国土技術政策総合研究所資料

TECHNICAL NOTE of

National Institute for Land and Infrastructure Management

No.1037  June 2018

平成 29 年度

道路調査費等年度報告

Annual Report of Road-related Research
in FY 2017

国土交通省 国土技術政策総合研究所

National Institute for Land and Infrastructure Management
Ministry of Land, Infrastructure, Transport and Tourism, Japan
平成 29 年度
道路調査費等年度報告

Annual Report of Road-related Research in FY 2017

概要：
本報告は、国土技術政策総合研究所において平成 29 年度に実施した道路調査費、地域連携道路事業費に関する調査・研究の結果をとりまとめたものである。

キーワード：道路調査費、地域連携道路事業費、年度報告、平成29年度

Synopsis:
This report contains the results of the road-related research carried out by NILIM in FY 2017.

Keywords: Road-related Research, Annual Report, Fiscal Year of 2017
まえがき

本報告は、国土交通省国土技術政策総合研究所において、平成29年度に実施した道路関係調査研究の結果をとりまとめたものである。この道路関係調査研究には、「道路調査費」による試験研究及び「地域連携道路事業費」による試験調査がある。

「道路調査費」による試験研究課題については、行政ニーズに対応して設定された次に示す10の「政策領域」において研究に取り組んでおり、本報告ではこの領域毎に整理している。

領域1 新たな行政システムの創造
領域2 経済・生活に活力を生む道路ネットワークを形成し、有効活用を図る
領域3 新たな情報サービスを創造し、利用者の満足度を向上させる
領域4 コスト構造を改革し、道路資産を効率的に形成する（つくる）
領域5 美しい景観と快適で質の高い道空間を創出する
領域6 交通事故等から命を守る
領域7 災害時における対応をスピーディかつ的確に支援する
領域8 大切な道路資産を科学的に保全する
領域9 沿道環境を改善し、良好な生活環境を創造する
領域10 自然環境、地球環境を保全する

また、「地域連携道路事業費」による試験調査については、各地方整備局等からの依頼により実施しており、担当研究室ごとにまとめている。

平成30年6月

道路交通研究部長 喜安 和秀
道路構造物研究部長 木村 嘉富
平成29年度 道路調査費等年度報告

目 次

道路調査費

1. 領域1：新たな行政システムの創造
   ・道路を賢く使うための幹線道路の交通流動の推計手法に関する研究（道路研究室）…1
   ・滞渇対策実践支援（道路研究室）…3
   ・全国幹線道路における道路交通データの収集・整理手法に関する検討（道路研究室）…5
   ・道路整備のストック効果を把握するための経済分析手法に関する調査（建設経済研究室）…7

2. 領域2：経済・生活に活力を生む道路ネットワークを形成し、有効活用を図る
   ・道路事業の多様な効果に関する調査（道路研究室）…9
   ・道路のサービス向上等のための効率的な道路機能向上策の検討（道路研究室）…11

3. 領域3：新たな情報サービスを創造し、利用者の満足度を向上させる
   ・自動運転サービスの社会実装に関する調査（高速道路交通システム研究室）…13
   ・プローブ情報等を用いた道路行政支援に関する研究（高速道路交通システム研究室）…15
   ・地域におけるITS技術の活用支援に関する研究（高速道路交通システム研究室）…17
   ・車両搭載センシング技術による道路管理の高度化に関する研究（高速道路交通システム研究室）…19
   ・ITS技術を活用した特殊車両管理の高度化に関する検討（高速道路交通システム研究室）…21
   ・国際的な動向を踏まえたITSの研究開発・普及展開方策の検討（高速道路交通システム研究室）…23
   ・ネットワーク状道路運用に活用可能なITS技術に関する研究（高速道路交通システム研究室）…25
   ・道路管理のためのビッグデータの収集・活用技術に関する研究（高速道路交通システム研究室）…27
   ・道路基盤地図情報の品質確保及び統合・標定に関する技術の実用化検討（社会資本情報基盤研究室）…29
   ・道路基盤地図情報を活用した道路管理支援システムの構築（社会資本情報基盤研究室）…31

4. 領域4：コスト構造を改革し、道路資産を効率的に形成する（つくる）
   ・部分係数設計法の適用性向上に関する調査検討（橋梁研究室）…33
   ・部材連結部の損傷制御及び信頼性に関する調査検討（橋梁研究室）…35
   ・土工構造物等の要求性能に対応した変状評価、性能向上に関する調査検討（構造・基盤研究室）…37
   ・道路特性に応じた舗装の要求性能に関する調査検討（道路基盤研究室）…39
   ・設計基盤地震動と地盤震動特性の評価手法の検討（道路地震防災研究室）…41
   ・道路事業における入札・契約制度の改善効果の評価に関する検討（社会資本マネジメント研究室）…43
   ・CIM展開のための3次元データ利活用の高度化に関する調査（社会資本情報基盤研究室）…45
   ・道路整備等の生産性向上に資するロボット及びICT技術の利活用に関する調査（社会資本施工高度化研究室）…47
5. 領域５：美しい景観と快適で質の高い道空間を創出する
   - 維持、修繕、小規模改築等における景観向上方策の充実に関する検討
     （道路環境研究所）… 49
   - 地域・住民との協働による効果的な道路の質の維持・向上に関する検討
     （道路環境研究所）… 51
   - 道路空間の利活用の持続的実施に向けた交通実態・効果把握に関する検討
     （道路環境研究所）… 53
   - 無電柱化事業の円滑化に関する調査
     （道路環境研究所）… 55
   - 道路空間や地域特性に適応した道路緑化に関する研究
     （緑化生態研究所）… 57
   - 道路空間の機能拡充に効果的な設計手法に関する研究
     （緑化生態研究所）… 59

6. 領域６：交通事故等から命を守る
   - 交通事故発生状況に関する統計データ分析
     （道路交通安全部）… 61
   - 生活道路の交通安全対策の導入推進に関する検討
     （道路交通安全部）… 63
   - 自転車通行空間の効果的な計画・設計に関する検討
     （道路交通安全部）… 65
   - 効果的効率的な交通安全マネジメントに向けた手法・対策導入のための研究
     （道路交通安全部）… 67
   - 路上交通安全施設の維持管理に関する調査
     （道路交通安全部）… 69

7. 領域７：災害時における対応をスピーディかつ的確に支援する
   - 雪による交通障害発生時の安全な交通確保に関する調査
     （道路交通安全部）… 71
   - 雪に強い道路構造・施設等に関する調査
     （道路交通安全部）… 73
   - 災害発生時の被災規模等の早期把握技術に関する調査
     （道路地震応急研究室）… 75
   - 道路橋の耐震補強効果の評価に関する調査
     （道路地震応急研究室）… 77
   - 道路災害発生時の危機管理対応能力強化に関する調査
     （道路地震応急研究室）… 79
   - 災害対応時の管理基準に関する調査
     （道路地震応急研究室）… 81
   - 道路の雪対策に係る国際的な比較調査
     （建設経済研究所）… 83

8. 領域８：大切な道路資産を科学的に保全する
   - 道路橋管理におけるアセットマネジメント活用に関する調査検討
     （橋梁研究室）… 85
   - 道路橋の補修・補強設計法に関する調査検討
     （橋梁研究室）… 87
   - 補修補強設計に係わる部分係数に関する調査検討
     （橋梁研究室）… 89
   - 道路構造物の健全性把握に関する調査検討
     （橋梁研究室・構造・基礎研究室）… 91
   - 既設道路構造物基礎の耐荷性向上に関する調査
     （構造・基礎研究室）… 93
   - 鋼板の長寿命に関する調査検討
     （道路基盤研究室）… 95
   - 地震災害復旧対策技術に関する研究
     （熊本地震復旧対策研究室）… 97

9. 領域９：沿道環境を改善し、良好な生活環境を創造する
   - 道路交通騒音の変化を踏まえた遮音壁の更新方針等の検討
     （道路環境研究所）… 99
１０．領域１０：自然環境、地球環境を保全する

・動植物の保全措置の効果把握と効率化に向けた検討
  （道路環境研究室）…101

・環境情報の共有・活用方策に関する調査
  （道路環境研究室）…103

・道路事業における土壌汚染等の環境リスク低減に関する調査
  （道路環境研究室）…105

・エネルギーの技術革新と道路の技術開発に関する検討
  （道路環境研究室）…107

地域連携道路事業費

・土木工事積算システムの効率的運用に関する検討調査
  （社会資本システム研究室）…109

・道路工事における総合的なコスト構造の評価に関する調査
  （社会資本システム研究室）…111

・土木工事における構造物の修繕設計の品質確保に関する調査
  （社会資本システム研究室）…113
道路調査費
領域1：新たな行政システムの創造
道路を賢く使うための幹線道路の交通流動の推計手法に関する研究

Study on estimation method of traffic flow of trunk roads

（研究期間　平成28年度～29年度）

道路交通研究部　道路交通研究室
Road Traffic Department
Road Division

室長　瀬戸下　伸介
Head　Shinsuke SETOSHITA
主任研究官　松田　奈緒子
Senior Researcher　Naoko MATSUDA
研究官　瀧本　真理
Researcher　Masamichi TAKIMOTO
研究官　安居　秀政
Researcher　Shusei YASUI
交流研究員　加藤　哲
Guest Research Engineer　Satoshi KATO

In order to use the road wisely, it is necessary to grasp and analyze the daily fluctuation and temporal change of the road traffic situation. In this research, the authors examined a method of estimating OD matrix based on observation link traffic volume and improvement of the estimation method of traffic flow of trunk roads by using ETC2.0 in FY2017.

[研究目的及び経緯]
国土交通省では、概ね5年に1度の全国道路・街路交通情勢調査・OD調査により、自動車の動き（いつ、どこからどこへ移動したのか、など）を把握している。しかし近年、調査票の回収率が低下するなど、正確なOD交通量の把握が喫緊の問題となっている。これに対策として、比較的容易に正確な把握が可能な断面交通量を利用してOD交通量を補正する、OD交通量逆推定モデルが有効であり、国土技術政策総合研究所（以下「国総研」という。）では、OD交通量逆推定手法を用いてOD交通量を把握する研究に取り組んでいる。

[研究内容]
国総研で開発を進めているOD交通量逆推定手法の基本フローを図1に示す。この手法は、既存のOD調査結果から得られる発生交通量比率と目的地選択確率、ODペア毎のリンク利用率および観測リンク交通量（断面交通量）を入力データとして、リンク交通量の観測日に対応する各ゾーンの発生交通量を推定値として出力する方法である。出力される発生交通量を利用して、OD交通量やODペア毎の利用経路などの交通流動を把握する。

図1 OD交通量逆推定手法の基本フロー

図2 発生交通量推定結果（近畿）

昨年度、近畿地方を対象に、H22道路交通センサスの観測リンク交通量を利用してOD調査ゾーン別発生交通量を推定し、H22道路交通センサスOD調査のゾーン別発生交通量（観測）と比較したところ、推定値の方が全体的に小さい値となった（図2）。平成29年度では、推定値が過小となる原因把握およびETC2.0ブロードバンド情報の利用に推定精度の向上に関する研究を行った。
【研究成果】
推定結果が過小となる原因として、近畿地方ネットワーク特有の課題、入力するリンク利用率の精度によるものであるとの2つの仮説を立てた。

仮説に基づき、まず、近畿地方ネットワーク特有の課題であるのかを確認するために、他地域（中部地方）およびスケールの小さい地域（京都市）のネットワークを構築し、発生交通量の推定を行った。その結果、中部地方、京都市においても推定値が過小となる傾向がみられ（図3）、近畿地方のネットワーク特有の問題ではないことを確認した。

次に、入力するリンク利用率の精度、すなわち、分割配分により算出するリンク利用率が実際よりも幹線道路に集中する傾向があることが原因であるという仮説に基づき、ETC2.0 プローブ情報を利用したリンク利用率を活用し改善を試みた。ETC2.0 プローブ情報への置換方法を図4に示す。なお、ETC2.0 プローブ情報のサンプル数が5台以下のODペアについては置換対象外とした。

推定結果を図5、図6に示す。ETC2.0 プローブ情報によるリンク利用率を活用した場合、過小傾向が更に強まった（図5）。これは、ETC2.0 プローブ情報の路側機の配置の偏りにより、リンク利用率が更に幹線道路に集中したことが原因と考えられる。そこで、幹線道路等への偏りがある観測地点の観測交通量を非入力として試算したところ、過小推計傾向が改善された（図6）。これにより、過小推計となるのは、リンク利用率が実際よりも幹線道路に集中する傾向があることが原因であるという仮説が支持された。

本研究において、OD交通量推定法による推定結果の過小推計の原因が入力するリンク利用率の精度によるものであることを把握し、ETC2.0 プローブ情報の活用によって改善が図られる可能性を得た。本研究においては、幹線道路等への偏りがある観測地点の観測交通量を非入力としたが、より実用的な欠落を含めた偏向の補正方法の検討が必要である。

【成果の活用】
ETC2.0を用いたリンク利用率を改善することにより、推計精度の向上を図り、毎時のOD交通量を把握可能とするマニュアルを作成し、交通マネジメント強化に活用する。

【参考文献】
1) 国土交通省国土技術政策総合研究所：国土技術政策総合研究所資料第1006号 平成28年度道路調査費等年度報告 pp.5-6
渋滞対策実践支援

A study on supporting practice of the measures against traffic congestion

（研究期間 平成 29～31年度）

道路交通研究部 道路研究室
Road Traffic Department
Road Division

室長 瀬戸下 伸介
Head Shinsuke SETOSHITA

主任研究官 松田 奈緒子
Senior Researcher Naoko MATSUDA

研究官 濁本 真理
Researcher Masamichi TAKIMOTO

研究官 安居 秀政
Researcher Shusei YASUI

交流研究員 加藤 哲
Guest Research Engineer Satoshi KATO

Utilization of ETC2.0 probe data is needed for effective and efficient road traffic management. In this study, various kinds of case studies using ETC2.0 probe data were examined. These results were summarized as an analysis procedure manual for road and traffic conditions using ETC2.0 probe data.

[研究目的及び経緯]

我が国では道路の移動時間の約4割が渋滞による損失であり、生産性向上のため、交通状況を適切に把握することにより効率性の高い渋滞対策を講じていくことが求められている。

国総研では、ETC2.0プローブ情報をはじめとする道路交通データを利用した道路交通課題と対策効果の把握・分析手法に関する調査研究を行っている。本研究では、個車の走行速度、走行経路などが取得可能なETC2.0プローブ情報の特徴を活かした分析手法の開発を行うとともに、分析手法及び技術的な留意点等をとりまとめ、渋滞対策の実践を支援することを目的としている。

[研究成果]

（1）ケーススタディによる分析手法の開発

①時間信頼性、経路分担率・経路転換状況の把握・分析手法

開通前後に経路分担率や時間信頼性が変化するIC・JCT間の着目を対象に交通帯を把握する手法について、分析手順を整理し、平成28年2月に開通した湘南区間を対象としたケーススタディを行った。例えば、鴨ヶ島JCT→成田IC・JCT間の着目することで、開通前は主に首都高を経由する都心通過ルートが利用されていたが、開通後は約7〜8割を周辺区間が担うなど、通過交通が環状道路に転換していることが確認できた（図1）。

②滞在時間、到着時刻や立寄り箇所の把握・分析手法

観光スポットへの到着時刻、滞在時間及び立寄り箇所等の観光行動を分析する手法を提案し、茨城県の筑波山及び袋田の滝をフィールドとしたケーススタディを行った。図2は紅葉シーズンに県外から袋田の滝に来訪した車両の滞在時間を到着時刻別に示したものである。

滞在時間2時間未満が全体の79%を占めているため、到着時間帯に依らず当該ランクの割合が高いが、早い時間に到着した車両ほど滞在時間が長いという傾向を把握することができることを示した。
②信号待ち回数の把握・分析手法

ETC2.0 ブロープ情報を利用し、簡便に交差点における流入方向別の信号待ち回数を算出する手法（信号待ち時間による自由流通行時間が減少することで信号待ち時間を算出し、信号の赤時間で除する）を提案し、人口 30 万人程度のある地方都市の主要幹線道路が交差点の交通状況をフィールドとしてケーススタディを行った。その結果を図 3 に示す。方向別に車線が整備されている西向きの場合、直進車線で 2 回以上信号待ちをした車両はごく僅かである。一方、直進・右左折交通が混在する北向きの場合には右折車両の滞留によって直進交通が阻害されることで、信号待ち回数が増えている状況を定量化できることを示した。

(2) 道路交通状況分析マニュアル（案）の作成

上述の検討結果を踏まえて、『ETC2.0 ブロープ情報を利用した道路交通状況の把握・分析方法分析手順書（案）』の内容を更新・整理した。

具体的な整理項目としては、「構成と使い方」でマニュアルにおける各年の内容について示し、「ETC2.0 ブロープ情報の概要と技術的特徴」において ETC2.0 ブロープ情報のデータ収集方法やデータの仕様、ケーススタディを実施した分析項目に共通するデータ利用上の留意点等について整理している。また、「ETC2.0 ブロープ情報を利用した交通状況の分析手法」においては分析項目ごとに「分析のねらい」「分析に使用するデータ」「分析にあたっての留意点」「具体的な分析手法」等について分析者の視点から詳細に整理し、具体的な作業内容がイメージしやすいように概要図や整理イメージ等の図表を併せて解説している。

【成果の活用】

本研究において分析項目（開通効果、観光行動、渋滞多発度等）、交通流動など）別に整理した事例集により、各地方整備局・事務局が把握したい内容ごとにその手法やアウトプットを視覚的にイメージすることができる。今後は今手法の他地域での適用を検討するとともに、新たな分析手法の開発を実施していき、ETC2.0 ブロープ情報の新たな活用の方向性のみならず、データ処理から分析に至る一連の標準的な手順を『ETC2.0 ブロープ情報を利用した道路交通状況の把握・分析方法分析手順書』としてとりまとめ、今後、地方整備局等が実施する ETC2.0 ブロープ情報を活用した分析の精度・信頼性の向上に繋げる。
全国幹線道路における道路交通データの収集・整理手法に関する検討
Study on collection and organization of road traffic data on arterial road

（研究期間　平成 28〜30 年度）

道路交通研究部　道路研究室
Road Traffic Department
Road Division

室長　瀬戸下 伸介
Head　Shinsuke SETOSHITA

主任研究官　松田 奈緒子
Senior Researcher　Naoko MATSUDA

研究官　瀧本 真理
Researcher　Masamichi TAKIMOTO

研究官　安居 秀政
Researcher　Shusei YASUI

交流研究員　加藤 哲
Guest Research Engineer　Satoshi KATO

The authors organized data that is desired to be accumulated in the "Road Traffic Survey Platform". And, the authors examined a method to collect traffic volume data automatically and instantaneously. In addition, the authors updated the "Traffic survey basic section database" which is the basis of road traffic data.

【研究目的及び経緯】
道路ネットワーク全体としてその機能を時間的・空間的に最大限に発揮させる「道路を賢く使う取組」を進めていく上では、道路交通状況の日々の変動や時間変化のきめ細やかな把握が必要である。このため、5年に1度の全国道路・街路交通情報調査局（交通調査）が計画的に調査を行い、常時かつ精緻に交通状況を把握することが求められている。

国土技術政策総合研究所では、道路交通データを常時かつ精緻に把握可能な体制構築に向け、ETC2.0 プログラム情報、トラフィックアンテナなどの ICT を有効活用した道路交通データの継続的・効率的な収集・整理方法を検討するとともに、本省、地政局、高速道路特設会社等の道路管理者が協働で道路交通データを整理する体制・仕組みづくりに関する研究を行っている。

【研究内容】
(1) 道路交通データの収集・管理方法の検討
道路交通データを本省、地政局等と共有するシステムである道路交通調査プラットフォーム（以下「交通調査 PF」という。）を運用するとともに、交通調査 PF に収集・管理すべきデータのニーズ把握及び交通量データを自動的・即時の収集・整理する方法について検討を行った。
(2) 交通調査基本区間データの更新
交通調査基本区間は幹線道路における各種道路交通調査（交通量、旅行速度及び道路状況等）共通の基本となる区間であり、交通調査基本区間を設定することで、各種調査結果を相互に関連付けて集約・効率的な分析が可能となる 1）。交通調査基本区間は、平成 22 年度以降、毎年 4 月 1 日時点で更新を行っており、今年度は、平成 29 年 4 月 1 日時点で全国交通調査基本区間の設定対象路線（一般都道府県（指定市の主要市道を含む）以上の道路）において発生した道路の新規供用、移管、廃止等の情報を更新したデータベースを作成した。

【研究成果】
(1) 道路交通データの収集・管理方法の検討
交通調査 PF の運用
交通調査データも交通量データ等の道路交通調査にかかわる各種データを効率的に収集・管理・管理する情報プラットフォームである。交通調査 PF の運用を行った。交通調査 PF には、一般道路の交通調査データ（都市計測交通量）、高速道路の交通調査データ、情報プラットフォーム（国際ブロードバンド）、全国道路・街路交通情報調査結果（一般交通量調査結果）や交通調査基本区間データベースなどが登録・蓄積されており、各種のデータを、本省、地政局等の道路管理者がアップロードし、相互にダウンロードできる（図 1）。
今年度は、一般道路の交通調査データ（都市計測交通量）や高速道路の交通調査データが蓄積されると
もに、6月に公表された平成27年度全国道路・街路交通情勢調査一般交通量調査結果も登録された。

運用期間中、アクセス数は約3000アクセス/1ヶ月、ファイル出力数は約700ファイル/1ヶ月であった。
一般道の常時観測交通量、民間プローブデータ（旅行速度データ）が多く利用されていた。

図1 道路交通調査 PF

②蓄積・管理すべきデータのニーズ把握
地方整備局等にアンケートを行い、交通調査PFにより蓄積・管理すべきデータのニーズを把握した。その結果、渋滞対策、開通道路の整備効果把握や事業評価の際によく利用するデータとして、「全国道路・街路交通情勢調査 道路交通起終点調査」や「全国貨物純流動調査」について蓄積・管理の要望が多いことが把握できた。また、「一般道路の断面交通量情報（各都道府県警察が収集した断面交通量）」など他機関で計測された交通量データの要望もあった。要望の中には公表されている統計データもあり、これらデータへのリンクをおくことで、交通調査PFにポータルサイトとしての機能をもたせることができると考えられる。

図2 更新伝票作成支援ツールでの作業例

③交通量データの自動的・即時的収集・整理方法の検討
交通量データの自動的・即時的な収集・整理の実現に向けた課題把握のため、各地方整備局等へアプリケーション調査等を行った。地方整備局等の多くでは独自のシステム・サーバオンラインで交通量データの計測値（欠測値、異常値を含む）が取得されており、全国分の計測値を自動的・即時的に蓄積・管理する基盤がある程度整っていることが把握できた。
しかし、確定値作成のために行う欠測値、異常値の除去及び補完の作業では、観測地点の現場を熟知した者により機器の異常、交通状況の変化等の原因分析、除去及び補完の判断がなされている。確定値の自動的・即時的な収集・整理は、この確定作業の機械的な処理方法の確立が課題であることが明らかとなった。

（2）交通調査基本区間データの更新
交通調査基本区間データベースの更新は、新規供用等の見込みのある区間の登録を行うとともに、既に登録されている見込みの確定を行うことにより、新たに供用された道路を反映した交通調査基本区間データベースを作成するものである。更新にあたっては、その更新内容を道路交通管理者に登録してもらう必要がある。
そこで、道路交通管理者における更新作業を支援するため、更新伝票作成支援ツールを配布した（図2）。
今年度の交通調査基本区間データベースの更新の結果、交通調査基本区間の設定対象区間は約10万区間、約19.8万kmとなった。新たに、園山道（得古河IC～つくばIC）、北上環状7号線横浜北線（生麦JCT～港北JCT）などの区間の新規供用が反映され、これらの区間において、交通量や旅行速度等相互に関連付けた分析が容易になるようになった。

[成果の活用]
本研究の成果は、道路交通調査体系に関する国連研究所活用するとともに、更新された交通調査基本区間データベース等は、各種調査結果とともに交通調査PFで地方整備局等と共通を行うこと等により、データに基づく施策立案、施策効果の分析・評価、事業の効果分析などに活用される。

[参考文献]
1）国土交通省国土技術政策総合研究所：国土技術政策総合研究所資料第666号 交通調査基本区間標準・基本交差点標準、平成24年1月
道路整備のコスト効果を把握するための経済分析手法に関する調査

Study on economic analysis method to grasp the cost effects of road construction

（研究期間 平成 29〜30 年度）

社会資本マネジメント研究センター
建設経済研究室
Research Center for Infrastructure Management
Construction Economics Division
室長 小俣 元美
Head Motoyoshi OMATA
研究官 齊藤 貴賢
Researcher Takayoshi SAITO

The purpose of this study is to propose the economic analysis method for grasping the cost effects of road construction. In this fiscal year, estimation and verification of economic effects by the method of measuring “Wider Impacts” in the UK, the verification of the economic effect by the macro-econometric model, and review and proposal of the economic analysis method was conducted.

【研究目的及び経緯】
本研究は、道路整備のコスト効果を把握するための経済分析手法について、英国の「広範な経済効果」の計測方法による算定・検証、マクロ計量経済モデルによる経済効果の検証、及び経済分析手法の整理等を行ったものである。

【研究内容】
1. 英国「広範な経済効果」の計測方法の動向把握及びケーススタディ
英国の「広範な経済効果（Wider Impacts）」とは、不完全競争市場（独占競争や外部性）を前提とすると、インフラ整備による効果としての利用者利益に加えて、波及効果として生じ得る「集積の効果」「独占的競争市場の是正による生産変化」「労働市場の変化による税収の増加」を総称したものであり、利用者利益との二重計上にはならず追加計上が可能という考え方に計測手法が政府から示されているものである。
本研究では、英国の「広範な経済効果（Wider Impacts）」の計測方法について、指針改正等による最新内容を含めた把握を文献及びインターネット等により行うとともに、英国の計測方法を用いて、国内における具体的道路整備事業をケーススタディとして取り上げ、利用者利益以外の広範な効果を試算した。試算結果については整備後の指標の推移との比較により検証を行った。
2. マクロ計量経済モデルによる経済効果の検証等
全国マクロ計量経済モデル（標準的なモデル）及び金利・物価を内生化した改良モデルの2つのモデルについて、昭和 55 年度から平成 28 年度までの経済データを用いてパラメータを設定し、所要時間の短縮によるアクセスビリティの向上を仮定して道路投資による経済効果（フロー効果及びストック効果）を試算するとともに、課題の整理を行った。
3. 道路整備のコスト効果を把握するための経済分析手法の課題整理と提案
道路整備のコスト効果を把握するための複数の経済分析手法について、適用事例を含めた情報収集と課題整理や比較等によるレビュを行うとともに、集積の経済等の発動的な効果を考慮した計測方法の提案に向けた考察を行った。

【研究成果】
1. 英国「広範な経済効果」の計測方法の動向把握及びケーススタディ
（１）最新動向の把握
英国交通省は 2014 年１月に「交通分析に関する指針（Transport Analysis Guidance（TAG））」を発表したが、同年に有識者から経済的影響の評価に関する指摘（TIEP レポート 2014）がなされた。そこで、勧告を踏まえて英国交通省は 2016 年 9 月に経済的影響に係る指針の改正案を提示した（図－1）。

図－1 提示された定指針案における構成の変更
2017年12月には改正指針案に対する意見照会への回答と解説が公表され、改正指針の確定版公表は2018年5月に予定されている。

改正指針案では、分冊化を含む資料の再構成にともに内容の追加・修正が行われている。

資料の再構成によって「広範な経済効果」に関する指針（TAG）は、①「広範な経済効果概要（TMG A2.1）」、②交通投資の誘発効果（従属関係）と不完全市場における生産の変化を内容とする「誘発投資（TAG A2.2）」、③労働給賃の増加による税収増加を捉える「雇用効果（TAG A2.3）」、④集積経済からの生産性の影響を捉える「生産性（TAG A2.4）」、⑤感度分析としての土地利用変化を捉える枠組みを整理した「補足的な経済モデル（TAG M5.3）」という構成となった。

この改正指針案における主な変更点として挙げられる事項としては、「交通投資の誘発効果（従属関係）による効果（TAG A2.2）」に関する計測項目の追加、土地利用変化に応じた分析レベルの3段階区分、経済的記述（Economic Narrative）の導入などである。特に経済的記述は適用条件に関わるものであり、広範な経済効果の計測はあらゆるものが対象ではなく、プロジェクトの特性（Context Specific）や経済的記述に沿って影響が見込まれるプロジェクトのみ計測するという条件を示している。

（2）ケーススタディによる算定

英国の「広範な経済効果」の計測方法を用いて、国内における具体的の道路整備事業をケーススタディとして、利用者受益以外の広範な経済効果について英会のデータを活用して試算した。また、算定結果については実証的分析として整備後の指標の推移との比較等により検証を行った。

算定においては、メッシュ単位の分析と市場単位の分析を実施したが、いずれの場合も広範な経済効果は利用者受益の二割強程度の割合として試算された。なお、市場単位の分析と比較して、メッシュ単位の分析は集積経済が市町村内の詳細な影響を考慮するためやや大きい結果であった。また、英国の指針改正で追加された「誘発効果（従属関係）」の影響の効果の値は、他の項目（集積経済等）と比較すれば小さい試算結果となった。

2. マクロ計量経済モデルによる経済効果の検証等

（1）フロー効果・ストック効果の試算結果

フロー効果・ストック効果ともに、改良モデルでは標準的なモデルと比較すると効果が大きいという試算結果となった。また、ストック効果の経年変化を見ると、標準的なモデルではストック効果が増加する一方、改良モデルでは逆変する。これは生産性向上による貯金の上昇等に伴い、物価等が上昇し、実質GDPが低下することの要因が影響するためと考えられる。

（2）課題の整理

マクロ計量経済モデルの技術的な課題として、モデルが大規模であることによる現実性の確認の難しさなどが課題として挙げられる。また、モデルにおける説明変数の一部に定常性が確認できないなど、統計上の課題も存在している。

このため、GDP デフレータや金融政策など、道路投資の効果に影響されない変数を除いた簡便で透明性のあるモデルを検討していくことが課題への対応となるとともに、活用の促進に繋がることと考えられる。また、投資効果の予測に加え、過去の道路投資が GDP 成長率にどれだけ寄与したかという事後の効果の算定等も活用方策として挙げられる。

3. 道路整備のストック効果を把握するための経済分析手法の課題整理と提案

道路整備のストック効果を把握するための複数の経済分析手法をレビューするため、「英国の広範な経済効果（Wider Impacts）」、「空間的応用一般均衡分析（SGCE 分析）」、「マクロ計量経済モデル」、「土地利用交通統合モデル」の4手法の課題整理を行った。

各手法とも帰着ベース（波及効果を計測）の経済効果の把握が可能な分析手法であり間接的な経済効果を把握できるものの、広範な経済効果の手法以外はモデルが複雑で時間と労力を要するという課題がある。一方、広範な経済効果の手法は設定された算定法を用いるため、分析は簡便で比較的容易とされている。

これらの整理を踏まえ、我が国における実務での適用を念頭に、間接的な経済効果を考慮した経済分析モデルの提案に向けた考察を行った。経済分析モデルは複数の手法が挙げられるものの、理論的整合性を有し、簡便さで優れている英国の指針による「広範な経済効果の計測方法を参考とした検討が有意義であると考えられた。

【成果の活用】

本研究で得られた成果及び知見を踏まえ、集積の経済等の間接的な効果を考慮した経済分析モデルについて、実務での適用を念頭において検討を進めるとともに、英国指針等の海外における経済効果の計測方法の動向の情報収集・提供を行ってまいりたい。
領域２：経済・生活に活力を生む道路ネットワークを形成し、
有効活用を図る
道路事業の多様な効果に関する調査
Survey on various effects of road project
（研究期間　平成 28～29 年度）

【研究目的及び経緯】
道路事業には、費用便益分析で計測する「走行時間短縮便益」、「走行経費減少便益」、「交通事故減少便益」（以下、「3 便益」という。）以外にも多様な効果が存在している。道路事業の説明責任を果たす上では、貨幣価値換算が困難等により計上されていない3 便益以外の多様な効果についても、精確に把握することが求められている。国土技術政策総合研究所では、道路事業の多様な効果について、効果計測の考え方、定量化手法の調査・研究を実施している。

【研究内容】
本研究では、国内における道路事業評価に関する事例収集、および道路事業評価の手法、指標について整理を行った。
まず、我が国の都道府県・政令市の中から、道路事業評価に関する独自の手法や指標を採用している15 自治体を選定し、道路事業評価制度・手法・指標の事例を整理した。次に、調査した自治体が実施する道路事業の費用便益分析において採用している例が見られる3 便益以外の追加便益の事例について整理を行った。

【研究成果】
(1) 自治体の道路事業評価手法・指標の事例の整理
1) 調査対象とした自治体
全国 47 都道府県・20 政令市が採用している道路事業評価制度・手法・指標を調査し、以下の3 つのいずれかの特徴を有する自治体を選定し、詳詳を調査した。
①費用便益比を含む多数の評価項目についてスコアリングやランク分けを行い、事業の妥当性・優先性を総合的に評価する「総合評価」を導入している。
②費用便益分析において3 便益以外の「追加便益」を導入している。
③費用便益分析において地域間公平性を考慮した便益を算出するため「地域修正係数」を導入している。
以下は(1)〜(3)の特徴を持つ自治体の一覧である。

表 1 本研究で調査対象とした自治体の一覧
2) 自治体の事例の概要
①評価制度・手法
調査対象としたほぼすべての自治体が、費用算出比を含めた多事項の評価を実施している。多事項の評価結果を総合して評価するため、多くの自治体が、評価項目ごとに定められた点数や評価基準に基づいて、事業をランク分けるなど、当該事業の妥当性や他の事業と比較した場合の優先度を客観的に評価している。

②評価指標
一部の自治体（特に山間部や過疎地域など、3 便益のみでは便益が小さく算出される地域を抱える自治体）において、当該自治体が実施する道路事業の費用便益分析においては、3 便益以外の追加便益を採用している例が見られる。表 2 に、これらの自治体が採用している主な追加便益を示す。具体的な便益を挙げると、「救急施設へのアクセス向上」、「交通便益向上」、「自動車の排出ガス削減」、「公共施設生活利便施設へのアクセス向上」、「観光客増加による消費増加」、「災害時の被害額・復旧額の節減」等である。

<table>
<thead>
<tr>
<th>便益項目</th>
<th>採用自治体</th>
<th>効果の分類</th>
</tr>
</thead>
<tbody>
<tr>
<td>時間便益向上</td>
<td>秋田県</td>
<td>直接便益</td>
</tr>
<tr>
<td>走行快適性向上</td>
<td>秋田県</td>
<td>間接便益</td>
</tr>
<tr>
<td>歩行者・自転車の時間短縮</td>
<td>秋田県、山梨県</td>
<td>間接便益</td>
</tr>
<tr>
<td>公共施設生活利便施設へのアクセス向上</td>
<td>青森県</td>
<td>間接便益</td>
</tr>
<tr>
<td>救急医療アクセス向上</td>
<td>青森県、秋田県、山梨県、島根県</td>
<td>間接便益</td>
</tr>
<tr>
<td>観光消費への増加</td>
<td>秋田県、山梨県</td>
<td>間接便益</td>
</tr>
<tr>
<td>災害時の被害額・復旧額の節減</td>
<td>秋田県、山梨県</td>
<td>間接便益</td>
</tr>
</tbody>
</table>

(2) 自治体が採用している追加便益の事例
追加便益のうち、「走行快適性向上便益」、「救急医療アクセス向上便益」、「観光便益」の 3 つを紹介する。
①走行快適性向上便益
道路整備により、走行快適性の向上にかかる効果（カーブが少なくて走りやすい、ストレスがかかるない等）が見込まれる。秋田県においては、これらの効果を便益として算出するため、道路利用者の払い意設を用いて算出している。

(交通量) × (走行快適性に対する道路利用者の払い意思額)
※交通量：道路交通センサスの値により設定
走行快適性に対する払い意思額：
県独自のアンケート調査の結果に基づく CVM により設定

②救急医療アクセス向上便益
道路が整備されることにより、緊急病院等へのアクセスが向上し、救急医療の効果が現れるケースがある。青森県等においては、これらの効果を便益として算定するため、道路整備により新たに救急施設までのアクセスが 30 分以内にできる便益を算出していっている。

(救急施設へのアクセスが 30 分以内になる便益数) × (便益原単位)
※救急施設へのアクセスが 30 分以内になる便益数 (青森県)：
当該道路区間の交通量を 12 月乗車して運賃便益数とみなして設定
便益原単位：
『道路投資の愛に関する計画(案)第 2 編 総合評価』(道路投資の愛に関する計画検討委員会)に基づき設定

③観光便益
道路が整備されることにより、観光施設へのアクセスが向上し、観光客が増加するなど、観光振興の効果が現れるケースがある。秋田県等においては、これらの効果を便益として算定するため、道路整備により増加する観光客による消費額の増加を算出している。

(道路整備による観光客増加数) × (1 人当り観光消費額)
※道路整備による観光客増加：
観光客来訪率をアクセス性指標等で説明するモデルを構築し、道路整備による所要時間変化から観光客増加数を推計する方法等により設定
1 人当り観光消費額 (秋田県)：
「秋田県観光統計」からわかる観光客 1 人当りの 1 日当たり観光消費額の実績値に基づき設定

[成果の活用]
国内における道路事業評価に関する事例収集、および道路事業評価の手法、指標について調査し、追加便益の事例として走行快適性向上便益、観光便益等を計上している事例があることを把握するとともに、直接効果（第三者が経ずに直接道路利用者が受ける効果）と間接効果（直接効果を経由して時間を通じて発生する効果）に分類して整理した。
本研究の成果は、わが国の事業評価制度への導入検討の基礎資料として活用される。
道路のサービス向上等のための効率的な道路機能向上策の検討
Review of efficient measures for improving road functions for better level of service
（研究期間 平成 28〜29 年度）

道路交通研究部 道路研究室
Road Traffic Department
Road Division

室長 濱戸下伸介
Head Shinsuke SETOSHITA
主任研究官 田中良寛
Senior Researcher Yoshihiro TANAKA
研究官 河野友佑
Researcher Yusuke KONO
交流研究員 大西 宏樹
Guest Research Engineer Hiromi ONISHI
交流研究員 森田 大也
Guest Research Engineer Tomoya MORITA

The authors analyzed the effect of improvement of smoothness by additional overtaking lanes using ETC2.0 probe data etc. In addition, the authors organized the knowledge about effect of additional overtaking lanes by collecting the case study in foreign countries such as Germany, Sweden, the United States.

【研究目的及び経緯】
道路のサービス向上等のため、道路の車線等の柔軟な運用による既存の有効活用手法や、車両の大型化等に対応する道路構造の新しい道路構造の導入等について、施策としての位置づけ計画・設計手法の確立が必要となっている。
このようなニーズを踏まえ、本研究では、道路のサービス向上に資すると考えられる道路機能向上策について、海外事例の収集や、平成 27 年度全国道路・街路交通情勢調査一般交通量調査結果および ETC2.0 プローブ情報を用いた旅行速度の分析により、道路構造基準等への反映に向けた技術的根拠の整理を行った。

【研究内容】
本年度は、路肩の有効活用事例をもとに幅員構成の設計根拠や追加安全対策の内容等を把握するとともに、2+1 車線の事例収集を行い日本への導入に向け基礎資料となる知見をとりまとめた。また、トラックの大型化に対応するための現状の効率的な改良策の把握、IC アクセス道路のサービス（旅行速度）に影響する要因の把握も実施した。
本稿では、その中から、道路の中央側において付加迫越車線を上下線交互に設置する 2+1 車線に関する検討内容について紹介する。

【研究成果】

1. 国内における 2+1 車線道路の効果の整理
高速道路・自動車専用道路の付加迫越車線設置区間を 4 篇所、一般道のゆとり車線設置区間を 2 篇所、効果の整理対象箇所として抽出した（表-1）。

表-1 抽出した対象区間

<table>
<thead>
<tr>
<th>事例 No.</th>
<th>自専道/一般道の別</th>
<th>区間延長 (km)</th>
<th>ビーク時間の年平均交通量 (台/車線)</th>
<th>ETC2.0 データ件数 (件/日)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>自専道</td>
<td>1.3</td>
<td>414</td>
<td>1,224</td>
</tr>
<tr>
<td>2</td>
<td>自専道</td>
<td>1.3</td>
<td>533</td>
<td>1,553</td>
</tr>
<tr>
<td>3</td>
<td>自専道</td>
<td>1.1</td>
<td>746</td>
<td>1,192</td>
</tr>
<tr>
<td>4</td>
<td>自専道</td>
<td>1.1</td>
<td>840</td>
<td>1,587</td>
</tr>
<tr>
<td>5</td>
<td>一般道</td>
<td>0.9</td>
<td>519</td>
<td>76</td>
</tr>
<tr>
<td>6</td>
<td>一般道</td>
<td>0.9</td>
<td>800</td>
<td>63</td>
</tr>
</tbody>
</table>

抽出した 6 篇所について、ETC2.0 プローブ情報の走行履歴情報（平成 28 年 4 月〜平成 29 年 3 月）を用いて円滑性の観点から効果の整理を行った。
付加車線設置区間およびその前後区間をそれぞれおよそ 3 等分した①〜⑤の分割区間内に速度の整理を行った（図-1）。

図-1 車線延長が 1.3km の場合の分割区間のイメージ
付加車線区間に入ると速度が上昇し、⑥区間（付加車線の中央の分割区間）で最も速度が高くなり、その後、速度は低下する傾向が把握できた。
後区間において、交通量が多いほど、速度が低下する傾向がみられ、特に交通量が1,000台/h以上の場合には、速度の低下が顕著であった（図-2）。

図-2 交通量区分別・分割区間別平均速度（事例 4）

分割区間別に車両速度の割合を見ると、付加車線区間に入ると、高い速度で走行する車両が増加する状況が把握できた（図-3）。

図-3 分割区間別の車両速度割合
（事例 4: 6〜7 百台/時/車線）

前区間、付加車線区間、後区間の合計の所要時間（ケース1）、前区間所要時間×3（付加車線が無かった場合の所要時間とみなす；ケース2）それぞれの時間信頼性を変動係数（標準偏差を平均値で割った値であり、値が小さいほどばらつきが小さい）を用いて平均速度別に整理したところ、多くの場合に付加車線区間の存在により時間信頼性が向上することが把握できた。特に、付加車線区間の平均速度が60km/h以下の場合に、効果が顕著であった（図-4）。

図-4 速度別変動係数（事例 4: 6〜7 百台/時/車線）

2. 海外における2＋1車線道路の効果の整理
ドイツ、スウェーデン、アメリカにおいて整備されている2＋1車線道路の整備効果について記載のある文献を収集した（表-2）。

<table>
<thead>
<tr>
<th>国</th>
<th>文献のタイトル</th>
<th>発行年</th>
</tr>
</thead>
<tbody>
<tr>
<td>ドイツ</td>
<td>Verkehrssicherheit und Verkehrsaufbahn auf b2+1-Strecken mit allgemeinem Verkehr</td>
<td>2003年</td>
</tr>
<tr>
<td></td>
<td>Application of European 2+1 Roadway Designs</td>
<td>2003年</td>
</tr>
<tr>
<td>スウェーデン</td>
<td>Evaluation of 2+1-roads with cable barrier</td>
<td>2009年</td>
</tr>
<tr>
<td></td>
<td>Application of European 2+1 Roadway Designs, NCHRP RESEARCH RESULTS DGEST; April 2003-Number 275</td>
<td>2005年</td>
</tr>
<tr>
<td>アメリカ</td>
<td>Alternating Passing Lane Lengths, Transportation Research Record: Journal of the Transportation Research Board, No.1961, 2006, pp.16-23</td>
<td>2006年</td>
</tr>
<tr>
<td></td>
<td>Passing Behavior of Drivers on Super 2 Highways in Texas</td>
<td>2014年</td>
</tr>
</tbody>
</table>

収集した文献から、2＋1車線道路の交通円滑性、交通安全性に関する整備効果について、表-3に示す。

<table>
<thead>
<tr>
<th>国</th>
<th>交通円滑性</th>
<th>交通安全性</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>ドイツ</td>
<td>交通流の速度、変動とともにスムーズな交通流を確保できる</td>
<td>事故率（秒/キロ）は、2車線道路および分離帯のない4車線道路と比べて低く</td>
<td>既存道路を2＋1車線道路に改良する事業の費用効益比は1〜10程度</td>
</tr>
<tr>
<td>スウェーデン</td>
<td>交通円滑性</td>
<td>交通安全性</td>
<td>死亡率が大幅に減少</td>
</tr>
<tr>
<td>アメリカ</td>
<td>交通円滑性</td>
<td>交通安全性</td>
<td>低速車両に追従する車両台数が減少</td>
</tr>
</tbody>
</table>

ドイツ、スウェーデン、アメリカいずれの国においても、2＋1車線道路を整備することで交通円滑性、交通安全性の改善が図られることが把握できた。

【成果の活用】
本成果は、道路法（重要物流道路）や道路構造法（設計車両、建築限界）の改正、既存ストックの柔軟な運用のための基礎資料として活用される。
領域3：新たな情報サービスを創造し、
利用者の満足度を向上させる
自動運転サービスの社会実装に関する調査

Study on social installation of automated driving service

(研究期間 平成29〜31年度)

道路交通研究部
Head 吉田 秀範
高度道路交通システム研究室
Senior Researcher 青木 信也
Intelligent Transport Systems Division
Researcher Kazuya TAMADA
交流研究員 澤井 聡志
Guest Research Engineer Satoshi SAWAI

The purpose of this study is to summarize the technological tasks for social installation of automated driving service and to clarify the solution.

[研究目的及び経緯]
国土交通省では、平成28年12月より国土交通大臣を本部長とする「国土交通省自動運転戦略本部」を設置し、国土交通省の役割と機能の発揮が求められている。とりわけ、自動運転については、交通・地域社会の充実に向けた技術開発が急務とされている。本研究は、国土交通省の関係者を含む、自動運転技術の社会実装に関する調査研究を目的とする。

平成29年度は全国13箇所を対象として、地方整備局等が有識者や地元自治体等を含めた地域実装協議会（以下、協議会）を立ち上げ、実験計画の策定から実証実験の運営までを行った。国総研は、協議会の委員として参画し、実証実験に出向いた技術的支援や、社会実装に向けての検証実験（図-2）のうち、「道路・交通」「地域環境」「社会実装性」についての評価・分析を担当している。

[研究内容と成果]
(1) 実証実験での技術的検証の内容
国総研では、様々な道路交通・地域環境下の実証実験において、自動運転が困難となる状況のデータ取得を行った上で、社会実装に向けた技術的課題を明確化した。また、地域開発や地域住民等へのアンケート調査を行い、自動運転導入の是非、自動運転技術への信頼や期待等の社会実装性に関する調査・分析を行った。

図-2 技術検証項目（図①②③は国総研実施項目）
（2）道路交通と自動運転の関係
自動運転車両は、地図情報やGNSS、LiDAR等から収集した情報に基づいて自己位置を推定しながら走行する。現在は開発段階にあり，予めプログラムされたルートを設定した速度で走行する機能を持つものが一般的である。走行ルート上の障害物等があると，それらを検知して停車するが，現状はそれらを避けて走行する判断が車両側では困難であり，人による手動介入が必要となる。このように，歩行者や一般車両等との混在空間を走行する際には，自動運転が困難な事象が存在するため，本実証実験では，道路交通との関連性に着目し，技術的課題を整理した。以下に手動介入が必要となった典型的な事象と手動介入をなくすために必要と考えられる対応策を示す。

実証実験では，路上の駐停車両を避けるため，手動介入する事象が発生した。図-4は自動運転車両の手動介入時に車載ドライブレコーダーから撮影した画像である。特に人家が連なる区間では路上駐車が多い，手動介入が多発する結果となった。自動運転ルート上においては，地域の協力や駐車場を確保することにより駐停車両を削減することが重要である。

（3）道路管理と自動運転の関係
自動運転車両は，光学カメラやLiDAR，ミリ波レーダーを用いて，自らの走行ルート上の障害物を検知する。図-6では，道路上に張り出した植栽を障害物として検知して停止する事象が発生した事例である。同様の事例は他の箇所でも発生している。道路上には，雑草の他，ゴミなど多数の障害物が想定され，自動運転に向けては早期の通知など地域との連携を通じて，高い水準の道路管理を行う必要がある。

（4）社会受容性に関する分析
図-7は，道の駅「芦北でこぼん」における乗車モニターへの「自動運転技術への信頼」に関するアンケート結果である。自動運転車両への乗車前と乗車後を比較すると，信頼度が向上していることがわかる。この結果は他の地域でも同様であり，乗車経験が信頼度の向上に寄与する傾向にあることがわかった。


【成果と今後の展開】
平成 29 年度は全国 13 箇所で実証実験を行い，様々な道路構造や交通環境下で発生する不具合事象，冬期の積雪時における車載センサの影響や必要な道路交通管理レベル等，自動運転サービスの実現に向け多くの課題が浮き彫りとなった。平成 30 年度は更に長期間の実験を行うことで，必要となる路車連携技術等の開発に繋げるとともに，道路管理者としての役割を明確化するなど，中山間地域におけるモビリティを確保するため，自動運転の社会実装に向けた検討を進めていく予定である。
プローブ情報等を用いた道路行政支援に関する研究
Research for supporting road administration by probe data
（研究期間　平成28〜30年度）

道路交通研究部
高級道路交通システム研究室
Road Traffic Department
Intelligent Transport Systems Division

室長　吉田　秀範
Head　　Hidenori YOSHIDA
主任研究官　小木曽　俊夫
Senior Researcher　Toshio OGISO
研究官　今村　知人
Researcher　Tomohito IMAMURA
研究官　後藤　祥
Researcher　Azusa GOTO
交流研究員　鈴　真
Guest Research Engineer　Shin SAKAKI

The purpose of this research is to understand characteristics of ETC2.0 probe data and consider how to utilize it for more efficient road traffic management. In this fiscal year, the authors evaluated the accuracy of section travel times calculated by the system especially for interrupted traffic flow. Also, the authors demonstrated how to anonymize the data when providing it for third parties.

[研究目的と経緯]
国土交通省では、国土幹線道路会（平成27年7月）において、『道路を賢く使う取組』を支える観点から、ETC2.0車載器から収集されるプローブ情報（以下、「ETC2.0プローブ情報」という。）等のビッグデータを分析することによる「賢い投資」の実施を推進している。このため国土交通技術政策総合研究所では、ETC2.0プローブ情報活用を用いて道路を賢く使う施策を推進するための分析手法の検討や、データの特性及び収集状況の分析を通じた情報処理方法の改善方針の検討を実施している。

平成29年度は、データの収集状況の地域的な差異等の確認や、一般道の旅行時間算出精度の検証、従来のナビ連携型車載器とは異なるGPS付発話型車載器から取得されるデータの精度検証を行った。また、ETC2.0プローブ情報の第三者提供の可能性に関する技術的要件の検討を行った。
平成29年度のプローブ取得割合は、大都市圏の高速道路では3%以上の路線もろえある一方、多くの一般道では1%未満となっている（図-1）。基本的には、データ取得割合は車載器が普及しているほど高いが、道路種別や都道府県により傾向が異なり（図-2）、道路の利用特性や路側機設置状況が影響していると考えられる。

[研究内容と成果]
(1) データの収集状況の地域的な差異等の確認
ETC2.0プローブ情報のデータ収集状況について、全国的及び地域的な傾向を把握するため、車載器普及台数、H27センサス交通量に対するETC2.0プローブ走行履歴取得台数の割合（以下、「プローブ取得割合」という。）、平均1台/日以上プローブ情報が取得できている道路区間の延長割合等について月毎に整理を行った。

図-1　平成29年9月時点におけるプローブ取得割合

図-2　都道府県毎の車載器普及率とプローブ取得割合
(2) 一般道の旅行時間算出精度の検証

ブーリーティーメーカーでは、各車両が走行距離取得点間（約200m）を一定速度で走行したと仮定して、車両の走行時間の中間地点が算出され、さらにこの車両の走行時間中間地点の旅行時間を計測することによって、車両走行時間（15分かそれ以上1時間）あたりの平均旅行時間が算出される。しかしながら、一般道路においては、信号交差点等の影響により各車両が一定速度で走行するとは限らないため、車両の走行距離の中間地点の旅行時間を計測することによって、車両速度が十分である場合には、単位時間当たりの平均旅行時間が真値（全車両の平均旅行時間）からずれる可能性がある。

本研究では、これらの誤差を把握するため、走行速度の平均的な旅行時間や旅行速度の真値と、ブーリーティーメーカーにより算出される旅行時間や旅行速度を比較した。

その結果、車両走行速度の旅行時間の真値が大きくなりやすいのは、DDR 区間長が 200m 以下と短い場合、信号停止が発生しやすい交通状況（ピーク時間帯）及び道路状況（下段に変更する）であり、1 車線の場合は判断をかかった。ただし、DDR 区間間隔（ノード）の前後 20m 程度で走行距離が取得された場合には、誤差が小さいことが確認された。また、単位時間当たりの平均旅行時間については、車両走行速度の中間地点がゼロにできなかった等仮定した場合、サンプル数が 10 以上あれば、サンプルによる平均旅行時間真値との誤差率は ±10% 程度に抑えられることがわかった。これらの結果を踏まえたデータ抽出要件を考慮して、一般道改良計画の事前、後の旅行速度を比較した分析事例を作成した。

(3) GPS 付発話型車載器のデータ精度検証

近年、大型車を中心に GPS 付発話型の ETC2.0 車載器の普及が進んでいる。GPS 付発話型車載器は従来のナビ連携型車載器と異なり、車載器上でのナビ地図に基づいた GPS 測位情報の補正が行われない。

本研究では、このことによるデータ精度への影響の把握を目的として、GPS 付発話型車載器及びナビ連携型車載器から得られたデータに対してブーリーティーメーカーのアルゴリズムにより処理を行い、マップマッチングの正確さや旅行時間誤差を比較することで精度検証を行った。

その結果、GPS 付発話型車載器データはナビ連携型車載器データと比べて、走行距離取得点の道路中心線からのパラツキが大きいことなどの特徴が明らかになった（図-3）。これらの結果を踏まえて、GPS 付発話型車載器データの精度が低下しやすい走行環境等についてとりまとめるとともに、ブーリーティーメーカーの処理において精度低下を抑制する方法（マップマッチング機能の改良等）について検討を行った。

(4) 第三者提供の可能性に関する技術的要件の検討

現在、ETC2.0 ブロードバンドの利用は道路管理者に限定されているが、第三者からの利活用のニーズがある。第三者提供にあたっては制御技術的・技術的課題がおり、国策研では技術的な検討を行った。

具体的には、プライバシー保護に十分配慮したデータの加工処理等が必要と考えられ（表-1）、法令やデータ知識処理の専門家にヒアリングを行うとともに、実際の ETC2.0 ブロードバンドに対して様々な加工条件で処理を行う場合の、加工後のデータ取得状況を比較した。

<table>
<thead>
<tr>
<th>加工方法</th>
<th>处理イメージ</th>
</tr>
</thead>
<tbody>
<tr>
<td>時刻データ</td>
<td>丸め</td>
</tr>
<tr>
<td>日の変更</td>
<td>時点の指定</td>
</tr>
<tr>
<td>位置情報</td>
<td>起点点の指定</td>
</tr>
<tr>
<td>低サンプルの情報</td>
<td>サンプル数の指定</td>
</tr>
</tbody>
</table>

【成果の活用】

本研究で整理したデータ取得状況や精度検証結果等を、ETC2.0 ブロードバンドを用いた分析における留意事項として道路管理者へ提示する予定である。
地域における ITS 技術の活用支援に関する研究

Study on utilization support of ITS technology in the region

（研究期間 平成 28～30 年度）

道路交通研究部
高度道路交通システム研究室
Road Traffic Department
Intelligent Transport Systems Division

室長
Head
吉田 秀範
Hidenori YOSHIDA

主任研究官
Senior Researcher
小木曽 俊夫
Toshio OGISO

研究官
Researcher
今村 知人
Tomohito IMAMURA

NILIM organizes the short-term and long-term issues and needs of the region systematically, compiles examples of application of domestic and international ITS technologies. And we have prepared a specification draft and examined how to utilize portable ETC2.0 road-side units.

【研究目的及び経緯】

IT 総合戦略本部地方創生 IT 利活用促進プラン (H27.6) において、地方公共団体における IT 利活用支援等により、2020 年までに「実感できる地方創生」を実現することが求められている。そこで国土技術政策総合研究所では、地方が抱える課題やニーズに対応し、地方創生の取組みを支援できる ITS 技術について検討を進めている。過年度には、地域の短期・長期の課題やニーズを体系的に整理するとともに、ETC2.0 プローブデータの収集が十分でない箇所（中規模地域や生活道路等）や災害時等の突発的な事象に対応する場面においても、運用・設置・利用することが可能な可搬型路側機について仕様書（案）を作成した。

平成 29 年度は、地域の課題・ニーズに対応する ITS 技術の展開・実現を図る上での課題を整理し、その技術が課題解決に有効であるかを検証するためのケーススタディの計画を立案するとともに、地域の抱える課題を解決するツールの 1 つとして機能を限定し低コスト化を図った簡易型の ETC2.0 路側機（以下「簡易型路側機」という。）の仕様書（案）の作成を行った。

【研究内容と成果】

1. ITS 技術の地域への展開の実現に向けた課題の整理

地域の課題・ニーズに対応する ITS 技術の実現・展開を図る上での課題について、「制度」「組織」「仕組み」の観点から整理した。その際、課題解決に向け ITS 技術の検証を行うことを想定し、異なる課題・ニーズを抱える 5 地域を選定、実用化・展開における課題・制約について明らかにした（表 1）。

2. ITS 技術の実用性および機能検証

  1. で整理した課題のうち、次の 3 課題について、ITS 技術が課題解決に有効であるか検証するためのケーススタディの計画を立案した。

（1）旅行者を含む在来者への防災・減災力の向上
（2）観光集まりぐちと連携した駐車場マネジメントシステムの実現
（3）冬期中山間地における交通移動の確保

<table>
<thead>
<tr>
<th>表 1 ITS 技術の各地域における実用化・展開における課題・制約</th>
<th>目的</th>
<th>地域</th>
<th>地域ニーズ (研究期間)</th>
<th>ITS技術</th>
<th>各地域における実用化・展開における課題・制約</th>
<th>仕様書</th>
<th>完成</th>
<th>機器</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道</td>
<td>物流 ROAD</td>
<td>道路の交通分析</td>
<td>路面状態の把握</td>
<td></td>
<td>物流ルートの把握</td>
<td>物流ナビ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>北陸</td>
<td>高速道路交通運送</td>
<td>高速道路交通運送</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>西北</td>
<td>高速道路の通行料金の収支管理</td>
<td>高速道路の通行料金の収支管理</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中部</td>
<td>高速道路の通行料金の収支管理</td>
<td>高速道路の通行料金の収支管理</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>九州</td>
<td>高速道路の通行料金の収支管理</td>
<td>高速道路の通行料金の収支管理</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>東京</td>
<td>高速道路の通行料金の収支管理</td>
<td>高速道路の通行料金の収支管理</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. 簡易型路側機の仕様書（案）の作成
3.1 地域におけるETC2.0技術の利用場面の整理
ETC2.0技術を活用し、地方公共団体等が自ら地域を抱える課題を把握し解決できるよう、調査、分析、情報提供等を行うことが想定される利用場面について整理した（図1）。

図1 ETC2.0技術の主な利用場面（全体イメージ）

3.2 地域におけるETC2.0技術の各利用場面での機能要件の整理
3.1で整理したETC2.0技術の利用場面において、路側機が必要とする具体的の機能要件について整理した（表2）。

<table>
<thead>
<tr>
<th>路側機の利用場面</th>
<th>利用場面における機能に関する選択肢のイメージ</th>
</tr>
</thead>
<tbody>
<tr>
<td>情報収集の有無</td>
<td>那覇／SL-ID／基本情報／通行規制情報／軌道情報（基準パターン）/これら全て</td>
</tr>
<tr>
<td>情報提供の有無</td>
<td>那覇・道路情報等が全車道を通じた情報／衝突情報／車両速度情報</td>
</tr>
<tr>
<td>限界</td>
<td>不特定（全車）/特定車種（車種）等特定の属性に属する車両</td>
</tr>
<tr>
<td>サービスの実施タイミング</td>
<td>リアルタイム／準リアルタイム／事後</td>
</tr>
<tr>
<td>航定</td>
<td>瞳中／一時停止時</td>
</tr>
<tr>
<td>路側機の設置場所</td>
<td>道路上／道路周辺（駐車場等）</td>
</tr>
</tbody>
</table>

3.3 簡易型路側機の運用方法に関する検討
3.2で整理した機能要件を踏まえ、簡易型路側機のシステム構成、機器設置場所等について検討を行い、機器所有者、機器使用者、集荷したデータの取り扱い等の具体的な運用上の留意すべき事項について整理した。

3.4 簡易型路側機の性能要件の整理および仕様書（案）の作成
簡易型路側機の性能要件として、処理時間、車載器の同時接続数、収集するブロードバンド情報の内容等を整理し、システム構成、運用上の留意事項を踏まえて、以下の仕様書（案）を作成した。

シンプル型路側機制御部仕様書（案）
シンプル型路側機無線部仕様書（案）
シンプル型路側機制御部単固線部隔示様書（案）

3.5 簡易型路側機の活用に向けたサービス評価計画及びモデルケースの検討
今後活用が期待される簡易型路側機において、道路管理者等へのサービス評価検証（機能性能の妥当性検証を含む）を行い概略計画についての検討を行った。
また、地域での簡易型路側機の運用を想定したITSプラットフォームのモデルケースの検討を行った。
モデルケースの検討をあたえ、道路における地域の交換情報、気象情報、観光情報等の地域特有の情報の生成・提供するためのシステム構成（図2）と運用上の課題について整理した。

[今後の予定]
今後は、地域に資するITS技術について、課題解決に有効であるかを検証するためのケーススタディを実施し、その成果を「地域事例集」として取りまとめる予定である。
車両搭載センシング技術による道路管理の高度化に関する研究
Study for Improvement of Road Management by Onboard Sensing Technology
（研究期間　平成28-30年度）

道路交通研究部
高度道路交通システム研究室
Road Traffic Department
Intelligent Transport Systems Division

室長　Head　吉田 秀範
主任研究官　Senior Researcher　大嶋 一範
研究員　Research Engineer　大竹 岳
交流研究員　Guest Research Engineer　根岸 辰行

NILIM is studying methods for efficiently creating digital road management diagrams by installing sensing equipment in road management vehicles. In this year, the authors drafted fundamental requirements proposals for procurement and utilization of vehicle-mounted sensing technology. Furthermore, the authors designed the basic design of the system that shared result of the examination of oversized or overweight vehicles passage permission.

【研究目的及び経緯】
国土交通省では、道路管理の高度化および省力化を目的として、近年技術進歩が著しいカメラ画像解析技術やレーザー計測技術等のセンシング技術の活用において検討を進めている。国土技術政策総合研究所では、地方整備局が保有する巡視車両等に容易に搭載可能なセンシング技術を活用する場合の要求性能等について調査検討を進めている。
平成29年度は、特車直検査の高度化に向けた検討として、特車の軌道解析に用いる地図等の作成に活用するための各種条件を整理した。そして、地方整備局等が車両搭載センシング技術を調査・活用するために必要となる計測機器等の機能要求案等の作成を行った。また、特殊車両通行許可の個人審査結果を共有して自動審査した場合の効果を試算するとともに、全国の国道事務所で審査結果を共有し、自動審査に活用するシステムの基本設計を作成した。

【研究内容及び成果】
1. 道路管理業務に活用可能な車両搭載センシング技術の機能要求案等の作成
　車両搭載センシング技術について、利用場面に対し必要となる各種条件を整理した（表1）。整理結果を踏まえて、地方整備局等が実際に3次元計測データを取得し、図面を作成するために必要となる「車両搭載センシング装置 計測機器等機能要求案（案）」及び「車両搭載センシング装置 図面作成要領（案）」を作成した。
2. 特車審査の効率化に向けた検討

(1) 特殊車両通行許可の審査効率化のための課題整理

寸法や重量等が一定の基準値を超える特殊車両が通行するためには、道路管理者から通行許可を得ることが必要となっています。近年、審査時間の増加に伴い、申請受付から許可発行までに掛かる日数も増加しています。そこで審査日数の短縮に向けた検討を行うため、審査の流れや課題について、事務所ヒアリングを元に整理を行った（表 3）。その結果、審査の作業項目のうち、特に個別審査に関する作業に時間（特に管轄外道路管理者との協議）を要している事が明らかになった。

<table>
<thead>
<tr>
<th>表 3 審査受付から許可発行までの所要日数</th>
</tr>
</thead>
<tbody>
<tr>
<td>作業項目</td>
</tr>
<tr>
<td>申請受付から審査開始まで</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>個別審査</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>許可証の作成</td>
</tr>
</tbody>
</table>

(2) 個別審査結果の運用状況の整理

個別審査の効率化に向けた取組みとして、特車審査の流れを整理（図 2）し、過去に行った審査結果の活用状況について調査を行った。過去の個別審査の内容は、各事務所が独自にエクセルで管理しており、類似する申請時にこれを活用して審査時間の短縮を図っていた（当該事務所管内のみ）。

(3) 個別審査実績の共有による自動審査の効果試算

個別審査の実績を国道事務所間で共有し、自動審査に活用することで、類似する個別審査における作業時間の短縮や審査日数の削減が期待できる。そこで、事務所ヒアリングにより把握した過去の個別審査実績が無い場合の通常の個別審査の作業時間と過去の個別審査実績を活用した場合の個別審査の作業時間から、過去の個別審査実績を活用した場合の作業時間短縮率を算出した結果、最大 3 割程度の短縮が期待できることを確認した（表 4）。

<table>
<thead>
<tr>
<th>表 4 個別審査実績を活用した場合の作業時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>個別審査の作業時間 (未収録結果を含む場合)</td>
</tr>
<tr>
<td>15～60 分</td>
</tr>
<tr>
<td>紹介時間 (①) / ②</td>
</tr>
</tbody>
</table>

(4) 個別審査実績共有システムの基本設計

(3) で算出した個別審査日数の削減を図るために、個別審査実績の管理が必要になる。そこで、各事務所が実施した審査結果を共有し、実績データを用いて審査を行うシステムを構築するための基本設計を行った。図 3 にシステム画面のイメージを示す。

図 3 システム画面のイメージ

【成果の活用】

本研究で作成した機能要件案及び図面作成要領案を元に、各地方整備局が車両搭載センシング機器等の調査を進めている。特車の軌道解析に用いる図面等の作成に活用することで、特車審査の効率化が期待される。また、個別審査結果共有システムを構築することで、既存の特車審査の部分的な自動化が可能となり、効率化が期待される。
ITS技術を活用した特殊車両管理の高度化に関する検討
Study on advanced management of heavy vehicles using ITS technologies
(研究期間　平成28-29年度)

道路交通研究部
高度道路交通システム研究所
Road Traffic Department
Intelligent Transport Systems Division

室長　吉田 秀範
Head　Hidenori YOSHIDA
主任研究官　大嶋 一範
Senior Researcher　Kazunori OOSHIMA
研究員　大竹 岳
Research Engineer　Gaku OHTAKE
交流研究員　根岸 辰行
Guest Research Engineer　Tatsuyuki NEGISHI

The purpose of this study is to investigate weight measurement technologies for proper road use by heavy vehicles, which is considered to have a significant impact on the life span of road infrastructure.

[研究目的及び経緯]
国土交省では、『好循環実現のための経済対策』（平成25年12月5日閣議決定）に基づき、『全効力強化策』の一環として、交通・物流ネットワーク等の都市インフラ整備、ITS技術の活用等による渋滞対策等を推進することとしている。国土交省政策総合研究所では、上記対策等の一部として、ITS技術を活用し、ブロープ情報（ETC2.0車載器から収集される自動車の走行履歴等を含むデータ）を用いて大型車両の走行状況確認技術の確立に取り組んでいる。

平成29年度は、国と高速道路会社で個々に取得している重量計測データを連携するシステムを構築するための基本設計を実施するとともに、将来的の効率的・効果的な特殊車両管理の施策を検討するために従来から活用している大型車両等のブロープ情報を取り扱うシステムについて、データ容量の拡張に取り組んだ。

[研究内容及び成果]
1. 重量計測データ連携システムの検討
国は、国道に設置した車両重量計測装置から取得した重量計測データを蓄積・管理し、大型車両のモニタリングに活用している。近年は、高速道路会社も同様に道路維持の観点から車両重量計測装置の設置を進めている。これらのデータを有効活用する観点から、国と高速道路会社との間で共有化する仕組みを検討し、システムの基本設計を行った。

(1) 重量計測データの調査
各高速道路会社へのヒアリングの結果、高速道路会社によって取得される重量計測データが異なるのがわかったため、各社が計測・蓄積している重量計測データ及び、それに付随するデータの内容についての調査を行った。また、車両重量計測装置の他に堆積取締り等の重量計測データについても調査を行い、システムで利用することの可能性について検討を行った。

(2) 重量計測データの連携に関する法令の整理
重量計測データや組み合わせを利用して許可証、車検証のデータには、車両番号や個人情報が含まれている。そのため、重量計測データ等を連携するにあたり、道路法および関係する通達、行政機関の保有する個人情報の保護に関する法律等から、連携に掛かる根拠や個人情報の取り扱いについて整理し、制度的な支障がないことを確認した。[表1, 表2]

<table>
<thead>
<tr>
<th>表1 国土交省より高速道路会社等への提供</th>
</tr>
</thead>
<tbody>
<tr>
<td>対象データ</td>
</tr>
</tbody>
</table>
| 許可証 | あり | 道路法第7条第2項第1及び2（高度管理等）
|              | あり | 各道路管理者が通行許可の結果を得ること |
| 車検証 | あり | 特殊車両の通行に関する指導取締りの強化について（建設省省令第33号道路局長通達）
|              | なし | 各道路管理者が連携により効果的な取締りを実施する必要 |
| 違反車両情報 | あり | 違反車両に関する情報（道路交通法第106号道路交通局長通達）
|              | なし | 各道路管理者が連携車両に関する情報交換する必要 |
| 重量計測データ | なし | 道路の老朽化対策を目的とした大型車両通行の適正化方針
|              | なし | 各道路管理者が連携した自動車計測装置の設置を実施する必要 |

※1 行政機関が保有する個人情報の保護に関する法律第8条に基づき、提供が可能となる。
※2 行政機関が保有する個人情報の保護に関する法律第49条に基づき、情報提供行政機関（個人情報保護の主体）に提供される。（提供方法、連携方法）
※3 違反車両情報は許可証から作成されているため、行政機関が保有する個人情報の保護に関する法律第4条に基づき提供されることが可能である。
表2 高速道路会社等から国土交通省への提供

<table>
<thead>
<tr>
<th>対象データ</th>
<th>個人情報</th>
<th>会社情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>許可証</td>
<td>あり</td>
<td>なし</td>
</tr>
</tbody>
</table>

違反車両情報

<table>
<thead>
<tr>
<th>対象データ</th>
<th>個人情報</th>
<th>会社情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>違反車両情報</td>
<td>あり</td>
<td>なし</td>
</tr>
</tbody>
</table>

重量計測データ

<table>
<thead>
<tr>
<th>対象データ</th>
<th>個人情報</th>
<th>会社情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>なし</td>
<td>なし</td>
<td>なし</td>
</tr>
</tbody>
</table>

なお、国総研プロープシステムで扱うデータは、小さなサイズのファイルが大量にあるため、HDDの利用可能容量やアクセス速度を考慮するとともに、データ破損が発生しないよう耐誤性も考慮する必要がある。このことから、HDD構成の元長検討を行い、データを複数のハードディスクに分散して格納することとした。

図2 ハードディスク構成案の比較

<table>
<thead>
<tr>
<th>コンピュータ</th>
<th>第1</th>
<th>第2</th>
<th>第3</th>
</tr>
</thead>
<tbody>
<tr>
<td>電気化</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

(3) 重量計測データ連携システムの全体構成検討

各高速道路会社が取得した重量計測データとが取得した重量計測データを相互に連携するシステムについて、連携するデータ項目やデータ共有方法等の検証を実施し、基本設計を行った。各高速道路会社及び国が取得した重量計測データは、それぞれ日本高速道路保有・債務返済機構及び関東地方整備局が集約している。そこで本システムでは、2機関のシステムと連携させることにより、データを共有する仕組みとした。図1に本システムの構成イメージを示す。

図1 システム構成イメージ

2. 国総研プロープシステムのデータ容量拡張

従来からプロープ情報の取得及び大型車両の走行経路を確認する目的で利用している国総研プロープシステムは、開発よりすでに4年が経過し、データベース（DB）の整理が必要となっていることから、データ容量の拡張を行った。

(1) システム構成の検討

国総研プロープシステムへ新たにハードディスク（HDD）を追加する際の構成案について、HDDの信頼性や耐持性等の具体的要件を比較し、検討を実施した。図2検討した結果、構成案3で国総研プロープシステムへのHDD追加を行うこととした。
国際的動向を踏まえたITSの研究開発・普及展開方策の検討
Study on R&D and dissemination policy of ITS based on the international trends

(研究期間 平成28～31年度)

室長 吉田 秀範
Head Hidenori YOSHIDA
主任研究官 井戸 慎二
Senior Researcher Shinti ITSUBO
研究官 玉田 和也
Researcher Kazuya TAMADA
研究官 後藤 悟
Researcher Azusa GOTO
交流研究員 梶 純
Guest Research Engineer Shin SAKAKI

The purpose of this study is to investigate up-to-date ITS abroad and to support overseas expansion of Japanese ITS technologies through an international cooperation as well as international standardization activities.

[研究目的及び経緯]

高度道路交通システム（ITS）については、世界に日本の取り組みを発信し、情報共有することにより、協調しつつ進めることが重要である。また、ITS など国際規格の存在する領域において、国内技術を海外展開するためには、国際標準規格として策定されていることが最低条件となることが多い。従来の国等が未開の分野の情報を収集する際には、国際標準規格や、世界道路交通（PIARC）等の国際的な規制による発行文書等を参考にするため、それに日本の技術が適切に収載されていることも、海外展開にあたっての重要な要素である。

以上のことから、国土技術政策総合研究所（国土研）では、ITS技術に関する国際動向の調査や日本のITS技術の海外展開支援を目的として、来日ミート局間での協力覚書に基づく共同研究、道路関係の国際機関（PIARC、OECD/TC204）における技術委員会等への参画、ITS国際標準規格に関する国際標準化機構（ISO/TC204）の参画を通じた国際活動を継続的に実施しているところである。

[研究内容]
(1) ITSに関する欧米当局との共同研究

国土道路交通統制システム（US DOT）及び欧州委員会（EC）の三者、協力覚書に基づき、長年にわたりITS技術の最新動向の収集や国際的な調和を図るための共同研究及び情報交換を行ってきている（図-1）。

(2) ETC2.0サービスの国際標準規格策定に向けての調査

国研では、ISO/TC204においてETC2.0関連サービスに関する国際標準規格を策定するための取り組みを進めている。この中では、ETC2.0により実現される下記の2つのサービスに関する国際標準化に向けて規格案を作成し、提出先の分科会と調整を進めているほか、ISO/TC204における各分科会の審議項目においてヒアリング調査を実施し、関連動向を注視している。

1) 経路別道路課金サービスに関する標準化

新たなETC2.0サービスとして検討されている経路
(3) PIARCにおける活動

国際通貨において、PIARCが設置する「道路交通ネットワーク運用とITS」に関する技術委員会（TC B.1）及び「協調ITSに関するタスクフォース（TF B.1）」の活動に関連している。TC B.1では、平成28〜31年間の間に、「道路通信ITSアプリケーション」及び「道路交通におけるビッグデータ」について報告書をまとめると共に、その成果を活用してオンライン公開されている「道路交通ネットワーク運用とITSに関するマニュアル」を更新する計画である。また、TF B.1では、平成28〜30年間の間に各国の協調ITSに関する事例や関連文献を調査し報告書を作成した予定となっている。国際通貨は、これからの報告書に日本のITS技術の事例を反映することで、日本の国内の国際的な認知を支援するための活動を実施している。平成29年度は、全2回のTC B.1会合に参加し、報告書に掲載予定の関連資料の提出を行うと共に、上記の活動を通じて、海外のITSに関する最新情報を収集した。

【研究成果】

(1) ITSに関する欧米当局との共同研究

日米欧共同研究では、平成29年度において自動運転ワーキングを4回、ブロードデータサブワーキングを4回、ステリシンググループ会合を1回実施した。

自動運転については、日米欧の各地域における課題解決に向けた動きがあり、法制度に関する動向や実証実験に関する進捗報告、C-ITSの開発動向等の情報共有を行った。その他、重点的に取り扱う分野として、デジタルレベル（地図）、次世代交通、効果評価、道路適用性検討、ヒューマンファクターの5分野を設定し議論を進めている。また、ブロードデータに関する共同研究においては、平成28年度に報告書を作成しUS-DOTホームページに公表したところで、平成29年度は今後議論を進めるユーザーケースに関する整理を行った。対象となるユーザーケースには、渋滞度数や路上障害物などの情報を検出する「先読み情報検知」と、

渋滞や事故による交通の影響を評価する「システムパフォーマンス評価」の2つを選定しており、「先読み情報検知」については日本からの提案が他国からの賛同を得た。

(2) ETC2.0サービスの国際標準規格策定に向けた調査

経路路線道路サービスに関する国際標準規格にについて第5分科会での提案を進め、平成29年10月のヴロツワフ会議にて委員会草案（CD）として可決された。また、この枠組みを海外諸国に十分理解し、もらうことを目的に、各国の標準ポリシーと技術に関する調査についての技術報告書を作成し、平成30年11月に国際規格案（DIS）として承認された。

なお、国際規格策定までには図-2の手順がある。

(3) PIARCにおける活動

TC B.1において、ETC2.0サービス及び日本企業が途上国等で実施する低コストITSに関する事例の概要を提出し、一部については海外の委員からの意見も踏まえて本文原稿を作成した。平成30年度では、本文原稿作成を完了すると共に、委員会での査読、修正作業に入り予定である。TF B.1については、報告書原案の作成が終了し、平成30年度内に完成予定である。この報告書の中には、日本のETC2.0を用いた協調ITSの事例及びその背景にある「道路交通ネットワーク」の施策が紹介されており、諸外国の道路交通管理者が協調ITSの導入を検討する際に役立つと期待される。

【成果の活用】

本研究の成果は、ETC2.0サービスをはじめとする日本のITS技術を海外諸国に周知すると共に、海外展開に必要な国際標準規格との整合性を確保していくため活用されている。

※1 TRC: Transport Research Committee, ※2 TC: Technical Committee, ※3 CD: Committee Draft, ※4 DIS: Draft International Standard
ネットワーク状道路運用に活用可能な ITS 技術に関する研究

Study on the ITS technology utilized for road network operation

（研究期間　平成 28～30 年度）

道路交通研究部
Head
室長 吉田 秀範

高齢道路交通システム研究室
Senior Researcher
主任研究官 大嶋 一範

Intelligent Transport Systems Division
研究官 小川 梓

交流研究員 柳 真

Guest Research Engineer" Shin SAKAKI"

This study developed a methodology for estimating traffic conditions of the radial-ring expressway network in the Tokyo Metropolitan area by assimilating ETC2.0 probe data into traffic simulation in order to evaluate impacts of some operational measures. In this fiscal year, a calibration process of the OD-matrix was introduced into the simulator using cross-section traffic volumes measured by some detectors. Furthermore, the route-choice model in the simulator was updated based on the analysis of travel records in the ETC2.0 probe data.

【研究目的及び経緯】
三環状道路が構成しネットワーク状となった首都圏高速道路においては、交通規制を複数の代替経路に適切に分散させ、道路ネットワークを効率的に運用することが必要である。これを実現するためには、交通状態の日常的なモニタリングを通じて、渋滞を引き起こしている個々の車両の起終点や経路を把握し、情報提供や動的課金等の施策により交通需要の分散を図るための検討が重要である。施策の検討にあたっては、各施策がドライバーパの運転行動や道路ネットワークの交通状態に与える影響を把握し、各施策の導入が効果的な箇所や交通条件等を明らかにする必要がある。

このため国土技術政策総合研究所では、車両感知器や ETC2.0 プロープ等の観測可能なデータを元に首都圏高速道路ネットワーク上の全交通の流動状況を補完推計することで、日常的なモニタリングを行うための交通状態推計手法の開発、及びこれに用いた観測施策の評価に関する研究を行っている。また、運用施策のうち米川の不実施例のない施策については、実データを用いた評価が困難なため、仮想実験環境（ドライビングシミュレータ）を用いてドライバーの受容性を計測するための技術開発及び手法の検討を行っている。

【研究内容と成果】
(1) 交通状態推計手法の再現精度向上に向けた高度化
日常的なモニタリングのための交通状態推計手法の開発に関しては、過去年度までに ETC2.0 プロープによる車両軌跡情報を交通シミュレーションに融合させたプロトタイプを構築している。平成 29 年度は、これによる交通状態再現精度向上させるため、車両感知器による断面交通量情報の融合を行うと共に、ETC2.0 プロープ情報に基づく経路選択モデルを適用した。

1) 車両感知器情報の融合
過年度までに構築したプロトタイプは、図-1 に描かれるように、ETC2.0 プロープ車両の速度低下が後続車両に伝播することを収束現象を再現する仕組みでありながら、交通量の再現性に課題が残っていた。このため平成 29 年度は、これまで ETC 車の出入口情報（ETC データ）を元に近似していた起終点 IC 間交通量（OD 表）を調整することで精度向上を図った。具体的には、高速道路ネットワーク上の 295 区間において、車両感知器から観測される断面交通量（15 分間）とプロトタイプの推計交通量の誤差が最小となるように収束計算を行い、OD 交通量を調整する（図-2）。

図-1 過年度構築したプロトタイプの概要

進行方向 車両の経路推計
ETC2.0 プロープ 高速道路の速度
逐次推計を用いるシミュレータ上で
パラメータを調整する手法
進行方向 車両の経路推計
ETC2.0 プロープ 高速道路の速度
逐次推計を用いるシミュレータ上で
パラメータを調整する手法
進行方向 車両の経路推計
ETC2.0 プロープ 高速道路の速度
逐次推計を用いるシミュレータ上で
パラメータを調整する手法
2) 経路選択モデルの構築と適用

プロトタイプの交通シミュレーションには、目的地までの距離、所要時間、料金を変数とした経路選択モデルが組み込まれているが、各変数の変動をもつモデルが過去の知見を踏まえ経験的に設定されるにとどまっていた。この経路選択モデルの精緻化を図るため、平成29年度は、実データに基づくパラメータの更新を行った。具体的には、図-4に示すように、道路ネットワーク上の各ジャンクション（JCT）ペアに対して、「ETC2.0ブースのブームがどちらの方向の経路を選択したか」と「各分岐方向の経路の距離、所需時間（動的な変化を考慮）、料金」の情報を取り上げたデータから、種別、平日・休日別、距離別別の各変数の感度パラメータを定式化し、プロトタイプに適用した。その結果、距離が長い路線ほど、所需時間の変化に対する経路を変えやすい等の傾向が、プロトタイプにおいても反映できるようになった。

図-2 ETC2.0ブーム情報と車両感知器情報を用いたプロトタイプの交通状況推計フロー

写真下 ETC2.0ブーム情報、車両感知器情報、交通シミュレーション結果をもとに、OD交通量推定を行った。OD交通量は、車両のJCT通過時のデータから推定される。

図-3 車両感知器融合後の断面交通量の比較

2' 交通状態推計手法の一一般道への展開方法の整理

高速道路を対象に開発してきた現在の手法を一般道に展開することを目的として、一般道におけるETC2.0ブームの特性、車両感知器等のデータ整備状況を確認すると共に、現在のプロトタイプを適用する際の手法上の課題や活用可能な技術等を整理した。その結果、主要な課題は信号交差点の取扱いと00表の作成であり、これに対応して、蓄積されたETC2.0ブーム情報から交通量の右交差度や00交通量等を推定することでの短期的な対応が期待されることが示された。

図-4 経路選択モデル推定に用いる経路データの設定イメージ

(2) 仮想実験環境に関する技術開発

平成29年度の仮想実験環境において、被験者が運転する車両とその周辺を走行する仮想の車両の相互作用に関する再現精度を向上させるため、仮想車両の車両線変更挿入等に関する理論モデルを開発した。また、より現実感がある視覚環境を実現するため、実写映像と仮想的な情報を重ね合わせて表示する技術を開発を行った。

[成果の活用と今後の予定]

交通状態推計手法の陸開発に関しては、一定の再現精度が確認できたため、今後は、これを用いて日時の交通状況を分析し、渋滞軽減のための運行施策を検討することが期待される。さらに今後は、本手法を活用して情報提供用の動的課金等の施策の効果を予測するためのネットワーク等を実行する予定である。一般道への展開に関しては、平成29年度の整理を元に、現在活用可能なデータと技術を用いて交通状態推計を試行し、精度確認を実行する予定である。仮想実験環境に関しては、これまでに構築した技術を用いて実施例のない施策の評価を実施し、留意事項等をとりまとめた予定である。
道路管理のためのビッグデータの収集・活用技術に関する研究

Study on collection and utilization technology of big data for road management

（研究期間 平成27～29年度）

This study built a testing server in order to improve "Probe Server" for aggregating and processing ETC2.0 probe data, which is operated by the Kanto Regional Development Bureau, by making its processing speed higher as well as by adding new functions. In this year, the authors have summarized functional requirements of the testing server, based on the findings in the previous studies and the comments from the related organizations.

【研究目的及び経緯】
国土技術政策総合研究所（以下、「国総研」という。）では、交通ビッグデータの1つであるETC2.0プローブ情報を道路管理に利用するための検討を行っている。現在、ETC2.0 プローブ情報は、関東地方整備局に設置されたプローブ統合サーバで処理、蓄積されている。しかし、プローブ統合サーバのデータ蓄積可能期間は3年であり、将来的なデータ蓄積方法の検討が必要である。また、運用開始当初に比べてETC2.0車載器の普及が進み、データの活用場面も増える中、今後も増加が見込まれるデータを円滑に処理する方法や活用ニーズに応じた新たな機能の検討が必要となっている。
このため年度は、プローブデータをより長期に蓄積するデータベース（DB）を国総研内に構築した。平成29年度は、このデータベース（DB）を活用して、将来的にプローブ統合サーバの処理速度の改善や新機能の追加を行うための事前検証用サーバ（以下、「検証用サーバ」という。）の機能要件を検討した。

【研究内容と成果】
本研究では、まず現在のプローブ統合サーバの課題及び新たに追加すべき機能へのニーズを整理（1）した上で、課題解決やニーズに対して必要となる検証項目を想定（2）し、これに必要な機能要件（3）を検討した。

1. プローブ統合サーバ改良に向けたニーズの整理
現在のプローブ統合サーバの課題及び新たに追加すべき機能へのニーズを把握するため、国総研におけるETC2.0プローブ情報を用いた既存研究レビューニーズと共に、ETC2.0プローブ情報を用いた分析調査を行っている関係機関へのヒアリング調査を実施した。この結果を元に、現在のプローブ統合サーバにおいて改良対象となる機能及び新たに追加すべき機能を整理した（表-1）。なお、現在のプローブ統合サーバにおけるデータ処理のための機能の概要を図-1に示す。

表-1 プローブ統合サーバへのニーズと改良方針

<table>
<thead>
<tr>
<th>ニーズ</th>
<th>改良対象となる既存の機能</th>
<th>ニーズへの対応</th>
</tr>
</thead>
<tbody>
<tr>
<td>データ増加・処理速度向上</td>
<td>遠次系処理全般</td>
<td>処理の高速化</td>
</tr>
<tr>
<td>計算処理能力</td>
<td>アーカイブ系処理全般</td>
<td>処理速度の抑制</td>
</tr>
<tr>
<td>データ伸長機能</td>
<td>GPS発話型車載器の取り込み</td>
<td></td>
</tr>
<tr>
<td>高精度マッチング機能</td>
<td>精度の更なる向上</td>
<td></td>
</tr>
<tr>
<td>運行ID付与機能</td>
<td>複数IDの同一運行IDの付与</td>
<td></td>
</tr>
<tr>
<td>旅行時間集計機能</td>
<td>車種別（大型車・小型車）の旅行時間の算出</td>
<td></td>
</tr>
<tr>
<td>センターソリューションのレンタリの旅行時間の算出</td>
<td></td>
<td></td>
</tr>
<tr>
<td>オプデー</td>
<td>新たな集計方法の追加</td>
<td></td>
</tr>
<tr>
<td>タリング化</td>
<td>新たな新機能追加</td>
<td></td>
</tr>
</tbody>
</table>

27
2. 検証用サーバで実施すべき検証項目の整理
1. で整理したプローブ統合サーバの既存機能の改良や新機能の追加を実現する上で、検証すべき項目を整理した（表-2）。

<table>
<thead>
<tr>
<th>No</th>
<th>検証項目</th>
<th>検証内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>処理速度</td>
<td>処理アルゴリズムやリソース割当の変更により、処理に要する速度が改善されるかどうか確認を行う。</td>
</tr>
<tr>
<td>2</td>
<td>処理精度</td>
<td>処理アルゴリズムやパラメータ設定の変更により、結果の精度が向上するか否か確認を行う。</td>
</tr>
<tr>
<td>3</td>
<td>追加・改良機能の動作</td>
<td>追加や改良を行う機能と関連する他の機能間のインタフェースにおいて、入力、出力が正常に受け渡せるか確認を行う。</td>
</tr>
<tr>
<td>4</td>
<td>追加・改良機能による全体の処理負荷</td>
<td>追加や改良を行った機能によるプローブ統合サーバ全体への処理負荷の確認を行う。</td>
</tr>
</tbody>
</table>

3. 検証用サーバの機能要件の整理
表-2の検証を実現するために検証用サーバが具備すべき機能は、検証データの取り込みや、プローブ統合サーバにおける各機能（図-1）のうちどの機能を対象に検証を行うかを設定するための「基盤機能」、プローブ情報処理を実行するための「個別機能」に大別される。「個別機能」については、現在のプローブ統合サーバと同じ処理を実行する「標準機能」、アルゴリズムやパラメータ設定の変更による改良後の処理を実行する「改良機能」、および現在のプローブ統合サーバにはない新たな処理を実行する「追加機能」がある（図-2）。

図-1 現在のプローブ統合サーバにおける機能
また、各個別機能の間では、過年度構築したデータベース（DB）を介して、各処理に必要な出力データの読み込みや出力データの保存を行うことを要件とした。
さらに、実際に検証を行うユーザーインタフェースについては考慮し、検証用サーバの操作画面の構成素案を作成した。

[成果の活用と今後の課題]
本研究で整理された機能を実装する検証用サーバを構築することで、プローブ統合サーバの既存機能に対する改良や新たな機能追加による処理速度やデータ改善への影響が検証可能となる。今後は、サーバ構築に向けた具体的な設計と、検証対象となる既存機能の改良案や新たな機能追加案の作成を行う必要がある。
道路基盤図情報の品質確保及び接合・標定に関する技術の実用化検討

～道路空間データの整備・活用手法に関する研究～

Study on a method of generation and practical use of
MMS point cloud data expresses surrounding environment of road

(研究期間 平成 27～29年度)

社会資本マネジメント研究センター
社会資本情報基盤研究室
Research Center for Infrastructure Management
Information Platform Division

室長
Head

関谷 浩孝
Hirotaka SEKIYA

主任研究官
Senior Researcher

三氏 敏郎
Toshiro ITOUJI

研究官
Researcher

今野 新
Arata KONNO

The National Institute for Land and Infrastructure Management (NILIM) is working on the accumulation and utilization of MMS point cloud data that expresses surrounding environment of road. In this study, the authors clarified some effects of utilizing this data through exchanging opinions with 6 Offices in Kanto Regional Development Bureau, and validated the possibility of utilization on test course at NILIM.

[研究目的及び経緯]

近年、3次元計測技術の進展により、移動計測車両による高精度な空間情報を取得することができる MMS (Mobile Mapping System) による測量技術が実用化されはじめ、その活用事例が増えつつある。地方整備局等においても、平成 30年度には MMS を搭載した道路管理用車両等を用いて 3次元点群データの取得を予定している。

国土技術政策総合研究所では、このデータを具体的に道路管理の高度化・効率化にも活用することを見据え、3次元点群データを基に作成された道路空間を表現する「道路空間データ」を用いた道路管理の活用方法を提案した。また、実現可能性を把握するため、点群密度の差異から落下物や不法占拠物件等の地物を検出する技術の検証を行った。

[研究内容]

1. 道路空間データの活用方法の整理

開発地方整備局管内 6 事務所を対象に、出張所職員等の担当者へヒアリングを行った。この結果、路面の沈下や道路法面の高さは目視では確認できなかったため、定期的に変状をモニタリングすることに道路管理に役立つという意見が得られた（図-1）。また、植栽が建築限界を侵していないかを確認し、災害対策の立案支援に役立つという意見が得られた（図-2）。

図-1 路面状況の検知イメージ

図-2 建築限界の確認イメージ

2. 活用手法の実現可能性の検証

ヒアリングの結果を踏まえ、各地方整備局等に導入
される MMS を活用した道路管理の実現可能性を把握するために、点群データによる地形の検出精度を明らかにする必要が生じた。このため、地方整備局等で導入予定の機器と同等の性能を想定したレーザーとカメラを搭載した MMS を用い（図-3）、国試験の試験走行において地物を設置した検証実験を行った。

図-3 試験走行で用いた機器の配置図および性能

取得条件は道路のパトロール時を想定し、路線３.５×２車線、歩道幅員０.７５ｍ、路肩幅員０.７５ｍの環境において、第一車線走行時と第二車線を走行した場合の点群データをそれぞれ取得した。また、走行速度については、各税区の平均旅行速度（約 40km）、設計速度（60km）、低速走行速度（約 20km）として、車両からの距離及び走行速度による点群密度の差異を検証した。地物には大きさを変化させた複数のダンボールを用い、仮想地物に照射された点群同士が重なり合わないようにするため、これらを５ｍ間隔で配置した（図-4）。

図-4 点群データの取得条件

本年度の検証では、点群密度の差異から落下物や不法占拠物件等の地物を検出する技術を検証した。具体的には、MMS により照射された点群密度の変化を把握するため、標準地域メッシュを細分化し、一辺の長さが 25cm、50cm、100cmの立方体に区切った空間の点群数を計算する簡易ツールを試作した。なお、試験走行の標高が 27m であることから、標高の検証範囲は 27m 以上とした。例として、時速 20km で MMS を走行させ、道路側から 75cm 先に一辺の長さが 60cm の段ボールを設置した場合の点群数を取得した結果を示す（図-5）。

図-5 地物を検出した結果の例
（注：メッシュの一辺の長さは 25cm としている）

検証の結果、地物を設置した箇所で点群数が周囲に比べて増加しており、点群数の変化から地物の有無を検出可能であることを明らかにした。また、高さごとの点群密度の違いから、物体のおおよその高さを把握することができることを明らかにした。

【研究成果】
1．道路空間データの活用方法の提案
2．点群密度を計算する簡易ツールの作成及び試験走行での検証

【成果の活用】
今後、各地方整備局等において職員が 3 次元点群データを自ら取得し、道路管理に活用することができるように、点群密度を計算して過去の点群データと比較することによって地物の検出等が可能なツールを作成する。

各地方整備局等が整備する機器のスペックに貸し、走行条件等のデータ取得方法と精度の関係を分析し、適用可能な変状検出の種類や活用場面を特定する。

これらの 3 次元点群データを含めた道路空間データの活用手段をマニュアル（素案）としてとりまとめ、各地方整備局等における道路管理の高度化・効率化を支援する。
道路基盤地図情報を活用した道路交通管理支援システムの構築
Road management support system using fundamental geospatial data of road
（研究期間 平成27～29年度）

社会資本マネジメント研究センター
社会資本情報基盤研究室
Research Center for Infrastructure Management
Information Platform Division

室長
Head
関谷 浩孝
Hirotaka SEKIYA
主任研究官
Senior Researcher
糸氏 敏郎
Toshiro ITOUJI
研究官
Researcher
今野 新
Arata KONNO

The Ministry of Land, Infrastructure, Transport and Tourism has been working on the accumulation and utilization of the fundamental geospatial data of road. In this study, the author build road management support system for more efficient road management.

【研究目的及び経緯】
国土交通省では、平成18年度から大縮尺道路地図の「道路基盤地図情報」の整備を推進し、道路交通基盤情報活用した道路交通管理業務の効率化に向けた取組を行っている。

国土技術政策総合研究所（以下、「国総研」という。）では、道路交通に必要な情報（道路付属物の諸元や巡回結果、メンテナンス履歴など）を一元的に管理・重畳し、多角的視点からの管理業務の見直しや要因分析に活用するための仕組みの構築に必要な技術開発や基準類の整備を行っている。

本研究では昨年度にとりまとめた要件定義書を用いて、既存の「道路平面図等管理システム」に道路交通基盤地図や現状写真の登録機能の実装や、各地方整備局等の道路交通支援システムとの連携機能の開発を行うことにより、各地方整備局等の道路交通管理の在りにおいて道路交通基盤地図情報活用するとともに道路交通管理の高度化に資することを目的としている。

【研究内容】
1. 道路事故完成図等データの直接登録機能の開発
従来のシステムでは、各地方整備局等における工事の完了結果品や電子納品される仕組みを利用してデータを登録しているが、登録完了までタイムラグがあるという課題があった。その対応策として、以下の図面データを職員が直接登録できる機能を実装した。（図-1）

・SXF形式の完成平面図
・SXF形式以外のその他図面（PDF形式、JPG形式）
　職員が地図上の正しい箇所に図面を登録することができるよう、路線上に始点と終点を選べば当該位置に図面を登録できるよう、システムのインターフェース機能をブラウザとクリックのみに絞り込んだ。

2. 地図表示機能の開発
様々な利用目的に本研究で開発した「道路交通支援システム」を活用できるように、以下の地図表示の切り替え機能を実装した。
　・利用者が任意に背景図を変更できる機能（標準、浜松、白地図、航空写真）
　・図面の登録／未登録区間の把握を容易にするため、図面の登録位置を示す図形を、表示縮尺に応じて自動的に切り替える機能（図-2）
　・地理院地図の最大縮尺である1/2,500以上に拡大した際にはじめて道路交通基盤地図情報を表示させることで、小縮尺時には表示量を減らしシステムの負荷を少なくする工夫を取り入れた。

図-1 図面の直接登録機能の画面
4. システムの簡素化及びクラウドシステムの構築

道路管理支援システム等を構成する機器を集約して簡素化すると同時に、メンテナンスの省力化や安定的に長期間運用することを目的に、クラウド上にシステムを構築し、クラウド環境への移行を行った（図-4）。

システムの移行にあたっては、地方整備局の電子納品システムと連携していることから、地方整備局側の作業が発生しないよう、サーバには旧来のIPアドレスを引き続き割り当てるなどの工夫を行い地方整備局側の作業に配慮した。

図-3 道路巡回支援システムとの連携イメージ

図-4 システムの簡素化及びクラウドの構築

[研究成果]
従来の道路平面図等管理システムに研究内容1.～3.の機能を実装して「道路管理支援システム」として再構築を行った。これにより、道路台帳附図を用いた図面の登録率の向上が見込まれると同時に、図面の入手のみに利用されていたシステムを道路管理にも活用することが可能となった。また、システムを簡素化してクラウド上に構築することで、システムの保守管理の省力化やコスト削減が可能となった。

[成果の活用]
構築した道路管理支援システムを各地方整備局等、高速道路会社、日本高速道路保有・債務返済機構等に提供し、それぞれの道路交通管理者の現場において大縮尺図面である道路基盤地図情報の活用及び道路管理に役立てられている。
領域４：コスト構造を改革し、
道路資産を効率的に形成する（つくる）
部分係数設計法の適用性向上に関する調査検討

Study on the enhancement of partial factor design for road bridges

（研究期間　平成 29 年度～32 年度）

道路構造物研究部　橋梁研究室
Road Structures Department
Bridge and Structures Division

研究官　　河野　晴彦
Researcher　Haruhiko KOUNO

交流研究員　中邨　亮太
Guest Research Engineer　Ryota Nakamura

室長　　白戸　真大
Head　　Masahiro SHIRATO

主任研究官　宮原　史
Senior Researcher　Fumi MIYAHARA

交流研究員　高山　文郷
Guest Research Engineer　Fumisato TAKAYAMA

交流研究員　横田　剛
Guest Research Engineer　Go Yokota

The performance of a whole bridge system is usually evaluated as individual parts, because there are no standards to evaluate the system reliability considering the evolution of plasticity at parts. This study seeks a standard design method to evaluate the bridge performance as a system including loads and load combinations as well as the limit states of structural members.

[研究目的及び経緯]

H29.7 に道路橋梁の設計が改定され、従来の許容応力

度法が廃止され、部分係数法が導入された。また、限

定状態設計法が導入され、橋全体としての評価が可能

であるように橋全体系として求める性能が明確化され

た。橋の耐荷性能は、一般に、橋の限界状態を部材の

限界状態で代表させ、部材単位で照査するという設計

体系となった。部材毎の照査に用いる制限値には部分

係数を考慮することとされ、限界状態の評価にかかわ

る統計的信頼性を考慮する部分係数のみならず、ぜ

い性であるかどうかなど部材の非弾性挙動の違いを

考慮する部分係数も考慮された。一方で、部材の損傷

や破壊が橋全体に与える影響も加味し、橋全体系で

の性能を直接評価する方法は未だ確立していない。部材

単位の設計を合理化しつつも不測の事態に対しても橋

全体として粘り強い形式を創りだしたり、既設構築の性

能をより的確に評価できると考えられる。

そこで、本研究では、設計供用期間中に橋が置か

れる荷重同時載荷状況に対応する荷重の組合せ

や載荷方法、並びに、部材の限界状態を詳細に設定

し、部分係数を評価するための載荷試験法を含めた

限界状態の評価手法の一般化を目的とし、

橋全体系の性能を直接評価するために用いる橋の置

かれる荷重同時載荷状況について、荷重シミュレ

ーションにより検討を行った。

[研究内容及び研究成果]

1. 荷重シミュレーション

橋全体系の限界状態を直接捉え、橋の耐荷性能を評

価するための手法は未だ確立されていない。一部の部

材が損傷したものの橋全体系の耐荷力の冗長性はリダ

ンジングシーやロバストネスと呼ばれることも多く、内

外で研究が進められており、個別の研究ではリダンジ

シーやロバストネスの評価が試みられた事例もある。

そこで、活荷重を想定した鉄直荷重、または、地震

の影響を想定した横荷重など、一つの種類の荷重を漸

増させて部材の塑性化が進む、拡大する過程が評価さ

れていることが殆どである。しかし、実際の橋、複

数の荷重の同時載荷状況に置かれる。

現在の道路橋梁設計で考慮されている設計状況は、

組合せ荷重により部材が受ける荷重の大きさの 100

年最大値に着目したときに、主には 100 年最大値

分布の非超過 95%程度に相当する状況を代表するもの

である。これに対して、平成 29 年度再、主要部材の

単位だけでなく主要部材どうしの相対的な動きによ

る粘性の挙動の影響を受けやすい 2 次部材にも着

目し、組合せ荷重の最大値としての確率水準を

さらに大きくしたときに着目し、荷重効果とし

て支配的な影響を与える荷重組合せを把握すること

を探った。対象とした橋種を図-1 に示す。

図-1 に荷重シミュレーションの概念図を、図-2

に考慮した荷重の種類と確率分布モデルを示す。荷

重シミュレーションとは、荷重の同時載荷過程を

B-C モデルと呼ばれる確率過程でモデル化したモ

テカルロシミュレーションである。ここで結果を示

すシミュレーションでは、交通流特性に特徴的な仮定

を行った。平成 22 年の道路交通センサスデータによ
橋では斜材に、ニールセロローズ橋や斜張橋ではなくケーブルにおける断面荷重に着目している。荷重係数は、シミュレーションで抽出された断面荷重力をより上げたときに、そこには各荷重の寄与分に、設計基準で考慮している特性値に対して算出される断面力に対する比率をとったものである。したがって、設計基準で考慮している特性値の寄与分よりも大きな規模の荷重が断面影響を与えていることになる。荷重シミュレーションの結果、荷重組合せとして、主にD+EQ、D+L+Wなど、荷重組合せL、荷重組合せW、地震の影響EQの組合せが見られた。そこで着目した橋種や部材では、荷重変化の影響を受けにくいため、部材が受けた荷重効果として現れてなかった。

今回のシミュレーションでは活荷重の同時載荷状況としては相当に厳しい状況を想定しているが、得られた活荷重係数は、ほとんどの場合、現在の道路橋示方書で考慮されている1.25が安全側になっている。しかし、各部材の断面力を100年最大値分布において着目する非超過確率を99%とそれよりも大きくすると、大荷重に対する荷重係数は1.5以上程度と見積もられたケースもあった。また、活荷重と風荷重が重なっているときも、それぞれ無視できない大きさ（たとえば1.0程度）の荷重係数が同時に得られるケースもあった。したがって、橋の全体系で荷重性能を評価するにあたっては、鉄直荷重のみの組合せでは橋の性能を必ずしも適切に捉えられない可能性がある。また、荷重組合せによりリダンシィーを評価する場合にも、鉄直荷重のみだけでなく、また水平荷重のみでないものと増し荷重だけではなく、鉄直荷重と水平荷重を組み合わせた荷重増し載荷パラメータが必要となる可能性があることが分かった。

3. まとめ

橋全体としての荷重性能を直接評価するために、活荷重のみではなく水平荷重も同時に組み合わせて載荷し、漸増させる必要もある可能性を確認した。引き続き、様々な観点でシミュレーションを行い、データを蓄積する必要がある。

【成果の活用】

本研究で得られた成果は、道路橋示方書等、技術基準改定のための基礎資料として活用予定である。
部材連結部の損傷制御及び信頼性に関する調査検討
Study on the damage control reliability of bridge joints and members

（研究期間　平成27-30年度）

NILIM studies the use of high strength materials in bridge design with high strength joints. In 2017, elasto-plastic finite element analyses have been conducted to estimate the ultimate behavior of composite girder using high strength steel. The result shows that the ultimate behavior should differ with difference in Y/T ratio of steel.

【研究目的及び経緯】

道路橋の設計の合理化には、高強度材料の活用が期待される。高強度材料を用いることで部材寸法の縮小を図るにあたって、その接合部においても高強度による合理化が必要である。また、高強度材料は機械的性質が通常の材料と異なることから、部材、接合ともに終局挙動の把握が重要である。本研究では、高強度ボルトや片側施工ボルトによる接合強度や耐久性、桁と床版をつなぐ接合部の挙動、および、高強度材料を用いた合成桁の挙動について調査を行い、設計基準化のための基礎データを蓄積を図っている。L927に道路橋示方書が改定され、限界状態設計法が導入された。橋の耐荷性能は、一般に、橋の限界状態を上部構造及び部材等の限界状態で代表させ、部材単位で照査するという設計体系となった。この部材単位での照査においては、上部構造全体に及ぼす影響も踏まえ、設定される必要があるが、塑性化後の上部構造の挙動は十分に明らかとなっていない。平成29年度は、高強度鋼材を合成桁に適用するにあたっての課題や設計上の留意点を把握するために弾塑性FEM解析を行い、材質の違いによる桁の塑性化後の挙動の違いを評価した。

【研究内容及び成果】

1. 対象橋梁とモデル化

一般的な3径間連続鋼合成2主桁橋の中央支間を対象にした。材料の塑性化だけでなく、塑性化する断面の構成方向の広がり、床版や接合部への負担など橋として挙動の違いを把握できるように、床版も一体でモデル化した。また、対称性を仮定して、図1のとおり単純化したモデルとした。断面諸元は、数値解析で考慮する使用材料の違いによらず一定とした。支間中央部（図1では自由端側）に載荷したときには、支点上（仮想固定端側）の桁断面の局部座屈による非弾性挙動が生じると考えられる。

主桁及び横桁はシェル要素、床版をソリッド要素でモデル化した。鋼材の材質が与える影響に着目するため、主桁と横桁は材料非線形性を考慮したが、床版についてはコンクリートのみの剛性を考慮した弾性体としてモデル化し、桁と床版は剛結合とした。桁の残留応力は最大で0.3σa（σaは降伏応力度）とし、桁の初期不整形状は局部座屈モードに適合するように与えた。

仮想固定端
（中間支点部をイメージ）

自由端
（支間中央付近をイメージ）
（ただし、回転を許容）

図1 解析モデル概要と荷重載荷点

2. 解析条件

使用鋼材は普通鋼材のSM490Y、SM570及び高機能鋼材のSBHS500、SBHS700の4ケースを使用した場合を想
定した。鋼材の応力ひずみ関係は、引張試験の引張試験結果のデータをもとに降伏棚ありの場合は非線形弾性則による近似、降伏棚なしの場合は直線近似によりモデル化した。SM570とSBHS700を例にモデル化したものを図2に示す。降伏棚の有無、降伏比（降伏強度/引張強度）が異なり、高強度鋼材は、降伏棚が顕著ではなく、また、降伏後の強度増加が少ない（降伏比が大きい）傾向がある。

3. 解析結果
支間地点で鉛直下向きの変位を消減させた、得られた荷重変位曲線を図3に、それを初降伏時の荷重Pnと変位Unでそれぞれ無次元化したものを図4に示す。材料の降伏、局部座屈が生じるが、いずれのケースにおいても材料は無引張強度下には達しなかった。無次元化した結果を示す図4から分かるように、最も強度の高いSBHS700の引張試験結果を応力ひずみ関係に考慮したケースにおいては、材料の初降伏直後に荷重は最大に達し、その後、荷重低下も他のケースに比べると顕著であった。この現象は、座屈が支配的な性質であり、材料の塑性域の挙動の違いが全体系に及ぼす影響が小さいと想定されたところであるが、数値解析結果は、最大荷重点を超えたあとでの挙動に材料の挙動の違いが表れる傾向を示した。

図5には、変位量が桁高の15%（400mm）に達した時の桁の塑性域を比較している。材料の違いにより塑性域の広がり方が変わっている。ここでは、床版、床版と桁の接合部は単純に剛結合を仮定しているが、本的にはこれらの荷重分担は、桁の塑性域の広がりに伴って変化すると考えられる。今後、床版や床版・桁接合部の挙動にも着目した検討が必要であると考えられる。

4. まとめ
道路橋示方書では、せい性的な挙動をする部材については、最大強度点を超えないことを照査するための制限値を安全側に設定するための部分係数が考慮されている。今後、高強度材料を適用するにあたって、降伏比と余剰耐力の関係について、さらに検討を進める必要がある。また、今後、桁・床版接合部や床版の非線形挙動が全体系の挙動に与える影響が、今回の数値解析結果に与える影響についても検討し、桁・床版接合部の設計法の提案に反映する必要がある。

【成果の活用】
道路橋の部材設計及び接合部設計に関する技術基準に反映する予定である。

図3 荷重変位曲線
図4 無次元化後の荷重変位曲線
図5 桁高の15%変位したときの塑性域
土工構造物等の要求性能に対応した変状評価、
性能向上に関する調査検討

Study on deformed state evaluation according to required performance and performance improvement of substructures

（研究期間　平成 29 年度〜31 年度）

道路構造物研究部 　構造・基礎研究室
Road Structures Department
Foundation, Tunnel and Substructures Division

室長 　関渕　利明
Head 　Toshiaki MABUCHI
主任研究官 　西田　秀明
Senior Researcher 　藤山　一夫
研究官 　木村　崇
Researcher 　Takashi KIMURA

With regard to road substructure, technical standards were established in 2014 and the required performance was shown, but concrete checking methods corresponding to required performance are not sufficient. In this study, we investigate and investigate the purpose of preparing the basic data necessary for considering the method of evaluating the function as roads of the section where the road earthwork structure exists.

[研究目的及び経緯]
道路土工構造物については、平成 26 年度に新築又は改築に関する一般的技術基準が制定され要求性能が示されたが、要求性能に対応した具体的な照査手法は明確に規定されていない。本研究では道路土工構造物が存する区間の道路としての機能を評価する手法を検討する上で必要となる基礎資料の作成を目的に調査検討を行っている。

平成 29 年度は、災害復旧に関する設計資料等により、壁・カルバートの被災復旧状況と道路の通行機能への影響を把握し、設計上の留意事項を抽出した。また、被災を有する盛土の表面崩壊模型を用いて、円弧すべり法に基づく安定計算、ニューマーク法による滑動変位量を算出し、被災の変位により道路の通行機能への影響を把握した。加えて、被災・カルバートの設計事例から設計における具体的な配慮事項や照査手法について整理した。

[研究内容及び成果]
1. 擁壁・カルバートの被災状況

擁壁・カルバートを用いて復旧した道路の災害復旧に関する設計資料454件のうち、被災前の構造形式が、擁壁のものが167件、カルバートのものが6件であった。擁壁の被災要因では、降雨56%、河川浸食37%で、両者で93%を占めた。降雨被災94件のうち、88%が表流水・排
約30件の交通規制を変更すると判断した要因の分析から、全面通行止めから片側交互通行等への規制緩和の判断は、道路土工構造物の機能回復より、緊急輸送路や通学路指定の有無など、道路利用形態や道路の重要度が重視されていることがわたった。

2. 擁壁の交通機能への影響にかかる試算

降雨時及び地震時を対象とした試算を実施した。降雨時のケースでは、円弧すべり法に基づく安定解析と弾塑性FEM解析を使用した。地震時のケースでは、ニューマーク法により地震時の滑動変位量を算出し、擁壁の変状が通行機能へ及ぼす影響について検討した。

2.1 降雨時の検討結果

擁壁高、水位及び背面土盛の内側摩角を変化させて試算した擁壁の変状によるすべり面（赤線）と路面への影響範囲（路幅からの距離）の結果を図-2に示す。

水位の影響が最も大きく、水位低の場合にすべり面は発生しない。

一方、擁壁高h=5m、内部摩角φ=30°のケースで、路面への影響範囲は、水位中で13.7m、水位で27.1mとなり、1年線もしくは2年線の広い範囲に影響を及ぼし結果となった。


図-2 擁壁の変状が路面に及ぼす影響の範囲（壁高 h=5m）

2.2 地震時の検討結果

擁壁高と滑動変位量の関係を図-3に示す。なお、背面土盛のせん断強度については、ひずみ軟化を考慮した場合についても試算を行なった。

図-3 地震時の擁壁高と滑動変位量の影響

同じ盛土高において擁壁高が高くなるとすべり円弧が深くなり滑動変位量が減少すること、ひずみ軟化を考慮した試算（内部摩角φ=30° とφ=35°にて比較）では締め固められた盛土のピーク強度が高い方が滑動変位量は小さいことを確認した。

2.3 弾塑性FEM解析の検討結果

擁壁高h=5mの滑動時の最大せん断ひずみ分布を図-4に示す。本試算より、擁壁高が低く路面からの離隔が大きい程、擁壁の滑動・転倒が路面に及ぼす影響が小さいことを確認した。

図-4 弾塑性 FEM 解析結果 (h=5m・滑動)

3. 擁壁・カルバート等の設計に関する整理

過去3年間の詳細設計の事例（直結）をもとに、従来の設計手法の適用が困難な大型擁壁（高さ8m超）および「道路土工カルバート工設計」に示される「従来型カルバート」の適用範囲外的事例を抽出し、設計における照査手法について整理した。

3.1 擁壁の設計事例

擁壁の構造形式や地盤改良の有無を考慮して事例を抽出し、照査手法を整理した。擁壁工指針に示された設計震度を用いた震度法による安定計算による照査事例が多く、ニューマーク法及びFEM残留変形解析は盛土設計以外では実施されていない。

3.2 カルバートの設計事例

場所打ち・プレキャスト、ボックス・門型・アーチなどに基礎地盤の改良の有無、基礎形式などを考慮して事例を抽出し、照査手法を整理した。「下水道施設の耐震対策指針」（平成26年日本下水道協会）に準拠した応答変位法の採用事例が多く、内空が本線やランプの事例では、床盤と構造物の非線形性を考慮した応答震度法や動的解析の適用例もあった。しかし、縦断方向の検討例および盛土による残留沈下、側方流動による地盤変状の影響を評価した例はなかった。

[今後の課題と成果の活用]

今後は、道路土工構造物の要求性能に対する設計法の確立のために、さらに被災メカニズムを分析し、変形性能照査手法等に関する検討が必要である。

これらの検討成果は、道路土工構造物技術基準に定められた要求性能に対応した設計法の構築に活用される。
道路特性に応じた舗装の要求性能に関する調査検討

Study on pavement serviceability requirement based on road characteristics

（研究期間　平成28年度～30年度）

道路構造物研究部　道路基盤研究室
Road Structures Department, Pavement and Earthworks Division

室長　久保　和幸
Head　Kazuyuki Kubo

主任研究官　谷口　聡
Senior Researcher　Satoshi Taniguchi

研究官　船越　義臣
Researcher　Yoshiomi Funakoshi

This study aims to promote performance specification and advanced techniques of pavement construction. This fiscal year, repair cycle on the actual road was investigated to verify the performance of each repair method, and overseas literature survey was conducted to grasp overseas situation of required pavement performance and so on. As these results, no deference was found depending on the repair cycle and breaking level. Besides, this study confirmed that cracking, rutting and IRI were general indicators even internationally.

[研究目的及び経緯]

本課題では平成13年6月に制定された「舗装の構造に関する技術基準」のフォローアップを行うため、舗装の要求性能に関する研究を実施し、舗装工事の性能規定を推進する他、舗装に関する新技術についても普及促進を図ることを目的としている。

平成29年度は、諸外国における舗装要求性能等の状況把握をするため文献調査、並びに補修工法別の性能を検証するため実験での修繕サイクルを調査した。

[研究内容及び研究成果]

1. 舗装の要求性能に関する海外文献調査

1.1 概要

舗装の要求性能に関する下記の各種項目について、海外文献調査を実施した。

① 維持修繕戦略（舗装の点検及び管理目標の設定／補修時における設計方法／維持修繕戦略の決定方法／維持修繕工法）

② 予防保全（意義、目的／タイミング／工法／効果）

1.2 調査対象地域の選定

調査対象地域は、国内外の調査資料の参照、文献・論文のインターネット検索により候補を複数抽出したうえで、調査項目を極力網羅し、個別調査項目に関する公表ベースの記載内容が具体的であると判断したドイツ（バイエルン州）、アメリカ（カリフォルニア州ロサンゼルス市）、ニュージーランドを選定した。

1.3 各国の舗装管理方法の調査結果

各国の舗装管理に関する調査結果を表1に示す。各国の点検項目でIRI、だち揺れ、ひび割れが評価項目として採用されており、世界的に見ても一般的であることが確認できた。また、予防保全についてはロサンゼルス市において、PCIと呼ばれる総合指標により舗装の状態を把握しているが、状態の悪い箇所を優先的に補修する方針から転換し、図1に示すように予防保全として予算配分を「維持（表面処理・オーバーレイ等）に80％」、「修繕（打換え等）に20％」としている等の取り組みが行われており、2015年には対2005年比で「良い」状態の舗装が5%上昇する等の成果を挙げている。

表1　各国の舗装管理に関する調査結果

<table>
<thead>
<tr>
<th>国名</th>
<th>舗装の状態</th>
<th>PCI</th>
<th>大変良い</th>
<th>良好</th>
<th>やや悪い</th>
<th>悪い</th>
<th>非常に悪い</th>
</tr>
</thead>
<tbody>
<tr>
<td>ドイツ</td>
<td></td>
<td>96～100</td>
<td>91～95</td>
<td>56～79</td>
<td>41～55</td>
<td>40以下</td>
<td></td>
</tr>
</tbody>
</table>

図1　予算配分計画の概念図（ロサンゼルス市）
2．舗装修繕状況及び補修工法別標準使用年数

2.1 概要
　　平成26年度に集計された「舗装工事データ」と「路面性状データ」をマッチングして「解析対象区間データ」を作成し、アスファルト舗装（以下「As舗装」）、ポーラスアスファルト舗装（以下「Po舗装」）について、補修理由や補修工法、道路特性の組み合わせて標準的な年数（以下、「標準使用年数」）等を整理した。

2.2 舗装修繕状況
　　表2に示すように、補修理由はAs舗装、Po舗装とも1 ～5位は同じで、1位は「ひび割れ」であった。Po舗装は、ひび割れ理由の補修延長割合がAs舗装より高く、かつわだち掘れ理由の補修延長割合は低い結果となっ

表2 補修理由の上位5工法と補修延長割合

<table>
<thead>
<tr>
<th>位目</th>
<th>As舗装</th>
<th>Po舗装</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ひび割れ(40%)</td>
<td>ひび割れ(48%)</td>
</tr>
<tr>
<td>2</td>
<td>厚層改修(22%)</td>
<td>厚層改修(25%)</td>
</tr>
<tr>
<td>3</td>
<td>むだに掘れ(19%)</td>
<td>むだに掘れ(8%)</td>
</tr>
<tr>
<td>4</td>
<td>占用復旧(2%)</td>
<td>占用復旧(3%)</td>
</tr>
<tr>
<td>5</td>
<td>平坦性(1%)</td>
<td>平坦性(2%)</td>
</tr>
</tbody>
</table>

*内は補修延長割合

交通区分別では、As舗装を例にとると、図2に示すようにN5,N6,N7交通では、補修に至る供用年数15年未満の割合が半数を超えていたことから、大型車交通量が多いほど、供用年数が短くなる傾向が見られた。

図2 交通区別の補修に至る供用年数別補修延長

累積割合（As舗装）

2.3 補修工法別標準使用年数の把握・整理

2.3.1 上位5工法
　　補修時に適用された上位5工法を抽出した結果を表3に示す。1位はAs、Po舗装ともに切削オーバーレイであり、As舗装の6割、Po舗装の8割を占めている。なお、2位以下はAs舗装とPo舗装で適用工法に違いが見られた。

表3 補修理由の上位5工法と補修延長割合

<table>
<thead>
<tr>
<th>位目</th>
<th>As舗装</th>
<th>Po舗装</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>切削OVL(63.2%)</td>
<td>切削OVL(79.1%)</td>
</tr>
<tr>
<td>2</td>
<td>厚層OVL(11.1%)</td>
<td>打換え(9.4%)</td>
</tr>
<tr>
<td>3</td>
<td>厚層改修OVL(10.3%)</td>
<td>表層・基層打換え(5.7%)</td>
</tr>
<tr>
<td>4</td>
<td>OVLO(9.7%)</td>
<td>OVLO(3.9%)</td>
</tr>
<tr>
<td>5</td>
<td>打換え(5.2%)</td>
<td>上層路盤打換え(2.0%)</td>
</tr>
</tbody>
</table>

*内は補修延長割合

2.3.2 補修工法別標準使用年数の把握・整理
　　補修直前の路面性状値との組み合わせで、解析ケースを設定し、各ケースの標準使用年数（補修に至る供用年数の平均的な値）を把握したところ、いずれの組み合わせも概ね10〜20年であることがわかった。表4参照

表4 補修工法別・ひび割れ等級別標準使用年数の把握（As舗装、切削オーバーレイ工法）

<table>
<thead>
<tr>
<th>ケース</th>
<th>空間設定</th>
<th>切削修繕の路面性状値</th>
<th>標準使用年数（年）</th>
<th>表層・基層打換え(年)</th>
<th>切削延長(年)</th>
<th>切削延長割合(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N5交通</td>
<td>ひび割れ(12%)</td>
<td>15.1</td>
<td>15.0</td>
<td>10.0</td>
<td>66.7</td>
</tr>
<tr>
<td>2</td>
<td>N6交通</td>
<td>ひび割れ(22%)</td>
<td>15.1</td>
<td>15.0</td>
<td>10.0</td>
<td>66.7</td>
</tr>
<tr>
<td>3</td>
<td>N7交通</td>
<td>ひび割れ(32%)</td>
<td>15.1</td>
<td>15.0</td>
<td>10.0</td>
<td>66.7</td>
</tr>
</tbody>
</table>

（注）D,C,B交通はそれぞれN7,N6,N5交通を指す

3．まとめ
　　舗装の要求性能等に関する海外の状況としては、ひび割れやわだち掘れ等の管理指標が世界的に見ても一般的であることや、予防保全重視の例が確認できた。また、国内の実文における修繕サイクルを調査した結果、大型車交通量が多いほど標準使用年数が短くなる傾向が見られた。
　　次年度は、構造特性毎に発生する舗装の不具合調査・整理する他、これまでの調査結果をもとに、舗装種別や道路構造に応じた舗装の要求性能等について検討を進める予定である。

【成果の活用】
　　研究成果については、舗装点検基準等の技術基準の改訂等に反映作業。
設計基盤地震動と地盤震動特性の評価手法の検討

Study on design bedrock earthquake motion and evaluation of ground shaking characteristics

（研究期間　平成27〜29年度）

道 路 建 築 防 災 研 究 室
Road Structures Research Institute

道 路 建 築 防 災 研 究 室
Road Structures Department

Earthquake Disaster Management Division

室 長
Head

片 岡 正 次 郎
Shojoji KOTOZUKA

研究官
Researcher

猿 渡 基 樹
Motoki SARUWATARI

研究員
Researcher

石 井 洋 頼
Yosuke ISHII

Design bedrock earthquake motion is required for seismic design based on ground-structure earthquake response analysis. This study aims to evaluate ground shaking characteristics during major earthquakes and propose design bedrock earthquake motions taking account of the characteristics.

【研究目的及び経緯】
既設道路構造物の耐震補強の際、地盤と一体での照査により合理的な補強設計が可能となるものがあることから、基盤面の地震動の特性値（以下、設計基盤地震動）の設定が求められている。本研究は、取得した強震記録の分析により地盤震動特性値を評価し、平成29年道路橋梁方策で規定されているレベル2地震動（以下、L2地震動）をはじめ、現行の耐震基準と整合する設計基盤地震動の提案を目的としている。

29年度は、予年度に提案したものを含めた設計基盤地震動の測定値を用いて地表面の地震動を算出した。さらに、地盤と橋を一体モデルとし、地盤一橋全体系での耐荷性能の照査を実施し、現行基準との整合を確認するとともに、照査の際に留意すべきパラメータの設定等を把握した。また、道路施設に設置された強震計の点検と地震記録の回収を行った。

【研究内容】
1. 地表面の地震動の評価
検討した地震動の加速度応答スペクトルを図1に示す。予年度提案した設計基盤地震動ケース1の他、ケース2およびL2地震動(1)種地盤)を用いて、それぞれ入力した際の地表面地震動のばらつきを確認した。
基盤面で得られている波形に対し、加速度応答スペクトルに一致するように振幅調整した入力波（以下、基盤地震動）を、27波作成した。それらを道路橋梁方策に示される耐震設計上の地盤種別1〜III種地盤の地盤モデル15ケースの基盤位置で作振させ、地表面地震動を算出し、解析結果をL2地震動と比較した。
2. 基盤地震動を用いた耐荷性能の照査
地盤と橋脚等で同時に地震観測を実施している橋梁

图1 検討した地震動の加速度応答スペクトル

(2)橋)を対象に、周辺地盤-基礎構造-橋脚-支承-上部構造系の動的解析モデル（以下、解析モデル）を作成した。検討対象の一つで、国総研で強震計を設置した杭基礎を有する橋梁の解析モデルを図2に示す。解析モデルは、地盤は平面ひずみ要素、橋の上部構造は線形ひずみ要素、杭基礎はファイバー要素でモデル化した。地盤の剛性変形特性は、N値より既往文献で提案されている算出式で求めた値を用いた。作成した解析モデルの再现性を確認するため、今年度対象橋梁で実測された強震記録を入力地震動とした地震応答解析を行った。さらに、算出した解析値が実測値に近づくように解析モデルを修正した。

基盤地震動(27波)を用いて、基盤位置で作動させる地震応答解析を行い、基盤地震動を用いた照査を実施した。地表面の地震動を算出し、解析結果をL2地震動と比較したほか、地盤と基礎構造物の地震応答に着目し、曲率等で現行の照査を満たしているか確認した。

【研究成果】
1. 地表面の地震動の評価
1)種地盤の地震動の解析結果を図3に示す。設計基盤地震動ケース1を用作動させた場合は、タイプI、IIとも固有周期0.8〜0.75付近でL2地震動と同等の値が得られた。1)種地盤のこのような固い地盤は、
図-2 検討対象とした解析モデル（右側一部省略、単位 mm）

図-3 東面の地盤モデルより算出した地表面の地震動の加速度応答スペクトル

図-4 実測された強震記録を入力地震動とした地震応答解析結果と実測値の比較（H29.11.11.13:38 宮城県沖）

各設計基盤地震動のケースごとで近似する傾向が得られ、III種地盤の場合で算出した地震動は図-3に示した結果よりばらつきが多かった。ばらつきの発生要因に、使用したIII種地盤のモデルで、地盤の長さ断面が大きくなる層がみられたことが挙げられる。最大せん断ひずみが大きくななる地盤では、パラメータの設定に留意する必要がある。

2．基盤地震動を用いた耐荷性能の照査

実測された強震記録を入力地震動とした地震応答解析を実施し、解析モデルの再現性を確認した。そして、支承の特性を踏まえ、実測値に近似するよう解析モデルのパラメータを調整した。解析結果と実測値の比較を図-4に示す。調整した解析モデルは、実際の地震応答をある程度再現できている。

基盤地震動の照査を行い、地表の地震動や杭の応答を算出した。設計基盤地震動ケースIを入力した際の杭の曲率での照査結果を図-5に示す。タイプI、IIの曲率とも終局曲率φを超えることがなく、最大でもφの60%～80%程度である。ただし、深度20～30m付近に着目すると、他の地層と比較して曲率が大きくなる箇所も存在する。これは、対象構造がIII種地盤に架橋されていることからも、1．の解析結果に同様、地盤の最大せん断ひずみが大きくなることが原因であると考えられる。基盤地震動を用いた照査は、地盤の最大せん断ひずみが解析結果に大きく影響を与えることが考えられ、解析時に最大せん断ひずみの影響を精度よく再現することが重要である。

27～29年度は、取得した強震記録の分析により設計基盤地震動を提案し、照査用に用いる際の留意点を考察した。今年度の成果を踏まえ、設計基盤地震動を用いた照査手法の提案に向け、以下の検討が必要である。

① 地盤の最大せん断ひずみを精度よく再現できるようにする地盤パラメータの把握

② ①を踏まえた地盤-杭全体系の照査用に用いた地盤パラメータの設定および設定に必要な地質調査の内容

③ 設計基盤地震動を用いた耐震設計の導入の影響

地球のパラメータの設定による解析結果の影響等、地盤震動特性的評価手法を取りまとめた上で、設計基盤地震動を用いた既設道路橋の照査法の体系化を行い、道路橋耐震補強便覧等に成果を反映する。
道路事業における入札・契約制度の改善効果の評価に関する検討

Study on the evaluation of improvement effect on the bidding and contracting system

（研究期間　平成 28〜30 年度）

社会資本マネジメント研究センター　社会資本マネジメント研究室
Research Center for Infrastructure Management Construction and Maintenance Management Division

室長　中尾 吉宏
Head, Yoshihiro NAKAO
主任研究官　菊池 友弥
Senior Researcher, Tomoya KIKUTA
研究官　鈴木 貴大
Researcher, Takahiro SUZUKI
研究員　尾浦 猛人
Researcher, Hiroki SHIMADA
交流研究員　大沼 孝之
Guest Research Engineer, Taieto OURA

Guest Research Engineer, Takayuki ONUMA

The Quality and Cost Based Selection (QCBS) has merits such as improvement of quality of infrastructures through the competition not only by price bidding but also by advantage of technical proposal. The objective of this study is to develop evaluation methods for improvement effects of the QCBS.

【研究目的及び経緯】
「公共工事の品質確保の促進に関する法律」の成立を契機に、国土交通省発注の工事では、平成 17 年度より総合評価落札方式を拡大し、現在では、ほぼ全ての工事で同方式を適用している。また、調査・設計等業務においても、平成 20 年度より発注方式の 1 つとして同方式を本格導入している。

国土技術政策総合研究所では、工事及び調査・設計等業務の入札・契約制度を研究しており、国土交通省の各地方整備局等から情報収集した入札・契約の実施状況をモニタリングすることにより、これまでの改善策の効果計測や、新たな課題の抽出等を行っている。本稿では、工事の入札・契約に関する動向、制度改善に向けた取組の分析結果を報告する。

【研究内容及び成果】
1. 入札・契約の実施状況

国土交通省発注工事においては、平成 19 年度以降は全ての直轄工事で総合評価落札方式が適用されており、平成 25 年度からは契約タイプを技術提案評価型（S 型、A 型）と施工能力評価型（I 型、II 型）大きく区分した運用を開始している。平成 28 年度の実施状況を図-1 に示す。契約タイプ別で最も多いのは施工能力評価型（II 型）の 6,041 件、続いて施工能力評価型（I 型）の 1,791 件であり施工能力評価型が総合評価落札方式適用工事全体に占める割合は 9 割を超えている。

2. 評価項目に関する分析

本稿では、より工事条件等に合った適切な技術力の評価項目等を検討するため、発注件数の大部分を占める施工能力評価型に着目し、評価項目（企業の能力等、技術者の能力等）やその配点（割合）、評価結果等に関する分析を行った結果を平成 29 年度成果の一例として報告する。

2.1 分析対象データ

対象データは、地方整備局等（各地方整備局、北海道開発局、内閣府沖縄総合事務局）の平成 26 年度〜平成 28 年度契約工事のうち施工能力評価型の主要 4 工事種

図-1　H28 年度の実施状況

図-2　評価項目別の採用率
2.4 評価項目の得点率と完成時の工事成績の関係

落札者の入札時の評価と完成時の工事成績の関係を図-5に示す。企業の能力等、技術者の能力等のいずれも入札時評価の得点率が高いほど完成時の工事成績が高まる傾向が見られることから、工事目的の品質確保に寄与する評価項目と考えられる。一方、地域精通度・貢献度については、入札時評価の得点率が高いほど完成時の工事成績が高まる傾向は見られないものの、地域のインフラを支える企業の育成・確保の観点から重要な評価項目と考えられる。

【成果の活用】

国土交通省発注の工事の入札・契約の実施状況について、年次報告としてとりまとめ「総合評価方法の活用・改善等による品質確保に関する懇談会」に報告するとともに、ウェブサイト上（http://www.nilim.go.jp/lab/peg/souyou_hinkakukon.html）で公表した。

また、今回の分析は、品質を確保しながら仕事の円滑化を図ることのできる評価項目を今後いかに取り入れていくかの検討等に活用していく。
CIM 展開のための 3 次元データ利活用の高度化に関する調査
Research on highly utilizes 3D data for spread CIM

(研究期間　平成 29～31 年度)

社会資本マネジメント研究センター
社会資本情報基盤研究室
Research Center
for Infrastructure Management
Information Platform Division

室長　関谷　浩孝
Head　Hirotaka SEKIYA
主任研究官　青山　憲明
Senior Researcher　Noriaki AOYAMA
研究官　川野　浩平
Researcher　Kohei KAWANO
交流研究員　北川　大喜
Guest Research Engineer　Daiki KITAGAWA

The Ministry of Land, Infrastructure, Transport and Tourism is working on the introduction and diffusion of CIM (Construction Information Modeling / Management). In this research, the authors study the inspection simulation of bridges, the management method of inspection results, and the information sharing of the entire construction production process.

【研究目的及び経緯】
国土交通省では、インフラの安全安心と建設生産性の向上を図るために 3 次元モデルを活用した建設生産システムを構築し、公共調達の品質向上、コスト縮減、維持管理の高度化を達成することを目標として、CIM (Construction Information Modeling / Management) の導入普及に取り組んでいる。具体的には、CIM 導入推進委員会を設置し、CIM の運用に関する基準として「CIM 導入ガイドライン」や「CIM 事業における成果品作成の手引き」等を策定してきた。

しかしながら、3 次元モデルの利活用については、設計・施工段階での利活用が進み、その有効性も確認されつつあるが、維持管理での利活用および建設生産プロセス全体で 3 次元モデルを円滑に利活用する方法やその有効性については、未だ十分な検証が行われていない。

そこで、本研究では、3 次元モデルの維持管理における利活用場面として、橋梁点検が確実に実施できる構造物の設計を支援する事を目的とした橋梁 3 次元モデルの点検等シミュレータや、橋梁点検の結果を効率的に管理するシステムの機能要件および運用案を検討する。また、建設生産プロセス全体で 3 次元モデルを情報共有する情報共有システムの機能要件および運用案について検討を実施するものである。

【研究成果】
主な研究成果の概要を以下に示す。

1) 点検等シミュレータの利用場面及び機能要件
点検等シミュレータの利用場面を表-1 に示す。また、点検等シミュレータが確認するべき項目の整理結果の抜粋を図-2、それに対応した機能要件の抜粋を図-1 に示す。
表-1 点検等シミュレータの利用場面

| 利用場面 | 設計者が、維持管理の点で設計の品質を証明する（点検路、点検口、点検作業査などの各方法で近接日報可能な範囲の分析を示すなど）。
| 再利、作業場面 | 道路管理者が、パトロールカーによる通常巡回や、作業を伴う定期巡回等に併せて可能なに従事する点検を確認し、実施出来ることを確認する。
| 設計者 | 点検作業計画の立案に利用する。

表-2 確認項目（一部抜粋）

<table>
<thead>
<tr>
<th>検討内容</th>
<th>確認項目</th>
</tr>
</thead>
</table>
| 橋梁点検法 | 橋梁の状況（歩道の有無、防護柵高さ等）
| | 設置位置の路面状況（歩道上は設置不可等）
| | 配置可能箇所の表示
| | 橋梁点検の稲荷範囲

(2) 点検結果をCIMモデル上で管理する方法の比較

本検討では、表-3に示す2つの比較例を作成した。これらの例では、点検結果をCIMモデル上で管理する方法の「外部リンク」と「モデル付与」との組合せを用いる。図-3に示される「構造全体」、「構成体全体」および「部材単位」の3つに分類し、それに対する「組合せ方法」および点検対象の「組合せ方法」によって大別した。

表-3 点検結果をCIMモデル上で管理する方法

<table>
<thead>
<tr>
<th>点検方法</th>
<th>ケース1</th>
<th>ケース2</th>
</tr>
</thead>
<tbody>
<tr>
<td>定期点検</td>
<td>頻付け方法</td>
<td>外部リンク</td>
</tr>
<tr>
<td></td>
<td>組合せ方法</td>
<td>クラス2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(構成体単位)</td>
</tr>
<tr>
<td></td>
<td>組合せ単位</td>
<td>クラス3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(部材単位)</td>
</tr>
</tbody>
</table>

図-2 橋梁の組付け単位（クラス構造）の例

(3) 建設生産プロセス全体での情報共有システムの利用場面及び機能要件

情報共有システムを利用する場面の整理結果を図-3、場面ごとに必要な機能要件の抜粋を表-4に示す。

図-3 情報共有システムを利用する場面の整理結果

表-4 場面ごとに必要な機能要件（一部抜粋）

<table>
<thead>
<tr>
<th>利用場面</th>
<th>必要な機能要件</th>
</tr>
</thead>
<tbody>
<tr>
<td>プロジェクト関係者の含め</td>
<td>受注者間での管理・提出を強化できること。 (例: 共有フォルダに類する機能)</td>
</tr>
<tr>
<td></td>
<td>関係者間でのコミュニケーションを円滑化できること。 (例:掲示板に類する機能)</td>
</tr>
<tr>
<td></td>
<td>発注者からの指示事項、受注者からの連絡事項をモデルに追記・共有できること</td>
</tr>
</tbody>
</table>

[成果の活用]

「建設生産プロセス全体での情報共有システムの利用場面及び機能要件」は、平成30年3月に公開した「業務性能における受注者間の情報共有システムの機能要件」に検討結果の一部を反映した。また、「点検等シミュレータの利用場面及び機能要件」、「点検結果をCIMモデル上で管理する方法の比較」は、今後は現場試行を通じて更なる検証を実施し、実務への反映を図る。
道路整備等の生産性向上に資するロボット及びICT技術の利活用に関する調査

Survey on utilization of robot and ICT technology that contributes to productivity improvement such as road construction

（研究期間　平成28～31年度）

社会資本マネジメント研究センター　室長　森川　博邦
社会資本施設高度化研究所　Head　Hirokuni MORIKAWA
Research Center　主任研究官　杉谷　康弘
for Infrastructure Management　Senior Researcher　Yasuhiro SUGITANI
Advanced Construction　研究官　川邉　好世
Technology Division　Researcher　Yoshitugu KAWABE

In this research, on high-density measurement point cloud data acquired in three-dimensional ground-breaking survey and three-dimensional work progress management, the specification of the software which processes data and the method to make effective use in supervision and inspection was considered.

【研究目的及び経緯】
国土交通省では、i-Construction策として、平成28年度からICT土工を、平成29年度からICT舗装工を導入している。これによりICT活用として、①3次元起工測量、②3次元設計データ作成、③2次元形状計測等の施工管理、④3次元データの納品の各段階でICT技術を活用することとしている。

本研究では、3次元起工測量や3次元形状計測等において使用される3次元座標計測技術のうち、高密度（10cm四方に1点以上）での座標計測が可能な、空中写真測量（無人航空機）やレーザースキャナーやと得した計測点群データについて、データ処理を行うソフトウェアの仕様や、監督・検査で有効活用する方法について検討を行った。

【研究内容・研究成果】
1. 多点計測技術を用いた出来形管理に関するソフトウェア要求仕様書等の作成
データ量の多い点群データを出来形管理に用いるためにはデータを処理するソフトウェアが必要である。そのため、必要な機能が搭載され、かつデータ処理プログラムのロジックが適正であるソフトウェアが必要である。そうした環境を整えるため、ソフトウェアに必要な機能について要求仕様を作成するとともに、ソフトウェアが適切に動作することを確認するためのサンプルデータ、確認手順等を作成した。

(1) ソフトウェア要求仕様書の作成
「地上型レーザースキャナーを用いた出来形管理要領（舗装工事編）」（以下「要領」という）に基づいて施工される舗装工事において、計測データを処理するためのソフトウェアが備えるべき機能を要求仕様として整理した。ソフトウェアは、点群計測ソフトウェア、出来形帳票作成ソフトウェア、出来高算出ソフトウェアで構成されている。それぞれのソフトウェアの機能及びデータの処理プロセスを図1-13に示す。舗装工事の出来形管理において特に注意すべきところは、(1)出来形管理を「厚さ」で管理する場合と、「標高較差」で管理する場合があること、(2)出来形管理の対象が、下層路盤、上層路盤、基盤、表層と層状にあること、(3)点群データから評価に使用する代表点を抽出する方法が複雑であること等がある。ソフトウェアベンダーがソフトウェアを作成する際に、これらの内容を適切に理解し、間違った解釈をすることがないように注意して仕様を整理した。

(2) 機能確認のためのサンプルデータの作成
サンプルデータは、ソフトウェアに入力する入力データ（図1-13で「入力」に該当するデータ）と、その入力データを要求仕様書に則て正しく処理した場合の正解値（図1-13で「出力」に該当する値や帳票）で構成されている。サンプルデータは、図4の道路設計に対して、実際の出来形を想定して計測点群データ等を作成した。計測点群データの一例を図5に示す。要領に従い、10cm四方に1点の密度で配置し、それぞれの点の3次元座標（x, y, z座標）を付与している。これらを出来形帳票作成プログラムで処理した場合の帳票の正解例は図6のようになる。

(3) 機能確認ガイドラインの作成
ソフトウェアベンダーの開発したソフトウェアが要求仕様を満たしているかどうかの確認は、開発者が
サンプルデータを使って自主的に行うことを想定している。そのため、サンプルデータの仕様や、サンプルデータを使った確認手順、チェックリストを作成した。理由に関するソフトウェアの機能要求仕様書（ICT技術工事編）として公表する予定である。

図-1 『点群処理ソフトウェア』の機能

図-2 『出来形帳票作成ソフトウェア』の機能

図-3 『出来高算出ソフトウェア』の機能

図-4 サンプルデータ（道路設計）

図-5 サンプルデータ（計測点群データ）

図-6 サンプルデータ（出来形管理帳票）

表-1 ソフトウェアの機能一覧

2. 監督・検査で活用するソフトウェアの検討
ICT活用工事では、3次元設計や3次元出来形管理が行われているが、監督員や検査官が確認するときには、図-6のような2次元（紙で印刷できる形式）の情報を活用されることが多い。監督・検査で3次元情報をタブレット等の情報機器で手軽で便利に使えるソフトウェアの機能について検討を行った。低限必要と考えられる機能を表-1に示す。

[成果の活用]
要求仕様等は、平成30年度に業界団体との意見交換等を行った上で、「多点計測技術を用いた出来形管
領域 5：美しい景観と快適で質の高い道空間を創出する
維持、修繕、小規模改築等における景観向上策の充実に関する検討

Study on Effective Improvement Method for the Good Road Landscape in Maintenance, Repair and Small-scale Reconstruction

（研究期間　平成 29～30 年度）

道路交通研究部　道路環境研究室

Room Traffic Department
Road Environment Division

室長　井上　隆司
Head　Ryuki INOUE
主任研究官　小栗　ひとみ
Senior Researcher　Hitomi OGURI

This research aims to provide more easy-to-use information on concrete landscape design methods related to road accessories in road maintenance, repair and small-scale reconstruction. The authors analyze effective landscape improvement measures and prepare a collection of ideas and tips for creating a good landscape and environment of the road while keeping costs low.

【研究目的及び経緯】

インバウンド観光の増加等を踏まえて、道路のデザインへの要請が高まっていることを受け、国土交通省では、平成 29 年 10 月に「道路デザイン指針（案）」の改定および「景観に配慮した道路附属物等ガイドライン」の策定を行った。地域にふさわしい道路空間の実現に向けて、植栽、照明、側溝等の道路附属物のデザインの改善が求められている。「道路デザイン指針（案）」等を現場において具実化するためには、今後事業の中心となる維持、修繕、小規模改築等について、道路附属物等に関する具体的なデザイン手法を、よりわかりやすく活用しやすい情報として示す必要がある。

そこで、本研究では、維持、修繕、小規模改築等における効果的な景観向上策を分析し、コストを抑えるための良い景観や環境を創出するための工夫やヒントをとりまとめるものである。

【研究内容】

平成 29 年度は、全地方整備局、北海道開発局、沖縄総合事務局および景観行政において先進的な取組みを行っている地方公共団体（20 団体）を対象として景観デザインの現状調査を行い、課題や取組み事例等に関する情報を収集した。また、学会等の景観賞やデザイン賞から、優良景観事例として評価されている道路景観デザイン事例を抽出し、そのうち 32 件を対象として、道路附属物における景観向上の工夫・ポイントを収集・整理した。これらの情報をもとに、維持、修繕、小規模改築等において良好な道路景観を創出するための景観向上策を整理し、コストへの影響や維持管理の容易さの観点から現場への適用性を分析した。

【研究成果】

1. 維持、修繕、小規模改築等における景観デザインの現状と課題

現状調査では、206 件の取組み事例を収集した。事例における取組みの背景は、①施設の経年劣化、②当該道路附属物等に関する基準の改定、③歩行者等の安全対策、④無電柱化に伴う施設の再整備、⑤市街地整備を目指した施設の再整備、⑥維持管理の省力化に伴う施設の再整備、⑦地域要望の 7 つに集約された。

整備対象の道路附属物は、防護樋が最も多く（33.2%）、工事種別では更新（47.6%）、新設（23.8%）が約 7 割を占めていた。整備内容を見ると、54.6%が道路附属物間のデザイン調整を実施した事例となっており、同種の道路附属物での形状の統一、色彩の統一、近接した道路附属物等との調整、道路管理者間の調整等があったことを示していた。実施体制については、75.7%が道路管理者単独の整備であり、他団体や地域との協働によるものは 23%となっていた。

事例から抽出された景観向上策は 18 項目あり、大きく「道路附属物等の色彩の工夫」、「安全、維持管理等との両立」、「道路附属物自体の小規模化、集約化、配置工夫」、「その他」の 4 つに分類された。それら景観配慮の観点から、収集した 206 事例を分類すると、「良い景観が創出されている事例」は 106 事例、「景観向上改善の余地がある事例」は 100 事例となった。

また、景観上の課題としては、「多数の施設による煩雑さ」、「施設等の見えの大きさによる压迫感、スケール上の違和感」、「物品の集積」、「散乱による煩雑さ（歩道橋の桁下空間等）」、「草木の繁茂」、「暫定供用時の粗雑な景観」の 5 つが整理された。
表1 景観向上の方向性（課題解決型）

<table>
<thead>
<tr>
<th>景観上の課題</th>
<th>景観向上策</th>
</tr>
</thead>
<tbody>
<tr>
<td>多数の施設による雑踏</td>
<td>・施設の集約化</td>
</tr>
<tr>
<td></td>
<td>・施設の整理・撤去</td>
</tr>
<tr>
<td></td>
<td>・道路附属物等の色彩の統一</td>
</tr>
<tr>
<td></td>
<td>・道路附属物等と沿道環境との色彩の調和</td>
</tr>
<tr>
<td>施設等の見えの大きさによる圧迫感、スケール上の違和感</td>
<td>・施設の小型化・小規格化</td>
</tr>
<tr>
<td></td>
<td>・道路附属物等の適切な塗り分け</td>
</tr>
<tr>
<td>物品の集積・散乱による雑踏</td>
<td>・枠下空間の整理</td>
</tr>
<tr>
<td>草木の繁茂</td>
<td>・他の部材、材料による代替</td>
</tr>
<tr>
<td></td>
<td>・管理方法の見直し</td>
</tr>
<tr>
<td>暫定供用時の粗雑な景観</td>
<td>・仮設の施設における丁寧な対応</td>
</tr>
</tbody>
</table>

表2 景観向上の方向性（良好な景観形成に資する手立て・工夫）

<table>
<thead>
<tr>
<th>良好な景観形成に資する手立て・工夫</th>
<th>景観向上策</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>景観配慮製品等の採用</td>
</tr>
<tr>
<td></td>
<td>・必要以上に目立たない色彩の採用</td>
</tr>
<tr>
<td></td>
<td>・効果的な色彩の使い分け</td>
</tr>
<tr>
<td>他の部材や施設による代替</td>
<td>・同種の他の形式や形状等への変更</td>
</tr>
<tr>
<td></td>
<td>・他の種類の施設への更新</td>
</tr>
<tr>
<td>既存施設、部材等の活用</td>
<td>・木材等の他の部材の利用、更新</td>
</tr>
<tr>
<td></td>
<td>・地域固有の部材の活用</td>
</tr>
<tr>
<td>設置位置の工夫</td>
<td>・歴史的な施設、部材等の保存活用</td>
</tr>
<tr>
<td></td>
<td>・既存樹木の保存活用</td>
</tr>
<tr>
<td></td>
<td>・工事残土の活用</td>
</tr>
<tr>
<td>地域との協働</td>
<td>・地域や道路外公共用地への設置</td>
</tr>
<tr>
<td></td>
<td>・道路空間内での設置位置変更</td>
</tr>
<tr>
<td></td>
<td>・枠下空間の有効利用</td>
</tr>
</tbody>
</table>

図1 施設の集約化
多数の施設配置による交差点部の雑踏な景観（左）も、道路照明と地点名、信号、標識等の集約化（右）により、個々の機能を損なうことなく、すっきりとした景観を創出できる。

図2 他の種類の施設への更新
無電柱化事業を合わせて、既設の横断防止柵（左）をポラード（右）に変更した例。形式の異なる施設に変更することで、必要な機能を維持しながら景観向上を図ることができる。
地域・住民との協働による効果的な道路の質の維持・向上に関する検討

Research on Implement of the Conservation Measures of Road Environment with Civic Collaboration

(研究期間 平成 29～30 年度)

This study focused on effective conservation measures of road environment with civic collaboration. Case studies and interview survey were conducted on actual situation of activities and information of reference and problems regarding collaboration between river / road administrator and civil society.

〔研究目的及び経緯〕
行政サービス及びそのニーズが多様化・複雑化する一方、道路構造物の維持管理費用の増大により維持管理費用の確保が厳しい状況であるため、継続的な維持管理が必要な環境保全対策のすべてを道路管理者だけで維持し続けることは難しい。そこで、地域の共有財産である道路の環境保全について、保全内容や地域の状況を踏まえ、地域・住民との協働による保全対策を検討する必要がある。

〔研究内容及び成果〕
平成 29 年度は、道路の環境保全の中でも、特に自然環境（動植物の生息地等）の保全に着目し、地域・住民との協働に関する事例収集や活動体へのヒアリングにより、地域・住民との協働を活用した道路環境保全に関する課題整理を行った。

1. 地域・住民との協働に関する事例収集
写真 1 に示すような動植物の生息環境保全をはじめとした取り組みを継続的に行っていくには、地域・住民との連携が有効であると考えられ、その具体的な方法の一つとして、道路協力団体制度やボランティア・サポート・プログラム等の活用が期待できる。そこで、上記 2 つの制度と、自然環境の保全を活動内容に含んでいる河川協力団体制度を対象として、地域・住民との協働に関する事例を収集し、その概要を整理した。

(1) 道路
道路協力団体として登録している全ての団体（26 団体）を収集対象とし、これらについて表 1 に示した観点から概要を整理した。なお、ボランティア・サポート

<p>| 表 1 事例を収集する際の観点（道路） |</p>
<table>
<thead>
<tr>
<th>観点</th>
<th>注目した理由</th>
</tr>
</thead>
<tbody>
<tr>
<td>活動が広汎</td>
<td>活動の幅を自然環境の保全まで広げることを検討するため。</td>
</tr>
<tr>
<td>緑化関係の活動</td>
<td>自然環境の保全を検討する上で、緑化の管理手法や体制等は重要な要素と考えられるため。</td>
</tr>
<tr>
<td>団体の活動年数</td>
<td>持続的な取り組みを検討するため。</td>
</tr>
<tr>
<td>企業主体の活動</td>
<td>経済活動として企業が取り組んでいる事例は、継続的に活動するための要素が含まれていると思われるため。</td>
</tr>
<tr>
<td>体系的な連携体制の有無</td>
<td>体系的な連携のノウハウや、スキームが参考となる可能性があるため。</td>
</tr>
</tbody>
</table>

動植物の生息環境保全
街道樹の維持管理
道路空間の写真
植栽活動

写真 1 道路環境の保全対策例
ト・プログラムについては、各団体（2,686 団体）の中から「活動内容が日本道路会議や国土技術研究会等で発表されている団体」「外部からの受賞歴がある団体」又は「積極的にホームページで情報公開している団体」を抽出したもの、主要な団体は道路協力団体へ移行していたため収集対象から除いた。

（2）河川

河川協力団体（248 団体）から主要な取り組みを抽出するため、「市民活動が盛んな活動団体が多い水系の団体」又は「外部からの受賞歴がある団体」を選定した。そして、これらの中でも「特に希少種等の保全に取り組んでいる事例」と、持続可能な環境保全を進めめるためのポイントとなる、「他主体との連携」、「地域主導への移行」、「活動による付加価値の創出」に着目し（表 2）、特徴のある 30 団体の概要を整理した。

表 2 事例を収集する際の観点（河川）
<table>
<thead>
<tr>
<th>観点</th>
<th>注目した理由</th>
</tr>
</thead>
<tbody>
<tr>
<td>希少種等の保全に取り組んでいる</td>
<td>活動内容が道路事業で参考となる可能性があるため。</td>
</tr>
<tr>
<td>他主体との連携</td>
<td>協力団体が他主体（自治体、学校、団体、企業等）と連携することで、活動の幅の広がりや持続性の向上が期待できるため。</td>
</tr>
<tr>
<td>地域主導への移行</td>
<td>管理者の取り組みではなく、地域主導の活動への移行することで、地域に密着した持続的な活動が期待できるため。</td>
</tr>
<tr>
<td>活動による付加価値の創出</td>
<td>活動を通じて新たな付加価値を生み出すことで、活動の活性化が期待できるため。</td>
</tr>
</tbody>
</table>

表 3 持続可能な自然環境保全を実現するための課題

<table>
<thead>
<tr>
<th>課題（留意点）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 いずれの活動も、背景に揺るがない “活動のモチベーション” がある。さらに、活動を引っ張る “キーパーソン” の存在も重要である。</td>
</tr>
<tr>
<td>2 適切に活動している事例での管理者の関わり方は、活動をサポートする程度である。</td>
</tr>
<tr>
<td>3 安定的な視点（活動推進）の確保は、持続的な活動のために重要である。</td>
</tr>
<tr>
<td>4 活動資金の確保は、安定的な人員確保や活動維持に寄与すると考えられる。</td>
</tr>
</tbody>
</table>

図 1 地域・住民との協働を活用する視点

[成果の活用]

地域・住民との協働による効果的な道路環境保全に関するガイドラインを作成し、効率的かつ効果的な道路環境保全を検討する際の基礎資料として活用する。

[出典]

1）道路協力団体制度（国土交通省 HP）
http://www.mlit.go.jp/road/kyoryokudantai/gaiyo.html
道路空間の利活用の持続的実施に向けた交通実態・効果把握に関する検討

Study on Traffic Actual Conditions and Effects for Sustainable Use of Road Space

（研究期間　平成 28〜29 年度）

道路交通研究部　道路環境研究室
Road Traffic Department　Road Environment Division

室長　井上　隆司
Head　Ryuji INOUE
主任研究官　小栗　ひとみ
Senior Researcher　Hitomi OGURI

This research aims to present a method of effective and efficient consensus formation to promote the utilization of road space. In order to facilitate consensus building, it is necessary to explain the realities of the traffic and the effect of utilization. Therefore, in this research the authors investigate cases of utilization of road space and create guidelines focusing on traffic impact and utilization effect.

[研究目的及び経緯]
国土交通省では、道路空間の利活用ニーズの高まりを受け、道路空間を活用した地域活動の推進に取り組んでいる。道路空間の利活用においては、地域住民・道路利用者・交通管理者等の多様な関係者が存在するから、関係者間の合意形成が課題となっている。
特に、合意形成において議論の焦点となることが多い交通への影響や利活用効果についての知見が蓄積されておらず、それらを含む合意形成を円滑に進めるための技術的知見の提供が必要である。
そこで、本研究では、道路空間の利活用促進に向けて、効果的・効率的な合意形成の進め方を提示することを目的とし、道路空間の利活用の実施事例から、合意形成における課題とその対策、交通への影響および利活用効果の把握手法等に関する技術的知見をとりまとめているのである。

[研究成果]
1. 合意形成における課題と解決ポイント
合意形成における課題は、「課題1：取組みに対する行政担当部局、および関係部局間での合意形成」、「課題2：取組みに対する地元関係者等との合意形成」、「課題3：道路管理者や警察との合意形成」、「課題4：費用負担・取組みの継続に関わる合意形成」の4つに大別される。このうち課題3、4は、道路空間利活用において道路使用許可および道路使用許可が必要となることから、最も基本的な事項となっている。特に警察からは、安全対策、責任の所在、トラブルへの対応方法の明確化を求めることも多い。この場合、協議を円滑に進めるためには、社会実験を通じて課題を検討し、合意形成を行うことが有効である。また、「道路協力団体制度」を活用することで、道路使用許可の手続きの簡易化できるとともに、警察との合意形成もスムーズに進むことが期待される。

2. 事業別・取組み主体別の事業導入・合意形成円滑化ポイント
道路空間利活用における事業導入の流れや合意形成の進め方、道路空間利用目的（事業分類）によって、また事業を発案・主導した主体が行政なのか、民間なのかによって大きく異なる。行政の発案・主導でオープンカフェを実施する場合の合意形成プロセスおよび合意形成円滑化ポイントを図1に示す。この場合、一定期間継続する「継続型」と月に1回、年に1回といった「イベント型」で合意形成プロセスが異なっている。
継続型では、まずその実施主体となる行政を含む事
3. 交通機能への影響の考え方と把握方法

道路空間の利活用にあたっては、占用物が歩行者を動
害を阻害しないことが求められることから、占用後
の歩道の有効幅員（2.0m以上）の確保や、占用物の配置
の工夫（植栽帯や道路附属物のデッドスペースを利
用）に留意する必要がある。

交通実態を把握する方法としては、利活用主体が自
ら調査を行うことを想定した場合、調査員による現地
計測とビデオを用いた画像記録による調査の2つの方
法がある。前者は、通行量の把握に加えて、細かな属
性や表情などの情報が取得できる一方、後者は、
再現性があり、歩行者の動向を把握できるので（図2）
などの特徴があるため、目的に応じた方法を選択する。
また、利活用の実施前にも、同様の調査を実施しておく
ことで、利活用による交通の変化をより明確に捉え
ることが可能となる。

4. 利活用効果の考え方と把握方法

利活用の効果は、「人への影響」「意欲の変化」
「商業活動の変化」「歩行者数の向上」
の4つの観点から、表1に示す項目に整理できる。

効果の計測方法としては、アンケート調査、ヒアリ
ング調査、実態調査（交通量調査等、ビデオ解析含む）
、実態調査（空き店舗数、放置自転車台数等）の
が存在する。例えば「滞留効果」では通行者数等の実態調査、
「地域経済形成効果」では周辺住民・事業者へのアン
ケート調査というように、効果項目・指標ごとに適し
た方法・対象（利用者、事業者、周辺住民、自治体）
を選択する。

なお、利活用実施後の実態調査・実態調査の実施や、
アンケート調査票の作成の工夫、自治体等が保有して
いる既存データの活用等により、利活用実施前後の比
較を行うことで、より適切な効果の把握が可能となる。

成果の活用

「道路空間の利活用促進のための効果的・効率的な
合意形成の進め方に関するガイドライン」は国経研資
料としてとりまとめ、関係者間での合意形成を円滑に
進めるための参考資料として活用を図る予定である。

図1 合意形成プロセスと合意形成円滑化ポイント
（オープンカフェ／行政発案／主導型）

図2 ビデオ画像をもとに描いた軌跡の例

表1 利活用における効果項目と指標
無電柱化事業の円滑化に関する調査
Research on facilitation of utility pole removal projects
(研究期間 平成 29〜30 年度)

道路交通研究部 道路環境研究室
Road Traffic Department
Road Environment Division

室長 井上 隆司
Head Ryuji INOUE
主任研究官 大城 温
Senior Researcher Nodoka OSHIRO
主任研究官 小栗 ひとみ
Senior Researcher Hitomi OGURI
研究官 光谷 友樹
Researcher Yuki MITSUTANI

For promoting further utility pole removal, this research aims to considering cost reduction of utility pole removal projects. In the cost reduction methods, there are easing regulation of buried depth, compact boxes, underground cables without pipes/ducts etc. We considered the application of the cost reduction methods in the three model cases (residential district, shopping district, scenic suburbs).

[研究目的及び経緯]
国土交通省では、道路の防災能力の向上、安全で快適な通行空間の確保、良好な景観の形成や観光振興等の観点から無電柱化を進めているが、欧州の主要都市では無電柱化が構成しているのに対して、日本の無電柱化は立ち遅れている。平成28年12月には「無電柱化の推進に関する法律」が公布・施行され、無電柱化への期待が高まっている。
これまで日本で実施されている電線共同溝では、整備費用が約5.3億円/km（電気・通信設備に係る費用を含む）と高く、無電柱化を推進するためにはコストを下げる必要がある。

[研究内容]
1. 低コスト化手法の課題の整理
無電柱化事業（電線共同溝、小型ボックス、直接埋設等）の設備（特殊部、管路、ケーブル、地上機器等）及び施工方法について、低コスト化を目指す際の課題となる事項を抽出し、無電柱化を実施する立地特性（沿道状況や道路構造）及び工程（埋設物探査、支障物件移設、管路・ケーブル敷設、特殊部・引き込み管・地上機器装置等）を踏まえ整理を行った。

2. 低コスト化手法のケーススタディ
整理した課題を踏まえ、低コスト化手法における効果及び適応した場合の課題を具体的に把握するため、ケーススタディを実施した。ケーススタディの対象は、電力・通信需要が少ない住宅地、電力・通信需要が大きい商店街及び電力・通信需要が少なく変化が小さい郊外の景勝地に関連する道路の3つのモデル地区とした。

図1 住宅地のイメージ
図2 商店街のイメージ
図3 郊外景勝地のイメージ

[研究成果]
住宅地、商店街、郊外景勝地の3つのモデル地区の特徴に応じて、これまでの一般的な無電柱化手法を用いたケース（従来方式）普及が進みつつある低コスト手法を活用したケース（低コスト案）これまでにない手法を用いて低コスト化を狙うケース（チャレンジ案）
の3ケースをそれぞれ検討した。

Ⅰ 住宅地における検討
住宅地では、電力・通信需要が少なく、自動車交通量も少ないことから、1管セパレート方式や小型ボックスなどケーブルを集約する管種とし、浅層埋設とし低コスト化を図った。

道路条件・沿道状況を踏まえ、低コスト案は、通信について1管セパレート方式を活用し、浅層埋設とする案とし、チャレンジ案は、樹脂製小型ボックスを活用する案として検討を行った。

それらの案において、コストが従来方式に比約3～4割削減される結果となった。なお、樹脂製小型ボックスの活用にあたっては耐荷重、耐久性、騒音・雨水対策などの検証が必要である。また、柱上機器の採用にあたっては位置や高さを工夫する等の観点への配慮が必要である。

住宅地の無電柱化事業において、下記の手法が低コスト化に有効であることが示唆された。

・浅層埋設とし、断面を集約する管材の使用
・柱上機器の活用

表1 住宅地における検討の概要

<table>
<thead>
<tr>
<th>主な施設</th>
<th>従来方式</th>
<th>低コスト案</th>
<th>チャレンジ案</th>
</tr>
</thead>
<tbody>
<tr>
<td>通信</td>
<td>1管セパレート管</td>
<td>通信・電力（低圧）</td>
<td>通信・電力（低圧）</td>
</tr>
<tr>
<td>（電力）</td>
<td>1管セパレート管</td>
<td>通信・電力（高圧）</td>
<td>通信・電力（高圧）</td>
</tr>
<tr>
<td>1管1条</td>
<td>1管セパレート管</td>
<td>1管1条</td>
<td>1管1条</td>
</tr>
<tr>
<td>（電力設備）</td>
<td>（電力設備）</td>
<td>（電力設備）</td>
<td>（電力設備）</td>
</tr>
<tr>
<td>（地上機（8基））</td>
<td>（地上機（8基））</td>
<td>（地上機（8基））</td>
<td>（地上機（8基））</td>
</tr>
</tbody>
</table>

工場費用 約2.8億円/km

工場費用 約1.7億円/km

工場費用 約1.6億円/km

Ⅱ 商店街における検討

商店街においては、電力・通信需要が多く、1管セパレート方式などケーブルを集約する管種活用は困難である。一方、自動車交通量は少ない。そのため、浅層埋設とし低コスト化を図った。なお、既存の通信管路の活用も検討した。

道路条件・沿道状況を踏まえ、低コスト案は、電力については浅層埋設とし通信については既存ストックを活用する案とし、チャレンジ案は、樹脂製小型ボックスを活用する案として検討を行った。

それらの案において、コストが従来方式に比約3～4割削減される結果となった。

事業地の無電柱化事業において、下記の手法が低コスト化に有効であることが示唆された。既存ストック

の活用にあたっては、管路の耐久性、ケーブルの入線可否、接続箇所および引込方法等、電線共同溝として活用できるか適切に評価することが課題となる。

・浅層埋設
・既存ストックの活用

Ⅲ 郊外景勝地における検討

郊外景勝地においては、電力・通信需要が少ないことから、1管セパレート方式などケーブルを集約する管種とし低コスト化を図った。また、需要変化が小さいことを踏まえ、通信・低圧ケーブルを直接埋設する場合による低コスト化についても検討を行った。

道路条件・沿道状況を踏まえ、低コスト案は、通信について1管セパレート方式を活用する案とし、チャレンジ案は、通信・低圧ケーブルを保護路肩に直接埋設する案として検討を行った。

それらの案において、コストが従来方式に比約1～2割削減される結果となった。なお、直接埋設方式については関係機関により技術検証が進められているところである。

郊外景勝地の無電柱化事業において、下記の手法が低コスト化に有効であることが示唆された。

・断面を集約する管材の使用

表3 郊外景勝地における検討の概要

<table>
<thead>
<tr>
<th>主な施設</th>
<th>従来方式</th>
<th>低コスト案</th>
<th>チャレンジ案</th>
</tr>
</thead>
<tbody>
<tr>
<td>通信</td>
<td>1管セパレート管</td>
<td>通信・電力（低圧）</td>
<td>通信・電力（低圧）</td>
</tr>
<tr>
<td>（電力）</td>
<td>1管セパレート管</td>
<td>通信・電力（高圧）</td>
<td>通信・電力（高圧）</td>
</tr>
<tr>
<td>1管1条</td>
<td>1管セパレート管</td>
<td>1管1条</td>
<td>1管1条</td>
</tr>
<tr>
<td>（電力設備）</td>
<td>（電力設備）</td>
<td>（電力設備）</td>
<td>（電力設備）</td>
</tr>
<tr>
<td>（地上機（3基））</td>
<td>（地上機（3基））</td>
<td>（地上機（3基））</td>
<td>（地上機（3基））</td>
</tr>
</tbody>
</table>

工場費用 約2.0億円/km

工場費用 約1.9億円/km

工場費用 約1.6億円/km

【成果の活用】

今後、本省、地方整備局で共有するとともに、「道路の無電柱化 低コスト手法導入の手引き（案）」に反映させ現場で活用する。
道路空間や地域特性に適応した道路緑化に関する研究

Study on road greening adapt to road space and regional characteristics

(研究期間　平成29〜30年度)

社会資本マネジメント研究センター　緑化生態研究室
Research Center for Land and Construction Management
Landscape and Ecology Division

室長　舟久保 敏
Head　Satoshi Funakubo

主任研究官　飯塚 康雄
Senior Researcher　Yasu o Iizuka

This study perceived growth characteristics of the typical street trees along with investigating the traffic hindrance caused by road revegetation. We created a trial CG model that shows tree allocation in order to prevent the traffic hindrance based on this data.

【研究目的及び経緯】
道路緑化においては、道路空間との適合性や植栽後の維持管理水準の設定が不適切と考えられる事例が報告され、植物の年齢の成長にともない道路利用者の見通しの阻害や通行障害等が発生している。このような状況の中で、平成27年3月31日に改定された道路緑化技術基準においては、道路交通機能の確保を前提として、緑化機能を総合的に発揮できる質の高い緑化を行うことにより道路空間や地域の価値向上を図ることとしている。
本研究では、現行の道路緑化技術基準に沿った観点に、道路交通機能の確保を前提として道路空間や地域特性に応じた質の高い緑化を行うための設計・管理手法を検討することを目的としている。

【研究内容】
1. 道路緑化に起因する交通障害の実態把握
道路緑化（植物）による交通障害（見通し阻害、信号や標識の視認阻害、防護柵等の接触、建築限界への越境、照明の照射障害、歩道の不整、緑化の持ち上げ等）について、現地調査により発生状況を把握した。発生状況の把握にあたっては、道路構造や緑化植物の配置や形状等を記録するとともに、どのような状況において障害が発生しているのかを図解した。さらに、交通障害の発生要因について植栽位置や維持管理等の状況から推察するとともに、交通障害の改善策を提案した。

2. 道路の植栽空間と植物の成長特性の整理
道路の植栽空間（地上部及び地下部）については、空調の大きさと植栽が競合する道路種類や道路附属物との関係を整理した。また、道路緑化に使用されている代表的な種（高・中木20種、低木及び地域植物10種）について、成長特性を解析しデータや文献等から整理した。

3. 道路交通に配慮した道路緑化モデルの作成
交通障害の実態把握及び植栽空間と植物の成長特性等の結果を基に、緑化機能を十分に発揮しながらも交通障害に配慮した道路緑化モデルをCGにより作成した。
道路緑化モデルは、土地利用状況（商業地域・住居地域、工業地域・観光地域等）を想定した道路幅員（広・標準・狭）と緑化タイプ（高木、中木、低木、被植植物の単独及び複合）を組み合わせ、植物の年齢成長と最小限の維持管理（剪定）を考慮しながら、植栽後５年、10年、30年、50年時点のものを作成した。

【研究成果】
1. 道路緑化に起因する交通障害の実態把握
交通障害は、①見通し阻害、②標識視認阻害、③信号視認阻害、④照明照射阻害、⑤建築限界越境、⑥架空ケーブル、⑦防護柵接触、⑧緑石持ち上げ・歩道不整、⑨歩行者通行障害、⑩隣接公園樹木との競合の10タイプが確認された（図-1）。
交通障害の発生要因は、主なものとして①樹木や道路附属物の配置が不適切、②植栽植種が交通空間に対して不適切、③不十分な樹木の維持管理が行われていた。さらに、この改善策としては、①設計時における交通障害の発生させない植栽配置、②道路附属物との配置調整、③植物の成長特性を踏まえた樹種選定、④維持管理時における適切な樹木剪定や道路附属物の補修等が考えられた。

図-1　木による見通し阻害の発生例
2．道路の植栽空間と植物の成長特性の整理

植栽空間と競合する道路標識や道路附属物等の配置を整理した結果を図-2に示す。関連法令においては、道路標識を設置する高さや自転車道の幅員等の一部の施設について具体的な位置や寸法が定められ、その他の道路附属施設については管理基準が定めている基準・ガイドライン類にて具体的な位置や寸法が定められているものの、平面配置については各施設との調整により決定するといった記述があることが多かった。

植物の成長特性は、対象種を以下のとおり抽出した。

高木・中木：イチョウ、ソメイヨシノ、ケヤキ、トウカエデ、モミジバラ、プラタナス、コブシ、トチノキ、カツラ、アキニレ、ユリノキ、ハナミズキ、ナナカマド、イロハモミジ、ヤマボウシ、クスノキ、クロガメモチ、シラカン、アラカン、ヤマモモ

低木・地被植物：ドウダンツツジ、アジサイ、シャリンドク、ポックスウッド、アベリア、ヒバリカム・ヒデコート、フッキソウ、ハイビャクシン、ヘデラ類、オカザサ

調査対象種毎に適する生育環境について整理するとともに、高・中木では推定樹種に対する樹木形状（樹高、胸高幹周、枝張り）のデータから成長予測式を導き、樹齢ごとの形状を推定した（図-5）。低木及び地被植物は、既存文脈や生産者へのヒアリング等をもとに経年成績による樹齢 10 年までの樹高について把握した。

3．道路交通に配慮した道路緑化モデルの作成

道路緑化モデル（C.G）は、土地利用状況に応じて作成した道路空間モデルに、極端な障害を発生させないための樹木配置を設定した位置に経年的に成長する樹木形状モデル（樹形タイプが円錐形、卵円形、球形、三角形の代表種）を作成して重ね合わせて作成した。

道路緑化モデルからは、歩道幅員や樹木形状の違いにより、樹木の成長段階（一時的なものも含む）において標識や信号の視認性を阻害するパターンが発生し、剪定による維持管理が必要となってくることが確認された（図-4）。

また、交通障害の実態調査により確認された視認性障害（イチョウの植栽間隔が狭いことにより発生）について、植栽間隔を広げた場合（8m→10m）の道路緑化モデルを作成し、視認性が確保できることを検証した（図-5）。

【成果の活用】

本調査結果は、道路交通の障害とならないための道路緑化の設計方法（樹種選定や配置等）としてとりまとめると予定である。また、樹形タイプや成長等に応じ、道路交通機能の確保と求められる緑化機能（景観向上にかかわる美しい樹形の維持等）を両立する適正な維持管理水準（剪定の頻度・時期・手法）を検討する際にも活用を予定している。

図-2 植物と競合する道路標識や道路附属物等の配置

図-3 樹木の成長予測の例（ケヤキ）

図-4 道路緑化モデルによる視認性障害の確認例（ハナミズキ：植栽 50 年後、歩道幅員：3m）

図-5 交通障害が確認された視認性障害の改善例
道路空間の機能拡充に効果的な設計手法に関する研究
Research on urban street design for functional and qualitative improvement of road space

（研究期間　平成29年度）
社会資本マネジメント研究センター　緑化生態研究室
Research Center for Land and Construction Management
Landscape and Ecology Division
室長　舟久保　敏
Head　Satoshi FUNAKUBO
研究官　西村　亮彦
Researcher　Akihiko NISHIMURA

This study aims to figure out key points for successful urban street design. The authors categorize the urban street design into 13 patterns according to their function and spatial composition, and examine domestic and foreign case studies to detect key points to be taken into account by those who try to put each design pattern in practice. The authors also make the logic model which shows the relationships between the contents, outputs and outcomes of a street reconstruction project, and propose a set of indicators to evaluate the effectiveness of a street reconstruction project.

[研究目的及び経緯]
近年、少子高齢化や人口減少社会の本格的な到来をはじめ、わが国の都市をとりまく社会情勢が大きく変化する中、市街地の道路空間について、空間再配分や施設更新、多目的利用等の空間再編を通じて、公共空間としての多様な機能をバランス良く発揮させることが求められている。

また、市街地の道路空間再編については、従来の3便益だけでなく、道路空間の機能拡充や質的向上が地域・まちに及ぼす効果を様々な角度から捉え、関係者に対するアカウンタビリティの確保、及び事業のさらなる改善に役立つことが重要である。

そこで、本研究では、市街地の道路空間について、多様化する新たなニーズに対応した設計手法を検討するに当たり、道路空間の機能拡充・質的向上が地域へもたらす多様な効果を評価する上で指標設定、及び効果計測の手法を検討した。

なお、各デザインパターン別の技術的な留意事項、及び効果発現のロジックモデルと評価指標の検討にあたり、関連分野の有識者との意見交換を実施した。

[研究の成果]
1．デザインパターン別の留意事項等の整理
市街地における道路空間再編に適用されるデザインパターンとして、1）歩行者優先空間の整備、2）歩車共存空間の整備、3）公共交通空間の整備、4）自転車走行空間の整備、5）沿道に協調した道路空間の整備の5分類、計13パターンを抽出した上で、国内外の事例の中から計画・設計上のアイデアを整理した。（図-1）

[研究の内容]
H29年度は、過年度収集した国内外における道路空間再編事例120件の中から、機能・空間形態に基づき13のデザインパターンを抽出し、各デザインパターンの採用にあたり考慮すべき各条件、期待される効果、計画・設計上の技術的な留意事項の検討を行った。

また、事業目的に基づく5つのシナリオ別に、道路空間再編の間隔アウトカム及び最終アウトカムの因果関係を整理したロジックモデルを構築するとともに、各アウトカムに適用される評価指標を抽出し、各指標の説明力とデータ入手の難易度について検討した。

図-1 道路空間再編における13のデザインパターン

1）歩行者優先空間の整備については、イベント時の使い勝手や駐車車の抑制に配慮した可動式ボラードや植栽プランナー等の活用、米国のパークレットを参考にしたウッドデッキ等の仮設的な装置を用いた歩道や停車帯の広場の利用など、新たな工夫が見られた。

2）歩車共存空間の整備については、欧州で広まりつつ
つあるシェアドスペースの概念等を取り入れながら、
舗装パターンによる視覚的な狭さ・ハブ・シケイン等を採用し、自動車と歩行者の円滑で安全な交通を
確保する様々な工夫が見られた。（図-2）

3）公共交通空間の整備については、サイドリザベーション方式による接続駅間の強化や、限られた歩道
空間を有効活用できるテラス型停留所の採用など、公
交通の利便性を高める工夫が見られた。（図-2）

4）自転車走行空間の整備については、コペンハーゲンやロンドンのサイクルスーパーハイウェイをはじめ、
自転車による広範な移動を確保するための専用レーン
によるネットワーク計画や、関連施設のトータルデザ
インによる利便性の向上等の工夫が見られた。

5）沿道と整備した空間整備については、沿道の民地
や河川・公園等の他施設と道路を一体的に整備するた
めの新たな事業手法が見られた。

歩行共存空間の整備における自動車走行速度を抑制するための工夫
舗装パターンによるイメージ狭さ
地上機器を上手く活用したシケイン
バス停と連結したLRT停留所の配置
テラス型バス停による空間の確保

図-2 計画・設計上のアイデアの例

2．道路空間再編の事業評価の指標と計測手法の整理

道路空間再編がもたらす効果を体系的に整理するに
あたり、国内外における道路空間再編事例のレビュー
に基づき、道路空間再編の取り組みを事業目的に基づ
く5つのシナリオに整理した。（図-3）

図-3 道路空間再編の5つのシナリオ

各シナリオについて、具体的な施策と中間アウトカ
ム、最終アウトカムの因果関係をフローチャートで示
したロジックモデルを作成した。（図-4）

図-4 シナリオ別のロジックモデルの例

また、各シナリオの間のアウトカム、最終アウトカ
ムとして整理した項目を、利便性・快適性、地表活性化
、安全性・健康、環境、行政施設効率化の5分野に
類型化するとともに、各項目に適用される具体的な評価
指標を抽出・提案した上で、各指標の説明力とデータ
入手の難易度を3段階に格付けた。（図-5）

図-5 シナリオ別の具体的な評価指標の例

[成果の活用]

デザインパターンについては、行政職員や民間の技
術者をはじめとする道路デザインの実務者と、機能拡
充・質的向上に効果的な道路空間再編を検討する上で
参照できる、手引き形の技術資料をとりまとめた。

効果計測については、事業主体向けに、評価の基本
的な考え方と、道路空間再編のシナリオ別に評価指標
と計測方法を解説した技術資料の素案をとりまとめた。
領域 6：交通事故等から命を守る
交通事故発生状況に関する統計データ分析

Statistical Data Analysis of Traffic Accident

（研究期間 平成29～31年度）

道路交通研究部 道路交通安全研究室
Road Traffic Department
Road Safety Division

室長 小林 宽
Head Hiroshi Kobayashi

主任研究官 池原 圭一
Senior Researcher Keiichi IKEHARA

研究官 木村 泰
Researcher Yasushi KIMURA

This study looks at the incidence of traffic accidents over recent years based on traffic accident databases and so on, summarizing changes in traffic accidents over the years, summarizing accidents according to road conditions, type of accident, persons involved, and the like, and analyzing trends and characteristics of traffic accident incidence.

【研究目的及び経緯】
平成29年の交通事故死者数は58万4,541人（前年比−2万7,036人）、交通事故死者数は3,694人（前年比−210人）となり、近年は減少傾向が続いている。
一方、第10次交通安全基本計画では、平成32年までに交通事故死者数を2500人（交通事故死傷者数は50万人）以下とすることを目標とされており、更なる交通事故削減に向けた取り組みが求められている。

本研究は、今後の道路交通安全施策を展開するための基礎資料をすることを目的として、近年の交通事故発生状況の傾向・特性に関する分析を行うものである。

【研究内容】
近年の交通事故発生状況について、交通事故データベースをもとに、交通事故の経年変化や、交通事故に関する道路状況別、事故類型別、当事者別の集計を行い、交通事故発生状況の傾向・特性に関して分析を行う。今年度は、表1に示す30の集計項目について分析を行った。以降、主に歩行者や自転車に関する分析結果を中心に紹介する。

【研究成果】
(1) 事故類型別の死亡事故数の経年変化
 図1に、事故類型別の死亡事故数（死亡事故件数/死傷事故件数）の経年変化を示す。車両単独事故の死亡事故率については、減少傾向が続いていたものの、平成20年頃を境に急上昇していることがわかる。今後、車両単独事故に着目した詳細分析を実施する必要がある。

(2) 歩行者横断事故における年齢層別・事故類型別事故件数の経年変化
 図2に、歩行者横断事故における歩行者年齢層別・事故類型別の死傷事故件数のH19～H23までの経年変化を示す。高齢者の事故が大きく減少している一方で、高齢者（65歳以上）の横断歩道横断中の事故がほとんど減っていないことを把握した。
(3) 歩行者横断中事故における歩行者年齢層別・事故類型別の死傷事故件数の経年変化

図 2 歩行者横断中事故における歩行者年齢層別・事故類型別の死傷事故件数の経年変化

(4) 年齢層別・事故類型別の自転車関連事故の死傷者数

図 4 に、年齢層別・事故類型別の自転車関連事故の死傷者数（H28）を示す。非高齢者（高校生、19 歳～64 歳）及び高齢者（65 歳以上）ともに出会い頃事故が多いのは共通しているが、左折時事故と右折時事故を比較すると、非高齢者の場合は左折時事故の方が多く、高齢者の場合は右折時事故の方が多い傾向にあり、非高齢者と高齢者で事故の起こりやすい傾向が異なる。今後、非高齢者と高齢者の自転車関連事故におい

で、当事者別の行動類型等に着目し、事故発生状況の詳細分析を実施する必要がある。

図 4 年齢層別・事故類型別の自転車関連事故の死傷者数

(5) 自転車対歩行者事故の歩行者年齢層別・自転車交通量ランク別の死傷事故件数

交通事故統合データベースを用いて、自転車対歩行者事故を歩行者年齢層別・自転車交通量ランク別に整理した結果を図 5 に示す。これを観ると、歩道幅員には大きな影響を受けず、自転車交通量が 10,000 台/日を超えると自転車対歩行者事故が多くなることを把握した。

図 5 自転車対歩行者事故の歩行者年齢層別・自転車交通量ランク別の死傷事故件数（H23～H27 の合算）

[成果の活用]

本成果は、今後の交通安全施策を展開する際の基礎資料として活用が期待される。今後も本成果を踏まえた原因分析に加えて、引き続き交通事故発生状況の分析を行う。
生活道路の交通安全対策の導入推進に関する検討
Study about promoting traffic safety measures for residential roads

（研究期間 平成28～30年度）

<table>
<thead>
<tr>
<th>道路交通研究部</th>
<th>道路交通安全研究室</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Traffic Department</td>
<td>Road Safety Division</td>
</tr>
<tr>
<td>室長</td>
<td>小林 寛</td>
</tr>
<tr>
<td>Head</td>
<td>Hiroshi KOBAYASHI</td>
</tr>
<tr>
<td>主任研究官</td>
<td>大橋 幸子</td>
</tr>
<tr>
<td>Senior Researcher</td>
<td>Sachiko OASHI</td>
</tr>
<tr>
<td>交流研究員</td>
<td>川松 祐太</td>
</tr>
<tr>
<td>Guest Research Engineer</td>
<td>Yuta KAWAMATSU</td>
</tr>
</tbody>
</table>

To promote traffic safety measures for residential roads, it is important to take effective measures of reducing vehicle speed such as installing road humps. In March 2016, technical standards of installing humps, narrowings, chicanes were published, but many road managers lack know-how on installation methods and consensus building methods, and the support for sharing knowledge is necessary for promoting measures. Because of these reasons, this research aims to present how to make consensus of traffic safety measures for residential roads, and to clarify the effective way of installing humps, narrowings, chicanes not mentioned in detail in the technical standards.

This year, a draft of the case examples was written by the survey of information provision methods to residents at the time of installing humps, and the notes on installing intersection humps were summarized.

[研究目的及び経緯]

生活道路の安全確保に向け、全国の「生活道路対策エリア」をはじめとする各地域で交通安全対策が進められている。対策の実施にあたっては、車両速度を確実に低減させる凸部等の設置など実効性の高い手法の導入が望まれる。凸部等の設置については、平成28年3月に「凸部、狭帯部及び屈曲部の設置に関する技術基準（以下、「技術基準」）」が策定されたところであるが、各地域で具体的な設置手法や合意形成手法などのノウハウを十分に有しているとは言えず、対策推進のためには設置に関する知見の共有などの支援が必要である。

そこで本研究では、実効性の高い交通安全対策の導入推進を目指し、対策実施時の合意形成の円滑化に資する情報の整理、凸部等の発展的な設置手法の提示を行うものとする。

平成29年度は、対策実施時の合意形成円滑化に資することを目的に、ハング設置の際の住民への情報提供内容を調査し事例集としてとりまとめた。また、速度抑制と出会い頭事故軽減の効果が期待される交差点ハングの活用推進に向け、設置の際の留意事項をとりまとめた。あわせて、技術基準のフォローアップを目的に、生活道路対策エリアにおいて発出後約2年経過時点の技術基準の運用状況を確認した。

[研究内容]

1. 住民合意形成の円滑化に資する情報提供方法調査

生活道路対策エリアを中心に、実際にハングを設置した道路管理者に対し、対策検討の各段階で住民に提供した情報の内容、提供方法、及び、設置の際に技術的に工夫した点について、ヒアリング調査を実施した。これにより、合意形成の円滑化に資する情報提供の工夫を抽出整理し、道路管理者が活用可能な事例集案としてとりまとめた。

2. 交差点ハング設置方法調査

交差点ハングの適切な設置形態の提示に向け、盛り上げ方の異なる3種類のハング（図-1）を国交省内に仮設し、走行状況の調査を行った。走行状況調査は、乗用車や貨物車、自動車・自転車・軽乗用自転車などの走行車、車椅子・シニアカーなどの歩行者などにより行い、指定した位置を走行させ、ハングごとの状況を比較した。

[図-1 調査した交差点ハング]

63
3. 凸部等設置に関する技術基準運用状況調査

平成29年12月末時点で総数のあった生活道路対策エリア470エリアに対し、表1に示す技術基準の運用状況について調査を行った。

【研究結果】
1. 住民全会成形の円滑化に資する情報提供方法調査

合意形成の過程での情報提供方法について調査した結果を、事例集会としてとりまとめた。例えば、現況調査段階にはビッグデータ分析結果や動画を活用して意識の共有を図る工夫、計画策定段階には仮想型ハンプを使用して対策内容を伝えるあるいは体験できる工夫など、対策実施の各段階で効果と考えられる情報提供方法を示した。

2. 交差点ハンプの設置方法調査

乗用車・貨物車の走行状況を確認したところ、すべりやすさを低い状況も見られた。また、通常想定される走行速度での騒音・振動は、単路部のハンプを上回る状況は実測確認されなかった。自転車・原付・自動二輪については、衝撃力に比べてばれないも特別問題は確認されなかった。路面が濡れた状態でも同様に調査したが、特に問題が確認されなかった。シニアカー・軽二輪（自走）については、ハンプB、Cではハンプの入らない空間を確保したこともあるが、いずれのハンプでも単路部のハンプと比べてすべりやすさを低くするのに通じる上位の問題は確認されなかった。

これらの結果を踏まえ、交差点ハンプの設置方法の使い分けの資料とした。

3. 凸部等設置に関する技術基準運用状況調査

対象470エリアのうち、約8割にあたる370エリアから回答を得た。7割を超えるエリアで現況調査が実施されており、対策の実施も半数近くのエリアで行われていた（図3-2）。検討には現地動画結果、ETC2.0分析結果等が多くのエリアで使われており、ほとんどのエリアで役立ったと回答されており（図3-4）。また、実際に設置されたハンプの形状は、基準発出後はほとんどの地域で技術基準が参考に決定されたことが確認されるとも、多くが技術基準の標準形状と同様であったことが（図5-2）などが確認された。通学路の条件と関連するものを提供されるビッグデータ分析結果の活用など好意的が生まれていること、技術基準が各地域において対策実施に活用されていることを確認することができた。

【成果の活用】

「生活道路対策エリアにおけるハンプ設置事例集」の公表、「生活道路対策エリアにおける凸部等技術基準の運用状況調査結果」の公表を予定している。

表1 基準運用状況調査の内容

<table>
<thead>
<tr>
<th>調査項目</th>
<th>主な調査内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>計画</td>
<td>適定理由</td>
</tr>
<tr>
<td>対策の段階</td>
<td>対策エリアにおける検討の段階</td>
</tr>
<tr>
<td>調査・データ</td>
<td>利用した調査結果・データとその有用性</td>
</tr>
<tr>
<td>対策の種類</td>
<td>検討した対策の種類と検討結果、選定・非選定の理由</td>
</tr>
<tr>
<td>地域住民との連携</td>
<td>地域住民との連携した取組み</td>
</tr>
<tr>
<td>凸部・凸部等の構造</td>
<td>技術基準の参考の有無</td>
</tr>
<tr>
<td>構造</td>
<td>具体的な構造と設計模様</td>
</tr>
<tr>
<td>規格性</td>
<td>規格性に関する配慮事項</td>
</tr>
<tr>
<td>重視・積雪への配慮</td>
<td>積雪への対策事項、積雪への配慮事項</td>
</tr>
<tr>
<td>金額</td>
<td>交通安全対策全般</td>
</tr>
</tbody>
</table>

図2 二輪車の走行の様子

図3 生活道路対策エリアの対策の実施状況

図4 利用した調査結果・データと有用性

図5 設置されたハンプの形状
自転車通行空間の効果的な計画・設計に関する検討
Study on effective planning and design of bicycle traveling space

（研究期間　平成 28～29 年度）

道路交通研究部　道路交通安全研究室
Road Traffic Department
Road Safety Division

室長　小林 寛
Head　Hiroshi KOBAYASHI

主任研究官　尾崎 悠太
Senior Researcher　Yuta OZAKI

研究官　木村 泰
Researcher　Yasushi KIMURA

室長　瀬戸下 伸介
Head　Shinsuke SETOSHITA

交流研究員　大西 安樹
Guest Research Engineer　Hiroki ONISHI

In order to form a safe and comfortable bicycle passage space, NILIM are studying effective and efficient method of planning and designing bicycle passage space.
In this study, the authors examined the influence of overtaking behavior of bicycles on bicycle lane on automobile traffic etc., and examined the installation interval of rubber poles for measures to repress parking or stopping on the road in a bicycle lane.

[研究目的及び経緯]
平成 24 年 11 月に、国土交通省と警察庁が共に「安全で快適な自転車利用環境創出ガイドライン」（以下、「ガイドライン」）を発出し、自転車ネットワークの整備に向けた取り組みが本格的に開始された。しかしながら、自転車ネットワーク計画を策定した市区町村は一部に留まっている状況にある。こうした状況を踏まえ、平成 28 年 7 月には、安全な自転車通行空間の早期確保を目的としてガイドラインが改定された。加えて、同年 12 月には自転車活用推進法が成立、平成 29 年 5 月には同法が施行され、今後ますます自転車通行空間の早期確保に努める必要があるとともに、自転車の活用推進に向けた自転車利用環境創出が求められている。

本研究では、自転車専用通行帯における自転車同士の追越し挙動による自動車交通等への影響について交通流シミュレーションを用いて検討するとともに、自転車専用通行帯における路上駐車防止対策のためのゴム製ポール設置間隔について走行実験を行い検討した。

[研究内容]
1. 自転車専用通行帯における自転車同士の追越し挙動による自動車交通等への影響把握
自転車同士の速度差や自転車交通量により、自転車同士の追越し頻度は異なる。また、自転車専用通行帯の一般的な幅員は 1.5m であるため、自転車全同士の追越し時に、追越し自転車は自動車の車線を通行することになる。自転車同士の追越し頻度によっては、自動車交通（自動車の円滑性）等に影響を及ぼすことが想定される。そのため、今後の自転車活用推進による自転車交通量の増加を想定し、自転車専用通行帯における自転車同士の追越し挙動による自動車交通等への影響について、交通流シミュレーションを用いて検討を行った。

2. 自転車専用通行帯における路上駐車禁止対策のためのゴム製ポール設置間隔に関する走行実験
自転車専用通行帯の路上駐車禁止も考えられるものの、沿道店舗への荷捌き需要への対応も必要となる場合もある。そのような需要に応じ駐車スペースを設けるなどの対応も考えられるが、道路幅員が限られていることから、そうした対応が困難な場合も多い。そこで国総研では、ゴム製ポールを設置し、自転車専用通行帯における駐車防止の抑制手法について検討している。
このゴム製ポールを設置する際の設置間隔については、以下の点に留意する必要があると考えられる。
①自動車が駐車したくないと感じる設置間隔であること
②前方自転車又は駐車車両の追越し時等に支障に

65
ならないこと
③やむを得ず自車が駐停車をする際に、後続の自動車や自転車の通行に多大な影響を与えないこと
このうち、①と、②及び③については設置間隔の粗密により相異なる関係であることが想定されるため、
ゴム製ポールの設置間隔の違いにより自転車走行への影響及び、自動車利用者への駐停車抑制効果について
走行実験を行い、望ましい設置間隔について検討した。

３、自転車専用通行帯における自転車同士の追越し挙動による自動車交通等への影響把握
(1) 交通流シミュレーションの条件
交通流シミュレーションを実施した際の条件を表1に示す。なお、自転車の速度分布については、自転車
専用通行帯の整備路線（3路線）で観測を行った結果を基に設定した。また、自転車が前方の自転車を追越し
するか判断する際の後方自動車との間隔ギャップについて、自転車の利用者20名による簡易な走行実験を
行い設定した。具体的には、自動車が近づいてきている状況を見て、前方の自転車を追い越ししようと思う
限界距離を評価してもらい、その結果を基に設定した。

表1 交通流シミュレーションの基本条件

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>モデルウェア</td>
<td>VISSIM</td>
</tr>
<tr>
<td>自転車交通量（片側1時間あたり）</td>
<td>4ケース（100, 250, 500, 1,000台）</td>
</tr>
<tr>
<td>自転車交通量（片側1時間あたり）</td>
<td>4ケース（200, 500, 750, 1,000台）</td>
</tr>
<tr>
<td>自転車の速度分布</td>
<td>3路線での観測結果を基に設定</td>
</tr>
<tr>
<td>自転車の速度（実験区間速度）</td>
<td>50km/h</td>
</tr>
<tr>
<td>自転車専用通行帯の間隔</td>
<td>1.5m</td>
</tr>
<tr>
<td>区間延長</td>
<td>500m</td>
</tr>
<tr>
<td>自転車の基線速度（片側）</td>
<td>9m/s</td>
</tr>
<tr>
<td>自転車が前方の自転車を追い越すか判断する際の後方自動車との距離ギャップ</td>
<td>70m</td>
</tr>
</tbody>
</table>

(2) 交通流シミュレーションの実施結果
交通流シミュレーションの実施結果として、自動車の平均旅行速度を図1に示す。自転車交通量が100台
/hの場合、自動車交通量に関しては自動車への影響は見られず、自動車交通量が250台/h以上になると、自
動車の走行速度が下がってくることが分かった。

図1 自動車の平均旅行速度（区間延長500m）

２、自転車専用通行帯における路上駐停車抑制対策のためのゴム製ポール設置間隔に関する走行実験
(1) 走行実験の条件
走行実験の実施条件を表2に示す。各ケースを走行後、自転車及び自転車被験者にアンケート調査を行い、
走行状況等についてはビデオ観察により記録した。なお、ゴム製ポールの設置イメージを図2に示す。

表2 走行実験の条件

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>走行場所</td>
<td>道路施設等研究実施場所（横浜市）</td>
</tr>
<tr>
<td>ゴム製ポール設置間隔</td>
<td>1ケース（13.1m, 6m, 8m, 10m, 12m）</td>
</tr>
<tr>
<td>走行距離（1ケースあたり）</td>
<td>100m（自転車専用通行帯（5m幅）を挟む）</td>
</tr>
<tr>
<td>自転車被験者</td>
<td>72名（10歳代～60歳代）</td>
</tr>
<tr>
<td>自転車の走行ケース</td>
<td>サーチ（1）自転車速度で走行するケース、②自転車（乗用車及び自転車）に追越されるケース、③前方自転車を追い越すケース</td>
</tr>
<tr>
<td>自転車の走行ケース</td>
<td>サーチ（1）自転車速度で走行するケース、0.20mを挟むケース</td>
</tr>
</tbody>
</table>

図2 ゴム製ポールの設置イメージ

(2) 走行実験の実施結果
走行実験のアンケート結果を図3に示す。なお、ゴム製ポールを設置することにより、自転車走行時の安心
感の向上につながることも期待できることから、そのアンケート結果についても併せて記載している。自
動車が駐車しようと思うかは、設置間隔が8mで急激に低下した。自転車が前方自転車を追い越す時のゴム製
ポールの圧力感は、8mまで増加し、一定程度を感じなくなり、また、ゴム製ポールの設置間隔が狭くなること
により、自动車走行時の安心感が向上することも認
めた。従って望ましい設置間隔として8mとすることが考えられ、

図3 走行実験におけるアンケート結果

[成果の活用]
ガイドライン等の改定時における基準資料として活用していく予定である。
効果的効率的な交通安全マネジメントに
向けた手法・対策導入のための研究

Research on the introduction of methods and countermeasures for effective and efficient traffic safety management

（研究期間 平成 28～30 年度）

| 道路交通研究部 道路交通安全研究室 | 室長 | 小林 寛 |
|Road Traffic Department Road Safety Division| Head | Hiroshi KOBAYASHI |
| | 研究官 | 尾崎 悠太 |
| | Senior Researcher | Yuta OZAKI |
| | 研究員 | 川瀬 晴香 |
| | Research Engineer | Haruka KAWASE |
| | 交流研究員 | 川松 祐太 |
| | Guest Research Engineer | Yuta KAWAMATSU |

In this study, the method using big data for road safety countermeasures such as identifying dangerous areas, and measurement of effect is considered.

In this paper, applying big data to identification of dangerous areas was considered. And the characteristics of the emergency braking data included in ETC 2.0 probe information is grasped by analyzing the drive-recorder data.

[研究目的及び経緯]
交通安全対策を効率的・効果的に実施するためには、危険箇所の的確な抽出、正確な事故要因分析とそれに基づく的確な対策の立案・実施が必要である。

そこで国土技術政策総合研究所では、ビッグデータを活用し交通安全対策を効果的・効率的実施する手法を検討している。

ここでは、ETC2.0 プローブ情報を活用した道路事故対策エリアの候補となる事故の危険性の高いエリアを抽出する方法の検討を行った。また、ETC2.0 プローブ情報から得られる急減速の発生を示すデータ（以下、「急減速データ」という。）の特性を把握するため、ドライバーレコーダデータの分析を行った。

[研究内容]
幹線道路の交通事故は交差点等の特定の箇所に集中して発生する傾向が見られる。一方、生活道路の交通事故は、集中する傾向は見られず、分散して発生する傾向がある。この一つの要因として、生活道路の交通事故が箇所毎に見ると極めて稀な現象であることがある。この事故データのみでは、道路の事故の危険性を正確に評価することが難しい。

一方、急減速データは、事故を回避するための急ブレーキ等の事故の危険性を含む事故（以下、「危険事象」という。）を含むビッグデータである。この急減速データについては、既往の研究 1) により、事故の発生件数と急減速の発生回数に相関があることが示されており、事故の危険性を評価することができると考えられる。

また、これまでの生活道路における交通安全対策は、あんしん歩行エリア、ゾーン 30 といった幹線道路等で囲まれたエリア内で面的に交通安全施設の設置や交通規制を行う対策が実施され、一定の効果をあげてきた。そのため、対策を実施する箇所を選定するための事故の危険性的評価にあたっても、面的な把握を考慮して行うことが有効である。

そこで本研究では、急減速データを利用して、30km 四方程度の広範な範囲から事故の危険性の高いエリアを抽出する方法について検討した。

一方、急減速データには、信号停止のためのブレーキも含まれていることが考えられ、その点に留意して活用する、又は急減速データの中から危険事象を見極める等の対応が必要である。

そこで本研究では、急減速データの中から危険事象を見極める方法を検討するため、ドライバーレコーダデータを活用した危険事象発生時の道路交通環境及び加速度の大きさ等の特徴分析も行った。

[研究成果]
(1) 事故の危険性が高いエリアを抽出する際への ETC2.0 プローブ情報の活用

図-1 は 30km 四方程度の範囲の幹線道路を除く市道以下の道路における 1 年分の ETC2.0 プローブ情報から
得られる急減速データを地図上にプロットしたものである。このようなデータを基に事故の危険性が高い地域を絞り込む方法について検討した。急減速データはビッグデータであり、図-1のような点データの状態からでは多発する地域を絞り込むことは困難である。

そこで空間的な密度分布を推定する手法の一つであるカーネル密度推定を利用し、面的な拡がりを考え事故の危険性が高い地域を絞り込む方法について検討を行った。カーネル密度推定は、データ毎に同一の関数（カーネル関数）を設定し、すべての関数を合成した関数により、各地点のデータ密度を推定するものである。

図-2は、図-1で示した急減速データについてカーネル密度推定を実施した結果である。図-2より、点データの状態に比べて急減速発生地点の密度や拡がりを視覚的に捉えることが可能であり、事故の危険性が高い地域を絞り込むことができる。

ビッグデータを利用した上で、点データのまでは多発する地域を見つけることができないという問題点への解決策として、簡易で有効な分析手法の提案を行った。

(2) ドライブレコーダデータを活用した分析

個々のドライブレコーダデータの前方映像から、危険事象が否か、及び急減速が発生した場所の道路構造等を読み取った。表-1は急減速が発生した場所別（単路、交差点流入部、交差点内）に、危険事象が含まれる割合を示したものである。単路部と交差点内は9割以上であり、単路部と交差点内で発生する急減速は概ね危険事象であることが言える。一方、交差点流入部は约3割であり、危険事象ではない単なるブレーキである赤信号による停止や一時停止規制による停止が多く含まれることが分かった。このことから交差点流入部で発生される急減速データにも“単なるブレーキ”のデータが含まれていることが想定される。

図-3は、交差点流入部で収集されたドライブレコーダに限定し、最小加速度の大きさ別危険事象が含まれる割合を示したものである。最小加速度が小さくなると、危険事象が含まれる割合が高くなる傾向がみられる。このことから、交差点流入部で収集された急減速データのうち最小加速度が小さい(減速度が大きい)ものが危険事象である可能性が高いことが想定される。

【参考文献】
1) 川瀬ら：生活道路交通安全対策における対策エリア抽出へのETC2.0ブローブ情報活用に向けた研究、第32回日本道路会議論文集、第1033、2017

![図-1 急減速発生地点](image1)

![図-2 急減速データのカーネル密度推定結果](image2)

| 表-1 急減速発生地点の構造別危険事象発生割合 |
|----------------------------------|-----------------|--------------|
| 危険事象 | 1:単路部 | 2:交差点流入部 | 3:交差点内 |
| 1:単路部 | 3.54 | 2.73 | 9.3% |
| 2:交差点流入部 | 2.47 | 6.14 | 21% |
| 3:交差点内 | 5.05 | 3.82 | 94% |

指標①:最小前後加速度[G]

![図-3 最小加速度の大きさ別危険事象発生割合](image3)

68
路上交通安全施設の維持管理に関する検討

Study of maintenance management of roadside traffic safety equipment

(研究期間 平成29〜31年度)

道路交通研究部  道路交通安全研究室
Road Traffic Department  Road Safety Division

室長  小林 雪
Head  Hiroshi KOBAYASHI
主任研究官  池原 泰一
Senior Researcher  Keiichi IKEHARA
研究官  木村 泰
Researcher  Yasushi KIMURA

The base of poles etc. of roadside traffic safety equipment are the parts that deteriorate most with age, but the fact that they do not deteriorate uniformly and require a huge number of inspections makes it difficult to determine their condition from ordinary inspections and to find countermeasures. Considering the functions required of traffic safety equipment, this study summarizes the most effective inspection methods and countermeasures.

【研究目的及び経緯】
路上にある交通安全施設の支柱の地際部等は、横年劣化しやすい部位であるものの、一様には劣化しないこと、点検総数が膨大なこともあり、日常点検で状態を把握し、対策を取ることが難しい。本研究では、交通安全施設として求められる機能を踏まえ、有効な点検手法、対策手法をまとめるものである。29年度は、環境条件の厳しい路線を対象にして、施設の劣化状況を調査し、腐食が生じやすい部位の特徴等を整理した。また、実務上、簡易に点検できる手法を調査した。

【研究内容】
各種防護柵（ガードレール、ガードパイプ、ガードケーブル等）やポラードを対象に、日々の道路パトロール等の状況、施設の管理状況、実際の劣化状況などを整理するため、管理者ヒアリングと現地調査を行った。調査路線は、海岸に近接する3路線を散布する3路線とし、各路線の施設条件延長は5km程度とした。また、実務上、簡易に点検できる手法を調査し、現時点で適用可能性が高い手法については、試行して適用イメージを整理した。

【研究成果】
1）管理者ヒアリング結果
管理者ヒアリングを行った結果、防護柵の管理状況を中心にヒアリングを行った。管理台帳は、県道B以外は道路施設基本データ（MICHIデータ）により管理していた。ただしそれは、改修等による設定更新が対応していないことが多く、現地には異なる種類の防護柵が設置されていることがあった。この他にも、防護柵の更新計画を立てることのない状態を点検した。

2）現地調査結果
現地調査では、防護柵等の部位毎に「腐食」、「変形」、「ゆるみ・脱着」の程度を分類して整理した。今回の調査では、特に「腐食」の事例を多く収集することができ、写真1のように分類して整理した。
今回の調査から、腐食が進行している状態（腐食C,d）の部位を確認すると、支柱基部43%、支柱本体31%、プラケット（支柱とピームの接続部）24%となった（図1）。これも3つの部位は腐食が出やすいこと、ピームの各部位は腐食が出にくいことを一般傾向として把握した。

図1 腐食C,dと判定された部位の割合

支柱基部で特筆すべき状況として、コンクリート基礎に設置する場合、基部周りの保護処理としてモルタルシールとアスファルトシールがあり、アスファルトシールの方が腐食の進行が早まる可能性があることを確認した。アスファルトシールの場合は、早期に割れや風化が生じることがあり、その場合、基部に土砂がたまり植生が繁茂しやすく、長く水分を保持することで、腐食の進行が早まるおそれがあると考えられる。

支柱本体で特筆すべき状況として、腐食の出る方向を確認すると、海岸に近接する路線は、海からの主要な風向に面する側が腐食し、凍結防止剤を散布する路線は、車両の進行方向に面する側が腐食することを付着塩分の計測により確認した。また、海岸に近接する路線は、海岸からの距離が100m未満、路面標高が20m未満で腐食C以上の損傷が発生していた。しかしこの傾向は、設置後の経過年数の影響を排除できていないことから今後もデータの蓄積が望ましい。

その他にも、ポード等で囲むののあるデザインは、塗装が薄くなりやすいエッジ部が多くなることに加え、飛来塩分が堆積しやすく腐食が進行やすいことを確認した。歩行者自転車用柵は、部材同士を締め込んで接合する方法（旋合接合）を用いることが多く、部材間のすき間から塩分や雨水が浸入し、腐食が進行しやすいことを確認した。

以上を踏まえると、有効な対策としては、高耐食性を有する材料の使用や防錆・防食の強化が挙げられる。今回の調査は、環境条件の厳しい路線を対象としており、10年の経過年数で腐食c以上の損傷が確認された。しかしながら、現状は有効な対策の採用は行われていないことから、今後はライフサイクルコストを考慮し、有効な対策の選定方法を整理する必要がある。また、環境条件の厳しい路線では、腐食が生じやすい条件を取り除くことが不可欠であり、複雑な構造、意匠、装飾の製品は採用しないこと、コンクリート基礎の設置は地際が滞水しにくい処理（モルタルシーリング）を採用することが肝要と言える。さらに付着塩分の除去には、定期的な洗浄を行うことが望ましいと言える。

3) 簡易に点検できる手法の調査結果

防護柵等の点検、診断、記録の場面で、利用が期待される技術に関して調査した。

点検と診断に関しては、支柱埋設部の状態を評価するため超音波探傷技術が多く開発されている。しかししながら、現時点では、精度、時間、費用の面での課題があり、今後の技術の発展・改良が望まれる。

打音に関しては、コンクリートの損傷を評価する技術として広く活用されている。健全部と異常部の打音を機械学習して判別することで、防護柵への適用可能性も高いと考えられる。本調査において、鋼製ハンマーによる打撲とスマートフォンによる録音で試行したところ、支柱中部を打撲することで、植生に覆われて目視では発見できなかった穴あき支柱を打音感とピーク周波数の違いから判別することができた（写真2）。

写真2 打音による点検・診断イメージ

記録に関しては、パトロール時のビデオ撮影を想定し、車両にカメラを取り付け防護柵の撮影を試みた。

暗い環境、逆光、防護柵の両面、植生の背景は確認できないものの、効率的に防護柵の劣化状況を観察できることを確認した。画質は1080p（720HD）クラスで腐食を判別できること、車両速度は50km/hで走行し撮影しても腐食を判別できることなどを確認した（写真3）。

写真3 車両からのビデオ撮影状況

【成果の活用】

今後は、簡易に点検できる手法を試行し、同時に損傷状況データの拡充を図る。最終的には、実務で役立つ点検、診断、対策のノウハウをまとめることを予定である。
領域7：災害時における対応をスピーディかつ的確に支援する
雪による交通障害発生時の安全な交通確保に関する調査

Study of maintenance of traffic safety when traffic is hampered by snow

（研究期間 平成29年度）

道路交通研究部 道路交通安全研究室
Road Traffic Department
Road Safety Division

室長 小林 寛
Head Hiroshi KOBAYASHI

主任研究官 池原 圭一
Senior Researcher Keiichi IKEHARA

研究員 川瀬 晴香
Research Engineer Haruka KAWASE

This study investigates the incidence of stuck vehicles in order to summarize the trends in causes, challenges and solutions that should be shared nationwide, by setting out the features of regions, periods of time, vehicle models, roads, and the like.

[研究目的及び経緯]
近年の異常降雪による交通障害の発生を踏まえ、リスクの低減のための事前対応として、冬期道路管理における危機管理対策の導入が求められている。本研究では、登坂不能車の発生に関し、地域、時間帯、車種、道路の特徴等を整理することで、全国で共有すべき原因、課題、解決策の方向性をまとめ、安全な交通確保に資することを目的とした研究を行っている。29年度は、過去に発生した登坂不能車発生箇所データを用いて、登坂不能車が発生する特徴に関して整理を行った。

[研究内容]
登坂不能車が発生する特徴を整理するため、全国の国道事務所の管理路線で発生した登坂不能車発生箇所のデータ（23～28年度、合計4,578箇所）を分析した。使用したデータには、発生日、時間、距離、道路、車種、タイヤ、天候、気温、路面状況等が収録されている。

[研究結果]
登坂不能車が発生する特徴に関して、主な分析結果を以下に示す。
1)年度別・地域別発生傾向（図1）
年度発生件数は平均すると763件であり、年度により発生件数は大きく異なっていた。地域別に見ると、東北、北陸、北海道の順に発生件数が多く、東北は全体の34%、北陸は18%、北海道は14%を占めていた。これら3地域以外では、年度により発生件数のばらつきが大きく、例えば、中国は23年度と28年度、関東は25年度の発生件数が多い。近年は局地的な大雪が影響を大きく受けていることが観察される。

2)月別発生傾向（図2）
北海道、東北、北陸は、他の地域よりは各年の発生件数のばらつきが比較的小さいことから、この3地域の月別発生件数を比較した。北海道は12月の発生が多く、東北は12月から2月にかけての発生が多く、北陸は1月の発生が多い。これらは初冬期を迎えるタイミングなどの影響を受けていると考えられる。
図2 月別の登坂不能車発生件数

3) 時間帯別発生傾向（図3）

同様に、北海道、東北、北陸の時間帯別発生件数を比較した。北海道は8時台から15時台の発生が多く、東北と北陸は全時間帯で発生し、特に東北は深夜時間帯でも多く発生していた。これらは気温や降雪の他、日照時間帯、交通の特性などの違いを踏まえ、今後確認する必要がある。

図3 時間帯別登坂不能車発生件数

4) 気温別発生傾向（図4）

気温は、0℃～4℃の範囲で多く発生し、全国的に概ね同じ傾向であった。ただし、-5℃以下については、北海道と東北で割合を占めていた。

図4 気温別登坂不能車発生件数

5) 路面状態別発生傾向（図5）

その時の気温傾向からは、凍結路面が多い予想されるが、凍結は5%であった。これは除雪作業や凍結防止剤散布が影響し、路面状態は凍結以外の状態に変化していると考えられる。一方で圧雪は72%を占めており、この除雪作業や凍結防止剤の影響を受けた後の路面状態が圧雪に多く分類されているのではないかと考えられる。

図5 路面状態別の登坂不能車発生割合

6) 車種、タイヤ別発生傾向（図6）

車種は、大型車が最も多く全体の62%となった。タイヤは、不明データも多いが、スタッドレスタイヤではあるものの、チェーンは装着していない状況が多くなっていた。なお、ノーマルタイヤでチェーンを装着していないのは関東が最も多く、47%を占めていた。

図6 車種別発生割合、タイヤ別発生件数

7) 道路勾配別発生傾向（図7）

道路勾配は、5～6%台で多く発生し、全国的に同じ傾向であった。0%台でも比較的多く発生していた。

図7 道路勾配別登坂不能車発生件数

【成果の活用】

本研究で整理した登坂不能車の発生傾向は、「雪による道路構造・施設に関する調査」に成果を反映し、引き続き、解決策の方向性検討に役立てる。
雪に強い道路構造・施設等に関する調査

Study of snow-resistant road structures and facilities

（研究期間 平成 29〜31 年度）

道路交通研究部 道路交通安全研究室
Head
主研究者
Senior Researcher
研究員
Research Engineer

室長
小林 寛
池原 圭一
川瀬 晴香
Haruka KAWASE
Hiroshi KOBAYASHI
Keiichi IKEHARA

Considering the incidence of traffic obstructions due to abnormal snowfall in recent years, risk management measures need to be introduced into winter road management as a prior response to reduce risk. This study investigates the incidence of stuck vehicles in order to set out the causes, challenges, and the like that should be shared nationwide and to summarize the trends in finding solutions through road structure in particular.

【研究目的及び経緯】
近年の異常降雪による交通障害の発生を踏まえ、リスクの低減のための事前対応として、冬期道路管理における危機管理対策の導入が求められている。本研究では、登坂不能車の発生に関して、全国で共有すべき原因、課題等を整理し、特に道路構造上の工夫によって解決する方向性をまとめるための研究を行っている。

29年度は、北陸地方整備局管内で対象に、登坂不能車発生の基本的な傾向についてデータ分析を行うとともに、アンケートとヒアリングにより、発生箇所の状況を調査し、登坂不能の原因を整理した。

【研究内容】
平成23〜28年度に北陸管内で発生した登坂不能車発生箇所の994件のデータを分析し、登坂不能車発生の基本傾向を把握した。また、北陸管内の8出張所（30箇所）に対してアンケートとヒアリング調査を行い、各箇所の具体的な発生要因を洗い出し、その結果等を踏まえてツリー形式により発生原因を整理した。なお、8出張所の選定は、発生箇所の多い出張所を対象とし、各県1出張所以上となるように、地形、標高、道路勾配、車線数等を考慮して選定した。

【研究成果】
1）基本傾向の分析結果
データ分析の結果を図1に示す。北陸管内の発生時期は1月が多く全体の47%、路面の状況は圧雪が全体の63%、車種は大型車が全体の72%、装着タイヤ等は不明データも多いため、不明以外のデータの比率による傾向によれば、スタッドレスタイヤの割合とチェーン装着なしの割合が多くなっていた。

2）アンケート及びヒアリング結果
データ分析では、登坂不能の直接的な要因はわからないため、発生地点の詳しい道路状況や道路管理状況を含め、要因を把握するためのアンケートとヒアリングを8出張所に対して行った。その結果、登坂不能の原因となる絶対的な要因はなく、いくつかの複合的な要因があることを把握した。勾配等の道路構造上の理由による速度低下要因（①）、気象要因（②）、人的要因（③）などが重なることで登坂不能車が発生していると考えられる。加えて、仮に1台の登坂不能車が発生してもその横を後続車が追い越せるだけの余裕があれば被害はあまり拡大しないもので、すれ違いが困難であれれば渋滞につながることが多い。また近年は、局地的な異常豪雪で高速道路が通行止めになり、その影響で一般道の交通量が急増して大渋滞をまねくこともある。これら被災拡大要因（④）も無視できない重要な要因となっている。これら4つの要因を表1にまとめた。

参考として、最も基本的な速度低下要因のアンケート結果の内訳を図2に示す。急勾配と長い坂道の回答が
表1 登坂不全車発生の4つの要因

<table>
<thead>
<tr>
<th>要因</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 速度低下要因(道路構造要因)</td>
<td></td>
</tr>
<tr>
<td>a. 信号</td>
<td></td>
</tr>
<tr>
<td>b. 前端</td>
<td></td>
</tr>
<tr>
<td>d. 交差点</td>
<td></td>
</tr>
<tr>
<td>e. 信標</td>
<td></td>
</tr>
<tr>
<td>f. 前面</td>
<td></td>
</tr>
<tr>
<td>G. 前面</td>
<td></td>
</tr>
<tr>
<td>h. 交通量</td>
<td></td>
</tr>
<tr>
<td>i. 交通量</td>
<td></td>
</tr>
<tr>
<td>j. 交通量</td>
<td></td>
</tr>
<tr>
<td>k. 交通量</td>
<td></td>
</tr>
<tr>
<td>l. 交通量</td>
<td></td>
</tr>
<tr>
<td>m. 交通量</td>
<td></td>
</tr>
<tr>
<td>n. 交通量</td>
<td></td>
</tr>
<tr>
<td>o. 交通量</td>
<td></td>
</tr>
<tr>
<td>p. 交通量</td>
<td></td>
</tr>
<tr>
<td>q. 交通量</td>
<td></td>
</tr>
<tr>
<td>r. 交通量</td>
<td></td>
</tr>
<tr>
<td>s. 交通量</td>
<td></td>
</tr>
<tr>
<td>t. 交通量</td>
<td></td>
</tr>
<tr>
<td>u. 交通量</td>
<td></td>
</tr>
<tr>
<td>v. 交通量</td>
<td></td>
</tr>
<tr>
<td>w. 交通量</td>
<td></td>
</tr>
<tr>
<td>x. 交通量</td>
<td></td>
</tr>
<tr>
<td>y. 交通量</td>
<td></td>
</tr>
<tr>
<td>z. 交通量</td>
<td></td>
</tr>
<tr>
<td>A. 交通量</td>
<td></td>
</tr>
<tr>
<td>B. 交通量</td>
<td></td>
</tr>
<tr>
<td>C. 交通量</td>
<td></td>
</tr>
<tr>
<td>D. 交通量</td>
<td></td>
</tr>
<tr>
<td>E. 交通量</td>
<td></td>
</tr>
<tr>
<td>F. 交通量</td>
<td></td>
</tr>
<tr>
<td>G. 交通量</td>
<td></td>
</tr>
<tr>
<td>H. 交通量</td>
<td></td>
</tr>
<tr>
<td>I. 交通量</td>
<td></td>
</tr>
<tr>
<td>J. 交通量</td>
<td></td>
</tr>
<tr>
<td>K. 交通量</td>
<td></td>
</tr>
<tr>
<td>L. 交通量</td>
<td></td>
</tr>
<tr>
<td>M. 交通量</td>
<td></td>
</tr>
<tr>
<td>N. 交通量</td>
<td></td>
</tr>
<tr>
<td>O. 交通量</td>
<td></td>
</tr>
<tr>
<td>P. 交通量</td>
<td></td>
</tr>
<tr>
<td>Q. 交通量</td>
<td></td>
</tr>
<tr>
<td>R. 交通量</td>
<td></td>
</tr>
<tr>
<td>S. 交通量</td>
<td></td>
</tr>
<tr>
<td>T. 交通量</td>
<td></td>
</tr>
<tr>
<td>U. 交通量</td>
<td></td>
</tr>
<tr>
<td>V. 交通量</td>
<td></td>
</tr>
<tr>
<td>W. 交通量</td>
<td></td>
</tr>
<tr>
<td>X. 交通量</td>
<td></td>
</tr>
<tr>
<td>Y. 交通量</td>
<td></td>
</tr>
<tr>
<td>Z. 交通量</td>
<td></td>
</tr>
</tbody>
</table>

表2 速度低下要因の内訳

<table>
<thead>
<tr>
<th>要因</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>速度低下要因(道路構造要因)</td>
<td></td>
</tr>
<tr>
<td>a. 信号</td>
<td></td>
</tr>
<tr>
<td>b. 前端</td>
<td></td>
</tr>
<tr>
<td>d. 交差点</td>
<td></td>
</tr>
<tr>
<td>e. 信標</td>
<td></td>
</tr>
<tr>
<td>f. 前面</td>
<td></td>
</tr>
<tr>
<td>G. 前面</td>
<td></td>
</tr>
<tr>
<td>h. 交通量</td>
<td></td>
</tr>
<tr>
<td>i. 交通量</td>
<td></td>
</tr>
<tr>
<td>j. 交通量</td>
<td></td>
</tr>
<tr>
<td>k. 交通量</td>
<td></td>
</tr>
<tr>
<td>l. 交通量</td>
<td></td>
</tr>
<tr>
<td>m. 交通量</td>
<td></td>
</tr>
<tr>
<td>n. 交通量</td>
<td></td>
</tr>
<tr>
<td>o. 交通量</td>
<td></td>
</tr>
<tr>
<td>p. 交通量</td>
<td></td>
</tr>
<tr>
<td>q. 交通量</td>
<td></td>
</tr>
<tr>
<td>r. 交通量</td>
<td></td>
</tr>
<tr>
<td>s. 交通量</td>
<td></td>
</tr>
<tr>
<td>t. 交通量</td>
<td></td>
</tr>
<tr>
<td>u. 交通量</td>
<td></td>
</tr>
<tr>
<td>v. 交通量</td>
<td></td>
</tr>
<tr>
<td>w. 交通量</td>
<td></td>
</tr>
<tr>
<td>x. 交通量</td>
<td></td>
</tr>
<tr>
<td>y. 交通量</td>
<td></td>
</tr>
<tr>
<td>z. 交通量</td>
<td></td>
</tr>
<tr>
<td>A. 交通量</td>
<td></td>
</tr>
<tr>
<td>B. 交通量</td>
<td></td>
</tr>
<tr>
<td>C. 交通量</td>
<td></td>
</tr>
<tr>
<td>D. 交通量</td>
<td></td>
</tr>
<tr>
<td>E. 交通量</td>
<td></td>
</tr>
<tr>
<td>F. 交通量</td>
<td></td>
</tr>
<tr>
<td>G. 交通量</td>
<td></td>
</tr>
<tr>
<td>H. 交通量</td>
<td></td>
</tr>
<tr>
<td>I. 交通量</td>
<td></td>
</tr>
<tr>
<td>J. 交通量</td>
<td></td>
</tr>
<tr>
<td>K. 交通量</td>
<td></td>
</tr>
<tr>
<td>L. 交通量</td>
<td></td>
</tr>
<tr>
<td>M. 交通量</td>
<td></td>
</tr>
<tr>
<td>N. 交通量</td>
<td></td>
</tr>
<tr>
<td>O. 交通量</td>
<td></td>
</tr>
<tr>
<td>P. 交通量</td>
<td></td>
</tr>
<tr>
<td>Q. 交通量</td>
<td></td>
</tr>
<tr>
<td>R. 交通量</td>
<td></td>
</tr>
<tr>
<td>S. 交通量</td>
<td></td>
</tr>
<tr>
<td>T. 交通量</td>
<td></td>
</tr>
<tr>
<td>U. 交通量</td>
<td></td>
</tr>
<tr>
<td>V. 交通量</td>
<td></td>
</tr>
<tr>
<td>W. 交通量</td>
<td></td>
</tr>
<tr>
<td>X. 交通量</td>
<td></td>
</tr>
<tr>
<td>Y. 交通量</td>
<td></td>
</tr>
<tr>
<td>Z. 交通量</td>
<td></td>
</tr>
</tbody>
</table>

図2 速度低下要因の内訳

図3 登坂不全車発生の原因(北陸の沿線部&郊外の例)

【成果の活用】
本成果をもとに、今後は北陸を基準に他地域の登坂不能発生傾向(地域差)の把握等を行う予定である。また、各地の効果的な対策事例を収集し、事例を一般化するための検討を行う予定である。
災害発生時の被災規模等の早期把握技術に関する調査

Study on technologies of a damage survey on road in first stage after a disaster

（研究期間　平成27～29年度）

道路構造物研究部　道路地震防災研究室
Road Structures Department
Earthquake Disaster Management Division

室長　片岡 正次郎
Head　Shojiro KATAOKA
研究官　猿渡　基樹
Researcher　Motoki SARUWATARI
研究員　石井　洋輔
Research Engineer　Yosuke ISHII

When a large-scale earthquake occurs, it may take several hours or more to grasp the damage situation, in particular the damage occurs over a wide range and/or at night. For this reason, it is important to grasp the damage situation of the road at an early stage and enable prompt and efficient road opening.

In this study, for the purpose of grasping the damage situation and the scale of the affected area, the authors have examined and verified the early grasping technology focusing on road bridges which are difficult to recover quickly when the damage has become enormous.

【研究目的及び経緯】

大規模地震が発生すると、被災が甚大でその分布が広範囲にわたる場合や夜間に発生した場合など、被災状況の把握に数時間以上を要することがある。平成23年東北地方太平洋沖地震では、被災が甚大であった東北、関東地方は発災後数日まで多大な時間を要した。平成28年熊本地震では、最大震度、本震発生時とも夜間に発生したため、被災状況の把握を困難に感じた。このため、道路の被災状況を早期に把握し、迅速かつ効率的な道路開通を可能とすることが重要である。本研究は、被災状況や被災規模の把握を目的とし、道路施設のうち、被災が甚大となった場合に迅速な復旧が困難な道路橋を対象にした早期把握技術の検討及び検証を行ってきた。

平成27年度は、東北地方太平洋沖地震で発生した道路橋の被災状況の分析を行い、把握すべき道路橋の被災状況を整理、道路橋の被災状況把握システム（図-1）の構築及び構成するセンサが各被災の挙動を把握できるかの検証を実施した。さらに、直轄国道の実橋に試験設置した。平成28年度は、道路橋の被災状況把握システムが、熊本地震で発生した道路橋の被災状況を把握可能かどうか分析した。さらに、把握できない被災について、把握可能なセンサを追加で試験設置した。

本年度は、過年度の検討結果を基に、道路橋の被災状況と関連する関連値の設定方法を整理した。また、試験設備したセンサなどの劣化状況を把握し、原因に対する改善策を整理した。

【研究内容】

1. 被災状況を把握するための関連設定方法の整理

道路橋の被災状況、被災状況を把握するセンサ、車両が通行可能かどうか判断する関値の設定方法を、フローフォームで整理した。関値設定は、把握すべき被災状況を明らかにしたうえで、関値設定のための効率的な手法を機上調査や計算等により選定した。

2. センサの劣化状況把握及び改善策の整理

センサの性能向上を図るため、平成27年度より実橋に設置したセンサなどの劣化状況を把握し、考えられる原因及び改善策を整理した。

【研究成果】

1. 被災状況を把握するための関連設定方法の整理

被災状況に跟する関値の設定方法についてフロー形式で整理した（図-2）。ここで、車両が通行可能かどうか把握するための関値は、警告と注意の2種とし、警告
は車両通行不可能な状態、注意は損傷は生じているが
通行可能な状態とした。
把握すべき被災状況は、平成27年度に実施した被災
状況の実態調査結果を基に、橋台周辺の啓土下部、伸縮装置
の段差・遊間とした。
①橋台周辺の啓土下部
盛土下部の挙動に追随できるセンサを採用する。警
告の閾値は東日本大震災の被災事例から、注意の閾値
は橋梁整数点検要領における路面の損傷程度の評価区
分から設定する。ここで、東北地方太平洋沖地震によ
る橋梁の被災状況を分析した結果、踏板が設置さ
れている道路橋では、車両通行不可能な橋台周辺啓土
の啓土下部に注意されているが、このため、踏板が設置
されている道路橋では、橋台周辺啓土下部の啓土を把握す
るセンサは設置しない。
②伸縮装置の段差・遊間
橋梁の道路・橋梁方向（道路の進行方向）の変位を把
握できるセンサを採用する。橋梁方向は、警告の閾値
は軽自動車が通行不能となる乗り換え幅から、注意の
閾値は伸縮装置の設計伸縮量を設定する際に使用する伸
縮量簡単算定式から設定する。橋梁方向の閾値は、警
告、注意双方とも橋台周辺啓土下部を抑制するセン
サと同様の値を設定する。ここで、直線道でレが生じ
ても通行には支障がないこと。また、斜橋及び曲線
橋でレが生じた場合、橋梁方向の変位を抑制するこ
とで隙間を把握できることより、橋梁直角方向の変位
を把握するセンサは設置しない。
2. センサの劣化状況把握及び改善策の整理
平成27年度より実橋に設置したセンサ、監視局、AD
コンパータ、配管・ケーブルの劣化状況を現地確認し
、考えられる原因及び改善策を整理した。ここで、AD コンパータとは、アナログ信号をデジタル信号に変換す
る装置である。
センサは、ライナーの伸縮を感知する回転計に塩分
の付着及び錆が確認された。劣化原因是、試験装置設
置の実橋が海岸近くにあるため、小さな隙間からセンサ
内部への飛来塩分や水分の侵入と考えられる。そのため
、改善策は、海水近くに設置するセンサは、信頼に
加え、内部侵入を防ぐため防塵・防水機能を有するこ
ととする。
ADコンパータは、通信チップの損傷が確認された。防用電源のブレーカが切れて静止状態であったため、
劣化原因は、電池によるものと考えられる。そのため
改善策は、電力の中立電圧を伝導路へ放出させるため、複数の回路を有することとする。
配管・ケーブルは、曲げ半径が小さな配管で、亀裂
が確認された。そのため、改善策は、曲げが生じない
ように必要最小限の配管・ケーブル長とすること、曲
げが必要な場合は可能な限り曲げ半径を大きくするこ
ととする。
【成果の活用】
緊急輸送道路における主要な道路橋等システムの
活用を図るとともに、各地方整備局の道路開発計画に
反映させ、道路開発計画の高度化に貢献する。
道路橋の耐震補強効果の評価に関する調査
Study on effectiveness of seismic retrofit for highway bridges

（研究期間　平成28～30年度）

道路構造物研究部　道路地震防災研究室　室長　片岡　正次郎
Road Structures Department　Earthquake Disaster Management Division　Head　Shojiro KATAOKA
Earthquake Disaster Management Division　研究官　猿渡　基樹
Researcher　Motoki SARUWATARI

Damage to highway bridges caused by the 2016 Kumamoto earthquake has occurred in a wide range and various investigations have been carried out. There are highway bridges that are estimated to have been alleviated damages by seismic retrofit. In this study, in order to effectively carry out seismic retrofit of highway bridges, the effect of seismic retrofit that has been promoted mainly by directly controlled national highway is analyzed quantitatively and statistically.

[研究目的及び経緯]
平成28年度に熊本地震では、熊本県及び大分県の広い範囲で道路橋に多数の被害が発生した。これらの道路橋の被害は、様々な調査や分析がこれまで実施されてきており、耐震補強により被害が軽減されたと推定されている。そこで、本研究は、道路橋の耐震補強を効果的に進めることを目的として、これまでに直接地域等を中心に進められている耐震補強の効果を定量的、統計的に確認し、耐震補強橋梁に対する今後の耐震補強の進め方を検討するものである。

平成28年度は、熊本地震を対象に、道路橋の被害情報を、国土交通省、NEXCO西日本、熊本県及び大分県から収集した上で、道路橋被害の分析を行った。

本研究は、昨年度収集した情報のほか、熊本地震を対象に、震度6弱以上の市町村から収集した道路橋の被害情報を基に、道路橋被害の分析を行った。また、道路橋被害が緊急活動に及ぼした影響の分析を行った。

[研究内容]
1. 道路橋被害の分析

熊本地震を対象に、国土交通省、NEXCO西日本、熊本県、大分県及び両県下震度6弱以上の市町村（熊本県：10市9町2村、大分県：2市）が管理している道路橋を対象に、以下の①から④の情報を収集し、道路橋被害と適用基準や橋長等の関係を分析した。

① 構造諸元
② 熊本地震による被害状況
③ 耐震補強の実施状況（地震発生前）
④ 適用基準（当初建設、耐震補強実施）

2. 道路橋被害が緊急活動に及ぼした影響の分析

熊本地震を対象に、国土交通省、NEXCO西日本、熊本県、大分県及び両県下震度6弱以上の市町村の管理道路の通行止め情報、救急救命活動及び緊急輸送活動に関するヒアリングを実施した結果を基に、道路橋被害が緊急活動に及ぼした影響を分析した。

[研究成果]
1. 道路橋被害の分析

被災地B以上が生じた道路橋を対象に、適用基準と損壊部位の関係を整理した（図1）。ここで、適用基準は、耐震設計の基準改定ごとに分類し、平成8年度道路橋示方書以降（以下、I8道路示以降）、平成2年度道路橋示方書（以下、I2道路示、昭和55年度道路橋示方（以下、S55道路示、昭和46年道路橋耐震設計指針）に同解読（以下、S46道路示）とすることとする。被災度は、損壊内容を道路災害対策便覧に照らし合わせて、被害の程度ごとに区分したもので、大被害は被災地A、中被害は被災地B、小被害は被災地C、被害無しは被災地Dである。まず、部位ごとの耐荷力の被災度を評価する。道路橋の被災度は、被災度の最も大きさね部位の被災度とし、同じ被災度の部位が複数ある場合は、被災を引き起こした部位の評価結果を道路橋の被災度とする。

図1(a)から、基準ごとに占める橋梁数に違いはあるが、基準の改定に従って、被災地B以上が生じた橋梁数は減少傾向である。また、図1(b)から、各部位で損壊が生じているが、全ての適用基準で最も占める割合の大きい損壊部位は支承部であり、被災度B以上の橋梁のうち53橋と、6割近くを支承部の損壊が占めている。

ここで、支承部に被災地Aが生じた道路橋を対象に、道路橋対策の実施状況と桁の移動方向を整理し、耐震補強の効果を確認した（表1）。
表-1 落橋防対策の実施状況と桁の移動方向
（支承部が被災Aの道路橋）

<table>
<thead>
<tr>
<th>橋梁</th>
<th>横変位拘束</th>
<th>横変位拘束の施設</th>
<th>横変位拘束の施設</th>
<th>横の移動</th>
</tr>
</thead>
<tbody>
<tr>
<td>A橋</td>
<td>実施</td>
<td>実施</td>
<td>搖軸直角 (小)</td>
<td>搖軸直角</td>
</tr>
<tr>
<td>B橋</td>
<td>実施</td>
<td>実施</td>
<td>搖軸直角 (小)</td>
<td>搖軸直角</td>
</tr>
<tr>
<td>C橋</td>
<td>実施</td>
<td>実施</td>
<td>搖軸直角 (小)</td>
<td>搖軸直角</td>
</tr>
<tr>
<td>D橋</td>
<td>実施</td>
<td>実施</td>
<td>搖軸直角</td>
<td>搖軸直角</td>
</tr>
<tr>
<td>E橋</td>
<td>実施</td>
<td>実施</td>
<td>搖軸直角</td>
<td>搖軸直角</td>
</tr>
<tr>
<td>F橋</td>
<td>実施</td>
<td>実施</td>
<td>搖軸直角</td>
<td>搖軸直角</td>
</tr>
<tr>
<td>G橋</td>
<td>実施</td>
<td>実施</td>
<td>搖軸直角</td>
<td>搖軸直角</td>
</tr>
<tr>
<td>H橋</td>
<td>実施</td>
<td>実施 (損傷)</td>
<td>搖軸 (小)</td>
<td>搖軸直角</td>
</tr>
<tr>
<td>I橋</td>
<td>実施</td>
<td>実施 (損傷)</td>
<td>搖軸 (小)</td>
<td>搖軸直角</td>
</tr>
<tr>
<td>J橋</td>
<td>実施</td>
<td>実施 (損傷)</td>
<td>搖軸 (小)</td>
<td>搖軸直角</td>
</tr>
<tr>
<td>K橋</td>
<td>実施</td>
<td>実施 (損傷)</td>
<td>搖軸 (小)</td>
<td>搖軸直角</td>
</tr>
<tr>
<td>L橋</td>
<td>実施</td>
<td>実施 (損傷)</td>
<td>搖軸 (小)</td>
<td>搖軸直角</td>
</tr>
<tr>
<td>M橋</td>
<td>実施</td>
<td>実施 (損傷)</td>
<td>搖軸 (小)</td>
<td>搖軸直角</td>
</tr>
</tbody>
</table>

落橋防止構造が設置された7橋のうち、L橋では引っ張りによる破壊が確認されたが、落橋に至っていなかった。また、残り6橋でも、桁の移動により落橋防止構造に引っ張りがかかった。このため、支承損傷時に落橋を防止する構造として機能したことが確認された。

横変位拘束構造が設置された4橋のうち3橋では、損傷が生じていた。また、D橋では、横変位拘束構造に桁が接触していた。このため、橋軸直角方向の桁の移動を拘束する構造として機能したことが確認された。

2. 道路橋被害が緊急活動に及ぼした影響の分析

耐震補強の実施の有無による緊急活動への影響や影響を及ぼした道路橋の被害の分析を行い、耐震補強の効果の評価を進めるため、まず、道路橋被害が緊急活動の所要時間にどのように影響を及ぼしたか分析した。所要時間は、実際に緊急活動に用いた経路を対象に、民間プローブデータを用いた時間常別平均所要時間を算出し、最大となる値とする。

緊急車の走行距離の増加や速度の低下、医療機関への搬送時間の増加に繋がり、救命救急活動に与える影響は大きい。そこで、熊本地震前後の、熊本県南区における救命救急活動（緊急車を用いた病院への搬送）に用いられた経路の所要時間を整理した（図-2）。熊本南区における搬送先先は清生会熊本病院（災害拠点病院）であり、通常、南区高府町・城南町からの搬送は県道182号田迎木原線を用いる。

熊本地震により、県道182号田迎木原線の道路橋のうち、上部工の移動により支承に被災Bの損傷が生じ、通行止めとなったものがあった。さらに、近隣の道路橋でも通行止めとなる損傷が生じた。これらの道路橋は、いずれも耐震補強が未実施であった。そのため、道路橋被害が生じていない国道3号線まで迂回しなければならず、地震前の所要時間に18分のところ、地震後は約40分と2倍以上の所要時間を要した。

【成果の活用】

熊本地震を対象に、道路橋被害と適用基準や構造形式などの関係や緊急活動に及ぼした影響を分析し、耐震性の改善効果を明らかめた上で、道路の震災対策に関する技術基準等に反映する。
道路災害発生時の危機管理対応能力強化に関する調査

Survey on ability to respond to crisis management in case of road disaster

（研究期間 平成28～29年度）

道路構造物研究部 道路地震防災研究室
Road Structures Department Earthquake Disaster Management Division

室長 片岡 正次郎
Head Shojiro KATA OKA
主任研究官 今長 信浩
Senior Researcher Nobuhiro IMACHOU
研究員 石井 洋輔
Research Engineer Yosuke ISHI}

In the event of a large-scale earthquake disaster, swift removal of the road obstacles greatly affects first response to the disaster, such as grasping the damage situation, relief activities, transportation of emergency supplies, and so on. This report organized the issues of road obstacles in the event of a large earthquake disaster and proposed rubble intensity unit and calculation formula which are necessary for planning road opening operation. In addition, the authors also compiled examples of road opening using outside the road.

【研究目的及び経緯】
大規模震災時に道路管理者が早期に実施すべき行動の一つに道路関開作業がある。この作業を迅速、適切に実施するには、道路関開が容易な道路構造の把握、関開ルートや関開時間の設定、道路上を閉塞する瓦礫量の算定とそれに対応した人員、資機材の把握、さらには道工部内外を開関ルートの一部として実施する場合の形態等、法的根拠等を整理しておく必要があります。

本研究は、道路関開容易性の観点を考慮した道路の特性解析、沿道構造物密度・構造毎の瓦礫量原単位と算定式の構築、道路関開以外を関開ルートの一部として用いた事例等について調査を行った。

【研究内容】
1. 関開の容易性から見た道路の特徴整理
道路関開の難易度は、救援救急活動や震災後の復旧に大きな影響を与える。迅速な道路関開を実施するには、事前に関開の容易な条件について整理しておく必要があります。そのため、関西直下型地震や南海トラフ地震が懸念されている地域の道路管理者に対してヒアリングを実施、道路関開に影響を与える項目とその特徴について整理した。

2. 瓦礫量原単位の作成
道路沿道構物の倒壊等により発生する瓦礫は道路関開に影響を与える大きな要因の一つであり、道路管理者は自らが管理する道路沿道において発生が予想される瓦礫量を事前に把握しておく事が重要になる。そのため、沿道の構造物形式（木造、鉄筋コンクリート（以下：R C構造）、スチール（以下：S構造））とその混合程度及び構造密度（0%～100%）毎の瓦礫量原単位を作成した。

3. 道路用地以外を活用した関開事例と課題整理
大規模震災時、道路は瓦礫による閉塞や橋梁などの構造物損傷の要因により必ずしも活用可能とは限らない。

関開作業を迅速に進めるとには道路用地以外を活用した道路関開も考慮しておく必要がある。そのため、道路管理者へのヒアリング及び過去事例の収集等により、関西や河川敷などを道路関開ルートの一部として利用する事例等について整理した。

【研究成果】
1. 関開の容易性から見た道路の特徴整理
道路管理者に、ヒアリングの結果、道路関開に影響を与える項目は道路構造と、その道路が存在する地域特性、地形等に起因するものを分けた。表1に道路関開に影響を与える項目とその特徴を示す。この他、地震の発生時刻、強震回数、津波警報の発令等、動的要因も影響する。

<table>
<thead>
<tr>
<th>項目</th>
<th>環境要因</th>
</tr>
</thead>
<tbody>
<tr>
<td>位置・配</td>
<td>地震による影響型態の相関24</td>
</tr>
<tr>
<td>災害種</td>
<td>震災等、関連他の損壊型態等の関連保存性において変化</td>
</tr>
<tr>
<td>施設</td>
<td>未測定、既測定の影響観点における影響</td>
</tr>
<tr>
<td>地形</td>
<td>地震災害に与える影響の特徴的類型</td>
</tr>
<tr>
<td>沿道</td>
<td>沿道壊损関連の影響観点における影響</td>
</tr>
</tbody>
</table>

表1 関開に影響を与える項目と特徴

79
2. 瓦礫量原単位の作成

瓦礫量原単位は航空写真の実体視により求めた。ここで算出した瓦礫量原単位は、道路開発における時間や見積材量を算出することを目的としているため、建物倒壊により道路上を閉塞する瓦礫量とした。そのため、津波等により外部から運ばれくる瓦礫については対象外としている。

実体視として連続して撮影され脅警箇所を有している 2 枚の航空写真を平行して設置し、それを目視判読する手法である。この方法により物体の変容を読み取ることが可能である。また、発生瓦礫量 Vr (m³) は、瓦礫量原単位 q (m³/km) に道路延長 L (km) を乗じる事により求めた。使用したデータは阪神淡路大震災、東日本大震災、熊本地震時の航空写真約 400 事例とした。

表-2 に作成した瓦礫量原単位を示す。ここで、建物密度 0～20% は、道路に建物がほとんど建っていない状況を示しており山間部や郊外の道路では壁面に建物物が 1 ～数軒建っているような箇所が対象となる。また、RC・S 構造の建物が存在しその構成比率が5%を越えるような場所は、倒壊パターンと（壁面剥落など部分的な損傷と建物本体の倒壊）に大きく瓦礫量が異なる結果になったため、中央値の他、上限値、下限値も合わせて表示した。

表-3 は熊本県益城町において読み取りを行った瓦礫量推定値の瓦礫量実測に対する比を示したものである。個々の道路区間では瓦礫量推定値と瓦礫量実測値が大きな乖離が見られるものもあるなどばらつきがみられている。読み取りを行った道路の総延長である約 1.4 km と考察した場合には、瓦礫量推定値の瓦礫量実測に対する比が 0.7 程度と比較的高い再現性が得られている。対象とする延長を長くすると再現性が向上する傾向は実施した多くのケースで見られており、これらの結果を踏まえ、算定単位は 1 km 以上とするのがよい。

3. 道路用地以外を活用した啓開事例と課題整理

(1) 開発事例

道路管理者は原則として道路開発において民地や道路用地以外を活用することを想定していないが、道路密度が低い山間部等において道路閉塞が発生し付近に迂回路等が存在しない場合、他に開発ルートが存在しない場合など、実際の活用例や活用想定があった。

写真-1 は新潟県中越沖地震時に地滑りにより道路閉塞が発生した際、農地の一部を工事用道路に使用した例である。熊本地震においても被災県道の迂回路として道路側面の民地を活用した事例があった。また、活用想定として広域地方整備局で堤防等道路と河川を渡る名神高速道路に緊急開口部を設けて接続、災害時には堤防等道路を緊急輸送道路として活用する事例等があった。いずれの事例も道路開発を迅速に進めることを効果を有している。

(2) 課題整理

道路開発において道路用地以外を活用することは道路法第 42 条「非常災害時における土地の一次使用等」、土地取用法第 122 条「非常災害時の際の土地の使用」の適用により可能である。ただし、実施上の課題として、活用には土地所有者の確認作業が必要であり不在や所有者被災により確認作業が困難となることが整理された。そのため、事前に開発路線沿いの土地所有者の状況について調査を行うこと、使用について土地所有者と事前調整を行っておくことが重要となる。

また、土地の状況によっては竹木の撤去、それに伴う補償なども発生する可能性がある。

【成果の活用】

瓦礫量原単位、算定式を平成 30 年に四国地方で開催された南海トラフ発災会議に提出した。また本研究成果は道路の震災対策に関する技術基準等に反映する予定である。

表-3 瓦礫量と算定式による推定値の比率

<table>
<thead>
<tr>
<th>路線</th>
<th>道路延長</th>
<th>瓦礫量原単位</th>
<th>算定式推定値</th>
<th>算定式推定値の比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>上り</td>
<td>153</td>
<td>144.7</td>
<td>0.93</td>
</tr>
<tr>
<td>1-2</td>
<td>下り</td>
<td>143</td>
<td>144.7</td>
<td>0.93</td>
</tr>
<tr>
<td>2-1</td>
<td>上り</td>
<td>215</td>
<td>145.8</td>
<td>0.93</td>
</tr>
<tr>
<td>2-2</td>
<td>下り</td>
<td>215</td>
<td>145.8</td>
<td>0.93</td>
</tr>
<tr>
<td>3-1</td>
<td>上り</td>
<td>95</td>
<td>145.8</td>
<td>0.93</td>
</tr>
<tr>
<td>3-2</td>
<td>下り</td>
<td>95</td>
<td>145.8</td>
<td>0.93</td>
</tr>
<tr>
<td>4-1</td>
<td>上り</td>
<td>85</td>
<td>213.1</td>
<td>0.93</td>
</tr>
<tr>
<td>4-2</td>
<td>下り</td>
<td>85</td>
<td>213.1</td>
<td>0.93</td>
</tr>
<tr>
<td>全延長</td>
<td>上り</td>
<td>509</td>
<td>702.7</td>
<td>0.93</td>
</tr>
<tr>
<td>全延長</td>
<td>下り</td>
<td>509</td>
<td>702.7</td>
<td>0.93</td>
</tr>
<tr>
<td>道路総延長</td>
<td></td>
<td>805</td>
<td>1405.4</td>
<td>0.93</td>
</tr>
</tbody>
</table>

写真-1 農地の活用事例(2007年新潟県中越沖地震)
災害対応時の管理基準に関する調査
Survey on management standards at the time of disaster response

（研究期間　平成28〜30年度）

道構造物研究部　道路地震防災研究室　室長　片岡　正次郎
Road Structures Department　Earthquake Disaster Management Division　Head　Shojiro KATAOKA
主任研究官　今長　信浩　Senior Researcher　Nobuhiro IMACHOU
研究員　石井　洋輔　Research Engineer　Yosuke ISHIH

In order to secure road traffic in winter, a technique to properly grasp the situation of snow cover is needed. Also, it is important to organize the past snowfall conditions and cases of road snow damage, and to consider countermeasures at snowfall which is expected to occur. In this research, the authors have studied XMP radar, snowfall grasping technique with CMP radar, and snow damage knowledge recording the past road snow damage.

【研究目的及び経緯】
近年、局所的な豪雪等を原因とした道路交通被害が出資されている。冬期の道路交通を確保するには、積雪の状況を適切に把握する技術が必要となる。また、過去の降雪状況と道路交通への影響事例を整理、発生が予想される降雪時の対応を事前に検討することも重要である。本研究は、国土交通省が豪雪把握用途に整備しているXバンドMRーレープの降雪状況、Cバンドレーダー雨量計（以下、XRAINとする）による降雪把握技術の検討、過去に発生した道路雪害状況を記録した雪害ナレッジの整備について検討を実施したものである。

【研究内容】
1. XRAINによる降雪把握
Cバンドレーダー雨量計の日本データ補正技術であるダイナミックウィンドウ法による補正技術の適用について検討した。

2. 雪害ナレッジの記録
過去発生した道路雪害事故を収集し、気圧配置、気象状況、道路交通への影響、被害等について整理した。

3. 降雪予測に関する検討
道路降雪を行う際に重要となる情報を1つに除雪体制の構築や災害用等の判断に要する降雪予測情報がある。降雪は大気の振る舞い、地形の影響等、複雑な要因が絡み合って発生するためXRAINの情報（雲の移動速度、方向）等予測が難である。そのため気象庁短時間降雪予測データに雪水比による補正を加え6時間先までの降雪予測について検討した。

【研究成果】
1. XRAINによる降雪把握
平成28年度の検討におけるXRAINによる降雪検知は降雪有無については概ね把握可能であるが、量については大きな変動を生じることが確認された。本年度は、レーダー雨量計の補正技術の1つであるダイナミックウィンドウ法を用いて降雪量補正を実施した。

図-1は2016年1月24日16時における長岡市～新潟市にかけてのXRAINデータにダイナミックウィンドウ法による補正を実施した結果である。また図-2は同日時間の気象庁雨量データを示したものである。ダイナミックウィンドウ法適用後は長岡市から新潟市にかけて分布する3mm〜5mmの降雪が現れられている。解析は本データ以外の6地点でも実施、いずれも同様の補正効果が確認された。この結果からXRAINの補正においてもダイナミックウィンドウ法は一定の効果を有していると判断される。

2. 雪害ナレッジの整備
道路除雪を適切に実施するには、前述の通り降雪やそれに伴う雪害状況を適切に把握することが重要であるが、道路雪害が発生する気象パターンには一定の特性がある。この気象パターンと実際に過去発生した道路雪害をデータベースとして整理し、類似の気象パターンが観測された場合、道路雪害の発生予想地域（地方整備局など）に早めの情報提供を行うことにより、道路管理者は予想される道路雪害に対して備えることが可能になる。そのため、過去（約50年程度）に発生
した道路雪害の状況、その際の気象パターン等を整理した雪害ナレッジを構築した。図-3に雪害ナレッジ例（抜粋）を示す。この雪害ナレッジのデータを横断的に分析することにより時間積雪量と道路雪害状況の関係等の分析等、様々な気象と道路雪害の関係分析が可能となる。

3. 降雪予測に関する検討

道路管理者が除雪などの道路管理行動を実施する場合、最も重要となる情報は数時間先の降雪予測情報である。しかし、現在のXRAINは降雪予測機能を有していない。また降雪は雲の動きや地形の影響等により時々刻々変化するためXRAINのみの情報による移動予測では限界がある。そのため、気象庁短時間降水量予報データを雪水比により補正し、6時間先までの降雪短時間予測を行う可能性について検討した。図-4左は、2016年1月24日、新潟地区における9時時点の降水量現況である。図-4右は、同日3:00の現況データを用いた6時間後の気象庁短時間降水量予報データを、雪水比により補正したものである。降雪位置と降雪量の状況は、完全に一致しないものの概ね同様の傾向で予測可能なことが確認された。しかし、この予測結果の再現性は、気象庁短時間降水量予報モデルの精度が大きく影響する事から、複数の地点におけるデータ解析を実施、再現性を整理、それに対応した除雪等への活用形態について検討を行う必要がある。

【成果の活用】

本研究成果はふゆとぴあ2018富山、国際冬期道路会議（PIARC2018）等で発表した。また、平成30年度に北陸雪害対策センターが主催する冬期道路管理に関する会議において公表し、道路管理者間で情報共有を図る予定である。

図-1 ダイナミックウィンドウ法による補正
（左：補正前、右：補正後）

図-2 気象庁雨量計
（アメダスデータ）

図-3 雪害ナレッジ(一部)

図-4 気象庁短時間降水量予報の雪水比による補正例
（左：現況、右：予報）
道路の雪対策に係る国際的な比較調査

Study on countermeasures against snowfall on road of other countries

（研究期間 平成29〜30年度）

社会資本マネジメント研究センター
建設経済研究室
Research Center for Infrastructure Management
Construction Economics Division

産業技術前途研究・開発

室長 小俣 元美
Head Motoyoshi OMATA
主任研究官 竹本 典道
Senior Researcher Norimichi TAKEMOTO
課長補佐 大城 秀彰
Deputy Head Hideaki OSHIRO
研究官 齋藤 貴賢
Researcher Takayoshi SAITO

The purpose of this study is to propose useful countermeasures against snowfall on road. In this fiscal year, overview survey on overseas winter road management method, management level etc. and case study in urban area was conducted. Additionally, correspondence relationship with winter road management method, management level etc. in Japan and in other countries was organized.

【研究目的及び経緯】
地域により気候条件、社会条件が多様な我が国の積雪寒冷地では、これまで様々な雪対策が講じられ、道路除雪水準が向上することで地域発展に寄与してきた。
一方、財政的な制約や積雪寒冷地での社会構造・生活様式の変化により、地域での冬期の道路の適切な除雪管理の水準設定や維持が求められている。本研究は、海外で行われている多様な道路の雪対策と住民ニーズ及び住民負担の実態を調査し、我が国の適用可能性を検討した上で、有用な雪対策を提案することを目的とする。

【研究内容】
1. 諸外国における冬期道路の管理方法、管理水準等の概要調査
2. 都市における事例調査
3. 我が国の冬期道路の管理方法、管理水準等との対応関係整理

【研究成果】
1. 諸外国における冬期道路の管理方法、管理水準等の概要調査
   冬期における諸外国の幹線道路、生活道路、歩道それぞれについて、道路の管理主体、行われている管理方法と管理水準、管理委託の形態と評価方法、道路管理の住民の関わり方、経済性・費用負担方法について概要調査を行った。
   冬期の気象状況は国や地域によりそれぞれ特徴がある。したがって、冬期の気象状況の特徴を踏まえた上

で、調査対象として11カ国を選定した（表1）。

<table>
<thead>
<tr>
<th>選定国</th>
<th>冬期の気象状況の特徴</th>
</tr>
</thead>
<tbody>
<tr>
<td>アメリカ、カナダ</td>
<td>降雪量が多い地域が存在する</td>
</tr>
<tr>
<td>フィンランド、アイスランド、ノルウェー、スウェーデン</td>
<td>降雪量が多く、目の雪は低く、路面凍結が発生する地域も存在</td>
</tr>
<tr>
<td>オーストリア、ベルギー、フランス、ドイツ、イタリア</td>
<td>降雪があるが、長期間に渡る降雪は多くない</td>
</tr>
</tbody>
</table>

特徴的な管理方法として、オーストリアでは冬期道路の管理水準として、降雪の強弱によって、確保すべき車線数、許容積雪深を設定するというものがあった。また、道路の管理状況が把握できた国は、オーストリア、カナダ、フィンランド、ノルウェー、アメリカで、そのうちオーストリア、カナダ、アメリカに関しては、道路に接する土地の所有者が除雪を行うことになっており、住民の役割が示されていることが分かった。

2. 都市における事例調査
   1の調査結果を基に、我が国の管理手法と比較して、特徴的な考え方により管理を行っていると考えられる事例のある3国（オーストリア、アメリカ、カナダ）から、事例を代表する都市をそれぞれ選定した。選定都市は、ウィーン（オーストリア）、シカゴ（アメリカ）、カルガリー（カナダ）の3都市とした。
   （1）ウィーン（オーストリア）
   市所有道路は、市の第48部署（廃棄物管理、道路清掃及び車両）が、道路をAルート、Bルート、Kルートに区分し、管理している。
主要な道路、公共交通機関、病院・消防署などへのアクセス性は、A ルートに位置づけられ、24 時間体制、2 シフト体制で、5 時間毎に除雪上がっている。生活道路は、B ルート、K ルートに位置づけられる。B ルートは、必要な場合のみ 24 時間体制でメンテナンスされる。特に一部はパーキングルートが設定され、受託者が除雪しくない場合、他の除雪事業者がカバーし、影響を最小限に抑えている。歩道は、隣接の土地所有者が除雪を行う。

（2）シカゴ（アメリカ）

歩道と隣接する土地の所有者、借主、テナント等が除雪する条例（シカゴ市条例）が制定されている。歩道は、隣接住民が除雪後なるべく早く除雪し、夜間の除雪時には翌日午前 10 時までに行う必要がある。除雪実施の歩道は、沿道施設の前面に除雪を促すハンガーを掛けられる（図 1）。高齢者等除雪が不可能な場合は、雪かきボランティアを申請することができる。

（3）カナダ（カナダ）

適用している管理規則に、「セプティデ・スノープラン」がある。これは、除雪で路肩に寄せられた雪を降雪終了後 7 日間で廃棄する除雪計画で、幹線道路、生活道路、歩道の側に優先順位付けられている。

除雪終了後 1 日目は、中心部で交通量が多く重要な道路の除雪を行う。2 日目は、次に交通量が多い道路、緊急用道路、バス路線、自転車レーンのある道路、危険箇所の除雪を行う。3 日目は、右折レーンや住宅地の指定されたフィーダー路線、公園ゾーン、生活道路などの除雪が行われる。4〜7 日目で残りの生活道路等の除雪が行われる。

表 2 我が国と異なる冬期道路管理方法の抽出と有効性・適用可能性の考察

<table>
<thead>
<tr>
<th></th>
<th>我が国での管理方法</th>
<th>我が国と異なる管理方法</th>
<th>国・都市</th>
<th>用途場面</th>
<th>効果</th>
<th>課題・有効性・適用可能性</th>
</tr>
</thead>
<tbody>
<tr>
<td>運動水準のカテゴリー</td>
<td>運動水準</td>
<td>運動水準</td>
<td>少なくとも 500 分の 40%</td>
<td>市内、郊外部等</td>
<td>市区部、市街地等</td>
<td>市区部、市街地等</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>サービス水準</td>
<td>サービス水準</td>
<td>サービス水準</td>
<td>少なくとも 500 分の 40%</td>
<td>市内、郊外部等</td>
<td>市区部、市街地等</td>
<td>市区部、市街地等</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>管理方法</td>
<td>管理方法</td>
<td>管理方法</td>
<td>少なくとも 500 分の 40%</td>
<td>市内、郊外部等</td>
<td>市区部、市街地等</td>
<td>市区部、市街地等</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>事業者との契約</td>
<td>事業者との契約</td>
<td>事業者との契約</td>
<td>少なくとも 500 分の 40%</td>
<td>市内、郊外部等</td>
<td>市区部、市街地等</td>
<td>市区部、市街地等</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>評価指標</td>
<td>評価指標</td>
<td>評価指標</td>
<td>少なくとも 500 分の 40%</td>
<td>市内、郊外部等</td>
<td>市区部、市街地等</td>
<td>市区部、市街地等</td>
</tr>
</tbody>
</table>

3. 我が国の冬期道路の管理方法、管理水準等との対比関係整理

1、2 の調査結果から、特に我が国と異なる管理方法を行っている事項を抽出し、我が国の有効性や適用する場合の課題を整理した（表 2）。

【成果の活用】

本研究で得られた成果および知見については、さらなる検討・検証を加えた上で、今後の我が国冬期道路対策に反映させていくことが考えられる。
領域8：大切な道路資産を科学的に保全する
道路橋管理におけるアセットマネジメント活用に関する調査検討

Study to utilize asset management for road bridges

（研究期間　平成 29 年度～31 年度）

道路構造物研究部　橋梁研究室
Road Structure Department
Bridge and Structures Division

主任研究官　宮原　史
Senior Researcher　Fumi MIYAHARA
交流研究員　林　佑起
Guest Researcher　Yuki HAYASHI

NILIM studies how to utilize inspection data to make bridge management more strategic and rational. Using periodic bridge inspection data, NILIM has modeled mean variant deterioration characteristics as a function of applied design specifications, materials types, structural element types, surrounding conditions and so on. NILIM also has shown that such deterioration characteristics will affect a huge variation in the life cycle costs (LCC) estimation. This study tries how to utilize the LCC estimation with a large uncertainty in actual road bridge management.

【研究目的及び経緯】
道路構造物の長寿命化や合理的な維持管理の実施にあたっては、点検データ等を活用し、メンテナンスサイクルを考えた計画的な管理が期待されている。各道路管理者は、それぞれの点検データ等を活用し、計画を作成することが必要である。

国が管理する道路橋では、平成 16 年以降、定期点検において、従来の部材単位での診断に加え、さらに細かく分けた要素単位での客観的かつ詳細な状態記録を蓄積してきている。過年度までに、国交省では、国以外の道路管理者も参照できるように、これらのデータに基づく道路橋の劣化特性を分析してきた。その結果、個々の構造物の劣化には大きなばらつきが存在すること、また、ある道路橋を仮定し、劣化のばらつきを考慮したモンテカルロシミュレーションを行い、ライフサイクルコスト（以下、LCC と呼ぶ）の試算を行ったところ、補修の時期や LCC の計算值は大きくばらつくことを明らかにした。LCC の算出は不確実性が大きく、その絶対値のみを指標として維持管理計画の有効性や維持管理結の効果を測るには、限界があると考えられ、道路管理者が LCC 算定にあたっての限界を考慮したうえで、適切な維持管理計画を策定できるようにしていく必要がある。

そこで、本研究では、管理する道路橋の数や特性、利用できる点検記録の質、量が異なっても、それらに応じた状態予測のばらつきも考慮することなど、維持管理体制に応じた LCC 算定にあたっての留意点や活用の仕方を明らかにすることを目的としている。今年度は、長寿命化計画の計画と道路橋の現状のパフォーマンス、維持管理の結果としてのアウトカムを表す指標の検討に先立って、道路のアセットマネジメントにおいて近年パフォーマンス評価やアウトカム評価が導入された米国において、計画策定等に用いられている指標を調査した。

【研究内容及び成果】
米国では、2012 年 7 月に施行された陸上交通法規「MAP-21(Moving Ahead for Progress in 21st Century Act)」において、各州は実施目標に対するパフォーマンス指標及びアウトカム指標と、そのターゲットと進捗を連邦政府に報告することが定められた。2013 年 6 月に連邦道路庁と AASHTO(American Association of State Highway and Transportation Officials)の共著で、計画策定や評価のための実務ガイドライン(AASHTO Transportation Asset Management Guide)が発売された。そこでは、LCC は各州の内部で予防保全に予算を充当することの正当性を説明する指標としては重要であると位置づけられている。しかし、施策を行った結果としてのパフォーマンス指標又はアウトカム指標としての有効性を表す指標として用いられることが少ないとも指摘されている。その理由については公に述べられていないことから、各州における指標の事例の調査を通じ、理由についても考察することにした。

(1) コロラド州の事例
コロラド州では、NBIS（National Bridge Inspection Standard）に基づく点検で「構造的欠陥」と分類される橋の床版面積の、管理橋の床版面積に対する比率を指標とし、推計した将来の指標値の推移を公表していた。なお、米国では運算法において、NBISに基づく点検で床版、上部構造、下部構造の別の 0 から 9 の 10 段階での状態評価（0 が最も良く、9 が最も悪く）を NBIR（National Bridge Inventory）に登録することが義務付けられている。すなわち、コロラド州において公表に用いられている指標は、NBIR へ登録するために取得している最低限のデータのみを用いて追加的なデータ取得無しで算出可能な指標である。

公表されている算出の例を図1に示す。本事例では、将来の各年度の予算制約を、現時点の予算で一定の場合と、上位下位それぞれ 2 通りの計 5 項目と設定し、補修が必要とされる橋の床版面積比率の経年変化を算出している。個別の橋ごとではなく、管理橋全体に対する比率として扱われていること、また、複数の予算制約条件で比較されていることが特徴である。

図1 コロラド州の事例

(2) カリフォルニア州の事例

カリフォルニア州では、NBIR に登録するために取得しているデータから算出可能な状態評価指標 SR（Sufficiency Rating）では州の維持や補修補強のパフォーマンス指標への要求を満たさないことから、州独自に定めた BHI（Bridge’s Health Index）を指標として、推計した将来の指標値の推移を公表していた。BHI は、初期時点での橋の価値（金額）に対する評価時点での橋の価値（金額）の比率で定義されるものである。NBIS における状態評価指標は、橋ごとに、各部材種別に 1 つの値で代替されるものであるが、州は BHI 算出のため、NBIR に登録する情報よりも細かいた部材別に、かつ損傷程度ごとの面積比等も記録している。BHI では橋の価値は貨幣単位で表されるため、複数の橋で集計すればネットワークとしての BHI でも算出可能となっている。

公表されている計画の例を図2に示す。本事例では将来の各年度の予算制約を 4 通り設定し、BHI の平均値の経年変化を算出している。この例においても、複数の橋をまとめた結果として公表しており、個々の橋の維持管理の最適化は扱っていない。また、予算額については、具体的な額ではなく、定性的な表示になっている。なお、州では、州内の地域間での予算配分を BHI に加えて地域の大きさや橋の混雑度合いなどを加味して決定する方法を開発中と示されていた。

図2 カリフォルニア州の事例

(3) アイダホ州の事例

アイダホ州では、NBIS に基づく点検で Good（0 点～9 点の 7 点以上）に該当する床版の面積比率を指標としていた。NBIS に基づく点検で取得するデータを活用するのはカリフォルニア州と同様である。高速道路においては Good が 8 割を占めることなど目標水準を設定し、これに対する現状の達成度合いを公表していた。

(4) 考察

以下の点が米国における指標の特徴と考えられる。

・予想されるコスト削減額よりも橋の状態そのものが指標にされていること（カリフォルニア州の場合も、指標の算出では金額そのものをパラメータにしていが、算出された指標は橋の健全性を表すものとしてはいる）。

・コストや個別の橋の管理の最適化という観点では指標が示されておらず、管理橋全体としての傾向に着目されていること。

なお、カリフォルニア州の BHI は算出にあたって補修補強コストの算出が必要であり、その金額は、算出上の仮定に大きく依存する。しかし、補修補強コスト同士の比率を取り無次元化することで、コストの算出方法にできるだけ依存しない指標となるように工夫しているものと考えられる。

【今後の課題】

各道路管理者が管理する道路橋の数、構成、また、管理する道路の役割は異なる。また、活用できる点検データの質や量も異なる。今回得られた知見を踏まえて、道路管理者が点検データを活用した道路橋の維持管理計画の策定や、状態予測を行うにあたっての各指標の活用方法の提案に向けて、活用場面を想定した指標や LCC のばらつきに関する試算を充実する必要がある。

【成果の活用】

道路管理者向けのアセットマネジメントに関するテキストなど計画策定に資する参考資料に反映予定。
道路橋の補修・補強設計法に関する調査検討
Study on Design Standards for Repair and Reinforcement Works of Highway Bridges

(研究期間　平成 28～31 年度)

Numerical studies for concrete hollow slab bridges have been conducted to evaluate the potential of fatigue fracture in concrete. The numerical results have indicated that the durability of concrete above the hollow sector can be a faction of concrete depth ,used to void spacings, and void diameters, and the potential could increase with decrease in concrete depth above the void.

【研究目的及び経緯】
我が国の道路橋は高齢化の進展に伴い様々な劣化や損傷の事例が報告されており、既設の道路橋に対する補修・補強の必要性は今後も増加が見込まれる。一方、補修・補強設計は道路橋補修手冊だけでなく、様々な技術図書を参考にしながら、既設構造物の補修の事実を反映した設計基準や耐荷施工の萌芽の考え方・留意点の充実が求められている。

鉄筋コンクリート中空裏板では、ボイド上部の舗装の異常をはじめ、踏み抜きなどの損傷事例が報告されている。これらの要因の一つとして、コンクリート打設時のボイド型枠の変形や浮き上がりによって、ボイドのかぶりが設計値を下回り、舗装によって損傷する可能性がある。その損傷メカニズムは明らかとなっていない。損傷メカニズムが把握できれば、補修・補強設計に役立てることができるだけでなく、補修・補強の必要性や優先順位付けに役立てることができると考えられる。

そこで、本年度は、鉄筋コンクリート中空裏板橋の標準的な断面に対して有限要素解析（弾性 FEM 解析）を用いて舗装重を載荷した時の応力分布を把握し、設計における応力状態の仮定との乖離がないか検証するとともに、ボイド周辺に生じるコンクリートの破壊形態や、損傷が進むメカニズムについての研究を行った。

【研究内容及び研究成果】
1. 弾性FEM解析による応力分布の把握
   (1) 概要
   本研究では、鉄筋コンクリート中空裏板橋の損傷事例からボイド上部の変状（土砂化、疲労劣化等）に着目した。この変状はボイドの浮き上がりやボイド型枠の耐力不足の影響、舗装重の繰り返し載荷による疲労の影響等の様々な要因が考えられる。
   ボイド上部に舗装重が作用する場合、その力は上面からウェブに圧縮として伝達されてアーチアクションあるいはスラットートーサイが形成され、これに耐荷機構により鉄筋コンクリート中空裏板橋の断面は高い抵抗力を有すると考えられる。このアーチアクションの形成にはボイドかぶり厚、ウェブ幅、ボイド径等が影響すると考えられ、これらをパラメータとした。

(2) 解析結果
   表-1に示す二次元弾性FEM解析で得られた応力分布により、舗装重載荷時の応力伝達機構は、設計上の仮定によるアーチアクションに似た傾向を示しており、各部でスラットートーイによるトラスが形成される様子がわかる（図-1）。表-1の上部に示す圧縮ストラットの形成に着目すると、ボイドのかぶり厚が薄いCase ①-4では、図-1に②で示す圧縮ストラットが他のケースに比べて明確に形成されており、同図 B および C で示す主引張応力が大きくなる傾向がある。これより、ボイドかぶりおよびウェブ厚が薄い断面等、圧縮に対する有効幅が狭くなる断面形状では、舗装重載荷によ
表-1 二次元弾性FEM解析で得られた主応力分布

図-1 ボイド直上で輪荷重を載荷する場合の応力伝達機構

2．累積損傷度による疲労劣化の評価

(1) 概要

1．受け、疲労損傷が生じる可能性があると考えられる断面（断面②-1：圧縮に対する有効幅が殆ど断面を代表してボイドかぶりの薄い断面）と、標準的な鉄筋コンクリート断面（断面②-2）において、損傷メカニズムを把握するために、繰り返し載荷によるコンクリート疲労の影響を考慮した三次元弾性FEM解析を用いて検討した。

(2) 主応力分布

表-2 は、各断面について1回目の輪荷重載荷時の三次元弾性FEM解析により得られた主応力分布を示したもので、表-1の二次元弾性FEM解析と同様にアーチアクションの形成状況をみることができる。特に、表の下段に示す主応力分布に着目すると、主版上での主応力値の値はかぶり厚が薄い断面②-1の方が大きいことがわかった。

表-2 三次元弾性FEM解析で得られた主応力分布

(3) 想定される破壊形態

表-3 は、ボイド上部の損傷の増加傾向を示したもので、断面②-1および②-2ともにボイド上面（表中(A)で示す引張領域）が最初に損傷し、走行回数の増加に伴ってその範囲が徐々に広がる傾向がわかる。また、かぶり厚の薄い断面②-1では、②-2に比べて早期内版上部（表中(B)で示す引張領域）に損傷が生じ、その後、繰り返し載荷回数N=8×10^5 回において載荷直下の圧縮領域（表中(C))のコンクリート要素が破壊し、一方、かぶり厚が厚い断面②-2では、N=8×10^6回においても主版上部の損傷は生じないことが分かった。

表-3 想定される破壊メカニズム

3. まとめ

鉄筋コンクリート中空床版下のボイド上面の状態（地中化、疲労劣化等）に着目し、その損傷メカニズムを定性的に評価した。また、疲労性状はアーチアクションやストラットーティ形成に関連するボイドかぶりおよびボイド間隔、ボイド径等のパラメータが影響する可能性を示すことができた。これらの結果は、構造物設計図または破壊予想などによりこれらのパラメータが既知であれば、補修・補強の優先順位付けにも役立てることができると考えられる。

[今後の課題]

今後、これらのパラメータや検証ケース数を増やしデータを蓄積・整理すること、実験等による累積損傷度評価の精度向上により基礎データを増やすことが重要である。

[成果の活用]

既設橋の補修・補強に関する技術基準に反映する予定。
補修補強設計に係わる部分係数に関する調査検討
Study on partial factor design for existing bridges

（研究期間　平成 27-29 年度）

道路構造物研究部　橋梁研究室
Road Structures Department
Bridge and Structures Division

主任研究官　猪狩　名人
Senior Researcher　Meiito IGARI
研究官　河野　晴彦
Researcher　Haruhiko KOUNO

交流研究員　高山　文郎
Guest Research Engineer　Funato TAMASHIRO

室長　白戸　真大
Head　Masahiro SHIRATO

交流研究員　宮原　史
Guest Research Engineer　Ikeda　TAKAHASHI

従事研究員　横田　剛
Guest Research Engineer　Go YOKOTA

The present study has been developing the partial factor design format for the structural assessment of existing bridge. In the earlier year, the authors conducted the Monte Carlo simulation considering a stochastic loading model based on the B-C model and proposed a concept that the load factor and load combination factor should be divided. And the authors have proposed a practical method to modify load factor values based on behavior measurement data. This year, the authors conducted dynamic analysis on several bridges and tested the influence on the seismic performance assessment of existing road bridges.

【研究目的及び経緯】
国土技術政策総合研究所では、信頼性設計の考え方を基礎とし、国際的技術基準の基準書式である部分係数設計体系への廃置を視野に道路橋設計書の改定に向けた必要性を検討を進めてきた。既設橋の補修補強設計には、道路橋設計書が適用されており、部分係数設計法を適用することによって合理的な補修補強設計を行う可能性がある。例えば、新設橋の設計に用いる荷重係数をそのまま用いるのではなく、補修補強設計において想定する供用期間や架橋地点の交通特性に応じて荷重極値分布を評価し直すことで、架橋地点の特性を踏まえた部分係数を調整し、より合理的な設計を行う可能性がある。

そこで、平成 27 年度は、既設道路橋に用いる荷重係数を荷重単体の極値分布のバイアスと変動係数に依存する「荷重ばらつき係数」と荷重の載荷頻度に依存する「荷重組合せ係数」で分類することを提案した。

荷重ばらつき係数と荷重組合せ係数は B-C モデルの考え方に基づく確率過程を考慮したモンテカルロシミュレーションにより算出したが、既設橋の架橋地点の特性を踏まえた合理的設計を行うためには、本報、現地計測の結果に基づいた係数の調整が必要となる。

そこで、平成 28 年度は、実務において詳細なシミュレーションを実施せずとも、現地で荷重計測を十分に

行うことで荷重ばらつき係数を供用期間に応じて見直すことができるか検証した。

実橋の現地計測を模擬した荷重シミュレーションとモンテカルロシミュレーションにより算出した荷重ばらつき係数を比較すると、それぞれの値は相関があり、荷重のあらたな荷重を安全側に行い、べき乗則を用いれば、現地計測データに基づき、荷重ばらつき係数を供用期間に応じて見直す目処を得ることができた。

国総研で実施した過年度の研究成果等が反映された 29 道路橋設計書では部分係数設計法が導入され、荷重ばらつき係数は、荷重係数と名称を変えた荷重の荷重係数は 1.05 と規定された。設計において、荷重が 5%大きくなった状況と整合させようと思うと、例えば、解析モデルに与える質量を 5%重くする方法が考えられる。耐震設計では、解析モデルに与える質量が重くなると、対象とする構造の固有周期が長くなり、系の周期帯が長くなるが、加速度応答スペクトルは増減する。さらに、動的解析では部材の変形能や変形特性、減衰特性にも影響を及ぼすため応答値の評価は複雑となる。

そこで、平成 29 年度は、解析モデルに与える質量を 1.05, 1.05W とした動的解析を複数の構造に対して実施し、荷重係数値が既設橋の耐震性能評価に与える影響について検証した。
【研究内容及び研究成果】
対象橋梁は地域別補償係数が1.00であるA地域の橋梁とし、固有周期や地震条件が崩らないように12橋を選定した。これらの橋梁を対象に質点重量を1.00Wと1.05Wとした動的解析モデルを作成し、地震応答値の比較を行った。応答値の整理はRC橋脚8基に対し地域別補償係数を3種類設定した24ケースと鋼製橋脚4基の計28ケースに対して行った。設計地震動は、道路橋示方書に規定されるレベル2地震動のタイプ2地震の標準加速度波形の3波を用いた。

図1 固有値解析により算出した各ケースの固有周期の相関と基本固有周期における減衰定数5%の加速度応答スペクトルを整理した結果を示す。破線は最小2乗法により求めた回帰直線であり、固有周期は質点重量を1.05Wとした場合、概ね1.02倍になる傾向を示している。一方で加速度応答スペクトルは、入力地震動として標準加速度波形の加速度応答スペクトルと標準加速度応答スペクトルの近似度合いが波形によって大小があるため値にばらつきが見られるが、固有周期が長くなった影響から、全体としては0.99倍と小さくなる傾向になった。

図2 支承・橋脚の応答値

図3 東方の応答値

図2に支承と橋脚の寸法決定に与える影響が大きいと考えられる主な照査項目の応答値と応答値の比（1.05W/1.00W）の平均値を示す。対象橋梁は、一般的な構造形式を展開するため、支承形式や基礎構造など複数の条件をパラメータとして選定しているため、応答値は自ずとばらつきが見られるが、質点重量を1.05Wとした場合、支承と橋脚の応答値は概ね1.0～1.1程度増加する傾向となった。

さらに、検討ケースの中から、橋脚が弾性応答となったRC橋脚1基を対象に、橋脚基部における動的解析の応答値を用いて杭基礎についての試算を行った。図3に最も応答値比のばらつきが大きかったC地域での結果を示す。加速度波形ごとのばらつきは見られるが、3波平均の値と応答値比は1.00～1.03となり平均すると1%程度増加する傾向となった。

本研究で収集した橋梁の設計結果においては、主な照査項目での制限値に対する応答値の安全余裕は概ね5～10%程度確保されており、一般的な断面諸元の橋梁であれば、応答値の増加は断面諸元を変えると耐力の余裕の中で十分吸収される可能性が高い。以上から、既設橋の維持、更新性能評価にH29道路橋示方書を適用した場合も、構造条件により応答値にばらつきはあるものの影響は小さく、従来設計から直ちに補強材料面の変更が必要となるようなことはないということが把握できた。

【今後の課題】
既設橋の補修補強設計のための、応力再配分を考慮しこし易い耐荷性能照査設計、対策が実施された部材に適用する新たな抵抗係数の設定方法について検討する必要がある。

【成果の活用】
補修補強設計の技術資料作成の基礎資料として活用する予定である。
This study examines inspection data to identify the characteristics of deterioration process and forward them to design specifications and inspection standards as needed. For bridges, three cycles of data set for regular inspections are now available with a frequency of five years and this year the change in deterioration characteristic has been examined with different data acquisition frequencies, taking advantage of the three cycles of data set. Also the data analysis of sheds and culverts has characterized the difference in distribution depending on structural types and surrounding environment.

[研究目的及び経緯]
国が管理する道路構物の道路構造物の定期点検では、構造物の状態を表す損傷程度の評価等が記録される。
本研究では、定期点検要領、道路構示方書、道路土工技術基準及び関連する設計・施工便覧等の改定に向けて、定期点検で確認された損傷データの分析等を行い、定期点検における健全性の診断、補修補強の合理化等のための知見の抽出を行う。平成 29 年度は、国が管理する橋梁で平成 16 年～28 年度に蓄積された 3 巡分の点検データを活用して劣化的特徴を分析する方法について検討した。また、施設、大型カルバート等の平成 26～28 年度定期点検結果から、構造形式や設置環境などの条件毎の変状傾向や特性等の分析を行った。

[研究内容及び研究成果]
1. サンプリングする点検データの違いによる影響
平成 29 年度は、典型的な損傷種類である鋼桁の腐食と床版のひびわれについて、3 巡分のデータがあることを活かし、1 回目→i+1 回目および、i+1 回目→i+2 回目の 5 年間隔で遷移確率行列を算出した場合と、1 回目→i+1 回目の 10 年間隔で算出した場合で、そこに現れる劣化の特徴を調べた。遷移確率行列を算出したのち、それを用いて平均的な経年的状態の変化を試算した結果を図 1 に示す。5 年間隔遷移確率行列と 10 年間隔遷移確率行列で状態変化を予測した結果は、鋼桁の腐食では、前者の方がわずかに劣化進展が速い傾向が見られたが、
大差は見えてなかった。しかし、RC 床版のひびわれは、後者の方が劣化進展が速く、5年間隔選択個別列で予測した結果との差が顕著であった。この結果から考察すると、常に 10年間隔で点検を行った場合には、5年間隔で行うよりも、状態変化が大きくなる割合が大きくなると考えられる。このような分析を様々な部位や損傷種類について重ねることで、点検を詳細に行うべき損傷種類や部位を考慮できる可能性を見いたした。

2. 橋梁における補修補強後の再劣化

塩害を受けたPC桁について、補修・補強後に再劣化が生じた事例が報告されている。そこで、PCボスステンT桁について、定期点検1回目→i+1回目で損傷程度が復回した要素のグループとそれ以外の要素のグループに分け、それぞれのグループの状態変化の年変化を試算した結果を示す。補修補強がされたと見なされるグループは、損傷程度の分布はa又はeに偏っている。すなわち、補修補強が効果を上げている場合とそうでない場合に明らかに分かれていると見ることができ、補修・補強の設計に課題を有していると考えられる。3回の定期点検結果を詳細に分析することで、補修補強設計基準の確立に参考になる知見が得られる可能性があることが分かった。

3. シェッド及び大型カルバートの定期点検結果分析

平成26～28年度の直轄国道を対象とした定期点検結果より変状及び健全性に関する分析を实施した。

シェッドの健全性の診断結果は、1（健全）が約1割、II（予防保全段階）が約4割、III（早期指標段階）が5割で、IV（緊急指標段階）は無かった。これを構造形式別で整理すると、鋼製シェッドが約7割の施設でIIIとなっており、RC製（約3割）、PC製（約4割）に対して高い結果となっている。

鋼製シェッドの台座構造（柱・受台・基礎）において、設置環境（融雪剤散布の有無）と部材の変状程度（防食機能の劣化）及び発生位置の傾向は図3に示す。融雪剤散布無しではほとんど変状が見られないのに対し、有りではその程度に係わらず損傷の発生数が多く、また上部より下部に多く発生している。これより鋼製シェッドにおいては融雪剤散布の有無が構造物の健全性に大きく影響を与えていることが分かった。

図3 融雪剤散布の有無と防食機能の劣化
（鋼製シェッド側面構造）

大型カルバートの健全性の診断結果は、Iが約4割、IIが約5割、IIIが約1割で、IVは無かった。
構造形式と建設後の経過年数毎の健全性の割合について図4に示す。場所打ちカルバート、プレキャストカルバートともに経過年数と健全性の割合について相関関係は見られなかった。また、場所打ちカルバートでは建設後20年以上、プレキャストカルバートについては10年以上経過した施設においても、健全性Iの施設が存在することが分かった。

図4 構造形式と建設後の経過年数毎の健全性
（大型カルバート）

4. まとめ

点検データを統計的に集計することによって得られる結果は物理化学的な原理を再現するものではないが、損傷の種類や損傷発生部位毎の劣化の特性の現在状態あるいは将来状態を知る手段として有効である。

【成果の活用】

本研究で得られた成果は、定期点検要領や各種基準改訂のための基礎資料として活用予定である。
既設道路構造物基礎の耐荷性向上に関する調査

Research on improving loading capacity of foundation of existing road structures

（研究期間　平成29〜31年度）

道路構造物研究部　構造・基礎研究室
Road Structures Department
Foundation, Tunnel and Substructures Division

表1　洪水による被災要因分析のために抽出した項目

<table>
<thead>
<tr>
<th>構造の構造要因</th>
<th>水文・河川の水害的要因</th>
</tr>
</thead>
<tbody>
<tr>
<td>糸下の有無</td>
<td>降雨量（降雨状況）</td>
</tr>
<tr>
<td>根入れ深さ</td>
<td>流域面積</td>
</tr>
<tr>
<td>樹木の品種</td>
<td>河流形状</td>
</tr>
<tr>
<td>分担率等</td>
<td>地形・地質構造</td>
</tr>
<tr>
<td>水脈のからの距離</td>
<td>河川幅</td>
</tr>
<tr>
<td>建設年次</td>
<td>河床勾配</td>
</tr>
<tr>
<td>計画高水位</td>
<td>積水係数・河床材料</td>
</tr>
<tr>
<td>基下高</td>
<td>対象河川の河水改修履歴</td>
</tr>
<tr>
<td>構造前面の構造物</td>
<td>河川計画</td>
</tr>
<tr>
<td>過去の被災履歴</td>
<td>過去の被災履歴</td>
</tr>
<tr>
<td>被災した際の状況（流量）</td>
<td></td>
</tr>
</tbody>
</table>

表2　セグメント区分

<table>
<thead>
<tr>
<th>項目</th>
<th>セグメント2</th>
<th>セグメント1</th>
<th>セグメント3</th>
</tr>
</thead>
<tbody>
<tr>
<td>地形区分</td>
<td>山間地</td>
<td>管状地</td>
<td>自然堂原地</td>
</tr>
<tr>
<td>河床材料の</td>
<td>代表値</td>
<td>2m以上</td>
<td>3m〜1m</td>
</tr>
<tr>
<td>代表値</td>
<td>0.3m〜1m</td>
<td>0.3m〜</td>
<td></td>
</tr>
<tr>
<td>鉱石の段数</td>
<td>サイズ</td>
<td>1/6〜1/400</td>
<td>1/00〜1/500</td>
</tr>
<tr>
<td>蛇行径</td>
<td>サイズ</td>
<td>曲がりが少ない</td>
<td>曲がりが大きく</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The purpose of this research is to clarify the structural conditions to construct a robustness road network for huge disasters. In FY2017, it was analyzed that road bridges suffering from seiches from the point of view of bridge structure, ground condition, the river characteristic.

【研究目的及び経緯】

災害に強い強靭な道路ネットワークを実現するためには、大規模地震や大雨による洪水等に対して道路機能への影響を最小限に留められるようにすることが求められる。この状況を早期にかつ合理的に実現するためには、既設道路構造物基礎（橋梁等）の耐荷性向上策を実施すべき構造条件の提示の目的とする。

本年度は、洪水による被災について、道路構造物の特性及び河川特性双方の観点から、近年の被災事例分析を行い、洗掘の影響を受けやすい構造体地盤条件・河川特性の関係性を整理した。

【研究内容及び成果】

（1）分析対象とした被災データ

洪水により被災した道路橋梁及び河川沿いにある道路構造物（主に橋梁）について、被災時の状況や構造諸元等のデータを収集した。このデータは、基本的に平成23年から28年までに洪水で被災した道路災害調査構造物を対象とした。ただし、全被災査定対象構造物のデータは収集できていない。本報告では橋梁（285橋）の分析結果を中心に示す。

建設年次や橋長、径間数、下部構造の形状や基礎など構造諸元に関する情報、被災内容に関する情報に加えて、既往の研究等を踏まえて、洪水による被災要因を検討するうえで関連性のある項目を抽出した。このようにして抽出した構造の構造特性と、河川特性に関する項目を表1に示す。

構造特性に関する項目のうち、分担阻止率とは隣接する橋脚との中間位置までの長さ（=支間長）と橋脚幅との長さの比であり、殆どのデータが得られなかった河床阻止率を代替したものである。水際線との距離は橋台前面の構造を「橋台前面に高水敷無し」「橋台前面に高水敷有り」「河岸あり」の3パターンで分類した。河床工の有無は図面及び被災状況写真より判別した。

河川特性に関する項目のうち、河床勾配は表2のセグメント区分により行った。河床勾配の設定にあたっては、収集資料中に数値やセグメント区分が示されている場合はその情報を、示されていない場合は国土地理院の標高データを用い、渡河地点から河床勾配の変曲点までの勾配とした。河道形状は、航写真写真や収集リストに記載されている平面図から「河川河道」で直線、河床に高水敷有り」「河岸あり」の3パターンで分類した。護床工の有無は図面及び被災状況写真より判別した。
河道」「蛇行河川」の3つに区分した。被災時の水位は、
被災写真及び現地踏査を基に「越水した超過渇水」「越
水しかなかった渇水」「異常な天然現象(警戒水位以上ま
たは1/2河岸高以上として記載されている渇水を対
象)」の3つに区分した。
(2)被災特性の傾向分析
①構造特性からの傾向整理
平成23年から28年に洪水で被災した道路橋について
て、集合事例のうち建設年次が明らかな橋梁を対
象に、建設年次別に、橋台の被災内訳を図-1に、橋脚
の被災内訳を図-2に示す。ここで、河川管理施設構造
令(以下、構造令)では、河床標高や洗掘への対応とし
て橋の基準径間長や基準の根入れ深さなどが規定され
ている。例えば、橋が確保すべき基準径間長Lは、昭
和51年の制定時にL=20+0.005Q (Q:計画高水流量)と
され(ただし、Qが2000m/s以下では緩和規定あり)、
平成9年にはその上限が50mとされている。そこで、
構造令の変遷時期に着目し、この3つの期間で建設年
次を区分して整理した。橋台については、①建設年
次によらず橋台背面流出による被災が占める割合が多
いこと、②構造令制定前後で同じ橋台全体の損
傷や流出による被災割合の減少が顕著で、橋台や橋
脚の被災内訳に比べて大きいこと、(3)とその被災要因に対
しても区間別の内訳が全体の約半数を占めており規
模の小さな橋で被災が多いことが分かる。橋脚につい
ては、構造令制定前後で流出の割合は大きく低下し
ている。以上から、構造令制定により下部構造の流出に
至るような被災は少なくなっているが、これに比べる
と橋台・傾斜や橋脚背面土砂流出伴う被災の低下割
合は小さいといえる。
(2)河川特性からの傾向整理
橋梁の被災情報が得られているデータと河川特性
のうち、セグメント区分、河川形状(直線河川・湾曲
河川・蛇行河川)、降雨強度を基に計測を行った。橋台
の損傷とセグメント区分の原データを図-3に示す。基
礎形式が明らかでない橋梁をみると、被災セグメントM
と1で生じている事より、基礎形式では直接基礎の割合
が高い(セグメント1でも約7割が直接基礎)という
特徴があることが確認できる。
また、被災箇所と越水の有無及びセグメント区分の
関係を表-3に示す。越水がない場合は、下部構造のみ
並びに下部構造と上部構造の両方に被災が生じている
橋梁数が多い。一方で、越水がある場合は、下部
構造のみだけでなく上部構造も被災しているのが大半
であること、また、セグメント1での被災が特に多いこ
とに特徴があることが分かる。
(3)まとめ
道路橋において道路機能に影響を与えうる洗掘の影
響を受けやすい条件としては、①直接基礎であるこ
と、②構造令建設年次が構造令制定前であること、③河
床段差が小さく(河床断面が小さく、越水する可能性が
高い)、山地から扇状地に位置していることなどが、構
造・地盤条件・河川特性の特徴を巨視的に分析した結
果より明らかとなった。
【成果の活用】
より信頼性の高い道路網を構築するための施策、通達
や施工要領等に反映させる予定。
舗装の長期性能に関する調査検討
Study on long-term pavement performance
（研究期間 平成29年度～31年度）

道路構造物研究部 道路基盤研究室
Road Structures Department,
Pavement and Earthworks Division

室長 大保 和幸
Head Kazuyuki Kubo
主任研究官 谷口 聡
Senior Researcher Satoshi Taniguchi
研究官 船越 義臣
Researcher Yoshiomi Funakoshi

This study aims to investigate cause of early deterioration pavement to reduce long-term costs by prolonging the life span of pavement. This fiscal year, nondestructive surveys and cutting investigations were conducted in the early deterioration pavement section of the national highway managed by the MLIT. As a result, the possibility that water was supplied from not only the cracking but also the patching and the construction joint to the pavement was shown in the Infrared thermography. In addition, it was found that the detachment of the asphalt concrete layer was occurred at 2 out of 3 sections and in the cutting investigations. Therefore, the detachment of the asphalt concrete layer is considered to be one of the causes of early deterioration.

【研究目的及び経緯】
平成28年10月、舗装の点検に関する基本的な事項を記した『舗装点検要領』が策定され、これに伴い、舗装の維持管理においては舗装の更新年度を意識した維持管理を行うとともに、長寿命化による長期的なコスト縮減を図ることが求められている。しかし、アスファルト舗装においては、早期に劣化する区間（以下、「早期劣化区間」）が存在し、維持管理上の課題となっている。

平成29年度は、早期劣化原因の究明と破壊メカニズムを解明するため、関東地方整備局管内の直轄国道の早期劣化区間において、非破壊調査ならび開削調査を実施した。

【研究内容及び研究成果】
1. 調査区間の概要
今回の調査対象は関東地方整備局管内の国道1号線で、下記に示す最新補修年から最新路面性状調査年までの経年数により、早期劣化区間と考えられる区間を抽出した（表1）。

表1 開削調査位置の概要

<table>
<thead>
<tr>
<th>区工</th>
<th>工区Ⅰ</th>
<th>工区Ⅱ</th>
<th>工区Ⅲ</th>
</tr>
</thead>
<tbody>
<tr>
<td>表層材料</td>
<td>ポーラス</td>
<td>密粒</td>
<td>密粒</td>
</tr>
<tr>
<td>最新補修年</td>
<td>H21</td>
<td>H20</td>
<td>H15</td>
</tr>
<tr>
<td>最新路面性状調査年</td>
<td>H26</td>
<td>H26</td>
<td>H26</td>
</tr>
<tr>
<td>経年数</td>
<td>7年</td>
<td>6年</td>
<td>11年</td>
</tr>
<tr>
<td>ひび割れ率</td>
<td>55.4%</td>
<td>33.8%</td>
<td>36.9%</td>
</tr>
</tbody>
</table>

2. 赤外線サーモグラフィによる非破壊調査
開削調査に先立ち表1の各調査対象箇所100mの区間において、デジタル方式の専用調査車を使用して赤外線サーモグラフ調査を実施した。なお、舗装内部の損傷箇所を適当させることに、模擬的に水を与えた。調査結果を図1に示す。図1の湿度の低い黒い部分に多くの水が溜まっていると推定される。これらは、ひび割れ部のみならず、バッチング箇所や施工継ぎ目部にも存在していることから、バッチング箇所や施工継ぎ目部からも水が舗装体内に供給されている可能性が示唆された。
3. 開削調査

開削調査は平成30年1月中旬から2月上旬にかけて実施した。表1の各調査箇所において、幅3m、長さ2mの矩形を50cm×50cmに分割し、カット時の水分の影響を受けないようにドライカッタを用いて開削した。既設アスファルト混合物（以下、「アスコン」）は、既設路盤面を乱さないように吊り上げ方式で撤去した。以下に各開削調査箇所の調査状況を示す。

工区Ⅰは3箇所の内、最も路面損傷が大きい箇所であり、亀甲状ひび割れの発生が顕著で、バッティングによる補修を実施している。工区Ⅰの開削後の写真を写真1に示す。アスコン層内の漏水、基層以下での層間はく離、並びにひび割れの貫通が確認された。また、吊上げ時に基層とアスファルト安定処理（以下、「アスコン」）層が分離し、アスコン層が残留した箇所が多く見られた。さらに、上層路盤の軟弱化も確認された。

工区Ⅱは3箇所の内、2番目に路面損傷が大きい箇所であり、亀甲状ひび割れの発生が著しく、路面も沈下している。工区Ⅱの開削後の写真を写真2に示す。アスコン層内の漏水及び基層以下での層間はく離が確認されたが、ひび割れの貫通には至らなかった。

工区Ⅲは3箇所の内、最も路面損傷が小さい箇所であり、OWP（外側車輪通過位置）に線状ひび割れ、IWP（内側車輪通過位置）に亀甲状ひび割れが発生している。工区Ⅲの開削後の写真を写真3に示す。アスコン層内の漏水が確認されたが、基層以下での層間はく離、ひび割れの貫通には至らなかった。

これらの工区の観察結果より、舗装上面から浸透した水分により基層が上面側からはく離し、舗装の支持力を低下に伴い、続いてアスコン層及び路盤の破損が進行したものと推察される。

4. まとめ

赤外線サーモグラフィによる調査では水はひび割れ部のみならず、バッティング箇所や施工継ぎ目部から舗装体内に供給されている可能性が示唆された。また、開削調査とは、調査箇所3箇所のうち2箇所でアスコン層内の層間はく離が確認されたことから、層間はく離が早期劣化の原因の一つであり、直轄国道におけるアスファルト舗装の早期劣化のメカニズムの一例が把握することができたものと考えられる。しかし、今回は1路線のみの結果であり、今後は他の路線でも検証を行い、早期劣化メカニズムの解明を進める予定である。

【成果の活用】

研究成果については、早期劣化箇所に関する対応を視野に入れ、舗装点検要領等の改定に反映させる予定。
地震災害復旧対策技術に関する研究
Research on The Recovery Technique of the Bridge damaged by Earthquake

【研究目的及び経緯】
H28 熊本地震では、地震動の揺れとともに地盤変位の影響も伴って、橋梁等の構造物に被害が生じた。このような被害を受けた橋の復旧においては、地盤変状等の不確実性の高いリスクが橋に及ぼす影響を軽減する観点や、損傷した橋の状態評価とその復旧設計への見立てに含まれている不確実性に配慮する観点からモニタリング等の技術を活用して復旧の信頼性の向上等を図る必要がある。また、速やかな復旧が行えるようにする観点から、道路構造物の地震被害リスクを低減できる構造形式にするとともに、早期復旧を合理的・効果的に行うための調査・診断技術や対策技術が必要となっている。

【研究内容】
本稿では、本研究テーマで取り組む課題のうち、ICT技術等によるモニタリングを活用した補修効果の確認と、熊本地震での橋の被災状況を踏まえ、支承に着目して橋に生じる破壊形態を制御する設計の考え方について報告する。

(1) ICT モニタリングを用いた補修効果の確認
1) 対象橋梁の被害と復旧対策
本研究で対象とした橋は阿蘇長曽大橋であり、昭和55年道示を適用して設計され、平成5年に架設されたPC4径間連続ラーメン桁箱橋である。熊本地震では斜面変状に伴いA1橋台が約2m沈下するとともに中空断面橋脚では断面を貫通するひび割れが生じるなど、多くの損傷が生じた（図1）。橋脚の中間高さに生じた断面を貫通するひび割れは、既往の知見からせん断耐力の低下が懸念された。そこでP3橋脚の復旧では、補修の施工性や他の部位への影響度合い等を総合的に検討した上で、中空部に流動性の高いコンクリートを充填し、充填したコンクリートでせん断抵抗機能を回復させる方法を選択した。

図1 阿蘇長曽大橋 P3橋脚の貫通ひび割れ

2) モニタリングによる補修効果の確認
観測による変が生じたP3橋脚にコンクリートを充
図 3 加速度計設置位置と載荷位置
図 4 コンクリートの充填による橋脚の振動モードの変化
（作図協力：モニタリングシステム技術研究組合 RAIMS）
図 5 熊本地震による橋梁支承部の損傷例
図 6 損傷制御型支承の考え方（案）

(2) 地盤変状が橋に及ぼす影響の最小化に向けた検討

1) 熊本地震での橋梁支承部の被害分析

熊本地震では、地盤変状により上部構造、下部構造ともに大きく動き、上下部構造間に大きな相対変位が生じた。このため、上下部構造間に設置されている支承部や支点部近傍の主桁に損傷が生じた。損傷の特徴としては、図 5 に示すように、損傷している箇所が様々であることが挙げられる。

2) 損傷制御型支承の考え方の整理

支承部は各種の部材で構成され、それぞれ、橋の設計基準に従って設計されるが、基準を満たすように設計した上で、橋の機能回復性に及ぼす影響が最小化されるよう、最終的に破壊する部位を制御するための支承の設計法の検討を行った。損傷制御型支承の設計の考え方の案を図 6 に示す。最終的に破壊される部分（損傷制御部材）は、段差を小さくする等の機能回復性とともに、損傷制御の確実さ、交換のしやすさ等の観点から設定する。本研究では、それらの観点から損傷制御部材を下枠セットボルトに設定した。そして、下枠セットボルト他部材の間に有効な耐力の差（耐力階層化）を設けた設計を行うことで、破壊を制御する考え方である。

【成果の活用】

本研究で得られた知見は、地盤変状の影響を最小化する構造計画の観点から考慮する技術資料として取りまとめ提示していく。また、モニタリングのデータは、今後の維持管理段階での活用方法と合わせて、管理者へ提供していくとともに、地震災害復旧工事における考え方や手法を技術資料として取りまとめ提示していく。
領域9：沿道環境を改善し、良好な生活環境を創造する
道路交通騒音の変化を踏まえた遮音壁の更新方針等の検討
—タイヤー路面音に関する知見整理—

Road Traffic Department
Road Environment Division

This report has the purpose of clarifying the future issues about road noise barriers, summarizing the basic information on the preservation methods for making the roadside environment better by understanding current road noise barrier conditions and the opinions of scholars and experts.

〔研究目的及び経緯〕
道路交通騒音対策は、国道43号公害訴訟の最高裁判決（平成7年7月）を契機とし、単体規制の強化、排水性舗装の敷設、遮音壁の設置、新型遮音壁の技術開発等、多面的、継続的に進められてきた。遮音壁をはじめとする道路交通騒音対策施設は、今後、経年変化対策の必要性が高まることを想定し、維持管理・更新に関する検討を進めていく必要がある。検討にあたっては、自動車単体騒音規制の強化等により沿道騒音が変化し、騒音対策の必要性も変化することを考慮する必要がある。

平成29年度は、将来の遮音壁更新時の必要機能の推定に向け、自動車から発生する音（パワーレベル）のうち特にタイヤー路面音について文献調査やヒアリング調査を行い、物理特性や発生要因・低減方策に関する知見や、タイヤメーカーの低騒音技術開発の動向、海外での規制状況等を整理した。

〔研究内容及び成果〕
1. 自動車の騒音パワーレベルの経年変化
   1）規制値の推移
   定常走行騒音規制、タイヤ騒音規制の規制値の推移は図1のとおりである。
   なお、自動車の安全・環境基準の国際的な調和・相互認証を推進するために組織された「国連自動車基準調和世界フォーラム」において、タイヤ路面音の規則「Regulation No.117」が2013年に合意されたことを受け、国内でもタイヤ騒音規制が始まることが図示された。さらに同フォーラムでは、2016年2月、「Regulation No.117のフォーカス2の規制値をさらに下げる提案を検討することを合意」し、現在は様々な専門家の意見を取り入れる等の検討が行われている。

2）走行騒音のパワーレベル実測値
   1991～1998年と2009年以降に測定された自動車走行騒音パワーレベルを車種別に比較した結果では、回帰式 \( L_{eq} = a + b \log(v) \) において、自動車走行騒音パワーレベル \( dB \) で表すと、乗用車の1991～1998年は \( L_{eq} = 46.4 + 3301 \log(v) \)、2009年以降は \( L_{eq} = 48.3 + 3301 \log(v) \) となっており、速度別に見ても2009年以降のほうが全速度域で0.5dB以上パワーレベルが大きくなっている。その他の車種では明確な違いは確認されていない。

走行騒音パワーレベル実測値

図1 定常走行騒音、タイヤ騒音の規制値の推移

2）走行騒音のパワーレベル実測値
1991～1998年と2009年以降に測定された自動車走行騒音パワーレベルを車種別に比較した結果、回帰式 \( L_{eq} = a + b \log(v) \) において、自動車走行騒音パワーレベル \( dB \) で表すと、乗用車の1991～1998年は \( L_{eq} = 46.4 + 3301 \log(v) \)、2009年以降は \( L_{eq} = 47.3 + 3301 \log(v) \) となっており、速度別に見ても2009年以降のほうが全速度域で0.5dB以上パワーレベルが大きくなっている。その他の車種では明確な違いは確認されていない。

走行騒音パワーレベル実測値

2）走行騒音のパワーレベル実測値
1991～1998年と2009年以降に測定された自動車走行騒音パワーレベルを車種別に比較した結果、回帰式 \( L_{eq} = a + b \log(v) \) において、自動車走行騒音パワーレベル \( dB \) で表すと、乗用車の1991～1998年は \( L_{eq} = 46.4 + 3301 \log(v) \)、2009年以降は \( L_{eq} = 47.3 + 3301 \log(v) \) となっており、速度別に見ても2009年以降のほうが全速度域で0.5dB以上パワーレベルが大きくなっている。その他の車種では明確な違いは確認されていない。

走行騒音パワーレベル実測値

2）走行騒音のパワーレベル実測値
1991～1998年と2009年以降に測定された自動車走行騒音パワーレベルを車種別に比較した結果、回帰式 \( L_{eq} = a + b \log(v) \) において、自動車走行騒音パワーレベル \( dB \) で表すと、乗用車の1991～1998年は \( L_{eq} = 46.4 + 3301 \log(v) \)、2009年以降は \( L_{eq} = 47.3 + 3301 \log(v) \) となっており、速度別に見ても2009年以降のほうが全速度域で0.5dB以上パワーレベルが大きくなっている。その他の車種では明確な違いは確認されていない。

走行騒音パワーレベル実測値

2）走行騒音のパワーレベル実測値
1991～1998年と2009年以降に測定された自動車走行騒音パワーレベルを車種別に比較した結果、回帰式 \( L_{eq} = a + b \log(v) \) において、自動車走行騒音パワーレベル \( dB \) で表すと、乗用車の1991～1998年は \( L_{eq} = 46.4 + 3301 \log(v) \)、2009年以降は \( L_{eq} = 47.3 + 3301 \log(v) \) となっており、速度別に見ても2009年以降のほうが全速度域で0.5dB以上パワーレベルが大きくなっている。その他の車種では明確な違いは確認されていない。

走行騒音パワーレベル実測値

2）走行騒音のパワーレベル実測値
1991～1998年と2009年以降に測定された自動車走行騒音パワーレベルを車種別に比較した結果、回帰式 \( L_{eq} = a + b \log(v) \) において、自動車走行騒音パワーレベル \( dB \) で表すと、乗用車の1991～1998年は \( L_{eq} = 46.4 + 3301 \log(v) \)、2009年以降は \( L_{eq} = 47.3 + 3301 \log(v) \) となっており、速度別に見ても2009年以降のほうが全速度域で0.5dB以上パワーレベルが大きくなっている。その他の車種では明確な違いは確認されていない。
ワーレベル (dB)  v：速度 (km/h) の値を bは乘用車（ラジアルリブタイヤ）で35～39、大型車（ラジアルレッグタイヤ）で37～44程度と考えられ、乗用車より大型車のほうが速度依存性が大きい。

3. タイヤー路面面の発生原因
1) タイヤパターンの影響

溝溝（リブパターン）では接地しても空気の逃げ場があるので、溝間音が得にくい。タイヤ騒音のパワーレベルは、ラジアルレッグタイヤの場合は、ラジアルリブタイヤの場合に比較して3～5dB 高くなっている。

2) 路面性状の影響

粗い路面では、1kHz 以下の周波数域のパワーレベルが他より高い。路面凹凸とトレッドの衝撃によるタイヤの径方向振動の変動が考えられる。スムーズな路面では、1kHz 以下の周波数域のパワーレベルは低く、1kHz 以上の周波数域のパワーレベルは高い。スムーズな路面ほどタイヤトレッドの周方向振動が大きくなるためと考えられる。図（2）

図2 周波数特性の路面性状による差

3) 輸装の種類の影響

排水性輸装と密粒輸装では、骨材粒径が一番小さい排水性輸装 I が最もパワーレベルが低い。骨材粒径が一番大きい排水性輸装IIIは密粒アスコン輸装とほぼ同じである。630Hz 以下の周波数域では骨材粒径の小さいほうがパワーレベルが低くなり、骨材粒径が大きくなるほどタイヤと路面の衝撃によって励振されるタイヤの振動が大きくなるためと考えられる。高周波数域では、吸音効果によって、パワーレベルが低減する。（図3）

4) タイヤ摩耗の影響

摩耗が 0.3mm 位までなら騒音レベルの変化が少なくな、それ以上の摩耗になると騒音レベルが上昇する。

4. タイヤー路面面の測定方法

EEC R117-02 によるタイヤ騒音試験法（タイヤ騒音規制に用いる試験法）、タイヤ近接騒音の測定方法（主にタイヤー路面面のメカニズムや路面性状の違い等の

特徴の解析に利用）、路面騒音測定車（舗装の性能評価）、音源探査（マイクロホンアレイによる近接騒音ホログラフィ法）等があり、目的に応じた測定がされている。

図3 輸装種類別のタイヤー路面面

5. 低騒音タイヤの開発状況，普及見通し

国内のタイヤメーカーでは低騒音タイヤを販売、室内的騒音エネルギーが 5～15％低減するとされている。一方タイヤメーカーからの聞き取りによると低騒音タイヤはユーザの嗜好の観点から開発されており、環境騒音低減を目的とした低騒音タイヤが普及する見通しは必ずしも立っていない。

［成果の活用］

将来の自動車走行騒音の変化の予測に活用し、将来の遮音壁の必要性の推計、遮音壁の維持管理・更新の留意点を示す参考資料の作成に反映させる。

注1 「タイヤ騒音規制整備法」中間とりまとめ」，中央環境審議会自動車車体験音専門委員会，2014 をもとに作成
注2 「道路交通騒音の予測モデル "ASJ RTN-Model 2013" の解説と手引き」，日本音響学会，2014
注3 押野康夫，「タイヤ騒音騒音の発生メカニズムと路面による発生騒音の変化」，日本ゴム協会誌 第 73 巻第 2 号，2000
注4 押野康夫，「路面性状の違いによるタイヤー路面騒音の変化」，日本音響学会誌 54 巻 4 号，1999
領域10：自然環境、地球環境を保全する
動植物の保全措置の効果把握と効率化に向けた検討

Study on Rationalization and Improvement of Wildlife Preservation Measures for Road Environmental Impact Assessment

（研究期間 平成 26～29年度）

道路交通研究部 道路環境研究室
Road Traffic Department  Road Environment Division

室長 Head
室長 Head
主任研究官 Senior Researcher
研究官 Researcher

井上 隆司
井上 隆司
大城 湘
Nodoka OSHIRO
長演 庸介
Yosuke NAGAHAMA

This study aims to rationalization and improvement of wildlife preservation measures. The study focuses on two topics. The first is study on transplant method for difficult-to-transplant plants. The second is study on effective measures to conserve rare species of plants using topsoil transplantation.

[研究目的及び経緯]
道路事業における動植物の保全措置は希少種の情報
を含むため、詳細が公開されにくく、また関係者間で
の情報共有が難しいことから、現場ごとに保全措置の
必要な範囲や効果的な手法を模索しているのが現状で
ある。そのため、保全措置の必要な範囲や効果的な方
法を明らかにすることで、効率化・簡素化・低コスト
化を図ることが必要である。

そこで、道路事業における自然環境分野の保全技術
向上及び合理化を目的として、移植困難種や雑乱依存
種等の効果的・効率的な保全技術の検討を行った。

[研究内容]
移植困難種のうち、道路事業において移植事例は多
いが着生率の低いキリン属（キリンやギンラン等）
を対象として、株移植が成功しやすい着生取り手法や
播種後に発芽しやすい条件等について保全技術の実証
試験を行い、「キリン属の保全技術ガイド（案）」に
とりまとめた。

また、雑乱依存種を対象として、希少種の種子を含
む表土の植き直し後の管理方法等について保全技術の
実証試験を行い、「移植の移植における種子の活用技術
ガイド（案）」にとりまとめた。

[研究成果]
1. 移植困難種の保全技術の検討

キリン属（写真1）は、菌根菌との共生関係を持

写真1 キリン属の例（この他にサバギンランやゲノス
マリも試験を実施）

図1 キリン属・栄木・菌根菌の3者共生関係

1 雑乱（自然的、人為的要因による生育地の変化や破壊）条件下に適応
した生息戦略をとる種。雑乱により十分な光や温度、酸素を提供され発芽
する。
図 2 保全技術の検討例（対策移植箇所の把握方法）

写真 2 保全技術の検討（効果的な植株移植方法の検討）

2. 擾乱依存種を対象とした保全技術の検討

一年生や二年生の多くは操乱依存種であり、地上部を移植しても 1、2 年で枯死してしまうため、移植実験以外の保全方法、例えばその種子を含む表土の移植など別の方法も検討する必要がある。しかし、道路事情は成長期間が長期に渡ることが多く、表土移植の際には表土を一時的に保管する必要があるが、表土の効果的な管理方法についての具体的な知見が見られない。そこで、道路事情における環境保全措置を実施する際の効果的な表土の保管方法に関する知見を得ることを目的として、希少種が生育している地点から表土を採取し、一定期間保管してから播き出し試験を行い、植株の出現状況を確認した（図 1、図 3）。実験の結果、いずれの保管方法においても希少種の出現が確認された。また、事前の現地調査では確認されなかった希少種の出現を確認した。さらに、出現する種数や個体数が表土の保管方法で異なる傾向を示すことを確認した。

3. 技術ガイド（案）のとりまとめ

移植困難種の保全技術の検討結果、操乱依存種を対象とした保全技術の検討結果及び既存のコツ等を参考にして、①保全を行う上での基礎的な知識、②保全手法の一例、③今後の課題等を掲載した「インディアン属の保全技術ガイド（案）」及び「植物の移植における種子の活用技術ガイド（案）」をとりまとめた。
環境情報の共有・活用方策に関する調査

Research on Sharing and Utilizing Information for Road Project Environmental Impact Assessment

（研究期間 平成28〜29年度）

道路交通研究部　道路環境研究室

Road Traffic Department
Road Environment Division

室長　井上　隆司
Head　Ryuji INOUE

主任研究官　大橋　溫
Senior Researcher　Nodoka OSHIRO

研究官　長坂　庸介
Researcher　Yosuke NAGAHAMA

研究官　光谷　友樹
Researcher　Yuki MITSUTANI

Information on environmental conservation methods, results, and cases for rare animals and plants in the environmental impact assessment of road projects has not been disclosed from the viewpoint of poaching and stealing prevention. Therefore, sharing of information and knowledge among projects is not sufficient. It can be expected to improve efficiency and simplify environmental impact assessment and environmental conservation measures in road projects, by promoting to share these information and knowledge.

【研究目的及び経緯】
道路事業における環境影響評価図書や環境保全の実施手法・実施結果、動植物の環境保全措置の実施事例等は、密猟・盗掘防止等の観点から公表されていない。そのため、各地方整備局・事務所間での情報共有が必ずしも十分とは言えないと、環境の一環その共有を促すことで、自然環境における環境影響評価や環境保全措置の効率化・簡素化によるコスト削減を図ることが期待できると考えられる。

そこで国研において、調査や環境保全措置の情報共有と効率化により現場への支援を図ることを目的として、収集した環境影響評価図書や環境保全措置に関する情報の収集・整理・分析及び全国各地整備局が実施している自然分野の調査・環境保全措置の共有化・効率化に関する仕組みについて検討した。

【研究内容】
1. 環境影響評価図書の分析

表1に示す計画段階環境配慮書を対象に、「事業特性」、「把握された地域特性（自然的状況、社会的状況）」、「選定された計画段階配慮事項」、「選定された調査・予測・評価の手順」、「調査・予測・評価の結果」の記載内容を分析した。

2. 道路事業における自然環境分野の調査・環境保全措置の効率化に関する仕組みの検討

自然環境保全措置を効率化するために標準的に必要な調査項目を整理するとともに、自然環境保全措置データを有効に活用する際の利点や課題等を把握するため、地方整備局へアンケート調査を実施した。

【研究成果】
1. 環境影響評価配慮書の分析

（1）選定された計画段階配慮事項

道路事業においては、全ての事業で、大気汚染、騒音、動物・植物及び生態系が選定されてきた。また、配慮書作成時には、位置・構造等が明確に定まっている事業と異なり、道路事業においては既存のルートを決めめる段階であるため、詳細なルート・構造等が決まっておらず、熟度と予測・評価可能な範囲に留意して選定する必要があることが確認された。

表1 分析対象事業

<table>
<thead>
<tr>
<th>事業種</th>
<th>事業名</th>
</tr>
</thead>
<tbody>
<tr>
<td>道路</td>
<td>(仮称)都市計画道路鈴鹿亀山道路</td>
</tr>
<tr>
<td></td>
<td>(仮称)福岡都市計画道路1・4・3号</td>
</tr>
<tr>
<td></td>
<td>市中心部道路3号線</td>
</tr>
<tr>
<td></td>
<td>一般国道20号</td>
</tr>
<tr>
<td>鉄道</td>
<td>奈良線第2期複線化事業</td>
</tr>
<tr>
<td>土地区画整理</td>
<td>川口市土地区画整理事業</td>
</tr>
<tr>
<td>飛行場</td>
<td>成田空港の更なる機能強化</td>
</tr>
<tr>
<td>公有水面埋立</td>
<td>名古屋港埋立土砂新処分場計画</td>
</tr>
<tr>
<td>風力発電所</td>
<td>鳴尾原風力発電所</td>
</tr>
<tr>
<td>火力発電所</td>
<td>夢洲自然ガス発電所建設事業</td>
</tr>
</tbody>
</table>

103
（2）調査・予測・評価の結果
評価においては、概ねのルートの位置や基本的な道路構造を決定する段階であり、定量的な予測・評価が困難であることから、複数案同士の相対的な評価が多かった。例えば、重要な種の生息地等を回避しており、「影響を与える可能性は小さい」との評価結果であっても、他との案と比較して山側に回避しトンネル等の構造が可能である場合、「構造形式による更なる影響低減の検討が可能」と評価され、より影響を低減できることが記載されている事例がみられた。

2．道路事業における自然環境分野の調査・環境保全措置の効率化に関する仕組みの検討
（1）自然環境保全措置を効率化するための標準的な調査項目の整理
道路事業において、動植物の事前調査、保全対策の実施及び保全対策効果のモニタリングが多数実施されているが、これらの調査項目や方法が事業毎に異なる場合が多い。したがって、自然環境分野における環境保全措置の効率化を進めるためには、標準的な調査項目を整理しておくことが重要である。
そこで、自然環境調査の経験が豊富な建設コンサルタント会社を対象にアンケートやヒアリングを行い、保全措置検討段階・モニタリング段階の各段階について調査を実施し、事業者内で共有すべき項目について整理した（表2）。
（2）自然環境保全措置データを有効に活用する際の利点や課題等の把握
自然環境保全措置データを有効に活用することを目的としたデータの共有について、その利点や課題等を把握するため、地方整備局を対象としてアンケート調査を実施した（表3）。
アンケートの結果、事後調査段階における情報不足や簡略化を指摘する意見があること、自然環境保全措置に関する事例や、実施内容に関する分析結果等のニーズが高いことが確認された。
以上から、自然環境保全措置に関する情報を共有することは有効であり、さらにその実現が望まれることが明らかとなった。しかし、一方で希少種の情報を扱うため、自らの情報を提供することには抵抗感を持っていることから、希少種の位置情報の取扱いや、情報の共有範囲等、一定のルール化が必要であることも明らかとなった。

【成果の活用】
今後、整理した情報について本省・地整と共有し、より効果が高く効率的な環境保全措置が行われるよう支援していく予定である。

<p>| 表2 標準的な調査項目の例（猛禽類） |</p>
<table>
<thead>
<tr>
<th>分類</th>
<th>記録項目</th>
<th>事業内で共有すべき事項</th>
</tr>
</thead>
<tbody>
<tr>
<td>利用個体</td>
<td>繁殖成否</td>
<td>保全措置 検討段階 事業段階</td>
</tr>
<tr>
<td>飛翔状況</td>
<td>被害状況</td>
<td>保全措置 検討段階 事業段階</td>
</tr>
<tr>
<td>善果木情報</td>
<td>確認位置（地名）</td>
<td>個体識別情報</td>
</tr>
<tr>
<td>善果林情報</td>
<td>確認位置（標）</td>
<td></td>
</tr>
<tr>
<td>善果林情報</td>
<td>林のタイプ</td>
<td>保全措置 検討段階 事業段階</td>
</tr>
<tr>
<td>善果林情報</td>
<td>林の写真</td>
<td>保全措置 検討段階 事業段階</td>
</tr>
<tr>
<td>善果林情報</td>
<td>斜面方位</td>
<td>保全措置 検討段階 事業段階</td>
</tr>
<tr>
<td>善果林情報</td>
<td>斜面位置</td>
<td>保全措置 検討段階 事業段階</td>
</tr>
<tr>
<td>善果林情報</td>
<td>林種</td>
<td>保全措置 検討段階 事業段階</td>
</tr>
<tr>
<td>善果林情報</td>
<td>胸高直径</td>
<td>保全措置 検討段階 事業段階</td>
</tr>
</tbody>
</table>

●は共有の必要性が高い項目

<p>| 表3 アンケート調査における主な質問内容 |</p>
<table>
<thead>
<tr>
<th>質問内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 自然環境における調査や検討の実施状況について（事前調査、影響検討、保全措置、事後調査・モニタリング）</td>
</tr>
<tr>
<td>Q2 自然環境調査や検討を行う際に、不足している事項や、あると助かる事項について</td>
</tr>
<tr>
<td>Q3 自然環境保全措置データの共有について</td>
</tr>
</tbody>
</table>

104
道路事業における土壌汚染等の環境リスク低減に関する調査
Study on Risk Mitigation of Soil Contamination in Road Projects

(研究期間 平成27～29年度)

道路交通研究部 道路環境研究室
Road Traffic Department
Road Environment Division

室長 井上 隆司
Head Ryuji INOUE
主任研究官 大城 淑
Senior Researcher Nodoka OSIRO
研究官 光谷 友樹
Researcher Yuki MITSUTANI

This study focuses on the risk of land contamination that causes project delays and project cost increases. The examples of land contamination in existing national road projects are surveyed and analyzed. And, helpful information and knowledge for road project coordinator are selected from the examples.

【研究目的及び経緯】
平成22年改正土壌汚染対策法（以下、「土対法」という）が施行され、自然由来重金属等も法の規制対象とされたことにより、道路事業においても対応が必要になっている。また、土対法上の土壌に該当せず対象外の「岩石」の汚染についても、法の対象ではないものの、対応が求められるケースが多く発生している。しかし、現状では土壌汚染の汚染（以下「土壌汚染等」という）の全国的な確認状況や対応状況は明らかではない。

本調査は、道路事業における土壌汚染等が確認された事業について、土壌汚染等の状況、事業遅延や事業費増大の状況、土壌汚染等確認後の対応（対策検討の結果、対策不要と判断することも含む）等の現状を調査・分析することにより、今後の道路事業における土壌汚染等への対応について共有化し、効率的な対応を図ることを目的としている。

27年度は、全国の地方整備局・北海道開発局・沖縄総合事務局の実施する国直轄の道路事業における土壌汚染等の遭遇状況およびその対応状況についてアンケートを実施することにより把握した。28年度は追加的な情報収集を行うとともに、収集した事例から事業者が土壌汚染対策を検討するにあたり、有益な情報を抽出し、整理した。29年度は、事例の分析を継続するとともに、事業者等へのヒアリングを行い、これらの結果にもとづき、道路事業における土壌汚染等の対応に関する手引きのたたき台を作成した。

【研究成果】
1. 道路事業で遭遇する土壌汚染等に関する知見の分析および体系的な整理

ここでは、調査・設計段階の成果の事例を示す。自然由来重金属等を含む土壌・岩石に人為的汚染（廃棄物を含む）に大別して、調査・設計段階における有用な知見を整理した。このうち評価方法では、土壌汚染対策法の対象外の場合は、「サイト概念モデルによるリスク評価方法（図1）」を用いることにより、評価地点の地下水が環境基準値に適合することを確認した上で、
表1 手引き（たたき台）の目次案

1. 本手引きの目的
2. 建設事業で遭遇する地盤環境リスクに関連する法令・条例
  2.1 関係法令の基礎知識
  2.2 土壌汚染等の関連条例
3. 建設事業で遭遇する事象の概要と参考になるマニュアル類
  3.1 自然由来重金属等を含む土壌・岩石による地盤環境リスク
  3.2 人为的な汚染による地盤環境リスク
  3.3 廃棄物混じり土、不法投棄廃棄物による地盤環境リスク
4. 事業計画段階における配慮事項
  4.1 自然由来重金属等の場合
  4.2 人为的な汚染の場合
  4.3 廃棄物混じり土の場合
5. 調査・設計段階での進め方
  5.1 自然由来重金属等を含む土壌、岩石
  5.2 人为的な汚染
6. 施工段階におけるリスク低減
  6.1 施工中の分別方法
  6.2 要対策土の仮置き方法
  6.3 施工中に汚染土壌や廃棄物に遭遇した場合の対応事例
7. モニタリング
  7.1 モニタリングの概要
  7.2 段階ごと（施工前、施工中、供用後）のモニタリング
8. 維持管理のあり方
  8.1 維持管理計画の策定
  8.2 トレーサビリティと情報の継承
9. 関係機関協議とリスクコミュニケーション
  9.1 届出や調整が必要な関係機関
  9.2 有識者の意見の聴取方法
  9.3 リスクコミュニケーションの方法

表2 リスクコミュニケーションのための地元説明資料の構成イメージ

- 説明会の議事次第、所要時間
- 事業概要の説明
- 工事概要の説明
- 自然由来の重金属等を含む掘削土や健康リスクの説明
- 調査結果・評価方法
- 惟理・対策方法
- 環境保全対策
- モニタリング方法
- 関連工事の説明
- 今後の工程
- 関連窓口

(その他、補足資料)

図1 サイト概念モデルによるリスク評価の概念図

2. 道路事業における土壌汚染等の対応に関する手引き（たたき台）の作成

これまでに整理した知見をもとに、今年度作成した手引き（たたき台）目次案を表1に示す。本手引きでは、なるべく早い段階で対応することにより、環境や事業への影響を低減することを目指して、事業計画段階の調査、設計段階での配慮事項を重点的に記載した。また、これまでのマニュアルやガイドライン等ではあまり触れられていなかった、対応実施後のモニタリングや維持管理、リスクコミュニケーションについて、事業者の参考となるように知見や実施例を追加したことが本手引きの特徴である。

さらに、建設発生土の自然由来重金属等によるリスクは低いにも関わらず、そのリスクが大きな課題として認知されていなかった場合を防ぐため、リスクコミュニケーションを円滑化するための留意事項等を分析した。また、得られた知見から事業者が活用可能な資料として、汎用性のある地元説明資料（構成イメージを表2に示す）のサンプル案を作成した。

今後は、有識者や事業者の意見を聴取し、これらのお見を踏まえて手引きを完成させる必要がある。

[成果の活用]
これまでの調査成果をとりまとめ、道路事業における土壌汚染等の対応に関する手引きを完成させ、広く活用を図る予定である。
エネルギーの技術革新と道路の技術開発に関する検討

Research on technological innovation of energy and road technical development

(研究期間 平成 28 年度～29 年度)

Energy system reform has proceeded and technological innovation has advanced rapidly in recent years in Japan. It has increased the need to consider effective utilization of energy in the field of road administration. The purpose of this study is to understand the current situation on the energy of the road facilities and to examine energy conservation of road facilities.

[研究目的及び経緯]
2016 年 11 月にパリ協定が発効し、地球の気温上昇を産業革命前に比べ 2 度未満とし、今世紀後半には温室効果ガス排出量の実質ゼロを目指すこととなった。
一方、近年、エネルギー分野において制度改革・技術革新が進展している中、道路分野においては、2013 年 7 月に太陽光発電設備及び風力発電設備の道路占用料が約 9 割減額され、道路空間への再生可能エネルギーの積極的導入が期待されており、道路施設についてもエネルギーの有効活用を検討する必要性が高まってきている。

本調査では、道路施設の時間帯別電力消費量を調査し、その需要特性を踏まえて、道路施設および周辺地域の設備（次世代自動車を含む）がエネルギーを賢く利用する方策等を検討した。

[研究内容及び結果]
1. 道路施設のエネルギー利用状況調査

<table>
<thead>
<tr>
<th>表 1 道路施設の電力需要特性の整理</th>
</tr>
</thead>
<tbody>
<tr>
<td>目的</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>1 新設のマッチング</td>
</tr>
<tr>
<td>トータル</td>
</tr>
<tr>
<td>トータル</td>
</tr>
<tr>
<td>トータル</td>
</tr>
<tr>
<td>事例</td>
</tr>
</tbody>
</table>
3. エネルギー技術活用効果の評価

エネルギー政策の必要性、効率性、有効性の観点から、1次エネルギーの削減量（環境性）、自立分散型のエネルギーおよび再生可能エネルギーからの供給割合（防災性）、エネルギー供給可能期間（防災性）、及び投資回収年（経済性）の4つの評価指標を抽出し、指標を算出することで6つの連携システムを評価した。

エネルギー需給のマッチングを目的としたトンネル照明と太陽光発電の組み合わせでは、夜間は系統電力で照明設備に供給し、昼間は、系統電力に加えて太陽光発電から供給することによる系統電力使用量の削減と平準化が期待できる（図1）。試算結果では一次エネルギー削減量・再生可能エネルギーからの供給割合38.2%、10～14時間供給可能、平準化による契約電力の削減と基本料金の減額も考慮すると投資回収年数は13.7年と一定の効果があるものと評価された。

電気自動車によるピークカットでは、冬の朝の暖房稼働直後の一時的なピークがカットされるため、同様に契約電力が下がることが期待できる（図2）。出張所のデータを用いた試算結果では、一次エネルギー削減量は無いか、自律分散型エネルギーの供給割合20～27%、3～5時間供給可能、年間約26万円の電気料金が9万円程度削減されると見込まれた。

複数の施設を組み合わせたエネルギー需要の平準化の観点では、事務所を核にしたシステムと、道の駅道路施設を核にした2つのシステムを検討した。さらに災害時の機能強化の観点から、それぞれについて自立して運用することを目指す連携システムも検討したが、大規模な機器の保有が必要になりコストが増大することから現時点では経済的に成立しない。今後のコストの低減や熱需要も合わせたマネジメントによって効率性を高めることが課題となる。

4. エネルギー技術活用のための課題の整理

ヒアリング調査結果から導入された事例の経緯をみると、例えば「冬季の融雪に必要なエネルギーが大きい」等の事務所が抱える課題の解決に風力発電や地熱利用等のエネルギー施設が寄与することが明らかとなり、導入された事例があることがわかった。

導入の際の具体的な検討方法については、太陽光発電であればNEDOの「大規模太陽光発電システム導入の手引き書」等、様々な機関からガイドラインや手引きが示されており、施設の種類や検討段階に合わせて利用することが可能である。

これまでの取り組みや今後の導入にあたっての主な課題は、1つ目として、これまでの施設の前後での効果の把握が難しいため、導入主体のメリットを定量的に評価できないケースが多く継続が難しくなっていること、2つ目として、再生可能エネルギー供給施設やコーディネーションシステムなどの高効率機器に関しては、導入支援段階であり、メンテナンスコストを含めた財政的負担が大きいことが挙げられる。

[成果の活用]

道路施設を管理していく上で、エネルギーを有効に利用するための技術導入の方法、留意点、評価方法について技術資料を作成し、将来の技術革新や災害時に見据えたシステム導入を支援する。
地域連携道路事業費
土木工事積算システムの効率的運用に関する検討調査
Research on efficiency operation using public works estimation system
（研究期間：平成28～29年度）

社会資本マネジメント研究センター
社会資本システム研究室
Research Center for Infrastructure Management, Construction and Maintenance System Division

<table>
<thead>
<tr>
<th>室長</th>
<th>関 健太郎</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>Kentaro SEKI</td>
</tr>
<tr>
<td>主任研究官</td>
<td>森 芳徳</td>
</tr>
<tr>
<td>Senior Researcher</td>
<td>Yoshinori MORI</td>
</tr>
<tr>
<td>研究官</td>
<td>吉田 武教</td>
</tr>
<tr>
<td>Researcher</td>
<td>Takenori YOSHIDA</td>
</tr>
<tr>
<td>交流研究員</td>
<td>竹屋 宏樹</td>
</tr>
<tr>
<td>Guest Research Engineer</td>
<td>Hiroki TAKEYA</td>
</tr>
</tbody>
</table>

To optimize and enhance the construction estimation system, NILIM studied system requirements of the new construction estimation system, and researched improvement and optimization of the system.

[研究目的及び経緯]
土木工事積算システムは、昭和44年に初めて電子計算機によるシステムを導入後、平成7年度にクラウド・サーバ方式の現在システム（16bit版）に移行、平成13年度から32bit版を運用し、その後も施工パッケージ型積算方式への対応など改良を実施しているところである。しかしながら現在システムは、開発後20年以上経過しており、逐次機能改良・拡張を続けてきた結果、システムが肥大化・複雑化しており、近年ではシステム改良に際し多大な時間とコストを要し、迅速な改良が困難といった課題も生じている。

[研究内容]
本研究は、積算システムの更なる効率化に向け、現行の土木工事積算システムにおける課題を整理し、システムの統廃合、クラウド化への移行等を検討する。また、改正公共工事標準法を踏まえ、積算システムの地方公共団体との共有についても検討する。

平成29年度は、前年度の検討結果を踏まえ、土木工事積算システムの効率化・高精度化向けシステム要件の検討、平成29年度から本格運用を開始した「工期設定支援システム」の機能改良等について検討した。

[研究成果]
1. 効率化に向けたシステム要件の検討
国交省では、毎年、本省および各地方整備局と連携し、土木工事積算システムに関する改良要望の収集整理を実施している。平成27年度末時点で約200件の改良要望が提案されているが、それらの要望、昨今の積算手法の多様化、システムを取り巻く環境等を踏まえ、下記の視点にて現行システムの効率化に向けシステム要件を検討した。

現行の土木工事積算システムのデータ処理機能等を担うために構築されている下記のサブシステムについて、土木工事積算システムの改良や改修の際のコスト削減や迅速な対応を可能とするため、機能単位で分解、整理可能なコンポーネント化のためのシステム要件を整理した。

（土木工事積算システムのサブシステム）
- 基準データメンテナンスシステム
- 機械費料決定支援システム
- 材料単価決定支援システム
- 諸費代金内訳書データベースシステム
- 設計単価比較システム
- 自動チェックデータ作成システム
- 積算案内用データ配信システム
- 基準データメンテナンスシステム
- クライアントデータ作成システム
- 事務所出力システム

図-1にコンポーネント化に向けたサブシステムの統合イメージを、図-2に基準データメンテナンスシステムのコンポーネント図を示す。コンポーネント化することにより、システム改良に必要となる工数が減り、結果的に改良コストや改良日数の低減が可能になると考えられる。
2. 高度化に向けたシステム要件の検討

国産研が運用管理している「積算実績データベース」及び今年度から本格運用されている「工期設定支援システム」を、地方整備局等で運用している土木工事積算システムと連携・共有化させ土木工事積算システムの高度化を図るため、下記のシステム要件を検討した。

1) 内部ネットワークを活用した積算実績データの収集

現在、各地方整備局から1年間の設計書データをCD等の電子媒体で収集し積算実績データベースに登録しているため、迅速かつタイムリーなデータ分析等の作業が行えない。このため、国土交通省の内部ネットワーク（建設行政WAN）を活用した設計書データの収集・登録手法を検討した。図3に収集・登録の動作イメージを示す。建設行政WANを介した通信において、建設行政WANのDMZに中継用の収集サーバを構築し、この収集サーバを「サーバ側」として位置付け、地方整備局等サーバ及び国産研実績DBサーバはどちらも

「クライアント側」と位置付けることにより、最適な配置となることが明らかとなった。

2) 工期設定支援システムの機能改良

国土交通省では働き方改革の実現のため、週休2日の実現に向けて工期設定支援システムの活用等により、適切な工期設定に取組んでいる。H29年度は、工期設定支援システムにAI（人工知能）技術を導入し、適切な工期を自動設定するためのシステム改良を実施した。AI技術は汎用型や特化型など多種多様だが、工期データの特性や利用形態を踏まえ「事例ベース推論」を適用した。図4に工期設定支援システムの事例ベース推論の構成図を示す。AI機能を導入したことにより、従来の工程アシスタント機能のように類似工事を自ら検索・選定する作業が削減され、過去データの組合せにより最適と思われる工期データを抽出・組合せることが可能となった。

【成果の活用】

土木工事積算システムの高度化・効率化に向け、システム要件の整理や工期設定支援システムの機能改良を実施した。上記の結果を踏まえ、今後は土木省や地方整備局と連携し、積算システムの高度化・効率化の改良を順次推進して参りたい。
道路工事における総合的なコスト構造の評価に関する調査

Investigation for evaluation of the integrated cost structure improvement

（研究期間　平成23～29年度）

社会資本マネジメント研究センター
社会資本システム研究室
Research Center
for Infrastructure Management,
Construction and Maintenance Systems Division

室長　関　健太郎
Head　Kentaro SEKI
主任研究官　市村　靖光
Senior Researcher　Yasumitsu ICHIMURA
研究官　大嶋　大輔
Researcher　Daisuke OOSHIMA

Working style reforms aimed at promoting labor opportunities and productivity are being promoted. In the construction industry, it is required to promote efforts such as securing appropriate wage levels and securing holidays. To contribute to the promotion of these efforts, this study investigated cases related to Western countries.

【研究目的及び経緯】
労働の機会や生産性を高めることなどを目的とした「働き方改革実行計画」及び、「働き方改革実現会議（議長・内閣総理大臣）」により2017年3月28日に決定された。これにより、建設業においては、適正な工期設定や適切な賃金水準の確保、休日確保などの取組の推進が求められている。
一方、欧米諸国では労働者が業界横断的な労働組合を通じて結束することで、雇用主に対して一定の賃金水準や休日の確保を認めさせる仕組みが定着している。なお、賃金水準や休日の扱いを含めた労働条件を「労働協約」として文書化し、雇用主を代表とする業界団体と、技能労働者を代表する労働組合の間で合意することで、技能労働者の権利が守られる仕組みとしている。

本研究では、建設業における取組の推進に寄与することを目的に、「適切な賃金水準の確保」とこれに関連する「下請けの取引条件の改善」、「週休2日の確保」の3点にスポットを当て、これらの取り組みが進んでいくと思われる先進国の一つである米国を中心に海外事例の調査を行った。

【研究内容】
本研究では、文献調査により「適切な賃金水準の確保」、「下請けの取引条件の改善」、「週休2日の確保」に関連する法令制度の把握を行うとともに、米国において連邦道路庁（FHWA）、フロリダ州交通局（FDOT）、全米建設業協会（AGC）、北米建設労働組合米国労働組合（NABTU）にヒアリングを行い、文献調査の裏付けをとるとなど、従来の法令制度についてとりまとめたものである。

【研究成果】
1. 適切な賃金水準の確保
図－1は、米国と日本の労務単価を比較したもので、米国の単価水準は日本の1.5～2.5倍とかなり高くとなっている。ただし、米国の工事価格は工種ごとの実績単価を基本としており、日本の公共工事設計労務単価のように、必ずしも公共工事の積算に利用されているものではない。

米国の格差が見受けられる労務単価の算定のベースには実際に支払われている賃金が含まれていることから、この賃金の設定に関する制度について、表－1に示す。米国の制度としては、デービス・ベッソン法が上げられている。技能労働者の中間的な賃金を基準賃金を定めているもので、連邦政府予算関連の工事に広く適用されることから影響の大きいと思われる。なお、全
表1 賃金設定に関する法令

<table>
<thead>
<tr>
<th>日本</th>
<th>米国</th>
</tr>
</thead>
<tbody>
<tr>
<td>全ての事業に適用（最低賃金）</td>
<td>全ての事業に適用（最低賃金）</td>
</tr>
<tr>
<td>法令①</td>
<td>法令①</td>
</tr>
<tr>
<td>最低賃金法</td>
<td>公正労働基準法（FLSA）</td>
</tr>
<tr>
<td>適用範囲</td>
<td>適用範囲</td>
</tr>
<tr>
<td>日本（都道府県別）</td>
<td>全米（州別）</td>
</tr>
<tr>
<td>法令①の賃金：2016年（日本）</td>
<td>法令①の賃金：2016年（日本）</td>
</tr>
<tr>
<td>公共工事に適用</td>
<td>公共工事に適用</td>
</tr>
<tr>
<td>法令②</td>
<td>法令②</td>
</tr>
<tr>
<td>公契約条項（例）</td>
<td>データベース・ペーカン法、ミニデータベース・ペーカン法（州法）</td>
</tr>
<tr>
<td>適用範囲</td>
<td>適用範囲</td>
</tr>
<tr>
<td>一部市町村（18/1,741自治体であることを確認2016年版）</td>
<td>一部市町村（18/1,741自治体であることを確認2016年版）</td>
</tr>
<tr>
<td>法令②の賃金：1,977円（普通工事）</td>
<td>法令②の賃金：1,977円（普通工事）</td>
</tr>
</tbody>
</table>

3. 週休2日の確保

週労働時間49時間以上の労働者の割合は、日21.3％、米16.6％、英12.5％、仏10.4％、独10.1％（2014年）であり、日本の労働時は海外に比べ、多い状況である。健康で働きやすい職場環境の実現に向か、改善を図っていく必要がある。

表2 下請けの取引条件の改善に関する法令

<table>
<thead>
<tr>
<th>日本</th>
<th>米国</th>
</tr>
</thead>
<tbody>
<tr>
<td>法令</td>
<td>法令</td>
</tr>
<tr>
<td>建設業法</td>
<td>連邦規則集（CFR）、データベース・ペーカン法</td>
</tr>
<tr>
<td>施工工比率の指定</td>
<td>施工工比率の指定</td>
</tr>
<tr>
<td>なし</td>
<td>施工工比率の指定</td>
</tr>
<tr>
<td>道路事業30％以上</td>
<td>道路事業30％以上</td>
</tr>
<tr>
<td>支払いフロー確認</td>
<td>支払いフロー確認</td>
</tr>
<tr>
<td>なし（一括支払いは禁止）</td>
<td>なし（一括支払いは禁止）</td>
</tr>
<tr>
<td>賃金支払い額を発注者が確認し、元請に代金支払い。</td>
<td>賃金支払い額を発注者が確認し、元請に代金支払い。</td>
</tr>
</tbody>
</table>

表3 週休2日の確保に関する法令

<table>
<thead>
<tr>
<th>日本</th>
<th>米国</th>
</tr>
</thead>
<tbody>
<tr>
<td>法令</td>
<td>法令</td>
</tr>
<tr>
<td>労働基準法：賃金制限令</td>
<td>労働基準法：賃金制限令</td>
</tr>
<tr>
<td>建設業法：賃金制限令</td>
<td>建設業法：賃金制限令</td>
</tr>
<tr>
<td>適用範囲</td>
<td>適用範囲</td>
</tr>
<tr>
<td>建設業（NY市例）</td>
<td>建設業（NY市例）</td>
</tr>
<tr>
<td>労働</td>
<td>労働</td>
</tr>
<tr>
<td>時間</td>
<td>時間</td>
</tr>
<tr>
<td>週40時間、8時間/日</td>
<td>週40時間、8時間/日</td>
</tr>
<tr>
<td>週休</td>
<td>週休</td>
</tr>
<tr>
<td>週休1日以上</td>
<td>週休1日以上</td>
</tr>
<tr>
<td>標準勤務日：月～金</td>
<td>標準勤務日：月～金</td>
</tr>
<tr>
<td>賃金</td>
<td>賃金</td>
</tr>
<tr>
<td>時間外25％増</td>
<td>時間外20％増</td>
</tr>
<tr>
<td>時間外、土曜50％増</td>
<td>時間外、土曜50％増</td>
</tr>
<tr>
<td>休日35％増</td>
<td>休日35％増</td>
</tr>
<tr>
<td>日曜等100％増</td>
<td>日曜等100％増</td>
</tr>
</tbody>
</table>

【成果の活用】

今回の報告は、米国をはじめとした欧米諸国の、法令制度を中心に概要を把握したものである。「適正な賃金水準の確保」においては、職業別賃金設定、「下請けの取引条件の改善」においては、支払いフローの確認に関与、「週休2日の確保」においては、休日の長時間労働賃金設定など特徴的なものに見受けられたものである。

今後これらの運用を含めた内容の精査、深化を図っていく、社会的背景の違いを踏まえたうえで建設業における働き方改革の効果的な取組の提案を行って参りたい。
Study on the improvement of detailed maintenance and repair design quality control of public works

It is important to secure the quality of the construction design result. Therefore, in this study, the faults of maintenance and repair work design was investigated and the improvement method for detail design quality control was proposed.

【研究目的及び経緯】
現在及び将来における建設工事の適正な施工及び品質の確保と、その施工件の確保を目的として、2014年6月に改正された品質基を受けて、建設生産システムの中でも上流段階に位置し、成果が生産全体の品質やコストに大きく影響を及ぼす設計業務において、より一層の品質確保に向けた取り組みを進めている。

国総研においては、なかでも今後、急速に老朽化することが懸念されている社会資本施設の補修・補強設計（以下、修繕設計という）を対象として、その特性を踏まえた設計の現状や不具合事例を調査し、修繕設計成果に関する品質確保対策について研究を進めているところである。

【研究内容】
①修繕設計の不具合事例等に関するアンケート調査
橋梁工事の関連団体に対して、過去に経験のある修繕設計成果の不具合事例に関して、アンケート調査を行った。

アンケート調査は、施工者が経験したことのある不具合の内容、工種、分類、発生要因やその対処法、発生頻度に加え、修繕設計に必要な資料の状況や不明瞭であった条件、設計工事からの申し送り内容や方法等について行った。

②修繕設計照査要領（案）の作成
修繕設計照査要領（案）の作成にあたっては、昨年度、新設計の設計照査要領を基に修繕設計に必要と考えられる項目を追加し作成した素案に関して、設計者・施工者に対して意見照会を行い、照査項目の追加・見直しを行った。

【研究成果】
①修繕設計の不具合事例等に関するアンケート調査結果
の資料が必要となる場合がある。そこで、修繕設計時のある資料の入手状況についても調査を行った。その結果、約8割の回答者が「十分な資料が揃っていた」若しくは「不足していたが現地等で容易に対応した。」という一方で、2割の回答者から「資料が不足し、確認・調査も困難であった。」との回答があった。また、不明確であった状況として、「貸与資料と現地状況が異なっていた」、「添加物などで資料不具合が発生することも懸念された。」その回答があった。

以下より、設計に必要な資料や条件等に関して、設計時の現地確認の強化、また現地確認が可能なケースに関しては、その想定した設計条件の申し送り等が必要であることが確認でき、これらの項目に関しても調査項目の追加・見直しが必要であることがうかがえた。

②修繕設計照査要領（案）の作成

上記のアンケート調査結果を踏まえて、新設の設計照査要領に対して「鋼桁工」、「橋梁支承工」、「橋梁付属物工」の3項目を強化、また現地確認を強化するための追加照査項目等を加え、修繕設計に関する設計照査要領（案）を作成した。

表一に修繕設計照査要領（案）の追加項目の一例を示す。

一方で、今回作成した修繕設計照査要領（案）では、照査内容が複雑されているのみであるため、その照査内容の必要性を理解せずにチェックし、修繕設計の不具合等が発生することも懸念される。そこで、図2に示すような照査要領（案）に対比する補足資料も併せて作成することとした。補足資料に、照査の必要性、明確化するため、照査内容と不具合項目を関連させて整理するとともに、損傷状況と補修工法の関連性や補修工法と工事への申し送りとの関連性等が明確になるよう、各地方整備局にて用いている設計要領や道路橋の定期点検に関する参考資料、既往文献等を用いて整理した。

図2 修繕設計照査要領とその補足資料のイメージ

| 表一 修繕設計照査要領（案）の追加項目の一例 |
|---|---|
| **項目** | **照査内容** |
| 基本条件の照査（現地踏査） | 直前の点検、調査データと整合しているか。（損傷箇所、損傷箇所の進展確認等） |
|  | 詳細調査、追加調査時的方法、調査時期を確認した。 （桁下からアクセス可能か、構梁点検が必要か等。港水期に調査を実施か等） |
|  | 詳細調査、追加調査時の交通規制の必要性や交通規制を実施する場合の規制形態（片側交又通行、通行止め等）について確認した。 |
| 基本条件の照査（設計基本条件） | 設計図書で修繕設計を行う場合、現地との整合を確認した。 |
|  | 火事完成図書で修繕設計を行う場合、完成後に既設構造物の変状が生じていないことを確認した。 |
|  | 過去の補修、補強履歴による荷重の増加、構造変更等を確認した。また、計算モデルに反映しているか。 |
|  | 支承取替による支承条件変更、構造化等の構造変更を行う場合、構造的に望ましい施工順序を検討した。 |
| 細部条件の照査（構梁付属物工） | 新たに設置する水平力分担構造物のアンカー・ボルトに対する縁端距離、橋梁耐力の照査を行っているか。 |
|  | 支承を取替えた場合、必要であった長及び必要支承線距離を満足しているか。 |
|  | また、支承線距離は橋梁直角方向も確認した。 |
|  | 設計図には、施工に必要な注意が記載されているか。 |
|  | 既設構造物形状、形状や損傷状況については、現地確認を行ったか。 |
|  | 受注者で計測不可の場合、発注者に提案したか。 |