目 次

第1章 総 則

第1	節	目的
§ 1	目	的1
		ガイドラインの適用範囲
§ 2	ガイ	ドラインの適用範囲
第 3	節	ガイドラインの構成
§ 3	ガイ	ドラインの構成
		用語の定義
\$4	用語	の定義

第2章 技術の概要と評価

第1節 技術の概要

§ 5	技術の目的
§ 6	技術の構成と機能
§ 7	技術の特徴
§ 8	技術の適用条件
§ 9	導入シナリオ

第2節 実証研究に基づく評価の概要

§ 10	技術の評価項目	 28
§ 11	技術の評価結果	 30

第3章 導入検討

第1節 導入検討手法

§ 12	導入検討手順	0
§ 13	基礎調査	1
\$14	導入効果の検討	2
§ 15	導入判断	8

第4章 計画・設計

第1節 導入計画

§ 16	計画の手順
17	基本事項の把握
§ 18	設計基本計算
§ 19	設計水量、設計水質、設計水温
§ 20	最初沈殿池
§ 21	汚泥返送比
§ 22	MLSS 濃度
§ 23	必要 ASRT
§ 24	BOD-SS 負荷 ······69
§ 25	嫌気ゾーン容量
§ 26	総好気ゾーン容量 ····································
§ 27	反応タンク容量
§ 28	脱窒ゾーン容量の設定
§ 29	脱窒ゾーン位置の設定
§ 30	兼用領域の設定
§ 31	脱窒ゾーンと兼用領域の脱窒速度を算出
§ 32	兼用領域も含めた脱窒ゾーンでの窒素除去量を算出
§ 33	兼用領域も含めた脱窒ゾーンでの窒素除去量が必要脱窒量を上回っているか確認79
§ 34	りん除去量の算出
§ 35	必要風量の算出
§ 36	最終沈殿池
§ 37	設備計画の検討
§ 38	導入効果の検証

第2節 設備設計

§ 39	本技術の設備設計の考え方	92
§ 40	設備設計	93
\$41	留意事項	98

第5章 維持管理

第1節 システム全体としての管理

§42 システム全体としての管理の要点	$\cdot 100$
---------------------	-------------

第2節 運転管理

	羊槽型硝化脱窒プロセス)	運転管理	§ 43
١) ١٥	負荷変動追従型送風ユニッ	運転管理	§ 44
		環境対策	\$45
		水質管理	\$46

第3節 保守点検

8 47 休守点候 ····································	\$47	保守点検	
---	------	------	--

第4節 異常時の対応と対策

§ 48	 ຊ常時の対応と対策
参考了	t ······112

資料編

1.	実証研究結果	115
2.	ケーススタディ	.155
3.	送風電力の削減	167
4.	問い合わせ先	.171