Demonstration of a technology for highly efficient nitrogen removal using fixed-bed anammox process

Research Consortium
Consortium between Kumamoto City, Japan Sewage Works Agency and Takuma Co., Ltd.

Demonstration Field
Tobu Wastewater Treatment Plant, Kumamoto City

Project Outline
By applying highly efficient anammox process using the fixed-bed system for the removal of nitrogen from the reject water of sludge treatment (dewatering of anaerobic digestion sludge), continuous operation of a full-scale demonstration plant was performed. Cost and energy saving effects, as well as nitrogen removal performance were demonstrated.

Outline of Technology

Nitrogen removal technology combining partial nitritation and anammox processes

Control of nitrogen concentration ratio by bypass method

- Reduction of BOD-SS (if necessary)
- Conversion of NH4-N and NO2-N to N2 gas
- Conversion of part of NH4-N to NO2-N

Outline of Technolog:

- Pretreatment facility
- Nitritation tank
- Anammox tank
- Conversion of NH4-N
- Carrier immobilized nitrite-forming bacteria in Nitritation tank
- Carrier immobilized anammox bacteria in Anammox tank

Features of Demonstration Technology

[Features]
- Low-cost and energy-saving nitrogen removal technology using anammox reaction
- To be applied to reject water treatment in order to reduce the nitrogen load and effluent nitrogen concentration in mainstream wastewater treatment.

[Advantages]
- In comparison with conventional nitrogen removal technology (biological nitrification-denitrification processes)
 1. Reduced aeration
 2. No organic matter addition for denitrification
 3. Reduced footprint
 4. Reduced sludge generation

Outline of Technology:

- **2-stage anammox process**
- **Use of fixed-bed reactors carrier**

Schematic flow of demonstration:

<table>
<thead>
<tr>
<th>Influent water</th>
<th>Pretreatment facility</th>
<th>Nitritation tank</th>
<th>Anammox tank</th>
<th>Conversion of part of NH4-N to NO2-N</th>
<th>Treated water (Returned to water treatment facility)</th>
</tr>
</thead>
</table>

Chemical reactions:

\[
\text{NH}_4^+ + 1.32\text{NO}_2^- + 0.066\text{HCO}_3^- + 0.13\text{H}^+ \rightarrow 1.02\text{N}_2 + 0.26\text{NO}_3^- + 0.066\text{CH}_2\text{O}_{0.5}\text{N}_{0.15} + 2.03\text{H}_2\text{O}
\]