.7.1. 詳細

図 3-167、図 3-168 に、試験体 A の接合金物取り付け前後の CLT 袖壁の加工状況を示す。試験体 A では、RC 柱から伝達される鉛直せん断力の伝達、並びに RC はりや RC スタブから伝達される鉛直引 張力の伝達にドリフトピン(φ12、SS400)を用いている。これらの鉛直力の伝達は最外縁のラミナに よって行われ、応力伝達のための鋼板は、内層ラミナに切り欠きを設けて挿入されている。



図 3-168 試験体 A の接合金物取り付け後の CLT 袖壁の加工状況(単位:mm)



### 3.8.7.2. 鉛直接合部の設計(水平せん断力に対する検討)

### (1) せん断耐力の算定

試験体 A では、CLT 袖壁の端部にアンカーボルトを、RC 柱-CLT 袖壁間に鉛直接合部を設置して おり、図 3-155 で示したように、CLT 袖壁に作用する全ての水平せん断力を上下の仕口面に作用する 摩擦力だけでは伝達できない可能性があることから、ここでは簡略化のため、鉛直接合部を介して、 CLT 袖壁に作用する水平せん断力が全て隣接する RC 柱部材に伝達可能かどうかを確認する。なお、 鉛直接合部を介した水平せん断力の伝達に関しては、現状では十分な知見がなく、仮定に基づいた提 案を行っているため、今後の検証が必要である。

図 3-171 に示すように、本検討を行う必要があるのは、CLT 袖壁に形成される圧縮ストラットの向きを考えた場合に、引張力による引き戻しが必要となる一端(図中では脚部)のみとなる。図中の頂部については、摩擦によるせん断伝達が行えない場合でも、RC 柱の側面に CLT 袖壁の側面から支圧力が直接作用するので、ここで示すような検討を行う必要はない。

式(3.92)に鉛直接合部の水平せん断耐力の算定式を示す。ドリフトピンの降伏耐力は式(3.93)で、寸 切りボルトの降伏耐力は式(3.94)で、CLT 接合部の集合型破壊時の終局耐力は式(3.95)で、鉛直接合材 のウェブの降伏耐力は式(3.103)で、鉛直接合材のフランジの曲げ耐力時引張力は式(3.104)によって求 める。式(3.92)では、水平せん断力を伝達する上で、過度な変形が生じることを避けるために、ドリフ トピンの荷重として降伏耐力を採用したが、水平接合部におけるせん断変形をある程度許容できるの であれば、数値解析によって求めた降伏点以降の荷重を採用する方法も考えられる。

式(3.95)に関しては、図 3-172 に示すように、3.5.1.2 で想定した Mode 2.1 による回転変形が生じる 状況を想定し、水平せん断力の大部分がドリフトピンから伝達される内層ラミナについて、外層ラミ ナの接着面と内層ラミナの断面を介して、周囲への応力伝達が可能かどうかを確認する。ここでは、 文献[3-4]の鋼板添え板ビス接合の計算例(強軸試験体の場合)を参考に計算を行ったが、CLT の片面 をビス接合した場合の評価式であるため、本検討では、両面接合に対応するように、式(3.95)において、 式(3.96)、式(3.99)の値を2倍している。式(3.102)に関しては、せん断破壊面が2面あるものと仮定し、 文献[3-4]に記載の式を修正して用いている。

水平せん断耐力として考慮する「寸切りボルト、フランジ、ウェブ、ドリフトピン、CLT 接合部」 の範囲に関しては現状では十分な知見がないため、今後の検証が必要であるが、図 3-171 に示すよう に、CLT 袖壁の内法高さの 0.50 倍を目安とすることにした。

$${}_{vh}Q_u = \min({}_{vhd}Q_y, {}_{vht}Q_y, {}_{vhs}Q_u, {}_{vhw}Q_y, {}_{vhf}Q_u)$$

(3.92)

(3.93)

(3.94)

ここで、 $vhdQ_y$ : 鉛直接合部のドリフトピンの降伏耐力、 $vhtQ_y$ : 鉛直接合部の寸切りボルトの降伏耐力、 $vhsQ_u$ : 鉛直接合部の CLT 接合部の集合型破壊時の終局耐力、 $vhwQ_y$ : 鉛直接合材のウェブの降伏耐力、 $vhtQ_u$ : 鉛直接合材のフランジの曲げ耐力時引張力である。

$$_{vhd}Q_y = 0.5_v n_d \cdot _{dv} p_y$$

ここで、0.5<sub>vnd</sub>:図3-171に示す範囲の鉛直接合部におけるドリフトピンの本数、dvpy:ドリフトピン1本あたりの鉛直方向の降伏強度である。

$$_{vht}Q_y = _v n_t \cdot _t a_s \cdot _t \sigma_y$$

ここで、0.5<sub>vnt</sub>: 図 3-171 に示す範囲の鉛直接合部における寸切りボルトの本数、tas: 寸切りボルト

の断面積、toy: 寸切りボルトの降伏強度である。

$$_{vhs}Q_u = 2 \cdot Min(P_{R1}, P_{R2})$$

$$P_{R1} = P_{t1} + P_{g1}$$

$$P_{t1} = (W_L - m_d \cdot d) \cdot t_l \cdot {}_l F_t$$

$$P_{g1} = W_L \cdot L_d \cdot {}_t F_{ge}$$

$$P_{R2} = P_{t2} + P_{g2} + P_s$$

(3.99)  
$$P_{t2} = (W_b - (m_d - 1) \cdot d) \cdot t_1 \cdot {}_l F_t$$

$$P_{g2} = W_b \cdot L_d \cdot {}_t F_{ge} \tag{3.100}$$

$$P_{s} = 2 \cdot (L_{d} - (_{s}n_{d} - \frac{1}{2}) \cdot d) \cdot t_{l} \cdot _{t} F_{s}$$
(3.102)

ここで、 $P_{R1}$ :幅はぎ接着していない CLT パネルのラミナ境界部分が影響する壊れ方の場合の最大耐力、 $P_{R2}$ :幅はぎ接着していない CLT パネルのラミナ境界部分が影響しない壊れ方の場合の最大耐力、 $W_L$ :ドリフトピン接合に掛かるラミナ幅の合計、 $_{I}F_t$ :ラミナの引張強度(=12N/mm<sup>2</sup>)、 $_{Fge}$ :CLT の接着積層面のせん断強度(=1.15N/mm<sup>2</sup>)、 $m_d$ :最上段の列のドリフトピンの本数、d:ドリフトピン の直径、h:最外層ラミナの厚み、 $L_d$ :CLT 木口面から最上段ドリフトピン位置までの長さ、 $W_d$ :ドリフトピンの右端から左端までの距離、 $_{Fs}$ :ラミナのせん断強度(=1.8N/mm<sup>2</sup>)、 $_{s}n_d$ :加力方向のドリフトピンの本数である。なお、 $P_{R1}$ 、 $P_{R2}$ に関しては、図 3-171 に示す範囲を対象とし、1 層分の最大耐力の半分とする。

$$v_{hw}Q_y = v_w \cdot (0.5 v_w - \sum d_h) \cdot v_w \sigma_y$$

(3.103)

(3.95)

(3.96)

(3.97)

(3.98)

ここで、 $v_{tw}$ : 鉛直接合材のウェブの厚さ、 $0.5_vL_w$ : 図 3-171 に示す範囲の鉛直接合材のウェブの長さ、 $d_h$ : 鋼材に設けた孔(図 3-171 に示す範囲の鉛直接合材のウェブに設けたドリフトピン設置用の孔)の直径、 $v_w\sigma_y$ : 鉛直接合材のウェブの降伏強度である。

$$_{vhf}Q_{u} = \frac{2 \cdot \frac{1}{4} (0.5_{v}L_{f}) \cdot _{v}t_{f}^{2} \cdot _{vf}\sigma_{y}}{_{v}L_{h}}$$

(3.104)

ここで、 $0.5_vL_f$ : 図 3-171 に示す範囲の鉛直接合材のフランジの長さ、 $vt_f$ : 鉛直接合材のフランジの厚さ、 $vt_g$ : 鉛直接合材のフランジの降伏強度、 $vL_h$ : 鉛直接合材のフランジに設けた寸切りボルトの重心位置からウェブ端部までの長さである。






表 3-60 に、式(3.96)~(3.102)を用いて算定した CLT 接合部の集合型破壊時の終局耐力の計算に用い た数値を示す。また、表 3-61 に、ドリフトピンの降伏耐力、寸切りボルトの降伏耐力、CLT 接合部の 集合型破壊時の終局耐力、鉛直接合材のウェブの降伏耐力、鉛直接合材のフランジの曲げ耐力時引張 力の一覧を示す。鉛直接合部の水平せん断耐力は、材料強度に設計値を用いた場合にはドリフトピン の降伏強度 (111kN) で、実験値を用いた場合には鉛直接合材のフランジの曲げ耐力時引張力 (182kN) によって決まる。

|                    |                             | 玉字       | 設計値  |  |  |  |  |
|--------------------|-----------------------------|----------|------|--|--|--|--|
|                    |                             |          |      |  |  |  |  |
| ラミナ幅の合計            | WL                          | mm       | 610  |  |  |  |  |
| ラミナの引張強度           | Ft                          | $N/mm^2$ | 12   |  |  |  |  |
| 接着積層面のせん断強度        | F <sub>ge</sub>             | N/mm²    | 1.15 |  |  |  |  |
| ラミナのせん断強度          | Fs                          | $N/mm^2$ | 1.8  |  |  |  |  |
| ビスの山径(=孔径)         | d                           | mm       | 12   |  |  |  |  |
| 最上段の列方向のビスの本数      | m                           |          | 6.5  |  |  |  |  |
| 加力方向のビスの本数         | n                           |          | 2    |  |  |  |  |
| 最外層ラミナの厚み          | t                           | mm       | 30   |  |  |  |  |
| 木口面から最上段位置までの長さ    | L                           | mm       | 120  |  |  |  |  |
| ビスの右端から左端までの距離     | W <sub>b</sub>              | mm       | 585  |  |  |  |  |
| ラミナ境界部分が影響する場合の耐力  | P <sub>R1</sub>             | kN       | 276  |  |  |  |  |
| ラミナ境界部分が影響しない場合の耐力 | P <sub>R2</sub>             | kN       | 279  |  |  |  |  |
| 最大耐力               | Max ( $P_{R1}$ , $P_{R2}$ ) | kN       | 276  |  |  |  |  |

表 3-60 ラミナの集合型破壊時の終局耐力(鉛直接合部、水平方向)

|                                             |      | 围在                        | A  |     |     |                                                                                                                       |  |  |  |
|---------------------------------------------|------|---------------------------|----|-----|-----|-----------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                             |      |                           | 甲位 | 設計値 | 試験値 | )<br>第                                                                                                                |  |  |  |
| ドリフトピンの防住計力                                 | 評価式  | $_{vd}Q_{y} \\$           | kN | 156 | 338 | =12.5本×12.5kN(設計値),27.0kN(試験値)                                                                                        |  |  |  |
| ドリンドビンの陣区耐力                                 | 数値解析 | $_{vd}\boldsymbol{Q}_{y}$ | kN | 111 | 199 | =12.5本×8.9kN(設計値), 15.9kN(試験値)                                                                                        |  |  |  |
| 寸切りボルトの降伏耐力 <sub>vht</sub> Q <sub>y</sub>   |      | $_{vht}Q_{y} \\$          | kN | 306 | 313 | =6本×157mm <sup>2</sup> ×325N/mm <sup>2</sup> (規格値),332N/mm <sup>2</sup> (実強度)                                         |  |  |  |
| CLT接合部の集合型破壊時の                              | 終局耐力 | $_{vhs}Q_{y} \\$          | kΝ | 551 |     | 別表による                                                                                                                 |  |  |  |
| ウェブの降伏耐力 <sub>vhf</sub> Q <sub>y</sub>      |      | $_{\nu hf}Q_{y} \\$       | kN | 839 |     | $=12$ mm × (600mm – 6.5 × 13mm) × 235N/mm <sup>2</sup> / $\sqrt{3}$                                                   |  |  |  |
| フランジの曲げ耐力時引張力 <sub>vhf</sub> Q <sub>u</sub> |      | ${}_{vhf}\!Q_u$           | kΝ | 182 |     | $= 2 \times (1/4 \times 600 \text{mm} \times 16 \text{mm} \times 16 \text{mm}) \times 235 \text{N/mm}^2/99 \text{mm}$ |  |  |  |
| 鉛直接合部の水平せん断耐力 <sub>vh</sub> Q <sub>u</sub>  |      | $_{vh}Q_{u}$              | kN | 111 | 182 |                                                                                                                       |  |  |  |

# 表 3-61 鉛直接合部の水平せん断耐力

## (2) 設計段階における検討

設計段階では、CLT 袖壁から RC 柱にどの程度のせん断力が伝達されるか分からないため、ここでは、CLT 袖壁のせん断耐力 wQsu に見合うせん断力を鉛直接合部を介して伝達できるかどうかを確認する。CLT 袖壁のせん断耐力は、式(3.90)で算定すると、CLT のせん断強度に表 3-44 に示した基準強度(1.7N/mm<sup>2</sup>)を用いた場合は 133kN、表 3-14 で示した材料試験結果 (2.2N/mm<sup>2</sup>)を用いた場合は 174kNとなり、設計時は鉛直接合部の水平せん断耐力が不足している。

表 3-62 設計段階における鉛直接合部に作用する水平せん断力の検討

|               |                | 畄仕 | ļ       | ł    | <b>佐</b> 老                                                          |  |  |  |
|---------------|----------------|----|---------|------|---------------------------------------------------------------------|--|--|--|
|               |                | 千匹 | 設計値 試験値 |      | 调考                                                                  |  |  |  |
| CLT袖壁のせん断耐力   | ${}_{w}Q_{su}$ | kN | 133     | 174  | =120mm×650mm×1.7N/mm <sup>2</sup> (基準強度),2.2N/mm <sup>2</sup> (実強度) |  |  |  |
| 鉛直接合部の水平せん断耐力 | $_{vh}Q_{u}$   | kN | 111     | 182  |                                                                     |  |  |  |
| 余裕度           |                |    | 0.83    | 1.05 |                                                                     |  |  |  |

# (3) 骨組解析の結果を基にした検討

表 3-63 に、試験体 A の骨組解析の結果から求めた鉛直接合部に作用する水平せん断力の最大値を 示す。ここでは、設計用せん断力の割増や、図 3-171 に示すような摩擦係数 µ による水平せん断力の 伝達は考慮せず、解析結果から得られた CLT 袖壁に作用する水平せん断力をそのまま用いる。いずれ の場合についても、鉛直接合部に作用する水平せん断力の大きさは、水平せん断耐力を下回っており 問題ない。なお、加力方向に対して引張側の RC 柱に取り付く CLT 袖壁では、CLT 袖壁に作用する曲 げ圧縮力による摩擦抵抗に期待できるが、本検討では、摩擦抵抗による伝達分を無視しているため、 実際にはより安全側の評価となる。

| 実行する。          |                   |    | 試験値  |      |      |      |  |  |
|----------------|-------------------|----|------|------|------|------|--|--|
|                |                   |    | A    |      |      |      |  |  |
|                |                   | 中山 | 引引   | 長側   | 圧約   | 宿側   |  |  |
|                |                   |    | 1F   | 2F   | 1F   | 2F   |  |  |
| CLT袖壁に作用するせん断力 | $_{\nu h}Q_{max}$ | kN | 116  | 121  | 39   | 55   |  |  |
| 鉛直接合部の水平せん断耐力  | $_{vh}Q_{u}$      | kN | 182  | 182  | 182  | 182  |  |  |
| 余裕度            |                   |    | 1.58 | 1.51 | 4.64 | 3.34 |  |  |

## 表 3-63 鉛直接合部に作用する水平せん断力の検討(骨組解析)

|                |                   | 試験値 |      |      |      |      |  |  |
|----------------|-------------------|-----|------|------|------|------|--|--|
| 簡易モデル          |                   | 用位  | A    |      |      |      |  |  |
|                |                   | 부교  | 引張側  |      | 圧約   | 宿側   |  |  |
|                |                   |     | 1F   | 2F   | 1F   | 2F   |  |  |
| CLT袖壁に作用するせん断力 | $_{vh}Q_{max} \\$ | kN  | 138  | 142  | 49   | 67   |  |  |
| 鉛直接合部の水平せん断耐力  | $_{vh}Q_{u}$      | kN  | 182  | 182  | 182  | 182  |  |  |
| 余裕度            |                   |     | 1.32 | 1.29 | 3.70 | 2.70 |  |  |

#### 3.8.7.3. 鉛直接合部の設計(鉛直せん断力に対する検討)

## (1) せん断耐力の算定

式(3.105)に鉛直接合部の鉛直せん断耐力の算定式を示す。ドリフトピンの終局耐力は式(3.106)で、 寸切りボルトのせん断耐力は式(3.107)で、CLT 接合部の集合型破壊時の終局耐力は式(3.108)で、鉛直 接合部のウェブのせん断耐力は式(3.116)によって求める。寸切りボルトのせん断耐力は、文献[3-16]の あと施工アンカー(金属系、定着長がアンカー径の7倍以上)のせん断耐力式を用いて算定した。

式(3.108)に関しては、図 3-173 に示すように、3.5.1.2 で想定した Mode 2.1 による回転変形が生じる 状況を想定し、水平せん断力の大部分がドリフトピンから伝達される外層ラミナについて、内層ラミ ナとの接着面と外層ラミナの断面を介して、周囲への応力伝達が可能かどうかを確認する。ここでは、 文献[3-4]の鋼板添え板ビス接合の計算例(強軸試験体の場合)を参考にしているが、CLT の片面をビ ス接合した場合の評価式であるため、本検討では、両面接合に対応するように、式(3.108)において、 式(3.109)、(3.112)の値を 2 倍している。式(3.115)に関しては、せん断破壊面が 2 面あるものと仮定し、 文献[3-4]に記載の式を修正して用いている。

$$_{vv}Q_u = \min(_{vvd}Q_u, _{vvt}Q_u, _{vvs}Q_u, _{vvw}Q_v)$$

(3.105)

(3.107)

ここで、wQD: 鉛直接合部の設計用鉛直せん断力、vQM0: Ds時に鉛直接合部に作用する鉛直せん断力、n:保証設計のための割り増し係数、wQu:鉛直接合部の鉛直せん断耐力、vvdQu:鉛直接合部のドリフトピンの終局耐力、vvdQu:鉛直接合部の寸切りボルトのせん断耐力、vvsQu:鉛直接合部のCLT接合部の集合型破壊時の終局耐力、vvwQy:鉛直接合部のウェブのせん断耐力である。

$$_{vvd}Q_u = _v n_d \cdot _{dv} p_u$$

(3.106) ここで、 $vn_d$ : 鉛直接合部におけるドリフトピンの本数、 $dvp_u$ : ドリフトピン1本あたりの鉛直方向 の終局強度(ここでは、数値解析における 20mm 変形時の荷重としてよい)である。

 $_{vvt}Q_{u} = Min(0.7_{t}\sigma_{y}, 0.4\sqrt{_{c}E_{c}\cdot_{c}F_{c}})\cdot\sum a_{t}$ 

ここで、 $t\sigma_y$ : 寸切りボルトの降伏強度、 $cE_c$ : コンクリートのヤング係数 (N/mm<sup>2</sup>)、 $cF_c$ : コンクリートの圧縮強度 (N/mm<sup>2</sup>)、 $a_t$ : 寸切りボルトの断面積とする。

$$_{vvs}Q_u = 2 \cdot Min(P_{R1}, P_{R2})$$
(3.108)

 $P_{R1} = P_{t1} + P_{g1}$ 

$$P_{t1} = (W_L - m_d \cdot d) \cdot t_l \cdot F_t$$

$$P_{g1} = W_L \cdot L_d \cdot F_{ge}$$

$$P_{R2} = P_{t2} + P_{g2} + P_s$$

$$P_{t2} = (W_b - (m_d - 1) \cdot d) \cdot t_1 \cdot t_l F_t$$

$$P_{g2} = W_b \cdot L_d \cdot _t F_{ge} \tag{3.113}$$

$$P_s = 2 \cdot (L_d - ({}_s n_d - \frac{1}{2}) \cdot d) \cdot t_l \cdot {}_t F_s$$

(3.115) ここで、 $P_{R1}$ :幅はぎ接着していない CLT パネルのラミナ境界部分が影響する壊れ方の場合の最大 耐力、 $P_{R2}$ :幅はぎ接着していない CLT パネルのラミナ境界部分が影響しない壊れ方の場合の最大耐 力、 $W_L$ :ドリフトピン接合に掛かるラミナ幅の合計、 $_lF_t$ :ラミナの引張強度(=12N/mm<sup>2</sup>)、 $_Fg_e$ :CLT の接着積層面のせん断強度(=1.15N/mm<sup>2</sup>)、 $m_d$ :最上段の列のドリフトピンの本数、d:ドリフトピン の直径、h:最外層ラミナの厚み、 $L_d$ :CLT 木口面から最上段ドリフトピン位置までの長さ、 $W_d$ :ドリ フトピンの右端から左端までの距離、 $_lF_s$ :ラミナのせん断強度(=1.8N/mm<sup>2</sup>)、 $_sn_d$ :加力方向のドリフ トピンの本数である。

$${}_{vvw}Q_y = {}_v t_w \cdot ({}_v L_w - \sum d_h) \cdot \frac{{}_{vw}\sigma_y}{\sqrt{3}}$$

(3.116)

(3.109)

(3.110)

(3.111)

(3.112)

(3.114)

ここで、 $v_{fw}$ : 鉛直接合材のウェブの厚さ、 $v_{Lw}$ : 鉛直接合材のウェブの長さ、 $d_h$ : 鋼材に設けた孔(鉛 直接合材のウェブに設けたドリフトピン設置用の孔)の直径、 $v_w\sigma_y$ : 鉛直接合材のウェブの降伏強度で ある。



表 3-64 に、式(3.109)~(3.115)を用いて算定した CLT 接合部の集合型破壊時の終局耐力の計算に用 いた数値を示す。また、表 3-65 にドリフトピンの終局耐力、寸切りボルトの降伏耐力、CLT 接合部の 集合型破壊時の終局耐力、鉛直接合部のウェブのせん断耐力の一覧を示す。ここでは、ドリフトピン の降伏耐力(数値解析によるものと、3.5.1.2 で求めた計算式によるもの)も参考として示す。鉛直接 合部の鉛直せん断耐力は、材料強度に設計値、実験値を用いた場合のいずれについても、ドリフトピ ンの終局耐力によって決まる。なお、骨組解析では、ドリフトピンの復元力特性について、一列あた りの最大のドリフトピンの本数による耐力の低減は行っていないが、安全側の評価として、表 3-65 に 示すドリフトピンの終局耐力には、式(3.14)による低減係数 0.81 を乗じた値を用いている。

|                    |                                          | 畄仕                | 設計値  |
|--------------------|------------------------------------------|-------------------|------|
|                    |                                          | + 111             | A    |
| ラミナ幅の合計            | WL                                       | mm                | 122  |
| ラミナの引張強度           | Ft                                       | N/mm²             | 12   |
| 接着積層面のせん断強度        | F <sub>ge</sub>                          | $N/mm^2$          | 1.15 |
| ラミナのせん断強度          | Fs                                       | N/mm <sup>2</sup> | 1.8  |
| ビスの山径(=孔径)         | d                                        | mm                | 12   |
| 最上段の列方向のビスの本数      | m                                        |                   | 2    |
| 加力方向のビスの本数         | n                                        |                   | 13   |
| 最外層ラミナの厚み          | t                                        | mm                | 30   |
| 木口面から最上段位置までの長さ    | L                                        | mm                | 1320 |
| ビスの右端から左端までの距離     | W <sub>b</sub>                           | mm                | 45   |
| ラミナ境界部分が影響する場合の耐力  | P <sub>R1</sub>                          | kN                | 220  |
| ラミナ境界部分が影響しない場合の耐力 | P <sub>R2</sub>                          | kN                | 207  |
| 最大耐力               | Max (P <sub>R1</sub> , P <sub>R2</sub> ) | kN                | 207  |

表 3-64 ラミナの集合型破壊時の終局耐力(鉛直接合部、鉛直方向)

表 3-65 鉛直接合部の鉛直せん断耐力

|                        |                               | 出任 | A      |     | (益老                                                                                                                                             |  |  |
|------------------------|-------------------------------|----|--------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                        |                               | 中山 | 設計値    | 試験値 |                                                                                                                                                 |  |  |
| ドリフトピンの降伏耐力(低減なし,評価式)  |                               | kN | 245    | 478 | =25本×9.8kN(設計値),19.1kN(試験値)                                                                                                                     |  |  |
| ドリフトピンの降伏耐力(低減あり,評価式)  | .0                            | kN | 198    | 387 | =25本×9.8kN(設計値), 19.1kN(試験値)×0.81                                                                                                               |  |  |
| ドリフトピンの降伏耐力(低減なし、数値解析) | vvd♀y                         | kN | 188    | 290 | =25本×7.5kN(設計値),11.6kN(試験値)                                                                                                                     |  |  |
| ドリフトピンの降伏耐力(低減あり,数値解析) |                               | kN | 152    | 235 | =25本×7.5kN(設計値),11.6kN(試験値)×0.81                                                                                                                |  |  |
| ドリフトピンの終局耐力(低減なし、数値解析) |                               | kN | 298    | 490 | =25本×11.9kN(設計値), 19.6kN(試験値)                                                                                                                   |  |  |
| ドリフトピンの終局耐力(低減あり,数値解析) | vvdQu                         | kN | 241    | 397 | =25本×11.9kN(設計値), 19.6kN(試験値)×0.81                                                                                                              |  |  |
| アンカーボルトのせん断耐力(規格値)     |                               | kN | 554    | -   | =12本×157mm <sup>2</sup> ×min(0.7×420N/mm <sup>2</sup> , 0.4×(30.0N/mm <sup>2</sup> ×25.5kN/mm <sup>2</sup> ) <sup>0.5</sup> )                   |  |  |
| アンカーボルトのせん断耐力(実強度, 1F) | <sub>vvt</sub> Q <sub>u</sub> | kN | -      | 740 | $=12 \pm 157 \text{ mm}^2 \times \text{min}(0.7 \times 561 \text{ N/mm}^2, 0.4 \times (33.1 \text{ N/mm}^2 \times 29.7 \text{ kN/mm}^2)^{0.5})$ |  |  |
| アンカーボルトのせん断耐力(実強度, 2F) |                               | kN | -      | 740 | =12本×157mm <sup>2</sup> ×min(0.7×561N/mm <sup>2</sup> , 0.4×(33.7N/mm <sup>2</sup> ×30.4kN/mm <sup>2</sup> ) <sup>0.5</sup> )                   |  |  |
| 鋼板のせん断降伏耐力             | $_{vvw}Q_{y} \\$              | kN | 1679 = |     | =12mm×(1200mm-13×13mm)×235N/mm <sup>2</sup> /√3                                                                                                 |  |  |
| 集合型破壊時の終局耐力            | $_{\nu\nu s}Q_{u}$            | kN | 41     | L3  | 別表による                                                                                                                                           |  |  |
| 鉛直接合部の鉛直せん断耐力          | $_{\nu\nu}Q_{u}$              | kN | 241    | 397 |                                                                                                                                                 |  |  |

## (2) 設計段階における検討

鉛直接合部の設計段階における検討では、上下階の RC はりからの CLT 袖壁への応力伝達が可能と なるように、CLT 袖壁端に塑性ヒンジが形成された場合に RC はりに作用するせん断力の 2 倍の大き さの鉛直方向のせん断力を目安に、せん断設計を行うこととする。表 3-66 に、表 3-51 で示した RC はりの水平耐力を 2 倍して求めた鉛直接合部の設計用せん断力を示す。設計用せん断力は 220kN 程度 であり、鉛直接合部の鉛直方向のせん断耐力は十分に余裕がある。

|               |                               |     |      | 試馬   | 剣値   |
|---------------|-------------------------------|-----|------|------|------|
|               |                               | 単位  | 設計値  | /    | Ą    |
|               |                               |     |      | 1F   | 2F   |
| 内法長さ          |                               | m   | 1.8  | 1.8  | 1.8  |
| 曲げ終局モーメント     | <sub>b</sub> M <sub>u</sub>   | kNm | 97   | 98   | 98   |
| 曲げ耐力時せん断力     | ьQ <sub>mu</sub>              | kN  | 108  | 109  | 109  |
| せん断耐力         | <sub>b</sub> Q <sub>su</sub>  | kN  | 204  | 211  | 212  |
| 水平耐力          | $Min(_{b}Q_{mu}, _{b}Q_{su})$ | kN  | 108  | 109  | 109  |
| 鉛直接合部の設計用せん断力 | vvQd                          | kN  | 216  | 217  | 217  |
| 鉛直接合部の鉛直せん断耐力 | vvQu                          | kN  | 241  | 397  | 397  |
| 余裕度           |                               |     | 1.12 | 1.83 | 1.83 |

表 3-66 設計段階における鉛直接合部に作用する鉛直せん断力の検討

# (3) 骨組解析の結果を基にした検討

表 3-67 に試験体 A の骨組解析の結果から求めた鉛直接合部に作用する鉛直方向のせん断力の最大 値を示す。加力方向に対して引張側の RC 柱-CLT 袖壁間では、鉛直接合部に作用する鉛直方向のせ ん断力が、表 3-65 で示した数値解析で求めたドリフトピンの降伏耐力を上回るケースがあるが、ドリ フトピンの終局耐力から算定される鉛直接合部の鉛直せん断耐力は下回っていた。

また、加力方向に対して引張側の RC 柱-CLT 袖壁間では、鉛直接合部に作用する鉛直方向のせん 断力が、表 3-66 で示した設計用せん断力を上回っているが、加力方向に対して圧縮側の RC 柱-CLT 袖壁間では、表 3-66 で示した設計用せん断力とほぼ等しい値となっていることから、鉛直接合部に必 要となる最低限のせん断耐力を求める上で、表 3-66 で示した設計用せん断力がある程度妥当である と言える。一方で、前述したように、RC 柱際では RC はりのせん断設計が厳しくなることから、RC はりに作用するせん断力を低減することを目的として、鉛直接合部のせん断耐力をより高めに設定す る方法も考えられる。

|                  |                   | 試験値 |      |      |      |      |  |
|------------------|-------------------|-----|------|------|------|------|--|
| 詳細エデル            | 岜佔                | A   |      |      |      |      |  |
| 計袖モデル            |                   |     | 引引   | 長側   | 圧縮側  |      |  |
|                  |                   | 1F  | 2F   | 1F   | 2F   |      |  |
| 鉛直接合部に作用する鉛直せん断力 | $_{vv}Q_{max} \\$ | kN  | 310  | 300  | 134  | 164  |  |
| 鉛直接合部の鉛直せん断耐力    | $_{vv}Q_{u}$      | kN  | 397  | 397  | 397  | 397  |  |
| 余裕度              |                   |     | 1.28 | 1.32 | 2.96 | 2.42 |  |

表 3-67 鉛直接合部に作用する鉛直方向のせん断力の最大値(骨組解析)

|                  |                   | 試験値 |      |      |      |      |  |
|------------------|-------------------|-----|------|------|------|------|--|
| 節見エデル            | 出任                | A   |      |      |      |      |  |
| 間勿てノル            |                   |     | 引引   | 長側   | 圧縮側  |      |  |
|                  |                   | 1F  | 2F   | 1F   | 2F   |      |  |
| 鉛直接合部に作用する鉛直せん断力 | $_{vv}Q_{max} \\$ | kN  | 322  | 235  | 146  | 151  |  |
| 鉛直接合部の鉛直せん断耐力    | $_{vv}Q_{u}$      | kN  | 397  | 397  | 397  | 397  |  |
| 余裕度              |                   |     | 1.23 | 1.69 | 2.72 | 2.63 |  |

#### 3.8.7.4. 水平接合部の設計(アンカーボルトの検討)

## (1) 軸耐力の算定

CLT 袖壁の引張端では、袖壁端に設けたアンカーボルトに作用する引張力を、鋼板挿入ドリフトピンを介して、CLT 袖壁に伝達する必要がある。アンカーボルトが確実に引張降伏し、接合部として脆性的な破壊が生じないことを確認するために、文献[3-4]にしたがって、式(3.117)を満足することを確認することとした。ここで、式(3.117)に示す水平接合部におけるアンカーボルト周辺部位の耐力は、式(3.118)の水平接合部におけるドリフトピンの降伏耐力、式(3.119)の水平接合部における CLT 接合部の集合型破壊時の終局耐力、式(3.127)の水平接合部におけるウェブの降伏耐力、式(3.128)の水平接合部におけるフランジ(底板)の曲げ耐力時引張力の最小値で与えられる。

式(3.119)に関しては、図 3-174 に示すように、3.5.1.2 で想定した Mode 2.1 による回転変形が生じる 状況を想定し、水平せん断力の大部分がドリフトピンから伝達される外層ラミナについて、内層ラミ ナとの接着面と外層ラミナの断面を介して、周囲への応力伝達が可能かどうかを確認する。ここでは、 文献[3-4]の鋼板添え板ビス接合の計算例(強軸試験体の場合)を参考にしているが、CLT の片面をビ ス接合した場合の評価式であるため、本検討では、両面接合に対応するように、式(3.119)において、 式(3.120)、(3.123)の値を2倍している。式(3.126)に関しては、せん断破壊面が2面あるものと仮定し、 文献[3-4]に記載の式を修正して用いている。

$$h_{vt}Q_u = \min(h_{vd}Q_y, h_{vs}Q_u, h_{vw}Q_y, h_{vf}Q_u) \ge h_{va}Q_u (= h_a \cdot a_b p_{ub})$$

(3.117)

(3.118)

(3.120)

(3.121)

(3.122)

(3.123)

(3.124)

ここで、hvtQu: 水平接合部におけるアンカーボルト周辺部位の耐力、<math>hvdQu: 水平接合部におけるドリフトピンの降伏耐力、hvsQu: 水平接合部における CLT 接合部の集合型破壊時の終局耐力、<math>hvwQy: 水平接合部におけるウェブの降伏耐力、 $hvtQu: 水平接合部におけるフランジ(底板)の曲げ耐力時引張力、<math>hvaQu: 水平接合部におけるアンカーボルトの終局耐力、_hna: 水平接合部におけるアンカーボルトの約局耐力、_hna: 水平接合部におけるアンカーボルトの本数、<math>apub: アンカーボルトの判定用終局耐力(文献[3-4]の表 10.6.2-1 参照)$ である。

$$_{hva}Q_{y} = {}_{h}n_{d} \cdot {}_{dv}p_{y}$$

ここで、hnd:水平接合部におけるドリフトピンの本数、dvpy:ドリフトピン1本あたりの鉛直方向の 降伏強度(ここでは、アンカーボルトに変形を集中させるため、ドリフトピンに関しては降伏強度を 用いた)である。

 $_{hvs}Q_u = 2 \cdot Min(P_{R1}, P_{R2})$ (3.119)

$$P_{R1} = P_{t1} + P_{g1}$$

$$P_{t1} = (W_L - m_d \cdot d) \cdot t_l \cdot {}_l F_t$$

$$P_{g1} = W_L \cdot L_d \cdot F_{ge}$$

$$P_{R2} = P_{t2} + P_{g2} + P_s$$

 $P_{t2} = (W_b - (m_d - 1) \cdot d) \cdot t_l \cdot l_k F_t$ 

$$P_{g2} = W_b \cdot L_d \cdot F_{ge}$$

(3.125)

$$P_s = 2 \cdot (L_d - ({}_s n_d - \frac{1}{2}) \cdot d) \cdot t_l \cdot {}_t F_s$$

(3.126)

ここで、 $P_{R1}$ :幅はぎ接着していない CLT パネルのラミナ境界部分が影響する壊れ方の場合の最大耐力、 $P_{R2}$ :幅はぎ接着していない CLT パネルのラミナ境界部分が影響しない壊れ方の場合の最大耐力、 $W_L$ :ドリフトピン接合に掛かるラミナ幅の合計、 $_iF_t$ :ラミナの引張強度(=12N/mm<sup>2</sup>)、 $_iF_g$ :CLTの接着積層面のせん断強度(=1.15N/mm<sup>2</sup>)、 $m_d$ :最上段の列のドリフトピンの本数、d:ドリフトピン の直径、h:最外層ラミナの厚み、 $L_d$ :CLT 木口面から最上段ドリフトピン位置までの長さ、 $W_d$ :ドリフトピンの右端から左端までの距離、 $_iF_s$ :ラミナのせん断強度(=1.8N/mm<sup>2</sup>)、 $_sn_d$ :加力方向のドリフトピンの本数である。

$${}_{hvw}Q_y = {}_h t_w ({}_h L_w - \sum d_h)_h \sigma_{wy}$$

(3.127)

ここで、htw:水平接合材のウェブの厚さ、hLw:水平接合材のウェブの長さ、dh:鋼材に設けた孔(ウェブに設けたドリフトピン設置用の孔)の直径、hσwy:水平接合材のウェブの降伏強度である。

$$hvf Q_u = \frac{2 \cdot \frac{1}{4} {}_h L_f \cdot {}_h t_f^2 \cdot {}_h \sigma_{fy}}{{}_h L_h}$$

(3.128)

ここで、hLf:水平接合材のフランジの長さ、hff:水平接合材のフランジの厚さ、hoff:水平接合材 のフランジの降伏強度、hLh:水平接合材のフランジに設けたアンカーボルトの重心位置からウェブ 端部までの長さである。



表 3-68 に、式(3.120)~(3.126)を用いて算定した CLT 接合部の集合型破壊の場合の終局耐力の計算 に用いた数値を示す。また、表 3-69 にアンカーボルトの終局耐力と、ドリフトピンの降伏耐力、CLT 接合部の集合型破壊時の終局耐力、水平接合部におけるウェブの降伏耐力、水平接合部におけるフラ ンジ(底板)の曲げ耐力時引張力の一覧を示す。ここでは、ドリフトピンの降伏耐力(3.5.1.2 で求め た計算式によるもの)と終局耐力(数値解析によるもの)も参考として示す。なお、骨組解析では、 ドリフトピンの復元力特性について、一列あたりの最大のドリフトピンの本数による耐力の低減は行 っていないが、安全側の評価として、表 3-69 に示すドリフトピンの終局耐力には、式(3.14)による低 減係数 0.92 を乗じた値を用いている。材料強度に試験値、実験値を用いた場合のいずれについても、 水平接合部の軸耐力は、ドリフトピンの降伏耐力で決定している。

|                    |                             | 用任                | 設計値  |
|--------------------|-----------------------------|-------------------|------|
|                    |                             | 单位                | А    |
| ラミナ幅の合計            | WL                          | mm                | 225  |
| ラミナの引張強度           | Ft                          | $N/mm^2$          | 12   |
| 接着積層面のせん断強度        | F <sub>ge</sub>             | N/mm <sup>2</sup> | 1.15 |
| ラミナのせん断強度          | Fs                          | $N/mm^2$          | 1.8  |
| ビスの山径(=孔径)         | d                           | mm                | 12   |
| 最上段の列方向のビスの本数      | m                           |                   | 3    |
| 加力方向のビスの本数         | n                           |                   | 4    |
| 最外層ラミナの厚み          | t                           | mm                | 30   |
| 木口面から最上段位置までの長さ    | L                           | mm                | 370  |
| ビスの右端から左端までの距離     | W <sub>b</sub>              | mm                | 120  |
| ラミナ境界部分が影響する場合の耐力  | P <sub>R1</sub>             | kN                | 164  |
| ラミナ境界部分が影響しない場合の耐力 | P <sub>R2</sub>             | kN                | 123  |
| 最大耐力               | Max ( $P_{R1}$ , $P_{R2}$ ) | kN                | 123  |

## 表 3-68 ラミナの集合型破壊時の終局耐力(水平接合部、鉛直方向)

|                        |                            | 出任 | A   |     | <i>供</i> 学                                          |  |
|------------------------|----------------------------|----|-----|-----|-----------------------------------------------------|--|
|                        |                            | 中世 | 設計値 | 試験値 | 调考                                                  |  |
| ドリフトピンの降伏耐力(低減なし,評価式)  |                            | kN | 176 | 344 | =18本×9.8kN(設計値), 19.1kN(試験値)                        |  |
| ドリフトピンの降伏耐力(低減あり,評価式)  | 0                          | kN | 143 | 278 | =18本×9.8kN(設計値),19.1kN(試験値)×0.92                    |  |
| ドリフトピンの降伏耐力(低減なし、数値解析) | hvdƳy                      | kN | 135 | 209 | =18本×7.5kN(設計値),11.6kN(試験値)                         |  |
| ドリフトピンの降伏耐力(低減あり、数値解析) |                            | kN | 109 | 169 | =18本×7.5kN(設計値),11.6kN(試験値)×0.92                    |  |
| ドリフトピンの終局耐力(低減なし、数値解析) | 0                          | kN | 214 | 353 | =18本×11.9kN(設計値), 19.6kN(試験値)                       |  |
| ドリフトピンの終局耐力(低減あり、数値解析) | hvdQu                      | kN | 174 | 286 | =18本×11.9kN(設計値), 19.6kN(試験値)×0.92                  |  |
| 鋼板の降伏耐力                | ${}_{hvw}\boldsymbol{Q}_y$ | kN | 51  | 10  | =12mm × (220mm-3 × 13mm) × 235N/mm <sup>2</sup>     |  |
| 底板の曲げ耐力時引張力            | ${}_{\rm hvf} Q_{\rm u}$   | kN | 33  | 38  | =2×(1/4×216mm×32mm×32mm)×235N/mm <sup>2</sup> /77mm |  |
| 集合型破壊時の終局耐力            | $_{hvs}Q_{u}$              | kN | 24  | 16  | 別表による                                               |  |
| 水平接合部の軸耐力              | $_{hvt}Q_{u}$              | kN | 109 | 169 |                                                     |  |

#### (2) 設計段階における検討

CLT 袖壁の設計の際にも述べたように、CLT 袖壁には、RC はりの塑性ヒンジ位置を柱フェイス位置から CLT 袖壁端に移動させる役割が期待されるが、試験体 A のように、アンカーボルトを CLT 袖壁端に設置した場合、CLT 袖壁の圧縮力をせん断力として RC はりに伝達するのが難しい最上階等において、CLT 袖壁の代わりに RC はりにせん断力を伝達する補助的な役割が期待できる。

そこで、設計段階における検討では、(1)で示した水平接合部の軸耐力と、CLT 袖壁端の水平接合部 に設けるアンカーボルト(2-M16)の降伏耐力、引張耐力、判定用終局耐力との関係を確認すると共 に、アンカーボルトの降伏耐力が、表 3-51 で示した CLT 袖壁を設けた場合(内法スパンを1800mm とした場合)に RC はりに作用する可能性がある最大のせん断力を上回るかどうかを確認している。

表 3-70 に示すように、アンカーボルトの判定用終局耐力に対して、水平接合部の軸耐力が若干不足 している。ここでは、水平接合部の軸耐力の評価にドリフトピンの降伏耐力を用いているため、これ をドリフトピンの終局耐力に置き換えれば、十分な軸耐力は確保できるものと思われるが、アンカー ボルトに伸び変形の大部分を集中させる観点では、ドリフトピンの降伏耐力がやや不足している。

表 3-71 に示すように、表 3-42 に示す降伏強度の規格値や、表 3-9 に示す引張試験結果のいずれを 用いた場合にも、アンカーボルトの降伏耐力と RC はりの最大せん断力は概ね一致しており、あまり 余裕がない。アンカーボルトには ABR490B 材を用いているため、ひずみ硬化が起これば、RC はりに 作用するせん断力以上の引張力を負担することだが、より効率的に RC はりにせん断力を伝達するた めには、アンカーボルトの降伏耐力や水平接合部の軸耐力をより高く設定する必要がある。

|                 | 用位 | ,    | 4    | 備来                                                                                                                                                                              |  |  |  |
|-----------------|----|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                 | 中世 | 設計値  | 試験値  | 備考<br>2本×166mm <sup>2</sup> ×325N/mm <sup>2</sup> (規格値),332N/mm <sup>2</sup> (実強度)<br>2本×157mm <sup>2</sup> ×490N/mm <sup>2</sup> (規格値),556N/mm <sup>2</sup> (実強度)<br>2本×89.5kN |  |  |  |
| アンカーボルトの降伏耐力    | kN | 108  | 110  | =2本×166mm <sup>2</sup> ×325N/mm <sup>2</sup> (規格値),332N/mm <sup>2</sup> (実強度)                                                                                                   |  |  |  |
| アンカーボルトの引張耐力    | kN | 154  | 175  | =2本×157mm <sup>2</sup> ×490N/mm <sup>2</sup> (規格値),556N/mm <sup>2</sup> (実強度)                                                                                                   |  |  |  |
| アンカーボルトの判定用終局耐力 | kN | 17   | 79   | =2本×89.5kN                                                                                                                                                                      |  |  |  |
| 水平接合部の軸耐力       | kN | 109  | 169  |                                                                                                                                                                                 |  |  |  |
| 余裕度             |    | 0.61 | 0.94 |                                                                                                                                                                                 |  |  |  |

表 3-70 水平接合部に設けたアンカーボルトの降伏耐力、引張耐力、判定用終局耐力の一覧

表 3-71 アンカーボルトの降伏耐力の確認

|              | 用任       | 設計店  | 試験値  |  |
|--------------|----------|------|------|--|
|              | 半匹       | 议訂唱  | А    |  |
| アンカーボルトの降伏強度 | $N/mm^2$ | 325  | 332  |  |
| アンカーボルトの降伏耐力 | kN       | 108  | 110  |  |
| RCはりの最大せん断力  | kN       | 108  | 109  |  |
| 余裕度          |          | 1.00 | 1.02 |  |

## (3) 骨組解析の結果を基にした検討

表 3-72 に試験体 A の骨組解析の結果から求めた水平接合部のアンカーボルトに作用する引張力の 最大値を示す。計6カ所に配置したアンカーボルトのうち、引張力が作用するのは主に3カ所である。 図 3-154 で示したように、2、3 階に設置したアンカーボルトに作用する引張力は、崩壊機構が形成さ れるとほぼ頭打ちとなり、水平接合部の終局耐力にも十分な余裕があるが、1 階に設置したアンカー ボルトに作用する引張力は、全体変形角と共に増大を続けるため、最終的にアンカーボルトの引張耐 力に到達し、ドリフトピンの降伏耐力によって決まる水平接合部の終局耐力も上回っている。ただし、 ドリフトピンの降伏は生じるものの、ドリフトピンの終局耐力にはまだ余裕があるため、アンカーボ ルトの引張力が引張耐力に到達したとしても、直ちに接合部の破壊に繋がる訳ではない。

なお、載荷実験では、骨組解析において、アンカーボルトの引張力が引張耐力に到達した1階脚部 において、ドリフトピンに沿ったラミナの破壊が確認されているが、これは、CLT 袖壁の端部に生じ た圧縮力によってラミナに損傷が生じ、損傷を受けたラミナが引張力を受けたことが原因と考えられ る。通常、接合部の設計において、圧縮力と引張力が繰り返し作用する状況は想定されないものと思 われるが、本研究のように、CLT 袖壁に作用する圧縮軸力が大きい場合には、注意が必要である。

|                       |              | 試験値 |     |      |      |      |     |  |  |
|-----------------------|--------------|-----|-----|------|------|------|-----|--|--|
| = <del>/</del> ×m + u | <b>半</b> 4-5 | A   |     |      |      |      |     |  |  |
| 計加モデル                 | 单位           |     | 引張側 | J    | 圧縮側  |      |     |  |  |
|                       |              | 1F  | 2F  | 3F   | 1F   | 2F   | 3F  |  |  |
| アンカーボルトの引張力           | kN           | 0   | 0   | 112  | 175  | 111  | 0   |  |  |
| 水平接合部の軸耐力             | kN           | 169 | 169 | 169  | 169  | 169  | 169 |  |  |
| 余裕度                   |              | -   | -   | 1.51 | 0.97 | 1.52 | -   |  |  |

表 3-72 水平接合部のアンカーボルトに作用する引張力の最大値(骨組解析)

|             | 単位 | 試験値 |     |      |      |      |     |  |  |
|-------------|----|-----|-----|------|------|------|-----|--|--|
| 笛見エデル       |    | A   |     |      |      |      |     |  |  |
| 同勿しアル       |    |     | 引張側 | J    | 圧縮側  |      |     |  |  |
|             |    | 1F  | 2F  | 3F   | 1F   | 2F   | 3F  |  |  |
| アンカーボルトの引張力 | kN | 0   | 2   | 99   | 175  | 111  | 0   |  |  |
| 水平接合部の軸耐力   | kN | 169 | 169 | 169  | 169  | 169  | 169 |  |  |
| 余裕度         |    | 1   | -   | 1.71 | 0.97 | 1.52 | I   |  |  |

#### 3.8.8. 接合部の設計(試験体 B)

## 3.8.8.1. 詳細

図 3-175 に試験体 B の滑り止めの形状を示す。



#### 3.8.8.2. 鉛直接合部の設計

試験体 B では、鉛直接合部における応力伝達には期待しないため、検討を省略する。

#### 3.8.8.3.水平接合部の設計(摩擦抵抗の検討)

CLT 袖壁に作用する水平せん断力の伝達機構は、RC はりや RC スタブ等を介して伝達されるか、 RC 柱を介して伝達されるかのいずれかに分類できる。試験体 B では、鉛直接合部を設けていないた め、RC 柱を介して水平せん断力を伝達することが困難である。そこで、RC はりや RC スタブを介し た水平せん断力の伝達機構の検討のみを行うものとする。

試験体 B では、水平接合部に滑り止めを設けているが、加力実験では、全体変形角の増大に伴って、 CLT 袖壁の小口と滑り止めの間に隙間が生じる箇所があったことから、主たるせん断抵抗要素として、 CLT 袖壁に作用する曲げ圧縮力(水平接合材による引張負担がないので、ここでは断面に軸力と等し い)による摩擦抵抗を想定する。摩擦係数 μ に関しては、文献[3-4]では壁パネルに期待できる摩擦係 数として 0.3 が、また、文献[3-18]では、プレキャスト部材の間にモルタルを充填し、圧着接合する場 合の摩擦係数として 0.5 が与えられている。前者に関しては、地震上下動の影響も踏まえた振動台実 験結果等に基づく安全側の判断による値、後者に関しては、実験の下限値を地震時の繰り返し荷重の 影響を考慮して低減した値とされている。ここでは、部材実験と同様に、CLT 袖壁の水平接合部にお けるせん断力/曲げ圧縮力の最大値が 0.50 以下に留まっていることを確認する。

## (1) 設計段階における検討

設計段階では、CLT 袖壁にどの程度の曲げ圧縮力やせん断力が作用するか推定することは難しいが、 ここでは CLT 袖壁の水平接合部で想定されるせん断力/曲げ圧縮力の略算法を式(3.129)に示す。式 (3.129)の左辺は摩擦耐力、右辺は図 3-176 に示す CLT 袖壁の上下端が曲げ耐力に到達した時のせん断 力となり、摩擦耐力が曲げ耐力時せん断力を上回れば、水平せん断力の伝達が問題なく行われる。こ こで、式中の軸力  $N_w$ を両辺から削除し、軸力が最も小さい  $N_w=0$  時においても、式(3.119)を満足させることを考えると式(3.130)が導かれ、CLT 袖壁の形状 ( $D_w/h_0$ )のみで水平せん断力の伝達が可能かどうかを判断できる。試験体 B における CLT 袖壁の寸法比 ( $D_w/h_0$ )は 0.40 (=650mm/1600mm)となり、上述した摩擦係数 0.5 を下回ることから、条件を常に満足するものと推測される。

$${}_{w}\mathcal{Q}_{fu}(=\mu \cdot N_{w}) \ge {}_{w}\mathcal{Q}_{mu}(=N_{w} \cdot (1 - \frac{N_{w}}{0.85 \cdot t_{w} \cdot {}_{tv}F_{k}}) \cdot \frac{D_{w}}{h_{0}})$$

$$\mu \ge \frac{D_{w}}{h_{0}}$$
(3.129)

(3.130)

但し、 $\mu$ :摩擦係数、 $N_w$ : CLT 袖壁の軸方向力、 $t_w$ : 袖壁の厚さ、 $D_w$ : 袖壁のせい、 $h_0$ : 袖壁の内法 高さ、 $t_vF_k$ : CLT の圧縮の基準強度を用いた座屈強度(鉛直方向)である。



図 3-176 CLT 袖壁の摩擦による水平せん断力の伝達条件

## (2) 骨組解析の結果を基にした検討

図 3-155 に示すように、試験体 BD の骨組解析から求めたせん断力/曲げ圧縮力(軸力)の比率は、 変形角の増大に伴って大きくなるが、詳細モデル、簡易モデルのいずれを用いた場合でも 0.30~0.35 程度で頭打ちとなり、上述した摩擦係数 0.5 を十分に下回る結果となったことから、必要な摩擦耐力 を確保できるものと考えられる。

#### 3.8.8.4. 水平接合部の設計(滑り止めの検討)

3.8.8.3 で示したように、試験体 B では、曲げ圧縮力による摩擦抵抗によって、CLT 袖壁に作用する 水平せん断力を RC はりや RC スタブに伝達することが可能であるため、水平せん断力の伝達という 観点では、CLT 袖壁の材端に滑り止めを設ける必要はない。一方で、水平加力によって RC ラーメン に変形が生じた場合に、RC ラーメンから CLT 袖壁が外れないようにするための拘束用の治具は何か しら必要となる。3.6.8.5 で示した載荷実験では、滑り止めの固定に用いた寸切りボルトの引張ひずみ から、滑り止めに作用するせん断力の推定も行っているが、その評価精度は十分とは言えず、骨組解 析においても、摩擦抵抗によるせん断伝達と支圧によるせん断伝達を切り分けて考えることは現状で は難しい。そこで、安全側の設計となるが、ここでは、CLT 袖壁に作用する水平せん断力が全て滑り 止めに作用した場合にも、支障がないことを確認することとする。

#### (1) せん断耐力の算定

式(3.131)に示す滑り止めの水平せん断耐力のうち、CLT の木口面の支圧耐力は式(3.132)で、ウェブ のせん断降伏耐力は式(3.133)で、曲げ耐力時せん断力は式(3.134)で、寸切りボルトのせん断耐力は式 (3.135)で、底面における寸切りボルトの引張降伏時せん断力は式(3.136)で、支圧板(フランジ)の曲 げ耐力時せん断力は式(3.137)、滑り止め底板の曲げ耐力時せん断力は式(3.138)によって求める。なお、 式(3.135)は、文献[3-16]のあと施工アンカー(金属系、定着長がアンカー径の7倍以上)のせん断耐力 式を用いて算定している。また、式(3.137)、式(3.138)では、崩壊線理論に基づいて、図 3-177 に示す 破壊線を想定しており、式(3.137)では文献[3-21]における等分布荷重を受ける外壁の限界土圧の計算式 を、式(3.138)では文献[3-22]における集中荷重を受ける2辺固定支持2辺自由長方形板の事例を参考 に、式(3.136)のボルトの降伏強度(Σ<sub>t</sub>a<sub>t</sub>・t<sub>o</sub>y)を崩壊荷重に置き換えているが、本試験体では、滑り止 めの支圧板(フランジ)と底板の幅が異なるため、図 3-177(b)の点線部分では板の降伏が生じない。 そこで、式(3.138)の四角囲いの係数(4)を3に変更して計算を行った。

 $_{hh}Q_u = \min({}_{hhb}Q_u, {}_{hhw}Q_v, {}_{hhf}Q_v, {}_{hhs}Q_u, {}_{hht}Q_u, {}_{hhl}Q_u, {}_{hhp}Q_u)$ 

(3.131)

(3.132)

(3.133)

(3.135)

(3.136)

ここで、 $hhQ_u$ :滑り止めの水平せん断耐力、 $hhbQ_u$ :滑り止めにおける CLT の木口面の支圧耐力、 $hhwQ_y$ : 滑り止めにおけるウェブのせん断降伏耐力、 $hhfQ_y$ :滑り止めにおける曲げ降伏時せん断力、 $hhsQ_u$ :滑 り止めにおける寸切りボルトのせん断耐力、 $hhtQ_u$ :滑り止め底面における寸切りボルトの引張降伏時 せん断力、 $hhlQ_u$ :滑り止めの支圧板(フランジ)の曲げ耐力時せん断力、 $hhpQ_u$ :滑り止め底板の曲げ 耐力時せん断力である。

$$_{hhb}Q_u = t_w \cdot h_s \cdot _{th}F_k$$

$$_{hhw}Q_{y} = {}_{s}t_{w} \cdot D_{s} \cdot \frac{{}_{s}\sigma_{wy}}{\sqrt{3}}$$

$$hhf Q_y = \frac{Z_s \cdot \sigma_{fy}}{0.5h_s}$$

$${}_{hhs}Q_u = \operatorname{Min}(0.7_t \sigma_y, 0.4\sqrt{{}_c E_c \cdot {}_c F_c}) \cdot \sum_t a_t$$
(3.134)

$$_{hht}Q_u = \frac{0.9\sum_{t}a_t \cdot t\sigma_y \cdot d_s}{0.5h_s}$$

$$_{hhl}Q_{u} = \frac{(4\frac{h_{s}'}{b_{s}'} + 2 + 2) \cdot {}_{l}M_{0}}{(\frac{h_{s}'}{2} - \frac{1}{12}b_{s}')b_{s}'} \cdot h_{s} \cdot b_{s}$$

$$({}_{l}M_{0} = \frac{1}{4}({}_{s}t_{f})^{2}{}_{s}\sigma_{fy}, \quad \text{また, } \text{ L式を用いる場合には, } h_{s}' \ge 0.5b_{s}' \text{ となることを確認する})$$

$$(3.137)$$

$$hhp Q_{u} = \frac{0.9d_{s}}{0.5h_{s}} \cdot 2_{p} M_{0} \cdot \min(4\pi, \frac{4(D_{s} - st_{f})}{0.5_{s}b_{p} - 0.5_{w}t_{f}} + \frac{4(0.5_{s}b_{p} - 0.5_{w}t_{f})}{D_{s} - st_{f}})$$

$$(\{\underline{H} \ \cup, \ _{p} M_{0} = \frac{1}{4}(st_{p})^{2} s\sigma_{py}\})$$

(3.138)

ここで、 $t_w$ : CLT 袖壁の壁厚、 $h_s$ : 滑り止めの高さ、 $hF_k$ : CLT の圧縮の基準強度を用いた座屈強度 (水平方向)、 $st_w$ : 滑り止めのウェブの厚さ、 $D_s$ : 滑り止めの全せい、 $s\sigma_{wy}$ : 滑り止めのウェブの降伏 強度、 $s\sigma_{fy}$ : 滑り止めのフランジの降伏強度、 $Z_s$ : 滑り止めの断面係数、 $t\sigma_y$ : 寸切りボルトの降伏強度、  $cE_c$ : コンクリートのヤング係数(N/mm<sup>2</sup>)、 $cF_c$ : コンクリートの圧縮強度(N/mm<sup>2</sup>)、 $ta_t$ : 寸切りボ ルトの断面積、 $d_s$ : 寸切りボルトの重心位置から滑り止め端部までの距離、 $st_f$ : 滑り止めの支圧板(フ ランジ)の厚さ、 $s\sigma_{fy}$ : 滑り止めの支圧板(フランジ)の降伏強度、 $b_s$ : 滑り止めの支圧板(フランジ) の幅、 $h'_s$ : 滑り止めの高さから底板の厚さを差し引いた値、 $b'_s$ : 滑り止めの底板の降伏強度、 $sb_p$ : 滑り止めの底板の幅とする。



表 3-73 に、CLT の木口面の支圧耐力、ウェブのせん断降伏耐力、曲げ耐力時せん断力、寸切りボルトのせん断耐力、底面における寸切りボルトの引張降伏時せん断力、支圧板(フランジ)の崩壊線理論による曲げ耐力時せん断力の一覧を示す。滑り止めの水平せん断耐力は、材料強度に設計値を用いた場合はCLT の木口面の支圧耐力によって、材料強度に実験値を用いた場合は滑り止め底板の曲げ耐力時せん断力によって決まる。

|                     |                               |      | 設計値 | 試験値 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|---------------------|-------------------------------|------|-----|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                     |                               | 単位   |     |     | В   | 備考                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                     |                               |      |     | 1F  | 2F  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| CLTの支圧耐力            | $_{hhb}Q_{u} \\$              | kN   | 146 | 261 | 261 | =120mm×150mm×8.1N/mm <sup>2</sup> (設計時)、14.5N/mm <sup>2</sup> (実強度)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 鋼板のせん断耐力            | ${}_{\rm hhw}Q_{\rm u}$       | kN   | 347 | 347 | 347 | =16mm × 160mm × 235N/mm <sup>2</sup> /√3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 鋼板の曲げ耐力時せん断力        | ${}_{hhf}Q_{u} \\$            | kN   | 321 | 321 | 321 | =102430mm <sup>3</sup> (断面係数)×235N/mm <sup>2</sup> /(0.5×150mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                     | <sub>hhs</sub> Q <sub>u</sub> | kN   | 223 | -   | -   | =4本×245mm <sup>2</sup> ×min(0.7×325N/mm <sup>2</sup> , 0.4×(30.0N/mm <sup>2</sup> ×25.5kN/mm <sup>2</sup> ) <sup>0.5</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 底面の寸切りボルトのせん断耐力     |                               |      | -   | 381 | -   | =4本×245mm <sup>2</sup> ×min(0.7×556N/mm <sup>2</sup> , 0.4×(35.3N/mm <sup>2</sup> ×29.7kN/mm <sup>2</sup> ) <sup>0.5</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                     |                               |      | -   | -   | 381 | =4本×245mm <sup>2</sup> ×min(0.7×556N/mm <sup>2</sup> , 0.4×(35.4N/mm <sup>2</sup> ×30.8kN/mm <sup>2</sup> ) <sup>0.5</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 底面の寸切りボルトの曲げ耐力時せん断力 | $_{hht}Q_{u} \\$              | kN   | 271 | 464 | 464 | =0.9×71mm×4本×245mm <sup>2</sup> ×325N/mm <sup>2</sup> (設計時),556N/mm <sup>2</sup> (実強度)/ (0.5×150mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 滑り止めの支圧板(フランジ)の     | 0                             | LINI | 262 | 262 | 262 | =(4×134mm/134mm+2+2)×1/4×(16mm) <sup>2</sup> ×235N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 曲げ耐力時せん断力           | hht Q u                       | KIN  | 302 | 302 | 302 | /(134mm/2-1/12×134mm)/134mm×150mm×150mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 꼬!!                 | 0                             | LINI | 105 | 105 | 105 | $=0.9\times71\text{mm}\times2\times1/4\times(16\text{mm})2\times235\text{N/mm}2\times\min(4\pi, 4(160\text{mm}-16\text{mm})/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 肩り止め底板の曲り耐力時でん断力    | hhp Q u                       | кN   | 192 | 195 | 195 | $(0.5 \times 230 \text{mm}-0.5 \times 16 \text{mm}) + 3(0.5 \times 230 \text{mm}-0.5 \times 16 \text{mm}) / (160 \text{mm}-16 \text{mm})) / (0.5 \times 150 \text{mm}) = 0.5 \times 10^{-10} \text{mm} + 10$ |  |  |
| 滑り止めの水平せん断耐力        | ${}_{hh}\boldsymbol{Q}_{u}$   | kΝ   | 146 | 195 | 195 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |

表 3-73 滑り止めの水平せん断耐力

## (2) 設計段階における検討

設計段階では、CLT 袖壁にせん断力がどの程度作用するか推定することが難しいため、ここでは、 CLT 袖壁がせん断降伏するものとして、滑り止めの設計を行う。CLT 袖壁の一枚あたりのせん断耐力 は、CLT のせん断強度に表 3-44 に示した基準強度(1.7N/mm<sup>2</sup>)を用いた場合は 133kN、表 3-14 で示 した材料試験結果(2.2N/mm<sup>2</sup>)を用いた場合は 173kN となる。いずれの場合も余裕度は 1.0 を上回っ ている。

|                          |    |      |      | 試馬   | 贪値                                                                   |    |  |  |
|--------------------------|----|------|------|------|----------------------------------------------------------------------|----|--|--|
|                          |    | 単位   | 設計値  | В    |                                                                      | 備考 |  |  |
|                          |    |      |      | 1F   | 2F                                                                   |    |  |  |
| 滑り止めの水平せん断耐力             | kN | 146  | 195  | 195  |                                                                      |    |  |  |
| 最大せん断力せん断力(=CLT袖壁のせん断耐力) | kN | 133  | 173  | 173  | =120mm×650mm×1.7N/mm <sup>2</sup> (基準強度), 2.2N/mm <sup>2</sup> (実強度) |    |  |  |
| 余裕度                      |    | 1.09 | 1.13 | 1.13 |                                                                      |    |  |  |

表 3-74 設計段階における滑り止めの水平せん断力の検討

## (3) 骨組解析の結果を基にした検討

表3-75に試験体Aの骨組解析の結果から求めた滑り止めに作用する水平せん断力の最大値を示す。 ここでは、CLT 袖壁に作用する水平せん断力が全て滑り止めに作用するものと仮定した。表 3-74 で 示した設計段階の検討と比較して、CLT 袖壁に作用する入力せん断力は小さく、滑り止めのせん断耐 力にも十分な余裕があることが確認できた。したがって、実際の設計では、CLT 袖壁のせん断耐力で はなく、存在応力に対する設計を行うことで、滑り止めの設計を簡素化できる可能性がある。

|                 |                        | 試験値  |      |      |      |     |  |
|-----------------|------------------------|------|------|------|------|-----|--|
| 詳細エデル           | 畄仕                     | В    |      |      |      |     |  |
|                 | + 12                   | 引引   | 長側   | 圧縮側  |      |     |  |
|                 |                        |      | 1F   | 2F   | 1F   | 2F  |  |
| 滑り止めの水平せん断耐力    | $_{hh}Q_{u} \\$        | kN   | 195  | 195  | 195  | 195 |  |
| 滑り止めに作用する最大せん断力 | $_{\rm hh}Q_{\rm max}$ | kN   | 109  | 101  | 28   | 21  |  |
| 余裕度             |                        | 1.78 | 1.93 | 7.09 | 9.44 |     |  |

# 表 3-75 滑り止めに作用する水平せん断力の最大値(骨組解析)

|              |                        | 試験値  |      |      |      |     |  |
|--------------|------------------------|------|------|------|------|-----|--|
| 館見エデル        | 畄仕                     | В    |      |      |      |     |  |
|              | + 12                   | 引引   | 長側   | 圧縮側  |      |     |  |
|              |                        |      | 1F   | 2F   | 1F   | 2F  |  |
| 滑り止めの水平せん断耐力 | ${}_{\rm hh}Q_{\rm u}$ | kN   | 195  | 195  | 195  | 195 |  |
| 入力せん断力       | $_{\rm hh}Q_{\rm max}$ | kN   | 127  | 98   | 31   | 26  |  |
| 余裕度          |                        | 1.54 | 1.99 | 6.23 | 7.60 |     |  |

#### 3.9. 架構試験体の1階袖壁を省略した骨組解析

#### 3.9.1. はじめに

3.7 節では、架構試験体 A、B を対象とした骨組解析を実施したが、3.7.3.1 や 3.7.3.4 で示したよう に、変形角の増大に伴って、水平荷重や RC はりの鉛直せん断力(RC 柱フェイス位置)、CLT 袖壁の 圧縮軸力が増加し続けると共に、CLT 袖壁の鉛直断面に作用する鉛直せん断力がせん断耐力を超える など、保証設計を行う上での課題が残った。また、CLT 袖壁の設置による補強効果として、「RC はり のヒンジ形成位置を RC 柱フェイスから CLT 袖壁フェイスに移動させるヒンジリロケーション効果」 と「CLT 袖壁が取り付くことによる RC 柱の補強効果」の二つが考えられるが、架構試験体では両者 の効果が混在している。そこで、本節では、「RC はりのヒンジ形成位置を RC 柱フェイスから CLT 袖 壁フェイスに移動させるヒンジリロケーション効果」のみに着目することを目的とし、パラメトリッ ク解析として、架構試験体 A、B の1 階袖壁を省略したケースについての検討を行うこととした。

加力方向に対して引張側の RC 柱に取り付く CLT 袖壁には、変形角の増大に伴って、基礎はりから 伝達される圧縮軸力が大きくなるため、試験体 A では、CLT 袖壁端のドリフトピン接合部の脆性的な 破壊が生じている。また、IF 袖壁に作用する圧縮軸力の一部は鉛直せん断力として 2F のはり端に伝 達されることになり、パンチングシア破壊の検討が必要になるが、軸力負担の大きい 1F 袖壁を省略 することで、袖壁端の過度な損傷や RC はり端の負担を軽減することができる。また、IF 袖壁に作用 する圧縮軸力の大きさは、CLT 袖壁自体の材料特性(圧縮の剛性や強度)に依存する部分が大きく、 基準強度と実強度の差が大きいと保証設計を行う上で問題となるが、IF 袖壁を省略することで、上階 の袖壁に作用する圧縮軸力の大きさを RC ラーメン側の耐力によって決めることができ、材料強度の ばらつきによる影響を低減できるものと考えられる。一方で、袖壁を省略する 1F と袖壁を挿入する 上階で水平剛性に差が生じ、ピロティ構造のように、IF に地震時の層間変形角が集中する可能性も考 えられるが、本研究では同形式を対象とした実証実験は行っていないため、採用を検討する際には十 分な注意が必要になることに留意されたい。

図 3-178、図 3-179、図 3-180、図 3-181 に、架構試験体 A、B の 1F 袖壁がない場合の詳細モデル と簡易モデルのモデル図を示す。IF 袖壁がないこと以外は、3.7 節で示した解析モデルと共通である。



図 3-178 1 階の袖壁を省略した試験体 A のモデル化(詳細モデル)







図 3-181 1 階の袖壁を省略した試験体 B のモデル化(簡易モデル)

#### 3.9.2. 解析結果

#### 3.9.2.1. 荷重変形関係と特性点の比較

図 3-182 に 1F 袖壁を省略した場合の試験体 A、B の解析結果を示す。また、図 3-183、図 3-184 に 1F 袖壁がある場合とない場合の試験体 A、B の解析結果の比較を示す。また、表 3-76 に初期剛性と 各特性点の比較を示す。

いずれの試験体、いずれの解析モデルについても、IF 袖壁を省略することで、荷重変形関係における *R*=1/200rad 付近から水平荷重の増大が鈍化し、水平荷重がほぼ頭打ちとなる傾向が見られた。試験 体 A については、4 つの RC はり端の全てヒンジリロケーションが生じているため、試験体 C と比較 して 2~3 割程度の耐力の増大が見られるが、試験体 B については、4 つの RC はり端のうちの 2 つの はり端のみでヒンジリロケーションが生じているため、試験体 C と比較して 1 割程度しか耐力の増大 が見られなかった。今回の試験体は 1 スパン 2 層の試験体であり、全体の耐力に占める RC 柱の寄与 分も大きいため、試験体 B では顕著な補強効果は見られなかったが、試験体の層数が増え、ヒンジリ ロケーションが生じるはり端の割合が増えれば、より高い補強効果が得られるものと推測される。

なお、柱主筋や梁主筋の引張降伏点の変形と荷重については、CLT 袖壁を取り付けない試験体 C と 比較すると、変形はほとんど変わらないが、荷重は、試験体 A で 3 割程度、試験体 B で 1 割程度の増 加が見られた。

|     |               |             | 初期剛性        | (kN/mm)     | 最大荷重(R=1/100radまで) | 最大荷重(R=1/50radまで) | 最大社                          | 讨力        |
|-----|---------------|-------------|-------------|-------------|--------------------|-------------------|------------------------------|-----------|
|     |               | 1F<br>袖壁    | ファイバー<br>あり | ファイバー<br>なし | Q<br>(kN)          | Q<br>(kN)         | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN) |
|     |               | ***         | 41.2        | 43.3        | 355                | 396               | 5.22                         | 418       |
|     | 言子 冬田         | ଦ୍ଧନ        | (1.20)      | (1.14)      | (1.60)             | (1.72)            | (2.14)                       | (1.81)    |
|     | 吉丰 栉田         | <i>4</i> 51 | 38.2        | 39.9        | 280                | 287               | 2.36                         | 287       |
| •   |               | ふし          | (1.11)      | (1.05)      | (1.27)             | (1.25)            | (0.97)                       | (1.24)    |
| A - |               | ± 11        | 46.1        | 48.1        | 378                | 419               | 4.23                         | 435       |
|     | 飾日            | めり          | (1.34)      | (1.26)      | (1.71)             | (1.82)            | (1.74)                       | (1.88)    |
|     | 間勿            | なし          | 42.1        | 44.4        | 291                | 297               | 2.33                         | 297       |
|     |               |             | (1.22)      | (1.16)      | (1.31)             | (1.29)            | (0.96)                       | (1.29)    |
|     |               | + 11        | 40.0        | 41.8        | 292                | 327               | 4.83                         | 349       |
| A   | =¥ ≤□         | ଦ୍ଧନ        | (1.16)      | (1.10)      | (1.32)             | (1.42)            | (1.98)                       | (1.51)    |
|     | <b>古干</b> 70世 | <i>t</i> >1 | 37.7        | 39.1        | 244                | 252               | 2.48                         | 253       |
| Б   |               | なし          | (1.09)      | (1.03)      | (1.10)             | (1.09)            | (1.02)                       | (1.09)    |
| Б   |               | ±11         | 44.0        | 45.7        | 318                | 354               | 3.34                         | 363       |
|     | 飾日            | 600         | (1.28)      | (1.20)      | (1.44)             | (1.54)            | (1.37)                       | (1.57)    |
|     | 間勿            | <i>t</i> >1 | 41.1        | 43.1        | 252                | 260               | 2.42                         | 261       |
|     |               | なし          | (1.19)      | (1.13)      | (1.14)             | (1.13)            | (1.00)                       | (1.13)    |
| С   | 詳細,簡易         | -           | 34.4        | 38.1        | 221                | 230               | 2.43                         | 231       |

# (a)初期剛性と最大荷重

(b) 柱主筋、はり主筋の降伏点

|   |                | 1F引張側柱主筋降伏                   |           | 1F圧縮側相                         | 1F圧縮側柱主筋降伏 |                              | 2F梁下端筋降伏  |                              | 湍筋降伏      | 3F梁下站                        | <b>湍筋降伏</b> | 3F梁上站                        | 湍筋降伏      |
|---|----------------|------------------------------|-----------|--------------------------------|------------|------------------------------|-----------|------------------------------|-----------|------------------------------|-------------|------------------------------|-----------|
|   |                | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN) | R<br>( × 10 <sup>-2</sup> rad) | Q<br>(kN)  | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN) | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN) | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN)   | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN) |
|   | 言关 冬田          | 0.537                        | 260       | 0.590                          | 266        | 0.429                        | 238       | 0.374                        | 220       | 0.345                        | 209         | 0.395                        | 228       |
|   | <b>6</b> 平 77田 | (0.85)                       | (1.26)    | (0.86)                         | (1.27)     | (1.03)                       | (1.32)    | (0.91)                       | (1.23)    | (1.02)                       | (1.26)      | (1.16)                       | (1.38)    |
|   | 節日             | 0.512                        | 268       | 0.586                          | 277        | 0.399                        | 243       | 0.352                        | 227       | 0.341                        | 222         | 0.383                        | 238       |
|   | 間勿             | (0.81)                       | (1.31)    | (0.86)                         | (1.32)     | (0.96)                       | (1.35)    | (0.86)                       | (1.26)    | (1.00)                       | (1.34)      | (1.13)                       | (1.44)    |
|   | =光 冬田          | 0.597                        | 227       | 0.650                          | 231        | 0.450                        | 210       | 0.318                        | 181       | 0.295                        | 174         | 0.361                        | 192       |
| Б | <b>百十</b> 不四   | (0.95)                       | (1.10)    | (0.95)                         | (1.10)     | (1.08)                       | (1.16)    | (0.78)                       | (1.01)    | (0.87)                       | (1.05)      | (1.06)                       | (1.16)    |
| Б | 俗見             | 0.582                        | 234       | 0.637                          | 238        | 0.405                        | 212       | 0.303                        | 187       | 0.297                        | 185         | 0.374                        | 206       |
|   | [1] 初          | (0.92)                       | (1.14)    | (0.93)                         | (1.14)     | (0.97)                       | (1.17)    | (0.74)                       | (1.04)    | (0.88)                       | (1.12)      | (1.10)                       | (1.24)    |
| С | 詳細,簡易          | 0.629                        | 205       | 0.682                          | 210        | 0.416                        | 180       | 0.411                        | 180       | 0.340                        | 165         | 0.340                        | 165       |

|   |       | 1Fアンカーボルト降伏                  |           | 2Fアンカーボルト降伏                  |           | 3Fアンカーボルト降伏                  |           |
|---|-------|------------------------------|-----------|------------------------------|-----------|------------------------------|-----------|
|   |       | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN) | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN) | R<br>(×10 <sup>-2</sup> rad) | Q<br>(kN) |
| A | 詳細    | -                            | -         | -                            | -         | -                            | -         |
|   | 簡易    | -                            | -         | -                            | -         | -                            | -         |
| в | 詳細    | -                            | -         | -                            | -         | -                            | -         |
|   | 簡易    | -                            | -         | -                            | -         | -                            | -         |
| С | 詳細,簡易 | -                            | -         | -                            | -         | -                            | -         |

(c) アンカーボルトの降伏点



(b) 簡易モデル 図 3-182 1F 袖壁を抜いた試験体 A、B の荷重変形関係



(b) 簡易モデル 図 3-183 1F 袖壁の有無による影響(試験体 A)



(b) 簡易モデル 図 3-184 1F 袖壁の有無による影響(試験体 B)

## 3.9.2.2. 変形状況

図 3-185、図 3-186 に 1F 袖壁がないモデルの *R*=1/50rad 時の変形状況を示す。いずれの試験体、いずれの解析モデルについても、1F 袖壁がある場合と同様に、1F 柱脚、2、3F のはり端に塑性ヒンジが形成される全体崩壊形が形成されていた。また、詳細モデルと簡易モデルで変形状況に大きな違いは見られなかった。

試験体 A では、CLT 袖壁端にアンカーボルトを取り付けているため、4 つあるはり端の全てでヒン ジリロケーションが発生しており、はりの回転角が CLT 袖壁フェイス近傍に集中する傾向が確認でき る。一方、試験体 B では、4 つあるはり端のうちの2 つについては、CLT 袖壁フェイス近傍に塑性ヒ ンジが形成されているが、残りの2 つについては、RC 柱フェイスにおいて塑性ヒンジが形成され、 はりの回転角も集中している。したがって、試験体 B では、ヒンジリロケーションの効果が限定的と なるため、最大耐力の増大効果も限定的となったものと考えられる。



(b) 簡易モデル 図 3-185 R=1/50rad 時の変形状況(試験体 A、×8倍、1F 袖壁がない場合)



(b) 簡易モデル 図 3-186 R=1/50rad 時の変形状況(試験体 B、×8倍、1F 袖壁がない場合)

#### 3.9.2.3. 曲げモーメント分布

図 3-187、図 3-188 に各解析モデルの R=1/50rad 時の曲げモーメント分布を示す。なお、詳細モデル と簡易モデルにおける RC 柱の曲げモーメント分布を比較すると、詳細モデルと反曲点高さが概ねー 致している。また、簡易モデルでは、CLT 袖壁を1本の線材としてモデル化しているため、CLT 袖壁 との接合部分において、RC はりの曲げモーメント分布が不連続となるが、塑性ヒンジの設定を行っ ている RC フェイス位置および CLT 袖壁フェイス近傍位置における曲げモーメントの大小関係は概ね 一致しており、両者の差異は小さい。

試験体Aについては、圧縮側のRC柱にCLT袖壁が取り付く範囲④、⑤では、RCはりの曲げモー メントがほぼ等しくなり、せん断力が殆ど作用しない純曲げに近い状況となった。また、引張側のRC 柱にCLT袖壁が取り付く範囲①、②では、CLT袖壁フェイス位置の曲げモーメントが大きく、範囲 ④、⑤と比較して、多少の勾配は見られるものの、こちら側についても純曲げに近い曲げモーメント 分布が得られていることが分かる。

一方、試験体 B については、3F はりにおける範囲④、⑤、2F はりにおける範囲①、②では、試験 体 A とほぼ同等な曲げモーメント分布が得られているが、3F はりにおける範囲①、②、2F はりにお ける範囲④、⑤では、RC 柱フェイス位置における曲げモーメントが最大となっており、曲げモーメン ト分布の勾配もほぼ一定となり、CLT 袖壁から作用する応力が RC はりの曲げモーメントに及ぼす影 響が小さく、ヒンジリロケーションが生じなかったことが確認できる。



図 3-187 R=1/50rad 時の曲げモーメント分布(試験体 A、1F 袖壁がない場合)



図 3-188 R=1/50rad 時の曲げモーメント分布(試験体 B、1F 袖壁がない場合)

## 3.9.2.4. 各部の負担応力

図 3-189、図 3-190 に示す各部位に作用する軸力、せん断力の推移を示す。各記号は 3.7.3.4 で示したものと同じである。



(b) 簡易モデル 図 3-189 各部位に作用する軸力、せん断力の一覧(試験体 A、1F 袖壁がない場合)



図 3-190 各部位に作用する軸力、せん断力の一覧(試験体 B、1F 袖壁がない場合)

## (1) RC 柱、CLT 袖壁の軸力

図 3-191、図 3-192 に RC 柱、CLT 袖壁に作用する軸力の推移を示す。いずれの試験体においても、 RC 柱、CLT 袖壁に作用する軸力は *R*=1/200rad 以降ほぼ一定となり、図 3-142、図 3-143 で示した IF 袖壁がある場合と比較して、軸力変動も小さい。また、詳細モデル、簡易モデルにおける応力差も小 さかった。CLT 袖壁に作用する圧縮軸力は小さく、軸力比に換算すると最大でも1割程度以下に留ま った。いずれの試験体、いずれのモデルにおいても、*R*=1/200rad までに全ての RC はり端で塑性ヒン ジが形成されていることから、RC 柱や CLT 袖壁の圧縮軸力がヒンジリロケーションに応じて決まっ ているものと推定される。



図 3-191 RC 柱に作用する軸力の推移(1F 袖壁がない場合)



図 3-192 CLT 袖壁に作用する軸力の推移(1F 袖壁がない場合)
## (2) RC 柱、CLT 袖壁の水平せん断力

図 3-193、図 3-194 に RC 柱、CLT 袖壁に作用する水平せん断力の推移を示す。図中の wQsu は、式 (3.29)で求めた CLT 袖壁の水平断面のせん断耐力 (173kN) である。図 3-191、図 3-192 で示した軸力 と同様に、RC 柱、CLT 袖壁に作用する水平せん断力は、R=1/200rad 以降ほぼ一定となった。また、モ デル間の応力差も小さく、CLT 袖壁に作用する水平せん断力は、式で示した CLT の水平断面のせん断 耐力には到達しておらず、試験体 A でせん断耐力の 3~4 割程度、試験体 B でせん断耐力の 1~3 割程 度の負担に留まった。



図 3-193 RC 柱に作用する水平方向のせん断力の推移(1F 袖壁がない場合)



図 3-194 CLT 袖壁に作用する水平方向のせん断力の推移(1F 袖壁がない場合)

### (3) 鉛直接合部に作用する鉛直せん断力

図 3-195 に試験体 A の鉛直接合部に作用する鉛直方向のせん断力の推移を示す。図中の vdvQ, は、式(3.25)で求めた鋼板挿入ドリフトピン接合部の降伏耐力(290kN)である。図 3-148 で示した 1F 袖壁がある場合には、加力方向に対して引張側と圧縮側の鉛直接合部で、作用する鉛直せん断力に大きな差が見られたが、1F 袖壁を取り除くことで、ほぼ両者が一致し、詳細モデルと簡易モデルの差も小さくなった。鉛直接合部に作用する鉛直せん断力の最大値は、詳細モデルで140kN、簡易モデルで127kN となり、RC はりのスパン中央に作用するせん断力(詳細モデル:97kN、簡易モデル:104kN)と比較すると、それぞれ 1.4 倍、1.2 倍となった。3.8 節では、ヒンジリロケーションが生じる場合に、鉛直接合部に作用する鉛直せん断力を RC はりのスパン中央に作用するせん断力の2 倍と推定する手法を示しているが、実際には、RC 柱フェイス近傍における上下の仕口面を介した応力伝達も行われるため、鉛直接合部に作用する鉛直せん断力はこれよりも小さい値になったものと考えられる。



図 3-195 CLT 袖壁-RC 柱間の鉛直接合部の鉛直せん断力の推移(試験体 A、1F 袖壁がない場合)

### (4) CLT 袖壁に作用する鉛直せん断力

図 3-196 に CLT 袖壁の鉛直断面に作用する鉛直せん断力の推移を示す。なお、いずれのモデルで も、荷重増分解析の各ステップにおいて、断面内で最も大きいせん断力を抽出しており、詳細モデル では、CLT 袖壁の支圧特性を模擬した上下のファイバー要素のうち、水平方向の位置が同じ要素が 負担する軸力の差分を累加することで、CLT 袖壁の鉛直断面に作用する鉛直せん断力 ( $_2Q_{wv1}$ 、 $_2Q_{wv2}$ ) を算定した。なお、図中には、式(3.63)もしくは式(3.64)による CLT 袖壁の鉛直せん断力の推定値( $_{p2}Q_{wv1}$ 、  $_{p2}Q_{wv2}$ ) も示している。図中の  $_{wv}Q_{su}$ は式(3.27)で示した CLT 袖壁の鉛直断面のせん断耐力(428kN) で ある。図 3-192 で示したように、CLT 袖壁に作用する圧縮軸力が軸力比に換算して最大でも1割程度 であったため、CLT 袖壁の鉛直断面に作用する鉛直せん断力は、鉛直断面のせん断耐力に対して、試 験体 A で 4~5 割程度、試験体 B で 2~3 割程度に留まった。また、軸力比が低くなったことで、式 (3.63)もしくは式(3.64)による推定値( $_{p2}Q_{wv1}$ 、 $_{p2}Q_{wv2}$ ) は、鉛直せん断力( $_{2}Q_{wv1}$ 、 $_{2}Q_{wv2}$ ) とほぼ等しい 値を示した。



図 3-196 CLT 袖壁に作用する鉛直方向のせん断力(1F 袖壁がない場合)

#### (5) RC はりのせん断力

図 3-197 に RC はりに作用するせん断力の推移を示す。簡易モデルでは、CLT 袖壁のフェイス位置 近傍に作用するせん断力 (2Qb2、2Qb4、3Qb2、3Qb4)を式(3.65)で算定した。また、表 3-77 に RC はりに 作用する最大のせん断力を示す。

図 3-152 で示したように、IF に袖壁を設けた場合には、水平変形の増大に伴って、RC 柱フェイス 位置に作用する鉛直せん断力が増加する傾向が見られたが、図中に示すように、IF 袖壁を省略するこ とで、*R*=1/200rad 以降のせん断力の増加はほぼ見られなくなった。スパン中央で RC はりに作用する せん断力の大きさは、試験体 C と比較して、試験体 A で 1.5~1.7 倍程度、試験体 B で 1.2~1.3 倍程 度となっており、表 3-40 で示した IF に袖壁がある場合と比較すると、試験体 B では 2F はりにおけ る効果の低減が見られるものの、いずれも CLT 袖壁の設置に伴うヒンジリロケーションの効果が確認 できる。試験体 B では、IF に袖壁を設けた場合と同じように、RC 柱フェイス位置に作用する鉛直せ ん断力がスパン中央に作用するせん断力を上回っているが、試験体 A では、RC 柱フェイス位置に作 用する鉛直せん断力が、スパン中央の鉛直せん断力とほぼ同程度となり、いずれの試験体でも、IF 袖 壁を省略することで、RC 柱フェイス位置に作用する鉛直せん断力が大幅に低減されていることが確 認できる。

|       | 詳細モデル    |       | 簡易モデル    |       |
|-------|----------|-------|----------|-------|
| 試験体 A | RC 柱フェイス | スパン中央 | RC 柱フェイス | スパン中央 |
| 2F    | 71       | 97    | 91       | 103   |
| 3F    | 77       | 97    | 96       | 104   |
| 試験体 B | RC 柱フェイス | スパン中央 | RC 柱フェイス | スパン中央 |
| 2F    | 143      | 75    | 181      | 80    |
| 3F    | 168      | 75    | 212      | 81    |
| 試験体C  | RC 柱フェイス | スパン中央 | RC 柱フェイス | スパン中央 |
| 2F    | 62       |       |          |       |
| 3F    | 61       |       |          |       |

表 3-77 RC はりに作用する最大せん断力(単位: kN、1F 袖壁がない場合)



図 3-197 RC はりに作用するせん断力の推移(1F 袖壁がない場合)

(6) RC はりの曲げモーメント

図 3-198 に RC はりに作用する曲げモーメントの推移を示す。図 3-153 で示した 1F に袖壁を設け た場合と比較すると、試験体 A では、加力方向に対して引張側に位置する 2F の RC 柱フェイス位置 (2*M*<sub>b1</sub>)における曲げ降伏が生じていない点以外は、ほぼ同じような傾向を示しており、試験体 C と 同様に、*R*=1/200rad 付近で曲げ降伏が生じ、上記のはり端以外では、RC 柱フェイス位置と CLT 袖壁 フェイス近傍に二つの塑性ヒンジが形成されていることが確認できる。試験体 B では、1F に袖壁を設 けた場合と同様に、加力方向に対して引張側に位置する 3F の CLT 袖壁フェイス近傍 (3*M*<sub>b2</sub>)におけ る曲げ降伏が生じていないが、それに加え、加力方向に対して引張側に位置する 2F の RC 柱フェイス 位置 (2*M*<sub>b1</sub>)、加力方向に対して圧縮側に位置する 2F の CLT 袖壁フェイス近傍 (2*M*<sub>b4</sub>)でも曲げ降伏 が生じておらず、ヒンジリロケーションの効果が限定的となっていることが推測できる。



図 3-198 RC はりに作用する曲げモーメントの推移(1F 袖壁がない場合)

# (7) アンカーボルトの引張力

図 3-199 にアンカーボルトの引張力の推移を示す。図中の hvaQyはアンカーボルトの降伏耐力(110kN) を示している。加力方向に対して圧縮側の RC 柱に取り付く CLT 袖壁の 2F アンカーボルト (272)、加 力方向に対して引張側の RC 柱に取り付く CLT 袖壁の 3F アンカーボルト (371)において、引張力が 生じる点は、図 3-154 で示した 1F に袖壁を設けた場合と同じであるが、1F 袖壁を省略した場合は、 降伏強度に近い引張力が作用しているものの、いずれのアンカーボルトも引張降伏しなかった。



### (8) CLT 袖壁の水平せん断力/曲げ圧縮力

図 3-200 に、CLT 袖壁の水平接合部に作用する曲げ圧縮力(試験体 A では、断面に作用する軸力に アンカーボルトの負担する引張軸力を足し合わせたもの、試験体 B では、断面に作用する軸力そのも の)に対する水平方向のせん断力の比率の推移を示す。なお、図 3-155 で示した 1F 袖壁がない場合と 同様に、試験体 B では、全ての断面において、曲げ圧縮力に対する水平せん断力の比が、RC 部材と CLT 袖壁の間の摩擦係数として設定した 0.5 を下回っており、水平せん断力の伝達に支障がないこと が確認できる。一方、試験体 A では、CLT 袖壁の全ての断面において、曲げ圧縮力に対する水平せん 断力の比が 0.5 を上回っているため、鉛直接合部を介した RC 柱への水平せん断力の伝達が必要とな る。



図 3-200 水平接合部における曲げ圧縮軸力に対する水平せん断力の比率(1F 袖壁がない場合)

#### (9) RC 柱のせん断応力度比

図 3-201 に RC 柱のせん断応力度比の推移を示す。ここでは、RC 柱に作用するせん断力(図 3-189、 図 3-190 の 1*Q*<sub>c2</sub>、1*Q*<sub>c5</sub>、2*Q*<sub>c2</sub>、2*Q*<sub>c5</sub>)を、RC 柱の幅(400mm)、応力中心間距離(7/8×358mm)、コン クリートの圧縮強度で割った値と、腰壁、垂れ壁付きの RC はりの部材種別判定の方法を参考に、RC 柱、CLT 袖壁が負担する全ての水平せん断力(図 3-189、図 3-190 の 1*Q*<sub>c1</sub>、1*Q*<sub>c3</sub>、1*Q*<sub>c4</sub>、1*Q*<sub>c6</sub>、2*Q*<sub>c1</sub>、 2*Q*<sub>c3</sub>、2*Q*<sub>c4</sub>、2*Q*<sub>c6</sub>)を、RC 柱の幅(400mm)、せい(400mm)、コンクリートの圧縮強度で割った値の 2 通りとした。なお、図中には、RC 柱の部材種別判定で FA、FB、FC の閾値となる 0.100、0.125、0.150 に線を引いている。図 3-156 に示した IF に袖壁を設けた場合と同じく、いずれの試験体でも FA の条件を満足していた。



### (10) RC はりのせん断応力度比

図 3-202 に RC はりのせん断応力度比の推移を示す。ここでは、RC はりに作用する水平せん断力 を、RC はりの幅(300mm)、有効せい(7/8×358mm)、コンクリートの圧縮強度で割ることで、せん 断応力度比を求めた。なお、図中には、RC はりの部材種別判定で FA、FB の閾値となる 0.150 に線を 引いている。図 3-157 で示した 1F に袖壁を設けた場合と異なり、いずれの試験体についても、せん断 応力度比が 0.150 を下回り、FA の条件を満足していた。



図 3-202 はりのせん断応力度比の推移(1F 袖壁がない場合)

# 3.9.2.5. 変形性能の評価

図 3-203、図 3-204 に試験体 A、B の詳細モデル、簡易モデルにおいて、CLT 袖壁最外縁の支圧ば ね(詳細モデルに関しては、支圧ばねの位置を図 3-205 に示す)の軸縮み一変形角関係を示す。詳細 モデルでは圧縮縁から袖壁せいの 1/8 の位置に、簡易モデルでは圧縮縁から袖壁せいの 1/20 の位置に 支圧ばねが設置されており、両者は比較的近い位置にある。

いずれの試験体、いずれのモデルにおいても、2F 袖壁の材端部に生じる支圧ばねの軸縮みは、本実 験と同じ3層3プライの CLT 袖壁を用いた部材試験体 BS の数値解析において、CLT 袖壁の損傷によ って最大耐力の低下が生じた時の支圧ばねの軸縮み(6mm)に到達せず、図 3-163、図 3-164 で示し た 1F に袖壁を設けた場合とは異なる傾向を示した。



(a) 詳細モデル

(b) 簡易モデル

図 3-203 CLT 袖壁の最外縁の支圧ばねの軸縮み-変形角関係(試験体 A、1F 袖壁がない場合)



(a) 詳細モデル

(b)簡易モデル

図 3-204 CLT 袖壁の最外縁の支圧ばねの軸縮み-変形角関係(試験体 B、1F 袖壁がない場合)





3.10. まとめ

CLT 袖壁による RC はりのヒンジ形成位置を RC 柱フェイスから CLT 袖壁フェイスに移動させるヒ ンジリロケーション効果と CLT 袖壁が取り付くことによる RC 柱の補強効果を確認し、CLT 袖壁を RC ラーメンに挿入する際の RC-CLT 間の水平接合部(CLT 袖壁-RC はり、基礎梁間)および鉛直 接合部(CLT 袖壁-RC 柱間)の設計手法を提案することを目的とした架構実験、関連した数値解析 を実施した。

実験変数は、CLT 袖壁の有無と CLT 袖壁の接合形式(水平接合面、鉛直接合面をできるだけ剛強に 接合し、接合部分に大きな変形の発生を許容せず、早期の耐力発現を目指す方法(Aタイプ)と、施 工性や可変性に配慮して、水平接合面、鉛直接合面の接合をできるだけ簡素化する方法(Bタイプ)) とした。

数値解析では、架構実験における挙動を再現するために、2 種類の解析モデル(詳細モデル、簡易 モデル)を用いた検討を実施した。詳細モデルでは、RC 柱-CLT 袖壁間の鉛直接合部を介した鉛直 せん断力の伝達による影響を考慮するために、CLT 袖壁の水平、鉛直方向における分割、水平、鉛直 方向からのせん断伝達による影響を考慮するためのブレース置換等を行っている。一方、簡易モデル では、CLT 袖壁を線材に置換し、モデル化する部材数の低減を図っている。また、数値解析では、載 荷実験における検証を行っていない IF に袖壁を設けない試験体も対象とした。

得られた主な知見を以下に示す。

(載荷実験で得られた知見)

- RC ラーメン試験体への CLT 袖壁の設置施工を実際に行い、施工手順の確認、整理を行った。RC -CLT 間の水平目地には無収縮モルタル、鉛直目地には不陸調整モルタルを使用し、試験体 A で は鋼板挿入ドリフトピンを用いた接合を、試験体 B では滑り止めを用いた接合を行った。
- 2. CLT 袖壁を RC ラーメンに設置した試験体 A、B において、RC 柱、はりの主筋の降伏位置や、全体変形角と 1、2 階の層間変形角の関係から、設計時の想定通りに全体崩壊機構が形成されることを確認した。試験体 A では、水平接合部の鋼板挿入ドリフトピン付近でラミナの破断が生じたが、いずれの試験体でも *R*=1/33rad サイクルまで繰り返し載荷による水平荷重の低下は見られなかった。袖壁の損傷によって大きな耐力低下を示す従来の RC 袖壁付き架構と比較して、本実験の CLT 袖壁付き架構は極めて靱性に富む挙動を示した。
- 3. 水平、鉛直接合部に鋼板挿入ドリフトピンを設けた試験体 A では、RC 梁の損傷や回転角が CLT 袖壁端に集中し、ヒンジリロケーションの効果がより強く現れることが確認できた。水平接合部 に滑り止めのみを設けた試験体 B では、RC 梁の損傷や回転角が生じる箇所が RC 柱フェイス位 置からスパン内側に移動する傾向は見られたものの、CLT 袖壁端の RC 梁の損傷は軽微であり、 ヒンジリロケーションの効果は限定的であった。
- 4. 試験体Aでは、鉛直接合部を設けたことで、1階袖壁頂部の水平目地の開閉が抑制され、実験終 了時まで目地部の顕著な損傷が確認されなかったが、試験体Bでは、1階袖壁頂部の水平目地の 開閉が繰り返されたことで、モルタルに多数のひび割れが生じている。したがって、試験体Bに 関しては、水平目地が損傷を受けたことで、CLT 袖壁の仕口面におけるめり込み変形が緩和され たことにより、CLT 袖壁の損傷が軽減された可能性がある。
- 5. 補修の目安となる残留ひび割れ幅を 0.15~0.20mm(実寸の場合の 0.2~0.3mm に実験試験体の縮 尺 2/3 を乗じたもの)とすると、いずれの試験体でも、はりでは 1/200rad のサイクルで目安とな

るひび割れ幅に到達したが、柱では 1/50rad のサイクルまで目安のひび割れ幅には到達しなかった。全体変形角と最大ひび割れ幅、残留ひび割れ幅の関係を見ると、1/100rad のサイクル付近までは、いずれの試験体もほぼ同様の傾向を示していた。

- 6. RC 造の純ラーメンである試験体 C と比較して、試験体 A、B の初期剛性はそれぞれ 1.68 倍、1.61 倍、試験体 A、B の最大耐力はそれぞれ 1.79 倍、1.47 倍となり、いずれの試験体でも CLT 袖壁に よる補強効果が見られたが、最大耐力に関しては、RC 骨組-CLT 袖壁間の接合方法の違いによ る差異が生じた。
- RC 柱や RC はりの主筋の降伏時の変形角には、試験体ごとの差はあまり見られなかった。RC 柱の主筋は *R*=1.0×10<sup>2</sup>rad を超えてから降伏する場合が多かった。RC はりの主筋は、試験体 A では *R*=0.5~0.6×10<sup>2</sup>rad 付近で、試験体 B では *R*=0.4~0.7×10<sup>2</sup>rad 付近で、試験体 C では *R*=0.4~0.6×10<sup>2</sup>rad 付近で降伏した。
- 8. RC 柱や RC はりでは基本的に曲げ変形が卓越したが、CLT 袖壁では載荷方向や設置されている 階によって応力状況が大きく異なるため、せん断変形が卓越する場合もあった。
- 9. RC 柱-CLT 袖壁間で計測した鉛直接合面におけるせん断変形は、試験体 A では、CLT 袖壁が加 力方向に対して圧縮側の RC 柱に取り付く場合よりも、CLT 袖壁が加力方向に対して引張側の RC 柱に取り付く場合の方が大きかった(2.4mm)が、材料試験の結果に基づいた数値解析で求めた ドリフトピン接合部の荷重変形関係における 5%オフセット降伏耐力時の変位が 1.85mm と同程 度に留まった。一方、試験体 B では、RC 柱-CLT 袖壁間でずれが生じたことで、最大で 12.6mm のせん断変形が生じたことから、試験体 A に用いた鉛直接合部が RC 柱と CLT 袖壁の一体性を 確保する上で効果があったと考えられる。
- 10. 試験体 A では、RC はり、スタブーCLT 袖壁間に設けた水平接合部のアンカーボルトが 1、2、3 階で引張降伏した。試験体 B では、3 階頂部の一端において、RC はりと CLT 袖壁の離間が生じ たことにより、ヒンジリロケーションの効果が限定的となったが、試験体 A では、アンカーボル トが引張力を負担することで、RC はりと CLT 袖壁の離間が抑制され、3 階頂部においても、RC はりの損傷が CLT 袖壁端の近傍に集中した。
- 11. 試験体 B では、水平接合部として、CLT 袖壁の端部に滑り止めを設けたことにより、実験終了時まで CLT 袖壁が脱落することなく、また、水平接合面におけるずれや滑りも生じなかった。滑り止めと接触する部分の CLT 袖壁には、しわが若干生じる箇所もあったが目立った損傷は見られなかった。CLT 袖壁には圧縮軸力が作用しているため、摩擦による水平せん断力の伝達も行われたものと考えられ、その結果、滑り止め近傍の CLT 袖壁の損傷が軽微に抑えられた可能性がある。
- 12. CLT 袖壁の軸ひずみの計測値から、CLT の応力-ひずみ関係を仮定して、断面に作用する軸力を 推定した。1F の CLT 袖壁に作用する圧縮軸力は、CLT 袖壁の圧縮耐力(CLT の材料試験結果か ら求めた座屈強度(16.8N/mm<sup>2</sup>)に断面積を乗じた値)に対して、試験体 A で 8 割、試験体 B で 5 割に到達しており、CLT 袖壁の軸力負担が大きいことが確認された。
- 13. 試験体Aについて、鋼板挿入ドリフトピンの数値解析の結果を基にモデル化したRC柱-CLT袖 壁間の鉛直接合部の復元力特性のバイリニアモデルを用いて、鉛直接合部に作用する鉛直せん断 力の推定を行った。小変形時には、加力方向に対して引張側のRC柱に取り付く場合の方が、加 力方向に対して圧縮側のRC柱に取り付く場合と比較して、全体変形の増大に伴う鉛直せん断力 の増加が小さいが、前者については、R=1/100rad以降も全体変形角の増大に伴って鉛直せん断力 が増加し、最終的に鋼板挿入ドリフトピン接合部の降伏耐力 vdvQyに凡そ到達していた。

- 14. 試験体 B について、1F の CLT 袖壁に作用する水平せん断力の推定を行い、試験体全体に作用する水平せん断力の4割程度を負担していたこと、CLT 袖壁の設置によって増加した水平せん断力の大部分を CLT 袖壁が負担していたことを確認した。
- 15. 荷重変形関係から、各サイクルにおける等価粘性減衰定数の計算を行った。R=1/133rad 付近のサイクルまでは、いずれの試験体もほぼ同等の値を示したが、それ以降のサイクルについては、袖壁を設けた試験体A、Bよりも、袖壁のない試験体Cの方が、等価粘性減衰定数が大きくなった。 試験体A、Bでは、袖壁の寄与により、最大耐力が増大したことが確認されているが、袖壁の挙動が弾性的であったため、袖壁を設けていない試験体Cと比較して、等価粘性減衰定数が小さくなったものと考えられる。一方で、いずれの試験体でも、定常ループを想定した塑性率に基づく推定式の値は上回った。

(数値解析で得られた知見)

- 1. 詳細モデル、簡易モデルを適用する場合の各部位(RC 柱、RC はり、CLT 袖壁、CLT 袖壁-RC はり、スタブ間の水平接合部、RC 柱-CLT 袖壁間の鉛直接合部)のモデル化や復元力特性の設定方法を整理した。
- 2. RC 柱、はりの主筋の降伏位置や試験体の変形状況から、CLT 袖壁で補強した試験体 A、B においても、全体崩壊形が形成されたことを確認した。RC はりの曲げ降伏は、曲げばねを設置した RC 柱フェイスと CLT 袖壁端の両方で発生しており、詳細モデル、簡易モデルにおけるモデル化の妥当性が示された。
- 3. CLT 袖壁で補強した試験体 A、B では、詳細モデル、簡易モデルのいずれを用いた場合でも、実験初期の水平剛性は概ね評価できたが、全体変形角 *R*=1/200rad 付近から実験結果との乖離が大きくなり、安全側ではあるものの、実験の水平耐力を過小評価する傾向が見られた。また、CLT 袖壁を設置していない試験体 C では、全体変形角 *R*=1/100rad 付近までは実験の荷重変形関係を精度良く予測したが、それ以降の水平耐力はやや低めに評価した。
- 初期剛性について、解析値に対する実験値の比率が、試験体 A、B の平均は 1.10(詳細モデル)、
  1.00(簡易モデル)となり、試験体 C の場合(比率: 0.75)よりも評価精度が高かった。
- 5. *R*=1/100rad、1/50rad までの最大荷重、実験終了時までの最大耐力に関しては、解析値に対する実験値の比率が、試験体A、Bの平均は1.14、1.21、1.17(詳細モデル)、1.06、1.13、1.12(簡易モデル)と実験の最大荷重、最大耐力を全体的に低く評価する傾向が見られた。一方、試験体Cにおける解析値に対する実験値の比率は、0.99、1.13、1.19となっており、*R*=1/100rad 時については評価精度が高いものの、水平変形が大きくなるにつれ、試験体A、Bと同程度の評価精度を示すようになった。詳細モデルと簡易モデルを比較すると、CLT 袖壁に作用する鉛直せん断力によるせん断変形や鉛直断面のせん断強度を考慮していない簡易モデルの方が詳細モデルよりも最大荷重や最大耐力がやや高かった。
- 6. RC 柱や RC はりの主筋降伏時の全体変形角は、いずれの試験体においても、解析値が実験値を 過小評価する傾向が見られた。主筋降伏時の水平荷重についても、同様に解析値が実験値を過小 評価していたが、主筋降伏時の全体変形角と比較すると、実験値/解析値の比率は改善した。
- 7. 試験体 A におけるアンカーボルト降伏時の全体変形角や水平荷重については、離間量の大きい 1F では概ね評価できたが、離間量の小さい2、3F では評価精度にやや課題が残った。
- 8. 詳細モデルにおける試験体 A、Bの解析結果から、RC はりに塑性ヒンジが形成されると CLT 袖

壁と接する部分の RC はりの曲げモーメント分布がほぼ均一となった。このことから、詳細モデ ルや簡易モデルにおいて、RC 柱フェイス位置に設置する曲げばねの曲げモーメントー回転角関 係の復元力特性の設定において、RC はりの曲げモーメント分布を等分布と仮定するモデル化の 方法が妥当であることが確認された。

- 9. 1 階柱脚、各階はりが曲げ降伏し、崩壊機構が形成された後も、試験体 A、B では、加力方向に 対して引張側の RC 柱に作用する引張軸力や水平せん断力、同柱に取り付く CLT 袖壁の圧縮軸 力、水平せん断力、鉛直せん断力、同柱-同袖壁間の鉛直接合部に作用する鉛直せん断力、同柱 に取り付く RC はりの RC 柱フェイス位置における鉛直せん断力等が増加を続けることが確認さ れた。通常、保有水平耐力計算における保証設計は、各部材に作用する応力が十分に頭打ちとな った状態で行われるため、各部材に作用する応力の評価を行う際には注意が必要である。なお、 別途実施した1階の CLT 袖壁を取り除いた骨組解析では、1 階柱脚、各階はりが曲げ降伏し、崩 壊機構が形成されると、各部材に作用する応力は概ね頭打ちとなり、異なる傾向を示した。
- 10. CLT 袖壁に作用する圧縮軸力を実験結果から推定した実験値と比較したところ、CLT 袖壁に金物 を内蔵していない試験体 B では良く一致したが、CLT 袖壁に鋼板挿入ドリフトピンが取り付くた め、実験値の推定精度が低下するものと思われる試験体 A では両者の乖離がやや大きくなった。
- CLT 袖壁に作用する水平せん断力を実験結果から推定した実験値と比較したところ、CLT 袖壁に 金物を内蔵していない試験体 B では両者が良く一致したが、CLT 袖壁に鉛直接合部が取り付くた め、断面内のせん断ひずみが均一でなく、実験値の推定精度が低下するものと思われる試験体 A では両者の乖離がやや大きくなった。
- 12. 試験体Aにおいて、RC柱-CLT 袖壁間の鉛直接合部に作用する鉛直接合部を実験結果から推定した実験値と比較したところ、CLT 袖壁をブレース置換した詳細モデルの方が、CLT 袖壁を1本の線材で置換した簡易モデルよりも、評価精度は高かった。簡易モデルでは、CLT 袖壁の鉛直方向の分割数が少なく、鉛直せん断力によって生じる CLT 袖壁のせん断変形も考慮できないため、各部の応力伝達経路が局所的となり、鉛直接合部に作用する鉛直せん断力にも上下階でばらつきが生じやすくなったものと考えられる。
- 13. 試験体 A、 B を対象とした骨組解析において、CLT 袖壁の鉛直断面に作用する鉛直せん断力によって、詳細モデルでは CLT 袖壁の局所的なせん断降伏が生じ(置換したブレース要素の一部が軸耐力に到達し)、簡易モデルでは CLT 袖壁の鉛直断面にせん断耐力を上回る鉛直せん断力が作用した。そこで、CLT 袖壁の上下の仕口面に作用する圧縮軸力および鉛直接合部に作用する鉛直せん断力から CLT 袖壁の鉛直断面に作用する鉛直せん断力の最大値を推定する方法を提案し、ブレース要素(詳細モデル)やファイバー要素(簡易モデル)の負担軸力から、鉛直せん断力を算定する方法と比較したところ、CLT 袖壁に作用する圧縮軸力が小さい場合には概ね精度良く、CLT 袖壁に作用する圧縮軸力が大きい場合には安全側に鉛直せん断力を推定できることを確認した。
- 14. スパン中央に作用する RC はりの鉛直せん断力は、試験体 C と比較して、試験体 A では 1.6~1.7 倍、試験体 B では 1.2~1.7 倍となり、CLT 袖壁の設置に伴うヒンジリロケーションの効果が確認 された。なお、RC はりに作用する鉛直せん断力の大きさは、スパン中央と部材端で異なってお り、加力方向に対して引張側の RC 柱に取り付く RC はり端では、鉛直せん断力の大きさが、上 述したスパン中央と比較して試験体 A で 1.7~4.7 倍、試験体 B で 5.0~5.9 倍まで増加していた。 一方、加力方向に対して圧縮側の RC 柱に取り付く RC はり端では、スパン中央と同程度かそれ よりも小さい値に留まった。また、鉛直接合部を設置した試験体 A の方が、鉛直接合部がない試

験体 B よりも、材端において RC はりに作用する鉛直せん断力が軽減された。

- 15. CLT 袖壁の曲げ圧縮力に対する水平せん断力の比率を確認したところ、試験体Bではいずれの材端においても摩擦係数として設定した 0.5 を下回っており、CLT 袖壁に作用する水平せん断力の大部分を摩擦によって伝達できるものと考えられる。一方、試験体Aでは両者の比率が 0.5 を上回る場合や、軸力が引張側に転じ、離間が生じている材端もあることから、RC 柱-CLT 袖壁間の鉛直接合部を介した水平せん断力の伝達を考える必要がある。
- 16. 試験体 A、B において、RC 柱フェイスと CLT 袖壁近傍に設けた RC はりの曲げばねの回転角と 全体変形角の関係を確認し、試験体 A では CLT 袖壁近傍に設けた曲げばねに回転角の大部分が 集中するのに対し、試験体 B では、RC 柱フェイスと CLT 袖壁近傍の曲げばねで回転角が分散し て生じる傾向があること、また、解析結果が載荷実験における RC はりの変形角-全体変形角関 係と概ね対応していることを確認した。なお、RC 柱フェイスと CLT 袖壁近傍に RC はりの曲げ ばねを近接して設ける場合には、RC 柱フェイスの曲げばねで仮定する部材長が短くなり、復元 力特性の設定に問題が生じる可能性があることから、RC 柱フェイスの曲げばねに回転角の大部 分が集中することを前提とした別のモデル化の方法も提案した。
- 17. 詳細モデルにおける試験体 A、B の 1F 袖壁脚部の支圧ばねの軸縮みを見ると、本実験と同じ3層 4 プライの CLT 袖壁を用いた部材試験体 BS の数値解析において、CLT 袖壁の損傷によって最大 耐力の低下が生じた時の支圧ばねの軸縮み(6mm)に到達したのは R=1/25rad 付近であり、試験 体 A では R=1/25rad サイクルまで、試験体 B では加力終了時まで CLT 袖壁に顕著な損傷が見ら れなかった実験結果と対応していた。一方、簡易モデルでは、詳細モデルと比較して、支圧ばね の軸縮みの増加が早く、6mm の軸ひずみに到達したのは R=1/50rad 付近であった。詳細モデルで は、CLT 袖壁に作用する鉛直せん断力によるせん断変形を考慮しているため、その分、袖壁脚部 の支圧ばねの軸縮みが低減されたのに対し、簡易モデルでは、このようなせん断変形を考慮して いないため、袖壁脚部の支圧ばねに変形が集中したものと考えられる。

(設計方法の提案に関する知見)

- 1. 架構実験の試験体を対象に、RC 柱、RC はり、CLT 袖壁、CLT 袖壁-RC はり、スタブ間の水平 接合部、RC 柱-CLT 袖壁間の鉛直接合部における設計の考え方を示した。
- CLT 袖壁に作用する水平せん断力が、水平接合部における摩擦抵抗で伝達できない場合を想定し、 RC 柱の上下端に、RC 柱が負担するせん断力と CLT 袖壁が負担するせん断力の両方が作用する 状況を想定したパンチングシア破壊の検討方法を示した。
- 3. 試験体Aに関して、水平せん断力、鉛直せん断力に対する鉛直接合部の設計手法、引張軸力に対 する水平接合部の設計手法を示した。鋼板挿入ドリフトピンを用いる場合の復元力特性の設定方 法や、ラミナの集合型破壊時の防止方法等、想定した箇所に変形を集中させるための設計手法も 整理した。
- 試験体Bに関して、CLT 袖壁に作用する水平せん断力が摩擦抵抗によって伝達できるかどうかを 確認する方法を示した。また、バックアップとして CLT 袖壁端に設置する滑り止めの設計手法を 整理した。
- 5. 鉛直接合材を介して伝達される鉛直せん断力や、CLT 袖壁に作用する圧縮軸力が大きい場合には、 CLT 袖壁のせん断設計を水平断面のみでなく、鉛直断面でも行う必要があることを示した。

#### 3.11. 謝辞

本研究は、国土技術政策総合研究所の総合技術開発プロジェクト「新しい木質材料を活用した混構 造建築物の設計・施工技術の開発」(平成29~令和3年度)、官民研究開発投資拡大プログラム(PRISM)

「仮設・復興住宅の早期整備による応急対応促進」によって、京都大学の五十田博教授、中川貴文准 教授、瀧裕氏と共に実施しました。研究の実施に際して、全体委員会(委員長:河野守教授)及び構 造分科会(主査:五十田博教授)の委員の方々から貴重な助言を賜りました。また、京都大学の堀本 尚宏氏、衣笠大樹氏、建築研究所の中島昌一氏のご指導・ご協力を賜りました。関係各位に心から謝 意を表します。

#### 3.12. 参考文献

- [3-1] 内田崇彦ほか: RC 造非耐力壁付き 2 層 2 スパン架構の水平加力実験 その 8~11、日本建築学 会大会学術講演梗概集、pp.265-272、2016.8
- [3-2] 古谷祐希ほか:壁付き RC 造架構を対象とした UFC パネルによる損傷低減型耐震補強工法の開発 その1~2、日本建築学会大会学術講演梗概集、pp.583-586、2016.8
- [3-3] 日本住宅・木材技術センター:構造用木材の強度試験マニュアル、2011.3
- [3-4] 日本住宅・木材技術センター: 2016 年版 CLT を用いた建築物の設計施工マニュアル、2016.10
- [3-5] ASTM, "Standard test method for evaluating dowel-bearing strength of wood and wood-based products D5764", 1997
- [3-6] Kweonhwan Hwang and Kohei Komatsu, "Bearing properties of engineered wood products I: effects of dowel diameter and loading direction", J.Wood Sci. 48, pp.295-301, 2002
- [3-7] 中島昌一、北守顕久、小松幸平:クロス・ラミネイティド・ティンバーを用いた鋼板挿入型ドリ フトピン接合部の引張加力下の耐力指標の検討、日本建築学会構造系論文集、第78巻、第687号、 pp.969-975、2013.5
- [3-8] 日本建築学会:木質構造設計規準・同解説 -許容応力度・許容耐力設計法-、2015.11
- [3-9] 日本建築学会:木質構造接合部設計マニュアル、2017.10
- [3-10] 宮内靖昌ほか:エポキシ樹脂を用いた接着接合部の力学特性に関する研究、コンクリート工学 年次論文集、Vol.23、No.1、pp.967-972、2001
- [3-11] S.Takahashi, K. Yoshida, T.Ichinose, Y. Sanada, K.Matsumoto, H. Fukuyama, and H. Suwada, "Flexural Drift Capacity of Reinforced Concrete Wall with Limited Confinement," ACI Structural Journal, No.110-S10, pp.95-104, 2013
- [3-12] Saatcioglu, M., and Razvi, S. R., "Strength and Ductility of Confined Concrete," Journal of Structural Engineering, ASCE, V. 118, No. 6, pp.1590-1607, 1992
- [3-13] 向井智久ほか:実験データベースを用いた鉄筋コンクリート造部材の構造特性評価式の検証、 国立研究開発法人建築研究所 建築研究資料 No.175、2016.11
- [3-14] 建築行政情報センター、日本建築防災協会:2015 年度版建築物の構造関係技術基準解説書、2015.6
- [3-15] 今阪剛、中村聡宏、勅使川原正臣:鉄筋コンクリート造二次壁付き架構の耐力と復元力特性の 評価、コンクリート工学年次論文集、Vol.36、No.2、pp.289-294、2014
- [3-16] 日本建築防災協会: 既存鉄筋コンクリート造建築物の耐震診断基準・耐震改修設計指針・同解 説、2017

- [3-17] 日本建築学会:壁式鉄筋コンクリート造設計・計算規準・解説、2015.12
- [3-18] 日本建築センター: 2009 年版プレストレストコンクリート造技術基準解説及び設計・計算例、 2009
- [3-19] 日本建築学会:鉄筋コンクリート造建物の靱性保証型耐震設計指針・同解説、1999
- [3-20] 日本建築学会:鉄筋コンクリート構造計算規準・同解説 2018、2018
- [3-21] 日本建築防災協会:土砂災害特別警戒区域内の建築物に係る構造設計・計算マニュアル、2019
- [3-22] 井上一朗:建築鋼構造の理論と設計、京都大学学術出版会、2003

## 4. 付録

### 4.1. 評価式に用いた記号の一覧

- a/D<sub>b</sub> : RC はりのせん断スパン
- : CLT 袖壁から RC 柱に伝達される水平せん断力が集中的に作用すると仮定した場合の *a*c 作用点から水平断面までの距離
- : CLT 袖壁から RC はりに伝達される鉛直せん断力が集中的に作用すると仮定した場合 *a*b の作用点から鉛直断面までの距離で
- <sub>t</sub>a<sub>s</sub>: 寸切りボルト、PC 鋼棒の断面積
- aas : アンカーボルトの軸部の断面積
- ades : アンカーボルトのねじ部の断面積
- ras :テンションロッドの軸部の断面積
- raes : テンションロッドのねじ部の断面積
- <sub>b</sub>*a*t : RC はりの引張鉄筋の断面積
- <sub>c</sub>ag : RC 柱の主筋全断面積
- Ad : ドリフトピンの水平投影面積
- *A*h : 鋼材やCLT に設けた孔の面積
- *b*c : RC 柱の幅
- *b*b : RC はりの幅
- *cbe* : パンチングを受ける RC 柱の直交材を考慮した有効幅で柱の幅としてよい
- <sub>bb</sub>e :パンチングを受ける RC はりの直交材を考慮した有効幅ではりの幅としてよい
- bs : 滑り止めの支圧板(フランジ)の幅
- b'。:滑り止めの支圧板(フランジ)の幅からウェブの厚さを差し引いた値
- <sub>s</sub>b<sub>p</sub> : 滑り止めの底板の幅
- wCc : CLT 袖壁の水平接合部に作用する曲げ圧縮力
- *d* : ドリフトピンの直径
- *d*<sub>c</sub> : RC 柱の有効せい
- *d*b : RC はりの有効せい
- <sub>cdb</sub>: RC 柱の主筋の直径
- <sub>b</sub>db : RC はりの主筋の直径
- d<sub>h</sub>:鋼材に設けた孔の直径

- ds : 寸切りボルト、PC 鋼棒の重心位置から滑り止め端部までの距離
- D:部材種別判定に用いる RC 柱のせい
- *D*<sub>c</sub> : RC 柱のせい
- *D*<sub>b</sub> : RC はりのせい
- *D*<sub>w</sub>: CLT パネル、CLT 袖壁のせい
- *D*<sub>s</sub> : 滑り止めの全せい
- *E*<sub>2</sub>:外層ラミナの支圧剛性
- *E*<sub>3</sub>: 内層ラミナの支圧剛性
- *E*<sub>w</sub>:木材の繊維方向のヤング係数
- <sub>c</sub>E<sub>c</sub> : コンクリートのヤング係数
- <sub>tE</sub>, : CLT のヤング係数
- <sub>a</sub>E<sub>s</sub> :アンカーボルトのヤング係数
- <sub>rEs</sub> : テンションロッドのヤング係数
- f<sub>2</sub>:外層ラミナの支圧強度
- f3 : 内層ラミナの支圧強度
- fm : ラミナの支圧強度の実験値
- fr : ラミナのローリングシア強度
- *f*<sub>v, kam, 0</sub> : ラミナの繊維方向のせん断強度
  - *F<sub>m</sub>*: CLT の支圧強度の実験値
  - *F* : ドリフトピンの曲げ強度
  - F<sub>c</sub>: 部材種別判定に用いるコンクリートの設計基準強度
  - <sub>t</sub>F<sub>c</sub> : CLT の圧縮の基準強度
  - <sub>th</sub>F<sub>c</sub> : CLT の圧縮の基準強度(水平方向)
  - <sub>tv</sub>F<sub>c</sub> : CLT の圧縮の基準強度(鉛直方向)
  - <sub>tFk</sub>: CLTの圧縮の基準強度を用いた座屈強度
  - <sub>th</sub>F<sub>k</sub>: CLTの圧縮の基準強度を用いた座屈強度(水平方向)
  - <sub>w</sub>F<sub>k</sub> : CLT の圧縮の基準強度を用いた座屈強度(鉛直方向)
  - <sub>t</sub>Ft : CLT の引張の基準強度
  - <sub>LFbl</sub>: CLT の面内曲げの基準強度
  - <sub>t</sub>F<sub>sl</sub>: CLT の面内せん断の基準強度

- <sub>t</sub>Fge : CLTの接着積層面のせん断強度
- <sub>cFc</sub> : コンクリートの設計基準強度
- <sub>1</sub>*F*t : ラミナの引張強度
- <sub>IFs</sub> : ラミナのせん断強度
- g1 : RC 柱の引張筋重心と圧縮筋重心との距離の全せいに対する比
- <sub>c</sub>G<sub>c</sub> : コンクリートのせん断弾性係数
- <sub>t</sub>G<sub>c</sub>: CLT のせん断弾性係数
- *h*<sub>0</sub> :柱(袖壁)の内法高さ
- *h*。 : 滑り止めの高さ
- h's: :滑り止めの高さから底板の厚さを差し引いた値
- *h*v : 鉛直接合材の鉛直長さ
- *h*h :水平接合材の鉛直長さ
- : 強軸方向の許容応力度を計算する場合は全断面の断面二次モーメント、 *I*e 弱軸方向の許容応力度を計算する場合は外層を除いた部分の断面二次モーメント
- <sub>b</sub>Le: RCはりの鉄筋を考慮した断面二次モーメント
- *j*。: RC 柱の応力中心間距離
- <sub>*j*<sub>b</sub> : RC はりの応力中心間距離</sub>
- km : ラミナの支圧剛性の実験値
- *k*e : CLT の支圧剛性
- kw : ファイバー要素もしくは軸ばね1本あたりの支圧剛性
- *k*<sub>b</sub> : CLT 袖壁の斜め材 1 本あたりの軸剛性
- *k*<sub>v1</sub> : CLT 袖壁の鉛直材(端部)1 本あたりの軸剛性
- *k*<sub>v2</sub> : CLT 袖壁の鉛直材(中央)1 本あたりの軸剛性
- ks0 : ラミナの繊維方向の支圧剛性
- ks90 : ラミナの繊維直交方向の支圧剛性
- *K<sub>m</sub>*: CLT の支圧剛性の実験値
- <sub>aK1</sub>:アンカーボルトの初期剛性
- <sub>rK1</sub> : テンションロッドの初期剛性
- aK2 : アンカーボルトの二次剛性
- <sub>r</sub>K<sub>2</sub> : テンションロッドの二次剛性
- iKn :1列のドリフトピン本数による耐力の低減係数

- 1 : 柱芯々間距離
- *b*:座屈長さ
- *L*<sub>a</sub> : アンカーボルトの引張長さ (ナット間の距離)
- *L*r : テンションロッドの引張長さ (ナット間の距離)
- *L*<sub>b</sub> : CLT 袖壁端から RC はりの危険断面位置までの距離
- *L*p : ヒンジ長さ
- *L*<sub>0</sub> : 部材の内法長さ
- <sub>bL0</sub>: RC 柱の CLT 袖壁のフェイス間の内法スパン
- Ld : CLT 木口面から最上段ドリフトピン位置までの長さ
- L<sub>v</sub>: 鉛直接合材の水平長さ
- Lh :水平接合材の水平長さ
- <sub>h</sub>L<sub>w</sub> : 水平接合材のウェブの長さ
- hLf :水平接合材のフランジの長さ
- <sub>hLh</sub>:水平接合材のフランジに設けたアンカーボルトの重心位置からウェブ端部までの長さ
- <sub>v</sub>L<sub>w</sub> : 鉛直接合材のウェブの長さ
- <sub>vLf</sub> : 鉛直接合材のフランジの長さ
- <sub>vLh</sub>:鉛直接合材のフランジに設けた寸切りボルトの重心位置からウェブ端部までの長さ
- md: 最上段の列のドリフトピンの本数
- n :保証設計用の割増係数
- *n*e : ヤング係数比
- *n*<sub>i</sub> :1列のドリフトピン本数
- nv : 鉛直接合材の枚数
- nh :水平接合材の枚数
- nbeaml : CLT 袖壁の設置により、節点モーメントの増大が見込める RC はりの塑性ヒンジ数
- nbeam2 : CLT 袖壁を設置しても、節点モーメントの増大が見込めない RC はりの塑性ヒンジ数
- n<sub>column</sub>: RC 柱の塑性ヒンジ数
- hna :水平接合部におけるアンカーボルトの本数
- hn::水平接合部におけるテンションロッドの本数
- hnd :水平接合部におけるドリフトピンの本数
- vnd : 鉛直接合部におけるドリフトピンの本数

- vnt : 鉛直接合部における寸切りボルトの本数
- snd :加力方向のドリフトピンの本数(強軸引張時)
- "nd: :対象範囲内のビスの本数(弱軸引張時)
- ns : CLT 袖壁におけるモデル化の際の断面の分割数
- *Nc* : RC 柱の軸方向力
- <sub>cNmax</sub> : RC 柱の圧縮耐力
- <sub>cNmin</sub>: RC 柱の引張耐力
- <sub>cNb</sub> : RC 柱の釣合軸力
- *N*<sub>w</sub> : CLT 袖壁の軸方向力
- Nwc : CLT 袖壁の曲げ圧縮力
- hvNu :水平接合部の軸耐力
- hvaNu :水平接合部の接着耐力
- wtNu : CLT 袖壁の水平断面の引張耐力
- hvwNy :水平接合部のウェブの降伏耐力
- hvfNy :水平接合部のフランジの曲げ降伏時引張力
- *M/(Qd)* : 部材種別判定に用いる RC 柱のせん断スパン比
- *M/(Qdc)* : RC 柱のせん断スパン比
- *M/(Qd<sub>b</sub>)* : RC はりのせん断スパン比
  - *M*<sub>v</sub> : ドリフトピンの曲げ降伏モーメント
  - M<sub>w</sub> : CLT パネル、CLT 袖壁に作用する曲げモーメント
  - <sub>b</sub>M<sub>cr</sub> : RC はりの曲げひび割れモーメント
  - <sub>b</sub>M<sub>u</sub> : RC はりの曲げ終局モーメント
  - p2 : 外層ラミナの支圧の初期剛性に対する二次剛性の比率
  - p3 : 内層ラミナの支圧の初期剛性に対する二次剛性の比率
  - *p*t : 部材種別判定に用いる RC 柱の引張鉄筋比(%)
  - <sub>e</sub>pt : RC 柱の引張鉄筋比(%)
  - <sub>b</sub>pt : RC はりの引張鉄筋比(%)
  - <sub>c</sub>p<sub>w</sub>: RC 柱のせん断補強筋比(小数)
  - <sub>b</sub>p<sub>w</sub>: RC はりのせん断補強筋比(小数)
  - <sub>e</sub>pg : .be Dc に対する RC 柱の全主筋断面積の比

- $bp_g$ :  $b_e D_b$ に対する RC はりの全主筋断面積の比
- wpu :ファイバー要素もしくは軸ばね1本あたりの支圧耐力
- *p*b : CLT 袖壁の斜め材 1 本あたりの軸耐力
- aPub : アンカーボルト1本あたりの判定用終局耐力
- **4***p*y : ドリフトピン1本あたりの降伏強度
- dypy :ドリフトピン1本あたりの鉛直方向の降伏強度
- ubpy :ドリフトピン1本あたりの水平方向の降伏強度
- dvpu :ドリフトピン1本あたりの鉛直方向の終局強度
- *P* : ロードセルで計測された荷重
- P<sub>iu</sub> : 耐力低減を考慮したドリフトピン接合部の降伏せん断耐力
- hdvPy :水平接合部におけるドリフトピンの鉛直方向の降伏耐力
- hdvPu :水平接合部におけるドリフトピンの鉛直方向の終局耐力
- haPy :水平接合部におけるアンカーボルトの降伏耐力
- hrPy :水平接合部におけるテンションロッドの降伏耐力
- haPu :水平接合部におけるアンカーボルトの終局耐力
- hrPu :水平接合部におけるテンションロッドの終局耐力
- :幅はぎ接着していない CLT パネルのラミナ境界部分が影響する壊れ方の場合の最大耐
  *P*<sub>R1</sub> 力
- :幅はぎ接着していない CLT パネルのラミナ境界部分が影響しない壊れ方の場合の最大
  *P*<sub>R2</sub> 耐力
- Qv : 鉛直接合部を介して CLT 袖壁に伝達された鉛直方向のせん断力
- **b***Q***D** : はりの設計用せん断力
- 。QD :柱の設計用せん断力
- wQp :耐力壁の設計用せん断力
- hvQD :水平接合部の設計用鉛直せん断力
- hhQD :水平接合部の設計用水平せん断力
- wQD : 鉛直接合部の設計用鉛直せん断力
- vhQD : 鉛直接合部の設計用水平せん断力
- vhQmax : 鉛直接合部に作用する水平せん断力の最大値
- Q0 : 単純支持とした時の常時荷重によるせん断力
- *Q*<sub>M0</sub> : Ds 算定時のせん断力
- Qv : 鉛直接合部を介して伝達される鉛直方向のせん断力

- <sub>b</sub>Q<sub>M0</sub> : Ds 時に RC はりのスパン中央に作用するせん断力
- wO<sub>M0</sub>: Ds 時に CLT 袖壁に作用する水平せん断力
- vQM0 : Ds時に鉛直接合部に作用する鉛直せん断力
- Qu: :建物の崩壊機構形成時の水平耐力
- <sub>c</sub>Q<sub>su</sub>: RC 柱のせん断終局耐力
- **b***Q*<sub>su</sub>: RC はりのせん断終局耐力
- <sub>c</sub>Q<sub>pu</sub>:RC柱のパンチングシア耐力
- <sub>b</sub>Q<sub>pu</sub>:RCはりのパンチングシア耐力
- *Q*<sub>w</sub> : CLT 袖壁に作用する水平せん断力
- wQfu : CLT 袖壁の摩擦耐力
- <sub>wQmu</sub>: CLT 袖壁の曲げ終局モーメント時のせん断力
- <sub>w</sub>O<sub>su</sub>: CLT 袖壁のせん断耐力
- wvQsu : CLT 袖壁の鉛直断面のせん断耐力
- <sub>wv</sub>Q'<sub>su</sub>: ラミナのせん断強度を用いた CLT 袖壁の鉛直断面のせん断耐力
- wwaQu : CLT 袖壁の鉛直断面の接着耐力
- hvcQu :水平接合部における CLT 袖壁端の支圧耐力
- hvcQ'u :水平接合部における CLT 袖壁端の支圧耐力
- hvtQu :水平接合部におけるアンカーボルト周辺部位の耐力
- hvdQy :水平接合部におけるドリフトピンの降伏耐力
- hvsQu :水平接合部における CLT 接合部の集合型破壊時の終局耐力
- hvwQy :水平接合部におけるウェブの降伏耐力
- hvtQu :水平接合部におけるフランジ(底板)の曲げ耐力時引張力
- hvaQy :水平接合部におけるアンカーボルトの降伏耐力
- hvaQu :水平接合部におけるアンカーボルトの終局耐力
- hhQu :滑り止めの水平せん断耐力
- hhbQu :滑り止めにおける CLT の木口面の支圧耐力
- hhwQv :滑り止めにおけるウェブのせん断降伏耐力
- http://www.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.information.infor
- hhlQy :滑り止めの支圧板(フランジ)の曲げ耐力時せん断力
- hhpQu::滑り止め底板の曲げ耐力時せん断力

- hhsQu :滑り止めにおける寸切りボルト、PC 鋼棒のせん断耐力
- hhtQu: :滑り止め底面における寸切りボルト、PC鋼棒の引張降伏時せん断力
- vhQu : 鉛直接合部の水平せん断耐力
- vhdQy : 鉛直接合部のドリフトピンの降伏耐力
- vhtQy : 鉛直接合部の寸切りボルトの降伏耐力
- vhsQu : 鉛直接合部の CLT 接合部の集合型破壊時の終局耐力
- vhwQv :鉛直接合材のウェブの降伏耐力
- vhfOv : 鉛直接合材のフランジの曲げ降伏時引張力
- wQu : 鉛直接合部の鉛直せん断耐力
- wiQu : 鉛直接合部の RC 柱-CLT 袖壁間の鉛直せん断耐力
- wwQu : 鉛直接合部の CLT 袖壁-CLT 袖壁、RC スタブ間で伝達される鉛直せん断力の最大値
- vvaQu : 鉛直接合部の山形鋼-CLT 袖壁間の接着面におけるせん断耐力
- vvcQu : 鉛直接合部の RC 柱-CLT 袖壁間で接着した仕口面のせん断耐力
- vvdQu : 鉛直接合部のドリフトピンの終局耐力
- wgQu : 鉛直接合部の CLT 袖壁内のラミナの接着耐力
- wwQu : 鉛直接合部の寸切りボルトのせん断耐力
- vvsQu : 鉛直接合部の CLT 接合部の集合型破壊時の終局耐力
- wwQy :鉛直接合部のウェブのせん断耐力
- vdvQy : 鉛直接合部におけるドリフトピンの鉛直方向の降伏耐力
- vdvQu : 鉛直接合部におけるドリフトピンの鉛直方向の終局耐力
- wlQu : 鉛直接合材の接着部の下側に位置する断面の終局耐力
- vvuQu : 鉛直接合材の接着部の上側に位置する断面の終局耐力
- t<sub>1</sub> : 内層の厚さ
- t<sub>2</sub> : 外層の厚さ
- tw : CLT パネル、CLT 袖壁の厚さ
- t1 :最外層ラミナの厚み
- htw :水平接合材のウェブの厚さ
- *stw*: : 滑り止めのウェブの厚さ
- *st* : 滑り止めの支圧板(フランジ)の厚さ

- stp : 滑り止めの底板の厚さ
- <sub>vtw</sub> : 鉛直接合材のウェブの厚さ
- vtf : 鉛直接合材のフランジの厚さ
- Ti : アンカーボルト、テンションロッドの初期引張力
- △W :履歴吸収エネルギー
- W:ポテンシャルエネルギー
- WL : ドリフトピン接合に掛かるラミナ幅の合計
- W<sub>d</sub>:ドリフトピンの右端から左端までの距離
- x : ドリフトピンの回転中心や塑性ヒンジの位置情報を表わすための変数
- w<sup>x</sup>n : CLT パネル、CLT 袖壁の中立軸深さ
- <sub>b</sub>Z<sub>e</sub> : 鉄筋を考慮した RC はりの断面係数
- Z<sub>s</sub> :滑り止めの断面係数
- τ<sub>u</sub>:部材種別判定に用いる RC 柱のせん断応力
- w<sup>T</sup> : CLT パネル、CLT 袖壁に作用するせん断応力度
- σ<sub>0</sub>:部材種別判定に用いる RC 柱の軸方向応力
- *oDPC* : CLT の面圧強度
- *σ*st: 鋼材-木材間の接着強度
- *c***o**<sub>T</sub> : コンクリートの引張強度
- <sub>c</sub>o<sub>0</sub>: RC 柱の軸方向応力
- woc : CLT パネルに作用する圧縮応力度
- **w***o*t : CLT パネルに作用する引張応力度
- woh : CLT パネルに作用する曲げ応力度
- cσy : RC 柱主筋の降伏強度
- <sub>b</sub>σ<sub>y</sub>: RC はり主筋の降伏強度
- cowy : RC 柱のせん断補強筋の降伏強度
- bowy : RC はりのせん断補強筋の降伏強度
- how :水平接合材のウェブの降伏強度
- <sub>h</sub>o<sub>fy</sub>:水平接合材のフランジの降伏強度
- sowy :滑り止めのウェブの降伏強度
- sofy :滑り止めのフランジの降伏強度

- sopy :滑り止めの底板の降伏強度
- vowy : 鉛直接合材のウェブの降伏強度
- <sub>v</sub>σ<sub>fy</sub>: :鉛直接合材の支圧板(フランジ)の降伏強度
- <sub>t</sub>σ<sub>y</sub> : 寸切りボルト、PC 鋼棒の降伏強度
- aoy : アンカーボルトの降伏強度
- **ro**y : テンションロッドの降伏強度
- **ao**u : アンカーボルトの引張強度
- :テンションロッドの引張強度
- **ro**y : テンションロッドの降伏強度
- <sub>c<sup>T</sup>f</sub> : RC 柱の主筋に作用する付着応力度
- btf : RC はりの主筋に作用する付着応力度
- *t*<sub>bu</sub>: RC 部材の付着割裂強度
- wī : CLT パネルに作用するせん断応力度
- a: RC はりの曲げ終局モーメントに対する RC 柱の曲げ終局モーメントの比
- *α*<sub>y</sub> : RC はりの降伏点剛性低下率
- *μ* : 摩擦係数
- *μ*<sub>v</sub> : 塑性率
- *φ*: せん断ひび割れ強度算定時に用いる耐力係数
- λ :有効細長比
- cysu : RC 柱のせん断ばねの終局ひずみ
- wy'su : CLT 袖壁のせん断耐力時のせん断ひずみの補正値
- v': CLTの材料特性を決定する際に仮定したポアソン比
- κ<sub>s</sub>:応力度法による形状係数(矩形断面の場合は1.5)
- *κ*e: エネルギー法による形状係数(矩形断面の場合は1.2)
- dvδy :ドリフトピンの鉛直方向の降伏耐力時の変形
- dvou :ドリフトピンの鉛直方向の終局耐力時の変形
- $_{b}\theta_{cr}$  : RC はりの曲げひび割れ時回転角
- <sub>b</sub>θ<sub>v</sub> : RC はりの曲げ降伏時回転角
- $_{b}\theta'_{v}$  : RC はりの曲げ降伏時回転角(弾性変形を除いたもの)