ISSN 1346·7328

 国総研資料 第1124号

 令和2年9月

国土技術政策総合研究所資料

TECHNICAL NOTE of National Institute for Land and Infrastructure Management

No.1124

September 2020

道路環境影響評価の技術手法

4. 騒音 4.1 自動車の走行に係る騒音(令和2年度版)

道路交通研究部 道路環境研究室

4. Noise 4.1 Noise Caused by Road Traffic (Revision of FY 2020) Environment Impact Assessment Technique for Road Project

Road Traffic Department, Road Environment Division

国土交通省 国土技術政策総合研究所

National Institute for Land and Infrastructure Management Ministry of Land, Infrastructure, Transport and Tourism, Japan

Technical Note of NILIM No.1124 September 2020

国土技術政策総合研究所資料 第1124号 2020年9月

道路環境影響評価の技術手法 4.騒音 4.1 自動車の走行に係る騒音(令和2年度版)

道路交通研究部道路環境研究室

主任研究官	澤田	泰征
室 長	大城	温
前室長	間渕	利明
主任研究官	吉永	弘志
前研究官	大河四	内恵子

4. Noise 4.1 Noise Caused by Road Traffic (Revision of FY 2020) Environment Impact Assessment Technique for Road Project

Road Traffic Department Road Environment Division

Head OSHIRO Nodoka	
Head MABUCHI Toshiaki (Forme	er)
Senior Researcher YOSHINAGA Hiroshi	
Researcher OHKOUCHI Keiko(Former))

概要

本資料は道路事業における環境影響評価の「4. 騒 音 4.1 自動車の走行に係る騒音」を対象に環境影響評価を行う 場合の一般的な技術手法を示したものである。事業特性の把握、地域特性の把握、調査、予測、環境保全措置の検討及 び評価を行う場合の具体的手法を示し、その内容に解説を加えた。

令和2年度版においては「音の伝搬理論に基づく予測式」に関する最新の知見を反映した改定を行った。

キーワード:

環境影響評価技術、道路事業、騒音

Synopsis

This document introduces general technological method for performing environment impact assessments aimed at Noise caused by moving automobiles. The document introduces specific method used to clarify project characteristics and clarify regional characteristics, induct surveys, make prediction, study environmental conservation measures, and perform assessment. The document presents to commentaries on it contents.

In the version in FY 2020, the document in revised based on the latest knowledge on the source and propagation of road traffic noise.

Key Words:

EIA, Road Project, Noise

はじめに(「道路環境影響評価の技術手法」の使い方と構成)

道路事業の環境影響評価は、以下の法令及び通達に基づいて行うこととされている。

- ・「環境影響評価法」(平成9年法律第81号、最終改正:平成26年法律第51号)
- ・「道路事業に係る環境影響評価の項目並びに当該項目に係る調査、予測及び評価を合理的に行うための手法を選定するための指針、環境の保全のための措置に関する指針等を定める省令」(平成10年建設省令第10号、最終改正:平成25年国土交通省令第28号)
- ・「道路事業に関する環境影響評価の実施について」(平成 11 年建設省道環発第 20 号、最終改正: 平成 25 年国道環発第 39 号国土交通省道路局長)

「道路環境影響評価の技術手法」は、上記の規定に則り、道路事業の環境影響評価を行う場合の一般 的な手法とその解説を、現在得られる最新の科学的知見に基づいてとりまとめたものであり、事業者が 実務の上で広く活用していただくことを考えている。

ただし、ここに紹介する手法等はあくまで一例であり、実際には各事業者が対象道路事業毎にこれら の手法等を参考としつつ、適切な手法等を選択すべきものである。

「道路環境影響評価の技術手法」は、以下の構成としている。

1) 配慮書段階の計画段階配慮事項

1. 計画段階配慮事項(全ての影響要因・環境要素に共通)

- 2) EIA*(方法書以降の手続に係る環境影響評価)の参考項目
 - 2. 大気質
 - 2.1 自動車の走行に係る二酸化窒素及び浮遊粒子状物質
 - 2.3 建設機械の稼働に係る粉じん等
 - 2.4 資材及び機械の運搬に用いる車両の運行に係る粉じん等
 - 4. 騒音

4.1 自動車の走行に係る騒音 ※本資料

4.2 建設機械の稼働に係る騒音

- 4.3 資材及び機械の運搬に用いる車両の運行に係る騒音
- 6. 振動
 - 6.1 自動車の走行に係る振動
 - 6.2 建設機械の稼働に係る振動
 - 6.3 資材及び機械の運搬に用いる車両の運行に係る振動
- 7. 水質
 - 7.1 休憩所の供用に係る水の濁り及び水の汚れ
- 9. 地形及び地質
 - 9.1 道路(地表式又は掘割式、嵩上式)の存在に係る地形及び地質
 - 9.2 工事施工ヤードの設置及び工事用道路等の設置に係る地形及び地質
- 12. 日照阻害
 - 12.1 道路(嵩上式)の存在に係る日照阻害
- 13. 動物、植物、生態系

13.1 道路(地表式又は掘割式、嵩上式)の存在に係る「動物」、「植物」、「生態系」 13.2 工事施工ヤードの設置及び工事用道路等の設置に係る「動物」、「植物」、「生態系」

14. 景観

14.1 道路(地表式又は掘割式、嵩上式)の存在に係る景観

15. 人と自然との触れ合いの活動の場

15.1 道路(地表式又は掘割式、嵩上式)の存在に係る人と自然との触れ合いの活動の場 16. 廃棄物等

16.1 切土工等又は既存の工作物の除去に係る廃棄物等

3) E I A*の参考項目以外の項目

- 2. 大気質
 - 2.2 自動車の走行に係る一酸化炭素及び二酸化硫黄
 - 2.5 建設機械の稼働に係る二酸化窒素及び浮遊粒子状物質
 - 2.6 資材及び機械の運搬に用いる車両の運行に係る二酸化窒素及び浮遊粒子状物質
- 3. 強風による風害
- 3.1 換気塔等の大規模施設の設置に係る強風による風害
- 5. 低周波音
 - 5.1 自動車の走行に係る低周波音
- 7. 水質
 - 7.2 休憩所の供用に係る水の富栄養化
- 7.3 水底の掘削等に係る水の濁り
- 7.4 切土工等、工事施工ヤードの設置、及び工事用道路等の設置に係る水の濁り
- 8. 底質
- 8.1 汚染底質の掘削等に係る底質
- 9. 地形及び地質
 - 道路(地下式)の存在に係る地形及び地質(9.1に含む)
- 10. 地盤
 - 10.1 掘割構造物、トンネル構造物の設置に係る地盤
 - 10.2 掘削工事、トンネル工事の実施に係る地盤
- 11. 土壌
 - 11.1 汚染土壌の掘削等に係る土壌
- 12. 日照阻害
- 換気塔等の大規模施設の設置に係る日照阻害(12.1 に含む)
- 13. 動物、植物、生態系
 - 道路(地下式)の存在に係る「動物」、「植物」、「生態系」(13.1 に含む) 13.3 建設機械の稼働に係る動物
- 14. 景観
 - 14.2 工事施工ヤードの設置及び工事用道路等の設置に係る景観
- 15. 人と自然との触れ合いの活動の場
 - 15.2 工事施工ヤードの設置、工事用道路等の設置に係る人と自然との触れ合いの活動の場 15.3 人と自然との触れ合いの活動の場:自動車の走行に係る人と自然との触れ合いの活動の場
- * Environmental Impact Assessment の略。直訳すると「環境影響評価」だが、通常は方法書以降の手続に係る環境影響評価を指す。

今般の改定は、「道路環境影響評価の技術手法」の「4. 騒音 4.1 自動車の走行に係る騒音」を改定 するものである。改定後の項目等と各資料の関係を以下に示す。

項目等		改定前	改定後		
I 配慮書段階の 1. 計画段階配慮事項(全ての環境要 手法 通)		 計画段階配慮事項(全ての環境要素・影響要因に共通) 	国総研資料第714号 1.	同左	
Π	2. 大気	2.1	自動車の走行に係る二酸化窒素及び浮遊粒子状物質	国総研資料第 714 号 2.1	同左
п Г	質	2.2	自動車の走行に係る一酸化炭素及び二酸化硫黄	国総研資料第714号 2.2	同左
Е I		2.3	建設機械の稼働に係る粉じん等	国総研資料第 714 号 2.3	同左
A		2.0	容材及び機械の運搬に用いる東面の運行に低る粉じん笑	国総研資料第714号 24	同左
方		2.4		国松研資料第714 号 9.5	同七
伝書		2.0	建設機械の稼働に体る一般に至糸及の存起松丁仏初員 次社及び推動になる一般に至糸及の存起松丁仏初員	国秘切員科第 /14 万 2.3	问任
以降		2.0	資料及び機械の運搬に用いる単両の運行に除る一酸化 窒素及び浮遊粒子状物質	国総研資料第 714 号 2.6	同左
の手続に係	3. 強風 による 風害	3.1	換気塔等の大規模施設の設置に係る強風による風害	国総研資料第 714 号 3.1	同左
いる環境	4. 騒音	4.1	自動車の走行に係る騒音	国総研資料第 842 号 4.1	国総研資料第 1124 号 (本資料)
児影		4.2	建設機械の稼働に係る騒音	国総研資料第 714 号 4.2	同左
響		4.3	資材及び機械の運搬に用いる車両の運行に係る騒音	国総研資料第 714 号 4.3	同左
評価)の	5. 低周 波音	5.1	自動車の走行に係る低周波音	国総研資料第 714 号 5.1	同左
手	6. 振動	6.1	自動車の走行に係る振動	国総研資料第 714 号 6.1	同左
法		6.2	建設機械の稼働に係る振動	国総研資料第714号 6.2	同左
		6.3	資材及び機械の運搬に用いる車両の運行に係る振動	国総研資料第714号 6.3	同左
	7 水質	7 1	休顔所の供用に係ろ水の濁り及び水の汚れ	国総研資料第 714 号 71	同左
	1. 小員	7.2	休韻所の供用に係る水の宣学養化	国総研資料第711号 7.2	同左
		7.2	水底の掘削竿に低る水の溜り		同生
		7.4	小瓜の畑田寺に床る小の街り	国枪训員招先 [14 方 1.3	FJ/L_
		1.4	切工工寺、工事施工ヤートの設置、及び工事用道路寺の 設置に係る水の濁り	国総研資料第 714 号 7.4	同左
	8. 底質	8.1	汚染底質の掘削等に係る底質	土研資料第 4254 号 8.1	同左
	9. 地形 及び地	9.1	道路(地表式又は掘割式、嵩上式)の存在に係る地形及 び地質	土研資料第 4254 号 9.1	同左
	質	9.2	工事施工ヤードの設置及び工事用道路等の設置に係る地 形及び地質	土研資料第 4254 号 9.2	同左
	10.地盤	10.1	1 掘割構造物、トンネル構造物の設置に係る地盤	土研資料第 4254 号 10.1	同左
		10.2	2 掘割工事、トンネル工事の実施に係る地盤	土研資料第 4254 号 10.2	同左
	11.土壤	11.1	」汚染土壌の掘削等に係る土壌	土研資料第 4254 号 11.1	同左
	12.日照 阻害	12.1	し 道路(嵩上式)の存在に係る日照阻害	国総研資料第 714 号 12.1	同左
	13.動 物、植	13.1	1 道路(地表式又は掘割式、嵩上式)の存在に係る「動物」、「植物」、「生熊系」	国総研資料第 906 号 13.1	同左
	物、生能系		2 工事施工ヤードの設置及び工事用道路等の設置に係る 「動物」、「植物」、「生態系」	国総研資料第 906 号 13.2	同左
		13.3	3 建設機械の稼働に係る動物	国総研資料第906号 13.3	同左
	14 暑観	14 1	道路(地表式又は掘割式 嵩上式)の存在に係る景観	国総研資料第714号 141	同左
	/////	14.2	2 工事施エヤードの設置及び工事用道路等の設置に係る 景観	国総研資料第 714 号 14.2	同左
	15. 人と 自然と	15.1	1 道路(地表式又は掘割式、嵩上式)の存在に係る人と自 然との触れ合いの活動の場	国総研資料第 714 号 15.1	同左
	の触れ 合いの	15.2	2 工事施工ヤードの設置及び工事用道路等の設置に係る 人と自然との触れ合いの活動の場	国総研資料第 714 号 15.2	同左
	活動の 場	15.3	3 自動車の走行に係る人と自然との触れ合いの活動の場	国総研資料第 714 号 15.3	同左
	16.廃棄 物等	16.1	1 切土工等又は既存の工作物の除去に係る廃棄物等	土研資料第 4254 号 16.1	同左

国総研資料・・国土技術政策総合研究所資料 土研資料・・土木研究所資料

本資料の構成は以下のとおりである。

「道路事業に係る環境影響評価の項目並びに当該項目に係る調査、予測及び評価を合
 で囲まれた部分 理的に行うための手法を選定するための指針、環境の保全のための措置に関する指針
 等を定める省令」の第二十三条別表第二の内容を示す。

なお、本資料において単に「省令」という場合はこの省令を指す。

: 「道路事業に関する環境影響評価の実施について(道路局長通達)」

で囲まれた部分なお、本資料において「技術指針通達」という場合はこの通達を指す。

: 各評価項目の調査、予測及び評価のための具体的な技術手法を示す。

で囲まれた部分

【解説】 : の内容の詳細な解説。 の内容の全般的な解説や、下線を施 した部分に関する根拠、データ、留意事項等を含んだ詳細な解説を記した。

なお、本資料における式番号は、 内では省令の式番号と一致させている。

また、 内では(\bullet . \bigcirc)、 【解説】では(解説 \bullet . \bigcirc)と表記し、各々連番としている (\bullet は章を示す)。

目 次

4.	騒	音	4-1-1
4	l.1 [自動車の走行に係る騒音・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4-1-1
2	4. 1. 1	事業特性の把握・・・・・	4-1-4
2	4. 1. 2	地域特性の把握・・・・・	4-1-6
2	4. 1. 3	項目の選定・・・・・	4-1-9
2	4. 1. 4	調査・予測区間の設定	4-1-10
2	4. 1. 5	調査及び予測の手法の選定・・・・・	4-1-11
2	4. 1. 6	調査の手法	4-1-12
2	1 . 1. 7	予測の手法	4-1-16
2	4. 1. 8	環境保全措置の検討・・・・・	4-1-26
2	4. 1. 9	評価の手法	4-1-32

謝辞

参考資料 道路交通騒音の予測モデル "ASJ RTN-Model 2018"

Ⅱ EIA(方法書以降の手続に係る環境影響評価)の手法

4. 騒音

4.1 自動車の走行に係る騒音

II EIA (方法書以降の手続に係る環境影響評価)の手法

4. 騒 音

4.1 自動車の走行に係る騒音

本資料は、「道路環境影響評価の技術手法」のうち、「4.1自動車の走行に係る騒音」を改定したものである。改定の経緯を下の表に示す。今回の改定では、新たな知見(ASJ RTN-Model 2018)を反映させた。

なお、本資料で示す手法等はあくまで一例であり、実際には各事業者が対象道路事業毎に これらの手法等を参考としつつ、適切な手法等を選択することが望ましい。

9人之**/庄/平 (
改定等の時期	資料番号	改定等の理由	執筆等担当者
F. Na o Fra o F	土木研究所資 料第3743号		旧建設省土木研究所 環境部交通環境研究室
平成12年10月		初版	主任研究員 上坂克巳 家 長 大西博文
平成16年4月	国土技術政策 総合研究所資 料第153号	新たな知見 (ASJ RTN-Model 2003)の反映	主 衣 八口 內久 国土交通省国土技術政策総合研究所 環境研究部道路環境研究室 主任研究官 森 悌司 室 長 並河良治
平成19年6月	国土技術政策 総合研究所資 料第386号	主務省令* ¹ の改 正	国土交通省国土技術政策総合研究所 環境研究部道路環境研究室 主任研究官 吉永弘志 前主任研究官 森 悌司 室 長 並河良治 前交流研究員 沢村英男
平成23年3月	国土技術政策 総合研究所資 料第617号	新たな知見 (ASJ RTN-Model 2008)の反映	国土交通省国土技術政策総合研究所 環境研究部道路環境研究室 主任研究官 吉永弘志 室長 曽根真理 部外研究員 安東新吾 前 室長 並河良治
平成25年3月	国土技術政策 総合研究所資 料第714号	主務省令*1の改 正	国土交通省国土技術政策総合研究所 環境研究部道路環境研究室 室長 角湯克典 主任研究官 吉永弘志
平成27年3月	国土技術政策 総合研究所資 料第842号	新たな知見 (ASJ RTN-Model 2013)の反映	国土交通省国土技術政策総合研究所 道路交通研究部道路環境研究室 研究官 大河内恵子 室長 井上隆司 主任研究官 吉永弘志 交流研究員 長谷川啓一
令和2年9月	国土技術政策 総合研究所資 料第1124号	新たな知見 (ASJ RTN-Model 2018)の反映	国土交通省国土技術政策総合研究所 道路交通研究部道路環境研究室 主任研究官 澤田泰征 室長 大城温 前室長 間渕利明 主任研究官 吉永弘志 前研究官 大河内恵子

改定の経緯(道路環境影響評価の技術手法 4.1 自動車の走行に係る騒音)

*1「道路事業に係る環境影響評価の項目並びに当該項目に係る調査、予測及び評価を合理 的に行うための手法を選定するための指針、環境の保全のための措置に関する指針等を定 める省令」 (平成 10 年建設省令第 10 号、最終改正:平成 27 年国土交通省令第 43 号)

「4.1 自動車の走行に係る騒音」の調査、予測及び評価の概要

自動車の走行に係る騒音についての調査は、騒音の現況の把握並びに予測地点の設定及び 予測に必要な沿道の状況の把握を目的として行う。予測は、参考手法による場合、日本音響 学会提案のASJ RTN-Model 2018¹⁾(以下「ASJ RTN-Model」という。)とする。予測結果か ら、環境影響がない又は極めて小さいと判断される場合以外にあっては、環境保全措置の検 討を行う。評価は、環境影響の回避・低減及び騒音に係る環境基準との整合性の観点から行 う。「自動車の走行に係る騒音」における調査、予測及び評価の流れを図-4.1.1に示す。

- 4-1-3 -

4.1.1 事業特性の把握

事業特性の把握については、計画の熟度に応じ、自動車の走行に係る騒音の調査及 び予測に関連する以下の内容を把握する。なお、当該事業において「<u>配慮書段階の検</u> 討^{*1}」を行った場合は、その検討で収集した情報を活用し、不足する情報を補足する。

- 1) 対象道路事業実施区域の位置
- 2) 対象道路事業に係る道路の区間及び車線の数
 - (1) 幅員構成
 - (2) 車線数
- 3)対象道路事業に係る道路の区分(道路構造令(昭和45年政令第320号)第三条に 規定する道路の区分をいう)、設計速度、計画交通量及び構造の概要
 - (1) 設計速度
 - (2) 計画交通量(対象とする時期、将来年平均日交通量)
 - (3) 構造の概要
 - ①道路構造の種類(盛土、切土、トンネル、橋若しくは高架、その他の構造の 別)、概ねの位置、延長
 - ②交差部、インターチェンジ等の有無、概ねの位置

【解 説】

これらの事業特性は、項目の選定、調査及び予測の手法の選定、予測の実施に必要となる。以下に各段階で把握すべき事業特性の内容について解説する。

なお、「配慮書段階の検討」を実施した事業(本項目を計画段階配慮事項として選定 しなかった場合を含む。)においては、その検討で一定程度の情報が収集されているこ とから、これらを活用し、不足する情報を補足する。

1) 項目の選定に係る事業特性

「対象道路事業実施区域の位置」は、住居等の保全対象(「4.1.2 地域特性の把握」 で把握)との位置関係を判断するために必要である。また、「計画交通量」、「構造の 概要」は、騒音の影響範囲(「4.1.3 項目の選定」で記述)を設定するために必要であ る。詳細は、「4.1.3 項目の選定」を参照のこと。

2) 調査及び予測の手法の選定に係る事業特性

「構造の概要」は予測手法の選定に必要である。道路構造が複雑で、参考予測手法に よる伝搬計算式の適用が困難な場合は、参考手法より詳細な手法を選定する。詳細は、

「4.1.5 調査及び予測の手法の選定」を参照のこと。

3) 予測に用いる事業特性

「対象道路事業実施区域の位置」、「幅員構成」、「車線数」、「設計速度」、「計 画交通量」及び「構造の概要」は、予測の実施に当たって必要な情報である。これらの 情報は、「4.1.7-1 予測の前提条件」において、騒音の予測に必要な精度で再整理する 必要がある。

また、これらは「4.1.4 調査・予測区間の設定」においても必要となる。

なお、「4.1 自動車の走行に係る騒音」でいう「交差部」は道路と道路の「平面交差」 及び「立体交差」(ただし、「単純立体交差」を除く。)とする。 *1「配慮書段階の検討」

概略ルート・構造の検討(構想段階の検討)における、環境面に関する検討を、 環境影響評価法第3条の2及び関連する主務省令に基づき行ったもの。「1.計画 段階配慮事項(全ての影響要因・環境要素に共通)」を参照。

4.1.2 地域特性の把握

地域特性の把握については、対象道路事業実施区域及びその周囲において<u>入手可能</u> <u>な最新の文献*1</u>その他の資料(出版物等であって、事業者が一般に入手可能な資料) に基づき、自動車の走行に係る騒音に関連する以下の内容を把握する。なお、当該事 業において「配慮書段階の検討」を行った場合は、その検討で収集した情報を活 用し、不足する情報を補足する。

- 1) 自然的状況
 - (1) 気象、大気質、騒音、振動その他の大気に係る環境の状況

1) 騒音の状況

騒音の状況、環境基準の確保の状況、騒音規制法に基づく指定地域内におけ る自動車騒音の限度の確保の状況

- 2) 社会的状況
 - (1)土地利用の状況土地利用の現況、土地利用計画の状況
 - (2) 交通の状況

主要な道路の位置、交通量等の状況

(3) 学校、病院その他の環境の保全についての配慮が特に必要な施設の配置の 状況及び住宅の配置の概況

学校、病院、幼稚園、児童福祉法に基づく児童福祉施設(保育所等)、老人 ホーム、図書館等の配置の状況、集落の状況、住宅の配置の概況、将来の住宅 地の面整備計画の状況

- (4) 環境の保全を目的として法令等により指定された地域その他の対象及び当 該対象に係る規制の内容その他の状況
- ①幹線道路の沿道の整備に関する法律(昭和55年法律第34号)第五条第一項の 規定により指定された沿道整備道路
- ②環境基本法(平成5年法律第91号)第十六条第一項の規定により定められた 騒音に係る環境基準の類型の指定状況
- ③騒音規制法(昭和43年法律第98号)第三条第一項及び第十七条第一項に基づ く指定地域内における自動車騒音の限度、地域指定状況、区域の区分、時間 の区分の状況

【解 説】

これらの地域特性は、項目の選定、調査及び予測の手法の選定、予測及び評価の実施 に必要となる。以下に各段階で把握すべき地域特性の内容について解説する。

なお、「配慮書段階の検討」を実施した事業(本項目を計画段階配慮事項として選定 しなかった場合を含む。)においては、その検討で一定程度の情報が収集されているこ とから、これらを活用し、不足する情報を補足する。

1) 項目の選定に係る地域特性

項目の選定に係る地域特性として、「学校、病院、幼稚園、児童福祉法に基づく児童 福祉施設(保育所等)、老人ホーム、図書館等の配置の状況」、「集落の状況」、「住 宅の配置の概況」等から現在の保全対象の立地状況を把握する。また、「土地利用計画の状況」、「将来の住宅地の面整備計画の状況」等から将来の保全対象の立地状況を想定する。これらと「4.1.1 事業特性の把握」で整理した対象道路事業実施区域の位置関係から、項目の選定について検討する。詳細は、「4.1.3 項目の選定」を参照のこと。 2)調査及び予測の手法の選定に係る地域特性

「騒音の状況」、「土地利用の現況」、「住宅の配置の概況」等に関する文献から、 「4.1.6 調査の手法」に示す調査すべき情報が得られる場合は、参考手法より簡略な 手法を選定することができる。詳細は、「4.1.5 調査及び予測の手法の選定」を参照の こと。

また、これらの地域特性は、調査地点や予測地点の概略的な選定にも用いられる。な お、調査地点や予測地点の具体的選定は、地域特性の調査結果を踏まえて行う。

3) 予測及び評価に用いる地域特性

「騒音の状況」、「土地利用の現況」、「住宅の配置の概況」等は、場合により「4.1.6 調査の手法」に示す調査すべき情報として代用(「4.1.6 調査の手法」*5 参照)され、 予測条件として用いることができる。

一方、「土地利用の状況」、「環境の保全を目的として法令等により指定された地域 その他の対象の状況、当該対象に係る規制の内容の状況」等は、騒音に係る環境基準と の整合性を評価するときに必要である。(「4.1.9 評価の手法」*3 参照) *1「入手可能な最新の文献」 文献の例を表-4.1.1に示す。

	地域特性の項目	文献・資料名	文献・資料から 抽出する内容	発行者等
自然的状況	騒音の状況	道路周辺の交通騒音状況	騒音の状況、環境基準の確 保の状況、騒音規制法に基 づく指定地域内における 自動車騒音の限度の確保	環境省
		都道府県環境白書		都道府県
		市町村環境白書	の状況	市町村
		土地利用図		国土地理院
		土地利用現況図	土地利用の現況	都道府県 市町村
	工地利用の状況	土地利用基本計画図 土地利用動向調査	土地利用計画の状況	都道府県
		都市計画図		市町村
	交通の状況	道路交通センサス	主要な道路の位置 交通量等の状況	国土交通省 都道府県
社会的状況	学校、病院その他 の環境の保全について の配慮が特に必要な施 設の配置の状況及び住 宅の配置の概況	住宅地図 病院名簿	学校、病院、幼稚園、児童 福祉法に基づく児童福祉 施設(保育所等)、老人ホ	民間
		教育要覧 土地利用動向調査 社会福祉施設名簿	ーム、図書館等の配置の状況、集落の状況、住宅の配置の概況、将来の住宅地の 面整備計画の状況	都道府県
	環境の保全を目的とし て法令等により指定さ れた地域その他の対象 の状況、当該対象に係 る規制の内容の状況	例規集等	幹線道路の沿道の整備に 関する法律第五条第一項 の規定により指定された 沿道整備道路	都道府県等
		都道府県環境白書	環境基本法第十六条第一項の規定により定められ	都道府県
		例規集等	た騒音に係る環境基準の 類型の指定状況	都道府県等
		都道府県環境白書	騒音規制法第三条第一項 及び第十七条第一項に基 づく指定地域内における	都道府県
		例規集等	自動車騒音の限度、地域指定状況、区域の区分、時間の区分の状況	都道府県等

表-4.1.1 地域特性の項目と資料の例

4.1.3 項目の選定

本項目の選定は、環境影響を受けるおそれがあると認められる地域内に住居等の保 全対象が存在する場合、又は、都市計画上及び土地利用上から将来の立地が計画され ている場合に行う。環境影響を受けるおそれがあると認められる地域は、<u>事業特性、</u> 地域特性を踏まえて適切に設定する^{*1}。なお、当該事業において「配慮書段階の検討」 を行い、本項目を計画段階配慮事項^{*2}に選定した場合は、「配慮書段階の検討」におけ る結果を踏まえる^{*3}。

【解 説】

本項目の選定は、「4.1.1 事業特性の把握」で得られた「対象道路事業実施区域の位置」と「4.1.2 地域特性の把握」で得られた「現在又は将来の住居等の保全対象の立地 状況」の位置関係から判断し、選定するしないに拘わらず、その理由を明らかにして行う。

なお、「配慮書段階の検討」において、本項目を計画段階配慮事項に選定した場合は、 その結果を踏まえて選定する。

*1「事業特性、地域特性を踏まえて適切に設定する」

騒音の減衰の状況は、道路構造、沿道の地表面の状況、沿道の建物の立地状況等 により異なり、一概に騒音の影響範囲を定めることはできない。しかし、その影響 範囲は、項目の選定の時点において想定される道路条件、交通条件、沿道条件か ら、たとえば「4.1.7-2 参考予測手法」を用いて概算することができる。

*2「計画段階配慮事項」

「配慮書段階の検討」では、項目を「計画段階配慮事項」と呼ぶ。

*3「『配慮書段階の検討』における結果を踏まえる」

「配慮書段階の検討」において、概略ルート・構造の検討では回避又は十分に低 減されないおそれがある環境影響とされ、EIA(方法書以降の手続に係る環境影 響評価)で詳細に検討すべきとされた場合、その結果を踏まえて項目を選定する。

4.1.4 調査・予測区間の設定 「4.1.1 事業特性の把握」及び「4.1.2 地域特性の把握」に基づき、対象道路の うち、<u>明らかに騒音の影響がない又は極めて小さいと判断される区間*1</u>を調査・予測 区間から除外する。さらに、残りの区間を、4.1.1、4.1.2を踏まえて、調査及び予測 手法の選定並びに環境保全措置の検討の基本となる調査・予測区間に区分する。 なお、道路特殊部(交差部、インターチェンジ、トンネル坑口等)における騒音を 予測する必要がある場合は、これらも調査・予測区間として設定する。

【解 説】

以降の「4.1.5 調査及び予測の手法の選定」から「4.1.8 環境保全措置の検討」ま での検討は、この調査・予測区間毎に行われる。(図-4.1.2 参照)

注)その他の道路特殊部(交差部、インターチェンジ部周辺、掘割道路など)周辺に住居等が存在する 場合についても、必要に応じ調査・予測区間として設定する。

図-4.1.2 調査・予測区間の設定例

*1「明らかに騒音の影響がない又は極めて小さいと判断される区間」

「明らかに騒音の影響がない又は極めて小さいと判断される区間」とはトンネル 区間、あるいは、対象道路実施区域及びその周囲に住居等が現存せず、かつ将来の 立地が計画されていない区間等が該当する。

4.1.5 調査及び予測の手法の選定

調査及び予測の手法は、4.1.6-1及び4.1.7-2に示す参考手法を勘案しつつ、「配慮 書段階の検討」の結果、事業特性及び地域特性、方法書手続きを通じて得られる情報 等を踏まえ、選定する。より簡略な手法、あるいは、より詳細な手法を選定する場合 として、以下のような場合が想定される。

- 参考手法より簡略な手法を選定できる場合 調査すべき情報が現地調査を行わなくても<u>文献等により入手できる場合^{*1}</u>は、 調査の手法として、参考手法より簡略な手法を選定することができる。
- 2) 参考手法より詳細な手法を選定する場合

<u>道路構造が複雑な場合など^{*2}</u>参考予測手法における伝搬計算式の適用が困難か つ環境影響の程度が著しいものとなるおそれがある場合は、予測の手法として、 参考手法より詳細な手法を選定する。

【解 説】

調査及び予測の手法の選定にあたっては、省令第二十三条に基づき、参考手法を勘案 しつつ、「配慮書段階の検討」の結果、事業特性及び地域特性、方法書手続きを通じて 得られる情報等を踏まえ、選定する。上記では、参考手法より簡略又は詳細な調査及び 予測の手法を選定する場合の要件を具体的に示した。

*1「文献等により入手できる場合」

「文献等により入手できる場合」とは、「4.1.2 地域特性の把握」及び「4.1.6 調査の手法」において収集される文献その他の資料により、「4.1.6-1 1)調査す べき情報」が得られる場合が該当する。

*2「道路構造が複雑な場合など」

「道路構造が複雑な場合」とは、たとえば道路断面が複雑で多重反射音や拡散音 の影響を考慮すべき場合などがあたる。これらの影響で、「環境影響の程度が著し いものとなるおそれがある」(省令第二十三条第四項第一号)場合には、参考手法 より詳細な予測手法を選定する必要がある。

参考手法より詳細な予測手法には、模型実験、音響数値解析手法等があるが、詳細は、「4.1.7-3 参考手法より詳細な予測手法」を参照のこと。

4.1.6 調査の手法

4.1.6-1 参考調査手法

参考調査手法は、以下による。

- 調査すべき情報
 - (1) 騒音の状況

騒音の状況は、<u>等価騒音レベル (L_{Aeq})^{*1}を調査する。</u>

(2) 対象道路事業により新設又は改築される道路の沿道の状況

「対象道路事業により新設又は改築される道路の沿道の状況」とは、以下をいう。
 ①住居等の平均階数、騒音の影響を受けやすい面の位置*2
 ②地表面の種類*3
 ③建物の立地*4 (建物背後に予測地点を設定する場合)

2) 調査の基本的な手法

調査は、<u>文献その他の資料*5</u>及び現地調査による情報の収集並びに当該情報の整 理及び解析により行う。

(1) 騒音の状況

騒音の状況の現地調査は、騒音に係る環境基準で定められた<u>騒音の測定方法*6</u> による。必要に応じ、道路交通量等の条件から等価騒音レベルを<u>推計する方法*7</u> によることができる。

(2) 沿道の状況

沿道の状況の現地調査は、住宅地図や航空写真などの文献を用いる他、必要 に応じて現地踏査による目視確認を行う。

3) 調查地域

調査地域は、騒音の影響範囲内に住居等が存在する、あるいは立地する見込み がある地域とし、調査・予測区間毎に設定する。

- 4) 調査地点
 - (1) 騒音の状況

騒音の状況の調査地点は、予測地点の周辺で<u>調査地域を代表すると考えられ</u> <u>る地点*8</u>とする。

(2) 沿道の状況

沿道の状況の調査地点は、予測地点の周辺で、調査地域を代表すると考えら れる区域とする。

- 5) 調査期間等
 - (1) 騒音の状況

騒音の状況の調査期間等は、騒音が1年間を通じて平均的な状況であると考 えられる日の昼間及び夜間の基準時間帯*9とする。

4.1.6-2 参考手法より簡略な調査手法

調査すべき情報が文献その他の資料から入手できる場合は、現地調査を省略すること ができる。 別表第二 参考手法(調査の手法)

騒音:自動車の走行

一 調査すべき情報

- イ 騒音の状況
- ロ 対象道路事業により供用される道路の沿道の状況
- 二 調査の基本的な手法

文献その他の資料及び現地調査による情報(騒音の状況については、騒音に係る環 境基準に規定する騒音の測定の方法によるものとする。)の収集並びに当該情報の整 理及び解析

三 調查地域

音の伝搬の特性を踏まえて騒音に係る環境影響を受けるおそれがあると認められる 地域

四 調査地点

音の伝搬の特性を踏まえて調査地域における騒音に係る環境影響を予測し、及び評価するために必要な情報を適切かつ効果的に把握できる地点

五 調査期間等

音の伝搬の特性を踏まえて調査地域における騒音に係る環境影響を予測し、及び評価するために必要な情報を適切かつ効果的に把握できる期間、時期及び時間帯

【解 説】

省令別表第二(第二十三条関係)に規定する参考手法(調査の手法)について、「4.1.6-1 参考調査手法」で具体的に示した。なお、「1)調査すべき情報 (2)対象道路事業 により新設又は改築される道路の沿道の状況」の項目については、「技術指針通達第 8 の3(1)」で示されているものを抜粋した。また、「4.1.6-2 参考手法より簡略な調査 手法」は、「4.1.5 調査及び予測の手法の選定 1)参考手法より簡略な手法を選定で きる場合」に該当する調査手法である。これらの調査手法は、入手可能な情報の程度に より、予測・評価に対して、合理的に十分対応できる手法である。

調査の目的は、騒音の現況の把握、並びに予測地点の設定及び予測における伝搬計算 に必要な沿道状況の把握である。

*1「等価騒音レベル (*L*_{Aeq})」

「等価騒音レベル(*L*_{Aeq})」により騒音の現況を把握する。対象道路のうち、現 在、道路が存在しない区間は環境騒音を、道路が存在する区間は道路交通騒音を対 象に等価騒音レベルを調査する。

*2「住居等の平均階数、騒音の影響を受けやすい面の位置」

「住居等の平均階数、騒音の影響を受けやすい面の位置」は、予測地点の設定を 行う際に必要となる。なお、「騒音の影響を受けやすい面」については、「4.1.7 予測の手法」*13を参照のこと。 *3「地表面の種類」

「地表面の種類」は、地表面上を伝搬する騒音の超過減衰を求めるために必要で あり、沿道の地表面の種類を調査する。

予測の基本的な手法である ASJ RTN-Model では、地表面効果に関する補正量 ΔL_{grnd} を計算するための地表面として、「柔らかい畑地」、「草地」、「固い地 面・排水性舗装路面」の3種類が示されており、現地でこれらの区分のいずれに該 当するかを確認する。なお、これらの3種類に分類できない場合や、密粒舗装やコ ンクリート舗装等の舗装面では、 ΔL_{grnd} は見込まないこととする。

*4「建物の立地」

「建物の立地」は、建物・建物群の遮蔽効果を考慮した予測を行う場合に調査す る必要がある。なお、建物背後の予測手法は複数の手法があり、用いる手法により 調査すべき情報が異なる。「建物・建物群背後における騒音」の予測手法について は、「4.1.7 予測の手法」*11 を参照のこと。

*5「文献その他の資料」

既存の騒音の測定データ、住宅地図、航空写真などが該当する。「4.1.2 地域 特性の把握」で収集した情報(「配慮書段階の検討」で収集した情報を含む)を用 いることができる。

*6「騒音の測定方法」

具体的な測定方法は、日本工業規格Z8731「環境騒音の表示・測定方法(令和元年6月20日改正)」及び「騒音に係る環境基準の評価マニュアル 一般地域編」 (平成27年10月)による。

*7「推計する方法」

「推計する方法」は、現在の道路交通条件を用い、「4.1.7 予測の手法」によ り等価騒音レベルの推計を行う。既存道路による騒音の状況を多くの地点で把握す る必要がある場合に有効である。なお、推計を行った場合は、その際の道路交通条 件も明らかにする。

*8「調査地域を代表すると考えられる地点」

調査地点は、一般的に調査地域を代表する1地点を選定する。日本工業規格 Z8731(屋外における測定)では測定点は地上 1.2 ~ 1.5 m の高さとすると規定 されているため、調査地点の高さは原則として地上 1.2 m とする。

*9「騒音が1年間を通じて平均的な状況であると考えられる日の昼間及び夜間の基準時間帯」

調査時期は、環境騒音又は道路交通騒音が1年間を通じて平均的な状況であると 考えられる日を選定する。原則として土曜日、日曜日、祝日を除く平日で、雨、 雪、強風の日を避け、道路交通騒音が平均的な状況を呈する日を測定日として選定 する。なお、季節によっては、セミなどの虫の声、鳥の鳴き声等自然音が大きくな る場合もあり注意を要する。

基準時間帯別の等価騒音レベルは、連続測定あるいはその基準時間帯の中を騒音 が一定と見なせるいくつかの時間(観測時間)に区分し、観測時間別の測定を行っ た後これらをエネルギー平均することにより求める。観測時間は、原則として1時 間とする。

観測時間内の実測時間(実際に騒音を測定する時間)設定の考え方は、以下のと おりである。

- ①環境騒音については原則として連続測定とするが、深夜等で人の活動に伴う騒音の発生がほとんどないような場合には少なくとも 10 分以上の実測時間の測定で観測時間の代表値としてもよい。
- ②道路交通騒音については 10 分以上とする。経験的には、LAeqの測定誤差を 2 dB 程度以内に収めるためには、基準時間帯内に行われた総実測時間内に 200 台以上の車両が通過するように実測時間を定めればよいと考えられており²⁾、これを目安に実測時間を設定する。

4.1.7 予測の手法

4.1.7-1 予測の前提条件

1) 道路条件

「4.1.1 事業特性の把握」で示した事項に基づき、騒音の<u>予測に必要な道路条</u> <u>件*1</u>を設定する。

- 2) 交通条件
 - (1) 予測対象時期

予測対象時期は、供用開始後定常状態になる時期及び環境影響が最大になる 時期(最大になる時期を設定することができる場合に限る。)の他、必要に応 じて中間的な時期についても設定する。

①定常状態

定常状態としては、道路構造令第二条第二十一号で定める計画交通量が見込 まれる時期とする。

②環境影響が最大になる時期

省令第二十五条第1項第四号でいう「環境影響が最大となる時期(最 大になる時期を設定することができる場合に限る)」とは、対象道路の 供用予定時期以降に地域の自動車走行台キロの推計値が最大となる時期 がある場合は、その時期をいう。また、それに該当しない場合について は、対象道路事業の供用時期又は関連する道路整備等の影響を考慮し、 対象道路において定常状態となる交通量の推計値を明らかに超える時期 が設定できる場合、その時期をいう。

③中間的な時期

暫定供用・部分供用が予定されている場合にあっては、<u>必要に応じて^{*2}</u>当該 時期も予測対象時期として設定する。

(2) 交通量

<u>予測に用いる車種別時間別交通量*3</u>は、予測対象時期における年平均日交通 量及び車種構成を基に、類似地点における交通量の時間変動等を参考に設定す る。

(3) 走行速度

予測に用いる走行速度は、道路交通法施行令で定める<u>法定速度*4</u>、又は規制 速度を予め設定できる場合にはその速度を基本として設定する。ただし、この 場合、沿道環境の保全の観点から適切な値*5を用いることができる。

(4) 車種分類

予測に用いる車種は、原則として大型車類・小型車類の2車種分類*6とする。

4.1.7-2 参考予測手法

参考予測手法は、以下による。

 予測の基本的な手法
 「音の伝搬理論に基づく予測式」は、日本音響学会の道路交通騒音の予 <u>測モデル(ASJ RTN-Model)^{*7}</u>とする。

これにより、<u>予測地点における昼間、夜間別の等価騒音レベルを予測*8</u>する。 ただし平面道路に遮音壁を設置する場合等、必要に応じ<u>道路と平行な評価区間</u> における平均的な等価騒音レベル*9を指標として予測することができる。

2) 予測地域

予測地域は、調査地域(「4.1.6-1 参考調査手法 3)調査地域」参照)と同じとする。

3) 予測地点

「騒音に係る環境影響を的確に把握できる地点」とは、騒音に係る環境 基準との整合性を的確に評価できる地点をいう。

予測地点は、原則として<u>予測地域の代表断面*10</u>において、騒音に係る環境基準に規定された幹線交通を担う道路に近接する空間(以下「幹線道路近接空間」という)と<u>その背後地(以下「背後地」という)の各々に設定*11</u>する。この場合、予測地点の高さは幹線道路近接空間及び背後地における住居等の<u>各階の</u>平均的な高さ*12とする。

なお、建物の<u>騒音の影響を受けやすい面*13</u>における等価騒音レベルを予測す ることを原則とするが、<u>その面より明らかに等価騒音レベルが大きくなる地点*1</u> ⁴で予測することができる。

4.1.7-3 参考手法より詳細な予測手法

<u>道路構造が複雑な場合など*15</u>参考予測手法における伝搬計算式の適用が困難かつ、環 境影響の程度が著しいものとなるおそれがある場合は、<u>模型実験又は音響数値解析など*</u> <u>16</u>により騒音の伝搬特性を把握する。

4.1.7-4 予測の不確実性

<u>新規の手法を用いる場合その他の環境影響の予測に関する知見が十分蓄積されていな</u> い場合*¹⁷において、予測の不確実性の程度*¹⁸及び不確実性に係る環境影響の程度を勘案 して必要と認めるときは、当該不確実性の内容を明らかにできるようにしなければなら ない。 別表第二 参考手法(予測の手法)
騒音:自動車の走行
予測の基本的な手法

音の伝搬理論に基づく予測式による計算

二 予測地域

調査地域のうち、音の伝搬の特性を踏まえて騒音に係る環境影響を受けるおそれがあると認められる地域

三 予測地点

音の伝搬の特性を踏まえて予測地域における騒音に係る環境影響を的確に把握できる地点

四 予測対象時期等

計画交通量の発生が見込まれる時期

【解 説】

「4.1.7-1 予測の前提条件」では、騒音の予測に必要な道路条件及び交通条件を示した。準備書・評価書には、予測の再現性を担保するために、これらの予測の前提条件の他にも、音源位置、車種別時間別交通量、伝搬条件等の具体的な予測条件を可能な限り明らかにする必要がある。なお、条件として適用したかどうかのみではなく、予測地点別の適用状況について可能な範囲で記載することが望ましい。また、既存道路の騒音を 予測する必要がある時は、既存道路の予測条件も併せて整理する。

なお、対象事業以外の事業活動等(以下、当該事業活動等)によりもたらされる騒音 を、対象事業のEIA(方法書以降の手続に係る環境影響評価)の実施の段階で、当該 事業活動等の環境影響評価結果等から具体に把握できる場合、当該事業活動等の影響も 勘案して対象事業の予測を行う。ただし、評価指標が対象事業と当該事業活動等で異な る場合は、騒音の合成ができないため、当該事業活動等の影響を勘案した予測は実施で きない。

省令別表第二(第二十三条関係)に規定する参考手法(予測の手法)を、「技術指針 通達第8の3(2)」を踏まえて「4.1.7-2 参考予測手法」で具体的に示した。また、 「4.1.7-3 参考手法より詳細な予測手法」は、「4.1.5 調査及び予測の手法の選定2) 参考手法より詳細な手法を選定する場合」に該当する予測手法である。これらの予測手 法は、道路構造の複雑さの程度により、評価に対して、合理的に十分対応できる手法で ある。

*1「予測に必要な道路条件」

騒音の予測に必要な道路条件には、道路構造の種類、幅員構成、車線数、路面高 さ、道路縦断勾配、舗装種別などがある。これらは「4.1.1 事業特性の把握」で 示した事項を基本に騒音の予測に必要な精度で設定する。

*2「必要に応じて」

施設が部分的に完成し供用されるとき(暫定供用・部分供用)は、一般に事業計画

の目標時期に比べて影響が小さい。しかし、対象道路周辺の道路網の整備状況等によっては、これらの時期の交通量が目標時期の交通量を上回ることも考えられる。EIA(方法書以降の手続に係る環境影響評価)の実施の段階でこのような状況が生じる時期を設定できる場合には、当該時期の予測も行うものとする。

*3「予測に用いる車種別時間別交通量」

騒音の評価においては、騒音に係る環境基準との整合を検討する必要があるた め、昼間(午前6時から午後10時)夜間(午後10時から翌日の午前6時)別の等 価騒音レベルを予測(「4.1.7-2 参考予測手法」参照)する必要がある。したが って、車種別の走行速度が時間により変化しないと想定する場合は、車種別の昼 間、夜間別平均交通量を設定し、その交通条件で求められる昼間、夜間別の等価騒 音レベルを予測する。一方、既存道路における現況の等価騒音レベルを推計する場 合のように、車種別の走行速度を時間により変化させて設定する場合は、車種別時 間別交通量を設定し、時間別の等価騒音レベルを算出した後、昼間、夜間の基準時 間帯でエネルギー平均した等価騒音レベルを予測値とする。

*4「法定速度」

車種分類別の法定速度は、表-4.1.2に示すとおりである。

道路種別	大型車類	小型車類	
高速自動車国道	80 km/h	100 km/h	
その他の道路	60 km/h	60 km/h	

表-4.1.2 法定速度

*5「沿道環境の保全の観点から適切な値」

「沿道環境の保全の観点から適切な値」とは、沿道環境の保全の観点から、必要 に応じ法定速度(又は規制速度)よりも10 km/h 程度高めに設定した速度のことを いう。

*6「大型車類・小型車類の2車種分類」

2 車種分類に対応するナンバープレートの分類番号は、表-4.1.3 のとおりである。

9亩插八粨	細分類		八海委旦の道一文字	
2 单 裡 刀 頬	区分	旧区分	万規留ちの項一文十	
	乗用車	軽乗用車	$5, 3^{s}, 8^{s}$	
		乗用車	3、5、7	
小型車類	小型貨物車	軽貨物車	$4, 3^{s}, 6^{s}$	
		小型貨物車 (貨客車を含む)	4、6	
	並译化版本	普通貨物車類	1	
大型車類	百坦貝初早	特種(殊)車	8, 9, 0	
	バス	バス	2	

表-4.1.3 車種分類に対応するナンバープレートの分類番号

注1)細分類の「区分」は、平成11年度以降に実施した全国道路交通情勢調査の車種区分にあたる。

注2)細分類の「旧区分」は、平成10年度以前に実施した全国道路交通情勢調査の車種区分にあたる。 注3)分類番号の添字Sは、小型プレートを意味する。

*7「日本音響学会の道路交通騒音の予測モデル(ASJ RTN-Model)」

ASJ RTN-Model における適用範囲及び道路交通騒音の予測計算の手順を以下に示 す。(図-4.1.3)

図-4.1.3 道路交通騒音の予測計算の手順(ASJ RTN-Model)

- (1) 対象道路:道路一般部(平面、盛土、切土、高架)、道路特殊箇所(インター チェンジ部、連結部、信号交差点部、トンネル坑口周辺部、掘割・半地下部、 高架・平面道路併設部、複層高架部)。
- (2) 交通量:制限なし。
- (3) 自動車の走行速度:自動車専用道路と一般道路の定常走行区間については40 km /h~140 km/h、一般道路の非定常走行区間については 10 km/h ~60 km/h、自 動車専用道路のインターチェンジ部などの加減速・停止部については 0 km/h

 \sim 80 km/h。一般道路の信号交差点付近などの加減速・停止区間については 0 km/h \sim 60 km/h とする。

- (4) 予測範囲:道路から水平距離 200 mまで、高さ 12 m までとする(注)。
 注:検証されているのは上記の範囲であるが、原理的には適用範囲に制限はない。
- (5) 気象条件:無風で特に強い気温勾配が生じていない状態を標準とする。
- *8「予測地点における昼間、夜間別の等価騒音レベルを予測」

等価騒音レベルを予測する際の留意点を以下に示す。

- 交差部を予測地点とした場合には、既存道路による *L*_{Aeq}、対象道路による *L*_{Aeq}及び双方の複合による *L*_{Aeq}をそれぞれ計算する。
- ② 走行速度 60 km/h 以下の平面交差を有する道路は、原則として非定常走行部として計算する。信号等による停止の影響を受ける非定常走行の区間と一定の速度で走行する定常走行の区間との区分が困難なためである。非定常走行部とした計算値は定常走行部とした計算値より大きくなる。
- ③ 複数の車線を集約した仮想車線を音源とする場合は、計算精度に支障がないことを確認する。予測地点が車線に近接する場合及び遮音壁による回折や高架裏面による反射の影響を受ける場合には特に留意する。
- ④ 動力付二輪車類(ASJ RTN-Model でいう二輪車)を含む L_{Aeq}は表-4.1.3(4-1-19 頁)の車種分類に動力付二輪車類を加えて計算する。動力付二輪車類を含まない L_{Aeq}の計算値を有する場合には以下に例示する方法等で補正をすることができる。

動力付二輪車類の寄与を考慮した昼夜間別の L_{Aeq}の計算値は、小型車類と大型 車類の予測交通量で算出した L_{Aeq}に動力付二輪車類による L_{Aeq}の寄与ΔL_{Tw,D}を(解 説 4.1)等により求め、加算した値とする。ただし、定常走行部の計算で(解説 4.1)を適用できるのは時間帯により速度が変化しない条件の場合である。

$$\Delta L_{\mathrm{Tw},D} = 10 \cdot \log_{10} \left\{ 1 + \frac{\sum_{h} \left[10^{(a_{\mathrm{Tw}} - a_{\mathrm{L}})/10} q_{\mathrm{Tw}} \right]}{\sum_{h} \left[q_{\mathrm{L}} + 10^{(a_{\mathrm{H}} - a_{\mathrm{L}})/10} q_{\mathrm{H}} \right]} \right\}$$
(解説 4.1)

ここで、

D: 騒音に係る環境基準でいう昼間(午前6時から午後10時)と夜間(午後10時)から翌日の午前6時)の別(昼間:D=1、夜間:D=2)

h: 時間帯

q1: 小型車類の時間交通量

- a_H: ASJ RTN-Model における大型車類のパワーレベルの定数
- al: ASJ RTN-Model における小型車類のパワーレベルの定数
- *q*_H: 大型車類の時間交通量
- a_{Tw}: ASJ RTN-Model における二輪車のパワーレベルの定数
- *q*_{Tw}:動力付二輪車類の時間交通量

なお、図-4.1.4 及び表-4.1.4 は平成 17 年度道路交通センサス((社)交通 工学研究会)の昼夜別(昼間 12 時間、夜間 12 時間)交通量(夜間交通量 0 の 1 点を除く 33,323 点) での大型車混入率 $q_{r,H,D}$ と ASJ RTN-Model で計算した密粒舗 装の $\Delta L_{Tw,D'}$ の関係を示す。なお、平成 22 年度以降の道路交通センサスの調査では、 二輪車の台数を計測していないため、平成 17 年度道路交通センサスの結果で検 討を行っている。

大型車混入率が大きくなると $\Delta L_{\text{Tw}, D'}$ は小さくなり、大型車混入率が 0.2 (= 20%) 以上の場合には 99%の道路で $\Delta L_{\text{Tw}, D'}$ は 0.5 dB 以下となる。動力付二輪車類の時間 交通量の予測が困難な場合等においては(解説 4.2)で昼間、夜間別の大型車混 入率 $q_{\text{r.H}, D}$ を計算し、表 -4.1.4 から $\Delta L_{\text{Tw}, D}$ の 99 パーセンタイルを推定できる。

図 - 4.1.4 道路交通センサスの交通量に基づいた qr, H, D'と△LTw, D'の関係

$q_{ m r,H,\it D}$	データ数	$\Delta L_{Tw,D'}$ の 99 パーセンタイル[dB]
0.1 未満	13,059	1.31
0.1以上0.2未満	12,938	0.90
0.2以上 0.3 未満	4,368	0.50
0.3以上 0.4 未満	1,533	0.32
0.4以上 0.5 未満	652	0.24
0.5以上0.6未満	384	0.12
0.6以上	389	0.04

表-4.1.4 道路交通センサスの交通量に基づいた△L_{Tw.D}, の99パーセンタイル

*9「道路と平行な評価区間における平均的な等価騒音レベル」

平面道路に遮音壁を設置する際には、沿道へのアクセス確保のため遮音壁が分断されることが多く、遮音壁背後の騒音レベルは開口部との位置関係により複雑に変化するため、評価区間を代表する評価点の選定が困難な場合がある。このような場合は、下記の式により道路と平行な評価区間の L_{Aeq} のエネルギー平均値 $\overline{L_{Aeq}}$ を評価指標とすることが可能である³⁾。ここで $\overline{L_{Aeq}}$ は(解説 4.3)で与えられる。

$$\overline{L_{Aeq}} = 10 \cdot \log_{10} \left(\frac{1}{x_2 - x_1} \int_{x_1}^{x_2} 10^{L_{Aeq}(x)/10} \, \mathrm{d}x \right)$$
 (解説 4.3)

ここで、*x*2-*x*1:評価区間の延長

また、沿道に建物が立地する地域において、建物の遮蔽効果を考慮しつつ建物の背後 に評価点を選定する際にも、選定位置により騒音レベルが複雑に変化するため、評価区 間を代表する評価点の選定が困難な場合がある。このような場合にも、道路と並行な評 価区間の L_{Aeq} のエネルギー平均値 $\overline{L_{Aeq}}$ を評価指標とすることが可能である。建物の背後 の評価区間のエネルギー平均値を算出する際には、評価区間の建物密度等のパラメー タから建物群による減衰量を算出し、建物群が存在しない場合の $\overline{L_{Aeq}}$ を補正すること で算出する⁴⁾。

なお、評価区間の定め方によって本指標の値は変化するため、評価区間の設定には注 意を要する。

*10「予測地域の代表断面」

図-4.1.5 に示すように、一般的に予測地域の代表断面は、道路の縦断方向と直 角かつ鉛直に設定する。ただし、交差部、インターチェンジ部、トンネル坑口部等 で、騒音の平面的な分布状況を予測する必要がある場合は、代表断面を水平に設定 することもある。

*11「その背後地(以下「背後地」という)の各々に設定」

背後地においては、一般的に幹線道路近接空間との境界付近(対象道路からの距離が背後地内では最も小さい)の地点での予測が特に重要となるため、境界付近に 予測地点を設定する必要がある。ただし、道路構造及び周辺地形等によっては、幹線道路近接空間との境界から離れた地点の方が、騒音レベルが大きくなる場合があ ることに注意する必要がある。

また、沿道の建物・建物群の背後に予測地点を設定する場合には、ASJ RTN-Model の「6.建物・建物群背後における騒音」⁵⁾を用いて、建物・建物群の遮蔽効果を考慮 することが可能である。建物・建物群背後の予測手法は複数の手法が示されており、 沿道建物が単独か複数(建物群)か等の状況に応じて手法を選択する必要がある。な お、*9 に記載のとおり、建物群の遮蔽効果を考慮しつつ、建物の背後の評価区間を 代表する評価点を選定する場合には、エネルギー平均値 $\overline{L_{Aeq}}$ を評価指標とすることも 可能である⁴⁾

一方、平面道路において道路端における予測値がすでに背後地の環境基準値以下 となっている場合など、背後地における LAeq が環境基準値以下になることが明らか な場合は、背後地での予測を省略することができる。

*12「各階の平均的な高さ」

「各階の平均的な高さ」は、日本工業規格 Z8731 において、「建物に対する騒音の影響の程度を調べる場合には建物の床面から 1.2 ~ 1.5 m の高さとする」と規定されているため、各対象階の床面から 1.2 m の高さを基本とし、適切に設定する。ただし、1 階を対象とする場合は、調査地点同様に、原則として地上 1.2 m の高さとする。

*13「騒音の影響を受けやすい面」

「騒音の影響を受けやすい面」(以下、「影響面」という)は、通常、音源側の 面であると考えられる。しかし、開放生活(庭、ベランダ等)側の向き、居寝室の 位置等により音源側と違う面になることがある。例えば、道路に面する側が窓のな い壁である場合や、台所、浴室等に用いられているような場合には、開放生活側あ るいは居寝室がある側の面を影響面とする。

また、予測においては、塀等の遮蔽物による効果を見込むことができる。

*14「その面より明らかに等価騒音レベルが大きくなる地点」

影響面が、個々の建物により異なり一律に設定できない場合は、一般的に騒音の 影響が大きいと考えられる道路側の面とする。たとえば、平面道路の幹線道路近接 空間において、影響面の位置が様々な場合は、道路の敷地の境界線に予測地点を設 置しても差し支えない。

*15「道路構造が複雑な場合など」

「4.1.5 調査及び予測の手法の選定」*2を参照のこと。

*16「模型実験又は音響数値解析など」

対象道路の道路構造又は沿道の地形若しくはその表面性状などが複雑であり、参 考予測手法に示す伝搬理論式の適用が困難な場合は、模型実験又は音響数値解析等
により騒音の伝搬特性を把握する。このようにして得られた伝搬特性と交通条件から、参考予測手法を勘案して予測を行う。

1) 模型実験

模型実験は、実物の 1/n の縮尺の模型を製作し実物の n 倍の周波数となる音源を 用いて音響伝搬特性を調べるものであり、3 次元の伝搬特性を直接的に得ることが できる。模型実験では、模型と実物との音響相似則を整合させることが重要であり、 境界面に使用する模型材料の吸音率や透過損失、音源の指向性や空気吸収の影響等 に配慮が必要である。

2) 音響数値解析

音響数値解析の代表的手法として、波動音響理論に基づく境界要素法(BEM: Boundary Element Method)や時間領域差分(FDTD: Finite Difference Time Domain)法、及び幾何音響理論に基づく音線法等がある。

BEM や FDTD 法は、境界面の様々な反射率特性や複雑な幾何形状による反射、回折 の効果を周波数別に計算することができる。この手法は、平行壁を有する平面道路 上に高架道路が併設される場合や半地下構造道路で張り出し部分が長い場合など、 境界条件が複雑な音場解析に用いられる。

一方、音線法は、音源から全方向に一定の角度間隔で放射した音の軌跡(音線) を音のエネルギーの伝搬と考え、音線の粗密状況等から音圧レベルを求める手法で あり、複雑な幾何形状を有する境界面における高次の多重反射音の解析等に用いら れる。ただし、基本的には、波動性は考慮できない。

*17「新規の手法を用いる場合その他の環境影響の予測に関する知見が十分蓄積されて いない場合」

これには、参考予測手法として設定している ASJ RTN-Model あるいは参考手法より詳細な手法として用いる模型実験、音響数値解析手法等をこれらの適用範囲を超 えて用いる場合や、これらの手法以外で知見が十分蓄積されていない新規の予測手 法を用いる場合が相当する。

*18「予測の不確実性の程度」

予測の不確実性の程度は、予測の前提条件を変化させて得られる、それぞれの予 測の結果のばらつきの程度により、把握する。

4.1.8 環境保全措置の検討

1) 環境保全措置の検討

予測結果等から、環境影響がない又は極めて小さいと判断される場合以外にあっ ては、事業者により実行可能な範囲内で環境影響をできる限り回避又は低減するこ と及び国又は関係する地方公共団体が実施する環境の保全に関する施策によって示 されている基準又は目標の達成に努めることを目的として、環境保全措置^{*1}を検討 する。その検討が<u>EIAにおいて段階的に実施された場合^{*2}は、それぞれの検討の</u> 段階における環境保全措置の具体的な内容を明らかにできるよう整理する。

また、「配慮書段階の検討」を行った場合には、その検討以降に決定した<u>概略計</u> 画においてどのように環境影響が回避・低減されているか^{*3}について整理する。

2) 検討結果の検証

1)の検討を行った場合は、環境保全措置についての<u>複数案の比較検討*4</u>、実行 可能なより良い技術が取り入れられているかどうかの検討により、実行可能な範囲 内において環境影響をできる限り回避又は低減されているかどうかを検証する。

- 3) 検討結果の整理
 - 1)の検討を行った場合は、以下の事項を明らかにする。
 - (1) 環境保全措置の実施主体、方法その他の環境保全措置の実施の内容
 - (2) 環境保全措置の効果、種類及び<u>当該環境保全措置を講じた後の環境の状況の</u> 変化*⁵並びに必要に応じ当該環境保全措置の効果の不確実性の程度
 - (3) 環境保全措置の実施に伴い生ずるおそれがある環境への影響*6
- 4) 事後調査

以下の事項に該当する場合であって、かつ環境影響の程度が著しいものとなるお それがあるときは、<u>事後調査を実施*7</u>する。

- (1) 予測の不確実性の程度が大きい予測手法を用いる場合で環境保全措置を講ず る場合
- (2) 効果に係る知見が不十分な環境保全措置を講ずる場合

【解説】

*1「環境保全措置」

環境保全措置の検討においては、事業者により実行可能な範囲で環境影響を回避 又は低減し、騒音に係る環境基準の達成に努める。

この場合、遮音壁等の道路構造対策による環境保全措置を実行可能な範囲で講じ たにもかかわらず、屋外の騒音レベルが環境基準値を超過するときは、既存道路に 対象道路が併設される場合等における「幹線道路の沿道の整備に関する法律」(昭 和 55 年法律第 34 号)の適用の見通し等を踏まえ、沿道の建物の防音対策を検討す る。

なお、環境保全措置の例、その概要と効果の把握方法等を表-4.1.5に示す。

環	境保全措置の例	対策の概要	実施に伴い生ずるおそれ のある他の環境への影響	効果の把握方法
	通常遮音壁	遮蔽効果により騒音を 低減する。必要な用地幅 が少なく、施工も容易で ある。	遮音壁の高さが高くな ると、景観、日照阻害な どの問題が生じること がある。	ASJ RTN-Model による。
遮音壁注1	張り出し型遮音壁	遮音壁の上端を折り曲 げることで、設置高さに 対してより大きな回折 減音量が得られる。他の 環境要素への影響を軽 減でき、遮音壁の高さに 制約がある場合にも有 効である。	日照阻害、景観への影響 は通常遮音壁に比べて 小さい。	ASJ RTN-Model による。厚 みがある障壁とみなして、 直角ウェッジの式を用い たうえで、張り出し型遮音 壁の種類に応じた補正を 加えて算出する。
	先端改良型遮音壁	遮音壁の先端に吸音体 や突起を取り付けるこ とにより、より大きな騒 音低減量が得られる。他 の環境要素への影響を 軽減でき、遮音壁の高さ に制約がある場合にも 有効である。	日照阻害、景観への影響 は通常遮音壁に比べて 小さい。	ASJ RTN-Model による。 回折補正量は、音源と音源 側回折点、予測点と予測点 側回折点を結ぶ直線の交 点に先端を持つ仮想直壁 の回折補正量に、先端の工 夫による効果の補正量を 加えて計算する。
	低層遮音壁 ⁶⁾	高さが1~1.5m程度の 低い遮音壁。都市内の平 面道路では沿道アクセ ス機能の確保のため、多 くの開口部を有し不連 続となる。	他の環境要素への影響 はほとんどない。	ASJ RTN-Model による。 なお、開口部の存在により 低層遮音壁背後の騒音レ ベルが地点毎に異なる場 合は、評価区間の等価騒音 レベルのエネルギー平均 値 L_{Aeq} を用いることが可能 である ³⁾⁴⁾ 。
遮音築堤		騒音を遮蔽する築堤。遮 音壁よりも用地幅が必 要となり、限られた幅員 の中では築堤高が制限 されるため、遮音壁を併 用する場合がある。	遮音壁と同様に、日照阻 害、景観への影響が生じ るが、植樹を行うことに より、遮音築堤が遮蔽さ れ景観への影響を低減 できる。	ASJ RTN-Model による。
排水性舗装 ・ 高機能舗装Ⅱ型 ^{注2}		タイヤ/路面音(主とし てエアポンピング音)の 減音効果や伝搬過程に おける吸音効果が見込 まれる。しかし、空隙詰 まりなどにより減音効 果が経時的に低下する。	他の環境要素への影響 は、ほとんどない。	ASJ RTN-Model による。
二層式排水性舗装		排水性舗装(一層式)を 粒径の異なる上・下二層 に分け、舗装の表面をき め細かくした。	他の環境要素への影響 は、ほとんどない。	騒音低減効果について検 討されているが ⁷¹ 、計算方 法は確立していない。
吸音処理		高架・平面道路併設部、 複層高架部における高 架裏面での反射音や、掘 割道路の側壁、トンネル 坑口部での反射音など の対策として用いられ る。沿道の騒音レベルに おける反射音の寄与が 大きい時に有効である。	他の環境要素への影響 はない。	ASJ RTN-Modelによる。吸 音率は平均斜入射吸音率 ⁸⁾ を用いる。

表-4.1.5 環境保全措置の例

環境施設帯の設置	車道端から10m又は20m の土地を道路用地とし て取得するものであり、 植樹帯、歩道、副道等で 構成される。距離減衰に よる環境改善効果が見 込まれる。また、道路の 地元サービスの向上に も寄与する。	大気質、振動、低周波 音、日照阻害の緩和及 び良好な景観の形成 が図られるとともに、 環境施設帯を利用し て植樹等を連続させ ることにより、生物の 生息・生育環境の創出 が図られる。	ASJ RTN-Model による。
植栽による道路の遮蔽	騒音の発生源である自動車を視覚的に遮蔽す ることにより、歩行者や 沿道住民に対して心理 的な減音効果が期待さ れる。	 排出ガスの拡散を促進させるとともに、窒素酸化物(NOX)の吸収及び浮遊粒子状物質(SPM)の吸着効果による大気の浄化や、良好な景観の形成が図られる。 	遮蔽による騒音低減効果は 樹種や植栽密度により異な る。樹木による騒音低減効 果はわずかながら見込める という知見 ⁹ もあるが、計算 方法は確立していない。
建物の防音対策	窓や壁の改良及び空調 設備の設置。	他の環境要素への影 響はない。	屋内へ透過する騒音レベル は、「騒音に係る環境基準」 にしたがい、原則として建 物の騒音の影響を受けやす い面に入射する騒音レベル (「4.1.7 予測の手法」 参照)から、その面の建物 の防音性能値 ¹⁰⁾ を差し引く ことにより求める。
吸音ルーバーの設置	半地下構造道路(掘割道 路で展り出した構造物 を有する場合)の騒音対 策の一つで、開口部にス リット状又は格子状に 吸音性のパネルを設置 して、道路外部へ伝搬す る騒音を低減する。	大気質への影響につ いては、設置予定の施 設に応じて個別に検 討する必要がある。	指向性点音源モデルによる 簡易計算法を用いる場合に は、吸音ルーバーの設置効 果に関する補正量(ΔL_{louver}) を算入することで効果の 把握が可能である ¹¹⁾ 。ただ し、補正量の設定は設置予 定の施設に応じて個別に検 討する必要がある。

- 注1) 遮音壁による騒音低減量の計算においては以下に留意する。
 - ①離散点音源は車線別に設定する。回折補正量が車線の位置により大きく異なるためである。
 - ②開口部の位置が設定できる場合には開口部の影響を考慮する。
 - ③吸音性遮音壁(表面を吸音処理した遮音壁、統一型遮音壁と呼ばれることもある)の吸音効果を見込んだ場合、事業実施段階で反射性遮音壁(透光型遮音壁等)へ計画変更を行うと、想定していた騒音低減効果が得られないことに注意する必要がある。
 - ④沿道地表面が舗装面であることなどによって、遮音壁背後の予測点において 地面反射の影響が無視できない場合は、鏡面反射を仮定した地面反射音を加 算する。
 - ⑤遮音壁、低層遮音壁、又は植栽の検討では交通安全への影響を確認する。
 - ⑥遮音壁の回折補正量計算は、採用するタイプにより異なる点に注意する必要 がある。ASJ RTN-Model「3.2回折に伴う減衰に関する補正量 *ΔL* dif」の算出に

あたって、通常遮音壁(直壁や先端をカーブさせている場合)や先端改良型遮 音壁を計算する場合は、厚みがない薄い板状の形式として、ナイフウェッジの 式を用いる。

張り出し型遮音壁(上端を直角に近い角度で折り曲げた遮音壁)を採用する場合は、厚みのある障壁として、直角ウェッジの式を用いる。

図-4.1.6 張り出し型遮音壁の例

注 2) 排水性舗装や高機能舗装Ⅱ型による騒音低減量の計算においては以下に留意する。 ①排水性舗装と高機能舗装Ⅱ型の舗装の違いは表-4.1.6のとおりである。採用する舗 装に応じてパワーレベルを選択する必要がある。

表-4.1.6 排水性舗装と高機能舗装Ⅱ型の概要¹²⁾

なお、自動車専用道路において、パワーレベルの経年変化を調査した結果、2003 年度以降に敷設された排水性舗装及び高機能舗装 II 型での調査では、敷設直後から の経過年数によるパワーレベルの変化はほとんど見られないことが確認されている。 ただし、排水性舗装は敷設 11 年時点まで、高機能舗装 II 型は舗設 6 年時点までの測 定結果であり、日通過交通量が 15,000 台以下の定常走行データに基づく検討結果 である点に留意する必要がある。¹³⁾ ②ASJ RTN-Model 2018では、排水性舗装のパワーレベルについて、自動車専用道路におけるパワーレベルと一般道路におけるパワーレベルがそれぞれ設定されているため、予測対象とする路線に応じて使い分ける必要がある。高機能舗装Ⅱ型については、自動車専用道路におけるパワーレベルのみが設定されている。

なお、一般道路として計画する場合にも、沿道との接続が少ないバイパスと して設計速度 60km/h 以上の規格で計画し定常走行が期待され、かつ自動車専 用道路と同等程度のメンテナンスを行う予定の場合には、自動車専用道路のパ ワーレベルを適用することも考えられる。

*2「EIAにおいて段階的に実施された場合」

EIAとは、方法書以降の手続に係る環境影響評価のことである。段階的に実施 された場合とは、方法書、準備書、評価書の各段階において環境保全措置の内容が 変化した場合が相当する。

*3「概略計画においてどのように環境影響が回避・低減されているか」

「配慮書段階の検討」を行った場合、その検討以降に決定した概略計画を他の複 数案と比較し、回避・低減されている環境影響について、以下を整理する。

・環境影響の回避・低減を検討した対象(コントロールポイント等)

・上記対象に関する環境影響の回避・低減の状況

この整理により、「配慮書段階の検討」からEIAを通じて、事業計画の検討の 中でどのように環境への配慮がなされたのか、総合的に把握することが可能にな る。

なお、(「配慮書段階の検討」を含む)概略ルート・構造の検討から、概略計画 の決定に至る過程(プロセス)については、構想段階の計画策定プロセスに関する ガイドライン等に基づくものとする。

*4「複数案の比較検討」

「複数案の比較検討」は、複数の環境保全措置について、その騒音低減効果及び 他の環境要素への影響の程度などを併せて比較検討することにより行う。

たとえば、低層住宅が大部分であるが、一部高層住宅も立地する地域を対象道路 が通過する場合を想定する。この場合、非常に高い遮音壁を設置する案と、比較的 低い遮音壁にとどめ高層住宅の高層階には防音対策を講じる案が考えられるとす

る。どちらの案が望ましいかは、騒音の低減効果のみならず低層住宅の日照阻害や 景観の問題も併せて検討する必要があると考えられる。

*5「当該環境保全措置を講じた後の環境の状況の変化」

「当該環境保全措置を講じた後の環境の状況の変化」の検討にあたっては、環境 保全措置の効果を可能な範囲で定量的に把握し、当該環境保全措置実施後における 等価騒音レベルを予測する。

*6「環境保全措置の実施に伴い生ずるおそれがある環境への影響」

他の環境要素に対して悪い影響を及ぼす場合もあるので、それらの影響も配慮す る必要がある。「環境保全措置の実施に伴い生ずるおそれがある環境への影響」の 代表例として、遮音壁設置による日照阻害などが考えられる。 *7「事後調査を実施」

省令第三十二条に規定された事後調査の必要性については、以下のように考えら れる。

参考予測手法としている ASJ RTN-Model あるいは参考手法より詳細な手法として いる模型実験、音響数値解析手法等を、その適用範囲において環境保全措置の効果 を予測する場合は、その効果に関する知見が十分に蓄積されていると判断でき、事 後調査を行う必要はないと考えられる。

一方、これらの手法を用いても、その効果が予測できないような新たな環境保全 措置を講じる場合、その不確実性に係る環境影響の程度を勘案して必要と認めると きは、事後調査を実施する必要がある。

4.1.9 評価の手法

評価の手法は以下による。

なお、「配慮書段階の検討」において、EIAでさらに詳細に検討する必要がある とされた内容がある場合は、その対応状況を整理する。*1

1) 回避又は低減に係る評価

調査及び予測の結果並びに環境保全措置の検討を行った場合にはその結果を踏 まえ、自動車の走行に係る騒音に関する影響が、事業者により実行可能な範囲内 でできる限り回避、又は低減されており、必要に応じその他の方法により環境の 保全についての配慮が適正になされているかどうかについて、見解を明らかにす ることにより行う。

2) 基準又は目標との整合性の検討

国又は関係する地方公共団体による環境保全の観点からの施策によって、選定 項目に関して<u>基準又は目標*2</u>が示されている場合には、当該基準又は目標と調査 及び予測の結果との間に整合性が図られているかどうか*3を評価する。

3)事業者以外の者が行う環境保全措置 既存道路の管理者等、<u>事業者以外の者が行う環境保全措置^{*4}の効果を見込む場</u> 合は当該措置の内容を明らかにする。

【解 説】

*1「『配慮書段階の検討』において、EIAでさらに詳細に検討する必要があるとされ た内容がある場合は、その対応状況を整理する」

「配慮書段階の検討」において、概略ルート・構造の検討では回避又は十分に低 減されないおそれがある環境影響とされ、EIAで詳細に検討すべきとされた場

合、それに対応した旨を明らかにする。

*2「基準又は目標」

自動車の走行に係る騒音において整合を図る基準又は目標は、表-4.1.7のとお りである。

環境要素の区分	影響要因の区分	標準的に整合を図る基準又は目標
騷 音	自動車の走行	騒音に係る環境基準(平成10年9月30日環告64号) の道路に面する地域の基準及び地方公共団体の定 める騒音に関する目標

表-4.1.7 整合を図る基準又は目標

注)環境基本法第十六条には、環境基準について、以下のとおり記されている。

*3「整合性が図られているかどうか」

騒音に係る環境基準(道路に面する地域)(表-4.1.8参照)との整合性の考え 方について以下に補足する。

 [・]政府は、人の健康を保護し、及び生活環境を保全する上で維持されることが望ましい基準を定めるものとする。

 [・]政府は、公害の防止に関する施策を総合的かつ有効適切に講ずることにより、環境基準が確保 されるように努めなければならない。

1)地域類型当てはめの考え方

「騒音に係る環境基準の類型を当てはめる地域の指定に係る法定受託事務の処理 基準について(平成13年1月5日付環大企第3号)」によれば、地域類型の当て はめは、原則として、用途地域に準拠して以下のように行うとされている。

A地域:第一種低層住居専用地域、第二種低層住居専用地域、第一種中高層住居 専用地域、第二種中高層住居専用地域

B地域:第一種住居地域、第二種住居地域、準住居地域

C地域:近隣商業地域、商業地域、準工業地域、工業地域

なお、用途地域のうち、工業専用地域については、地域の類型の当てはめを行わ ない。

地域類型の指定が行われていない場合は、厳密には、整合を図るべき基準又は目 標はないと考えられる。しかし、このような場合でも、当該地域の自然的条件、住 居等の立地状況、土地利用の動向等を勘案し、用途地域の定められている地域の状 況を参考にしつつ、相当数の住居が存在する地域等に対し適切な地域類型の当ては めを想定し、参考として騒音に係る環境基準との整合性を検討することが望まし い。

2) 幹線交通を担う道路に近接する空間の考え方

「騒音に係る環境基準の類型を当てはめる地域の指定に係る法定受託事務の処理 基準について(平成13年1月5日付環大企第3号)」によれば、「幹線交通を担 う道路」とは、高速自動車国道、一般国道、都道府県道、4車線以上の市町村道な どが掲げられており、環境影響評価の対象となる道路は、「幹線交通を担う道路」 と考えられる。

また、「幹線交通を担う道路に近接する空間」とは、次の車線の区分に応じ道路 端からの距離によりその範囲を特定するものとされている。

① 2 車線以下の車線を有する幹線交通を担う道路
 15 m

②2車線を超える車線を有する幹線交通を担う道路 20 m

3) 建物の防音対策と屋内へ透過する騒音に係る基準との整合性

屋内へ透過する騒音に係る基準の適用条件は、「個別の住居等において騒音の影響を受けやすい面の窓を主として閉めた生活が営まれていると認められる」場合とされている。「騒音に係る環境基準の改正について(平成10年9月30日付環大企第257号)」によれば、この場合とは「通常、建物の騒音の影響を受けやすい面の窓が、空気の入れ換え等のために時折開けられるのを除いて閉められた生活が営まれているということであり、それ以外の側面で主として窓を閉めた生活が営まれていることを必要としないが、窓を閉めた生活が営まれている理由としては、建物の防音性能が高められ、空調設備が整備されているといった対策等により生活環境の確保が十分に図られていることが必要である」とされている。

一般的に建物の防音対策を行う場合は、その防音性能を高めるとともに空調設備 も併せて整備することから、防音対策により屋内へ透過する騒音に係る基準を達成 すれば、環境基準の達成に努めていると考えられる。 *4「事業者以外の者が行う環境保全措置」

新設道路と既存道路からの合成騒音を低減するためには、新設道路のみならず、 既存道路における環境保全措置が求められる。なお、評価において、既存道路の管 理者等による環境保全措置の効果を見込む場合は、省令第二十六条第五号の規定に したがい、当該措置の内容を明らかにできるようにする必要がある。

表-4.1.8 騒音に係る環境基準(道路に面する地域)

	其 淮	値				
地域の区分		夜間				
A地域のうち2車線以上の車線を有する道路に面	す 60デシベル	55デシベル				
る地域	以下	以下				
B地域のうち2車線以上の車線を有する道路に面	す 65デシベル	60デシベル				
る地域及びC地域のうち車線を有する道路に面す	る以下	以下				
この場合において、幹線交通を担う道路に近接する て次表の基準値の欄に掲げるとおりである。	る空間については、上表	にかかわらず、特例	りとし			
上 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一		10				
	夜 「					
70ケシベル以下	65テシベル					
個 ろ 個別の住居等において騒音の影響を受けやすい面の窓を主として閉めた生活が営まれてい ると認められるときは、屋内へ透過する騒音に係る基準(昼間にあっては45デシベル以下、 夜間にあっては40デシベル以下)によることができる。						
 (注) 昼間:午前6時から午後10時まで 夜間:午後10時から翌日の午前6時まで А地域:専ら住居の用に供される地域 В地域:主として住居の用に供される地域 C地域:相当数の住居と併せて商業、工業等の用に供される地域 						

引用文献

- 1)日本音響学会道路交通騒音調査研究委員会:道路交通騒音の予測モデル "ASJ RTN-Model 2018",日本音響学会誌, Vol. 75, No. 4, pp. 188-250, 2019.
- 2) 龍田建次,吉久光一,久野和宏: L_{Aeq}の測定値に及ぼす観測時間長等の影響,日本 音響学会誌, Vol. 54, NO. 8, pp. 554-560, 1998.
- 3)上坂克巳,大西博文,鉢峰清範,千葉隆,高木興一:低層遮音壁による減音効果の予 測・評価に関する研究,土木学会環境工学研究論文集,第34巻,pp.307-317,1997.
- 4)上坂克巳,大西博文,千葉隆,高木興一:道路に面した市街地における区間平均等
 価騒音レベルの計算方法,騒音制御, Vol.23, No.6, pp.441-451, 1999.
- 5)日本音響学会:道路交通騒音の予測モデル "ASJ RTN-Model 2018"の解説と手引き 「6. 建物・建物群背後における騒音」,日本音響学会,pp.164-174,2019.
- 6)上坂克巳,大西博文,木村健治,鉢嶺清範:低層遮音壁の設計方法に関する研究, 土木研究所資料第 3705 号,2000.
- 7)橋本喜正,田中輝栄:二層式低騒音舗装における音響パワーレベル,都土木技術支援・人材育成センター年報, pp. 17-30, 2019.
- 8)鉢嶺清範,大西博文,上坂克己,小寺隆司:斜入射吸音率による吸音板の評価-建 設技術評価制度から-,日本音響学会平成9年度秋季研究発表会講演論文集Ⅱ, pp.777-778,1997.
- 9) 吉永弘志, 大河内恵子, 長谷川啓一, 井上隆司: 植樹帯での道路交通騒音の減衰量に かかる測定と解析, 土木学会論文集 G(環境), 72(6), II_1-II_8, 2016.
- 10) 植村圭司, 上坂克巳, 大西博文, 岩瀬昭雄: 沿道建物の一般的な防音性能について, 日本音響学会騒音・振動研究会資料, N-99-46, 1999.
- 11) 松本敏雄,坂本慎一:吸音ルーバーを設置した半地下構造道路沿道の騒音予測計算 方法,日本音響学会騒音・振動研究会資料,N-2014-20, 2014.
- 12) 福島昭則, 一木智之, 太田達也, 舩橋修, 大蔵崇, 岩吹啓史, 兼重仁:自動車専用道路 における自動車走行騒音のパワーレベル式とパワースペクトル, 日本音響学会騒 音・振動研究会資料, N-19-14, 2019.
- 13)日本音響学会:道路交通騒音の予測モデル "ASJ RTN-Model 2018"の解説と手引き 「2.2.3 排水性舗装のパワーレベル」「2.2.4 高機能舗装Ⅱ型のパワーレベル」, 日本音響学会, pp. 52-58, 2019.

謝

辞

このたび、道路環境影響評価の技術手法「4. 騒音 4.1 自動車の走行に係る騒音」を改 定するに当たり、「令和元年度 道路環境影響評価の技術手法に関する騒音予測手法検討委 員会」において、専門的な技術事項に関する御審議をして頂きました。委員各位に対して、 ここに心より感謝の意を表します。

また、各地方整備局等の皆様からも、貴重な御意見を賜りました。協力していただいた皆 様へ心から感謝の気持ちと御礼を申し上げたく、謝辞にかえさせていただきます。

	氏 名	所属機関	部署	役 職
委員長	坂本 慎一	東京大学生産技術研究所		教 授
	岡田 恭明	名城大学理工学部建築学科		教 授
委員	大蔵崇	(株)高速道路総合技術研究所	交通環境研究部 環境研究室	室長
	坂本 一朗	(独)自動車技術総合機構 交通安全環境研究所	環境研究部	部 長
(五十音順)	穴井 謙	福岡大学工学部 建築学科		教授
	松本 敏雄	(一財)小林理学研究所	騷音振動研究室	主 任 研究員
オブザーバー	林将宏	国土交通省道路局	環境安全·防災課	課長補佐
	間渕 利明	国土交通省国土技術政策総合研究所	道路交通研究部 道路環境研究室	室長
事務局	澤田 泰征	国土交通省国土技術政策総合研究所	道路交通研究部 道路環境研究室	主 任 研究官
	大河内恵子	国土交通省国土技術政策総合研究所	道路交通研究部 道路環境研究室	研究官
(数数岐、武民は今知ら左ら日)				

令和元年度 道路環境影響評価の技術手法に関する騒音予測手法検討委員会

(敬称略、所属は令和2年2月)

く参考資料>

道路交通騒音の予測モデル

"ASJ RTN-Model 2018"

この資料は日本音響学会誌 75 巻 4 号 (2019), pp. 188-250 (道路交通騒音の予測モデル "ASJ RTN-Model 2018" 日本音響学会道路交通騒音調査研究委員会 著)を転載したものである。

転載承認:令和2年2月27日 一般社団法人日本音響学会 編集委員長 苣木 禎史

序

これまでの経緯

一般社団法人日本音響学会は、道路交通騒音の 予測計算方法に関して昭和 49 年に道路交通騒音 調査研究委員会を組織し、以来、継続的に調査研 究を行ってきている。この調査研究の目的は、道 路交通騒音に関する最新の知見に基づき時代に即 した予測計算方法を開発することにある [1]。そ の活動成果として、まず昭和50年に騒音レベル の中央値(LA50)を予測量とした計算方法(ASJ Model 1975) [2,3] を発表した。このモデルにつ いては、精度の向上、適用範囲の拡大のための検 討を引き続き行ったが [4–6], それと並行して昭和 63 年からは等価騒音レベル (*L*_{Aeq}) に基づく予測 計算方法の開発に取り組んだ。その成果をとりま とめ, 平成5年にエネルギーベースの予測計算方 法 (ASJ Model 1993) を発表した [7]。このモデ ルは、適用範囲を一様な断面を持つ道路一般部に 限定して L_{Aeq} を計算するための基本的考え方と 計算手順をまとめたものであった。

その後,騒音に関する環境行政の面で大きな変 化があった。まず「環境基本法」(旧公害対策基本 法,平成5年11月改正)に基づいて平成9年6月 に「環境影響評価法」が公布され,2年後の平成 11年6月より施行された。更に「騒音に係る環境 基準」(昭和46年制定)が平成10年9月に改正さ れ,翌年4月より施行された。この基準では,道 路交通騒音の評価量として L_{A50} に代わって L_{Aeq} が採用され,それに伴って一般地域及び道路に面 する地域の基準値が改正された。これらの変化に 対応するために当委員会では,その後の調査研究 に基づいて上述の ASJ Model 1993 を更に発展さ せ,平成 11 年 4 月に *L*Aeq を評価量とし,一般 道路,道路特殊箇所も含めてほとんどすべての構 造・形態の道路を対象とした予測計算方法として ASJ Model 1998 を発表した [8]。更に,その後も 適用範囲の拡大,予測計算方法の精緻化,予測精 度の向上を目指して検討を行い,平成 16 年 4 月 に ASJ RTN-Model 2003 [9],平成 21 年 4 月に ASJ RTN-Model 2008 [10],平成 26 年 4 月には ASJ RTN-Model 2013 を発表した [11]。

ASJ Model 1998 以降の予測モデルは,その発 表に併せて「道路環境影響評価の技術手法」[12,13] の中で全面的に採用され,道路交通騒音に係る環 境アセスメント(将来予測)の実施に利用されて いる。また一方では,将来予測としての利用に止 まらず,環境モニタリング(常時監視等)におけ る現状の騒音推計や環境保全措置(環境対策)の 検討にも利用されている。

このように、予測モデルが環境管理に広く利用 されることを念頭におき、ASJ RTN-Model 2013 発表後も積み残された課題の解決に取り組み、調査 研究を継続してきた [14]。そして、当委員会が掲 げている5年ごとの予測モデルの見直しを行い、そ の成果として新たな予測モデル ASJ RTN-Model 2018 を発表することとした。

本報告は、委員全員による討議を重ねた結果を 取りまとめたもので、委員で分担して執筆した。 表-1.1 に当委員会の構成並びに委員を示す。

予測モデル改定の要点

今回発表する予測モデルの目次構成を表-1.2 に 示す。その内容は, ASJ RTN-Model 2013 を基 本としているが,主として以下の点が更新されて

^{*} Road traffic noise prediction model "ASJ RTN-Model 2018": Report of the Research Committee on Road Traffic Noise in the Acoustical Society of Japan.

^{**} The Research Committee on Road Traffic Noise in the Acoustical Society of Japan (the Chairman: Shinichi Sakamoto) e-mail: sakamo@iis.utokyo.ac.jp

表-1.1 日本音響学会道路交通騒音調査研究委員会の構成

		氏 名	所属
委員	長	坂本慎一	東京大学 生産技術研究所
		穴井 謙	福岡大学 工学部
		岡田恭明	名城大学 理工学部
		福島昭則	株式会社 ニューズ環境設計
幹	爭	松本敏雄	一般財団法人 小林理学研究所
		安田洋介	神奈川大学 工学部
		山内勝也	九州大学 大学院芸術工学研究院
		横田考俊	一般財団法人 小林理学研究所
		井上隆司*1	国土交通省 国土技術政策総合研究所
		伊藤晃佳	一般財団法人 日本自動車研究所
-		今泉博之	国立研究開発法人 産業技術総合研究所
娈	貝	田近輝俊	株式会社 環境技術研究所
		中崎邦夫*1	株式会社 高速道路総合技術研究所
		舩橋 修*2	株式会社 高速道路総合技術研究所
		間渕利明*2	国土交通省 国土技術政策総合研究所
技術	委員	大野英夫	日野自動車株式会社
		岩瀬昭雄	新潟大学名誉教授
雇百	問	押野康夫	元一般財団法人 日本自動車研究所
/P23	11	藤本一壽	九州大学名誉教授
		山本貢平	一般財団法人 小林理学研究所
1			*2. 玉尘 ** **

*1:~平成 29 年度, *2:平成 30 年度~

いる。

(1) 音源特性

- 車種分類を見直し,音響的特徴を重視した分類を従来の4車種分類から3車種分類に変更した。
- 自動車走行騒音のパワーレベルに関して、最新の知見に基づき一部の内容を見直すと共に、 舗装種別ごとのモデル式に変更した。
- ●舗装種別として高機能舗装 II 型を追加した。
- 自動車走行騒音の周波数特性に関して,内容 を更新し,付属資料 A1 を改訂した。
- ハイブリッド自動車 (HV), 電気自動車 (EV)
 のパワーレベルに関して, 最新の知見を付属
 資料 A2 に示した。
- 自動車専用道路の密粒舗装における加速区間 並びに一般道路における排水性舗装での自動 車走行騒音のパワーレベルに関しては、それ ぞれ付属資料 A3 と付属資料 A4 に示した。
- (2) 伝搬計算
- 伝搬計算における各種補正量に関して、最新の 知見に基づき一部の内容を見直し、更新した。
- ●回折計算に関して、遮音壁等のナイフウェッ

ジと建物等の直角ウェッジを区別し,それぞ れの計算式を示した。

- 自動車走行騒音の周波数特性の変更及び高機 能舗装 II 型の追加に伴い,回折計算式の係数 を見直した。
- 築堤等の厚みのある障害物と張り出し型遮音
 壁の回折の計算方法を変更した。
- 地表面効果の計算対象に排水性舗装路面上の 伝搬を追加した。
- 反射音の計算方法のうち、散乱反射法に関して、計算条件の設定方法を記載し内容を更新した。
- 気象の影響に関する検討結果を踏まえ、回折
 に関する減衰量と地表面効果に関する減衰量
 に上限を設定した。
- ・周波数ごとの伝搬計算に関して、一般性のあるエネルギーベースの内容に更新し、付属資料 A5 に示した。
- 波動数値解析による騒音の計算方法に関して、
 内容を更新し、付属資料 A6 に示した。
- (3) 道路特殊箇所の騒音
- トンネル坑口周辺部について、坑口放射音の 指向性を考慮した計算方法に変更した。
- 高架・平面道路併設部,複層高架部の散乱反射法による計算方法に関して,簡便化を図り内容を更新した。
- 信号交差点部の騒音の計算方法に関しては、
 付属資料 A7 に移動し、内容を変更した。
- (4) 建物・建物群背後における騒音
- 建物群背後における騒音の点音源モデルの計算 方法に関して、簡便化を図り内容を更新した。
- これまでの点音源モデルの計算方法については、詳細計算法として付属資料 A8 に示した。
- (5) その他
- 本予測モデルの予測精度に関して、最新の知見に基づき検討した結果を参考資料 R4 に示した。
- 道路交通騒音のパワーレベル測定方法を参考 資料 R5 に示した。

辞

謝

本予測モデルを発表するにあたり,道路交通騒 音に関する調査研究の機会を与えられ,これまで に多くの資料を提供された株式会社高速道路総合 技術研究所に対して深謝の意を表す次第である。

-参-3-

また,モデルの検討に際しデータを提供いただい た環境省,名古屋高速道路公社,東京都に対して ここに感謝の意を表す。国土交通省国土技術政策 総合研究所,首都高速道路株式会社,阪神高速道 路株式会社には協力委員として討議に参加いただ

き、有益なご意見をいただいた。

文 献

- [1] 坂本慎一,"道路交通騒音調査研究員会が果たしてきた 役割と今後の課題,"音講論集, pp. 1543–1546 (2012.9).
- [2] 石井聖光, "道路交通騒音予測計算方法に関する研究 (その1)—実用的な計算式について—,"音響学会誌, 31, 507-517 (1975).
- [3] 池谷和夫,"道路交通騒音予測計算方法に関する研究 (その2)一数学モデルと評価量について一,"音響学会誌,

31, 559–565 (1975).

- [4] 石井聖光,"道路交通騒音予測計算方法に関する研究一高さ別補正値について一,"音響学会誌,33,426-430 (1977).
- [5] 佐々木實,山下充康,"道路特殊個所の騒音の予測方法に関する検討―トンネル坑口部周辺―,"音響学会誌,
 40,554–558 (1984).
- [6] 佐々木實, 山下充康, "道路特殊個所の騒音の予測方 法に関する検討―インターチェンジ部周辺―," 音響学会 誌, 40, 638-643 (1984).
- [7] 橘 秀樹他,"小特集―道路騒音の予測:道路一般部 を対象としたエネルギーベース騒音予測法(日本音響学会 道路交通騒音調査研究委員会報告)―,"音響学会誌,50, 227-252 (1994).
- [8] 日本音響学会道路交通騒音調査研究委員会,"道路交通騒音の予測モデル "ASJ Model 1998","音響学会誌, 55, 281–324 (1999).
- [9] 日本音響学会道路交通騒音調査研究委員会,"道路交

章	節	
1. 予測計算方法の概要	1.1	適用範囲
	1.2	用語の意味
	1.3	予測計算の流れと基本式
2. 音源特性	2.1	車種分類
	2.2	自動車走行騒音パワーレベルのモデル式
	2.3	各種要因による補正
3. 伝搬計算	3.1	伝搬計算の基本式
	3.2	回折に伴う減衰に関する補正量 $\Delta L_{ m dif}$
	3.3	地表面効果に関する補正量 $\Delta L_{ m grnd}$
	3.4	空気の音響吸収に関する補正量 $\Delta L_{ m air}$
	3.5	反射音の計算方法
	3.6	気象の影響
4. 道路特殊箇所の騒音	4.1	インターチェンジ部
	4.2	連結部
	4.3	信号交差点部
	4.4	トンネル坑口周辺部
	4.5	掘割・半地下部
	4.6	高架・平面道路併設部、複層高架部
5. 高架構造物音	5.1	適用範囲
	5.2	高架構造物音の計算方法
6. 建物・建物群背後における騒音	6.1	単独建物周辺における騒音
	6.2	建物群背後における騒音
付属資料 A1 自動車走行騒音の思	目波数	特性
A2 ハイブリッド自動車	巨・電	気自動車の走行騒音のパワーレベル
A3 密粒舗装におけるカ	叩速区	間のパワーレベル
A4 一般道路における排	非水性	舗装のパワーレベル
A5 周波数ごとの伝搬言	†算法	
A6 波動数値解析による	5騒音	の計算方法
A7 信号交差点部の騒音	音の計	算方法
A8 建物群背後における	る騒音	の詳細計算法
参考資料 R1 二層式排水性舗装の	り騒音	低減効果
R2 張り出し型遮音壁及	及び先	端改良型遮音壁に関する伝搬計算法
R3 単純条件下での L_A	eq, T	の簡易計算法
R4 予測精度に関する権	贠討	
R5 道路交通騒音のパワ	フーレ	ベル測定方法

表-1.2 ASJ RTN-Model 2018 の構成

通騒音の予測モデル "ASJ RTN-Model 2003"," 音響学 会誌, **60**, 192–241 (2004).

- [10] 日本音響学会道路交通騒音調査研究委員会,"道路交通騒音の予測モデル "ASJ RTN-Model 2008","音響学 会誌, 65, 179–232 (2009).
- [11] 日本音響学会道路交通騒音調査研究委員会,"道路交通騒音の予測モデル"ASJ RTN-Model 2013","音響学 会誌, 70, 172–230 (2014).
- [12] 国土交通省国土技術政策総合研究所,"道路環境影響 評価の技術手法 4. 騒音 4.1 自動車走行に係る騒音(平 成 26 年度版),"国土技術政策総合研究所資料第 842 号 (2015.3).
- [13] 財団法人道路環境研究所,道路環境影響評価の技術手法22007年改訂版(丸善,東京,2007).
- [14] 坂本慎一,岡田恭明,福島昭則,松本敏雄,穴井 謙, 田近輝俊, "ASJ RTN-Model 2018 作成に向けた検討経 緯,"音講論集, pp. 1449–1450 (2018.3).

本 文

1. 予測計算方法の概要

ここでは,ASJ RTN-Model 2018(以下,本予 測モデルと呼ぶ)の適用範囲と主要な用語の意味 及び予測計算における基本的考え方と予測計算の 手順の概略について述べる。

1.1 適用範囲

本予測モデルが適用できる条件は以下のとおり とする。ただし,高架構造物音の予測計算に関す る適用範囲については5章を参照。

(1) 対象道路

道路一般部(平面,盛土,切土,高架)と道路特 殊箇所(インターチェンジ部,連結部,信号交差 点部,トンネル坑口周辺部,掘割・半地下部,高 架・平面道路併設部,複層高架部)。

(2) 交通量

制限なし。

(3) 自動車の走行速度

自動車専用道路と一般道路の定常走行区間については40~140 km/h,一般道路の非定常走行区間については10~60 km/h,自動車専用道路のインターチェンジ部などの加減速・停止区間については0~80 km/h,一般道路の信号交差点付近などの加減速・停止区間については0~60 km/hとする。

(4) 予測範囲

道路から水平距離 200 m まで,高さ 12 m まで とする。

注記:検証されているのは上記の範囲であるが,原理的に は適用できる予測範囲に制限はない。

(5) 気象条件

無風で特に強い気温勾配が生じていない状態を 標準とする。

1.2 用語の意味

本予測モデルで用いる道路交通騒音に関連する 主要な用語の意味は,以下のとおりとする。

(1) 騒音レベル/A 特性音圧レベル L_A

A 特性音圧の実効値の2 乗を基準の音圧の2 乗 で除した値の常用対数の10 倍で,次式で与えら れる。

$$L_{\rm A}(t) = 10 \log_{10} \frac{p_{\rm Ae}^2(t)}{p_0^2} \tag{1.1}$$

ここで, $L_A(t)$ 及び $p_{Ae}(t)$ は時刻 t の騒音レベル [dB] 及び A 特性音圧 $p_A(t)$ の実効値 [Pa], p_0 は基 準の音圧で 20 μ Pa である。なお, JIS Z 8731:1999 では騒音レベルの記号として L_{pA} が用いられてい る。道路交通騒音の測定では, A 特性音圧の 2 乗値 に JIS C 1509-1:2005 に規定する騒音計の時間重 み付け特性 F を掛けて次式により騒音レベルを算 出する。このときの騒音レベルの記号は $L_{A,F}(t)$ [dB] を用いる。

$$L_{\rm A,F}(t) = 10 \log_{10} \frac{\frac{1}{\tau_{\rm F}} \int_{-\infty}^{t} p_{\rm A}^2(\xi) \cdot e^{-\frac{t-\xi}{\tau_{\rm F}}} \mathrm{d}\xi}{p_0^2}$$
(1.2)

ここで, *τ*_F は時間重み付け特性 F の時定数で 0.125 s, *ξ* は時間を表す変数 [s] である。

(2) 等価騒音レベル $L_{\text{Aeq},T}$

ある時間 T [s] $(t_1 \sim t_2)$ について,変動する騒音の騒音レベルをエネルギー的な平均値として表した量 [dB] で,次式で与えられる。時間平均騒音レベルや A 特性時間平均サウンドレベルともいう。以下では時間 T を省略して L_{Aeq} と標記することもある。

$$L_{\text{Aeq},T} = 10 \log_{10} \frac{\frac{1}{T} \int_{t_1}^{t_2} p_{\text{A}}^2(t) dt}{p_0^2} \quad (1.3)$$

道路交通騒音の測定では,式 (1.3)の代わりに $L_{A,F}(t)$ のサンプル値 $L_{A,F}[n]$ を用いて次式によ り $L_{Aeq,T}$ を算出することが多い。

$$L_{\text{Aeq},T} = 10 \log_{10} \frac{1}{N} \sum_{n=n_1}^{n_2} 10^{\frac{L_{\text{A},\text{F}}[n]}{10}} \quad (1.4)$$

ここで、 n_1 及び n_2 は $L_{A,F}[n]$ の最初及び最後の サンプルを表し、式 (1.3)の t_1 及び t_2 に対応す る。また、Nはサンプル数で、 $N = n_2 - n_1 + 1$ である。

注記:道路交通騒音においては, $L_{A,F}(t)$ のサンプリング 間隔が十分小さければ式 (1.3) により求めた $L_{Aeq,T}$ と式 (1.4) により求めた $L_{Aeq,T}$ は一致する。

(3) 騒音暴露レベル L_{AE,T}

ある時間 $T(t_1 \sim t_2)$ について、変動騒音のエネ ルギー的な総量を評価するための量 [dB] で、A 特 性音圧の 2 乗を時間 T にわたって積分し、基準の 時間で基準化してレベル表示し次式で与えられる。

$$L_{AE,T} = 10 \log_{10} \frac{\frac{1}{T_0} \int_{t_1}^{t_2} p_A^2(t) dt}{p_0^2} \quad (1.5)$$

ここで、 T_0 は基準の時間で1sである。

道路交通騒音の測定では,式(1.5)の代わりに *L*_{A,F} [*n*] を用いて次式により *L*_{AE} を算出するこ とが多い。

$$L_{\text{A}E,T} = 10 \log_{10} \frac{\Delta t}{T_0} \sum_{n=n_1}^{n_2} 10^{\frac{L_{\text{A},\text{F}}[n]}{10}} \quad (1.6)$$

ここで、 $\Delta t \ \text{th} L_{A,F}(t)$ のサンプリング間隔 [s], n_1 及び $n_2 \ \text{th} t_1$ 及び $t_2 \ \text{cytric} s \ \text{cytric} s \ \text{cytric} s$ 。 注記:騒音暴露レベルを表示する場合には、必ず積分時間 Tを表示しなければならない。

(4) 単発騒音暴露レベル LAE

自動車が1台通過したときのような単発騒音の A 特性音圧の2 乗を発生時間全体にわたって積分 し, 基準の時間で基準化してレベル表示した量 [dB] で, 次式で与えられる。

$$L_{AE} = 10 \log_{10} \frac{\frac{1}{T_0} \int_{t_1}^{t_2} p_A^2(t) dt}{p_0^2} \qquad (1.7)$$

道路交通騒音の測定では,式 (1.7)の代わりに $L_{A,F}[n]$ を用いて次式により L_{AE} を算出するこ とが多い。

$$L_{AE} = 10 \log_{10} \frac{\Delta t}{T_0} \sum_{n=n_1}^{n_2} 10^{\frac{L_{A,F}[n]}{10}} \quad (1.8)$$

注記:単発騒音が時刻 $t_1 \sim t_2$ の間に含まれている限り, L_{AE} は積分時間 $t_1 \sim t_2$ によらない。ただし,実際の測定では,暗騒音の影響を防ぐために, $t_1 \sim t_2$ を適切に設定する必要がある(参考資料 R5 参照)。

(5) 自動車走行騒音の A 特性音響パワーレベ ル L_{WA}

1 台の自動車を点音源と見なした場合,それが 放射する音響パワー(1s当たりに放射する音響エ ネルギー)に周波数重み付け特性 A をかけた A 特 性音響パワーを基準の音圧の2乗で除した値の常 用対数の10倍で,次式で与えられる。

$$L_{WA} = 10 \log_{10} \frac{P_A}{P_0} \tag{1.9}$$

ここで、 L_{WA} はA特性音響パワーレベル [dB]、 P_A は音響パワー [W]、 P_0 は基準の音響パワーで 1 pW である。なお、パワーレベルの周波数特性を 表すために、1/Nオクターブバンドごとに式 (1.9) により算出したパワーレベルを 1/N オクターブ バンド A 特性音響パワーレベルと呼ぶ。

(6) ユニットパターン

本予測モデルでは,道路上を1台の自動車が走 行したときの,一つの予測点(観測点)における騒 音レベルの時間変化のパターンをユニットパター ンという。一般には時間の関数として表されるが, 予測計算の上では走行車線上の距離の関数として 取り扱うこともある。

(7) 自動車の主要音源

自動車の主たる騒音源として,エンジン騒音,排 気系騒音,吸気系騒音,タイヤ/路面騒音,駆動系 騒音,冷却系騒音などがある。本予測モデルでは それらを総合して一つの点音源として考える。

(8) 車種分類

自動車の車種分類は、3車種分類(小型車,中型 車、大型車)と2車種分類(小型車類,大型車類) の2通りとする。二輪車と大型バスを別のカテゴ リとして分類することができる(2.1節参照)。

注記:ハイブリッド自動車(HV), 電気自動車(EV)の パワーレベルは, 40 km/h 以上の定常走行時には, ガソリ ンエンジン車(GEV)と同程度であることから(付属資料 A2 参照), GEV と同じ車種に含めることとする。

(9) 自動車の走行状態

ほぼ一定の速度で走行している状態(定常走行 状態)と速度が変化している状態(非定常走行状 態)に分ける。後者には,一般道路の走行状態(非 定常)とインターチェンジ部や信号交差点部など の加減速・停止状態がある。

(10) 舗装の種類

本予測モデルで対象とする舗装路面は以下の3

種類とする。

1) 密粒舗装:密粒度アスファルト混合物を使 用した舗装。

2) 排水性舗装:ポーラスアスファルト混合物 を使用した舗装(高機能舗装 I 型あるいは単に高 機能舗装,低騒音舗装と呼ぶこともある)。本予測 モデルでは,最大粒径 13 mm,設計空隙率 20%の 舗装を対象としている。

3) 高機能舗装 II 型:排水性舗装と比べ表面の きめ深さは類似している(最大粒径は 13 mm)が, 内部は水密性が高い舗装。排水性舗装に比べると 排水性は少し劣るが耐久性に優れている。

注記1:更なる機能維持効果,騒音低減効果の向上を目指 し,排水性舗装の表層上部をより小さな粒径の骨材に置き 換えた二層式排水性舗装(二層式低騒音舗装と呼ぶことも ある)も開発されている(参考資料 R1 参照)。東京都で採 用されている二層式排水性舗装は,上層に最大粒径 5 mm, 目標空隙率 18~25%,下層に最大粒径 13 mm,目標空隙 率 16~22%のポーラスアスファルト混合物を使用したもの であり,舗装厚は上層が 20 mm 程度,下層が 50 mm 程度 である。

注記2:他にも遮熱性舗装などの様々な舗装が開発されているが、まだ施工実績が少ないため本予測モデルに取り入れるには至っていない。

(11) 遮 音 壁

遮音壁には大別して表面が反射性の材料で構成 される反射性遮音壁と音源側の表面を吸音処理し た吸音性遮音壁の2種類がある。道路交通騒音の 伝搬経路における対策としては,金属製の吸音性 遮音壁が広く用いられている。

注記:代表的な金属製の吸音性遮音壁(統一型遮音壁と呼ばれることもある)の構造は,厚さ95mmの金属ボックスの中に繊維系の多孔質材料(厚さ50mm,密度32kg/m³)が挿入されている。道路側の表面板はスリット孔を有するアルミ板,背面は遮音性能を考慮してめっき加工された鉄板(厚さ1.6mm)となっている。

(12) 高架構造物音

高架道路上を自動車が走行したとき,その加振 力によって高架構造物の床版,桁などが振動し, それによって床版の裏面,桁などの表面から放射 される騒音。ただし,伸縮継手部を加振源として 発生する衝撃音(ジョイント音と呼ぶこともある) は含めない。

(13) 実効的流れ抵抗 $\sigma_{ m e}$

地表面などの有限インピーダンス表面上で観測 される超過減衰に対して,理論値をカーブフィッ ティングさせることによって算定される等価的な 流れ抵抗(単位:kPa s/m²)。

1.3 予測計算の流れと基本式

本予測モデルの原理と基本式,予測計算方法の 流れは以下のとおりである。

1.3.1 予測法の考え方と基本式

道路交通騒音の予測計算においては,対象とす る道路上を点音源と見なせる1台の自動車が走行 したときの予測点における騒音レベルの時間変化 (ユニットパターン)を求め,単発騒音暴露レベル LAE を計算することが基本となる。このLAE に 車種別の交通量を考慮して,予測点における騒音 のエネルギー的な時間平均値であるLAeq,Tを求 める。具体的な手順は次のとおりである。

最初に、対象とする車線を幾つかの区間に分割 する(図-1.1 参照)。このときに、分割した区間 内では、走行速度 ν_i [m/s] 及び音源(自動車)が 放射する A 特性音響パワーレベル $L_{WA,i}$ は一定 と見なせなければならない。分割した一つの区間 iに着目し、その中点を代表とする音源点とし、音 源の A 特性音響パワーレベル $L_{WA,i}$ を設定する。

次に伝搬計算により予測点における騒音レベル $L_{A,i}$ を計算する。音源が区間*i*に存在する時間 T_i [s]の騒音レベルを音源がその区間の代表点にある ときの騒音レベル $L_{A,i}$ で代表させ、次式により騒 音暴露レベル $L_{AE,T_i,i}$ を算出する(図-1.2参照)。

$$L_{AE,T_i,i} = L_{A,i} + 10\log_{10}\frac{T_i}{T_0} \qquad (1.10)$$

以上の計算を車線の分割区間ごとに行い,それ らの結果から,1台の自動車が対象とする道路の

図-1.3 道路交通騒音の予測計算の手順

全区間を通過する間の予測点における単発騒音暴 露レベル *L_{AE}* [dB] を次式によって求める。

$$L_{AE} = 10 \log_{10} \sum_{i} 10^{\frac{L_{AE,T_{i},i}}{10}} \qquad (1.11)$$

実際には車種によりA特性音響パワーレベルは 異なるので、車種ごとに単発騒音暴露レベル L_{AE} を計算し、対象とする時間における車種別の交通 量を考慮し、次式により等価騒音レベル $L_{Aeq,T}$ を 求める。

$$L_{\text{Aeq},T} = 10 \log_{10} \frac{\sum_{j} N_{T,j} 10^{\frac{L_{AE,j}}{10}}}{T}$$
(1.12)

ここで, T は対象とする時間 [s], $L_{AE,j}$ は式 (1.11) により求めた車種 j の単発騒音暴露レベル L_{AE} [dB], $N_{T,j}$ は時間 T における車種 j の交通量 [台] である。

1.3.2 予測計算の手順

本予測モデルにおける道路交通騒音の予測計算 の手順を図-1.3 に示す。計算手順の概要は、以下 のとおりである。

(1) 道路構造・沿道条件・予測点の設定

道路構造及び音源の位置,予測点,伝搬経路上 に存在する音響障害物の位置,地表面性状等の計 算条件を設定する。

(2) 計算車線位置の設定

計算車線位置は,実際の車線中心にそれぞれ1 車線ずつ配置する。ただし,複数車線を一つの仮 想的車線に集約させることも可能である。例えば, 上下車線のそれぞれの中央に,仮想的車線を1車 線ずつ配置してもよい。

(3) 離散点音源の設定

設定した車線上の高さ0mに離散的に点音源を 配置する。この点音源は,道路一般部のように音 源位置による伝搬特性の変化が小さい場合には, 道路に対する予測点からの垂線と車線の交点を中 心として±20*l*(*l*:計算車線から予測点までの最 短距離)の範囲に*l*以下の間隔で配置すればよい。 一方,道路特殊箇所等のように自動車の走行速度 が加減速に伴って変化する場合や音源と予測点の 位置関係によって伝搬特性が急激に変化するよう な場合には,設置間隔の細分化を図るなどして, ユニットパターンの最大騒音レベルを確実に捉え, そこを中心としてその最大値より10dB以上低い レベルまでの範囲に点音源を配置する。

注記:計算車線から予測点までの距離が最短となる位置に 設定した音源が最大騒音レベルを与えるとは限らないので, 予備計算等を行い予測箇所周辺の各種計算条件を設定する 必要がある。

(4) 音源のパワーレベルの設定

L_{WA}は,舗装路面の種類,自動車の走行状態(定 常,非定常,加速,減速,停止),走行速度及び補 正条件(道路の縦断勾配,指向性及びその他の要 因によるレベル変化)を考慮して設定する。

(5) ユニットパターンの計算

1 台の自動車が道路上を単独で走行するときの 予測点におけるユニットパターン *L*_{A,i} を車線別・ 車種別に求める。

(6) ユニットパターンのエネルギー積分と *L*_{Aeq}の計算

式 (1.11) により車種別の単発騒音暴露レベル L_{AE} を計算する。その結果に対象とする時間T [s] 内の車種別交通量 $N_{T,j}$ [台] を考慮し,式 (1.12) に より等価騒音レベル $L_{Aeq,T}$ を求める。計算車線 が複数の場合には、車線別に $L_{Aeq,T}$ を求め、それ らをエネルギー合成し道路全体からの $L_{Aeq,T}$ を 算出する。

高架道路の周辺の騒音を予測する場合には,自 動車走行騒音のほかに,必要に応じて高架構造物音 を計算する。また,高架道路の上下線がセパレー ト構造となっていて,中央分離部が開いている場 合には,各々の高架道路が単独で存在していると 考えて計算する。風の影響による変化量を予測す る必要がある場合にはこれらの影響を計算する。

2. 音源特性

自動車走行騒音の音響パワーレベルは,車種や 走行速度以外に路面の性状,道路の縦断勾配など によって変化し,また放射指向性を考慮しなけれ ばならない場合もある。本予測モデルにおけるパ ワーレベルの基本式は,舗装種別(密粒舗装,排 水性舗装,高機能舗装 II 型)及び車種分類ごとに 速度の関数として与え,その他の要因による影響 については,個々に補正項を設けて考慮すること としている。

なお,舗装種別ごとの自動車走行騒音の周波数 特性については,**付属資料**A1に示す。

2.1 車種分類

車種分類は,表-2.1 に示すように基本的には3 車種分類又は2車種分類を適用する[15]。これら の分類は,ナンバープレート(登録標板)の種類 と分類番号及び外観によって行う。3車種分類は 音響的特徴を重視した場合の分類で,2車種分類 は実用性を考慮した分類である。二輪車からの発 生騒音を別途考慮する場合には,表-2.2 に示す二 輪車のカテゴリを追加することができる[16]。

道路交通騒音の予測では,自動車単体のパワー レベルだけではなく走行する自動車の車種構成比 率が重要で,それを表す指標として車種別混入率 がある。2車種分類では大型車類(大型車と中型 車)混入率が広く用いられているが,これを単に 大型車混入率と呼ぶ場合もある。

注記1:車種分類において,パワーレベル L_{WA} の違いから,従来,小型車類(2車種分類)を乗用車と小型貨物車 に区分していたが,小型貨物車の通行台数は他の車種に比 べて非常に少ないこと,また環境アセスメント等では2車 種分類(小型車類,大型車類)が広く用いられていること を考慮し,4車種分類を3車種分類(小型・中型・大型車)

注記2:ハイブリッド自動車(HV), 電気自動車(EV)の カテゴリは設けず, 小型車(類)に含める。HVのL_{WA}に 関する知見を**付属資料 A2**に示す。

2.2 自動車走行騒音パワーレベルのモデル式

自動車走行騒音は,基本的には速度,エンジン 回転数,負荷等の走行状態によって変化するが,実 用性・簡便性を考慮して,本予測モデルでは従来 どおりパワーレベルを走行速度の関数として与え る。また,パワーユニットのレイアウトや車体形 状に起因する指向性,縦断勾配等による発生騒音 の変化については補正量として考慮する。

2.2.1 舗装種別及び走行区間別のパワーレベル

自動車走行騒音のA特性音響パワーレベルは, 参考資料 R5の方法で測定したデータ[15,17]を 用いて,密粒舗装,騒音低減効果を有する排水性 舗装及び高機能舗装 II型ごとに,それぞれ設定し た(2.2.2~2.2.4項参照)。図-2.1は,以下に定義

2 車種分類	3 車種分類	ナンバープレートの頭一文字及び分類条件
小型車類	小型車	 3, 4, 5, 6, 7 ● 乗車定員 10 人以下の乗用車 ● 小型貨物車
十刑亩粨	中型車	1,2 • 長さが 4.7 m を超える貨物自動車で,大型車を除く(大部分は 2 軸車) • 乗車定員 11 人以上 29 人以下の中型バス
八王千旗	大型車	 1*, 2*, 9, 0 車両総重量 8 トン以上,又は最大積載量が 5 トン以上の貨物自動車(大部分は 3 軸以上) 乗車定員 30 人以上の大型バス 大型特殊自動車

表-2.1 車種分類(二輪車以外)

表2 2	直種分類	(一輪重)
2 2.2		

車種分類	分類条件	
二輪車	●自動二輪車,	原動機付自転車

- 注1)分類番号の頭一文字8の特種用途自動車は、実態によって区分する。
- 注 2)* は大型プレート(長さ 440 mm,幅 220 mm)を意味する。なお、中型車のナンバープレートは小型車類と同じ寸法(長さ 330 mm,幅 165 mm)である(大型車と中型車の分類は、平成 19 年 6 月に改正された道路交通法上の分類とは必ずしも一致していない)。
- 注3) 軽自動車は、分類番号の頭一文字4及び5の中に含まれる。
- 注4)小型貨物車は、分類番号の頭一文字4(バンを除く)及び6の中に含まれる。
- 注 5) 乗車定員 10 人以下のバン(分類番号の頭一文字 1 の車両も含む)は、小型車に区分する。

する定常走行区間と非定常走行区間の別に与えら れるパワーレベルの模式図である。

 2 定常走行区間:自動車専用道路又は信号交差点から十分離れた一般道路で,自動車がトップ ギヤに近いギヤ位置で走行する区間。走行速度 V は 40~140 km/h の範囲とする。

2) 非定常走行区間:信号交差点を含む一般道路で,自動車が頻繁に加速・減速を繰り返しながら走行する区間。走行速度 V は 10~60 km/h の範囲とする。

注記:ここで述べる非定常走行区間のパワーレベル式を適 用すると,加速状態,減速状態,停止状態を含む,一般道 路における平均的なパワーレベルを求めることができる。

また,自動車専用道路のインターチェンジ部(料 金所,一般道路との連結部)など,以下に定義す る加速状態や減速状態が含まれる区間のA特性 音響パワーレベルを個別に求めることもできる。 図-2.2 は加速・減速区間におけるパワーレベルの 模式図である。

(1) 自動車専用道路の料金所付近

 加速走行状態:料金所における停止状態から発進加速を経て本線に合流し,定常走行に移行するまでの走行状態で,1~80 km/h までの速度範囲とする。停止時から速度1 km/h 未満については一定のパワーレベル(減速走行状態の式に V = 10 km/h を代入した値,図-2.2(a)参照)を用いる。また,80 km/h 以上の速度域においては定常走行区間と見なす。

2) 減速走行状態:自動車が本線における定常 走行状態から減速して料金所で停止するまでの走 行状態で,140~10 km/h までの速度範囲とする。 速度 10 km/h 未満については 10 km/h のパワー レベルを適用する。

(b) 自動車専用道路と一般道路の連結部付近

図-2.2 自動車走行騒音のA特性音響パワーレベルの模式 図(排水性舗装,加速・減速区間)

(2) 連結部付近

連結部とは、自動車専用道路のランプから一般 道路に合流するときに、加速走行状態から定常走 行状態へと移行する区間(又はその逆の区間)を いう(図-2.2(b)参照)。

 加速走行状態:1~60 km/h までの速度範囲 とし、60 km/h 以上の速度域においては定常走行 区間と見なす。

減速走行状態:速度10km/h以上の速度範囲とし、10km/h未満については10km/hのパワーレベルを適用する。

2.2.2 密粒舗装のパワーレベル

密粒舗装における自動車走行騒音のA特性音響 パワーレベル *L*_{WA} [dB] は次式で計算する。

$$L_{WA} = a + b \log_{10} V + C \tag{2.1}$$

ここで, V は走行速度 [km/h], a は車種別に与え られる定数, b は速度依存性を表す係数, C は各 種要因による補正項である。

*L_{WA}*は,路面性状や道路勾配等の道路条件によって変化する。更に,自動車は複数の音源から構成されており,それらから発生した騒音は車体形状の影響を受けて指向性を持つ。これらの要因によるパワーレベルの変化を考慮するために,補正項*C*を次式で計算する。

$$C = \Delta L_{\rm grad} + \Delta L_{\rm dir} + \Delta L_{\rm etc} \qquad (2.2)$$

ここで、 ΔL_{grad} は道路の縦断勾配による走行騒音の変化に関する補正量 [dB]、 ΔL_{dir} は自動車走行騒音の指向性に関する補正量 [dB]、 ΔL_{etc} はその他の要因に関する補正量 [dB]である(2.3節参照)。

(1) 定常・非定常走行区間のパワーレベル

式(2.1)における定数 a 及び係数 b の値は表-2.3 に示すとおり、定常走行区間と非定常走行区間の 別に与える。密粒舗装における速度依存性を表す 係数 b の値は、各車種とも定常走行区間で 30、非 定常走行区間で 10 とする。

(2) 加速・減速区間のパワーレベル

自動車専用道路の料金所付近及び連結部付近で は、自動車の加速状態や減速状態によって走行騒 音は変化する。加速・減速区間のパワーレベルは、 加速走行状態については**付属資料 A3**に、減速走 行状態は**表-2.3**に示す定常走行区間の定数*a*、係 数*b*を用いて,式(2.1)により与える。速度依存性 を表す係数*b*の値は、各車種とも減速区間で30、 加速区間で10とする。

2.2.3 排水性舗装のパワーレベル

排水性舗装による自動車走行騒音の低減効果は, 車種別に効果が異なること,また舗設後の経過時 間によって変化することが知られている。そこで 本予測モデルでは,排水性舗装による自動車走行 騒音の低減に伴う A 特性音響パワーレベル *L*_{WA} [dB] は次式で計算する。

$$L_{WA} = a + b \log_{10} V + c \log_{10} (1+y) + C$$
(2.3)

$$C = \Delta L_{\text{grad}} + \Delta L_{\text{dir}} + \Delta L_{\text{traf}} + \Delta L_{\text{etc}}$$
(2.4)

ここで,係数 c は排水性舗装による騒音低減効果の 経年変化を表す係数, y は舗設後の経過年数 [年],

表-2.3 密粒舗装における定数 a, 係数 b の値(定常・非定常走行区間)

車種約	 分類	定常走行区間 (40 $\leq V \leq 140 \text{km/h}$)		非定常走行区間 $(10 \le V \le 60 \text{ km/h})$	
		a	b	a	b
	小型車	45.8		82.3	
3 車種分類	中型車	51.4	30	87.1	10
	大型車	54.4		90.0	
o 声插八桁	小型車類	45.8	20	82.3	10
2 甲俚刀短	大型車類	53.2	30	88.8	10
二輪車		49.6	30	85.2	10

注) 自動車専用道路における減速走行状態 ($10 \text{ km/h} \leq V$)の L_{WA} につ いては、定常走行区間の定数 a、係数 b を適用する。

表-2.4 排水性舗装における定数 a, 係数 b, c の値(定常走行区間・減速区間)

(a) 3 車種·2 車種分類

3車種	定常走行区間 (60 ≤ V ≤ 140 km/h) 減速走行状態 (10 km/h ≤ V)			2 車種	定常走行区間 (60 ≤ V ≤ 140 km/h) 減速走行状態 (10 km/h ≤ V)			
万短	a	b	c	一 刀	a	b	с	
小型車	50.6		1.5	小型車類	50.6		1.5	
中型車	56.5	25	0.7	十刑市粨	577	25	0.6	
大型車	58.7		0.5	入望早親	51.1		0.0	
	定常走行区	間 $(60 \le V \le$	$\leq 140 \mathrm{km/h})$		定常走行区	間 $(60 \le V \le$	(140 km/h)	
車種分類	減速走行状態 $(10 \text{ km/h} \le V)$		車種分類	減速走行状態 ($10 \text{km/h} \le V$)		$/h \le V)$		
	a	b	с		a	b	с	
二輪車	49.6	30		大型バス	56.1	25	0.5	

注) 高速走行時の大型バスの *L*_{WA} については, 3 軸以上の大型トラック等に比べて小さいことから, バスを除く大型車(類)の定数 *a* とは別に設定する。

 ΔL_{traf} は日通過交通量に伴う舗装の空隙潰れや詰まり等による騒音低減効果の変化に関する補正量 [dB](注記3)である。その他の補正量(ΔL_{grad} , $\Delta L_{\text{dir}}, \Delta L_{\text{etc}}$)は2.3節を参照。

注記1:排水性舗装のL_{WA}は,舗設後11年までの日通過 交通量が15,000台以下の自動車専用道路(積雪地を除く) での定常走行データに基づいて設定した[17]。従って,適 用範囲は上記データを取得した期間内とする。

注記2:最近の自動車走行騒音の計測結果から,排水性舗装の L_{WA} は,調査箇所により異なるが,舗設直後からの 経過年数による変化はほとんど見られないことが明らかと なっている[17]。

注記 3:排水性舗装の低減効果は、舗設後の経過年数の他 に日通過交通量によっても変化すると考えられるが、これ に関する定量的な知見が得られるには至っていないため、 現時点では $\Delta L_{traf} = 0$ とする。

注記4:二層式排水性舗装に関する騒音低減効果を参考資料 R1 に示す。

(1) 定常走行区間のパワーレベル

自動車専用道路の定常走行区間でのパワーレベ ル式(式(2.3))の定数 a 及び係数 b, c の値を表– 2.4 に示す。走行速度 V は 60~140 km/h の範囲 とする。排水性舗装における速度依存性を表す係 数 *b* の値は,各車種とも 25 とするが,二輪車の係 数 *b*, *c* は常に 30,0 とする。

なお,一般道路の排水性舗装における定常・非 定常走行区間のパワーレベルについては,付属資 料 A4 の定数 a 及び係数 b, c を用いて,式 (2.3), 式 (2.4) により与える。

(2) 加速・減速区間のパワーレベル

料金所付近,連結部付近における加速走行状態の A 特性音響パワーレベル L_{WA} については,表-2.5 に示す定数 a 及び係数 b, c c,減速走行状態の L_{WA} については表-2.4 に示す値をそれぞれ用い て,式 (2.3),式 (2.4) により車種別に与える。な お,二輪車については係数 c を常に 0 とする。

2.2.4 高機能舗装 II 型のパワーレベル

高機能舗装 II 型における A 特性音響パワーレベ ル *L*_{WA} は,排水性舗装と同様,式 (2.3),式 (2.4) から計算する [17]。

-参-11-

表-2.5 排水性舗装における定数 a, 係数 b, c の値(料金所・連結部付近の加速区間)

				(a) 5 平1	里 4 平恒人	ノ枳				
					加油	速走行状	態			
車種分類		料金所付近					連結部付近			
		$(1 \le V < 60\mathrm{km/h})$		$(60 \le V \le 80 \rm km/h)$		$(1 \le V \le 60 \rm km/h)$				
		a	b	с	a	b	c	a	b	с
	小型車	79.1		6.4	88.0		6.4	76.6		6.4
3 車種分類	中型車	85.7	10	3.6	94.6	5	3.6	83.2	10	3.6
	大型車	88.6		3.6	97.5		3.6	86.1		3.6
2 車種分類	小型車類	79.1	10	6.4	88.0	F	6.4	76.6	10	6.4
	大型車類	87.4	10	3.6	96.3	9	3.6	84.9		3.6

(a) 3 車種 · 2 車種分類

注) 大型バスの加速走行状態の L_{WA} については、大型車(類)の定数 a、係数 b, c を適用する。

(b) 二輪車							
	加速走行状態						
車種分類	料金所付近			連結部付近			
	$(1 \leq V)$	$V \leq 80 \mathrm{k}$	xm/h)	$(1 \leq V)$	$V \leq 60 \mathrm{k}$	(m/h	
	a	b	c	a	b	c	
二輪車	87.7	10		85.2	10		

注記1: 高機能舗装 II 型の L_{WA} は, 舗設後6年までの日 通過交通量が15,000 台以下の自動車専用道路での定常走 行データに基づいて設定した[17]。従って, 適用範囲は上 記データを取得した期間内とする。

注記 2: 高機能舗装 II 型の低減効果は、舗設後の経過年数 の他に日通過交通量によっても変化すると考えられるが、こ れに関する定量的な知見がないため、現時点では、式 (2.4) の ΔL_{traf} は 0 とする。

(1) 定常走行区間のパワーレベル

自動車専用道路の定常走行区間におけるパワー レベル式(式(2.3))の定数 a 及び係数 b, c の値を 表-2.6 に示す。走行速度 V は 60~140 km/h の 範囲とする。高機能舗装 II 型における速度依存性 を表す係数 b の値は,各車種とも定常走行区間で 30 とし,二輪車の係数 c は常に 0 とする。

注記:加速・減速区間の *L*_{WA} を定量的に設定する知見が ないため,現時点では定常走行区間の *L*_{WA} のみとする。

2.3 各種要因による補正

ここでは,縦断勾配,指向性等に関する補正項 *C*について述べる。

2.3.1 縦断勾配に関する補正量 $\Delta L_{ m grad}$

道路の縦断勾配によるパワーレベルの変化を考 慮する場合には, 補正量 ΔL_{grad} [dB] を次式によっ て計算する。

$$\Delta L_{\text{grad}} = 0.14i_{\text{grad}} + 0.05i_{\text{grad}}^2$$
$$0 \le i_{\text{grad}} \le i_{\text{grad},\text{max}} \quad (2.5)$$

ここで, igrad は道路の縦断勾配 [%], igrad, max は

補正を適用する縦断勾配の最大値 [%] で,走行速 度別に表-2.7 で与える。この補正は,十分長い上 り勾配の道路を走行する大型車類にのみ適用する。 注記:この補正量は,車両の運動方程式 [18] を用いて求め た勾配区間における走行負荷から算定した [19]。

2.3.2 指向性に関する補正量 ΔL_{dir}

自動車はエンジン,タイヤ,マフラ等の複数の 音源からなる複合音源で,放射指向性を持ってい る [20,21]。この指向性を考慮する場合は,以下の 方法による。

自動車走行騒音の指向性に関する補正量 ΔL_{dir} [dB] は、次式によって与える。なお、自動車の走 行速度は 40 km/h 以上とする。

$$\Delta L_{\rm dir} = \begin{cases} (a+b\cdot\cos\varphi + c\cdot\cos2\varphi)\cos\theta \\ \varphi < 75^{\circ} \\ 0 \qquad \varphi \ge 75^{\circ} \end{cases}$$
(2.6)

ここで, 座標系は図-2.3, 係数 a, b, c は表-2.8 に 示すとおりとする。また, $\theta \ge 80$ の場合は, $\theta = 80$ とする。なお, θ は, θ の水平面への投影角度 Θ と以下の関係にある。

$$\theta = \tan^{-1}(\sin\varphi\tan\Theta) \qquad \varphi \neq 0 \quad (2.7)$$

この補正は,高架裏面反射音の計算や沿道建物の 高層階における騒音の予測に適用する。

(a) 3 車種 · 2 車種分類 定常走行区間 定常走行区間 $(60 \le V \le 140 \,\mathrm{km/h})$ $(60 \le V \le 140 \,\mathrm{km/h})$ 2 車種分類 3 車種分類 b cb caa 小型車 45.20.1小型車類 45.20.130 中型車 49.530 0.5大型車類 50.30.4大型車 50.90.4(b) 二輪車・大型バス 定常走行区間 定常走行区間 車種分類 車種分類 $(60 \le V \le 140 \, \text{km/h})$ $(60 \le V \le 140 \, \rm{km/h})$ b bacac二輪車 49.630 大型バス 47.930 0.4

表-2.6 高機能舗装 II 型における定数 a, 係数 b, c の値(定常走行区間)

注)高速走行時の大型バスの *L*_{WA} については, 3 軸以上の大型トラック等に 比べて小さいことから,バスを除く大型車(類)の定数 *a* と別に設定する。

表-2.7 補正を適用する縦断勾配の最大値

走行速度 [km/h]	$i_{ m grad,max}$ [%]
40	7
50	6
60	5
80	4
100	3

S: 音源, P: 予測点, P': Pの水平面への投影点 図-2.3 座標系のとり方

表2.8	係数 a	, b, c	の値		
亩秿分粨	係数				
平恒万規	a	b	с		
小型車類	-1.8	-0.9	-2.3		
大型車類	-2.6	-1.1	-3.4		

注記:遮音壁が高い場合についても適用することは可能で あるが,反射性遮音壁の場合には,遮音壁表面や車体等で の多重反射が生じるので注意が必要である。

2.3.3 その他の要因に関する補正量 $\Delta L_{ m etc}$

その他の要因に関する補正では,違法改造車(設 定外のタイヤやマフラを装着している車両),タイ ヤの種類,路面の凹凸や温度等による走行騒音の 変化が考えられる。ただし,上記要因と発生騒音 の関係に関する定量的な知見が得られるには至っ ていないため,現時点では $\Delta L_{
m etc} = 0$ とする。

文 献

- [15] 岡田恭明,市川友己,吉久光一,植村友昭,米村美紀, 李 孝珍,坂本慎一,山内勝也,"一般道路における自動 車走行騒音の音響パワーレベル―全国各地の密粒舗装で の測定データに基づく検討―,"音響学会騒音・振動研資, N-2019-13 (2019.3).
- [16] 筑井啓介,岡田恭明,吉久光一,押野康夫,"二輪車の 音響パワーレベルの測定結果とそのモデル化に関する検 討,"音響学会騒音・振動研資, N-2009-21 (2009.3).
- [17] 福島昭則,一木智之,太田達也,舩橋 修,大蔵 崇, 岩吹啓史,兼重 仁,"自動車専用道路における自動車走 行騒音のパワーレベル式とパワースペクトル,"音響学会 騒音・振動研資, N-2019-14 (2019.3).
- [18] 押野康夫, 筑井啓介, 橘 秀樹, "自動車走行パターン を考慮した道路交通騒音の予測—その1. 自動車の走行パ ターンと発生騒音の推定—,"音響学会誌, 50, 205–214 (1994).
- [19] 田近輝俊, 押野康夫, 橘 秀樹, "勾配区間における自動車走行騒音パワーレベルの補正量に関する検討―その 2. L_{AE} を考慮した補正量の算出―,"音響学会騒音・振動研資, N-2004-18 (2004.3).
- [20] 筑井啓介, 押野康夫, 橘 秀樹, "自動車走行騒音の指 向性を考慮した道路交通騒音予測手法に関する研究," 騒 音制御, 22, 108–116 (1998).
- [21] Y. Mori, A. Fukushima, K. Uesaka and H. Ohnishi, "Noise directivity of vehicles on actual road," *Proc. inter-noise 99*, pp. 209–212 (1999).

3. 伝搬計算

この章では,騒音の伝搬に関して,幾何拡散(逆 二乗則)による距離減衰を基本とし,回折に伴う 減衰,地表面効果による減衰,空気の音響吸収に よる減衰などの各種補正を加えた実用計算方法を 示す。また,風などの気象の影響による騒音レベ ルの変化の程度,反射音や透過音の計算方法を示

200

項目	記号	内容	計算式	
		各種回折補正量を計算する場合の基本となる量		
其太昰	$\Delta L_{\rm d,k}$	$\Delta L_{ m d,k}$ は遮音壁のようなナイフウェッジでの回折計算に,	式 (3.3)	
坐平里	$\Delta L_{\rm d,r}$	${\it \Delta L_{ m d,r}}$ は建物や盛土・切土道路の法肩のような開き角のある	式 (3.4)	
		ウェッジでの回折計算に使用		
<i>浦辛時での</i> 一回回折	$\Delta L_{\rm dif,sb}$	一般的な遮音壁での一回回折による回折補正量	式 (3.5)	
巡日堂 (の) 回回川	$C_{\rm dif,abs}$	統一型遮音壁の吸音効果に関する補正量	式 (3.6)	
法肩部での一回回折	$\Delta L_{\rm dif,rw}$	遮音壁がない盛土・切土道路の法肩部での回折補正量	式 (3.7)	
二枚の遮音壁等での	ΔΤ	おおむね 5m 以上離れて設置された 2 枚の遮音壁等での回	\pm (2.0)	
二回回折	$\Delta L_{ m dif,db}$	折補正量	八 (3.0)	
厚みのある障害物での	ΔΤ	築堤や建物など,開き角が 90°程度の回折点が二つある場	$\pm (2.0)$	
二回回折	$\Delta L_{ m dif,tb}$	合の回折補正量	式 (3.9)	
進り山)和海立時	$\Delta L_{\rm dif,ob}$	先端部が張り出した遮音壁の回折補正量	式 (3.10)	
取り山し空巡日 堂	$C_{\rm dif,ob}$	張り出しの効果に関する補正量	式 (3.11)	
	$\Delta L_{\rm dif,emb}$	先端改良型遮音壁の回折補正量	式 (3.12)	
先端改良型遮音壁	$\Delta L_{\rm dif,hb}$	仮想直壁の回折補正量	式 (3.3)	
	$C_{\rm dif,emb}$	先端の音響的工夫による効果の補正量	参考資料 R2	
任国演支辟	$\Delta L_{\rm dif,low}$	平面道路の高さ1m 程度の遮音壁の回折補正量	+ (2.12)	
民間巡日堂		挿入損失として計算	八 (3.13)	
海立時の活道立	$\Delta L_{\rm dif,trns}$	遮音壁の透過音を考慮した回折補正量	式 (3.14)	
巡日堂の返旭百	$\Delta L_{\rm dif,slit}$	スリット回折に関する補正量	式 (3.15)	

表-3.1 回折補正量の記号と計算式の一覧

す。以下に示す方法は,道路交通騒音の騒音レベ ルのオーバオール値(すべての周波数成分の合成 値)を直接算出する方法である。なお,周波数ご との計算方法については**付属資料 A5** に示す。ま た,複雑な境界条件の計算を行う場合には,波動 数値解析(**付属資料 A6**参照)や縮尺模型実験[22] による。

3.1 伝搬計算の基本式

1台の自動車が走行したとき, *i* 番目の音源位置 (図–1.1 参照)に対して予測点で観測される騒音 レベル *L*_{A,*i*} を,無指向性点音源からの半自由空間 における音の伝搬と各種の要因による減衰を考慮 して,次式で計算する。

$$L_{A,i} = L_{WA,i} - 8 - 20 \log_{10} r_i + \Delta L_{cor,i}$$
(3.1)

ここで、 $L_{A,i}$ は*i*番目の音源位置から予測点に伝 搬する騒音の騒音レベル [dB]、 $L_{WA,i}$ は*i*番目の 音源位置における自動車走行騒音のA特性音響パ ワーレベル [dB]、 r_i は*i*番目の音源位置から予測 点までの直線距離 [m]、 $\Delta L_{cor,i}$ は*i*番目の音源位 置から予測点に至る音の伝搬に影響を与える各種 の減衰に関する補正量 [dB] で、次式で計算する。

$$\Delta L_{\text{cor},i} = \Delta L_{\text{dif},i} + \Delta L_{\text{grnd},i} + \Delta L_{\text{air},i}$$
(3.2)

ここで、 $\Delta L_{\text{dif},i}$ は回折に伴う減衰に関する補正量 [dB]、 $\Delta L_{\text{grnd},i}$ は地表面効果による減衰に関する 補正量 [dB]、 $\Delta L_{\text{air},i}$ は空気の音響吸収による減 衰に関する補正量 [dB] である。以下、音源位置 に関する添え字*i*は省略する。

3.2 回折に伴う減衰に関する補正量 $\Delta L_{ m dif}$

遮音壁などの音響障害物による回折に伴う減衰 に関する補正量 ΔL_{dif} (以下,回折補正量と呼ぶ) は,回折経路差 δ から求まる基本量 $\Delta L_{d,k}$ 及び $\Delta L_{d,r}$ を用いて以下に示す方法で算出する。回折 補正量の一覧を**表**-3.1 に示す。

3.2.1回折補正量計算の基本量 ΔL_{d,k}, ΔL_{d,r} 回折補正量計算の基本量は,点音源 S,回折点 O,予測点 P に関する回折経路差 δ [m] (図-3.1 参 照)を用いて,遮音壁のようなナイフウェッジ (薄 い板状の障害物)については式 (3.3) で [23,24], 建物や盛土・切土道路の法肩のような開き角 90° 程度の場合には直角ウェッジと見なし式 (3.4) で 計算する [25,26]。

0.60

ここで、P からS が見える場合には δ の符号を負 とし、min[a,b]は、数値a、bのうち小さい値を表 す。係数 c_{spec} を表-3.2に示す。また、 $\Delta L_{d,k}$ 及 び $\Delta L_{d,r}$ と δ の関係を図-3.2に示す。

注記1:上記計算式は、障壁での回折に関する周波数ごとの計算式(付属資料 A5 参照)と自動車走行騒音の周波数 特性(付属資料 A1 参照)を用いて、周波数別の計算値の 合成値での減衰量を近似するようにカーブフィッティング により作成した。

注記 2: カーブフィッティングに用いたデータは、回折経 路差 δ がおよそ 20 m まで、 $\Delta L_{d,k}$ 及び $\Delta L_{d,r}$ はおよそ -30 dB までである。それ以上の経路差になると、より低 い周波数域が卓越し、上記計算式を用いて求めた値ほどの 効果は得られない。

注記 3:回折経路差δが20mを超える場合には,付属資料 A5 に示す周波数ごとの回折計算によりオーバオール値での回折補正量を算出する。なお,このときに透過音の影響が考えられる場合には3.2.8項に示す方法で透過音を考慮しなければならない。

表3.2	係数 $c_{ m spec}$ の値	
騒音(の分類	$c_{ m spec}$
	密粒舗装	1.00
自動車走行騒音	排水性舗装	0.75
	高機能舗装 II 刑	0.96

橋種区分なし

高架構造物音

注記4:遮音壁などによる回折効果を計算する場合で音源の指向性が問題となる場合には,自動車走行騒音のパワーレベルに音源と回折点を結ぶ方向の指向性に関する補正を行う(2.3.2項参照)。

3.2.2 一回回折の回折補正量

(1) 遮音壁での回折補正量 $\Delta L_{ m dif,sb}$

1 枚の遮音壁のような回折点が一つの場合の回 折補正量 $\Delta L_{\text{dif,sb}}$ は、次式で与える。

$$\Delta L_{dif,sb} = \begin{cases} \Delta L_{d,k} & 統一型遮音壁以外 \\ \Delta L_{d,k} + C_{dif,abs} & 統一型遮音壁 \end{cases}$$
(3.5)

ここで, *C*_{dif,abs} は統一型遮音壁の吸音効果による補正量で, 次式により計算する [27]。

(3.4)

注記1:遮音壁の透過音が無視できない場合には 3.2.8 項 に示す方法で透過音を考慮する。

注記2:統一型遮音壁以外の吸音性遮音壁で,吸音率が統 一型遮音壁と同等以上と考えられる遮音壁については吸音 効果による補正量 C_{dif,abs} を考慮してよい。

(2) 法肩部での回折補正量 $\Delta L_{ m dif,rw}$

遮音壁のない盛土・切土の法肩部や建物など開き 角を有するウェッジでの回折補正量 $\Delta L_{\rm dif,rw}$ は, 次式で与える。

$$\Delta L_{\rm dif,rw} = \Delta L_{\rm d,r} \tag{3.7}$$

注記:道路の縁石,ガードレール,ガードケーブルなどは 無視する。

(3) 有限長遮音壁での回折計算

ある範囲にのみ遮音壁が設置されている有限長 遮音壁についての計算方法には,上方の回折音だ けを考慮する1パスの方法と,上方と側方の回折 音の寄与を合成する方法 [28] がある。ユニットパ ターンを計算するためには後者の方法によるが, ユニットパターンを積分して算出した L_{AE} ある いは L_{Aeq} の計算値はどちらの方法で計算しても ほぼ同じ値となる。ここでは1パスの方法を示す。

図-3.3 のような点音源 S, 予測点 P, 及び有限 長遮音壁の平面配置を考える。ユニットパターン の計算において線分 SP と有限長遮音壁が交差す る場合には無限長の遮音壁を考えて式 (3.5) によ り $\Delta L_{dif,sb}$ を計算し, SP と有限長遮音壁が交わ らない場合には遮音壁がないものとして計算する。

注記 2:高架道路に有限長遮音壁が設置されている場合で, SP と有限長遮音壁が交わらない場合には,高欄を遮音壁 相当として計算する。

図-3.4 二重遮音壁の回折計算

3.2.3 二回回折の回折補正量 $\Delta L_{ m dif,db}$

(1) 平行に設置された二重遮音壁の場合

図-3.4 や図-3.5(a) に示すような二つの遮音壁 がおおむね 5 m 以上の距離をおいて平行に設置さ れた場合の回折補正量 $\Delta L_{dif,db}$ は次式で計算す る [29]。

 $\Delta L_{\rm dif,db} = \begin{cases} \Delta L_{\rm SXP,k} + \Delta L_{\rm XYP,k} & \delta_{\rm SXP} \ge \delta_{\rm SYP} \\ \Delta L_{\rm SYP,k} + \Delta L_{\rm SXY,k} & \delta_{\rm SXP} < \delta_{\rm SYP} \end{cases}$ (3.8)

ここで,X,Yは回折点, $\Delta L_{ABC,k}$ は音の伝搬経路が ABC の場合のナイフウェッジでの回折補正量の基本量 $\Delta L_{d,k}$ [dB], δ_{ABC} は伝搬経路 ABC の場合の回折経路差 [m] である。

注記 1:二重遮音壁背後では単体の遮音壁背後に比べて低い周波数成分が卓越し,式 (3.3) による基本量を用いて式 (3.8) で計算したオーバオール値での回折補正量ほどの効果は得られないことがある。二重遮音壁による減衰量がおよそ 30 dB を超える場合 ($\Delta L_{dif,db} < -30$ dB)には,ナイフウェッジでの回折に関する周波数ごとの計算式 (付属 資料 A5.2.1 参照)により周波数ごとに回折計算を行い,自動車走行騒音の周波数特性(付属資料 A1 参照)を重み付けした合成値での挿入損失から $\Delta L_{dif,db}$ を設定する必要がある(付属資料 A5.2.4 参照)。

注記2:三重遮音壁の回折補正量の計算方法については文献 [30] を参照されたい。なお,三重遮音壁背後では二重遮音壁よりも更に低い周波数成分が卓越することがある。

(2) 変則的な二回回折の場合

図-3.5(b) や(c) に示す変則的な二回回折も考え られる。図-3.5(b) はトンネル坑口と明り部の遮 音壁での二回回折が相当し,図-3.5(c) は平面道路 の本線と側道の両方の道路端に遮音壁が設置され, 側道から本線に合流する場合が相当する。このよ

注記1:ユニットパターンを正確に計算し,音源位置による騒音レベルの違いを検討する場合には,文献 [28]の上方と側方の回折を考慮する方法による。

(b) δ sxp < δ syp
 図-3.6 築堤・厚みのある障害物の回折計算

うな場合の二回回折の回折補正量 $\Delta L_{dif,db}$ は,回 折点 X, Y を求め,式 (3.8) で計算する [31]。

図-3.6 に示すような築堤や建物などの厚みの ある音響的な障害物での二回回折の回折補正量 △L_{dif,tb}は、次式で計算する [25,32]。

 $\begin{aligned}
\Delta L_{\rm dif,tb} \\
= \begin{cases}
\Delta L_{\rm SXP,r} + \Delta L_{\rm XYP,r} & \delta_{\rm SXP} \ge \delta_{\rm SYP} \\
\Delta L_{\rm SYP,r} + \Delta L_{\rm SXY,r} & \delta_{\rm SXP} < \delta_{\rm SYP}
\end{aligned}$ (3.9)

ここで、X,Yは回折点、 $\Delta L_{ABC,r}$ は音の伝搬経路が ABC の場合の直角ウェッジでの回折補正量の基本量 $\Delta L_{d,r}$ [dB] である。

注記:築堤や厚みのある障害物の背後では単体の遮音壁背後 に比べて低い周波数成分が卓越し,式 (3.4) による基本量を 用いて式 (3.9) で計算したオーバオール値での回折補正量ほ

どの効果は得られないことがある。厚みのある障害物による 減衰量がおよそ 30 dB を超える場合 ($\Delta L_{dif,tb} < -30$ dB) には,直角ウェッジでの回折に関する周波数ごとの計算式 (付属資料 A5.2.2 参照)により周波数ごとに回折計算を行 い,自動車走行騒音の周波数特性(付属資料 A1 参照)を 重み付けした合成値での挿入損失から $\Delta L_{dif,tb}$ を設定す る必要がある(付属資料 A5.2.4 参照)。

図-3.7 張り出し型遮音壁の回折計算

3.2.5 張り出し型遮音壁の回折補正量 ΔL_{dif,ob} 図-3.7 に示すように,上端を折り曲げた張り出 し型遮音壁の回折補正量 ΔL_{dif,ob} は,遮音壁の回 折点 X, Y をエッジとする厚みのある障害物での 回折補正量に補正を行い次式で計算する [33]。

$$\Delta L_{\rm dif,ob} = \Delta L_{\rm dif,tb} + C_{\rm dif,ob} \qquad (3.10)$$
$$C_{\rm dif,ob} = A \left\{ \left(\frac{B}{B - \Delta L_{\rm dif,tb}} \right)^C - 1 \right\} \qquad (3.11)$$

ここで、 $\Delta L_{\text{dif,tb}}$ は厚みのある障害物の回折補正 量 [dB]、 $C_{\text{dif,ob}}$ は張り出し型遮音壁と厚みのある

表-3.3 C_{dif.ob}の計算式中の定数の値

張り出し型	式((3.11) の 5	定数
遮音壁の種類	A	B	C
T 型	3.0	10.0	1.0
Y 型	3.5	10.0	2.0
L 型	1.5	10.0	1.5
片 Y 型	1.5	10.0	1.5

図-3.8 先端改良型遮音壁の回折計算における仮想直壁の 設定

障害物の挿入損失の差に関する補正量であり,定数 *A*, *B*, *C* は張り出し型遮音壁の種類に応じて 表-3.3 の値を用いる。

注記1:式(3.11)及び表-3.3の値は,波動数値解析により求めた反射性の張り出し型遮音壁及び厚みのある障害物による道路交通騒音に対する挿入損失のレベル差を関数近似して求めたものである。

注記 2:張り出し部の幅が 1 m 未満については, C_{dif,ob} = 0 dB とする [34]。

注記 3: C_{dif,ob} は舗装種別には関係しない。

注記 4:張り出し部の幅が 50 cm 未満については検討して いない。そのような場合には遮音壁先端を端部とする仮想 直壁として計算する。

注記5:張り出しが大きくなると,張り出し部下面と路面 での多重反射が生じるため,そのような場合には適用でき ない。そのような場合を予測する必要があるときには,波 動数値解析による。

注記 6: この方法の他に,幾つかの種類の吸音性の張り出 し型遮音壁について,実験値から求めた計算式により張り 出しの効果を考慮する方法がある(参考資料 R2 参照)。

3.2.6 先端改良型遮音壁の回折補正量 $\Delta L_{ m dif.emb}$

上端部に取り付けた吸音体などの音響的装置に より後背地への回折音を減衰させる遮音壁を先端 改良型遮音壁と呼ぶ。先端改良型遮音壁の回折補 正量 ΔL_{dif,emb} は, 図-3.8 に示すように, 音源と 音源側回折点, 予測点と予測点側回折点をおのお の結ぶ直線の交点に先端を持つ仮想直壁に対する 回折補正量に先端の音響的工夫に関する効果の補 正量を加えて次式で計算する。

$$\Delta L_{\rm dif,emb} = \Delta L_{\rm dif,hb} + C_{\rm dif,emb} \quad (3.12)$$

ここで、 $\Delta L_{dif,hb}$ は仮想直壁に対する回折補正量で図-3.8の回折点Oについての経路差 δ を用いて

205

図-3.10 透過音計算の考え方

式 (3.3) により求めた $\Delta L_{d,k}$ [dB], $C_{dif,emb}$ は先 端の音響的工夫による効果の補正量 [dB] である。 $C_{dif,emb}$ は装置の大きさや減音原理により異なり, 一般化するのは難しい。参考資料 R2 に幾つかの 先端改良型遮音壁の $C_{dif,emb}$ の設定式等を示す。

3.2.7 低層遮音壁の回折補正量 $\Delta L_{ m dif,low}$

平面道路に設置されている高さ1m程度の低層 遮音壁の回折補正量 $\Delta L_{dif,low}$ は,遮音壁の挿入 損失として次式で計算する。

$$\Delta L_{\rm dif,low} = \Delta L_{\rm d,k,1} - \Delta L_{\rm d,k,0} \qquad (3.13)$$

ここで, $\Delta L_{d,k,1}$ は図-3.9 に示す配置において遮音 壁先端 O₁ を頂点とした場合の $\Delta L_{d,k}$, $\Delta L_{d,k,0}$ は 下端部 O₀ を頂点とした仮想障壁の $\Delta L_{d,k}$ である。

3.2.8 透過音を考慮した回折補正量 $\Delta L_{\rm dif.trms}$

図-3.10に示す配置において,遮音壁を透過する 音の寄与を考慮する場合は,次式により計算した 透過音を考慮した回折補正量 ΔL_{dif,trns}を用いる。

$$\Delta L_{\rm dif,trns} = 10 \log_{10} \left(10^{\Delta L_{\rm d,k,1}/10} + 10^{(\Delta L_{\rm dif,slit} - R_{\rm A,RTN})/10} \right)$$
(3.14)

ここで、 $\Delta L_{d,k,1}$ は遮音壁の頂点 O₁ を頂点とした場合の $\Delta L_{d,k}$ [dB]、 $\Delta L_{dif,slit}$ はスリット回折に関する補正量 [dB]、 $R_{A,RTN}$ は自動車走行騒音のA 特性スペクトルを考慮した遮音壁の音響透過損

表-3.4 一般的な遮音壁の音響透過損失の目安

遮音壁の種類	R _{A,RTN} の目安 [dB]
吸音性遮音壁 (統一型遮音壁)	25
透光型遮音壁(ポリカーボネート板, <i>t</i> = 5 mm 程度)	20

(a) SO₁+O₁P ≥ SO₀+O₀P (b) SO₁+O₁P < SO₀+O₀P
 図-3.12 スリット回折計算での仮想障壁の設定

失 [dB] である。参考として一般的な遮音壁の音 響透過損失の目安を**表-3.4** に示す。

 $\Delta L_{dif,slit}$ は、図-3.11に示すように遮音壁部を スリット開口($O_0 \sim O_1$)に置き換えて、開口を 通過する音のエネルギー(遮音壁の音響透過損失 $R_{A,RTN}$ を0dBとした場合の遮音壁部分を透過す る音のエネルギーに相当)を、図-3.12に示すよ うに二つの仮想障壁(頂点 O_0 及び O_1)を回折す るエネルギーの差として次式で計算する。

 $\Delta L_{\rm dif,slit} = \begin{cases} 10 \log_{10} (10^{\Delta L_{\rm d,k,0}/10} - 10^{\Delta L_{\rm d,k,1}/10}) \\ SO_1 + O_1P \ge SO_0 + O_0P \\ 10 \log_{10} (10^{\Delta L_{\rm d,k,1}/10} - 10^{\Delta L_{\rm d,k,0}/10}) \\ SO_1 + O_1P < SO_0 + O_0P \end{cases}$ (3.15)

ここで、 $\Delta L_{\text{dif,slit}}$ はスリット回折に関する補正量 [dB]、 $\Delta L_{\text{d,k},n}$ は O_n を頂点とした場合の $\Delta L_{\text{d,k}}$ [dB] である。 注記: R_{A.RTN} は、実際に使用する遮音壁、又はそれと同 等な遮音壁の音響透過損失の実験値を用いることが望まし い。なお、実際の設置においては、パネル間の隙間や、パ ネルと取り付け部材間の隙間の影響で実験室における音響 透過損失ほどの遮音効果が得られない場合もあるので注意 を要する。

3.3 地表面効果に関する補正量 $\Delta L_{ m grnd}$

(1)計算式

道路から沿道の予測点に音が伝搬する場合,路面,道路の法面,沿道の地面など多種類の地表面の影響を受けて減衰する。この減衰効果(超過減衰)に関する補正量 $\Delta L_{\rm grnd}$ は,舗装路面の種類にかかわらず,個々の地表面による減衰効果の和として,次式で計算する[35]。

$$\Delta L_{\text{grnd}} = \sum_{i=1}^{n} \Delta L_{\text{grnd},i}$$
(3.16)

$$\Delta L_{\text{grnd},i} = \begin{cases} -K_i \log_{10} \frac{r_i}{r_{\text{c},i}} & r_i \ge r_{\text{c},i} \\ 0 & r_i < r_{\text{c},i} \end{cases} \\ (3.17)$$

ここで、 $\Delta L_{\text{grnd},i}$ は*i* 番目の地表面による減衰に 関する補正量 [dB]、 K_i は*i* 番目の地表面による 超過減衰に関する係数、 r_i は*i* 番目の地表面上の 伝搬距離 [m]、 $r_{c,i}$ は*i* 番目の地表面による超過 減衰が生じ始める距離 [m] である。

係数 K_i や定数 $r_{c,i}$ は地表面の種類によって異なる。代表的な 3 種類の地表面(柔らかい畑地, 草地,固い地面・排水性舗装路面)について K_i と $r_{c,i}$ の計算式を示す。なお,密粒舗装やコンクリー ト舗装などの舗装面では, $\Delta L_{grnd} = 0$ とする。

注記1:地表面効果と気象の影響は独立なものではなく互 いに密接に関係し合っている [36,37]。そのため、伝搬距離 が長く、地表面効果による減衰量がおよそ 30 dB を超える $(\Delta L_{\rm grnd} < -30 \, {\rm dB})$ と、風の影響や大気の乱れの影響を 受け、特に逆風条件では計算値ほどの減衰が生じない [38]。 そのため、地表面効果による減衰量が 30 dB を超える場合 $(\varDelta L_{\rm grnd} < -30\,{\rm dB})$ は $\varDelta L_{\rm grnd} = -30\,{\rm dB}$ とする。 注記 2:式 (3.16) は,均質で一様な有限のインピーダンス を持つ境界面上における音の伝搬理論に基づいて、密粒舗 装における自動車走行騒音の平均的なスペクトルを用いた 場合の超過減衰の計算結果から設定した計算式である [39]。 注記3:自動車専用道路におけるスピーカを用いた実験に より,排水性舗装路面では固い地面相当の地表面効果によ る超過減衰が生じることが確認されている [40]。 注記4:3.3節の方法は、沿道地表面を細かく分割すると、 個々の地表面での伝搬距離が距離 rc.i に達することなく超 過減衰が生じない問題が起きるので注意が必要である。な お、地表面の細分化に対しても累積的な超過減衰を近似す る簡易計算法 [41] が提案されている。

図-3.13 各地表面上の伝搬経路高さ

注記5:回折と地表面効果は、本来は独立なものではなく、 互いに密接に関係し合っている。道路に遮音壁を設けた場 合、回折補正量は大きくなるが、伝搬高さが増加して地表面 効果は減少する。このような場合の地表面効果は、伝搬経 路を遮音壁の位置で分割し、遮音壁前・後の二つの地表面 上での地表面効果による補正量の和とする。なお、沿道地 表面が舗装面であることなどによって、遮音壁背後の予測 点において地面反射の影響が無視できない場合は、鏡面反 射を仮定した地面反射音を加算する(**付属資料 A5** 参照)。

(2) 地表面による超過減衰に関する係数 K_i

式 (3.17) における係数 K_i は, 地表面の種類と平 均伝搬経路高 H_{a,i} を用いて次式で計算する [42]。 1) 柔らかい畑地

$$K_{i} = \begin{cases} 3.93\sqrt{H_{\mathrm{a},i} + 0.081} + 15.1\\ 0.6 \le H_{\mathrm{a},i} < 1.5\\ 20.0 \qquad H_{\mathrm{a},i} \ge 1.5\\ (3.18) \end{cases}$$

2) 草地

$$K_{i} = \begin{cases} 6.98\sqrt{H_{\mathrm{a},i} - 0.537} + 9.85\\ 0.6 \le H_{\mathrm{a},i} < 1.5\\ 2.48\sqrt{H_{\mathrm{a},i} - 1.42} + 16.0\\ 1.5 \le H_{\mathrm{a},i} < 4.0\\ 20.0 \qquad H_{\mathrm{a},i} \ge 4.0 \end{cases}$$
(3.19)

3) 固い地面,排水性舗装路面

$$K_{i} = \begin{cases} 4.97H_{\mathrm{a},i} - 0.472H_{\mathrm{a},i}^{2} + 5.0\\ 0.6 \le H_{\mathrm{a},i} < 3.0\\ 1.53\sqrt{H_{\mathrm{a},i} - 2.94} + 15.3\\ H_{\mathrm{a},i} \ge 3.0 \end{cases}$$
(3.20)

ここで、平均伝搬経路高 $H_{a,i}$ は、図-3.13 に示す ように最短伝搬経路を考え、対象とする地表面の 両端における伝搬高さ H_{i-1} と H_i の平均値とし、 次式で計算する。なお、 $H_{a,i}$ が0.6 m 未満の場合 には $H_{a,i} = 0.6$ とする。

$$H_{\mathrm{a},i} = \begin{cases} \frac{(H_{i-1}+H_i)}{2} & H_{i-1}+H_i \ge 1.2\\ 0.6 & H_{i-1}+H_i < 1.2\\ (3.21) \end{cases}$$

(3) 地表面による超過減衰が生じ始める距離 *r*_{c,i}

地表面による超過減衰が生じ始める距離 *r_{c,i}* は, 次式で与える。

$$r_{c,i} = g(Z_i) \cdot (H_{a,i})^{f(Z_i)}$$
 (3.22)

ここで、*Z_i*は対象とする地表面の両端における伝

-参-20-
$$Z_{i} = \frac{|H_{i-1} - H_{i}|}{2H_{\mathrm{a},i}} \tag{3.23}$$

また, *f*(*Z_i*)は, *Z_i*の関数として次式で計算する。 1) 柔らかい畑地

$$f(Z_i) = \begin{cases} 2.09 & 0.0 \le Z_i < 0.4 \\ 2.09 - 0.124(Z_i - 0.4) \\ +0.711(Z_i - 0.4)^2 - 2.47(Z_i - 0.4)^3 \\ 0.4 \le Z_i < 0.8 \\ 2.00 - 1.72(Z_i - 0.8) \\ +21.6(Z_i - 0.8)^2 - 189(Z_i - 0.8)^3 \\ 0.8 \le Z_i \le 1.0 \\ (3.24) \end{cases}$$

2) 草地

$$f(Z_i) = \begin{cases} 2.3 & 0.0 \le Z_i < 0.4\\ 2.3 - 0.387(Z_i - 0.4) \\ +0.920(Z_i - 0.4)^2 - 5.47(Z_i - 0.4)^3\\ 0.4 \le Z_i \le 1.0 \\ (3.25) \end{cases}$$

3) 固い地面,排水性舗装路面

$$f(Z_i) = \begin{cases} 2.3 & 0.0 \le Z_i < 0.2\\ 2.3 + 0.170(Z_i - 0.2)\\ -1.38(Z_i - 0.2)^2 - 0.648(Z_i - 0.2)^3\\ 0.2 \le Z_i \le 1.0\\ (3.26) \end{cases}$$

式 (3.22) の $g(Z_i)$ は次式で計算する。

$$g(Z_i) = a + bZ_i + cZ_i^2 + dZ_i^3$$
(3.27)

ここで,係数a,b,c,dは地表面の種類別に表-3.5 で与える。ただし、固い地面あるいは排水性舗装 路面で $H_{a,i} < 1.1$ の場合には、 $r_{c,i}$ は次式で計算 する。

$$r_{\mathrm{c},i} = g(Z_i) \cdot (1.1)^{f(Z_i)} \cdot 10^{(H_{\mathrm{a},i}-1.1) \cdot h(Z_i)}$$
(3.28)

$$h(Z_i) = 0.517 - 0.0592Z_i - 1.30Z_i^2 + 1.19Z_i^3$$
(3.29)

表-3.5 $g(Z_i)$ における係数

地表面の種類	a	b	c	d
柔らかい畑地	35.1	3.26	-61.2	30.3
草地	23.8	1.69	-38.2	23.3
固い地面・排水性舗装路面	18.6	0.946	-32.5	32.2

3.4 空気の音響吸収に関する補正量 ΔL_{air}

空気の音響吸収による減衰に関する補正量 ΔL_{air} は、大気の状態を気温 20°C、相対湿度 60%、1 気 圧(101.325 kPa)と想定した次式で計算する。

$$\Delta L_{\text{air}} = -6.84 \left(\frac{r}{1000}\right) + 2.01 \left(\frac{r}{1000}\right)^2 -0.345 \left(\frac{r}{1000}\right)^3 \qquad (3.30)$$

ここで, r は音源から予測点までの距離 [m] である。

注記:上式は,JIS Z 8738:1999 で規定されている空気の 音響吸収の計算方法を基に,密粒舗装道路における自動車 走行騒音のスペクトル (定常走行部)を用いて導いたもので ある [43]。異なる大気の状態について予測する必要がある 場合は,空気の音響吸収に関する周波数ごとの計算式(付 属資料 A5.3.1 参照)により周波数ごとに計算し,自動車 走行騒音の周波数特性(付属資料 A1 参照)を重み付けし た合成値での減衰量から $\Delta L_{\rm air}$ を求めればよい(付属資料 A5.3.2 参照)。

3.5 反射音の計算方法

掘割・半地下構造道路や高架・平面道路併設部 の予測では,反射を取り扱う必要がある。その場 合,反射面が平坦で十分大きい場合には鏡面反射 として扱い,表面に大きな凹凸がある場合には散 乱反射として扱う。

3.5.1 鏡面反射法

(1)計算式

図-3.14(a) のように音源Sと予測点P及び端部 をOとする平坦な半無限反射面を考える。この場 合の反射音は、図-3.14(b) に示すように反射面に 対するSの鏡像音源S'から反射面と相補的に設 定した半無限吸音障壁(仮想障壁)を回折してP に到達する音波と見なす。この考えに基づく鏡面 反射法の計算式を以下に示す。

$$L_{\rm A,refl} = L_{WA} - 8 - 20 \log_{10} r + \Delta L_{\rm refl} + \Delta L_{\rm abs}$$

$$(3.31)$$

ここで、 $L_{A,refl}$ は反射音の騒音レベル [dB], r は S' から P までの直達距離 [m]、 ΔL_{refl} は反射面が 有限であることによる補正量 [dB] (以下、反射補 正量と呼ぶ)、であり、反射面の形状に応じて計算 式及び量記号が異なるが、総称として ΔL_{refl} で表

図-3.14 半無限平坦面による反射音の扱い方

す。また, *ΔL*_{abs} は反射面の吸音に関する補正量 [dB] (3.5.3 項参照) である。

(2) 反射補正量 $\Delta L_{
m refl}$

1) 反射補正量計算の基本量 $\Delta L_{ m r}$

 $\Delta L_{\rm r}$ は,音源の鏡像 S',回折点 O,予測点 P と したときの回折経路 S'OP と直達経路 S'P の経路 差 δ [m] を用いて次式で計算する。

$$\Delta L_{\rm r} = \begin{cases} -20 - 10 \log_{10}(c_{\rm spec}\delta) \\ c_{\rm spec}\delta \ge 1 \\ -3 - 19.3 \cdot \sinh^{-1}((c_{\rm spec}\delta)^{0.33}) \\ 0 \le c_{\rm spec}\delta < 1 \end{cases}$$
(3.32)

 $c_{
m spec}$ は**表–3**.2 に示した値を用いる。 $\Delta L_{
m r}$ と δ の 関係を図–3.15 に示す。

注記:式 (3.32) はエネルギーの相補性を仮定した計算式である [44]。

2) 半無限反射面での反射補正量 $\Delta L_{ m refl,semi}$

図−3.14(a) のような半無限反射面での反射補正 量 ΔL_{refl,semi} は、図−3.14(b) のように仮想障壁を 設定し次式で計算する。

[図-3.14(b) で P から S' が見えないとき]

$$\Delta L_{\rm refl,semi} = \Delta L_{\rm r} \tag{3.33}$$

〔図-3.14(b) で P から S' が見えるとき〕
$$\Delta L_{\text{refl,semi}} = 10 \log_{10} \left(1 - 10^{\Delta L_{r}/10} \right)$$
(3.34)

3) 帯状反射面での反射補正量 $\Delta L_{
m refl,slit}$ (ス リット法)

図-3.16(a) に示すように, 音源Sと予測点P及 び平坦で有限幅の反射面 $O_1 \sim O_2$ を考える。この 場合の反射音は, 図-3.16(b) に示すように反射面 に対するSの鏡像音源S'から反射面と同じ幅の 開口(スリット) $O_1 \sim O_2$ を透過してPに到達す る音波と見なすことができる。

開口を通過する音のエネルギーは、図-3.16(c) に示す二つの仮想障壁によって回折する音のエネ ルギーの差として求める。この方法による反射補 正量 ΔL_{refl,slit} は次式で計算する。

$$\Delta L_{\rm refl,slit} = 10 \log_{10} \left| 10^{\Delta L_{\rm refl,1}/10} - 10^{\Delta L_{\rm refl,2}/10} \right|$$
(3.35)

ここで、 $\Delta L_{\text{refl},1}$ 及び $\Delta L_{\text{refl},2}$ は O_1 及び O_2 を エッジと考えたときの反射補正量 $\Delta L_{\text{refl},\text{semi}}$ [dB] であり、式 (3.33)、式 (3.34)で計算する。

4) 矩形反射面での反射補正量 $\Delta L_{ m refl, rect}$

建物外壁のような矩形面での反射は,その面を 無限大障壁に含まれる開口面と見なし,音源Sの 鏡像S'からその開口を透過して予測点Pに到達 する音として計算する。

図-3.17 に示すように, 無限大障壁を仮想開口面 の4辺を延長した直線で9分割する。ここで, 領 域 Γ_i , Γ_j , Γ_k からの音の寄与を D_{ijk} と表す。こ のとき全領域を通して到達するエネルギーに対す

(c) スリット法の計算における仮想障壁の設定 図-3.16 スリット法による反射音の扱い方

る矩形開口面(領域 Γ_0)から到達するエネルギー の比をレベル表示した反射補正量 $\Delta L_{\text{refl,rect}}$ [dB] は、次式で計算する [44]。

$$\Delta L_{\text{refl,rect}} = 10 \log_{10} D_0$$

= 10 \log_{10} (1 - D_{1-8}) (3.36)

ここで、 D_0 は領域 Γ_0 を透過する音の寄与、 D_{1-8} は領域 Γ_1 から Γ_8 (Γ_0 以外)を透過する音の寄与

図-3.17 矩形面(領域 Γ₀)における反射音の計算

図-3.18 散乱反射法

であり、 $D_0 + D_{1-8} = 1$ を仮定している。 D_{1-8} は 次式により計算する。

$$D_{1-8} = D_{123} + D_{678} + D_4 + D_5 \quad (3.37)$$

$$D_4 = (1 - D_{123} - D_{678}) \times D_{146} \quad (3.38)$$

$$D_5 = (1 - D_{123} - D_{678}) \times D_{358} \quad (3.39)$$

$$D_{ijk} = 10^{\Delta L_{\rm refl, ijk}/10} \tag{3.40}$$

ここで、 $\Delta L_{\text{refl},ijk}$ は領域i, j, kが「開」で他の領域が「閉」の場合の $\Delta L_{\text{refl},\text{semi}}$ で、式 (3.33)、式 (3.34)を用いて計算する。

3.5.2 散乱反射法

飯桁構造の高架裏面反射音のように凹凸のある 反射面を Lambert の余弦則に従う散乱反射面と 仮定して計算する方法である [45,46]。図-3.18 に 示すように,自由空間中に点音源 S,予測点 P,反 射面 B を考え, B の要素 $\Delta \sigma$ の法線ベクトルを n とする。P における反射面全体からの反射音の騒 音レベル $L_{A,refl}$ [dB] を次式で計算する。

$$L_{\rm A,refl} = L_{WA} - 16 + 10 \log_{10} \int_{\rm B} \frac{\cos\theta \cdot \cos\psi}{r^2 R^2} d\sigma + \Delta L_{\rm abs}$$
(3.41)

ここで, θ 及び ψ は散乱反射面への音の入射角及 び反射角 [°],r及びRは音源及び予測点から B の微小部分 $\Delta \sigma$ の中心までの距離 [m], ΔL_{abs} は 反射面の吸音による補正量 [dB] である。

式 (3.41) を数値積分するために,反射面 B をあ る大きさの N 個の反射面 B_i (B_i \in B, $i = 1 \sim$ N) に分割し, L_{A,reff} を次式で計算する。

$$L_{\text{A,refl}} = L_{W\text{A}} - 16$$

+10 log₁₀ $\sum_{i=1}^{N} \frac{S_i \cos \theta_i \cdot \cos \psi_i}{r_i^2 R_i^2}$
+ ΔL_{abs} (3.42)

ここで、 S_i は B_i の面積 [m²]、 r_i 、 R_i 、 θ_i 、 ψ_i は それぞれ B_i の中心に対するr、R、 θ 、 ψ である。

注記 1: 反射角 ψ が 90° に近づくと, $\cos \psi \approx 0$ となり, ψ 方向に伝搬する音の音響エネルギーが 0 に近づき, 誤差 が大きくなるので注意を要する。

注記 2:式 (3.41),式 (3.42) は自由空間での計算式である が,音源が路面上にある場合(半自由空間にある場合)は, 計算式の定数 "-16"は "-13"となる。

注記3:矩形の散乱反射面での反射計算法として,見込み 角を用いた方法がある[47]。

3.5.3 吸音に関する補正量 $\Delta L_{ m abs}$

吸音に関する補正量(吸音補正量) ΔL_{abs} [dB] は、次式で計算する。

$$\Delta L_{\rm abs} = 10 \log_{10} (1 - \alpha_{\rm A,RTN}) \qquad (3.43)$$

ここで, α_{A,RTN} は道路交通騒音のスペクトルを 考慮した吸音率で, 実験により α_{A,RTN} が得られ ている場合はその値を用いる。また, **表–3.6** に示 す吸音材の平均斜入射吸音率の判定基準値 [48] を 用いてもよい。

3.6 気象の影響

これまでに示した伝搬計算法は無風で均質な大 気中における計算法であるが、現実には、風、大気 の温度勾配、大気の乱れなどによって騒音の伝搬 性状は極めて複雑に変化する。数値解析結果によ れば、風の影響により遮音壁の効果が変化し、無 風時ほどの効果が得られない場合がある [38]。

風の影響による L_{Aeq} の変化量 $\Delta L_{m,line}$ [dB] は、直線状の道路の場合には、道路構造の種類、 遮音壁の有無、地表面の違いなどにかかわらず次 式によって推定する。

$$\Delta L_{\rm m,line} = \begin{cases} 0.88 \log_{10} \left(\frac{l}{15}\right) \cdot U_{\rm vec} & l > 15\\ 0 & l \le 15\\ (3.44) \end{cases}$$

表-3.6 材料の吸音率の目安

材料	$\alpha_{ m A,RTN}$
高架裏面吸音板	0.90
掘割側壁吸音板	0.85
吸音性遮音壁(統一型遮音壁)	0.75
建物外壁吸音材	0.75
橋脚吸音材	0.70
植栽枡の側面吸音板	0.70
コンクリート面, アスファルト面	$0.00\!\sim\!0.02$

表-3.7 風の影響による L_{Aeq} の変化量 $\Delta L_{m,line}$

		-	
ベクトル風速	道路	中心からの	距離 <i>l</i>
$U_{\rm vec} [{\rm m/s}]$	$50\mathrm{m}$	$100\mathrm{m}$	$200\mathrm{m}$
± 1	± 0.5	± 0.5	± 1.0
± 3	± 1.5	± 2.0	± 3.0
± 5	± 2.5	± 3.5	± 5.0
	(単	.位:[dB],	複号同順)

ここで,lは道路の中心から予測点までの水平距離 [m], U_{vec} はベクトル風速 [m/s] で, $U_{\text{vec}} = U \cos \theta$ (Uは平均風速 [m/s], θ は予測点から道路への垂 線と風向のなす角度)で表される。なお, U_{vec} は 順風の場合を正 (+),逆風の場合を負 (-)とする。

式 (3.44) により求めた L_{Aeq} の変化量 $\Delta L_{\text{m,line}}$ (0.5 dB 間隔で丸めた数値)を表-3.7 に示す。

注記:式(3.44)は、点音源についての風の影響による変化 量の実測データから求めた実験式[49]をもとに、これま でに収集された道路交通騒音の実測データから求めた値で ある。

献

[22] 松本敏雄, "道路交通騒音予測に関する模型実験,"音響学会誌, 63, 537–542 (2007).

文

- [23] 前川純一,"障壁(塀)の遮音設計に関する実験的研究,"音響学会誌, 18, 187–196 (1962).
- [24] 山本貢平,高木興一,"前川チャートの数式表示について,"騒音制御,15,40-43 (1991).
- [25] 福島昭則,坂本慎一,安田洋介,"厚みのある障壁での 回折計算の実用計算法に関する検討,"音響学会騒音・振 動研資, N-2018-35 (2018.7).
- [26] 福島昭則, 坂本慎一, 安田洋介, 横田考俊, "道路交通 騒音の予測モデル "ASJ RTN-Model 2018"—伝搬計算 方法—,"音講論集, pp. 1397–1400 (2019.3).
- [27] 大久保朝直,福島昭則,"道路交通騒音予測における遮 音壁表面の吸音効果の算定式,"音講論集, pp. 1123–1126 (2014.3).
- [28] K. Takagi, R. Hotta and K. Yamamoto, "A simple method for the calculation of noise attenuation by a finite length barrier," *Appl. Acoust.*, 43, 353–365 (1994).
- [29] K. Takagi, Y. Park, R. Hotta and K. Yamamoto, "Comparison of simple prediction method for noise reduction by double barriers," *Proc. inter-noise 96*, pp. 779–782 (1996).
- [30] 上坂克己, 大西博文, 三宅龍雄, 山本貢平, 高木興一,

"多重回折による減音効果の計算方法—障壁間隔が大きい場合—,"音講論集, pp. 705–706 (1999.3).

- [31] 福島昭則,一木智之, "変則的な二重回折音場の数値 解析と実用計算モデルの検討,"音響学会騒音・振動研資, N-2017-22 (2017.6).
- [32] 坂本慎一,安田洋介,福島昭則,"厚みのある障壁に よる回折音場の実用計算方法に関する検討,"音響学会騒 音・振動研資, N-2017-23 (2017.6).
- [33] 福島昭則,坂本慎一,"張り出し型遮音壁の騒音低減 効果の実用計算方法に関する検討,"音響学会騒音・振動 研資, N-2019-12 (2019.2).
- [34] 大久保朝直,山本貢平,"道路交通騒音に対する張り 出し型遮音壁の騒音低減効果,"騒音制御工学会研究発表 会講論集, pp. 121–124 (2008.9).
- [35] 三宅龍雄, 上坂克巳, 大西博文, 山本貢平, 高木興一,
 "道路交通騒音予測における地表面効果計算方法の検討,"
 音講論集, pp. 725–726 (1998.3).
- [36] 横田考俊, 大久保朝直, "道路交通騒音の伝搬におけ る気象影響の波動数値解析,"音響学会騒音・振動研資, N-2014-19 (2014.3).
- [37] 岡田恭明, 吉久光一, 横田考俊, 岩瀬昭雄, "地表面と 風との複合効果に着目した音響伝搬実験," 騒音制御, 39, 120–128 (2015.8).
- [38] 横田考俊, 松本敏雄, 福島昭則, "道路交通騒音に及ぼ す気象の影響―風の影響による地表面効果及び回折補正 量の変化に関する波動解析―,"音響学会騒音・振動研資, N-2019-16 (2019.3).
- [39] K. Yamamoto and M. Yamashita, "A simple model for estimating excess attenuation of road traffic noise," J. Acoust. Soc. Jpn. (E), 8, 13–22 (1987).
- [40] 福島昭則,一木智之,太田達也,中尾剛士,岩吹啓史, 長船寿一,"排水性舗装(高機能舗装 I 型)路面の音響特 性と騒音伝搬特性,"音響学会騒音・振動研資, N-2015-16 (2015.3).
- [41] 三宅龍雄, 鳥海英宏, 鈴木真一, "複数の異なる地表面 上における過剰減衰の簡易計算," 音講論集, pp. 767–768 (2003.9).
- [42] K. Yamamoto, M. Yamashita and T. Mukai, "Revised expression of vehicle noise propagation over ground," J. Acoust. Soc. Jpn. (E), 15, 233–241 (1994).
- [43] 吉久光一, 那須猛士, 高木興一, 橘 秀樹, "道路交通 騒音の伝搬に及ぼす空気の音響吸収の影響," 音響学会騒 音・振動研資, N-99-21 (1999.3).
- [44] 福島昭則,山本貢平,"エネルギーの相補性を仮定した回折補正量計算モデルとその応用,"音響学会騒音・振動研資, N-2006-56 (2006.11).
- [45] ハインリッヒ クットルフ (訳:藤原恭司・日高孝之), 室内音響学(市ヶ谷出版社,東京, 2003),第4章.
- [46] 福島昭則, 一木智之, 森 喜仁, "I 桁構造高架道路裏 面での音響反射,"音響学会誌, **57**, 587–595 (2001).
- [47] 福島昭則, 一木智之, 松本敏雄, "散乱反射法による高 架裏面反射音の予測における条件設定に関する検討,"音 響学会騒音・振動研資, N-2018-41 (2018.8).
- [48] 平成7年度建設技術評価制度公募課題「騒音低減効 果の大きい吸音板の開発」.
- [49] 橘 秀樹, 吉久光一, 石井聖光, "騒音の広域伝搬に対 する風の実用的な予測方法(基本モデルの検討),"音響 学会建築音響研資, AA-83-05 (1983.2).

4. 道路特殊箇所の騒音

インターチェンジ部,連結部,信号交差点部,ト ンネル坑口周辺部,掘割・半地下部,高架・平面 道路併設部,複層高架部などの道路特殊箇所では, 道路の構造や自動車の走行状態が複雑で,騒音の 予測計算では一般部とは異なった取り扱いが必要 である。そこで騒音の予測は,それぞれの箇所に ついて以下に述べる計算方法による。

4.1 インターチェンジ部

インターチェンジ部は,道路の平面・縦断線形が 変化するという道路形状であることに加え,自動車 が料金所付近で減速,停止,発進・加速する,又は 本線とランプの合流部付近で加速もしくは減速す るという走行状態を示すことに特徴がある(図-4.1 参照)。ここでは,このような特徴に着目して行わ れた研究の成果に基づいて,インターチェンジ部 周辺における騒音の予測計算方法を示す。

4.1.1 計算手順

料金所を含むインターチェンジ部を走行する自 動車の走行速度は時々刻々変化するため,道路一 般部に比べてユニットパターンの求め方はやや複 雑となる。まず,離散的に設定した各音源位置に おける自動車の走行状態に応じたパワーレベルを 2 章で示した方法によって設定し, 音源位置から 予測点に至る伝搬計算を3章に示した方法で行う。 その結果から、自動車走行位置と走行経過時間と の関係を考慮して、時間の関数としてのユニット パターンを求める。一例として, 1 台の自動車が 自動車専用道路の本線からランプ、料金所を通っ て一般道路へ走行するケースについて,走行速度, パワーレベルの変化,及びそれに基づいて計算し た料金所近傍におけるユニットパターンを図-4.2 に示す。時間の関数としてのユニットパターンを 求めるためには、この図に示すようなタイムテー ブルを作成する必要があり,自動車の位置,初速 度、加速度、終速度、停止時間等を設定して計算 する。このようにして求められたユニットパター ンから L_{Aeq} を計算する方法は,道路一般部の場 合と同様である。

4.1.2 自動車の加速度

インターチェンジ部を走行する自動車の加速時 及び減速時の加速度は,表-4.1 に示す値を用い る [6,50]。なお,二輪車については小型車類の値 を,大型バスは大型車類の値をそれぞれ用いるこ ととする。

4.1.3 料金所における停止時間

料金所におけるサービス時間としては,入口における発券,出口における料金徴収に要する自動

図-4.1 インターチェンジ部,連結部における走行状態

表-4.1 インターチェンジ部を走行する自動車の加減速時 の加速度

甫	秝	小刑亩粨	-	大型車類	_
+	1里	小室平規	中型車	大型車	
加速	起時	1.8	1.3	1.1	1.2
減速	起時	-1.0	_	_	-0.8
(単位:[m/s ²])					

車の停止時間とし,表-4.2に示す値を用いる[51]。

注記:自動料金収受システム(ETC: Electronic Toll Collection System)を設置した料金所については、実測結果に基づいて暫定的に設定した自動車の加速度並びに料金所の通過速度を用いる [52]。

表-4.2	料金所におけ	るサー	ビス時間
	入口	6	
	出口	14	
	均一料金	8	
	(単位	::[s])	

4.2 連結部

連結部とは,図-4.1 に示すような自動車専用道路のランプと一般道路を接続する加減速部である。 騒音計算は,インターチェンジ部のランプから本線へ合流する場合又はその逆の場合と同じ考え方で行う。

加減速時のパワーレベルは,2章に示した方法 を用いる。加減速時の加速度は,車種によらず一 定値(加速時は0.4 m/s²,減速時は-1.3 m/s²) を用いる。

注記:加速時の加速度は現地実測調査によって得られた値 である。減速時の加速度は,信号交差点部での現地実測調 査により得られた減速時の加速度を便宜的に用いる(付属 資料 A7 参照)。

4.3 信号交差点部

市街地の一般道路には信号交差点が多数存在し, 個々の自動車は発進,加速,定常,減速,停止を 頻繁に繰り返しながら走行しており,交通流は非 定常流となっている。交差点部の騒音は,図-4.3 に示すとおり単に2本の道路が交差すると見なし て,各々の道路に非定常走行のパワーレベル式を 適用して L_{Aeq}を計算し,それらをエネルギー合 成する [53]。

注記:実際の信号交差点付近では,信号現示の変化に対応 して個々の車両の走行状態が変化し,それに応じてパワーレ ベルは大きく変化する。そのため,例えば信号現示の違い による沿道騒音の差を詳細に検討する場合のように,車両の

走行状態の変化を考慮することが重要な場合もある。この ような場合には,信号交差点付近のユニットパターンから 沿道騒音を計算する実用計算法や簡易計算法を用いる[54]。 これらの計算方法の概要を**付属資料 A7** に示す。

4.4 トンネル坑口周辺部

坑口から放射されるトンネル内部の自動車の騒 音(坑口音)を,直接音とそれ以外の反射音・拡散 音に分けてモデル化する。前者は,トンネル内の 仮想点音源から坑口を通して放射されるとし,後 者はトンネル内における直接音以外の反射・拡散 音が坑口に設定した仮想面音源から放射されると 仮定する [55]。

注記:この計算モデルは,原則として坑口の形状が半円形 及び矩形の場合に適用するが,それ以外の形状についても 適用の可能性が検討されている [56]。更に,トンネル内の 吸音率が区間によって異なる場合にも適用できる。

4.4.1 トンネル坑口音の計算方法

トンネル内を走行する1台の自動車によって坑 口周辺部で観測されるA特性音圧レベルL_A[dB] は、次式で計算する。(図-4.4 参照)。

$$L_{\rm A} = 10 \log_{10} (10^{L_{\rm A,TD}/10} + 10^{L_{\rm A,TR}/10})$$
(4.1)

ここで, *L*_{A,TD} は仮想点音源からの直接音の寄与 [dB], *L*_{A,TR} はそれ以外の反射音・拡散音(仮想 面音源)の寄与 [dB] である。

*L*_{A,TD} は, 3.1 節に示した伝搬計算の基本式に 準じて次式で計算する。

$$L_{A,TD} = L_{WA} - 8 - 20 \log_{10} r$$
$$+ \Delta L_{dif} + \Delta L_{grnd} \qquad (4.2)$$

ここで, L_{WA} は自動車走行騒音のA特性音響パ ワーレベル [dB],rは仮想点音源から予測点まで の直達距離 [m], ΔL_{dif} は坑口エッジ等における回 折に伴う減衰に関する補正量 [dB], ΔL_{grnd} は地 表面効果による減衰に関する補正量 [dB] である。

図-4.4 トンネル内の実音源と仮想音源の配置

表-4.3 仮想面音源の指向性に関するパラメータ

壁面状況	$n_{ m a}$	$n_{ m b}$
吸音対策なし	1.6	0.1
側壁吸音対策	_	—
全周吸音対策		—

 $L_{A,TR}$ に関しては、面音源を等面積の10個程度の要素に分割して各要素を指向性点音源に置換し、各点音源からの寄与 $L_{A,TR,i}$ の合成として求める。

$$L_{\rm A,TR} = 10 \log_{10} \left(\sum_{i=1}^{N} 10^{L_{\rm A,TR,i}/10} \right)$$
(4.3)

$$L_{A,TR,i} = L'_{WA,R} - 8 - 20 \log_{10} r_i$$
$$+ \Delta L_{dif,i} + \Delta L_{grnd,i}$$
$$+ n \cdot 10 \log_{10} (\cos \theta_i) \qquad (4.4)$$

$$n = n_{\rm a} (1 - e^{-n_{\rm b} x}) \tag{4.5}$$

 $L'_{WA,R} = L_{WA,R} - 10\log_{10}N$ (4.6)

ここで, r_i [m] は *i* 番目の仮想面音源から予測点 までの直達距離, θ_i [rad] は *i* 番目の仮想面音源か ら予測点を結ぶベクトルと道路の進行方向がなす 角度, n は仮想面音源の指向係数で,坑口から実 音源までの実距離 x [m] によって式 (4.5) で計算 する [57]。 n_a 及び n_b は**表**-4.3 の値を用いる。ま た, N は面音源の分割数, $L_{WA,R}$ は面音源の A 特性音響パワーレベル [dB], $L'_{WA,R}$ は分割され た面音源を点音源と見なした場合の A 特性音響パ ワーレベル [dB] である。

4.4.2 仮想音源の位置とパワーレベル

仮想点音源のパワーレベルは実音源(自動車走 行音)と同じとし、その設定位置(坑口からの距 離) x' [m] は、トンネル内の吸音に関するパラメータ a と坑口から実音源までの実距離 x によって次式で計算する。

$$x' = ax \tag{4.7}$$

トンネル内の吸音特性が区間により異なる場合は, *a*を次式で計算する。

$$a = \frac{\sum_{i=1}^{i} (a_i x_i)}{\sum_{i=1}^{i} x_i}$$
(4.8)

ここで、 a_i は区間 i の吸音に関するパラメータ、 x_i は距離 x に含まれる区間 i の長さ [m] である。

坑口面位置に設定した仮想面音源のパワーレベ ル $L_{WA,R}$ は、実音源により坑口から放射されるす べての音のA特性音響パワー $P_{A,T}$ [W]から直接 音として放射される音のA特性音響パワー $P_{A,D}$ [W]を差し引いて次式で計算する。

$$L_{WA,R} = 10 \log_{10} \left(\frac{P_{A,T} - P_{A,D}}{10^{-12}} \right)$$
 (4.9)

トンネルが半径 h [m] の半円形の場合は $P_{A,T}$, $P_{A,D}$ を次式で計算する。

$$P_{\rm A,T} = \frac{P_{\rm A}}{2} \left\{ 1 - \frac{ax}{\sqrt{h^2 + (ax)^2}} \right\} \quad (4.10)$$

$$P_{\rm A,D} = \frac{P_{\rm A}}{2} \left\{ 1 - \frac{x}{\sqrt{h^2 + x^2}} \right\}$$
(4.11)

ここで, *P*_A は実音源の A 特性音響パワー [W] である。

また,トンネルが幅 2w [m],高さ h [m] の矩形 の場合は次式で計算する。

 $P_{A,T}$

$$= \frac{P_{\rm A}}{\pi} \tan^{-1} \left\{ \frac{wh}{\sqrt{(ax)^4 + (w^2 + h^2) \cdot (ax)^2}} \right\}$$
(4.12)

$$P_{\rm A,D}$$

$$= \frac{P_{\rm A}}{\pi} \tan^{-1} \left\{ \frac{wh}{\sqrt{x^4 + (w^2 + h^2) \cdot x^2}} \right\}$$
(4.13)

4.4.3 トンネル内の吸音に関するパラメータ

トンネル内の吸音に関するパラメータ*a*は,路 面の舗装の別に**表-4.4**の値を用いる。

表-4.4 吸音に関するパラメータ a

壁面状況	密粒舗装	排水性舗装
吸音対策なし	0.04	0.1
側壁吸音対策	—	0.4
全周吸音対策	0.6	

図-4.5 スリット法における掘割部の実音源と鏡像音源群

注記:パラメータ a とトンネル内壁面の平均吸音率 $\alpha_{A,RTN}$ (3.5.3 項参照)の関係が調べられており、平均吸音率 $\alpha_{A,RTN}$ を用いてパラメータ a を推定することもできる [55,56]。

4.5 掘割・半地下部

掘割構造道路とは,路面の位置が周辺の地盤よ り低く,人工構造物の側壁を有する道路のことで ある。また,掘割構造道路で天井部分が水平方向 に張り出した構造物を有する場合,ここでは特に 半地下構造道路と呼ぶ。掘割構造道路では,側壁 間で騒音の多重反射が発生する。更に半地下構造 道路では,路面,側壁,天井で囲まれた空間内で 多重反射が発生し易い。このような特徴を持つ掘 割・半地下構造道路からの騒音伝搬の予測方法と しては,幾つかの方法が考えられる。そのうちこ こでは,スリット法による計算方法,指向性点音源 モデルを仮定した簡易計算法を示す。更に精密な 予測をする必要がある場合には,波動数値解析(付 属資料 A6 参照),又は縮尺模型実験 [22] による。

注記:半地下構造道路の騒音対策に用いられる吸音ルーバ [58] の設置効果の予測については,指向性点音源モデルによる簡易計算法にのみ適用できる。

4.5.1 スリット法による計算方法

(1) 適用範囲

この計算法は,掘割構造道路及び上部の開口率が75%程度以上の半地下構造道路に適用する。

(2) 基本式

図-4.5 に示すように、実音源を S_0 、反射面によって生じる実音源の鏡像音源群を $S_1 \sim S_n$ とする。

予測点 P における A 特性音圧レベル L_A [dB] は次式で計算する。

$$L_{\rm A} = 10 \log_{10} \left[10^{L_{\rm A,0}/10} + \sum_{i=1}^{n} \left\{ (1 - \alpha_{\rm A,RTN})^{i} \cdot 10^{L_{\rm A,i}/10} \right\} \right]$$

$$(4.14)$$

ここで、 $L_{A,0}$ は実音源からの寄与による A 特性音 圧レベル [dB] で、式 (3.1) を用いて計算する。ま た、 $L_{A,i}$ は i 番目の鏡像音源からの寄与による A 特性音圧レベル [dB]、n は鏡像音源の数(つまり 反射回数)、 $\alpha_{A,RTN}$ は道路交通騒音のスペクトル を考慮した側壁面の吸音率(3.5.3 項参照)である。 $L_{A,i}$ は次式で計算する。

$$L_{A,i} = L_{WA} - 8 - 20 \log_{10} r_i + \Delta L_{cor,i} + \Delta L_{refl,slit,i}$$
(4.15)

ここで, L_{WA} は自動車走行騒音のA特性音響パ ワーレベル [dB], r_i はi番目の鏡像音源から予測 点までの距離 [m], $\Delta L_{cor,i}$ はi番目の鏡像音源か ら予測点に至る音の伝搬の際に生じる減衰に関す る補正量 [dB], $\Delta L_{refl,slit,i}$ はi番目の鏡像音源に 関するスリット法による反射補正量 [dB] (3.5節 参照)である。

注記:スリット法による計算では、反射回数を増やしても 収斂は遅いので適当な回数でうち切ってよいが、考慮する 反射回数を最低 2 回とする。

4.5.2 指向性点音源モデルによる簡易計算法

(1) 適用範囲

この計算法は,半地下構造道路の断面形状が左 右対称で,上・下車線の交通流の条件(車種構成 及び交通量)がほぼ等しい場合に適用する。

(2) 基本式

予測点 P で観測される A 特性音圧レベル L_A [dB] は,開口部の中央に設定した指向性を有する 仮想点音源 S'の半自由空間における伝搬として, 次式で計算する (図-4.6 参照)。

$$L_{A} = L_{WA,su} + 10 \log_{10} \left\{ a + (1-a) \cos^{n(\theta)} \phi \right\} - 8 - 20 \log_{10} r \qquad (4.16)$$

$$n\left(\theta\right) = n_{\max}\sin^{\beta}\theta \tag{4.17}$$

ここで, 座標系は図-4.6 に示すようにとり, $L_{WA,su}$ は仮想点音源 S' の $\varphi = 0^{\circ}$ 方向からみた見かけの パワーレベル [dB] で,式 (4.18) によって計算す

図-4.6 指向性点音源モデルにおける計算座標系

る。また, a, n_{max} , β はそれぞれ仮想点音源の 指向性に関するパラメータ, r は仮想点音源 S' か ら予測点 P までの距離 [m] である。

$$L_{WA,su} = L_{WA} + \Delta L_{dim,su} + \Delta L_{dir,su} + \Delta L_{abs,su} + \Delta L_{louver} \quad (4.18)$$

ここで、 L_{WA} は自動車走行騒音の A 特性音響パ ワーレベル [dB]、 $\Delta L_{dim,su}$ は半地下構造道路の 構造寸法に関する補正量 [dB]、 $\Delta L_{dir,su}$ は仮想 点音源の指向性に関する補正量 [dB]、 $\Delta L_{abs,su}$ は半地下構造道路の吸音性に関する補正量 [dB]、 ΔL_{louver} は開口部に吸音ルーバが設置された場合 の設置効果に関する補正量 [dB] である。

 $\Delta L_{\text{dim,su}}$ は,道路交通騒音のスペクトルを考慮した路面の吸音率 $\alpha_{\text{A,RTN}}$,道路幅 L,開口幅 W,高さ H (図-4.6 参照)によって次式で計算する [59]。

$$\Delta L_{\rm dim,su} = 10 \log_{10} \left\{ \frac{2}{\pi} \tan^{-1} \frac{W}{2H} + \frac{\pi W H}{3L^2} + \frac{(L-W) \left(1 - \alpha_{\rm A,RTN}\right) W}{\{L\alpha_{\rm A,RTN} + (1 - \alpha_{\rm A,RTN}) W\} L} \right\}$$
(4.19)

 a, n_{max}, β 及び $\Delta L_{\text{dir,su}}$ は,縮尺模型実験及 び波動数値解析の結果に基づいて,表-4.5 に示す 値が構造寸法別に示されている [60,61]。路面の吸 音率 $\alpha_{\text{A,RTN}}$ は,密粒舗装の場合は0とする。排 水性舗装の場合,現場実測の結果に基づく値を用 いる [62]。 $\Delta L_{\text{abs,su}}$ の値は,構造内部の壁面が反 射性の場合は0dB,吸音性の場合は -1 dB とす

	張り出し	り出し 開口幅		半地下構造内部が反射性			半地下構造内部が吸音性			
道路幅 部厚さ		(開口率)	a	$n_{\rm max}$	β	$\Delta L_{\rm dir,su}[\rm dB]$	a	$n_{\rm max}$	β	$\Delta L_{\rm dir,su}[\rm dB]$
		$5 \mathrm{m} (25\%)$	0.15	1.4	1.7	1.61	0.05	2.0	1.2	2.68
	$1\mathrm{m}$	7.5 m (37.5%)	0.15	1.2	1.7	1.45	0.05	2.0	1.2	2.68
20 m		10 m (50%)	0.15	1.0	2.0	1.20	0.05	2.1	1.2	2.77
20 m	4 m	5 m (25%) 7.5 m (37.5%)	0.13	1.5	2.0	1.62	0.03	1.9	1.1	2.77
		10 m (50%)	0.13	1.2	2.0	1.40	0.03	2.1	0.9	3.15
1 m 30 m	$5 \sim 7.5 \mathrm{m}$ (16.7 $\sim 25\%$)	0.15	1.6	2.2	1.58	_	_		_	
	1 111	10 m (33%)	0.15	1.2	2.0	1.36				
		15 m (50%)	0.15	1.0	2.0	1.20				
	4 m	$5 \sim 7.5 \mathrm{m}$ (16.7 $\sim 25\%$)	0.12	1.6	2.2	1.65	_	_		_
	4 III	10 m (33%)	0.12	1.2	2.0	1.42	0.03	1.9	1.0	2.99
		15 m (50%)	0.12	1.0	2.0	1.95	0.03	2.0	1.0	3.00

表-4.5 仮想点音源の指向性に関するパラメータ

図-4.7 騒音放射指向性の例(道路幅 20 m, 張り出し厚さ 4 m, 開口幅 7.5 m, 内部反射性)

図-4.8 遮音壁による回折の計算方法

る。表-4.5 によって計算した指向性パターンの一 例を図-4.7 に示す。 ΔL_{louver} の値は,吸音ルーバ が設置されていない場合は0dB,設置されている 場合は現場実験及び縮尺模型実験の結果に基づく 値を用いる [63]。

(3) 遮音壁による回折に関する補正

半地下構造道路の開口部近傍に遮音壁が設置さ れる場合,予測点 P における A 特性音圧レベル *L*_A [dB] は,次式で計算する。

$$L_{\rm A} = L'_{\rm A} + \Delta L_{\rm dif,sb} \tag{4.20}$$

ここで, L'_A は仮想点音源から遮音壁の上端 O (回

折点) へ向かう方向に, 予測点までの距離と同じ距離だけ離れた点 P' (図-4.8 参照) において計算される A 特性音圧レベル [dB], $\Delta L_{dif,sb}$ は仮想点音源 S'—回折点 O—予測点 P の位置から決まる回折経路差 δ から求めた回折補正量 [dB] である。

注記:同一断面の半地下構造道路が直線状に十分長い距離 連続している場合には、仮想点音源列を線音源として扱う ことができる。この考え方に基づいて放射指向性を φ のみ の関数で与える方法が検討されている [64]。

4.6 高架・平面道路併設部, 複層高架部4.6.1 高架裏面の形状と裏面反射の計算モデル図-4.9に示すように, 高架道路裏面の形状には平

坦なタイプと凹凸があるタイプがある。これらの 形状の違いによって以下に述べるスリット法と散乱 反射法の二つの方法を使い分ける。中空床版構造 のように凹凸が小さく平坦と見なせる高架裏面の場 合はスリット法で, 鈑桁構造のような凹凸の程度が 無視できない場合には散乱反射法による [46,65]。 ここでは高架・平面併設道路について, 平面道路 に遮音壁が設置されていない場合、及び平面道路 の片側道路端にのみ遮音壁が設置されている場合 の計算方法について述べる。複層高架部について も高架裏面反射音の計算の考え方は高架・平面併 設道路と同じである。なお,平面道路の両側道路 端に特に高い遮音壁が設置された場合には、遮音 壁と高架裏面及び路面での多重反射により複雑な 音場になるため、いずれの方法も適用できない。 このような場合には、波動数値解析(付属資料 A6 参照)により計算する。

注記1:「凹凸が小さく平坦と見なせる高架裏面」には,図-4.9の中空床版構造のような高架裏面の他に,平板タイプ の高架裏面吸音板が設置されている場合がある。 注記2:集約料金所のような幅員が広い高架道路では高次 の反射音の影響が無視できない。そのような場合のエネル ギーベースの騒音予測として境界エネルギー積分法を用い た方法が報告されている [66]。

注記3:定性的な予測法として幾何学的音線法がある。高 架裏面反射音の到達範囲を検討する場合には有効な方法で ある。

4.6.2 スリット法による計算方法

図-4.10 に示すように、平面道路の片側道路端 に遮音壁が設置された場合を考える。4~6車線の 通常の高架道路では、①直接音 (SP)、②高架裏面 反射音 (S'P)、③裏面地面反射音 (S'P'及びS"P) の主要な4経路を考え、予測点Pにおける騒音レ ベル L_A [dB] は、これらの経路から伝搬音が合成 されたものとして、次式で計算する。

$$L_{\rm A} = 10 \log_{10} (10^{L_{\rm A,0}/10} + 10^{L_{\rm A,1}/10} + 10^{L_{\rm A,2}/10} + 10^{L_{\rm A,3}/10})$$
(4.21)

ここで, *L*_{A,0}, *L*_{A,1}, *L*_{A,2}, *L*_{A,3} はそれぞれ直接 音,高架裏面反射音,裏面地面反射音(S'P'及び

S''P)の騒音レベル [dB] である。このうち, 高架 裏面が関係した反射音 *L*_{A,1}, *L*_{A,2} 及び *L*_{A,3} は次 式で計算する。

$$L_{A,i} = L_{WA} - 8 - 20 \log_{10} r_i$$
$$+ \Delta L_{dif,sb,i} + \Delta L_{refl,slit,i} + \Delta L_{abs}$$
$$i = 1 \sim 3 \qquad (4.22)$$

ここで、 $\Delta L_{dif,sb,i}$ は*i*番目の鏡像音源についての 遮音壁に対する回折補正量 [dB]、 $\Delta L_{refl,slit,i}$ はス リット法による反射補正量 [dB]である(3.5.1 項参 照)。なお、本来は遮音壁とスリットでの二回回折 を扱う必要があるが、ここでは便宜上、 $\Delta L_{dif,sb,i}$ の計算ではスリットは無視し、 $\Delta L_{refl,slit,i}$ の計算 では遮音壁は無視する。更に、高架裏面吸音板が設 置されている場合には吸音に関する補正量 ΔL_{abs} により吸音による効果を補正する(3.5.3 項参照)。

高架裏面反射音の影響範囲は音源の位置に強く 依存する。そのため、計算では、各車線の中心に 設定し、直接音の計算のような代表車線に集約す ることはしない。平面道路の道路端に遮音壁がな い場合は、裏面地面反射音は S'P' の経路のみと なる。実際の計算は式 (4.21) の $L_{A,3}$ を省略し、 $L_{A,1}$ 及び $L_{A,2}$ は式 (4.22) で $\Delta L_{dif,sb,1} = 0$ 及び $\Delta L_{dif,sb,2} = 0$ として計算する。

注記:高架裏面を吸音処理した場合でも,一般には橋脚の 梁までは吸音処理されることはないので,吸音板設置部と 非設置部の面積率で吸音率を加重平均して設定するなどの 配慮が必要である。

図-4.11 散乱反射法での伝搬経路

4.6.3 散乱反射法による計算方法 [47]

(1)計算式

図-4.11 に示すように,音源Sと予測点Pに対して高架道路の桁下の位置に高架道路幅の散乱反射面Bを仮定する。スリット法と同様に,①直接音(SP),②高架裏面反射音(SBP),③裏面地面反射音(SBP'及びSB'P)の主要な4経路を考える。予測点Pにおける騒音レベル L_A [dB] は,式(4.21)によって計算する。散乱反射法では,反射面Bを幾つかの要素 B_j ($j = 1 \sim N$)に分割し,式(4.21)の $L_{A,1}$, $L_{A,2}$ 及び $L_{A,3}$ を次式で計算する(図-4.12参照)。

$$L_{A,i} = L_{WA} - 13 + 10 \log_{10} \sum_{j=1}^{N} \frac{S_j \cos \theta_j \cdot \cos \psi_j D_j \rho_j}{r_j^2 R_j^2}$$
$$i = 1 \sim 3 \quad (4.23)$$
$$D_j = 10^{\Delta L_{\text{dif}, \text{sb}, j}/10} \quad (4.24)$$

ここで, S_j は散乱反射面の分割要素 B_j の面積 $[m^2]$, θ_j 及び ψ_j は B_j の中心に対する入射角及 び反射角 [°], r_j は音源 S から B_j の中心までの 距離 [m], R_j は B_j の中心から予測点 P までの距 離 [m], $\Delta L_{dif,sb,j}$ は B_j の中心に点音源を考えた 場合の遮音壁に対する一回回折の回折補正量 [dB] である。なお,反射角 ψ_j は要素 B_j の法線ベク トル n と伝搬経路が成す角度で,図-4.12 に示す ようにとる。平面道路の道路端に遮音壁がない場 合は,裏面地面反射音は SBP' の経路のみとなる。 実際の計算は,式 (4.21) の第 4 項 ($L_{A,3}$ に関係 する項)を省略し,第 3 項の $L_{A,2}$ は式 (4.23) で $D_j = 1$ として計算する。なお,音源は仮想的車 線 (1.3.2 項 (2) 参照) に集約してよい。

(b) P から B_iの中心が見える場合

図-4.12 散乱反射法における反射角 ψ のとり方

表-4.6 高架裏面反射音の幾何的計算条件の設定

項目	実用ケースの条件
反射計算において考慮する	$x_{\rm S} = x_{\rm P} - (1.5l_{\rm B} + 70)$
音源の範囲 $x_{\rm S}$	$\sim x_{ m P} + (1.5 l_{ m B} + 70)$
反射計算において考慮する	$x_{\mathrm{B}} = x_{\mathrm{S}} + \Delta x_{\mathrm{B}} \sim x_{\mathrm{P}} - \Delta x_{\mathrm{B}}$
反射面範囲 $x_{\rm B}$	$\Delta x_{\rm B} = (H + 15)$
分割要素 B _i の大きさ	一辺が H/4 以下

(2) 散乱反射法の計算条件の設定

平面道路と高架道路が並行しており道路断面が 一様と見なせる場合には,高架裏面反射音の計算 は表-4.6 及び図-4.13 の範囲の離散点音源と反射 面を考え,高架裏面高さ H[m] の 1/4 以下を一辺 とする四角形で分割すればよい。平面道路と高架 道路が斜交している場合は,この方法は使用できな い。このような場合の L_{Aeq} を計算するときは,3 次元での騒音計算により高架裏面反射音のユニッ トパターン (式 (4.21) の $L_{A,1} \sim L_{A,3}$ の合成値)を 計算し,その最大値から -15 dB 程度までの範囲 については式 (4.21) により直接音 $L_{A,0}$ と合成し, それ以外の範囲については $L_{A,1} \sim L_{A,3}$ を省略し てユニットパターンを求め, L_{AE} を計算し L_{Aeq} を算出する。

注記:直接音 L_{A,0} については, 1.3.2 項 (3) の範囲で計算 する。

(b) 平面配置図

図-4.13 散乱反射法の計算条件の設定

文 献

- [50] 舩橋 修,田近輝俊,松本敏雄, "インターチェンジ部の騒音予測計算法に関する検討," 音講論集, pp. 773–774 (2004.3).
- [51] 社団法人 交通工学研究会, 交通工学ハンドブック 2008 (丸善, 東京, 2008), 第 6.7 節.
- [52] 松本敏雄,吉田元臣,石川賢一,中尾剛士,長船寿一, "ETC 料金所周辺の騒音予測計算方法,"音響学会騒音・ 振動研資, N-2014-17 (2014.3).
- [53] 吉久光一, 龍田建次, 岡田恭明, "信号交差点近傍にお ける沿道騒音の実態調査(車線数が異なる3箇所の測定 結果),"音響学会騒音・振動研資, N-2002-04 (2002.1).
- [54] 並河良治, 吉永弘志, 田近輝俊, 押野康夫, 吉久光一, 山本貢平, "信号交差点部における騒音予測方法―道路交 通騒音の予測モデル "ASJ RTN-Model 2008"―," 音講 論集, pp. 953–956 (2009.3).
- [55] 三宅龍雄,高木興一,山本貢平,橘 秀樹,飯森英哲, "トンネル坑口周辺部の騒音予測法について,"騒音制御, 24,127–135 (2000).
- [56] 藤本卓也, "トンネル騒音予測に関する一検討―イメージ拡散法を用いた ASJ モデルの拡張―,"音響学会騒音・振動研資, N-2003-63 (2003.10).

- [57] 坂本慎一, 松本敏雄, 舩橋 修, "トンネル坑口周辺部 における騒音の予測計算と現場実験の比較,"音響学会騒 音・振動研資, N-2019-17 (2019.3).
- [58] 松本敏雄, "吸音ルーバーによる道路交通騒音対策," 騒音制御, 28, 834–338 (2004).
- [59] 坂本慎一, 横山 栄, 松本敏雄, 舩橋 修, "半地下構 造道路からの騒音伝搬に関する現場実験―高機能舗装の効 果に関する検討―,"音響学会騒音・振動研資, N-2011-14 (2011.4).
- [60] 坂本慎一,橘 秀樹, "半地下道路からの騒音放射の 指向性モデル,"音講論集, pp. 771-772 (2004.3).
- [61] 坂本慎一,福島昭則,山本貢平,"ASJ RTN-Model 2008 における半地下道路の騒音予測に関する検討,"音 講論集, pp. 941–944 (2009.3).
- [62] 坂本慎一, 松本敏雄, 中尾剛士, 長船寿一, "現場実験 に基づく排水性舗装路面の吸音率の検討,"音響学会騒 音・振動研資, N-2014-11 (2014.2).
- [63] 松本敏雄, 坂本慎一, "吸音ルーバーを設置した半地 下構造道路沿道の騒音予測計算方法," 音響学会騒音・振 動研資, N-2014-20 (2014.3).
- [64] 坂本慎一,橘 秀樹, "半地下道路からの騒音予測のための指向性音源モデルにおける各種パラメータの検討," 音響学会騒音・振動研資, N-2004-13 (2004.2).
- [65] 阿部菜摘, 関根秀久, 安田洋介, "3 次元波動数値解析 を用いた I 桁構造高架道路裏面での音響反射の検討," 建築 学会学術講演梗概集 (環境工学 I), pp. 361–362 (2018.9).
- [66] 福島昭則, 一木智之, 塚本 学, 玉川 大, "境界エネ ルギー積分法を用いた高架裏面反射音の予測,"音講論集, pp. 739–740 (2002.9).

5. 高架構造物音

自動車が高架道路上を走行する際に,道路構造 物自体が振動することによって騒音が発生する。 これを高架構造物音といい,その大きさは道路構 造,走行する自動車の速度や重量などに依存する。 以下に予測計算方法を示す[67,68]。

- 5.1 適用範囲
- (1) 対象とする高架橋

表-5.1 に示す一般的な形式の鋼橋及びコンク リート橋とする。

(2) 車 種

大型車類のみを対象とする。

注記:小型車類による高架構造物音は相対的に小さいので, ここでは無視する。

(3) 走行速度

40 km/h 以上とする。

5.2 高架構造物音の計算方法

5.2.1 仮想音源の設定

高架構造物音は構造物全体から放射されている が,計算の便宜上,等価的な音源として自動車走 行に連動して移動する無指向性点音源を考え,高 架橋の桁直下(桁橋の場合は主桁の下端,中空床 版橋の場合は床版下面の位置)で上下線のそれぞ

橋種	鋼橋				コンクリート橋		
床 版	鎁	コ	ンクリート		コンクリート		
旋構造	全田空	育桁 鋼鈑桁		T KG	I 桁以外		
们伸起	业 阿不			T 111	箱桁	中空床版桁	
略図							

表-5.1 対象とする高架橋の種類

※図で塗りつぶした部分が床版である。この図ではすべてコンクリート床版を表している。

	X 3.2 间径所引起X 6 9 他		
	橋種	(a
	鋼床版鋼箱桁橋	40).7
鋼橋	コンクリート床版鋼箱桁橋	35.5	38.0
	コンクリート床版鋼鈑桁橋	40.4	30.9
コンクリート検	I桁	31.8	3/ 8
ニマン クロート	I 桁以外	35.9	54.0

表-5.2 橋種別の定数 a の値

図-5.1 高架構造物音の仮想点音源の配置

れ中央に仮想車線を設定し、その線上に離散的に 仮想点音源を設定する(図-5.1参照)。

5.2.2 仮想点音源の A 特性音響パワーレベル

仮想点音源のA特性音響パワーレベル $L_{WA,str}$ [dB] は、次式で計算する。

$$L_{WA,str} = a + 30 \log_{10} V \tag{5.1}$$

ここで, V は走行速度 [km/h], 定数 a は橋種ご とに表-5.2 に示す値とする。橋種は5分類が基本 であるが, 橋種を確定できない場合は3分類を利 用できる。

注記 1: 定数 a の設定は,自動車走行騒音のパワーレベル 式と同様に,個々の測定データから式 (5.1) で定数 a を逆 算し,それらのパワー平均値により求めた。 注記 2: その他の形式の橋梁については現地調査(参考資 料 R5.2 参照)を含む個別の検討が必要である [69]。

5.2.3 ユニットパターンの計算

仮想点音源から予測点へ伝搬する騒音のA特性 音圧レベル *L*_{A,str} [dB] は,高架路面部分の床版等 による音の遮蔽を考慮して,次式で計算する。

$$L_{\text{A,str}} = L_{W\text{A,str}} - 8 - 20 \log_{10} r + \Delta L_{\text{dif}}$$

$$(5.2)$$

ここで, r は仮想点音源から予測点までの距離 [m], ΔL_{dif} は高架床版等による高架構造物音に関する 回折補正量 [dB] で, **表**–5.1 の鋼版桁や I 桁での回 折では $\Delta L_{dif,sb}$ を,鋼箱桁,箱桁,中空床版桁で の回折では $\Delta L_{dif,rw}$ を用いる(3.2.2 項参照)。

注記 1:地面からの反射音の寄与は,計算で用いる $L_{WA,str}$ の定数 a を求める際に,その影響も含めて扱っているので, 上記の計算法による場合は考慮する必要はない。 注記 2:高架構造物音に関する回折補正量 ΔL_{dif} の計算式 は,回折計算チャート [23,24] と高架構造物音の周波数特 性の測定値を用いて作成した。

すべての仮想点音源に対して上記の計算を行う ことによって、高架構造物音のユニットパターン が求められる。このようにして求められたユニッ トパターンから *L*Aeq を計算する方法は、自動車 走行騒音の場合と同様である。

文 献

[67] 池谷公一,並河良治,田久保博司,玉川 大,鳥海英 宏,福島昭則,田近輝俊,山本貢平,"実測調査に基づく高 架構造物音の予測方法に関する検討,"音響学会騒音・振 動研資, N-2004-16 (2004.3).

- [68] 三宅龍雄,福島昭則,田近輝俊,山本 稔,山本貢平, "高架構造物音の予測計算方法―道路交通騒音の予測モデル "ASJ RTN-Model 2008"―,"音講論集, pp. 949–952 (2009.3).
- [69] 池田義行, 斎藤直哉, 植田知孝, 石渡俊吾, 山本 稔, 長船寿一, "第二東名高速道路の高架構造物音の計算方 法,"音響学会騒音・振動研資, N-2009-25 (2009.3).

6. 建物・建物群背後における騒音

沿道の建物・建物群の背後では、それらの遮蔽 効果によって道路交通騒音は減衰する。その程度 を予測するための方法として、本予測モデルでは、 単独の建物周辺及び多数の建物が密集している建 物群の背後における騒音の予測計算方法を示す。

6.1 単独建物周辺における騒音

単独の建物が立地している沿道の建物周辺にお ける騒音の予測計算方法として,建物の側方回折 は考慮せず,上方回折のみを考慮する1パスの方 法を示す。

建物は有限長で厚みのある障害物である。単独 建物周辺では,建物の遮蔽効果による減衰を考慮 する必要がある。そこで,有限長遮音壁の回折計 算方法(3.2.2項(3)参照)及び築堤・厚みのある 障害物の回折計算方法(3.2.4項参照)を応用し, 直接音に回折音の寄与を合成して L_{A0,i} を計算す る(図-6.1(a)参照)。

ユニットパターンの計算は次式による。

$$L_{A0,i} = L_{WA,i} - 8 - 20 \log_{10} r_{0,i} + \Delta L_{\text{bldg},i}$$
(6.1)

ここで, $L_{A0,i}$ は音源 S_i からの直接音 (あるいは上 方からの回折音)のA特性音圧レベル [dB], $L_{WA,i}$ は i 番目の音源位置における自動車走行騒音のA特 性音響パワーレベル [dB] である。また, $\Delta L_{bldg,i}$ は単独建物の回折補正量 [dB] であり, $r_{0,i}$ は, 音 源 S_i から予測点 P までの直達距離 [m] である。

単独建物の回折補正量 $\Delta L_{\text{bldg},i}$ は、図-6.1(b) に示すように、ユニットパターンの計算において 線分 SP と建物が交わる場合には厚さ D [m] の厚 みのある無限長障壁として考え、式 (3.9) で計算 した $\Delta L_{\text{dif},\text{tb}}$ を ΔL_{bldg} とする。交わらない場合 には建物がないものとして $\Delta L_{\text{bldg}} = 0$ とする。

図-6.1 単独建物周辺の騒音の計算

能な方法として,上方回折と側方回折を考慮した計算方法 が文献 [70,71] に示されている。 注記 2:1 パスの方法による L_{Aeq} と,上方回折及び側方 回折を考慮した計算方法による L_{Aeq} は,特別な場合を除 いてほぼ等しいと考えてよい [71]。

6.2 建物群背後における騒音

多数の建物が密集している建物群の背後におけ る騒音の予測計算方法として,次の実用計算法を 示す。ただし,ここで示す計算方法は,建物を我 が国の標準的な大きさの戸建て住宅であると想定 しており,建物の大きさや立地条件が大きく異な る住宅地には適用できない。また,建物群の隣棟 間隔が広いなどの理由から,建物の側方回折と側 面反射による影響をより詳細に取り扱う場合や, 音源位置による騒音レベルの違いを検討する等ユ ニットパターンをより正確に求める場合には,付 属資料 A8 に示す詳細計算法で計算することを推 奨する。

6.2.1 実用計算法 [72]

平面道路に面して戸建て住宅群が立地している 場合,住宅群の遮蔽効果によって建物群背後にお ける騒音は減衰する。このとき,*i*番目の音源位 置(図-1.1参照)に対して予測点で観測される A 特性音圧レベル *L*_{A,*i*} は次式で計算する。

$$L_{A,i} = L_{WA,i} - 8 - 20 \log_{10} r_i + \Delta L_{B,i}$$
(6.2)

注記1:1パスの方法でユニットパターンを計算すると、伝 搬経路上に建物の端部が位置する前後において騒音レベル が大きく変化する。そのため、ユニットパターンを正確に 求めるときには使用できない。そのような場合にも適用可

ここで、 $L_{WA,i}$ は*i*番目の音源位置における自動 車走行騒音のA特性音響パワーレベル [dB], r_i は *i*番目の音源位置から予測点までの直達距離 [m], $\Delta L_{B,i}$ は*i*番目の音源位置から予測点に至る音の伝 搬における建物群による減衰に関する補正量 [dB] である。 $\Delta L_{B,i}$ は次式で計算する。以下,音源位 置に関する添え字*i*は省略する。

$$\Delta L_{\rm B} = p \cdot \Delta L_{\rm BB} + q$$

$$p = 0.017 (H - h_{\rm P} - 8.8) + 1$$

$$q = -0.063 (H - h_{\rm P} - 8.8)$$
(6.3)

ここで,Hは建物群の高さ [m], h_P は予測点の高 さ [m] である。 ΔL_{BB} はHが10m, h_P が1.2m の場合の補正量 [dB] であり,次式で計算する。

$$\Delta L_{\rm BB} = 10 \log_{10} \left\{ b_0 + b_1 \cdot \frac{\phi}{\Phi} + b_2 \cdot 10^{-0.0904\xi \cdot d_{\rm SP}} \right\}$$
(6.4)

ここで、 $b_0 = 0.046, \ b_1 = 1.01, \ b_2 = 0.554$ である。

式 (6.4) の $\frac{6}{\sigma}$ の項は,音源 S から予測点 P へ伝 搬する音の直接音成分を示し,図-6.2,図-6.3 に 示すように,予測点 P から音源 S の前後 5 m の道 路を見たとき, ϕ は建物群がない場合の見通し角 [rad], ϕ は建物群が立地している場合の見通し角 [rad] である。

式 (6.4) の $10^{-0.0904\xi \cdot d_{SP}}$ の項は, 音源 S から 予測点 P に伝搬する音の, 直接音以外の成分を示 す。図-6.4 に示すように, d_{SP} は音源 S と予測点 P の水平距離 [m] であり, また, 音源 S と予測点 P の周辺に幅 15 m の長方形を想定し, その長方 形内の建物密度(長方形の面積に対する建物群の 立地面積の比)を ξ とする。

なお,式 (6.3),式 (6.4) は,標準的な大きさの 多数の戸建て住宅が立地する住宅地を想定した縮 尺模型実験の結果に基づいて導出されたものであ る。実験条件は,予測点 P が道路から 20~50 m の範囲で,建物率(住宅地面積に対する建物群の 立地面積)は 0.16~0.34,建物群の高さ H は 4~ 10 m,予測点の高さ $h_{\rm P}$ は 1.2~9.2 m であること から,各式の適用範囲も原則としてこの範囲に限 定され,更に予測点の高さ $h_{\rm P}$ は建物群の高さ H以下でなければならない。なお,住宅地内に高さ

図−6.2 建物群がない場合の見通し角 Φ

図-6.3 建物群が立地している場合の見通し角 φ

 図-6.4 音源と予測点の水平距離 d_{SP},及び幅 15 m,長さ d_{SP}の長方形内の建物密度 ξ

の異なる建物が混在している場合や建物の屋根が 陸屋根(水平の屋根)でない場合は,立地してい る建物の屋根の平均高さを H とすればよい [73]。

6.2.2 実用計算法における計算の省略 [74,75]

建物群による騒音の減衰に関する補正量 $\Delta L_{\rm BB}$ を求める式 (6.4) は、定数項、直接音成分の項、及 び直接音以外の成分の項(以降 $E_{\rm oth}$ と表す)の和 で構成されている。このうち $E_{\rm oth}$ の計算は、騒音 予測の対象地域において建物が概ね均等に立地し ている場合、 $\Delta L_{\rm BB}$ の誤差が 0.5 dB を超えないと

(1) 音源と予測点の水平距離による判断

音源Sと予測点Pの水平距離 d_{SP} が254m以上のときには、建物密度 ξ の計算を省略して E_{oth} を0としても良い。

この計算省略は *d*_{SP} だけで判断できるため,実施が容易である。

(2) 直接音成分を踏まえた判断

音源 S と予測点 P の水平距離 d_{SP} が 254 m を 超えないときには,直接音成分を求めるためのパ ラメータ $\frac{\phi}{\sigma}$ を使い,予測点 P から音源 S までの 計算省略可能な最短の水平距離 d_{SP}^* [m] を次式で 計算し,

$$d_{\rm SP}^* = -234 \left(\frac{\phi}{\Phi}\right)^3 + 659 \left(\frac{\phi}{\Phi}\right)^2 -386 \left(\frac{\phi}{\Phi}\right) + 220 \qquad (6.5)$$

 $d_{\rm SP}$ が $d_{\rm SP}^*$ 以上であれば、 ξ の計算を省略して $E_{\rm oth}$ を0としても良い。

この計算省略は,式(6.5)を計算する必要があ るものの,予測点から音源を見通せるか否かに関 わらず判断できるため広く適用できる。

(3) 予測点から音源が見通せない場合の判断

予測点に近い音源から建物群背後の騒音予測計 算を開始し,順に遠い音源に対して騒音予測を行 うという手順に従う場合は,予測点 P から音源 S が見通せない場合,すなわち見通し角 ϕ が0の場 合に, $\xi \cdot d_{SP}$ が22.1 m 以上になれば,それ以遠の (d_{SP} が大きな)音源に対する E_{oth} を0としても 良い。

この計算省略によれば、上述(2)の d_{SP}^* に達す る前に E_{oth} を 0 にすることができ、それ以遠の $\phi = 0$ のすべての音源に対して ξ の計算を省略でき る。上述(1)(2)に比べると煩雑な手順であるが、例 えば手計算で特定の敷地の騒音予測を行う場合な ど、最大限に計算を省略したい場合に有用である。

文 献

[70] 上坂克巳,大西博文,三宅龍雄,高木興一,"幹線道路 に面した単独建物後方の騒音レベルの計算方法,"騒音制 御,23,189–199 (1999).

- [71] 上坂克巳,大西博文,三宅龍雄,高木興一,"道路に直面した単独建物および建物列後方における等価騒音レベルの簡易計算方法,"騒音制御,23,430-440 (1999).
- [72] 藤本一寿, 森田建吾, "平面道路に面する地域における戸建て住宅群による道路交通騒音減衰量の予測法―点音源モデルの予測式 F2012 の簡易計算法―,"音響学会騒音・振動研資, N-2015-14 (2015.2).
- [73] 藤本一寿, 穴井 謙, 礒谷賢志, 関藤大樹, "戸建て 住宅群による道路交通騒音の減衰―切妻屋根および高さ が異なる住宅群への適用―," 音響学会騒音・振動研資, N-2003-64 (2003.10).
- [74] 穴井 謙,藤本一寿,"平面道路に面する地域におけ る戸建て住宅群による道路交通騒音減衰量の予測法—点 音源モデルの簡易予測式 F2012*の計算省略化—,"音響 学会騒音・振動研資, N-2017-08 (2017.2).
- [75] K. Fujimoto and K. Anai, "Prediction of insertion loss of detached houses against road traffic noise using a point sound source model: Simplification of prediction formula F2012," Acoust. Sci. & Tech., 38, 287–294 (2017).

付 属 資 料

付属資料 A1 自動車走行騒音の周波数特性

本付属資料では,参考資料 R5 の方法で算出し たパワースペクトルの実測データ [15,17] から求 めた密粒舗装,排水性舗装及び高機能舗装 II 型に おける自動車走行騒音の周波数特性を示す。

A1.1 密粒舗装のパワースペクトル

密粒舗装における自動車走行騒音のパワースペ クトルは、以下に述べる方法で周波数帯域別(1/Nオクターブバンド別)に与える。扱う周波数帯域 は、オクターブバンドの場合は中心周波数 $63 \text{ Hz} \sim$ 4 kHz, 1/3 オクターブバンドの場合は中心周波 $数 <math>50 \text{ Hz} \sim 5 \text{ kHz}$ とする。i番目の帯域の中心周波 数 $f_{c,i}$ [Hz]における A 特性バンドパワーレベル $L_{WA}(f_{c,i})$ [dB] は次式で計算する。

$$L_{WA}(f_{c,i}) = L_{WA} + \Delta L_{WA}(f_{c,i}) \quad (A1.1)$$

ここで、 L_{WA} は密粒舗装の自動車走行騒音の A 特性音響パワーレベル [dB] (2.2.2 項参照)、 $\Delta L_{WA}(f_{c,i})$ は $f_{c,i}$ における A 特性相対バンド パワーレベル [dB] である。密粒舗装における代 表的な自動車走行騒音の $\Delta L_{WA}(f_{c,i})$ を表-A1.1 及び図-A1.1 に示す。

A1.2 排水性舗装のパワースペクトル

排水性舗装における自動車走行騒音の中心周波 数 $f_{c,i}$ での A 特性バンドパワーレベル $L_{WA}(f_{c,i})$ [dB] は,自動車専用道路での舗設直後から 11 年 までの測定値を基に設定したパワーレベル L_{WA}

注記:本章で示した予測計算方法は,建物群中を伝搬する 音の寄与のみを考慮したものである。予測点が建物より高 い場合や,遮音壁の設置された高架道路,盛土道路に対す る騒音予測では,建物群の上方を伝搬する音の寄与を併せ て考慮する必要がある。

表-A1.1 密粒舗装における自動車走行騒音の A 特性相対 バンドパワーレベル ΔL_{WA}(f_{c,i})

中心周	刮波数	A 特性相対バンドパワーレベル [dB]		
[H	Iz]	オクターブバンド	1/3 オクターブバンド	
	50		-38.7	
63	63	-30.2	-35.4	
	80		-32.7	
	100		-29.8	
125	125	-22.1	-27.2	
	160		-25.0	
	200		-21.2	
250	250	-14.0	-18.8	
	315		-17.2	
	400		-15.4	
500	500	-7.9	-13.3	
	630		-10.6	
	800		-8.3	
$1,\!000$	$1,\!000$	-3.0	-7.2	
	$1,\!250$		-8.0	
	$1,\!600$		-9.3	
$2,\!000$	2,000	-6.0	-10.8	
	2,500		-13.2	
	$3,\!150$		-15.8	
$4,\!000$	4,000	-13.4	-18.8	
	5,000		-21.7	
オーバ	オール	0.0	0.0	

 図-A1.1 舗装種別ごとの A 特性相対バンドパワーレベル (1/3 オクターブバンド)

[dB] (2.2.3 項参照)と表-A1.2 及び図-A1.1 に示 す排水性舗装における代表的な自動車走行騒音の A 特性相対バンドパワーレベル $\Delta L_{WA}(f_{c,i})$ [dB] から,式 (A1.1) により与える。

表-A1.2 排水性舗装における自動車走行騒音の A 特性相 対バンドパワーレベル ΔL_{WA}(f_{c,i})

中心周波数		A 特性相対バン	ドパワーレベル [dB]
[H	Iz]	オクターブバンド	1/3 オクターブバンド
	50		-36.4
63	63	-25.0	-30.9
	80		-26.8
	100		-24.5
125	125	-17.0	-22.4
	160		-19.8
	200		-17.5
250	250	-9.9	-15.0
	315		-12.7
	400		-11.3
500	500	-4.5	-9.5
	630		-7.7
	800		-7.7
1,000	$1,\!000$	-4.4	-9.4
	$1,\!250$		-11.2
	$1,\!600$		-12.6
2,000	2,000	-9.1	-13.7
	2,500		-16.0
	$3,\!150$		-18.9
$4,\!000$	$4,\!000$	-16.0	-20.9
	5,000		-23.7
オーバ	オール	0.0	0.0

A1.3 高機能舗装 II 型のパワースペクトル

高機能舗装 II 型における自動車走行騒音の中 心周波数 $f_{c,i}$ での A 特性バンドパワーレベル $L_{WA}(f_{c,i})$ [dB] は,自動車専用道路での舗設直 後から 6 年までの測定値を基に設定したパワーレ ベル L_{WA} [dB] (2.2.4 項参照)と,表-A1.3 及び 図-A1.1 に示す高機能舗装 II 型における代表的な 自動車走行騒音の A 特性相対バンドパワーレベル $\Delta L_{WA}(f_{c,i})$ [dB] から,式 (A1.1) により与える。

注記1:加速走行及び上り勾配走行時の自動車走行騒音の 周波数特性については,エンジン負荷が大きいため,本付 属資料で示す特性に比べて低域の音圧レベルが上昇するこ とに注意する必要がある [11,76-78]。

注記 2:最近の計測結果から,密粒舗装における走行騒音の周波数特性は,1kHz 以下の領域で ASJ RTN-Model 2013 のモデルよりも相対的に低下する傾向が明らかとなっている [15]。

注記3:最近の計測結果から,排水性舗装及び高機能舗装 II型における走行騒音の周波数特性は,調査箇所により異 なるが,舗設直後からの経過年数による変化はほとんど見 られないことから,舗設後1年未満のパワースペクトルを 別に設定する必要はないことが明らかとなっている[17]。

文 献

[76] T. Iwase, K. Nakasaki, Y. Namikawa and T. Mori,

表–A1.3 高機能舗装 II 型における自動車走行騒音の A 特 性相対バンドパワーレベル *ΔL_{WA}(f_{c,i})*

中心周波数		A 特性相対バンドパワーレベル [dB]				
[H	Iz]	オクターブバンド	1/3 オクターブバンド			
	50		-40.5			
63	63	-28.5	-34.5			
	80		-30.1			
	100		-27.9			
125	125	-20.5	-25.8			
	160		-23.4			
	200		-21.5			
250	250	-13.9	-19.1			
	315		-16.7			
	400		-15.8			
500	500	-8.0	-13.8			
	630		-10.5			
	800		-8.2			
$1,\!000$	$1,\!000$	-2.6	-6.8			
	$1,\!250$		-7.1			
	$1,\!600$		-9.1			
$2,\!000$	$2,\!000$	-6.7	-12.2			
	2,500		-15.1			
	$3,\!150$		-18.1			
$4,\!000$	$4,\!000$	-15.6	-20.8			
	5,000		-24.2			
オーバ	オール	0.0	0.0			

"On sound spectral model of road vehicle for prediction of road traffic noise: Considerations for establishing the ASJ RTN-Model 2003," Acoust. Sci. & Tech., 26, 71–75 (2005).

- [77] 福島昭則,福島徹彦,田近輝俊,佐藤 大,岩瀬昭雄, "自動車走行騒音のパワースペクトルとそのモデル化," 騒音制御工学会研究発表会講論集,pp.17-20 (2008.4).
- [78] 岩瀬昭雄, "排水性舗装面の音響特性の計測と騒音 低減効果の評価について,"音講論集, pp. 1077–1080 (2008.9).

付属資料 A2 ハイブリッド自動車・電気自動 車の走行騒音のパワーレベル

我が国におけるハイブリッド自動車(HV)や電 気自動車(EV)等の保有台数は,平成29年度ま でにそれぞれ750万台,9万台となっており,この 5年間で普及台数は約3倍にのび,特に乗用車の 保有台数に占める割合は10%以上にもなる[79]。 電動モータ走行が可能な車両は,地球温暖化対策 などの環境面から大いに期待されている。その反 面,低速走行時の発生騒音が小さいことから,車 両の接近を知らせる人工音の発生装置「車両接近 通報装置(AVAS)」の搭載が義務化されている。

HV のモータ走行時における A 特性音圧レベル

図-A2.1 ハイブリッド自動車とガソリンエンジン車の騒 音レベルの比較

表-A2.1 ハイブリッド自動車とガソリンエンジン車のパ ワーレベル式(密粒舗装)

	定常走行区間 (40 $\leq V \leq 140 \text{km/h}$)	測定台数
HV	$L_{\rm WA} = 45.2 + 30 \log_{10} V$	451
GEV	$L_{\rm WA} = 45.8 + 30 \log_{10} V$	2,527

の最大値 $L_{A,Fmax}$ とガソリンエンジン車 (GEV) のそれとを比較した例として、走行車線から2m 離れた点におけるテスト走行実験の結果を図-A2.1 に示す [80]。速度 15 km/h 以下になると HV の騒 音レベルは,GEV に比べて5dB 程度以上低下し ていることが分かる。一方, 表-A2.1 は, 参考資料 R5の方法で測定した 451 台の HV (2 台の EV も含 む)のA 特性音圧レベルの最大値 *L*_{A,Fmax} から求 めた定常走行区間のパワーレベル式と GEV のそ れである [15]。HV の測定台数は GEV の 18%程 度と少ないが, タイヤ/路面騒音が支配的となる速 度 40 km/h 以上での HV のパワーレベルは, GEV に比べて 0.6 dB 低くなる。このように HV・EV による騒音低減効果は、エンジン系騒音が支配的 となる信号交差点付近やインターチェンジ部の料 金所・連結部付近などで期待できると考えられ、 そ のような低速あるいは加速走行状態における測定 データの蓄積が望まれる。

献

文

- [79] 自動車検査登録情報協会, "わが国の自動車保有動 向," https://www.airia.or.jp/publish/statistics/(参照 2018-12-1).
- [80] H. Tachibana, "General view of road traffic noise problem," Proc. inter-noise 2010 (2010).

表-A3.1 密粒舗装における定数 a,係数 b の値(自動車専用道路,加速区間)

車種を		料金所付近 $(1 \le V \le 80 \text{km/h})$		連結部付近 $(1 \le V \le 60 \text{km/h})$		
		a	b	a	b	
	小型車	84.8		82.3		
3 車種分類	中型車	89.6	10	87.1	10	
	大型車	92.5		90.0		
9 亩插凸粨	小型車類	84.8	10	82.3	10	
⊿ 毕悝刀 規	大型車類	91.3	10	88.8	10	
二輪車		87.7	10	85.2	10	

表-A4.1 排水性舗装における定数 *a*,係数 *b*, *c*の値(一般道路,定常・非定 常走行区間)

車種分類		定常走行区間 (40 $\leq V \leq 80 \text{km/h}$)			非定 \ ≥ 10	非定常走行区間 ($10 \le V \le 60 \text{km/h}$)		
	_	a	b	c	a	b	c	
	小型車	41.0		7.3	76.6		7.3	
3 車種分類	中型車	47.6	30	3.6	83.2	10	3.6	
	大型車	50.5		3.6	86.1		3.6	
o 市插八桁	小型車類	41.0	20	7.3	76.6	10	7.3	
2 甲俚刀短	大型車類	49.3	30	3.6	84.9	10	3.6	
二輪車		49.6	30		85.2	10		

付属資料 A3 密粒舗装における加速区間のパ ワーレベル

自動車専用道路のインターチェンジ部(料金所付近,連結部付近)における密粒舗装での加速走行状態のA特性音響パワーレベルについては,表-A3.1 に示す定数*a*,係数*b*を用いて式(2.1),式(2.2) により与える(2.2.2項参照)。速度依存性を表す 係数*b*の値は,各車種とも10とする。

なお,停止時から速度1km/h 未満については 一定のパワーレベル(減速走行状態の式にV = 10km/hを代入した値)を用いる。また,料金所 付近においては速度80km/h以上,連結部付近では 60km/h以上の速度域は定常走行区間と見なす。

付属資料 A4 一般道路における排水性舗装の パワーレベル

一般道路における排水性舗装でのパワーレベル については, 表-A4.1 に示す定数 a, 係数 b, cを用い て式 (2.3), 式 (2.4) により与える (2.2.3 項参照)。 走行速度 V は, 定常走行区間で 40~80 km/h, 非 定常走行区間で 10~60 km/h の範囲とする。ま た,速度依存性を表す係数 b の値は,各車種とも定 常走行区間で 30,非定常走行区間で 10 とし,二 輪車の係数 c は常に 0 とする。

付属資料 A5 周波数ごとの伝搬計算法

ここでは,道路交通騒音の予測に限定せずに,よ り一般性のある周波数ごとのエネルギーベースの 伝搬計算法について示す。

A5.1 伝搬計算の基本式

図-A5.1 のように、平坦な地面上に点音源Sと 予測点Pを考える。考慮する伝搬経路は、遮音壁 がない(回折計算が必要ない)ときは図-A5.1(a) の2経路、遮音壁があるときは図-A5.1(b)の4経 路である。なお、自動車走行騒音の予測計算では 音源を路面上に配置するので、遮音壁なしの場合 は1経路、遮音壁ありの場合は2経路の計算とな る。このときの騒音レベル L_A [dB] を次式で計算 する。式 (A5.1)の L_A が、式 (3.1)の道路交通騒 音の騒音レベル L_A に対応する。

$$L_{\rm A} = 10 \log_{10} \sum_{i} 10^{L_{\rm A}(f_{\rm c,i})/10} \qquad (A5.1)$$

$$L_{\rm A}(f_{\rm c,i}) = 10 \log_{10} \sum_{m=1}^{M} 10^{L_{\rm A,m}(f_{\rm c,i})/10} + \Delta L_{\rm g,ex}(f_{\rm c,i})$$
(A5.2)

A5.2.1 ナイフウェッジでの回折補正値の基本量 障壁等での回折については,回折補正量の基本 量 *ΔL*_{d,k}(*f*) [dB] を次式で計算する [23, 24]。

$$\Delta L_{\rm d,k}(f) = \begin{cases} -13 - 10 \log_{10} N \\ N \ge 1 \\ -5 \mp 9.08 \sin h^{-1} (|N|^{0.485}) \\ -0.324 \le N < 1 \\ 0 \\ N < -0.324 \end{cases}$$
(A5.4)

ここで, $N = 2\delta/\lambda$ はフレネル数, δ は回折経路差 [m] (3.2.1 項に準じて定義), $\lambda = c/f$ は波長 [m] (cは音速 [m/s], 気温 20°C で 343.7 m/s) である。 式中の \mp 符号は, $N \ge 0$ の場合を負, N < 0の 場合を正とする。

注記1:式(A5.4)は、反射性障壁に対する減衰量の実験値 に基づく計算チャート[23]を計算式化したものである[24]。 注記2:式(A5.4)のもととなった実験の音源と観測点の 配置は、音源が観測点の正面から60°程度までの範囲であ る。音源が予測点正面から障壁の延長方向に離れ"かすめ 入射"となる場合には式(A5.4)は減衰を過大に評価する 場合がある。そのようなときの計算式として漸近解[81]に よる回折補正量を近似した計算式[82]がある。

A5.2.2 直角ウェッジでの回折補正値の基本量 建物や法肩のような開き角での回折について は,回折補正量の基本量 ΔL_{d,r}(f) を次式で計算 する [25]。

$$\Delta L_{\rm d,r}(f) = \begin{cases} -10.5 - 10 \log_{10} N \\ N \ge 1 \\ -2.5 \mp 9.08 \sin h^{-1} (|N|^{0.485}) \\ -0.0718 \le N < 1 \\ 0 \\ N < -0.0718 \end{cases}$$
(A5.5)

A5.2.3 各種回折補正量の算出

各種回折補正量の計算は,基本量 $\Delta L_{d,k}(f)$ や $\Delta L_{d,r}(f)$ を用いて 3.2 節に示す方法で,周波数ご とに計算する。

注記:3.2 節に示す方法の中の,補正量 $C_{dif,abs}$, $C_{dif,ob}$, $C_{dif,emb}$ 等については周波数ごとの補正量がないため,これらが関係した回折計算はできない。計算する必要がある場合には,波動数値解析や実験により,周波数ごとの補正量を設定する必要がある。

(a) 遮音壁がない場合 (*m*=1: SP, *m*=2: SP')

(b) 遮音壁が設置された場合(m=1: SOP, m=2: SOP', m=3: S' OP, m=4: S' OP')
 図-A5.1 音の伝搬経路

$$L_{A,m}(f_{c,i}) = L_{WA}(f_{c,i}) - 11 - 20 \log_{10} r_m$$
$$+ \Delta L_{dif,m}(f_{c,i}) + \Delta L_{air,m}(f_{c,i})$$
(A5.3)

ここで, f_{c,i} は i 番目の帯域の中心周波数 [Hz], $L_{\rm A}(f_{{\rm c},i})$ は $f_{{\rm c},i}$ における A 特性音圧レベル [dB], $L_{A,m}(f_{c,i})$ は $L_A(f_{c,i})$ の構成要素である伝搬経路 *m*(図-A5.1 参照)についての *f*_{c,i} における A 特 性音圧レベル [dB], $L_{WA}(f_{c,i})$ は $f_{c,i}$ の周波数帯 域の音響パワーレベル [dB], r_m は伝搬経路 m に 関する伝搬距離(音源あるいは音源の鏡像から予 測点あるいは予測点の鏡像までの直線距離)[m], $\Delta L_{\text{dif},m}(f_{\text{c},i})$ は回折補正量 [dB] (遮音壁がない 場合には0 dB), $\Delta L_{\text{air},m}(f_{\text{c},i})$ は空気の音響吸収 に関する補正量 [dB], $\Delta L_{g,ex}(f_{c,i})$ は地表面超過 減衰に関する補正量 [dB] である。計算周波数 fc.i は、100 Hz~5 kHz の 1/3 オクターブバンド中心 周波数とする。なお、以下では周波数fの添え字、 及び伝搬経路を表す添え字 m がなくても誤解を生 じない場合は省略する。

注記:道路交通騒音予測においては, 音源 S を移動させ ながら L_A を計算し, 得られたユニットパターンから式 (1.11) により L_{AE} を求め,式 (1.12) を用いて $L_{Aeq,T}$ を 算出する。

A5.2 回折補正量 $\Delta L_{dif}(f)$

道路交通騒音の伝搬計算と同様に, 障壁等での回 折を対象としたナイフウェッジでの回折補正量の 基本量 $\Delta L_{d,k}(f)$ [dB] と, 建物や法肩のような開 き角を有するウェッジでの回折を対象とした直角 ウェッジでの回折補正量の基本量 $\Delta L_{d,r}(f)$ [dB]

A5.2.4 道路交通騒音に対する回折補正量

回折による減衰が大きくなると、遮音壁などの 背後では低い周波数成分が卓越する。回折による 減衰がおよそ 30 dB を超える場合には 3.2 節に示 す回折補正量の基本量の計算式は使用できない。 そのような条件で予測する必要がある場合には、 式 (A5.4) や式 (A5.5) で周波数ごとに回折補正量 の基本量を計算し、次式により音源のパワースペ クトルで重み付けして回折補正量 ΔL_{dif} を算出す る。なお、次式では**表**-3.1 に示した $\Delta L_{dif,sb}$ 等 の各種回折補正量の総称として ΔL_{dif} あるいは $\Delta L_{dif}(f)$ を用いる。

 $\Delta L_{\rm dif} = 10 \log_{10} \frac{\sum_{i} 10^{\frac{\Delta L_{WA}(f_{\rm c,i}) + \Delta L_{\rm dif}(f_{\rm c,i})}{10}}}{\sum_{i} 10^{\frac{\Delta L_{WA}(f_{\rm c,i})}{10}}}$ (A5.6)

ここで、 $\Delta L_{WA}(f_{c,i})$ は $f_{c,i}$ の周波数帯域のA特性相対バンドパワーレベル [dB] であり、1/3オクターブバンド中心周波数で計算する場合は**付属資料** A1 の値を用いる。

A5.3 空気の音響吸収に関する補正量 $\Delta L_{
m air}(f)$ A5.3.1 計 算 式

 $\Delta L_{air}(f)$ は、単位距離当たりの減衰量 $\alpha_{air}(f)$ [dB/m] と伝搬距離 r [m] から次式で計算する。

$$\Delta L_{\rm air}(f) = -\alpha_{\rm air}(f) \cdot r \tag{A5.7}$$

α_{air}(f)は1気圧の大気(101.325kPa)を仮定し,
 JIS Z 8738:1999を近似した次式で計算する[83]。

$$\alpha_{\rm air}(f) = f^2 \times 10^{-10} \left\{ 1.60 + \frac{b_{\rm O} f_{\rm rO}}{f_{\rm rO}^2 + f^2} + \frac{b_{\rm N} f_{\rm rN}}{f_{\rm rN}^2 + f^2} \right\}$$
(A5.8)

ここで、 f_{rO} 及び f_{rN} は酸素分子及び窒素分子の 共鳴周波数 [Hz]、 b_O 及び b_N は酸素分子及び窒素 分子に関係する減衰に係る係数で次式で計算する。

$$f_{\rm rO} = 24 + 4.04 \times 10^4 h \frac{0.02 + h}{0.391 + h} \text{ (A5.9)}$$
$$f_{\rm rN} = \frac{17.1}{\sqrt{T_{\rm C} + 273}} \cdot \left[9 + 18100 \times h \times e^{-\frac{3500}{T_{\rm C} + 819}}\right] \text{ (A5.10)}$$

$$h = 41200 \times h_{\rm r} \times 10^{-\frac{8070}{(T_{\rm C} + 273)^{1.261}}} (A5.11)$$

$$b_{\rm O} = 1.11 \times 10^9 \times e^{-\frac{2240}{T_{\rm C} + 273}} \left(\frac{293}{T_{\rm C} + 273}\right)^{\frac{5}{2}} (A5.12)$$

$$b_{\rm N} = 9.28 \times 10^9 \times e^{-\frac{3350}{T_{\rm C} + 273}} \left(\frac{293}{T_{\rm C} + 273}\right)^{\frac{5}{2}} (A5.13)$$

ここで、T_Cは気温[℃], h_rは相対湿度[%]である。 A5.3.2 道路交通騒音に対する空気の音響吸収 に関する補正量

様々な気温・湿度条件で道路交通騒音に対する 空気の音響吸収による減衰量を計算する必要があ る場合には,式 (A5.7)~式 (A5.13) で周波数ごと に空気の音響吸収に関する補正量 $\Delta L_{air}(f_{c,i})$ を 計算し,次式により音源のパワースペクトルで重 み付けして補正量 ΔL_{air} を算出する。

$$\Delta L_{\rm air} = 10 \log_{10} \frac{\sum_{i} 10^{\frac{\Delta L_{WA}(f_{\rm c,i}) + \Delta L_{\rm air}(f_{\rm c,i})}{10}}}{\sum_{i} 10^{\frac{\Delta L_{WA}(f_{\rm c,i})}{10}}}$$
(A5.14)

ここで、 $\Delta L_{WA}(f_{c,i})$ は $f_{c,i}$ の周波数帯域のA特性相対バンドパワーレベル [dB] であり、1/3 オクターブバンド中心周波数で計算する場合は**付属資料** A1 の値を用いる。

A5.4 地表面による超過減衰補正量 $\Delta L_{g,ex}(f)$ $\Delta L_{g,ex}(f)$ は反射性地面を基準とする音圧レベ ルの変化量 [dB] を表す。通常は $\Delta L_{g,ex}(f) \leq 0$ であるので,安全側予測の観点から $\Delta L_{g,ex}(f) = 0$ とする。

A5.5 反射音の伝搬計算

A5.5.1 基本式

図-A5.2のように、平坦な地面上に点音源Sと
 予測点P,及びO₁とO₂を両端とする反射面があるケースを考える。反射計算では、反射物である地面及び反射物の音源側の面を鏡面とするS及びPの鏡像を設定する。このときの反射音の騒音レベルL_{A.ref} [dB] を次式で計算する。

$$L_{\rm A,refl} = 10 \log_{10} \sum_{i} 10^{L_{\rm A,refl}(f_{\rm c,i})/10}$$
(A5.15)

$$L_{A,refl}(f_{c,i}) = 10 \log_{10} \sum_{m=1}^{M} 10^{L_{A,refl,m}(f_{c,i})/10} + \Delta L_{g,ex}(f_{c,i})$$
(A5.16)

$$L_{A,refl,m}(f_{c,i})$$

$$= L_{WA}(f_{c,i}) - 11 - 20 \log_{10} r_m$$

$$+ \Delta L_{refl,m}(f_{c,i}) + \Delta L_{abs,m}(f_{c,i})$$

$$+ \Delta L_{air,m}(f_{c,i}) (+ \Delta L_{dif,m}(f_{c,i}))$$
(A5.17)

ここで、 $L_{A,refl}(f_{c,i})$ は $f_{c,i}$ の周波数帯域における 反射音のA特性音圧レベル [dB]、 $L_{A,refl,m}(f_{c,i})$ は伝搬経路mの $f_{c,i}$ 帯域の反射音のA特性音圧 レベル [dB]、 $L_{WA}(f_{c,i})$ は $f_{c,i}$ 帯域のA特性音響 パワーレベル [dB]、 r_m は伝搬経路mの伝搬距離 (音源あるいは音源の鏡像から予測点あるいは予測 点の鏡像までの直線距離) [m]、 $\Delta L_{refl,m}(f_{c,i})$ は 伝搬経路mでの反射補正量 [dB]、 $\Delta L_{abs,m}(f_{c,i})$ は 伝搬経路mでの回折補正量 [dB]、 $\Delta L_{dif,m}(f_{c,i})$ は伝 搬経路mでの回折補正量 [dB]、 $\Delta L_{dif,m}(f_{c,i})$ は伝 搬経路mでの回折補正量 [dB]、 $\Delta L_{air,m}(f_{c,i})$ は伝 部のでのdB)、 $\Delta L_{air,m}(f_{c,i})$ は地表 面による超過減衰に関する補正量 [dB] である。

注記:吸音に関する補正量 $\Delta L_{abs}(f_{c,i})$ は周波数により異なるため,反射面の吸音率の実験データや既存文献により 設定する。

A5.5.2 反射補正量 $\Delta L_{\text{refl}}(f)$

3.5.1 項に示した反射音の計算方法と同様に,反 射補正量の基本量 $\Delta L_{\rm r}(f)$ [dB] を次式で計算し, 各種反射補正量の計算に用いる [44]。

A5.5.3 各種反射補正量の算出

各種反射補正量の計算は,基本量 $\Delta L_{\rm r}(f)$ を用 いて 3.5 節に示す方法で,周波数ごとに計算する。

A5.5.4 道路交通騒音に対する吸音に関する補 正量

表-3.6 に示した材料以外について道路交通騒音 に対する吸音に関する補正量を計算する必要があ る場合には、音源のパワースペクトルで重み付け して次式により補正量 $\Delta L_{\rm abs}$ [dB] を算出する。

$$\Delta L_{\text{abs}} = 10 \log_{10} \frac{\sum_{i} 10^{\frac{\Delta L_{WA}(f_{\text{c},i})}{10}} (1 - \alpha(f_{\text{c},i}))}{\sum_{i} 10^{\frac{\Delta L_{WA}(f_{\text{c},i})}{10}}}$$
(A5.19)

ここで、 $\Delta L_{WA}(f_{c,i})$ は $f_{c,i}$ の周波数帯域のA特性相対バンドパワーレベル [dB] であり、1/3 オクターブバンド中心周波数で計算する場合は**付属資料A1**の値を用いる。 $\alpha(f_{c,i})$ は $f_{c,i}$ の周波数帯域における反射面の吸音率である。

文 献

- [81] J. J. Bowman, T. B. A. Senior and P. L. E. Uselenghi, *Electromagnetic and Acoustic Scattering by Simple Shapes* (North-Holland, Amsterdam, 1969), p. 335.
- [82] 福島昭則, "遮音壁の回折補正量の近似計算モデル," 音響学会騒音・振動研資, N-2014-5 (2014.1).
- [83] 福島昭則, "屋外騒音伝搬予測における空気の音響吸収 による減衰の計算式,"音響学会騒音・振動研資, N-2014-10 (2014.2).

付属資料 A6 波動数値解析による騒音の計算 方法

平行壁を有する平面道路上に高架道路が併設さ れた場合や半地下構造道路で張り出し部分が長い 場合など,道路構造が複雑な場合,本文で述べた 実用計算法では限界がある。このような場合には, 境界要素法 (BEM),時間領域差分 (FDTD) 法な

どの波動数値解析法を援用することができる。十 分長い距離にわたって同一の断面形状を持つ直線 道路に対象を限定する場合には(図-A6.2 参照), 干渉性線音源を想定し計算負荷が小さい2次元解 析,及び,計算負荷は大きいが点音源を想定した ユニットパターンを計算できる,積分変換を用い た方法が実用的に適用可能である。近年では,計 算機環境の進歩と効率的な解析手法の開発により, 3次元音場を完全に計算することが可能となりつ つある。これらの方法について,A6.1 節に示す。

一方,屋外における音の伝搬は,風や日射など による影響を強く受ける。これらの気象影響の予 測が必要な場合,Parabolic Equation (PE)法と 呼ばれる波動数値解析手法を適用可能である。遮 音壁等のない平坦地形のみに対象が限定されるが, 高さ方向の風速分布と気温分布に起因する屈折伝 搬と,草地など吸音性を有する地表面の影響を予 測可能である。この方法について,A6.2節に示す。

A6.3 節には、すべての解析手法に共通する留意 点を示す。

A6.1 複雑な道路構造に関する計算方法

A6.1.1 2次元波動数値解析の適用

十分長い距離にわたって同一の断面形状を持つ 道路構造を対象とする。このとき,図-A6.1 に示 すように、予測点 P から道路を見込む角 Ψ [rad] の範囲に線音源 Q_{line} を設定し、中心周波数 f [Hz] のバンドにおける予測点 P での A 特性音圧レベ $\mu L_A(f)$ [dB] を次式で計算する。

$$L_{\rm A}(f) \approx L_{WA,\rm line}(f) + 10 \log_{10} \frac{\psi}{\pi}$$

-3 - 10 log₁₀ l + $\Delta L_{\rm 2D}(f)$
(A6.1)

ここで、 $L_{WA,line}(f)$ は中心周波数 f [Hz] のバンドにおける線音源の単位長さ (1 m)当たりの A特性バンドパワーレベル [dB] で、自動車の走行騒音 A 特性バンドパワーレベル $L_{WA}(f)$ [dB] (付属資料 A1 参照)から次式で計算する。

$$L_{WA,line}(f) = L_{WA}(f) - 10\log_{10}\frac{1000V}{N}$$
(A6.2)

ここで, V は走行速度 [km/h], N は交通量 [台/h] である。

また、 $\Delta L_{2D}(f)$ は2次元波動数値解析によって 求められる障壁などの挿入損失 [dB] で、次式で 計算する。

$$\Delta L_{2D}(f) = 10 \log_{10} \left| \frac{\phi_{2D}(k)}{\phi_{2D,00}(k)} \right|^2$$
(A6.3)

ここで、 $\phi_{2D}(k)$ は、波数 $k(=2\pi f/c)$ における、 障壁などがある場合の予測点 P における複素音 圧で、境界要素法、時間領域差分法などによっ て求める [84,85]。cは音速 [m/s] である。また、 $\phi_{2D,00}(k)$ は障壁などの音響障害物が全くない場 合(2次元半自由空間)の予測点 P における複素 音圧である。

境界要素法(時間項 $e^{-i\omega t}$)を用いる場合, $\phi_{2D,00}(k)$ は次式で計算できる。

$$\phi_{2\mathrm{D},00}(k) = \frac{i}{2} H_0^{(1)}(kl) \tag{A6.4}$$

ここで, H₀⁽¹⁾(x) は0次第1種 Hankel 関数である。 時間領域差分法を用いる場合,対象道路が存在 する2次元音場計算とは別に,2次元半自由音場 を設定して2次元音場計算を行い,得られた結果 を基に φ_{2D.00}(k) を求める。

注記:2 次元波動数値解析は、円筒音源(干渉性線音源) からの音の伝搬を解析することに相当するので,道路交通 騒音源のモデルであるランダム位相の点音源列(非干渉性 線音源)とは物理的に異なる。しかし、十分長い直線道路 における障壁の挿入損失や地表面効果について検討した結 果 [86-88] によれば、予測点から±60°以内の線音源に対 する挿入損失と2次元波動数値解析による計算値の差異は 1~2dB 程度に収まることが分かっている。従って、2次 元数値解析によって計算した障壁などによる挿入損失を、 実用計算法における伝搬計算に補正値として加えることに よって近似解を得ることができる。

A6.1.2 積分変換の適用

図-A6.2 に示すように,一様な断面形状が z 方向に連続し,かつ点音源 (S) が存在する場合,予 測点 (P) における複素音圧 $\phi_{3D}(x, y, z, k)$ は,断 面形状をモデル化した 2 次元音場における複素 音圧 $\phi_{2D}(x, y, k)$ と下式のように関連付けられ る [89,90]。

$$\phi_{3\mathrm{D}}(x, y, z, k) = \frac{1}{\pi} \int_0^\infty \phi_{2\mathrm{D}}\left(x, y, \sqrt{k^2 - k_z^2}\right) \cos k_z z \mathrm{d}k_z$$
(A6.5)

2 次元空間内の波数を $k_{2D} = \sqrt{k^2 - k_z^2}$ と定義す ると、式 (A6.5) より、 k_z の変化に応じて k_{2D} が $k \to 0 \to i \cdot \infty$ と変化するので、そのような k_{2D} に対して $\phi_{2D}(x, y, k)$ を計算し、式 (A6.5) に基づ いて 3 次元解 $\phi_{3D}(x, y, z, k)$ を計算する。

2 次元解 $\phi_{2D}(x, y, k)$ を求めるには,境界要素 法や時間領域差分法を用いる。境界要素法を用い る場合には,式 (A6.5)の積分を近似計算するた め,離散的な k_{2D} に対する 2 次元解を計算する。 解の精度を確保するためには,ある程度狭い波数 の間隔で,多数の 2 次元解を計算しておく必要が ある。特に $k_{2D} = 0$ で $\phi_{2D}(x, y, k)$ が発散してし まうため [91],その近傍では k_{2D} の間隔を細かく 設定する必要がある。

時間領域差分法を用いる場合には、時間領域のインパルス応答をあらかじめ一つ求めておき、その応答をフーリエ変換して実波数に対する $\phi_{2D}(x, y, k)$ を求めることができる [92]。フーリエ変換やラプラス変換を用いるため、一つのインパルス応答から k_{2D} の間隔を自在に調整できるが、吸音境界を有する音場に対しては定式化されておらず、反射性境界を持つ音場に適用が限定される。

A6.1.3 3 次元波動数値解析の適用

従来,屋外音響伝搬の3次元波動数値解析は計算 コストの点から困難であった。しかしながら,近年 の計算機環境の進歩と効率的な解析手法の開発に 伴い,適用範囲は限定的ながら、3次元波動解析が 実用化されつつある。例えば、境界要素法(BEM) に高速多重極法(FMM)を適用して高効率化を 図った高速多重極境界要素法(FMBEM)[93,94] を用いた解析[65,95,96]や、FDTD 法を用いた 解析[97]が報告されている。

A6.1.4 境界要素法を適用する際の留意点

境界要素の大きさ

計算対象とする音の波長の 1/5 以下に設定する [98,99]。できれば 1/8 以下とすることが望ましい。

(2) 音響障害物の内部共振の回避

音響障害物の寸法によって決まるある特定の周 波数で計算上の共振(内部共振)が生じ,これに よって大きな計算誤差が生じる場合があるので注 意が必要である(外部問題における解の一意性問 題)。この問題を解決するための方法が複数報告さ れている[100-103]。

(3) 薄い物体の解析

境界要素の大きさに比べて薄い物体に通常の BEM を適用すると、物体両面の境界要素が近接 することと境界要素積分の被積分関数の特異性に 起因して計算誤差が生じる。この問題への対処方 法として、厚み0の境界(縮退境界)を導入し、法 線微分型の定式化[104]を用いて解く方法が知ら れている。通常の定式化を用いる場合は、少なく とも物体の厚みと同程度の大きさの境界要素に分 割する必要がある。

(4) 遮音壁頂部付近の吸音性表面

波動数値解析では,通常,吸音材料の境界条件 を材料表面の比音響インピーダンスとして与える が(A6.3.3 項参照),先端改良型遮音壁(参考資 料 R2 参照)などにおいて遮音壁頂部に吸音材が 配置される場合に,局所作用を仮定して材料表面 に比音響インピーダンスを与えると,遮音壁背後 の回折音が過小予測され,遮音壁の効果が過大に 評価される場合がある。そのような場合には,吸 音材内部の音響伝搬を考慮した拡張作用モデルで 計算するのが望ましい[105]。

A6.1.5 高速多重極境界要素法を適用する際の 留意点 [106]

(1) 周波数域に応じた使い分け

FMBEM を用いる際は、計算効率の観点から

道路交通騒音の予測モデル "ASJ RTN-Model 2018"

低周波数域用 (LF-FMBEM) [94] と高周波数域用 (HF-FMBEM) [93] を使い分けるのが望ましい(た だし,ここでは FMBEM において境界要素をグ ループ化するセルのサイズを D として,これによ り無次元化した波数 kD が小さい領域を低周波数 域,大きい領域を高周波数域と呼んでいる)。両者 のハイブリッド手法も提案されている [107,108]。

(2) 地表面の取り扱い

BEM では、地表面を無限大剛平面としてその鏡 像からの寄与を基本解に含めておくことで、解析対 象を地表面上の物体のみに限定できる。FMBEM ではこの方法をそのまま使うことができず、面 対称音場のための効率化手法を用いる必要があ る [109, 110]。

A6.1.6 時間領域差分法を適用する際の留意点 (1) 差分スキームの選択

最も簡易な差分スキームである Yee アルゴリズ ム [111] を用いると,広い音場を計算する際,必 要な計算ステップが数千以上になった場合に,数 値分散性の影響で蓄積された計算誤差が無視でき なくなる。従って,数値分散誤差を軽減するため に,高次の差分スキームを用いることが望ましい。 時間差分を 2 次精度,空間差分を 4 次精度とした FDTD(2,4) 法 [112] がよく用いられている。

注記:数値分散誤差を軽減するために,高次差分スキーム [113], Compact 差分スキーム [114] など種々の手法が 開発されている。空間差分だけでなく,時間積分について も精度の高い計算方法が提案されている [115]。

(2) 差分格子の大きさ

差分格子の大きさと数値分散誤差の関係より, Yee アルゴリズムを用いる場合は対象とする音 の波長の 1/20 程度に設定することが望ましい。 FDTD(2,4) 法などの高次差分スキームを用いる 場合は,対象とする音の波長の 1/10 程度に設定 してもよい。

有限差分法では直交グリッドを用いるために物 体の形状を凹凸近似することが多いが,差分格子 が物体の形状をよく模擬できるような格子の大き さに設定するよう注意する。

(3) 無反射端の設定

時間領域差分法を道路交通騒音予測に適用する 場合には,開空間を模擬するための高度な無反射 境界を設定する必要がある。時間領域差分法で最 もよく用いられる PML 吸音境界層 [116,117] を

図-A6.3 ユニットパターン計算における PE 解析

設定するのが望ましい。特に,遮音壁や建物背後 における回折場を計算する場合,仮想境界からの 反射音が相対的に無視できなくなる場合があるの で,反射音を十分に低減できるよう PML 吸音境 界層を設定しなければならない。

A6.2 気象影響の計算方法

屋外における音の伝搬は,風や高さ方向の温度 分布の影響を強く受ける。このような気象影響を 考慮できる計算方法として,PE法がしばしば用 いられる [118,119]。

A6.2.1 PE 法の適用

PE 法は周波数領域の解法であり、音源から受 音点方向に伝搬する進行波成分のみに着目して Helmholtz 方程式を解く手法である。z 軸を回転 軸とする回転対称音場を仮定して、図-A6.3に示す ように、地表面からの高さzと点音源からの距離r による 2 次元座標系 (r, z) を考える。対象とする 2次元音場全体を計算格子に分割し、音源点を含む *r* = 0 の *z* 軸上の音圧分布を初期条件として設定 し、r方向に隣接する次の直線上 $r = \Delta r$ における 音圧分布を求める。同様に, $r = 2\Delta r, 3\Delta r, \cdots$ の 音圧分布を逐次繰り返し求めていくことで受音点 の複素音圧を算出する。地表面の比音響インピー ダンスを考慮でき、また、音場内各点のベクトル 風速及び温度に基づき,各点の実効音速を仮定す ることで、音の伝搬に及ぼす気象の影響を考慮す ることが可能である。その一方で、音響障害物か らの反射、散乱等については考慮できない。その ため、見通しの利く開けた屋外において長距離に わたって音が伝搬するような条件への適用が一般 的である。計算手法としては、移流方程式の微分 項に Crank-Nicolson 近似を適用して差分方程式 を構成する Crank-Nicolson PE (CN-PE) 法と, 2 次元音場解の平面波展開を利用して計算の効率 化を図った Green's Function PE (GF-PE) 法の 2 種類がある。

道路交通騒音予測に対する PE 法の適用では, 平坦地形で点音源が地表面に接している場合に限 定する。図-A6.3 のように対象道路上に離散的に 音源点を配置し,受音点におけるユニットパター ンを周波数ごとの伝搬計算(付属資料 A5 参照)に 準じて計算する際,式(A5.2)における超過減衰補 正量 $\Delta L_{g.ex}(f)$ を以下の手順で算出する[36]。

図-A6.3 に示すように,音源点と予測点を含む 2 次元断面を PE 法による計算領域とし,高さ zにおける風速を V(z),気温を T(z),風向と 2 次 元断面のなす角度を θ とする。このとき,高さ zに対する実効音速 $c_{\text{eff}}(z)$ を次式により計算する。

$$c_{\text{eff}}(z) = 331.5 + 0.61T(z) + V(z)\cos\theta$$
(A6.6)

この実効音速分布を仮定して周波数 f [Hz] に おける PE 解析を行い, i 番目の音源位置 S_i から 予測点 P への伝搬に関する複素音圧 $\phi_i(f)$ を算出 する。

同じ S_i からPへの伝搬について、無風で温度 一様の音速分布を想定し、なおかつ地表面を完全 反射性とした解析を別途行い、複素音圧 $\phi_{i,00}(f)$ を算出する。これらを次式に代入し、 $\Delta L_{g,ex}(f)$ を算出する。

$$\Delta L_{\rm g,ex}(f) = 10 \log_{10} \left| \frac{\phi_i(f)}{\phi_{i,00}(f)} \right|^2 \quad (A6.7)$$

A6.2.2 PE 法を適用する際の留意点

(1) 音響障害物からの反射・散乱

PE 法は, 平坦な地表面上の伝搬について気象及 び地表面の反射を考慮して波動音響解析を行う手 法である。そのため, 音場内の音響障害物からの 反射, 散乱等については基本的には考慮できない。

(2) 伝搬方向の制限

PE 法では、平坦な地表面に沿った音の伝搬に ついて高精度の解析が可能である一方、仰角が大 きな方向への伝搬については精度が低下する。基 本的な解法である CN-PE 法の場合、適用可能な 仰角範囲は 30° 程度、高速解法である GF-PE 法 の場合 75° 程度とされている。

(3) 差分格子の大きさ

CN-PE 法の場合, Δr , Δz ともに波長の 1/10 以下に設定することが望ましい。GF-PE 法を適 用する場合は, Δr を波長の 10 倍程度に設定する ことが可能である。

(4) 無反射端の設定

PE 法を道路交通騒音予測に適用する場合には, 開空間を模擬するため解析対象音場の上端に仮想 吸音境界層を設定する必要がある。遠方までの伝 搬計算を行う場合,吸音境界層への音波の入射角 が浅くなることから,吸音境界層を十分厚く(波 長の 50 倍程度)設定する必要がある。

A6.3 共通の留意点

A6.3.1 計算周波数

計算周波数は、中心周波数 125 Hz~4 kHz の 6 オクターブバンドを含む帯域とする。境界要素法 などで周波数領域の計算を行う場合には 1/9 オク ターブ以下の間隔で計算周波数を設定する [120]。

注記:計算時間や計算容量に制限がある場合,道路交通騒音の主要な周波数成分が含まれている 250 Hz~2 kHz の 4 オクターブバンド帯域としてもよい。

A6.3.2 音源の設定位置

音源位置は道路の路面上とする。

注記:境界要素法を用いる場合,路面に接して音源を設定 できないことがある。このような場合,音源高さを対象と する音の波長の 1/20 以下として路面近傍に設定してもよ い [121]。

A6.3.3 境界面の吸音特性の設定

波動数値解析では、境界面の音響特性として比 音響インピーダンスを設定する必要がある。コン クリート面などは完全反射として扱ってよいが、 吸音材料が用いられている場合にはその材料の比 音響インピーダンスの値を用いる。地表面につい ては、実効的流れ抵抗 σ_e [kPa s/m²] を用いて 式 (A6.8) により比音響インピーダンス比 ζ を計 算し [122]、空気密度 ρ [kg/m³、音速 c [m/s] を 用いて式 (A6.9) により比音響インピーダンス z[Pa s/m] を求める。

$$\zeta = 1 + 5.50 \left(\frac{\sigma_{\rm e}}{f}\right)^{0.632} + i \cdot 8.43 \left(\frac{\sigma_{\rm e}}{f}\right)^{0.632}$$
(A6.8)

$$z = \rho c \cdot \zeta \tag{A6.9}$$

σ_eの値として,地表面の種類に応じて表-A6.1の

表-A6.1 地表面の種類と実効的流れ抵抗

地表面の種類	地表面の 実効的流れ抵抗 σ _e [kPa s/m ²]
コンクリート,アスファルト	20,000
固い地面,排水性舗装路面	1,250
芝地、田んぼ、草地	300
表面の柔らかい畑地,耕田	75

値を用いてもよい。

また,排水性舗装については,文献 [123] に比音響インピーダンスの実測結果が報告されている。

注記1:騒音対策用の吸音材料の音響特性は,通常は吸音 率で表されている。この吸音率から比音響インピーダンス の実数部のみを推定して波動数値解析の計算に用いると, 吸音効果が過大に評価される場合があるので注意が必要で ある [121]。

注記 2:式 (A6.8), (A6.9) による地表面の比音響インピー ダンス z は,時間項を $e^{-i\omega t}$ としている。時間項が $e^{i\omega t}$ の 場合には式 (A6.8), (A6.9) による値の複素共役を比音響 インピーダンスとする。

文 献

- [85] 日本建築学会,はじめての音響数値シミュレーショ ンプログラミングガイド (コロナ社,東京, 2012)。
- [86] 福島昭則,藤原恭司, "線音源の干渉性/非干渉性が 障壁の挿入損失に及ぼす影響,"音響学会誌, 58, 10–19 (2002).
- [87] 福島昭則,坂本慎一,"道路交通騒音予測への2次 元波動解析の適用に関する数値解析的検討,"音響学会騒 音・振動研資, N-2003-71 (2003.11).
- [88] 坂本慎一,福島昭則,"道路交通騒音予測への2次元 波動解析の適用に関する実験的検討,"音響学会騒音・振 動研資, N-2003-72 (2003.11).
- [89] D. Duhamel, "Efficient calculation of the threedimensional sound pressure field around a noise barrier," J. Sound Vib., 197, 547–571 (1996).
- [90] D. Duhamel and P. Sergent, "Sound propagation over noise barriers with absorbing ground," J. Sound Vib., 218, 799–823 (1998).
- [91] 中島弘史,鶴 秀生,緒方正剛,"移動音源により生成された音場のフーリエ変換を用いた解析とその誤差の検討,"音響学会誌,60,717-726 (2004).
- [92] S. Sakamoto, "Calculation of sound propagation in three-dimensional field with constant cross section by Duhamel's efficient method using transient solutions obtained by finite-difference time-domain method," Acoust. Sci. & Tech., 30, 72–82 (2009).
- [93] T. Sakuma and Y. Yasuda, "Fast multipole boundary element method for large-scale steady-state sound field analysis. Part I: setup and validation," *Acta Acust. united Ac.*, 88, 513–525 (2002).
- [94] Y. Yasuda, T. Oshima, T. Sakuma, A. Gunawan and T. Masumoto, "Fast multipole boundary element method for low-frequency acoustic problems based on a variety of formulations," *J. Comput. Acoust.*, 18, 363–395 (2010).
- [95] 安田洋介,坂本慎一,佐久間哲哉,"高速多重極 BEM の領域分割法への適用―掘割道路の解析例―,"音講論

集, pp. 801-802 (2007.3).

- [96] 阿部菜摘, 関根秀久, 安田洋介, "厚みのある障壁の 回折補正量に関する検討—ASJ RTN-Model と 3 次元波 動数値解析の比較—,"音講論集, pp. 879–880 (2017.9).
- [97] T. Oshima, T. Ishizuka and T. Kamijo, "Threedimensional urban acoustic simulations and scalemodel measurements over real-life topography," J. Acoust. Soc. Am., 135, EL324–EL330 (2014).
- [98] 河井康人, "段差のある地面の騒音伝搬予測について,"音響学会誌, 56, 68–104 (2000).
- [99] D. C. Hothersall, S. M. Chandler-Wilde and M. N. Hajmirzae, "Efficiency of single noise barriers," J. Sound Vib., 146, 303–322 (1991).
- [100] H. A. Schenck, "Improved integral formulation for acoustics radiation problems," J. Acoust. Soc. Am., 44, 41–58 (1968).
- [101] A. J. Burton and G. F. Miller, "The application of integral equation methods to the numerical solution of some exterior boundary-value problems," *Proc. R. Soc. London A*, 323, 201–210 (1971).
- [102] 石塚 崇,藤原恭司,"境界要素法を用いた防音壁遮 音性能の解析における計算誤差改善に関する研究,"音講 論集, pp. 829–830 (2003.9).
- [103] T. Masumoto, T. Oshima, Y. Yasuda, T. Sakuma, M. Kabuto and M. Akiyama, "HRTF calculation in the full audible frequency range using FMBEM," *Proc. 19th Int. Congr. Acoust. (Madrid)*, COM-06-012 (2007).
- [104] T. Terai, "On calculation of sound fields around three dimensional objects by integral equation methods," J. Sound Vib., 69, 71–100 (1980).
- [105] T. Ishizuka, T. Okubo, "Inaccuracy due to local-reaction model in numerical analyses of noiseshielding efficiency of barriers with absorbing edge," *Acoust. Sci. & Tech.*, 30, 372–375 (2009).
- Acoust. Sci. & Tech., 30, 372–375 (2009). [106] 安田洋介, 関根秀久, 樋口和孝, 大嶋拓也, "FMBEM による屋外広域音響伝搬解析の現状と課題," 騒音制御工 学会研究発表会講論集, pp. 9–12 (2013.9).
- [107] H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge, J. Huang, V. Rokhlin, N. Yarvin and J. Zhao, "A wideband fast multipole method for the Helmholtz equation in three dimensions," J. Comput. Phys., 216, 300–325 (2006).
- [108] N. A. Gumerov and R. Duraiswami, "A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation," J. Acoust. Soc. Am., 125, 191–205 (2009).
- [109] Y. Yasuda and T. Sakuma, "A technique for plane-symmetric sound field analysis in the fast multipole boundary element method," J. Comput. Acoust., 13, 71–85 (2005).
- [110] Y. Yasuda, K. Higuchi, T. Oshima and T. Sakuma, "Efficient technique in low-frequency fast multipole boundary element method for plane-symmetric acoustic problems," *Eng. Anal. Boundary Elem.*, 36, 1493–1501 (2012).
- [111] K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," *IEEE Trans. Antennas Propag.*, 17, 585–589 (1996).
- [112] M. F. Hadi, M. Piket-May, Jr. and S. L. Manry, "A modified FDTD (2,4) scheme for modeling electrically large structures with high phase accuracy," *IEEE Trans. Antennas Propag.*, 45, 254–264 (1997).
- [113] S. Sakamoto, "Phase-error analysis of high-order finite difference time domain scheme and its influence on calculation results of impulse response in

closed sound field," Acoust. Sci. & Tech., 28, 295–309 (2007).

- [114] S. K. Lele, "Compact finite difference scheme with spectral-like resolutions," J. Comput. Phys., 103, 16-42 (1992).
- [115] 岩津玲磨, 鶴 秀生, "時間領域音響計算に用いる Compact 差分と多段階積分法の最適化,"京都大学数理 解析研究所講究録, 1529, 1–14 (2007).
- [116] J-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., 114, 185–200 (1994).
- [117] Q. Qi and T. L. Geers, "Evaluation of the perfectly matched layer for computational acoustics," J. Comput. Phys., 139, 166–183 (1998).
- [118] 大島俊也, "PE 法を用いた騒音伝搬の予測," 騒音制 御, 28, 252–255 (2004).
- [119] 大久保朝直, "グリーン関数 PE 法を用いた屋外騒 音伝搬予測," 騒音制御, 36, 212–217 (2012).
- [120] 福島昭則,藤原恭司,"広帯域騒音の伝搬予測に必要 な計算周波数間隔,"音響学会騒音・振動研資, N-2002-61 (2002.11).
- [121] 福島昭則,坂本慎一,"2次元波動解析を用いた道路 交通騒音予測での条件設定に関する検討,"音響学会騒 音・振動研資, N-2004-12 (2004.2).
- [122] Y. Miki, "Acoustical properties of porous materials—Modifications of Delany-Bazley models—," Acoust. Sci. & Tech., 11, 19–24 (1990).
- [123] H. Hatanaka and K. Yamamoto, "Measurements and analysis of acoustic properties of drainage asphalt," J. Acoust. Soc. Jpn. (E), 1, 55–62 (1999).

付属資料 A7 信号交差点部の騒音の計算方法

信号交差点部の騒音予測計算方法としては,交 差点の信号周期と自動車の挙動を考慮した交通流 シミュレーションモデルに基づくダイナミックシ ミュレーション手法 [124] があるが,ここでは**表**-A7.1 に示す実用計算法と簡易計算法の2種類を 示す。

A7.1 実用計算法 [54]

信号1サイクルを対象にして,青現示で走行す る自動車と,赤現示で減速,停止,加速走行する自 動車に分けて車線別に計算する。また,自動車走 行騒音のA特性音響パワーレベルは,車種構成か ら求めた平均パワーレベル*L*WA [dB]を用いる。

青現示で走行する自動車からの L_{Aeq} [dB] は, 定常走行として計算する。赤現示で加減速を伴っ て走行する自動車については, $\square -A7.1$ に示すよ うに, $\square 々 の自動車からの騒音レベル L_A$ [dB] の ユニットパターンを計算し, L_{AE} [dB] を求め,赤 現示で停止するすべての自動車を考慮して L_{Aeq} を計算する。これらの L_{Aeq} をパワー合成して全 体の L_{Aeq} を計算する。以下に, 信号交差点付近 に適用するパワーレベル及び赤現示の場合におけ る諸条件の設定方法を示す。

表-A7.1 信号交差点部の騒音の計算方法

計算方法	概要
皮田社体计	青現示で定常走行する自動車と、赤現示
天用訂昇法	で減速,停止,加速する自動単に分りて L _{Aeq} を計算する方法 [54]。
簡易計算法	道路を定常走行区間と加速・定常混合区 間に分けて L _{WA} を設定し、L _{Aeg} を計算
	する方法 [54]。

図-A7.1 赤現示の場合の L_A の例

A7.1.1 信号交差点付近のパワーレベル

(1) 加速走行状態

信号交差点における停止状態から発進加速を 経て定常走行に移行するまでの走行状態で、1~ 60 km/hまでの速度範囲とする。停止時から速度 1 km/h未満については一定のパワーレベル(減速 走行状態の式にV = 10 km/hを代入した値)を 用いる。また、60 km/h以上の速度域においては、 定常走行区間と見なす。

(2) 減速走行状態

自動車が定常走行状態から減速して信号交差点 で停止するまでの走行状態で,10km/h以上の速 度範囲とする。なお,速度10km/h未満について は10km/hのパワーレベルを適用する。

A7.1.2 諸条件の設定方法

(1) 平均パワーレベル $\overline{L_{WA}}$

2 車種分類で大型車類混入率 q の場合の平均パワーレベル $\overline{L_{WA}}$ [dB] は次式で計算する。

$$\overline{L_{WA}} = a_{\rm L} + b \log_{10} V + 10 \log_{10} (1 + c \cdot q)$$
(A7.1)

ここで, *a*_L は小型車類のパワーレベルの定数 [dB], *b* は速度依存性を表す係数, *V* は走行速度 [km/h], 道路交通騒音の予測モデル "ASJ RTN-Model 2018"

表-A7.2 定数 *a*_L, *a*_H 及び係数 *b* の値(密粒舗装)

車種分類	$a_{ m L}$	$a_{ m H}$	b
加速走行状態	82.3	88.8	10
減速走行状態	45.8	53.2	30
※減速走行状態	に適用する領	言数及び係数は	定當走行

状態に適用する値と同じである。

表A7.3	自動車の加速度
走行状態	加速度 [m/s ²]
減速時	-1.3
加速時	1.0

*c*は小型車類に対する大型車類のパワーレベル換 算係数で、大型車類のパワーレベルの定数 *a*_H を 用いて次式により計算する。

$$c = 10^{(a_{\rm H} - a_{\rm L})/10} - 1 \tag{A7.2}$$

密粒舗装に適用する a_L , a_H 及び $b \in \mathcal{F}_A$ 7.2 に 示す。排水性舗装を対象とする場合は,表-A4.1 に示した数値を用いて $\overline{L_{WA}}$ を計算する。

注記:表-A4.1 に示した定常走行区間の数値は減速走行状態に適用し,非定常走行区間の数値は加速走行状態に適用する。

(2) 交通量の設定

1回の赤現示で停止する交通量 N_R [台/サイク ル] は,次式により設定する。

$$N_{\rm R} = N_{\rm C} \cdot \frac{T_{\rm R}}{T_{\rm C}} \tag{A7.3}$$

ここで、 $N_{\rm C}$ は信号1サイクルの間に交差点を通 過する交通量 [台/サイクル]、 $T_{\rm R}$ は赤現示の時間 [s]、 $T_{\rm C}$ は信号1サイクルの時間 [s] である。

(3) 自動車の加速度

交差点部を走行する自動車の減速時及び加速時 の加速度は,表-A7.3に示す値を用いる。

(4) 平均停止間隔と音源位置

自動車が赤現示で停止するときの平均停止間隔 d [m] は次式で計算する。

$$d = d_{\rm L} + (d_{\rm H} - d_{\rm L}) \cdot q \tag{A7.4}$$

ここで、 $d_{\rm L}$ は小型車類の停止間隔 (= 6) [m]、 $d_{\rm H}$ は大型車類の停止間隔 (= 12) [m]、qは大型車類 混入率である。

赤現示で停止する n 番目の自動車の音源位置 x_n[m](停止線からの距離)は次式で計算する。

$$x_n = (n - 0.5)d\tag{A7.5}$$

(5) 右左折時の平均走行速度

右左折時の平均走行速度は 20 km/h とする。な お,20 km/h に達するまでの速度は,表-A7.3 に 示す加速時の加速度を用いて設定する。

A7.2 簡易計算法 [54]

実用計算法での個々の自動車の走行を,1台の 自動車の走行で代表させ,その自動車が定常走行 区間の速度で走行しているとして計算する方法で ある。このとき,実際にすべての自動車が定常走 行する区間と,赤現示で一部の自動車が停止・加 速走行する区間(加速・定常混合区間)で,*L*_{WA} を区別して設定する。図-A7.2に加速・定常混合 区間と定常走行区間のイメージを,図-A7.3にユ ニットパターンのイメージを示す。

ユニットパターンを積分して求めた L_{AE} に評価 時間T[s]内の交通量 N_T [台]を考慮して $L_{Aeq,T}$ を計算する。

(1) 加速・定常混合区間と定常走行区間の設定

加速・定常混合区間は、赤現示で停止する自動 車の先頭から最後尾までの滞留区間 *l*_{stop} [m] と, 青現示後に先頭の自動車が加速し終えるまでの区 間長 *l*_{accel} [m] の和とする。各々の区間長は、次式 で計算する。

$$l_{\rm stop} = d \cdot N_{\rm R} \tag{A7.6}$$

$$l_{\rm accel} = \frac{v^2}{2a_{\rm accel}} \tag{A7.7}$$

ここで, a_{accel} は加速時の加速度 $[\text{m/s}^2]$ で表-A7.3 に示す値,vは定常走行区間の走行速度[m/s]で ある。

定常走行区間は,加速・定常混合区間以外の区 間とする。

(2) 平均パワーレベル $\overline{L_{WA}}$

平均パワーレベル $\overline{L_{WA}}$ [dB] は,定常走行区間 については式 (A7.1) に示した方法により設定す る。加速・定常混合区間の $\overline{L_{WA}}$ は定常走行時(青 現示の走行時)の平均パワーレベル $\overline{L_{WA,B}}$ [dB] と加速走行時の $\overline{L_{WA,R}}$ [dB] を,それぞれの信号 現示で通過する交通量の比でパワー平均した値と し,次式で計算する。

 $\overline{L_{WA}} = \frac{10 \log_{10} \frac{N_{\rm R} \cdot 10^{\overline{L_{WA,R}}/10} + (N_{\rm C} - N_{\rm R}) \cdot 10^{\overline{L_{WA,B}}/10}}{N_{\rm C}}}{N_{\rm C}}$ (A7.8)

なお、加速走行時の $\overline{L_{WA,R}}$ は、加速走行時のパワーレベル設定式に定常走行区間の速度を代入して設定する。

文 献

[124] 鈴木 忠, 筑井啓介, 押野康夫, 橘 秀樹, "右左折車 両を考慮した信号交差点周辺の騒音予測に関する検討," 音響学会誌, 60, 526–535 (2004).

付属資料 A8 建物群背後における騒音の詳細 計算法 [125-127]

建物群の隣棟間隔が広いなどの理由から,建物 の側方回折と側面反射による影響をより詳細に取 り扱う場合や,音源位置による騒音レベルの違い を検討する等ユニットパターンをより正確に求め る場合には,式(6.3)の $\Delta L_{\rm BB}$ を次式で計算する。

$$\Delta L_{\rm BB} = 10 \log_{10} \left\{ a_0 + a_1 \cdot \frac{\phi}{\Phi} + a_2 \sum_i \left(\frac{\theta_i}{\Phi} \cdot \frac{d_{\rm road}}{d_{\rm ref,i}} \right) + a_3 \cdot \frac{1}{n} \sum_{k=1}^n \left(\frac{0.251}{1 + 0.522\delta_k} \right) + a_4 \cdot 10^{-0.0904\xi \cdot d_{\rm SP}} \right\}$$
(A8.1)

図−A8.1 建物群がない場合の見通し角 Φ, 建物群が立地 している場合の見通し角 φ

ここで, $a_0 = 0.039$, $a_1 = 1.16$, $a_2 = 0.201$, $a_3 = 0.346$, $a_4 = 0.288$ である。

式 (A8.1) の $\frac{\phi}{\Phi}$ の項は, 音源から予測点へ伝搬す る音の直接音成分を示し, 図-A8.1 に示すように, 予測点 P から音源 S の前後 5 m の道路を見たと き, Φ は建物群がない場合の見通し角 [rad], ϕ は建 物群が立地している場合の見通し角 [rad] である。

式 (A8.1) の $\sum_{i} \left(\frac{\theta_{i}}{\Phi} \cdot \frac{d_{\text{read}}}{d_{\text{ref},i}} \right)$ の項は音源から予測 点へ伝搬する音の反射音成分を示す。本詳細計算 法では,道路(音源)と予測点の間と予測点のす ぐ背後に立地する建物群による1次及び2次の幾 何学的反射音を考慮している。図-A8.2 に示すよ うに, θ_{i} は予測点 P の1次虚像点 P' 又は2次虚 像点 P" から音源 S の前後5m の道路を見たとき の見通し角 [rad], d_{read} は P から S への垂線の距 離 (P から S における道路の接線への最短平面距 離) [m], $d_{\text{ref},i}$ は P' 又は P" から S への垂線の距 離 [m] である。

式 (A8.1) の $\frac{1}{n} \sum_{k=1}^{n} \left(\frac{0.251}{1+0.522\delta_k} \right)$ の項は, 図-A8.3 に示すように, 音源 S から建物 (平面図) の 一つの頂点 O だけを回折して予測点 P に到達す る 1 次回折音成分を示す。音源 S の前後 5 m の道 路に離散音源点を配置し, 各離散音源 S_k から予測 点に至る 1 次回折音の経路差 ($\overline{S_kO} + \overline{OP} - \overline{S_kP}$) を δ_k [m] とする。ただし, 離散音源 S_k から予測 点 P が見える (直接音が存在する) 場合は 1 次回 折音を計算しない。n は 1 次回折音を計算する離 散音源数を示す。

式 (A8.1) の 10^{-0.0904ξ·dsp} の項は, 音源 S から 予測点 P に伝搬する音の, 直接音・反射音・1 次 回折音成分以外の成分を示す。図-6.4 に示すよう に, 音源 S と予測点 P の周辺に幅 15 m の長方形 を想定し, ξ は長方形内の建物密度(長方形の面 積に対する建物群の立地面積の比), d_{SP} は音源 S と受音点 P の水平距離 [m] である。

図-A8.2 音源と予測点の水平距離 *d*_{road}, 予測点の虚像点 から音源を見たときの見通し角 *θ*_i と水平距離 *d*_{ref.i}

図-A8.3 1次回折音(仮想点音源から建物の一つの頂点だけを回折して予測点に伝搬する音)

文 献

- [125] 藤本一寿, 辻 京祐, 冨永 亨, "平面道路に面する 地域における戸建て住宅群による道路交通騒音減衰量の 予測法—点音源モデルの予測式—,"音響学会騒音・振動 研資, N-2013-7 (2013.3).
- [126] 冨永 亨, 森田建吾, 藤本一寿, "平面道路に面する 地域における戸建て住宅群による道路交通騒音減衰量の 予測法—建物高さと受音点高さを考慮した予測式—,"音 響学会騒音・振動研資, N-2014-9 (2014.2).
- [127] K. Fujimoto, K. Tsuji, T. Tominaga and K. Morita, "Prediction of insertion loss of detached houses against road traffic noise using a point sound source model," *Acoust. Sci. & Tech.*, 36, 109–119 (2015).

参考資料

参考資料 R1 二層式排水性舗装の騒音低減効果

我が国で採用されている二層式排水性舗装は,上 層に最大粒径 5~8 mm,下層に最大粒径 13 mm のポーラスアスファルト混合物を使用したもので

あり,舗装厚は上層が 15~20 mm,下層が 30~ 50 mm である [128–130]。排水性舗装の構造と比 較した例を図-R1.1 に示す。

(1) 騒音低減効果

図-R1.2 は, 試験走路に複数の舗装を施工して, 乗用車と大型車の試験車を用いて走行実験を行い, 測定された A 特性音圧レベルの最大値 $L_{A,Fmax}$ を 比較したものである [131]。この図に示されている 回帰式をもとに算出した二層式排水性舗装の騒音 低減効果を図-R1.3 に示す。二層式排水性舗装の $L_{A,Fmax}$ は, 密粒舗装より 5~10 dB, 排水性舗装 より 4~6 dB 低減している。

(2) 周波数特性

図-R1.4 は、図-R1.2 に示した速度 60 km/hの ときの乗用車と大型車の走行騒音 $L_{A,Fmax}$ の周 波数特性である。二層式排水性舗装は密粒舗装よ り 500 Hz 以上の周波数領域で音圧レベルが大き く低減している。また、排水性舗装と比較すると、 $200 \text{ Hz} \sim 1 \text{ kHz}$ 付近のレベルが低減している。

(3) 経時変化

一般道路において,一般車の走行騒音を経時 的に測定して *L*_{WA} の経時変化が検討されてい る [130,132]。これによると,二層式排水性舗装 の騒音低減効果の経時変化は,排水性舗装と同等 であると報告されている。

文 献

- [128] 藤田 仁, "タイヤ/路面騒音の低減技術—その 2 舗装側の騒音低減技術—,"音講論集, pp. 993–996 (2012.9).
- [129] 田中輝栄, "東京都車道舗装体系に取り込んだ二層式 低騒音舗装の性能,"都土木技術支援・人材育成センター 年報, pp. 19–30 (2011).
- [130] 山本裕一郎, 曽根真理, "一般国道における二層式排水 性舗装の騒音低減効果の経時変化,"音講論集, pp. 1025– 1028 (2010.3).
- [131] 押野康夫, "自動車, タイヤ, 路面の騒音対策の複合効 果,"日本自動車研究所主催・シンポジウム「道路交通騒音 低減のための総合的取り組み」資料, pp. 49-60 (2002.11).
- [132] 石川賢一, 植田知孝, 野口英司, 吉田元臣, "二層式排 水性舗装と従来排水性舗装の騒音低減効果の機能比較," 音響学会騒音・振動研資, N-2014-18 (2014.3).

240

参考資料 R2 張り出し型遮音壁及び先端改良 型遮音壁に関する伝搬計算法

張り出し型遮音壁や先端改良型遮音壁が沿道に 設置される場合がある。これらの遮音壁に関する 伝搬計算法を示す。なお,遮音壁の上部を単純に 折り曲げた遮音壁を張り出し型遮音壁,遮音壁の

先端に音響的な工夫を施した遮音壁を先端改良型 遮音壁とし区別する。

図-R2.1 に示す道路事業者が仕様を定めている 5 種類の遮音壁については,実験により求めた計 算式が報告されている [133]。それ以外の遮音壁や 新たに開発した遮音壁については,前述の5 種類 の遮音壁と同様な縮尺模型実験や実物実験を行い, 同様な計算式を作成する必要がある。

図-R2.1 に示す先端改良型遮音壁や張り出し型 遮音壁の回折補正量は、図-R2.2 に示す領域ごと に次式で計算する。 (張り出し型遮音壁)

派り山し至巡百堂/

$$\Delta L_{\rm dif,ob} = \Delta L_{\rm dif,hb} + C_{\rm dif,ob} \qquad (R2.1)$$

(先端改良型遮音壁)

 $\Delta L_{\rm dif,emb} = \Delta L_{\rm dif,hb} + C_{\rm dif,emb} \quad (R2.2)$

ここで、 $\Delta L_{dif,ob}$ 及び $\Delta L_{dif,emb}$ は張り出し型 遮音壁及び先端改良型遮音壁の回折補正量 [dB],

ΔL_{dif,hb} は仮想直壁に対する回折補正量で,図-3.8 に示すように,音源 S と音源側回折点 X,予 測点 P と予測点側回折点 Y をおのおの結ぶ直線 の交点 O に先端を持つ仮想直壁に対する回折補正 量 [dB], C_{dif,ob} 及び C_{dif,emb} は張り出し型遮音 壁の張り出しによる効果の付加的な補正量及び先 端改良型遮音壁の先端の音響的工夫に関する効果 の補正量 [dB] である。

予測点 P が図-R2.2 の領域 1 あるいは領域 2 に あるときの $C_{dif,ob}$ 及び $C_{dif,emb}$ の計算式は以下 のとおりである。また,予測点 P が領域 3 にある ときの $C_{dif,ob}$ 及び $C_{dif,emb}$ は 0 とする。

$$\begin{pmatrix} C_{\rm dif,ob} \\ C_{\rm dif,emb} \end{pmatrix} = \begin{cases} -A - B \log_{10} \delta + C_{\rm Zone2} & \delta \ge 1 \\ -C - D \sinh^{-1} \delta^E + C_{\rm Zone2} & 0 \le \delta < 1 \end{cases}$$
(R2.3)

$$C_{\text{Zone2}} = \begin{cases} \max \left[F \log_{10} \theta + G, 0 \right] & P \in \text{Zone 2} \\ 0 & P \in \text{Zone 1} \end{cases}$$
(R2.4)

ここで、 δ は仮想直壁に関する経路差 [m],各係数は表-R2.1の値を用いる。また、 θ は図-R2.2の

XY と XP の間の角度, max[*a*,*b*] は *a* と *b* のうち 大きい方の値である。

注記 1: $C_{\text{dif,ob}}$ 及び $C_{\text{dif,emb}}$ は,吸音型遮音壁をベースとしたときの実験結果から求めているので, $C_{\text{dif,ob}}$ や $C_{\text{dif,emb}}$ に式 (3.6)の統一型遮音壁の吸音効果による補正 量 $C_{\text{dif,abs}}$ を補正してはならない。 注記 2: 張り出し型遮音壁の領域 3 における予測精度は未

注記2:張り出し型遮音壁の領域3における予測精度は未 検証である。

注記3:張り出し型遮音壁及び先端改良型遮音壁の回折補 正量を波動計算に算入し,騒音レベルを算出する方法が文 献[134,135]に示されている。

文 献

- [133] 武藤茂実,中崎邦夫,山本 稔,池谷公一,松本敏 雄,"分岐型遮音壁の騒音予測計算手法について―前川 チャートをベースに計算する方法,"音講論集, pp. 747-748 (2004.3).
- [134] 大久保朝直,山本貢平,舩橋 修, "先端改良型遮音 壁の音響性能評価手法 (その 1:実製品の性能評価)," 音 講論集, pp. 935–938 (2007.9).
- [135] 大久保朝直,山本貢平,舩橋 修,"先端改良型遮音 壁の音響性能評価手法 (その2:性能評価値を用いた騒 音予測),"音講論集, pp. 939–942 (2007.9).

参考資料 R3 単純条件下での *L*_{Aeq,T} の簡易 計算法

道路が一直線で,音の回折や地表面効果等が無視 できる場合には,次式により等価騒音レベル *L*_{Aeq,T} を求めることができる [136]。

 $L_{Aeq,T}$ は、単発騒音暴露レベル L_{AE} と、対象とする時間 T内に通過する自動車の台数 N_{T} [台]

舗装	遮音壁	А	В	C	D	E	F	G^*	δの適用範囲
HIDDA	大刑分岐		2	Ũ		1	5 31	_1.4	0.11~10
	上工如田八社	5.0	3.0	2.1	3.29	0.414 -	1.00	0.9	0.0002 11
	工工即用分岐						1.88	-0.3	$0.0003 \sim 11$
密粒舗装	橋梁部用分岐	3.5	5.0	0.0	3.97	0.600		—	$0.0004\!\sim\!3.5$
	張り出し3m	1.0	5.0	0.0	1.14	0.414	2.66	0.7	$0.02\!\sim\!20$
	張り出し5m		5.0				3.66	1.4	$0.08\!\sim\!34$
	大型分岐	27	3.0	2.1	1.82	0.414	4.42	-1.6	$0.11 \sim 10$
	土工部用分岐	5.7	3.0				1.65	0.1	$0.0003 \!\sim\! 11$
排水性舗装	橋梁部用分岐	2.5	4.5	0.0	2.84	0.600			$0.0004\!\sim\!3.5$
	張り出し3m	1.0	35	0.0	1.14	0.414 -	2.30	1.2	$0.02 \sim 20$
	張り出し5m	1.0	5.5				3.02	1.7	$0.08\!\sim\!34$

表-R2.1 補正量 C_{dif,ob} 及び C_{dif,emb} の計算式に用いる係数

とを用いて次式で表される。

$$L_{\text{Aeq},T} = L_{\text{A}E} + 10\log_{10}\left(\frac{N_T}{T}\right) \quad (\text{R3.1})$$

ここで,Tは対象とする時間 [s] である。 L_{AE} は, A 特性音響パワーレベル L_{WA} と自動車の走行速 度 V [km/h],計算車線位置からの距離 l [m] を用 いて,次式で表される。

$$L_{AE} = L_{WA} + 10 \log_{10} \left(\frac{3.6}{2lV}\right)$$
 (R3.2)

よって、 $L_{Aeq,T}$ は以下の簡易式で計算できる。

$$L_{\text{Aeq},T} = L_{W\text{A}} - 10 \log_{10} l - 10 \log_{10} V + 10 \log_{10} N_T + 10 \log_{10} \frac{3.6}{2T}$$
(R3.3)

 L_{WA} は車種別に与えられるので、 $L_{Aeq,T}$ を車種 別に算出して車種の構成比率を考慮してパワー合 成することにより、全体の $L_{Aeq,T}$ が算出できる。

文 献

[136] 山本貢平,田近輝俊,高木興一,押野康夫,橘 秀樹, "ASJ Model 1998 による道路交通騒音の推計:その1— 単純モデルの検討—," 音講論集, pp. 709–710 (1999.9).

参考資料 R4 予測精度に関する検討

本予測モデルでは,予測計算式を簡略化するため 自動車走行騒音のパワーレベルの設定や伝搬計算 に多くの仮定が含まれており,その予測精度を検討 しておく必要がある。ここでは本予測モデルによ る計算値と実測値の対応を見ることにより,予測精 度について考察する。ただし,実測値にも各種の不 確かさが含まれていることに十分注意する必要が ある。また, 本予測モデルの予測精度を考える上で 重要と思われる誤差の要因についても考察する。

R4.1 一般道路における検討 [137]

R4.1.1 検討に用いたデータ

検討に用いたデータは,「自動車騒音常時監視マ ニュアル」[138] に基づいて平成 25 年度に測定さ れたもので,環境省から提供されたものである。 データの測定条件は以下のとおりである。測定方 法は JIS Z 8731:1999 に準拠している。

(1) 騒音レベル

L_{Aeq}, L_{AN} (L_{A5}, L_{A10}, L_{A50}, L_{A90}, L_{A95})。 実測時間は,基本 10 分で 24 時間中に数回以上で ある。

(2) 測 定 点

平面道路の道路端の地上 1.2 m の点である。測 定点は,併設道路や交差道路がなく,音の伝搬経 路に障害物や草地がない箇所を選定した。車線数 は片側1車線から4車線であった。

(3) 交通量

3 車種分類(小型車,中型車,大型車)又は2車 種分類(小型車類,大型車類)で,更に二輪車を 区別した上下線別の車種別交通量を用いた。対象 道路の時間交通量は4,500台/時以下,大型車類混 入率は0~100%であった。

(4) 走行速度

上下線別の走行速度を用いた。実測時間内の平 均走行速度が40km/h以上のデータを対象とした。

R4.1.2 計算方法

舗装は密粒舗装を対象とし、計算車線位置は上 下線のそれぞれ中央に1車線ずつ配置した。計算 は参考資料 R3 に示す簡易計算法により、定常走 行状態に適用する L_{WA} を用いた。

図-R4.1 一般道路(密粒舗装)における計算値と実測値の 対応

実測值 LAeg [dB]

R4.1.3 計算値と実測値の対応

基準時間帯(昼間:6:00-22:00,夜間:22:00-翌日 6:00)における計算値と実測値を比較した結 果を図-R4.1に示す。図には、1:1の直線(実線) 及び ±3 dB の範囲(点線)を示している。相関 係数は、昼間で 0.81,夜間で 0.85 と比較的よい 対応が認められる。計算値と実測値のレベル差 Δ (L_{Aeq} の計算値-実測値)は、昼間で+0.4 dB,夜 間で -0.8 dB であった。計算値と実測値との差が ±3 dB の範囲内に収まる割合は、昼間が 87%、夜 間が 76%であった。

表-R4.1 検討に用いた測定データの概要

道	構造	舎	捕装	測定点	迪 吾 辟	
路	TH /E	種別	経過年数	基準点	沿道	巡日主
1	盛土	排水性	8.0	1	1	なし
2	盛土	排水性	6.3	1	1	なし
3	盛土	排水性	7.3	1	1	なし
4	盛土	排水性	8.3	1	1	なし
5	盛土	排水性	0.5	1	1	なし
6	盛土	II 型	1.3	1	1	なし
7	切土	排水性	3.0	1	2	高さ 2 m

R4.2 自動車専用道路における検討 [139] **R4.2.1** 検討に用いたデータ

盛土構造と切土構造の自動車専用道路の道路近 傍と沿道において平成26年から平成30年に測 定された実測値を用いた。表-R4.1に測定データ の概要を示す。また、測定条件は以下のとおりで ある。

(1) 騒音レベル

*L*_{Aeq}, *L*_{A95}。実測時間は,道路1~6が2時間, 道路7が15分である。

(2) 測 定 点

沿道の測定点は地上 1.2 m である。道路端の測 定点(以下,基準点と呼ぶ)は,道路 1~6 につい ては走行車線中心から水平距離 7.5 m で路面から 1.2~2.8 m,道路 7 については法肩に設置された 遮音壁上 3 m である。

(3) 交通量

道路1~6については3車種分類(小型車,中型 車,大型車)で,更に大型バスと二輪車を区別し, 方向別,車線別に交通量を測定した。道路7につ いては2車種分類(小型車類,大型車類)で,方 向別,車線別のトラフィックカウンタの測定値を 使用した。道路1~7の時間交通量は800~4,000 台/時,大型車類混入率は17~32%である。

(4) 走行速度

道路1~6については, 方向別, 車線別, 2 車種分 類別に目視により測定した。道路7については方 向別のトラフィックカウンタの測定値を使用した。 道路1~7の平均走行速度は80~110 km/h 程度 である。

R4.2.2 計算方法

計算は1.3.2 項の予測計算手順により,実測交 通条件を用いて行った。詳細を以下に示す。

図-R4.2 自動車専用道路における計算値と実測値の対応

計算車線位置は各車線の中央位置,盛土道路の 法肩での回折計算には直角ウェッジの計算式を,遮 音壁の回折計算にはナイフウェッジの計算式(遮 音壁の吸音に関する補正を考慮)を用いた。地表 面効果に関する補正量の計算は,道路法面は腐葉 土で草地であったことから「柔らかい畑地」とし て扱った。測定点側の地面は,側道や駐車場でア スファルト舗装されていることから,地表面効果 に関する補正量も考慮した。また,空気の音響 吸収による補正量も考慮した。なお,道路7(切 土道路)については,沿道の測定点が遮音壁の背 後であることから,沿道の地面反射音を考慮しな い場合と考慮した場合の2ケースについて計算値 を算出した(3.3節の注記5参照)。

R4.2.3 計算値と実測値の対応

道路構造別に,計算値と実測値を比較した結果 を図-R4.2 に示す。盛土道路については地面反射 音を考慮していない。なお, $L_{Aeq} \ge L_{A95}$ の実測 値のレベル差が約 10 dB あったことから,暗騒音 補正は行っていない。

盛土道路では、計算値と実測値は、 すべて $\pm 3 \, \text{dB}$ 以内で対応しており、排水性舗装における計算値 と実測値のレベル差 Δ (L_{Aeq} の計算値-実測値) は、基準点で+0.6 dB,沿道の測定点で+0.8 dB であった。高機能舗装 II 型は 1 データしかない が, レベル差 △ は基準点で+0.8 dB, 沿道の測定 点で+1.5 dB であった。

切土道路では,遮音壁背後の沿道の測定点にお ける計算値と実測値のレベル差 △ は,測定点側 の地面を鏡面と考えて地面反射音を考慮した場合 は平均 +0.3 dB,考慮しない場合は平均 –1.6 dB で,地面反射音を考慮した方が計算値と実測値の 対応はよかった。

R4.3 建物群背後における検討 [140]

6.2 節の建物群背後における騒音予測が,本予 測モデルでは新しい実用計算法に代わり,従来の ASJ RTN-Model 2013の計算方法は**付属資料 A8** に詳細計算法として示している。

実用計算法の計算値と市街地における実測値と の検証の例として、テスト走行車両による騒音レ ベルの検討,及び交通センサスデータに基づく等 価騒音レベルの検討を以下に示す。

R4.3.1 テスト走行車両による検討

平面道路あるいは切土道路に面する戸建て住宅 地においてテスト車両を定常走行させ,建物群背 後において検証した。

(1) 平面道路に面する戸建て住宅地の検証例

戸建て住宅地に面する平面道路を二輪車あるい は乗用車が単独走行するときの,建物群背後にお ける実測値と実用計算法を用いた計算値を比較し

図-R4.3 平面道路に面する建物群背後の最大騒音レベル L_{A,Fmax}の計算値と実測値の対応

た。二輪車の速度を 46.1 km/h, *L_{WA}* を 97.4 dB と推定し,乗用車の速度を 35.6 km/h, *L_{WA}* を 92.5 dB と推定している。

建物群背後の受音点9点において、二輪車と乗 用車のユニットパターンにおける最大騒音レベル *L*_{A,Fmax} について、計算値と実測値の相関を図– R4.3 に示す。二輪車、乗用車に関わらず、計算値 と実測値のレベル差は概ね±3dB に収まっており 良い対応である。

(2) 切土道路に面する戸建て住宅地の検証例

戸建て住宅地に面する切土道路を,速度 41.9 km/h の乗用車が,98.6 dBの *L*_{WA} で単独 走行するときの,建物群背後における予測値(45 点)から切土先端の回折影響を受ける5点の最大 騒音レベル *L*_{A.Fmax} を抜粋して検証した。

図-R4.4 に、切土を考慮せずに住宅地と地盤高 さが等しい平面道路として計算した値(〇)と、切 土先端(ナイフウェッジと仮定)による回折補正 量を加えた値(\bigcirc)を示した。建物群による減衰 補正量に加えて回折補正量を考慮することで、計 算値と実測値のレベル差が縮まり±3dBに収まる ようになることから、切土道路に面する戸建て住 宅地においても本予測モデルは適用可能であると 言える。

R4.3.2 交通センサスデータに基づく検討

平面道路(AとB)に面する地域の建物群背後 において、ノイズマップ作成を意図して等価騒音

図-R4.4 切土道路に面する建物群背後の最大騒音レベル L_{A,Fmax}の計算値と実測値の対応

レベルを計算し、その実測値との比較検証を行った。本検討では、交通条件として道路交通センサスデータを用いた。その結果、対象道路Aは、時間交通量3,370台(小型車類)、996台(大型車類)、平均速度(旅行速度)36.7 km/hであった。測定箇所は信号交差点部から離れた場所が多く交通流が定常的であると考えられたことから、定常走行を仮定して L_{WA} を92.7 dB(小型車類)、100.1 dB(大型車類)と推定した。また対象道路Bは、時間交通量768台(小型車類)、64台(大型車類)、平均速度(旅行速度)19.9 km/hであり、信号交差点が連続する区間であることを考慮し非定常走行を仮定して、 L_{WA} を95.3 dB(小型車類)、101.8 dB(大型車類)と推定した。

計算値と実測値のレベル差は、図-R4.5 に示す とおり、対象道路 A では概ね ±3 dB 以内、対象 道路 B では概ね ±5 dB 以内であった。

R4.4 誤差の要因

R4.4.1 仮想車線の設定

本予測モデルでは,計算の便宜上,多車線の道路を上下線それぞれの中央に仮想的車線を1車線ずつ配置してもよいとしている。文献 [141] における検討の結果によれば,最近接車線の中心から予測点までの距離が5m以上になると8車線道路でも近似誤差は1dB以下で,大きな誤差は発生しないこと,しかし予測点までの距離がそれ以下となると近似誤差は急激に増加することが示されて

図-R4.5 平面道路に面する地域における等価騒音レベル の計算値と実測値の対応

いる。従って,多車線道路について沿道の近接点 を予測する場合や,車線により交通量や走行速度 が大幅に異なる場合には,仮想車線の数を増やす ことが望ましい。

R4.4.2 道路交通条件

(1) 自動車走行速度と音響パワーレベルのばらつき

本予測モデルでは,すべての自動車が同一の走 行状態,走行速度であると仮定して自動車走行騒 音の音響パワーレベルを与えることとなっている。 文献 [142] に示されている確率論的な検討の結果 によれば,走行速度のばらつきによる *L*Aeq の変 動は極めて小さいことが判明している。また,音 響パワーレベルの標準偏差(ばらつき)が3dB以 下であれば,*L*Aeq の変化は1dB以下に収まる。

(2) 車種分類

本予測モデルでは,自動車の車種分類として3 車種分類(小型車,中型車,大型車)と2車種分 類(小型車類,大型車類)の2通りの方法を示し ている。音響的には,3車種分類を用いることが 望ましい。ただし,2車種分類を用いたとしても, 中型車が大型車類に占める比率が10~80%の範囲 内であれば,3車種分類を2車種分類に近似した ことによる計算値の差は1dB以下である[137]。

R4.4.3 ユニットパターンの計算範囲

本予測モデルでは,仮想車線上に離散的に多数 の仮想点音源を設定し,予測点におけるユニットパ ターンを求め,それから *L*Aeq を計算することを基 本としている。その場合, 実際にどの範囲まで点音 源を配置する必要があるか, 換言すればユニットパ ターンの計算範囲が問題となる。文献 [141] では, 平坦道路, インターチェンジ部, トンネル坑口周辺 部について求められたユニットパターンの例につ いて,最大値から5dB,10dB,15dB以下の部分 を切り捨てて LAeg を計算した場合の誤差に関す る検討が行われている。その結果、おおよその目 安として平坦道路やインターチェンジ部では最大 値から約 10 dB 以下の部分を、トンネル坑口周辺 部では最大値から約15dB以下の部分を切り捨て ても誤差は1dB以下となるとの知見が得られてい る。しかし、LAeq はユニットパターン全体のエネ ルギー積分値に強く依存するため、たとえ最大値 からのレベルが低くても、切り捨てを安易に行うと 時間的な継続部分の欠如などによって大きな誤差 を招くことがあるので十分な注意が必要である。

R4.4.4 実測における問題点

予測計算における問題点と同時に,道路交通騒音の実測における不確かさの要因を考慮しておく必要がある。その代表的な要因は以下のとおりである。なお,実測においては,*L*Aeqの測定値が統計的に安定するのに必要な実測時間を設定することにも注意が必要である。

(1) 気象の影響

屋外を騒音が伝搬する際,距離が長くなるほど 大気中の温度分布や風の影響を受ける。また,空 気の音響吸収による減衰も生じるが,その程度は 温度や湿度によって大きく変化する。これらの影 響要因のうち,風や温度分布の影響は現象として きわめて複雑で,実用的な騒音予測計算に取り入れ るまでには至っていない。本予測モデルでは,こ れまでの実測結果に基づいて風の影響による道路 交通騒音の変化量を示すにとどめている(3.6節参 照)。気温勾配によっても騒音の伝搬は影響を受け るが,本予測モデルで適用範囲としている 200 m 程度の伝搬距離では,極端な温度分布の逆転など が生じない限り,その影響は無視できる。空気の 音響吸収による減衰については,比較的正確な計 算が可能である(3.4節参照)。

(2) 暗騒音の影響

道路交通騒音の測定を行う場合,必ずそれ以外 の騒音(暗騒音)が同時に存在し,多かれ少なかれ その影響を受ける。特に道路から遠く離れた点や 遮音壁などの騒音対策が施されている場所でその 影響は大きい。この暗騒音の程度を見積もる方法 も種々検討されているが, *L*Aeq の測定と同時に時 間率騒音レベル *L*A90 又は *L*A95 なども測定してお けば, 暗騒音の概略の値を推定することができる。

(3) その他の要因の影響

道路交通騒音の実測は,予測の際には想定して いなかったような状況下で実施されることもある ため,上記のほかにも種々の誤差要因が考えられ る。例えば,予測計算の際に設定した交通流条件 と異なっているために生じる誤差,遮音壁などの 騒音対策工の施工状態による性能のばらつきなど である。また,排水性舗装については,本予測モ デルでもその騒音低減効果及びその経年変化を見 積もることができるよう考慮しているが,舗設後 の空隙詰まりなどによる機能の劣化が場所によっ てかなり異なることが問題である。高架道路では, 本予測モデルでも考慮している高架構造物音以外 に,伸縮継手部周辺からの発生音が実測値に影響 する場合もある。

文 献

- [137] 山内勝也,田近輝俊,福島昭則,穴井 謙,"道路交 通騒音の予測モデル"ASJ RTN-Model 2018"の予測精 度検証,"音響学会騒音・振動研資,N-2019-19 (2019.3).
- [138] 環境省水・大気環境局自動車環境対策課,"自動車 騒音常時監視マニュアル," https://www.env.go.jp/air/ car/noise/note/kanshimanual.pdf (参照 2018-12-11).
- [139] 福島昭則, 一木智之, 太田達也, 舩橋 修, 大蔵 崇, 岩吹啓史, 兼重 仁, 長船寿一, "自動車専用道路沿道に おける "ASJ RTN-Model 2018"の予測精度の検証,"音 響学会騒音・振動研資, N-2019-20 (2019.3).
- [140] 穴井 謙, 松本敏雄, 横田考俊, 坂本慎一, "建物群 背後の道路交通騒音に関する市街地における実用計算法 の検証,"音響学会騒音・振動研資, N-2019-18 (2019.3).
- [141] 山口静馬,為末隆弘,佐伯徹郎,佐々木實,"車種数· 車線数及びユニットパターンの近似化が L_{Aeq} 予測誤差 に及ぼす影響,"音響学会誌, 58, 647-653 (2002).
- [142] 為末隆弘,山口静馬,佐伯徹郎,加藤裕一,"走行車 両の速度とパワーレベルのばらつきが L_{Aeq} 予測値に及 ぼす影響,"音響学会誌, 56, 835-838 (2000).

参考資料 R5 道路交通騒音のパワーレベル測 定方法 [143]

R5.1 自動車走行騒音のパワーレベルの測定方法

実走行車両を対象としてパワーレベルを測定す るときの一般的な方法を以下に示す。なお,以下 に示す測定方法は,本予測モデルでの自動車走行 騒音のパワーレベルの算出に用いた方法である。

R5.1.1 測定点の配置

図-R5.1 に示すように、車線中心から水平距離

*l*_h [m] 離れた,路面から高さ *h* [m] の位置にウインドスクリーンを装着したマイクロホンを設置する。測定場所及び測定点の選定における注意点を以下に示す。

- 測定点を中心とした進行方向前後において路 面にクラックや舗装打ち替え跡がなく、良好 な路面の同一の舗装であること。
- 道路の両側に反射音が問題となるような建物
 等の反射物がないこと。
- ガードレールにより測定点からタイヤの接地 位置が見えない場合には、十分見える高さま で測定点を移動する。
- 定常走行を対象とする場合は、交差点の近く など走行速度や走行状態が変化する場所は避 ける。

注記:一般には, $l_{\rm h} = 7.5 \,\mathrm{m}$, $h = 1.2 \,\mathrm{m}$ として測定する が,測定場所の制約などにより適宜設定することになる。

R5.1.2 騒音測定

騒音計の時間重み付け特性 F を用いて, 騒音レ ベル $L_{A,F}$ を時間間隔 0.1 s 以下でサンプリングす ると共に,レベルレコーダを用いて騒音レベルの 変動をモニタする。対象とする自動車について, 測定点直前の走行速度を測定し,併せて車種 (2章 の3車種分類で大型バスと二輪車は区別)と走行 した車線を記録する。このとき,対象とする自動 車の前後を走行する自動車騒音や対向車線の自動 車騒音の影響を聴感及びレベルレコーダのモニタ 波形から確認する。

注記1:排水性舗装及び高機能舗装 II 型については,発生 騒音の経年変化が考えられるため,舗設年月あるいは舗設 からの経過年月を把握しておく。

注記2: 大型車については,車軸数も記録しておく。 **注記3**: 二輪車は走行位置が車線中心から大きくはずれる 場合があるので,その場合には走行位置からの距離*l*で*L*_{WA} を算出する。

R5.1.3 パワーレベルの算出

(1) 最大騒音レベル法

他の自動車走行騒音の影響を受けていないユニットパターンの最大騒音レベル $L_{A,Fmax}$ から次式によりパワーレベル L_{WA} を算出する。

 $L_{WA} = L_{A,Fmax} + 8 + 20 \log_{10} l$ (R5.1)

ここで,*l*は車線中心から測定点までの斜距離[m] である(図-R5.1 参照)。

他の自動車走行騒音の影響の有無の判断は, L_{A.Fmax}発生時刻における対象とする自動車以外

(b) 断面配置

図-R5.1 自動車走行騒音のパワーレベルの測定点配置(S: 音源, P:測定点)

からの騒音レベルと $L_{A,Fmax}$ のレベル差が 10 dB 以上 (できれば 15 dB 以上) 確保できているかで判 断する。対向車線や並行する車線を自動車が走行 していなければ, ユニットパターンの下がりきった ときの騒音レベルと $L_{A,Fmax}$ のレベル差が 10 dB 以上あるかどうかで判断してよい。

注記:最大騒音レベル法は, "ピーク法"と呼ばれることがあるが, "ピーク"は「音圧 p の最大値 [Pa]」であり,騒音レベルの最大値とは異なることから,ここでは "最大騒音レベル法"と呼ぶ。

(2) 二乗積分法

最大騒音レベル法は,自動車がひとつの点音源 と見なせる場合の算出方法であるが,測定点が車 線に近い,あるいは特大車のように車体が大きく 軸数が多い場合には,自動車をひとつの点音源と見 なせない場合もある。二乗積分法はこのような場 合にもパワーレベルの算出方法として適用できる 方法である。パワーレベルの測定においては,最 大騒音レベル法の他に,二乗積分法によるパワー レベルも算出しておくとよい。

他の自動車走行騒音の影響を受けていないユニットパターンの最大騒音レベル L_{A.Fmax} から次式に

時間 [s]

図-R5.2 自動車走行騒音のパワーレベルの算出

θは測定点 P から路面上の x_iの点を
 見込む角度である。
 図-R5.3 二乗積分法 (S:音源, R:測定点)

よりパワーレベル L_{WA} を算出する。

$$L_{WA} = L_{AE} + 3 + 10 \log_{10} vl - 10 \log_{10} \frac{\theta}{\pi}$$
(R5.2)

$$L_{AE} = 10 \log_{10} \Delta t \sum_{n=m_1}^{m_2} 10^{\frac{L_{A,F}[n]}{10}}$$
(R5.3)

$$\theta = \tan^{-1} \frac{x_1}{l} + \tan^{-1} \frac{x_2}{l}$$
 (R5.4)

ここで、 L_{AE} はユニットパターンの ($L_{A,Fmax} - X$) dB の範囲 (図-R5.2 参照)の $L_{A,F}$ のサンプル 値 $L_{A,F}$ [n] から求めた単発騒音暴露レベル [dB], $m_1 \ge m_2$ は ($L_{A,Fmax} - X$) dB となるときのサン プルの番号、 Δt は $L_{A,F}$ のサンプリング間隔 [s], vは走行速度 [m/s], lは車線中心から測定点までの 斜距離 [m] (図-R5.1 参照)である。また、 θ は図-R5.3 に示すように $L_{A,F}$ [m_1] $\ge L_{A,F}$ [m_2] に対応 する音源位置 $x_1 \ge x_2$ を測定点 P から見込む角度 [rad] である。 $L_{A,Fmax}$ の発生時刻と $L_{A,F}$ [m_1], $L_{A,F}$ [m_2] の時刻の時間差を t_i (i = 1, 2) [s] とす

ると, $x_i = vt_i$ [m] である。

他の自動車走行騒音の影響の有無の判断は, $(L_{A,Fmax} - X)$ dBの時間において, $L_{A,Fmax}$ と 対象とする自動車以外からの騒音レベル $L_{A,BGN}$ とのレベル差が(X + 10)dB以上確保できている か(図-R5.2 で $Y \ge 10$ dB)で判断する。

注記1:通常は、X = 10 dBとして、 $(L_{A,Fmax} - 10) \text{ dB}$ の範囲を積分すればよい。

注記 2: パワースペクトルを算出するときも同様に行える が、周波数帯域により最大音圧レベルの発生時刻や積分範 囲が異なる。そのため、パワーレベルを算出した積分範囲 で式 (R5.3) に準じて各周波数帯域の $L_{A,F}(f)$ を積分して $L_{AE}(f)$ を算出し、式 (R5.2) により A 特性バンドパワーレ ベル $L_{WA}(f)$ を算出し、オーバオール値である音響パワー レベル L_{WA} を基準として相対表示する。

R5.2 高架構造物音のパワーレベルの測定方法

高架道路沿道で観測される道路交通騒音は,回 折音と高架構造物音の合成騒音である。そのため, 高架構造物音のパワーレベルの算出においては, 回折音の影響を補正する必要がある。また,一般 には高架道路の路下では騒音レベルが小さく,暗 騒音の影響を受け易い。ここでは実走行車両を対 象とした高架構造物音のパワーレベルの一般的な 測定方法を示す。なお,以下に示す測定方法は,本 予測モデルでの高架構造物音のパワーレベルの算 出に用いた方法である。

R5.2.1 測定点の配置

図-R5.4 に示すように,高架道路の路下と高架 道路の道路端に測定点 $P_1 \ge P_2$ を設置する。測定 点 P_2 は自動車走行騒音のパワーレベルを測定す るための測定点,測定点 P_1 は高架構造物音と回折 音の合成騒音を測定するための測定点である。ま た,車種,走行車線,走行速度,及び走行状態を 把握するための測定点が必要になる。

測定場所及び測定点の選定における注意点を以 下に示す。

- 測定点を中心とした進行方向前後において路 面にクラックや舗装打ち替え跡がなく、良好 な路面の同一の舗装であること。
- 高架橋の両側に反射音が問題となるような建物等の反射物がないこと。
- ●走行速度や走行状態は一定と見なせること。

注記1:一般には、測定点 P₁ は高架道路の雨だれ線から 官民境界までの範囲で、地上高さ h = 1.2m に設置する。 測定点の高さが高くなると、回折音の寄与が大きくなり、 高架構造物音が正しく測定できなくなる場合がある。 注記2:高架道路に遮音壁が設置されていると、測定点 P₂ で測定される自動車走行騒音に、指向性の影響や車体と遮 音壁での多重反射音の影響が無視できなくなる。そのため 遮音壁が設置されていない高架道路の高欄上や、遮音壁が 設置されている場合は非常駐車帯の遮音壁上などに測定点

を設置する必要がある。 注記3:車種,走行車線,走行速度,及び単独走行の識別 のために,例えば測定点 P₂の前後においてビデオカメラ で録画する。

R5.2.2 騒音測定

騒音レベル $L_{A,F}$ を時間間隔 0.1 s 以下でサンプ リングすると共に、レベルレコーダを用いて騒音 レベルの変動をモニタする。対象とする自動車に ついて、測定点直前の走行速度を測定し、併せて 車種 (2章の3車種分類で大型バスは区別)と走行 した車線を記録する。このときに、対象とする自 動車の前後を走行する自動車騒音や対向車線の自 動車騒音の影響を現地では聴感及びレベルレコー ダのモニタ波形で確認し、分析時にはビデオ画像 であらためて確認する。

注記:大型車については,車軸数も記録しておく。

R5.2.3 パワーレベルの算出

(1) 自動車走行騒音のパワーレベルの算出

自動車走行騒音のパワーレベルは,R5.1.3 項に 示した二乗積分法により,測定点 P_2 における騒 音レベル $L_{A,F}$ のサンプル値 $L_{A,F}[n]$ を用いて算 出する。

(2) 高架構造物音のパワーレベルの算出

1) 測定点 P₁ での単発騒音暴露レベルの算出

測定点 P_1 における対象とする自動車走行時の 単発騒音の単発騒音暴露レベル $L_{AE,AS}$ を次式に より算出する。 $L_{AE,AS}$ は、回折音と高架構造物 音の合成騒音の単発騒音暴露レベルである。

時間 [s]

図-R5.5 測定点 P₁ での単発騒音暴露レベル L_{AE,AS} の 算出

 $L_{AE,AS} = 10 \log_{10} \Delta t \left(\sum_{n=m_1}^{m_2} 10^{\frac{L_{A,F}[n]}{10}} - M \cdot 10^{\frac{L_{A,BGN}}{10}} \right)$ (R5.5)

ここで, $m_1 \ge m_2$ は対象とする自動車走行時の 単発騒音とその前後の暗騒音を含むサンプルの範 囲を表す番号 (図-R5.5 参照), $L_{A,BGN}$ は暗騒音 が定常騒音と見なせる場合の暗騒音の騒音レベル [dB], Δt は $L_{A,F}$ のサンプリング間隔 [s], M は サンプル数で, $M = m_2 - m_1 + 1$ である。なお, 式 (R5.5) の適用は暗騒音が定常騒音と見なせる 場合に限る。

注記1:自動車走行時の単発騒音の最大騒音レベルが暗騒 音よりも10dB以上大きいデータが望ましいが、少なくと も7dB以上のレベル差があるデータを採用する。 注記2:暗騒音が変動する場合には自動車走行時の暗騒音 が推定できないためLAE,ASは算出できない。

測定点 P₁ での回折音の単発騒音暴露レベル の推計

測定点 P_2 で算出した自動車走行騒音のパワー レベルを用いて、3章の伝搬計算法により測定点 P_1 における回折音のユニットパターン $L_A[n]$ を 計算し、次式により測定点 P_1 での回折音の単発 騒音暴露レベル $L_{AE,A}$ [dB]を推計する。

$$L_{AE,A} = 10 \log_{10} \Delta t \sum_{n=m_1}^{m_2} 10^{\frac{L_A[n]}{10}}$$
 (R5.6)

図-R5.6 高架構造物音のパワーレベルの算出

測定点 P₁ での高架構造物音の単発騒音暴露 レベルの算出

次式により, 測定点 P₁ での高架構造物音の単 発騒音レベル L_{AE.S} [dB] を算出する。

$$L_{\rm AE,S} = 10 \log_{10} \left(10^{\frac{L_{\rm AE,AS}}{10}} - 10^{\frac{L_{\rm AE,A}}{10}} \right)$$
(R5.7)

注記: $L_{AE,AS}$ と $L_{AE,A}$ のレベル差が 4 dB 未満の場合は $L_{AE,S}$ は参考値とする。

4) 高架構造物音のパワーレベルの算出

算出した $L_{AE,S}$ 及び図-R5.6 に示す幾何配置から高架構造物音のパワーレベル $L_{WA,str}$ を次式により算出する。

$$L_{WA,str} = L_{AE,S} + 3 + 10 \log_{10} v l_{B} - 10 \log_{10} \frac{\theta_{B}}{\pi}$$
(R5.8)

ここで, v は走行速度 [m/s], l_B は測定点 P_1 から 高架構造物音の騒音計算における仮想車線(5.2.1 項)までの斜距離 [m], θ_B は式 (R5.5)のサンプ ルの両端 m_1 , m_2 に対応する仮想車線における仮 想音源位置(5章参照)を測定点 P_1 から見込む角 度 [rad]である。

文 献

[143] 橘 秀樹,日高新人,吉久光一,"自動車定常走行音 パワーレベルの測定方法について,"音響学会騒音・振動 研資, N-85-05-3 (1985.5).

本誌 75 巻 4 号「道路交通騒音の予測モデル"ASJ RTN-Model 2018" - 日本音響学会道路交通騒音調 査研究委員会報告-」において記述の誤りや分かりにくい箇所がありました。正しくは以下のとおりで す。ここにお詫びし訂正いたします。なお、本誌 76 巻 3 号の会告に訂正を掲載しましたが、新たな訂 正箇所がありましたので、その部分を追加して再掲いたします。今後、新たに訂正箇所があった場合に は、道路交通騒音調査研究委員会の HP (https://asj-rtn.acoustics.jp/)に随時掲載いたしますので、併せ てご覧ください。

頁	訂正内容		
p.211 文献[27]	文献[27]の題目を訂正。		
	誤	道路交通騒音予測における <u>遮音壁表面の吸音効果の算定式</u>	
	正	道路交通騒音予測における <u>吸音型遮音壁の吸音効果の計算方法</u>	
p.216 式(4.16)	式(4	4.16)の第2項の { }内の変数φを図-4.6と同じフォントに訂正。	
	誤	<u>φ</u>	
	正	Q	
p.219 式(4.23) と 式(4.24) 下の説明 文	式(4.23)と式(4.24)の説明文を修正		
	誤	$\Delta L_{dif,sbj}$ は \mathbf{B}_j の中心に点音源を考えた場合の遮音壁に対する一回回折の回折補正量[dB]である。	
	E	<u>D_i及び</u> ΔL _{dif,sb,i} はB _j の中心に点音源を考えた場合の遮音壁に対する一回回折の回折係数及 <u>び</u> 回折補正量[dB], <u>ρ_iはB_iの反射率でρ_i=1-α_i (α_iは吸音率)</u> である。	
p.220 文献[58]	文薩	文献[58]の頁数を訂正。	
	誤	<u>834</u> -338	
	正	<u>334</u> -338	
p.235 文献[98]	文献[98]の頁数を訂正。		
	誤	<u>68</u> -104	
	正	<u>98</u> -104	
p.247 文献[140]	文南	文献[140]の題目を訂正。	
	誤	建物群背後の道路交通騒音に関する市街地における実用計算法の検証	
	正	建物群背後 <u>における道路交通騒音の実用計算法に関する精度検証-市街地における実測</u> 値と計算値の比較-	

 国土技術政策総合研究所資料 TECHNICAL NOTE of NILIM No. 1124 September 2020
 編集・発行 ©国土技術政策総合研究所
 本資料の転載・複写の問い合わせは 〒 305-0804 茨城県つくば市旭1番地 企画部研究評価・推進課 Tel029-864-2675
