ISSN 1346-7328 国総研資料 第1001号 平成30年1月

国土技術政策総合研究所資料

TECHNICAL NOTE of National Institute for Land and Infrastructure Management

No. 1001

January 2018

地震動に伴う地盤の非線形性を考慮した 直杭式横桟橋の照査用震度算出方法に関する研究

勝俣優・福永勇介・竹信正寛・宮田正史・小濱英司

A Study of a Method of Calculating Seismic Coefficients of Open-type Wharves on Vertically Pile Considering the Nonlinearity of Soil Stiffness Accompanying Earthquake Ground Motion

Masaru KATSUMATA, Yusuke FUKUNAGA, Masahiro TAKENOBU, Masafumi MIYATA, Eiji KOHAMA

国土交通省 国土技術政策総合研究所

National Institute for Land and Infrastructure Management Ministry of Land, Infrastructure, Transport and Tourism, Japan

地震動に伴う地盤の非線形性を考慮した

直杭式横桟橋の照査用震度算出方法に関する研究

勝俣 優*・福永勇介**・竹信正寛***・宮田正史****・小濱英司*****

要 旨

「港湾の施設の技術上の基準・同解説(平成19年)」¹⁾において, L1地震動に対する直杭式桟橋 の固有周期や照査用震度は,地盤が弾性体であると仮定し骨組解析を介して求める手法が示されてい る.しかしながら,強い地震動に対しては地盤を弾性体と仮定することはできず,地盤剛性が低下す ると考えられる.

このため、本研究では直杭式横桟橋の照査用震度算出手法に対し、地震動に伴う地盤の非線形性を 考慮した補正法について検討する.まず、地震作用時における桟橋固有周期や地盤剛性の変化を地震 応答解析により評価し、その関係性を整理する.これにより、地盤剛性の初期値からの低下の程度を 入力パラメータとする固有周期算出式の補正法を提案する.さらに、二次元地震応答解析における上 部工加速度時刻歴と、一次元地震応答解析における仮想固定点周辺地盤の加速度時刻歴から求められ る加速度応答スペクトルを比較することで、照査用震度を求める際に適用すべき減衰定数の値につい ても検討する.これらを取りまとめることで、地震動に伴う地盤非線形性を考慮した直杭式横桟橋の 照査用震度算出方法を提案する.

キーワード:直杭式横桟橋、地震応答解析、固有周期、照査用震度

〒239-0826 横須賀市長瀬3-1-1 国土交通省国土技術政策総合研究所 電話:046-844-5019 Fax:046-842-9265 e-mail:ysk.nil-kikaku@ml.mlit.go.jp

^{*}港湾研究部 港湾施設研究室 交流研究員(中央復建コンサルタンツ株式会社)

^{**} 港湾研究部 主任研究官

^{***} 港湾研究部 主任研究官

^{****} 港湾研究部 港湾施設研究室長

^{*****} 海上・港湾・航空技術研究所 港湾空港技術研究所 地震防災研究領域 耐震構造研究グループリーダー

Technical Note of NILIM No. 1001 January 2018 (YSK-N-383)

A Study of a Method of Calculating Seismic Coefficients of Open-type Wharves on Vertically Pile Considering the Nonlinearity of Soil Stiffness Accompanying Earthquake Ground Motion

Masaru KATSUMATA* Yusuke FUKUNAGA** Masahiro TAKENOBU*** Masafumi MIYATA**** Eiji KOHAMA****

Synopsis

Natural period and seismic coefficients of open-type wharves on vertically pile are estimated assuming that soil is linearly elastic material at small displacement according to the Japanese design standards for port facilities titled "Technical Standards and Commentaries for Port and Harbour Facilities in Japan (2007)"¹⁾. But, under strong earthquake ground motion, soil is not still linearly elastic material but its stiffness decreases nonlinearly as the level of load become larger.

For this reason, the authors strive to derive the formula for estimating the natural period and the method of calculating seismic coefficients of open-type wharves on vertically pile considering the nonlinearity of soil stiffness caused by larger earthquake ground motion.

At first, we evaluated the relationship between natural period and soil nonlinearity by 2D-Seismic Response Analysis, and proposed a correction method for the current natural period calculation formula that has input parameter of soil nonlinearity. Then, by comparing the acceleration of 2D-Seismic Response Analysis and the Acceleration Response Spectrum calculated by 1D-Seismic Response Analysis, we studied the damping coefficient to be applied in order to calculate the seismic coefficients of wharves.

From the above studies, we proposed the method of calculating seismic coefficients of vertically pile-supported wharves considering the nonlinearity of soil stiffness accompanying earthquake ground motion.

Key Words: Open-type Wharves on Vertically Pile, Seismic Response Analysis, Natural Period, Seismic Coefficients

- * Exchanging Researcher, Port Facilities Division, Port and Harbor Department, NILIM (CHUO FUKKEN CONSULTANTS Co., Ltd.)
- ** Senior Researcher, Port and Harbor Department, NILIM
- *** Senior Researcher, Port and Harbor Department, NILIM
- **** Head, Port Facilities Division, Port and Harbor Department, NILIM
- ***** Group Leader, Earthquake and Structural Dynamics Group, Earthquake Disaster Prevention Engineering Division, Port and Airport Research Institute, MPAT

3-1-1 Nagase, Yokosuka, 239-0826 Japan

Phone : +81-468-44-5019 Fax : +81-468-42-9265 e-mail : ysk.nil-kikaku@ml.mlit.go.jp

1. はじめに	1
1.1. 本研究の背景	1
1.2. 本研究における検討項目	2
1.3. 研究の全体手順と本稿の構成	4
2. 微小地震動に対する桟橋固有周期算出式の補正	5
2.1. 検討の目的	5
2.2. 検討断面の設定	5
2.3. 入力波形	6
2.4. 固有周期算出手法	6
2.5. 桟橋固有周期の算出結果と比較検討	8
2.6. 桟橋バネ定数の補正	8
2.7. 固有周期補正法の推定精度の評価	12
3. 地盤の非線形性を反映した固有周期の補正	13
3.1. 検討の目的	13
3.2. 入力波形	13
3.3. 仮想固定点の設定	14
3.4. 作用震度と固有周期の関係	14
3.5. 作用震度と地盤のせん断剛性の関係	15
3.6. 地盤非線形性と固有周期との関係式の構築	16
3.7.1次元地震応答解析による地盤非線形性の評価	23
3.8. 桟橋固有周期補正法の設定	24
3.9. 固有周期補正法の推定精度の評価	26
4. 減衰定数の検討	28
4.1. 検討の目的	28
4.2. 検討手法	28
4.3. 減衰定数の比較検討	29
4.4. 照査用震度の推定精度の評価	31
5. 補正法の提案と応力照査の比較	33
5.1. 検討の目的	33
5.2. 補正法の提案	33
5.3.2次元地震応答解析と骨組解析との杭応力の比較	33
6. 結論	39
6.1. 本稿の取りまとめ	39
6.2. 今後の課題	40
謝辞	42
参考文献	42
附録 A 計算事例と検討対象事例	43
附録 B 2 次元地震応答解析における固有周期	46
附録 C 2 次元地震応答解析におけるせん断剛性比	69
附録 D 1 次元地震応答解析におけるせん断剛性比	92
附録 E 2 次元地震応答解析における上部工加速度最大値	. 115
附録 F 1 次元地震応答解析における加速度応答値	. 117

目 次

1. はじめに

1.1. 本研究の背景

(1) 直杭式桟橋における照査用震度の算出方法

「港湾の施設の技術上の基準・同解説(平成19年)」¹⁾ (以下,「現行港湾基準」とする)において,直杭式桟橋 の照査用震度は,桟橋中央部の地盤をモデル化した1次元 地震応答解析から仮想固定点(仮想海底面下1/β地点,図-1) における加速度応答スペクトルを算出し,桟橋の固有周期 に対応する加速度応答を桟橋上部工に生ずる最大加速度 amaxとすることで求める手法が示されている(図-2).

この際,地震応答解析を用いずに桟橋の固有周期を算出 する方法として,桟橋に作用する荷重と桟橋上部工の変位 の関係が線形であると仮定し,微小な外力を与えた骨組解 析により桟橋バネ定数を求め,式(1.1)により固有周期を算 出する手法が現行港湾基準に示されている.

$$T_s = 2\pi \sqrt{W/gK} \tag{1.1}$$

ここに, *T_s*: 桟橋の固有周期(s), *W*: 杭1列が受け持つ自 重および載荷重(kN), *g*: 重力加速度(m/s²), *K*: 桟橋のバ ネ定数(kN/m)である.

桟橋上部工に生ずる加速度最大値については、横田ら²⁾ が全応力解析に基づく2次元地震応答解析により、桟橋中 央部の仮想固定点における加速度応答スペクトルから評 価できることを示している.また、1次元全応力解析 (SHAKE)と2次元全応力解析(FLUSH)を比較することで、1 次元全応力解析から得られた仮想固定点における加速度 時刻歴に基づいて加速度応答スペクトルを求める際は、10 ~30%の減衰定数を導入することを提案しており、現行港 湾基準においては減衰定数をh=20%とすることで反映さ れている.

現行港湾基準に示される照査用震度の算出方法(以下, 「現行法」とする)は、基本的にこれらの成果を反映した ものであり、レベル1地震動に関する変動状態については、 現行法により算出した照査用震度を外力とした骨組解析 により杭の発生応力を照査する手法が一般的に採用され ている.

(2) 直杭式桟橋の照査法に関する既往研究

現行港湾基準では、杭と地盤の動的相互作用を考慮する 手法として、非線形地震応答解析を用いた照査法を提案し ている.強震観測事例や常時微動観測事例と非線形地震応 答解析との整合性を検証した事例はいくつかあり、有効応 力解析による2次元地震応答解析は実際の桟橋の挙動をよ く再現することが確認されている.

例えば、長尾³)は川崎港および横浜港の直杭式桟橋を対 象とした常時微動観測を行い、観測から得られた固有周期 と2次元地震応答解析から算出した固有周期が良く整合す ることを示している.また、背後地表面における最大加速 度が 86.1Gal(川崎港),60.7Gal(横浜港),61.6Gal(横浜港) の強震観測事例を2次元地震応答解析により再現すること で、強震観測事例についても2次元地震応答解析から桟橋 の固有周期を求めることができるとしている.ただし、こ の研究では地震動や対象桟橋によっては、渡版の影響を適 切にモデル化する必要があることも示している.さらに、 田代ら⁴)は常時微動観測から得られた固有周期と、最大加 速度 1Gal のホワイトノイズを与えた2次元地震応答解析 から得られた固有周期とを比較し、両者が概ね整合するこ とを示している.

このように,適切にモデル化された非線形地震応答解析 を適用することで,地震時における桟橋の挙動をある程度 再現することが可能である.ところが,有限要素法を用い た2次元の非線形地震応答解析は複雑な手法であり,解析 に多大な計算負荷が要求される.このため,レベル1地震 動に関する変動状態における杭の応力照査法として,2次 元地震応答解析を適用する事例はあまり多くない.

さて、2次元地震応答解析は地震時における桟橋の挙動 をある程度再現できることから、2次元地震応答解析と現 行法とで算出される桟橋の固有周期や照査用震度が整合 している場合は、現行法は実際の桟橋の挙動を再現できて いると判断できる.しかしながら、桒原・長尾⁵¹は、現行 法と2次元地震応答解析との比較から、地盤の非線形性を ほとんど無視できる微弱な地震動に対しても、現行法と2 次元地震応答解析とでは算出される桟橋固有周期が乖離 していることを指摘している.また、より強い地震動に対 しては、地震動の強さに応じて杭周辺における地盤のせん 断剛性が低下することで、桟橋の固有周期が長くなること を指摘している.

さらに、1次元地震応答解析による加速度応答スペクト ル算出時に適用する減衰定数(*h*=20%)は、前述のとおり1 次元と2次元の全応力解析の比較を反映したものである²⁾ が、現在では1次元地震応答解析は有効応力解析を適用す ることが一般的となっている.これについて、桒原・長尾 ^{5)や大久保・小濱・楠⁷⁾は、FLIPを用いた有効応力解析に より1次元地震応答解析と2次元地震応答解析を比較して おり、減衰定数をより小さな値とすることが適切であると 指摘している.}

このように,現行法により算出される固有周期や照査用 震度は,有効応力解析を適用した2次元地震応答解析と整 合しないことが確認されている.このため,桒原・長尾⁵⁾ や大久保・小濱・楠⁷⁾は,現行法を2次元地震応答解析に 整合させるための補正法を提案しているが,検証された設 計条件が限定されていることや,補正過程が複雑であるこ とから,設計実務への適用には至っていない.

(3) 本研究の目的

本研究では、これらの先行研究を踏まえつつ、実務への 適用性を考慮した現行法の補正法を検討する. すなわち、 まず初めに地盤の非線形性をほとんど無視できる微弱地 震動について、現行法を2次元地震応答解析に整合させる 補正法を立案し、その推定精度を検証する.

次いで,加速度最大値を種々に変化させた入力地震動を 与えることで,地震動の強さと地盤剛性や桟橋の固有周期, 減衰定数の関係を2次元地震応答解析により評価する.こ れにより,地震動の強さに応じた地盤剛性の変化をパラメ ータ化し,現行法へ組み込むことで2次元地震応答解析と 整合する照査用震度算定法を構築する.また,杭に発生す る曲げモーメントを比較することで,骨組解析と2次元地 震応答解析との整合性を検討する.

1.2. 本研究における検討項目

本節では、本研究の検討項目について詳述する.

(1) 微小地震動に対する桟橋固有周期算出式の補正

前述のとおり,現行港湾基準では桟橋固有周期の算出方法として式(1.1)が示されているが,式中の桟橋バネ定数Kを骨組解析により求める際に,杭周辺地盤の地盤反力係数を式(1.2)から決定できるとしている.

k_{CH}=1500N

(1.2)

ここに, kcn:水平方向地盤反力係数(kN/m³), N:N値で ある.この式は,横山⁸⁾が収集整理した我が国における鋼 杭の横方向載荷試験結果(図-3)を踏まえ,逆算された水平 方向地盤反力係数の下限値と中間値の中間の値であり,地 表面変位が1cmのときの水平方向地盤反力係数を求めるも のである¹⁾.土は線形弾性体ではないため,杭に対する水 平方向力と変位の関係は非線形と考えられるが,式(1.2)は 微小変位を仮定することで地盤反力係数をN値と比例する ものとしている.

しかしながら、桒原・長尾⁵は、現行法と2次元地震応答 解析との比較から、地盤の非線形性をほとんど無視できる 微弱な地震動に対しても、現行法で算出される桟橋固有周 期は2次元地震応答解析と比較して大きな値となることを 指摘している(図-4).式(1.1)の自重および載荷重Wや重力 加速度gは固定値であり、水平方向地盤反力係数は複数の 載荷試験に基づいた値である.地盤反力係数の実測値が概 ね正しい値と仮定すると、骨組解析において桟橋バネ定数 Kが過小評価されることが、現行法と2次元地震応答解析と で算出される固有周期が乖離する要因と考えられる.この ため、本研究においては、骨組解析により求めた桟橋バネ 定数Kを適切に補正することで、微小地震動を前提とした 固有周期算出式の補正法の在り方について検証する.

(2) 地盤非線形性を反映した固有周期の補正

土は線形弾性体ではないため、杭に対する水平方向力と 変位の関係は非線形である.これに対し、現行港湾基準は 微小変位を仮定することで、骨組解析における地盤反力係 数を式(1.2)より求めることができるとしている.しかしな がら、レベル1地震動のような比較的強い地震動に対して は、桟橋杭の変位は微小といえる範囲に留まらないため、 水平方向力と変位の関係は非線形な状態にあると考えら れる.したがって、微小変位を仮定した式(1.2)では、L1 地震動においては地震動の強さに応じて低下する地盤反 力係数を過大に評価する可能性がある.

現行法において杭の仮想固定点に関わるパラメータβは 式(1.3)で求められ,水平方向地盤反力係数により変化する 値である.したがって,地盤反力係数を過大に評価すると, 桟橋杭の仮想固定点 (仮想海底面下 1/β地点)がより高い標 高に設定され,桟橋固有周期をより短周期側に評価するこ ととなる.

$$\beta = \sqrt[4]{k_{CH}D}/_{4EI} \tag{1.3}$$

ここに, β: 仮想固定点に関するパラメータ(m⁻¹), D: 杭 の直径(m), *EI*: 杭の曲げ剛性(kN・m²), *k*_{CH}: 水平方向地 盤反力係数(kN/m³)である.

現行法においては、1次元地震応答解析から求めた加速 度応答スペクトルに対し、桟橋固有周期に対応する加速度 最大値から桟橋の照査用震度が設定されるため、地震動の 強さに応じて変化するであろう地盤反力係数や固有周期 を正確に評価することは非常に重要である.これに対し、 桒原・長尾⁵は、水平地盤反力係数と地盤のせん断剛性に 一定の関係があることに着目し、仮想固定点周辺における 地盤の初期せん断剛性 G_0 とせん断応力最大時のせん断剛 性 G_{tmax} の比 (G_{tmax}/G_0)と、仮想固定点に関するパラメー タ β の関係を定式化した.これにより、1 次元地震応答解 析により求めたせん断剛性比により β を補正し、地震作用 に伴う地盤の非線形性を考慮した固有周期の算出手法を 提案した.

また,大久保・小濱・楠[¬]は,2次元地震応答解析から 逆算した水平方向地盤反力係数を代入することで,現行法 と2次元地震応答解析との桟橋固有周期の乖離は地盤反力 係数の違いによるところが大きく,水平方向地盤反力係数 が適切に設定されれば,現行法は2次元地震応答解析に近 い固有周期を算出することを示した.

本研究では、複数の地震動に対する桟橋の地震応答を2 次元地震応答解析により評価することで、桟橋の固有周期 と地盤のせん断剛性比 G_{tmax}/G₀との関係を定式化する.こ れにより、地震動に伴う固有周期の変化を式(1.1)に反映さ せるための補正法について検討する.

(3) 固有周期算出式の推定誤差の整理

算出される桟橋固有周期は誤差を含むものであること から,現行港湾基準では図-5に示すように固有周期の幅を 設定することで,固有周期に対応する加速度応答値が谷間 の値となることを避けている.しかしながら,考慮する固 有周期の幅について具体な設定方法の記述がなく,設計者 の経験に依存している面がある.

このため、本研究においては桟橋固有周期について2次 元地震応答解析に対する現行法のばらつきを整理し、その 推定精度を評価することで、考慮する固有周期の幅につい て統計的根拠を与える.

(4) 減衰定数の補正

前節に述べたように,現行法では加速度応答スペクトル を算出する際に適用する減衰定数を全応力解析の比較に 基づいて*h*=20%としているが,現在では1次元地震応答解 析は有効応力解析を適用することが一般的となっている. これについて, 桒原・長尾⁵⁾や大久保・小濱・楠⁷は, FLIP を用いた1次元地震応答解析と2次元地震応答解析の比較 により,前者は減衰定数を5%程度,後者は3~6%程度とす ることが適切であると指摘している.

減衰定数については,入力地震動の大きさや地盤条件の 影響を受けると考えられるため,本研究ではより広範な適 用範囲を有する減衰定数の設定方法について検討する.

(5) 照査用震度算出法の補正と応力の比較検討

上述の各検討項目から得られた知見を統合することで, 現行法により算出される照査用震度と,2次元地震応答解 析から得られる作用震度とを整合させるための補正法を 提案する.

また,骨組解析に入力される照査用震度が2次元地震応 答解析と同値であったとしても,出力として得られる杭応 力まで2次元地震応答解析と一致するとは限らないことか ら,杭に発生する最大曲げモーメントについて,2次元地 震応答解析と骨組解析との比較を行う.

1.3. 研究の全体手順と本稿の構成

(1) 研究の全体手順

本研究全体を通しての検討手順は図-6に示すとおりで ある.なお,手順(1)は微弱な地震動を外力とした微小地震 動に対する検討であり,手順(2)~(4)はL1地震動を考慮し た検討である.

図-6 本研究の全体フロー

なお、本研究は、現行法では作用する地震動に関わらず 一定値である桟橋の固有周期や地盤の剛性が、実際には地 震動の強さに応じて変化すると想定し、検討を加えたもの である.そして、本研究の目的は、地震動の強さとこれら の物理量との間にある関係性を見出し、その定式化を図る ことである.本研究では地震動の強さとこれらの物理量と の関係性を「動的特性」と称し、以降の整理の簡略化を図 っているため留意されたい.

(2) 本稿の構成

第2章では、手順(1)について、微小地震動を対象として 現行法および2次元地震応答解析から算出される桟橋固有 周期を比較し、その結果を踏まえて骨組解析から算出され る桟橋バネ定数を補正する手法について検討する.さらに、 2次元地震応答解析に対する補正法の固有周期の誤差割合 を導出することで、補正法の推定精度を評価する.

第3章では、手順(2)について、種々の最大加速度に振幅 調整した地震動に対する直杭式桟橋の挙動を2次元地震応 答解析より求め、地盤剛性と桟橋の固有周期の関係を整理 する.本研究においては、仮想固定点周辺地盤のせん断剛 性比を、地震動に伴う地盤剛性の非線形的な変化を表すパ ラメータとして採用し、せん断剛性比を入力パラメータと して固有周期の変化量を算定するための関係式を導出す る.次いで、2次元地震応答解析と1次元地震応答解析の せん断剛性比を比較し、その関係性を定式化する.これに より、1次元地震応答解析により得られるせん断剛性比に 基づいて、現行法により算出される桟橋の固有周期を地震 動の強さに応じて補正する手法を提案し、その推定精度を 評価する.

第4章では、手順(3)について、1次元地震応答解析から 得られる加速度応答スペクトルから求めた上部工最大加 速度と、2次元地震応答解析における上部工の節点時刻歴 から求めた上部工最大加速度を比較する.これにより、適 切な減衰定数を提案するとともに、照査用震度の推定精度 を評価する.

最後に第5章では、各検討結果を取りまとめることで、 動的特性を考慮した照査用震度算定手法の構築を図る.さらに、補正法および2次元地震応答解析から得られた照査 用震度を骨組解析に適用することで、杭に発生する最大曲 げモーメントについて、2次元地震応答解析と骨組解析と の比較を行う.

以上の検討から得られる結論を第6章に取りまとめ、今 後の課題と併せて提起する.

2. 微小地震動に対する桟橋固有周期算出式の補正

2.1. 検討の目的

本検討では、地盤非線形性がほとんど生じないと考え られる微小地震動を対象として、2次元地震応答解析お よび現行法により算出された桟橋固有周期を比較する. これにより、2次元地震応答解析を正として、現行法か ら算出される桟橋固有周期の補正を行う.

2.2. 検討断面の設定

(1) 検討断面の概要

検討断面の概形を図-7に示す. 骨組解析から求まる桟橋 バネ定数は, 微小変位においても仮想海底面の標高や地盤 反力係数, 杭剛性等の影響を受ける. このため, 設計水深, 原地盤N値, 杭の剛性については複数の設計条件を設定し た. それぞれの設計水深における検討断面の概形と杭諸元 は図-8~図-10に示すとおりであり, 検討断面数は21断面 である.

図-7 検討断面の概要

(2) 解析コードと入力パラメータの設定

2 次元地震応答解析における各地盤の入力パラメータは, 桟橋中央部の土層構成に基づいて 1D-MAKER⁹より設定 する.これは,1次元地震応答解析と2次元地震応答解析 とで地盤の入力パラメータを一致させるためである.入力 パラメータの設定例を表-1に示す.

(3) 骨組解析における地盤反力係数の設定

骨組解析における水平方向地盤反力係数は,式(1.2)より 算定する.ただし,捨石については設計事例集¹⁰⁾より N=5 とし,菊池ら¹¹⁾の実験結果から*kcn*=3500(kN/m³)とした.

ксн=1500N

図-8 検討断面の概形と杭諸元(設計水深-10m)

図-9 検討断面の概形と杭諸元(設計水深-13m)

図-10 検討断面の概形と杭諸元(設計水深-16m)

表-1 1D-MAKER による入力パラメータの設定例(設計水深-10m, N=5)

	土質	分類	層上面 標高 (m)	湿潤単 位体積 重量 γt (kN/m3)	飽和単 位体積 重量 γsat (kN/m3)	基準有 効拘束 圧 σma (kN/m2)	初期せ ん断剛 '性 Gma (kN/m2)	初期体 積弾性 係数 Kma (kN/m2)	せん断 抵抗角 (度)	粘着力 c (kN/m2)	最大 減衰 hmax	間隙率 n	有効 拘束圧 依存性 mG, mK	層中央 での有効 上載圧 _{の'v} (kN/m2)	層厚 h (m)	せん断 波速度 Vs (m/s)	H/Vs (s)	分割数
1	被覆石	捨石	-6.50	20.00	20.00	98.00	180000	469400	40	0.00	0.240	0.45	0.5	5.00	1	131.4	0.008	1
2	捨石	捨石	-7.50	20.00	20.00	98.00	180000	469400	40	0.00	0.240	0.45	0.5	22.50	2.5	191.3	0.013	2
3	砂質土1	砂質土	-10.00	18.00	20.00	98.00	53593	139762	38.8	0.00	0.240	0.45	0.5	110.00	15	155.2	0.097	8
4	砂質土2	砂質土	-25.00	18.00	20.00	98.00	77771	202816	39.7	0.00	0.240	0.45	0.5	215.00	6	221.1	0.027	3
5	礫質土	砂質土	-31.00	20.00	20.00	98.00	160593	418802	42.8	0.00	0.240	0.45	0.5	275.00	6	337.9	0.018	2
6	工学的基盤	基盤	-37.00	20.00	20.00	Vp =	1600	Vs =	300					Σ H=	30.5	ΣH/Vs=	0.162	

2.3. 入力波形

2次元地震応答解析における入力地震動は,最大加速度 を10Galに振幅調整した八戸波,岩国波,博多波とした. 各入力波形の振幅調整前の原波形を図-11に示す.

図-11 入力地震動(原波形)

2.4. 固有周期算出手法

(1) 2次元地震応答解析

2次元地震応答解析による桟橋固有周期の算出方法は, 桒原・長尾⁵⁾と同様の手法を採用する.すなわち,図-12 に示すように,桟橋上部工および仮想固定点における加速 度時刻歴からフーリエスペクトルを算出し,両者のスペク トル比を取ることで仮想固定点から桟橋上部工までの伝 達関数を求める手法である.伝達関数が極大値を取る周期 を桟橋の固有周期として整理する.なお,本検討において は,フーリエスペクトルは高速フーリエ変換により算出す るものとし,Parzen窓を掛けることでスペクトルの平滑化 を図っている¹²⁾.なお,バンド幅は0.05Hzとした.

杭の仮想固定点は現行港湾基準に基づき,仮想地表面を 基準線とし,杭の特性値βを考慮して設定する(図-1).本検 討においては,桟橋上部工の中央部と桟橋中央杭の仮想固 定点における加速度時刻歴から桟橋固有周期を算定した. なお,現行港湾基準は図-1の手法によらず仮想固定点を設 定してもよいとしており,2次元地震応答解析における仮 想固定点の定義については検討の余地がある.しかしなが ら,微小変位に限れば,現行法による仮想固定点,杭下端, 地表面のいずれであっても桟橋上部工までの伝達関数が 極大値となる周期はほぼ変わらないため(図-13),本検討に おいては,現行法に基づいて仮想固定点を設定する.

(2) 現行法

現行法による桟橋固有周期は,式(1.1)により算出する.

$$T_s = 2\pi \sqrt{W/gK}$$
(1.1)再揭

ここに, *Ts*: 桟橋の固有周期(s), *W*: 杭1列が受け持つ 自重・載荷重(kN), *g*: 重力加速度(m/s²), *K*: 桟橋バネ定 数(kN/m)であり, 桟橋バネ定数は骨組解析により求める. なお, 骨組解析は市販ソフトウェアである「横桟橋設計計 算 2007 Ver2.2.9」により実施した.

変数 W は上部工と上載荷重により定まる値であり, g は定数であるため,同一断面であれば式(1.1)による固有周 期は桟橋バネ定数 K によってのみ変化する.したがって, 現行法による固有周期を2次元地震応答解析と整合させる ためには,桟橋バネ定数 K を適切に補正する必要がある.

桟橋バネ定数 Kは,仮想固定点の位置の影響を受けるた

め、本検討では仮想固定点の適切な設定方法についても検 討する.仮想固定点を設定する際の基準面について現行港 湾基準では仮想海底面を用いることとしているが、桒原・ 長尾⁵)は実海底面を基準面とする方が固有周期の整合性が 良いとしている.このため、基準面については仮想海底面 と実海底面を検討対象とする.また、捨石の水平方向地盤 反力係数の設定については、菊池ら¹¹⁾が実験より示した *kct*=3500(kN/m³)、および設計事例集¹⁰⁾に示される *kct*=7500(kN/m³)を検討対象とする.以上から、本検討で は**表**-2 に示す4手法に基づいて仮想固定点を設定し、それ ぞれの固有周期を比較検討する.

表-2 骨組解析における仮想固定点の設定

設定	基準面	捨石の地盤反力係数	備考
1	仮想海底面	3500(kN/m ³)	現行法
2	仮想海底面	7500(kN/m ³)	
3	実海底面	3500(kN/m ³)	
4	実海底面	7500(kN/m ³)	

2.5. 桟橋固有周期の算出結果と比較検討

2次元地震応答解析および現行法により算出した固有周 期の比較図を図-14に示し、その相関係数を表-3に示す. また、断面ごとの固有周期算出結果の詳細を図-15に示す.

図-14より、仮想海底面を基準面して仮想固定点を設定 すると、現行法で算出される固有周期(1.0~1.5s)は2次元地 震応答解析による固有周期(0.6~0.8s)と比較して非常に長 い値となることが確認できる.また、実海底面を基準面と して仮想固定点を設定すると、骨組解析と2次元地震応答 解析とで算出される固有周期は比較的近い値となる.

一方,図-15では、現行法、2次元地震応答解析のいずれ においても、原地盤N値の差異は桟橋固有周期にほとんど 影響しておらず、設計水深と杭諸元の差異による影響が大 きいことが確認できる.特に骨組解析において実海底面を 基準面とすると、算出される桟橋固有周期が設計水深の影 響を強く受けるようになり、設計水深-10mの断面と-13m, -16mの断面とで固有周期に顕著な差が生じる.これは、実 海底面を基準面とすると、基準面から仮想固定点までの土 層構成における基礎捨石の占有率が高くなり、基礎捨石の 配置状況、特に基礎捨石下面標高と設計水深の関係が固有 周期の算出結果に影響を与えるようになると考えられる. このため、表-3に示したとおり、仮想固定点の算出に当た っては、仮想海底面を基準面とする方が、現行法と2次元 地震応答解析の相関係数は高い値となる.

表-3	2次元地震応答解析に対す	る現行法の
	固有周期の相関係数	

設定	基準面	捨石の地盤反力係数	相関係数									
1	仮想海底面	3500(kN/m ³)	0.944									
2	仮想海底面	7500(kN/m ³)	0.951									
3	実海底面	3500(kN/m ³)	0.013									
4	実海底面	7500(kN/m ³)	-0.028									

2.6. 桟橋バネ定数の補正

前節の固有周期算出結果を踏まえ,骨組解析による桟橋 バネ定数算出時に適用する補正法について検討する.考え られる補正法は概ね以下の2手法であるため,それぞれに ついて整理する.

- (1) 地盤反力係数算出式(kcH=1500N)の補正
- (2) 補正係数による桟橋バネ定数 K の補正

(1) 地盤反力係数算出式(kcH=1500N)の補正

現行法と2次元地震応答解析との算出される固有周期の 乖離が,骨組解析における地盤反力係数の設定方法に起因 するものと仮定し,その算出式(k_{CH}=1500N)に補正を掛け ることについて検討する.

ここでは、原地盤の地盤反力係数の算出式を表-4に示す 4事例として、現行の固有周期算出式と2次元地震応答解析 がどの程度整合するか評価する.なお、仮想固定点の設定 法は表-2に示した4事例であるため、仮想固定点と原地盤 の地盤反力係数の設定パターンは全16事例となる.

表−4	原地盤の地盤反力係数算出式の設定
設定	原地盤の地盤反力係数の算出式
1	kcH=1500N(現行法)
2	$k_{CH}=2 \times 1500N$
3	$k_{CH}=4\times1500N$
4	$k_{CH}=10 \times 1500N$

検討結果は図-17に示すとおりであり,表-4に示した原 地盤の地盤反力係数の補正では算出される固有周期がほ とんど変化せず,2次元地震応答解析との乖離は解消しな い. 骨組解析における地盤反力係数の適切な設定法につい ては、大久保・小濱・楠⁷が検討を行っており、2次元地 震応答解析から逆算した水平方向地盤反力係数を骨組解 析に適用することで、現行法と2次元地震応答解析との桟 橋の固有周期がよく整合することを示している.ただし、 2次元地震応答解析から逆算された地盤反力係数は図-16⁷ に示すとおりであり、式(1.2)による地盤反力係数と比較し て遥かに大きな値である.ただし、式(1.2)は水平載荷試験 ⁸による変位量1cmのときの実測値に基づいた式であり、大 久保・小濱・楠⁷が示した地盤反力係数はL1地震動を入力 波形として与えた場合の値である.

また、図-16⁷)において各標高でのN値は同値であるが、 2次元地震応答解析から逆算された地盤反力係数は深度方向に大きく変化していることから、地震時における地盤反 力係数をN値のみで設定することは困難であることが示唆 されている.したがって、表-4に示した各設定では、地盤 反力係数の補正量が不足しているとともに、地盤反力係数 の深度方向の変化を反映できないと判断できる.

取りまとめると、式(1.2)から算出される地盤反力係数に 補正係数を乗じることで、現行法と2次元地震応答解析と の固有周期の乖離を解消することは可能と考えられるが、 補正後の地盤反力係数は現行法と比較して遥かに大きな 値となると考えられる.また,捨石と原地盤の構成や,深 度方向での地盤反力係数の変化を適切に反映させる必要 があるため,補正係数の算出法が複雑になると考えられる. このため,本研究では式(1.2)を補正する手法は採用せず, 以降に示す桟橋バネ定数Kに補正係数を掛ける手法を採用 する.

図-16 逆算した地盤反力係数の鉛直分布 7)

図-17 補正した地盤反力係数算出式に基づいて算出した固有周期と2次元地震応答解析による固有周期の比較

(2) 補正係数による桟橋バネ定数 K の補正

前述のとおり,原地盤の地盤反力係数の補正のみでは, 現行法と2次元地震応答解析との算出される固有周期の乖 離を解消することはできない。このため,物理的な定義が 明白でないものの,骨組解析から算出される桟橋バネ定数 Kに補正係数を与えることで,現行法と2次元地震応答解析 との固有周期を整合させることを試みる.

すなわち,式(1.1)に示した桟橋固有周期の算出式を以下 のように修正する.

$$T_s = 2\pi \sqrt{\frac{W}{gM_kK}}$$
(2.1)

ここに,*T_s*: 桟橋固有周期(s),*W*: 杭1列が受け持つ自重 および載荷重(kN),*g*: 重力加速度(m/s²),*M_k*: 桟橋バネ 定数の補正係数,*K*: 桟橋バネ定数(kN/m)であり,補正係 数*M_k*により桟橋バネ定数を補正することで,算出される固 有周期の修正を図る.

式(2.1)を変形すると式(2.2)となり,2次元地震応答解析から求めた桟橋の固有周期を式(2.2)のT_sに代入することで,補正係数M_kを求めることができる.

$$M_k = \frac{4\pi^2 W}{gKT_s^2}$$
(2.2)

断面ごとに補正係数*M*_kを算出すると、図-18に示すとおりとなり、設定ごとの平均値は表-5に示すとおりとなる.

表-5に示した補正係数を用いると,補正した現行法と2 次元地震応答解析との固有周期の比較は図-19に示すとお りとなる.なお,断面ごとの整理結果一覧表は表-6に示す とおりであり,表-6における補正後固有周期とは表-5に示 した補正係数により補正された固有周期である.

図-19に示されるとおり, 桟橋バネ定数に補正係数を適 用する場合は, 仮想海底面を基準面とする方が2次元地震 応答解析との固有周期の相関性が強い. この結果は, 補正 前であっても仮想海底面を基準面とする方が相関性は高 かったという検討結果(表-3)と同様の傾向である. また, 捨石の地盤反力係数の違いによる相関係数への影響は殆 ど認められなかった.

以上から,本検討においては,現行法における固有周期 算出式を補正する手法としては,桟橋バネ定数に補正係数 を掛ける方が,原地盤の地盤反力係数へ補正を掛けるより 適切な手法であると判断される.また,仮想固定点の設定 方法としては,仮想海底面を基準面とする方がよいと考え られる.

図-18 断面ごとの補正係数算出結果

表-5 各設定における桟橋バネ定数補正係数の平均値

設 定	基準面	補正係数 Mҝ の平均値	
1	仮想海底面	3500	3.38
2	仮想海底面	7500	2.87
3	実海底面	3500	0.92
4	実海底面	7500	0.62

		設計水深		-10m			-13m			-16m			-1()m			-13	3m			-16	óm	
		N 値	1	5	15	1	5	15	1	5	15	1	5	10	15	1	5	10	15	1	5	10	15
		杭径(mm)	700	700	700	800	800	800	900	900	900	700	700	700	700	700	700	700	700	800	800	800	800
	;	杭肉厚(mm)	14.9	14.1	13.4	13.2	12.4	11.9	12.3	11.5	11.0	10.4	10.0	9.7	9.6	11.5	10.9	10.6	10.5	11.1	10.5	10.2	10.1
2次		八戸 10Gal	0.655	0.648	0.648	0.650	0.609	0.607	0.738	0.706	0.700	0.748	0.731	0.735	0.731	0.762	0.755	0.752	0.752	0.853	0.845	0.845	0.840
元地震	固 有 周	岩国 10Gal	0.650	0.643	0.643	0.633	0.605	0.602	0.728	0.700	0.694	0.735	0.725	0.725	0.725	0.752	0.735	0.735	0.735	0.840	0.827	0.827	0.823
辰応答	期 Ts(s	博多 10Gal	0.658	0.648	0.648	0.635	0.609	0.607	0.735	0.700	0.694	0.738	0.728	0.731	0.728	0.755	0.741	0.741	0.738	0.849	0.836	0.832	0.827
解析		3 波平均	0.655	0.646	0.646	0.639	0.608	0.605	0.734	0.702	0.696	0.740	0.728	0.730	0.728	0.756	0.744	0.743	0.741	0.847	0.836	0.835	0.830
		固有周期 Ts(s)	1.237	1.226	1.218	1.148	1.137	1.123	1.247	1.241	1.231	1.395	1.381	1.379	1.375	1.412	1.402	1.397	1.390	1.495	1.489	1.485	1.479
	⇒凸	桟橋バネ定数 K	3684.0	3754.9	3798.6	7331.5	7476.9	7666.8	6216.8	6276.2	6381.9	2896.4	2957.7	2963.8	2985.1	4846.4	4921.0	4956.5	5003.3	4324.1	4362.9	4382.6	4418.3
	成定	補正係数 Mk	3.57	3.60	3.56	3.23	3.50	3.44	2.89	3.12	3.13	3.55	3.60	3.57	3.56	3.49	3.55	3.54	3.52	3.11	3.17	3.17	3.17
	(1)	補正係数平均値											3.38							•			
		補正後固有周期	0.67	0.67	0.66	0.62	0.62	0.61	0.68	0.67	0.67	0.76	0.75	0.75	0.75	0.77	0.76	0.76	0.76	0.81	0.81	0.81	0.80
		固有周期 Ts(s)	1.123	1.122	1.126	1.039	1.041	1.038	1.143	1.150	1.151	1.275	1.269	1.274	1.273	1.288	1.289	1.290	1.287	1.379	1.384	1.387	1.385
	∋л	桟橋バネ定数 K	4470.1	4478.2	4445.4	8956.8	8916.4	8967.4	7394.6	7308.7	7291.9	3468.5	3499.6	3476.7	3482.8	5829.4	5817.7	5810.6	5835.1	5083.6	5049.4	5024.9	5037.3
	取定	補正係数 Mk	2.95	3.02	3.04	2.64	2.94	2.94	2.43	2.68	2.74	2.97	3.04	3.04	3.05	2.90	3.00	3.02	3.01	2.65	2.74	2.76	2.78
	2	補正係数平均值										A	2.87										
現		補正後固有周期	0.66	0.66	0.66	0.61	0.61	0.61	0.67	0.68	0.68	0.75	0.75	0.75	0.75	0.76	0.76	0.76	0.76	0.81	0.82	0.82	0.82
行法		固有周期 Ts(s)	0.797	0.801	0.807	0.529	0.532	0.535	0.557	0.562	0.566	0.874	0.876	0.881	0.881	0.604	0.607	0.609	0.610	0.628	0.633	0.635	0.636
	⇒n.	桟橋バネ定数 K	8872.6	8781.4	8661.0	34534.7	34097.6	33802.1	31111.4	30573.7	30205.0	7387.3	7345.0	7273.0	7260.5	26504.1	26214.1	26037.6	25992.2	24500.7	24148.2	23950.1	23890.1
	設定	補正係数 Mk	1.48	1.54	1.56	0.69	0.77	0.78	0.58	0.64	0.66	1.39	1.45	1.45	1.46	0.64	0.67	0.67	0.68	0.55	0.57	0.58	0.59
	3	補正係数平均值										A	0.92										
		補正後固有周期	0.83	0.83	0.84	0.55	0.55	0.56	0.58	0.59	0.59	0.91	0.91	0.92	0.92	0.63	0.63	0.63	0.63	0.65	0.66	0.66	0.66
		固有周期 Ts(s)	0.674	0.680	0.687	0.412	0.415	0.417	0.441	0.445	0.448	0.743	0.747	0.752	0.753	0.469	0.472	0.474	0.475	0.496	0.501	0.503	0.504
		桟橋バネ定数 K	12407.5	12198.4	11964.2	56986.5	56161.5	55590.5	49734.6	48764.0	48112.0	10228.0	10101.6	9969.7	9936.0	43900.1	43320.9	42994.5	42898.5	39254.3	38593.3	38244.4	38130.7
	設定	補正係数 Mk	1.06	1.11	1.13	0.42	0.47	0.47	0.36	0.40	0.41	1.01	1.05	1.06	1.07	0.39	0.40	0.41	0.41	0.34	0.36	0.36	0.37
	4	補正係数平均值		I	I		L	I	I			I	0.62							I			
		補正後固有周期	0.85	0.86	0.87	0.52	0.53	0.53	0.56	0.56	0.57	0.94	0.95	0.95	0.96	0.60	0.60	0.60	0.60	0.63	0.63	0.64	0.64

表-6 2次元地震応答解析と現行法の固有周期の比較一覧

2.7. 固有周期補正法の推定精度の評価

前節で述べた固有周期の補正法について,2次元地震応 答解析から得られる固有周期を正とした場合の推定精度を 検証する.

推定精度は、現行法(式(1.1))および補正法(式(2.1))により 算出した固有周期(以下、固有周期(予測値)とする)と、2 次 元地震応答解析による固有周期(以下、固有周期(解析値)と する)の誤差を求め、その誤差の固有周期(解析値)に対する 割合(誤差割合)として評価する.すなわち、ある計算事例に おいて固有周期(予測値)と固有周期(解析値)が同値である 場合、その計算事例における誤差割合は0であり、固有周 期(予測値)と固有周期(解析値)の乖離が大きいほど誤差割 合は0から乖離する.現行法や補正法における誤差割合の 頻度分布を求め、両者の平均値μと標準偏差σを比較する ことで、推定精度を定量的に比較する.なお、前節の検討 より仮想固定点算出時の基準面は仮想海底面とする.

現行法における誤差割合の頻度分布を図-20 に示し,補 正法における誤差割合の頻度分布を図-21 に示す.図-20, 図-21 を比較すると,補正法は誤差割合の平均値がほぼ 0 であり,個々の計算事例については誤差が生じるものの, 計算事例全体としては 2 次元地震応答解析とほぼ同じ固有 周期を算出していることが確認できる.また,標準偏差も 現行法と比較して改善されており,補正法は現行法と比較 して,2 次元地震応答解析から得られる固有周期を高い精 度で推定していると判断できる.すなわち,本研究の検討 範囲においては,地盤の非線形性を無視できるような状況 であれば,現行法における桟橋バネ定数に一定の補正係数 を乗ずるのみで,2 次元地震応答解析から得られる固有周 期を比較的高い精度で推定することができるといえる.

図-20 固有周期の誤差割合の頻度分布(現行法)

図-21 固有周期の誤差割合の頻度分布(補正法)

3. 地盤の非線形性を反映した固有周期の補正

3.1. 検討の目的

本検討では、2次元地震応答解析により、地震動の強さ に対する仮想固定点周辺地盤における地盤剛性や桟橋固有 周期の変化を定式化する.これにより、式(2.1)に示した桟 橋固有周期の算出式に対し、地盤剛性の低下を反映した補 正法を構築する.なお、2次元地震応答解析に用いた解析 コードや検討断面は2.微小地震動に対する桟橋固有周期 算出式の補正と同様である.また、本研究はL1地震動によ る変動状態を対象とするため、原地盤の性状や入力地震動 によらず FLIP に用いる液状化パラメータは設定しない.

3.2. 入力波形

地震動に対する地盤剛性や桟橋固有周期の動的特性を定 式化するためには、地震動の強さや地盤剛性の低下量が異 なる様々な条件に対して地震応答解析を実施する必要があ る.このため、本研究においては、表-8に示す卓越周期の 異なる複数のL1地震動⁹について,最大加速度を振幅調整 することで表-7に示す43波形を入力波形として設定した. なお,検討断面は2.2.検討断面の設定に示した21断面と した.したがって,計算事例数は903例であるが,加震中 に桟橋杭が全塑性した計算事例は検討対象から除外したた め,検討対象とした計算事例は833例である.

表-7 入力波形一覧

最大加速度	波数	入力波形								
5 Gal	3	八戸,岩国,博多								
10 Gal	3	八戸,岩国,博多								
20 Gal	3	八戸,岩国,博多								
50 Gal	3	八戸,岩国,博多								
100 Gal	5	八戸,岩国,博多,石巻,清水								
150 Gal	3	八戸,岩国,博多								
200 Gal	5	八戸,岩国,博多,石巻,清水								
300 Gal	5	八戸,岩国,博多,石巻,清水								
500 Gal	3	八戸,岩国,博多								
Original	10	八戸, 岩国, 博多, 石巻, 清水, 常陸那珂, 千葉, 四日市, 舞鶴, 神戸								

表-8 検討に用いた L1 地震動 9)

3.3. 仮想固定点の設定

図-13に示したとおり,微小変位においては,現行法による仮想固定点,杭下端,地表面から桟橋上部工までのそれ ぞれの伝達関数が極大値となる周期にほとんど差は生じない.このため,前章では仮想固定点は現行法に基づいて設 定した.しかしながら,より強い地震動に対しては,仮想 固定点の設定方法によって2次元地震応答解析における桟 橋固有周期の算出結果に差が生じることが考えられる.

各計算事例における現行法による仮想固定点,杭下端, 背後地表面から桟橋上部工までのそれぞれの伝達関数が極 大値となる周期を図-22に示すが,地盤剛性が低い断面ほど 仮想固定点と杭下端や背後地表面とで伝達関数が極大値と なる周期に差が生じやすいことがわかる.一方で,地盤剛 性が高い断面ほど各地点で伝達関数が極大値となる周期が 同値となる傾向が強く,現行法に基づいて設定した仮想固 定点が実際の仮想固定点と多少ずれていたとしても,算出 される固有周期は大差ない.なお,本研究では仮想固定点 は現行法に基づいて設定する.

図-22 伝達関数が極大値となる周期の比較

3.4. 作用震度と固有周期の関係

2 次元地震応答解析により,各計算事例における作用震 度や桟橋固有周期を評価し,これらの関係性について整理 する.なお,本研究においては,2 次元地震応答解析から 得られた桟橋上部工の最大加速度を重力加速度で除した値 を作用震度と定義する(式(3.1)).

$$kh_{2D} = \alpha_{spst}/g \tag{3.1}$$

ここに, *kh2p*:2 次元地震応答解析から求めた作用震度, *a spst*: 桟橋上部工における最大加速度(Gal), *g*:重力加速 度(=980cm/s²)である.

作用震度と固有周期の関係は図-23,図-24に示すとおり であり,作用震度が大きい計算事例ほど固有周期が長くな ることが確認できる.

図-24 作用震度と固有周期の関係(水深別整理)

3.5. 作用震度と地盤のせん断剛性の関係

前節に示したとおり,作用震度の大小と桟橋固有周期の 長短には関係性が認められる.これは,強い地震動に対し ては,桟橋杭周辺の地盤剛性が低下し,杭の仮想固定点が 下方に遷移することで仮想固定点から上部工までの距離が 長くなるためと考えられる.したがって,作用震度と地盤 剛性の低下量の関係性を整理することで,地盤剛性の低下 量から桟橋固有周期の変化を推定することができる.

しかしながら,作用震度の増加と地盤剛性の低下は非線 形な関係であり,固有周期算出式に動的特性を考慮した補 正を加えるためには,1次元地震応答解析から得られる物 理量に基づいて地盤剛性の低下をパラメータ化する必要が ある.これについて,桒原・長尾⁵⁾は式(3.2),式(3.3)に示 すように,地盤のせん断剛性と水平地盤反力係数にはN値 を介して一定の関係があることに着目し,地盤のせん断剛 性比 *G*_{max}/*G*₀により地盤の非線形性を表すことができるこ とを示した.

$$G = \rho V_s^2$$
 (3.2)
 $V_s = 80.6N^{1/3}$ (3.3)

ここに、G:地盤のせん断剛性(kN/m^2)、 ρ :地盤の単位体 積重量(t/m^3)、 V_s :地盤のせん断波速度(m/s)、N:N 値であ る.また、地盤のせん断剛性比 G_{tmax}/G_0 は、仮想固定点周 辺における地盤の初期せん断剛性 G_0 とせん断応力最大時 の地盤のせん断剛性 G_{tmax} の比である.なお、本研究におい ては、2 次元地震応答解析における地盤の初期せん断剛性 G_0 は、初期自重解析の直後、すなわち地震応答解析開始時 のせん断剛性として整理している.また、「仮想固定点周 辺における地盤のせん断剛性」とは、仮想固定点を中心と した周辺4要素のせん断剛性を平均した値としている.

地盤のせん断剛性は式(3.4)により示せることから、仮想 固定点周辺地盤のせん断応力とせん断ひずみの時刻歴を地 震応答解析により求めることで、せん断応力最大時のせん 断剛性 *G*_{tmax}を得ることができる.

$$G = \tau_{xy} / \gamma_{xy} \tag{3.4}$$

ここに, *G*: 地盤のせん断剛性(kN/m²), *x*_y: 地盤のせん 断応力(kN/m²), *y*_{sy}: 地盤のせん断ひずみである.

図-25 に 2 次元地震応答解析における仮想固定点周辺地 盤のせん断応力 *xxy* とせん断ひずみ *yxy* の時刻歴の一例を示 す. なお, 図中にはせん断応力最大時のせん断剛性 *G*_{tmax} も併記する.図-25 より,強い地震動に対してせん断応力 *xxy* とせん断ひずみ *yxy* の関係が非線形となり, せん断応力最大 時のせん断剛性 Grmax が小さくなることがわかる. すなわち, 地震動が強くなるほど, 桟橋杭周辺の地盤剛性は大きく低 下し, それに伴い固有周期が長くなると想定できる. また, 地震応答解析から得られる地盤のせん断剛性は, せん断ひ ずみとせん断応力の非線形な関係をよく再現し, 初期せん 断剛性との比 Grmax/ Go として表すことで, 地盤剛性の低下 量を 0~1の変数として評価できると考えられる.

せん断応力の関係(八戸波 -16m・N=15)

図-26に、2次元地震応答解析により求めた作用震度とせん断剛性比 Grmax/Goの関係を示すが、せん断剛性比 Grmax/Goの関係を示すが、せん断剛性比 Grmax/Goと作用震度には関係性があることが確認できる。すなわち、作用震度が非常に小さい状態であれば、地盤のせん断剛性はほとんど低下せず、せん断剛性比 Grmax/Goもほぼ1.0であるが、作用震度の増加とともに地盤のせん断剛性は低下し、せん断剛性比 Grmax/Goも0に近い値へと遷移する。 図-23、図-24に示したとおり、作用震度と固有周期には関係性があることから、各計算事例におけるせん断剛性比 Grmax/Goと桟橋固有周期の関係性を整理することで、せん断剛性比 Grmax/Goから固有周期を推定できると考えられる。

3.6. 地盤非線形性と固有周期との関係式の構築

前項に示したとおり,地盤のせん断剛性の時刻歴は,作 用震度の増加に対する地盤剛性の低下をよく再現している ことから,せん断剛性比 Grmax/Goを地盤非線形性を表す指 標と捉え,地震動に伴う桟橋固有周期の変化量を求めるた めの関係式を導出する.

(1) 地盤のせん断剛性比と桟橋固有周期の関係

各計算事例における仮想固定点周辺地盤のせん断剛性比 Grmax/Goと桟橋固有周期の関係は図-27,図-28に示すとお りであり、せん断剛性比が低下するほど固有周期は長くな る.

ところで、図-27、図-28 では、せん断剛性比が 1.0 であ っても検討断面ごとに固有周期が異なることから断面間の 比較が難しい.そこで、以降の定式化を容易にするため、 地震動に伴う桟橋固有周期の変化の程度を、静的状態にお ける桟橋固有周期に対する比として考え、式(3.5)のように 定義する.

$$R_{Ts} = Ts_{dyna}/Ts_{stat} = Ts_{ex}/Ts_{10Gal}$$
(3.5)

ここに,

*R*_{Ts}:固有周期比

- Tsdyna: 地震作用時における桟橋固有周期(s)
- Tsstat:静的状態における桟橋固有周期(s)
- Tsex:2 次元地震応答解析より求めた各計算事例におけ る桟橋固有周期(s)
- Ts10Gal:最大加速度を 10Gal に振幅調整した地震動に対す る桟橋固有周期(s)

せん断剛性比 *G_{tmax}/ G*₀と固有周期比 *R*_{Ts}の関係は図-29, 図-30 に示すとおりであるが、いずれの検討断面であって もせん断剛性比 *G_{tmax}/ G*₀がほぼ 1.0 であるときの固有周期 比 *R*_{Ts}は 1.0 となるので、検討断面間の比較が容易となる.

なお、式(3.5)に示したとおり、本研究では最大加速度を 10Galに振幅調整した地震動を静的状態と定義している.こ れは、FLIPによる動的解析では静的状態における桟橋固有 周期を算出することが困難であることから、最大加速度を 10Galに振幅調整した地震動を与えることで静的な状態を 仮定したためである.したがって、本研究における「静的 な状態」とは、実際には微小地震動での検討に基づいてい ることに留意されたい.

図-29、図-30は、せん断剛性比の低下に対し固有周期比 が増加することを示しているが、増加の程度は検討断面に より異なることが確認できる. そこで, N 値や水深につい て分けて整理した散布図を表-9に示すが、N値別の散布図 と比較して水深別の散布図はばらつきが大きいことが確認 できる.これは、図-31に示すように、水深別の整理ではN=1 ~15までの計算結果が包括されており、N値の差異によっ てせん断剛性比の低下に対する固有周期比の増加の程度が 大きく異なるためと考えられる.一方,N値別の整理では 設計水深-10~-16mまでの計算結果が包括されているが,水 深の違いはせん断剛性比の低下に対する固有周期比の増加 にあまり影響せず、散布図ではばらつきが小さいように表 現されると考えられる.これから、せん断剛性比の低下に 対する固有周期比の増加の程度は、設計水深や杭諸元の影 響は比較的小さく、原地盤の地盤剛性による影響が大きい と考えられる、したがって、地盤のせん断剛性比と桟橋固 有周期の関係式を構築する際は、原地盤N値を変数として 与える必要があるといえる.

図-31 水深やN値の差がせん断剛性比と固有周期比の 関係に与える影響について

表-9 せん断剛性比と固有周期比の関係

(2) 地盤のせん断剛性比と桟橋固有周期比の近似式

上述を踏まえ, せん断剛性比 Grmax/G0と固有周期比 RTs の関係を原地盤 N 値ごとに整理し, その近似曲線を求める と図-32 に示すとおりとなる.なお,近似曲線の設定方法 は複数あるが,決定係数の高さや定式化の容易性を考慮し, ここでは累乗近似曲線を採用した.せん断剛性比 Grmax/G0 と固有周期比 RTsの近似式は原地盤 N 値ごとに以下に示す とおりとなる.

$$N=1: R_{Ts} = 1.0022 (G_{\tau max}/G_0)^{-0.257}$$
(3.6)

$$N=5: R_{Ts} = 1.0166 (G_{\tau max}/G_0)^{-0.138}$$
(3.7)

$$N=10: R_{Ts} = 1.0189 (G_{\tau max}/G_0)^{-0.117}$$
(3.8)

$$N=15: R_{Ts} = 1.0212 (G_{\tau max}/G_0)^{-0.103}$$
(3.9)

図-32 せん断剛性比と固有周期比の近似式

(3) 地盤のせん断剛性比と桟橋固有周期比の関係式の構築

本検討において桟橋固有周期比 R_I, は、地震動に伴う桟橋 固有周期を、静的状態における桟橋固有周期に対する変化 率として表すために定義している.したがって、地盤のせ ん断剛性比 G_{max}/G₀が 1.0であるとき、桟橋固有周期比 R_I は 1.0 であることが望ましい.しかしながら、式(3.6)~(3.9) はこの条件を満たしておらず、これらの式をそのまま地盤 のせん断剛性比と桟橋固有周期の関係式として採用するこ とは望ましくない.

そこで、本研究では桟橋固有周期比 R_{Ts}と地盤のせん断剛 性比 G_{tmax}/ G₀を以下の累乗式で定式化する.

$$R_{Ts} = (G_{\tau max}/G_0)^a \tag{3.10}$$

ここに, a は調整係数であり,式(3.10)の形式であれば地 盤のせん断剛性比 *G*_{rmax}/ *G*₀が 1.0 であるとき,桟橋固有周 期比 *R*₁₅は 1.0 となる.

調整係数 a は、関係式から求められる固有周期比(以下、

固有周期比(予測値)とする)と,2次元地震応答解析から求 めた固有周期比(以下,固有周期比(解析値)とする)の残差分 散が最も小さくなる値を求めることで導出し,原地盤N値 ごとに表-10に示す値である.すなわち,地盤のせん断剛 性比*G*_{tmax}/*G*₀と固有周期比*R*₁₅は式(3.11)~(3.14)の関係式に より表すことができるといえる.

N=1 : $R_{Ts} = (G_{\tau max}/G_0)^{-0.264}$	(3.11)
N=5 : $R_{Ts} = (G_{\tau max}/G_0)^{-0.139}$	(3.12)
N=10 : $R_{Ts} = (G_{\tau max}/G_0)^{-0.116}$	(3.13)
N=15 : $R_{Ts} = (G_{\tau max}/G_0)^{-0.100}$	(3.14)

+ 10	二回 古ケノズ 半人	
表-10	調整係奴	а

N 値	1	5	10	15
係数a	-0.264	-0.139	-0.116	-0.100

式(3.11)~(3.14)から求めた固有周期比 R_{Ts} の予測値は図 -33 に示すとおりであり,図-32 に示した近似式と大きな違いは無いことが確認できる.

なお,N値ごとの調整係数 *a* と残差分散の関係,および 解析値と予測値の比較は**表-12**に示す.

図-33 予測値とせん断剛性比の関係

一方,固有周期比の解析値と予測値の比較は図-34 に示 すとおりであり、N値が小さい計算事例ほど,また固有周 期比が大きい計算事例ほど,解析値と予測値の乖離が大き くなることが示される.特に固有周期比が $R_{Ts} = 1.3 \sim 1.4$ 程 度を超過すると,解析値と予測値の乖離はかなり大きい. ただし,両者の相関係数は N値により異なるものの 0.8~ 0.9 程度あり(表-11),かなり強い相関があることから,式 (3.11)~(3.14)の関係式を用いた固有周期の予測は概ね可能 と判断できる. なお、固有周期比(解析値)と2次元地震応答解析から得ら れた作用震度との関係は図-35 に示すとおりであるが、固 有周期比 R_{T5} =1.3~1.4 は照査用震度としては概ね kh=0.3~ 0.5 程度に相当している. 桟橋式係船岸において、照査用震 度が kh=0.5 を超過するような L1 地震動はさほど多くない と考えられるが、この範囲であれば式(3.11)~(3.14)から得 られる固有周期比の予測値と2次元地震応答解析とのばら つきは比較的小さい. したがって、式(3.11)~(3.14)は変動 状態における桟橋固有周期の予測手法としては、概ね適用 可能と判断できるといえる.

表-11 固有周期比の解析値と予測値の相関係数

表-12 調整係数 a と残差分散の関係,および解析値と予測値の比較

(4) 変数としての原地盤N値の導入

図-33 からは、式(3.11)~(3.14)から求まる桟橋固有周期比 R_{Ts} の予測値は、N値が小さい断面ほど大きく変化すること がわかる.また、N=1とN=5とでは予測値の分布が大きく 異なるのに対し、N=10とN=15では予測値の分布にあまり 差がないことから、一定以上のN値に達すると、N値の大 小はせん断剛性比 G_{rmax}/G_0 と桟橋固有周期比 R_{Ts} の関係に さほど影響を及ぼさなくなると考えられる.

式(3.11)~(3.14)は調整係数 a の値のみが異なるため,上述した傾向の差異は調整係数 a の大小でしか表現することができない.つまり,原地盤 N 値は調整係数 a に強い影響を及ぼしており,N 値が小さいほど断面ほど調整係数 a は小さい値であるとともに,一定値以上の N 値であれば調整係数 a はほとんど変化しなくなると考えられる.

この前提から, 調整係数 a をN値との関係式に置き換え, 式(3.11)~(3.14)を一つの式に集約する.一定値以上のN値 で調整係数 a がほぼ変化しなくなることを前提にN値と調 整係数 a を対数近似すると,図-36 に示す近似曲線が描け る.しかしながら,この近似曲線はN=1やN=10での整合 は良いものの,N=5,15 では近似値に若干の乖離がある. 式(3.11)~(3.14)は,N=1のときに2次元地震応答解析との ばらつきが大きくなることや,N=1という値は設計上あま り現実的でないことを踏まえると,N=5~15の範囲のフィ ッティング精度を高める方が適切である.このため,N=5 を境に近似曲線を分け,図-37に示す近似曲線を設定する.

図-37 N 値と調整係数 a の近似曲線②

この近似曲線を式(3.11)~(3.14)に組み込むことで,N値 を変数とした補正式(3.15),(3.16)を導出できる.

N=5未満:
$$R_{Ts} = (G_{rmax}/G_0)^{(0.0777 \ln(N)-0.264)}$$
 (3.15)
N=5以上: $R_{Ts} = (G_{rmax}/G_0)^{(0.0352 \ln(N)-0.1961)}$ (3.16)

ここに、Nは仮想固定点周辺地盤のN値である.

図-38 に式(3.15),式(3.16)による予測値とせん断剛性比の関係を示すが、補正式はせん断剛性比の低下に伴う固有 周期比の増加をよく表していることが確認できる.

また, 図-39 に固有周期比の解析値と予測値の比較を示 し,表-13 に両者の相関係数を示すが,これらは図-34,表 -11 とほぼ同じ結果となっている.したがって,原地盤 N 値を変数として補正式(3.15),(3.16)に組み込んでも,式 (3.11)~(3.14)と大きな乖離は生じていないと判断できる.

表-13 固有周期比の解析値と予測値の相関係数

N 値	1	5	10	15
相関係数 r	0.799	0.859	0.896	0.880

3.7.1次元地震応答解析による地盤非線形性の評価

前節では、2次元地震応答解析により求めたせん断剛性 比 G_{tmax}/G₀を入力値として、地盤剛性と桟橋の固有周期と の関係式を整理した.しかしながら、設計実務への適用性 を考慮すると、地盤剛性は1次元地震応答解析に基づいて 評価する必要がある.このため、以下に1次元地震応答解 析から求まるせん断剛性比 G_{tmax}/G₀と、2次元地震応答解 析のそれとの関係性を整理する.

(1)1次元地震応答解析および2次元地震応答解析から求め たせん断剛性比 G_{max}/G₀の比較

1次元地震応答解析におけるせん断ひずみやせん断応力の時刻歴変化は、図-40に示すように原点が初期値となる.

図-41 に、各検討断面における 1 次元地震応答解析および 2 次元地震応答解析から求めたせん断剛性比 G_{tmax}/G₀を示す.なお、1 次元地震応答解析におけるせん断剛性 G は、仮想固定点の上下 2 要素におけるせん断剛性 G の平均値としている.また、1 次元地震応答解析における地盤の初期せん断剛性 G₀ は、設計実務における利便性を考慮して1D-MAKERより設定される初期せん断剛性 G_{ma}と同値としている.すなわち、初期自重解析の直前におけるせん断剛性比であり、2 次元地震応答解析の初期せん断剛性 G₀(初期自重解析直後、地震応答解析直前のせん断剛性)とは定義が異なるため留意されたい.

図-41から,特に2次元地震応答解析における Grmax/Go が1に近い条件,すなわち作用地震動が小さいほど1次元 と2次元との算出されるGrmax/Goが乖離することがわかる. ただし,表-14に示すとおり両者の相関係数は非常に高い ことから,1次元地震応答解析から求まるGrmax/Goにより, 2次元地震応答解析におけるGrmax/Goを比較的精度よく予 測することは可能である.

図-41 せん断剛性比の比較【1次元-2次元】

表-14 相関係数の比較

		1.1.1.4.1.1.3.4		
N 値	1	5	10	15
相関係数 r	0.945	0.947	0.956	0.959

(2) 補正式の検討

1次元地震応答解析から求めたせん断剛性比 G_{tmax}/G₀は, 2次元地震応答解析のそれと高い相関係数を有することか ら,線形近似による補正が可能である.

2 次元地震応答解析におけるせん断剛性比 G_{tmax}/G₀が0 であるとき、1 次元地震応答解析から求めたせん断剛性比 G_{tmax}/G₀も0であると仮定すると、両者の線形近似式は式 (3.17)であり、図-42 に示すとおりとなる.

$$R_{G2D} = \gamma R_{G1D}$$

(3.17)

ここに, *R*_{G2D}: 2 次元地震応答解析におけるせん断剛性比 *G*_{tmax}/*G*₀, *y*: 調整係数(表-15), *R*_{G1D}: 1 次元地震応答解析 により求めたせん断剛性比 *G*_{tmax}/*G*₀である.

図-42 せん断剛性比の線形近似式

表-15 調整係数 γ				
N 値	1	5	10	15
係数γ	1.3845	1.5882	1.6544	1.6623

表-15の調整係数 y と N 値とを累乗近似すると,近似式 は式(3.18),式(3.19)に示すとおりとなり,その近似曲線は 図-43 に示すとおりとなる.

N=5未満: y =1.3845 N ^{0.0853}	(3.18)
N=5以上:y=1.4854 N ^{0.0434}	(3.19)

ここに、Nは仮想固定点周辺地盤のN値である.

図-43 調整係数 y と N 値の近似曲線

式(3.17)に式(3.18),式(3.19)を代入することで、1次元地 震応答解析より求めたせん断剛性比 *G*_{tmax}/*G*₀の補正式 (3.20),(3.21)を導出できる.

N=5未満: $R_{G2D} = 1.385 R_{G1D}$	• $N^{0.0853}$	(3.20)
N=5以上: R _{G 2D} = 1.485 R _{G1D}	• N ^{0.0434}	(3.21)

式(3.20), (3.21)より求めた予測値と 2 次元地震応答解析 から求めた解析値とを比較すると図-44 に示すとおりとな り,両者はよく対応していることが確認できる.以上より, 1 次元地震応答解析より求めたせん断剛性比 *G*_{tmax}/*G*₀から, 2 次元地震応答解析におけるせん断剛性比 *G*_{tmax}/*G*₀を精度 よく予測することは可能と判断される.

図-44 補正式による予測値と2次元地震応答解析との せん断剛性比の比較

3.8. 桟橋固有周期補正法の設定

前節までの検討結果を取りまとめ,桟橋の固有周期の動 的特性を反映した補正法を構築する.

(1)1次元地震応答解析における固有周期比 R_{Ts}の設定法

式(3.15),式(3.16)は、2次元地震応答解析における桟橋固 有周期比 R_{Tb}を、2次元地震応答解析から求めたせん断剛性 比 G_{tmax}/Goを用いて予測する式である.そして、式(3.20), (3.21)は1次元地震応答解析により、2次元地震応答解析に おけるせん断剛性比 G_{tmax}/Goを求めるための式である.し たがって、式(3.15),式(3.16)に式(3.20),(3.21)を代入した 式(3.22),式(3.23)により、1次元地震応答解析より求めた せん断剛性比 G_{tmax}/Goから、2次元地震応答解析における 桟橋固有周期比 R_{Tb}を予測することが可能となる.

<N=5未満>

$$R_{Ts} = (1.3845 R_{G1D} \cdot N^{0.0853})^{(0.0777 \ln(N) - 0.264)}$$
(3.22)

<N=5以上>

$$R_{Ts} = (1.4854 \ R_{G\,1D} \cdot N^{0.0434})^{(0.0352 \ln(N) - 0.1961)}$$
(3.23)

ここに,

- R_{Tb}: 固有周期比(静的状態を基準とした,地震時に おける桟橋固有周期の変化率)
 - N: 仮想固定点周辺地盤における N 値
- R_{G 1D}:1 次元地震応答解析より求めたせん断剛性比 G_{tmax}/G₀

である.

図-45 に,式(3.22),式(3.23)により求めた固有周期比(予 測値)と,2次元地震応答解析により求めた固有周期比(解析 値)の比較を示し,表-16 に両者の相関係数を示す.両者の 相関係数は概ね 0.7~0.8 程度であり、1 次元地震応答解析 から求めた地盤のせん断剛性比 Grmax/Goより予測した桟橋 固有周期比は,2次元地震応答解析より求めた桟橋固有周 期比と強い相関を有している.ただし、2次元地震応答解 析から求まるせん断剛性比を用いた場合(r=0.8~0.9 程度, 表-13)と比較すると、相関係数は低下している.

表-16 相関係数の比較

(2) 固有周期 Ts の補正法

桟橋固有周期比R_{Tk}は、静的状態における桟橋固有周期 Tsstatと、地震時における桟橋固有周期Tsdynaの比である。静 的状態における桟橋固有周期は,2.微小地震動に対する桟 橋固有周期算出式の補正に示したとおりであり、式(3.24) から2次元地震応答解析における静的状態での桟橋固有周 期Tsstatを予測することができる.

$$Ts_{stat} = 2\pi \sqrt{W/gM_kK}$$
(3.24)

表-17 桟橋バネ定数補正係数		
捨石の地盤反力係数(kN/m³)	補正係数 Mĸ	
3500	3.38	
7500	2.87	

ここに、Tsstat: 2次元地震応答解析における静的状態での 桟橋固有周期(s), W: 杭1列が受け持つ自重・載荷重(kN), g: 重力加速度(m/s²), M_k: 補正係数(表-17), K: 桟橋バネ 定数(kN/m)である.

したがって,式(3.24)に式(3.22),式(3.23)を乗ずることで, 現行法(式(1.1))に対し、地震動に伴う地盤剛性の低下を反映 した補正を掛けることが可能となる.

$$T_{s_{dyna}} = R_{Ts} \cdot T_{s_{stat}} \tag{3.25}$$

ここに、Tsdynaは2次元地震応答解析から求めた地震時に おける桟橋固有周期であり、RTsは式(3.22)、式(3.23)から求 まる固有周期比, Tsstatは式(3.24)から求まる2次元地震応答 解析における静的状態での桟橋固有周期である.

図-46 に式(3.25)により補正した固有周期(予測値)と2次 元地震応答解析から求めた固有周期(解析値)の散布図を示 し、図-47 に現行法(式(1.1))による予測値との散布図を示す. また、両者の相関係数を表-18 に示す. 両図に示されると おり、補正法は現行法と比較して、2次元地震応答解析に おける固有周期の動的特性をよく表すことができている.

図-46 固有周期の予測値と解析値の比較(補正法)

図-47 固有周期の予測値と解析値の比較(現行法)

表-18 相関係数の比較

N 値	1	5	10	15
相関係数 r(補正法)	0.692	0.851	0.812	0.893
相関係数 r(現行法)	0.300	0.638	0.494	0.726

3.9. 固有周期補正法の推定精度の評価

(1) 推定精度の評価

2.7. 固有周期補正法の推定精度の評価と同様に,2次元 地震応答解析に対する誤差割合を求めることで,固有周期 補正法の推定精度を評価する.

現行法および補正法の誤差割合の頻度分布は表-19,表 -20に示すとおりである.誤差割合の平均値を比較すると、 現行法は誤差割合の平均値が 0.569~0.661 となっており、 全体的な傾向として 2 次元地震応答解析の 1.6 倍程度の固 有周期を算出していることが確認できる.これに対し、補 正法は誤差割合の平均値が-0.024~-0.013 であり、若干小さ な値となる傾向があるものの,2次元地震応答解析とほぼ 同じ固有周期を算出していることが確認できる.また,標 準偏差も現行法と比較して大きく改善されており,補正法 は現行法と比較して2次元地震応答解析から得られる固有 周期を精度よく推定していると判断できる.

表-19 現行法および補正法の誤差割合の平均値と標準偏差

		N=1	N=5	N=10	N=15
法工业	平均值 μ	-0.015	-0.013	-0.016	-0.024
補止法	標準偏差 σ	0.118	0.067	0.053	0.053
再行法	平均值 μ	0.569	0.645	0.661	0.657
- 511 公	標準偏差σ	0.238	0.166	0.143	0.139

表-20 現行法および補正法の誤差割合の頻度分布

(2) 考慮する固有周期の幅の整理

算出式から求めた固有周期(予測値)に対し、2次元地震応 答解析結果(解析値)がどの程度乖離するかが明確であると, 実務において推定誤差に基づく固有周期の幅を考慮するこ とが容易となる. そこで, 各解析事例について解析値と予 測値の比(解析値/予測値)を求め、現行港湾基準に示されて いる考慮幅(図-5)について統計的根拠を付与することを試 みる.

解析値と予測値の比の平均値と標準偏差は表-21, 頻度分 布は表-22 に示すとおりであり、補正法は N=5 以上であれ ば予測値の $\pm 20\%$ 程度を見込むことで概ね 3σ まで考慮でき, 考慮幅が過度に広がることは無い.

一方、現行法は2次元地震応答解析と比較して平均値の 乖離が大きい.また、ほぼ全ての計算事例において、予測 値は解析値より長い固有周期を算出しており、解析値が予 測値の 50%程度の値と成り得ることに留意すべきである.

表-21 固有周期の解析値/予測値の平均値と標準偏差

		N=1	N=5	N=10	N=15
補日	平均值 μ	1.031	1.018	1.019	1.027
正法	標準偏差σ	0.133	0.073	0.057	0.057
現行	平均值 μ	0.656	0.615	0.607	0.608
1J 法	標準偏差σ	0.124	0.068	0.053	0.052

表-22 固有周期の解析値/予測値の頻度分布

4. 減衰定数の検討

4.1. 検討の目的

前述のとおり、1次元地震応答解析から加速度応答スペ クトルを算出する際に適用する減衰定数について、現行法 では20%としてもよいとされている.しかしながら、FLIP を用いた1次元地震応答解析と2次元地震応答解析の比較 においては、減衰定数を5%程度5,ないし3~6%程度7 とする方が2次元地震応答解析における上部工の最大加速 度を精度よく推定することが指摘されている.修正震度法 における照査用震度は、上部工の最大加速度を重力加速度 で除した値であるためり、2次元地震応答解析における照査 用震度を精度よく推定するためには、上部工最大加速度を 精度よく算定できる減衰定数を設定する必要がある.した がって、本研究においても、各計算条件における適切な減 衰定数について検討する.

4.2. 検討手法

減衰定数の検討は,種々の減衰定数を適用した1次元地 震応答解析による作用震度と,2次元地震応答解析による 作用震度とを比較することで行う.両者の算出方法を以下 に概説する.

(1)2次元地震応答解析による作用震度(解析値)

2 次元地震応答解析における作用震度は,前章と同様に 桟橋上部工の加速度時刻歴から求めた最大加速度を重力加 速度で除した値とする(式(3.1)参照).なお,地震応答解析は FLIPを適用する.

(2)1次元地震応答解析による作用震度(予測値)

1 次元地震応答解析においては、仮想固定点における加 速度時刻歴から加速度応答スペクトルを算出することで作 用震度を求める.すなわち、加速度応答スペクトルにおい て桟橋固有周期に対応する加速度応答値を上部工最大加速 度とし、上部工最大加速度を重力加速度で除すことで作用 震度とする.なお、仮想固定点は現行法により設定し、地 震応答解析は FLIP を適用する.

加速度時刻歴から加速度応答スペクトルを算出する際の 減衰定数は,既往研究を踏まえて h=2, 3, 4, 5, 6, 7, 10, 15, 20%の 9 例を検討対象とした.設計水深-13m, N=10, 杭諸元②の断面を例とすると,減衰定数ごとに図-48(八戸 波 L1),図-49(岩国波 L1)に示す加速度応答スペクトルが得 られ,桟橋固有周期に対応する加速度応答値は図-48,図 -49 の左下に示す値である.これらを重力加速度で除する ことで,各減衰定数における作用震度を求めることができ る.なお,ここで用いる桟橋固有周期は2次元地震応答解 析から得られた解析値であり,固有周期補正式による予測 値ではないことに留意されたい.

(設計水深-13m, N=10, 杭諸元②, 八戸波)

図-49 各減衰定数における加速度応答スペクトル (設計水深-13m, N=10, 杭諸元②, 岩国波)

4.3. 減衰定数の比較検討

(1) 各計算事例における減衰定数ごとの作用震度

1 次元地震応答解析と 2 次元地震応答解析との算出される作用震度の関係は表-23 に示すとおりである.表-23 からは、現行法の減衰定数(h=20%)は作用震度を過小に評価し、 h=3~5%程度で1次元地震応答解析による作用震度が2次元地震応答解析と整合することが確認できる. ただし,作用震度が非常に大きい計算事例では,より大 きな減衰定数とする方が2次元地震応答解析と良く整合す る場合がある.これは,2次元地震応答解析においては, 入力地震動が強いほど加震中に地盤や桟橋が大きく変形し, これに伴い減衰も増大するためと考えられる.すなわち,2 次元地震応答解析と整合させるための減衰定数は,桟橋の 設計条件により異なる値を適用すべきであると判断される.

(2) 計算事例ごとの最適減衰定数

上述のとおり, 桟橋の設計条件により適用すべき減衰定 数が異なるため, 各計算事例における最も適切な減衰定数 を整理する.ここでは, ある計算事例において作用震度の 解析値と予測値の差の絶対値が最小となる減衰定数を, そ の計算事例における最適減衰定数と定義する.なお, 加速 度応答スペクトルの計算において減衰定数を連続的に設定 することはできないため, 最適減衰定数は離散的に設定さ れた減衰定数(本研究では *h*=2, 3, 4, 5, 6, 7, 10, 15, 20% の9例)での検討となることに留意されたい.

各計算事例における最適減衰定数と作用震度(解析値)との関係は図-50 に示すとおりであり、せん断剛性比の予測値(式(3.20)、式(3.21)による補正後)との関係は表-24 に示すとおりである. なお、表-24 中にはせん断剛性比の予測値と最適減衰定数の対数近似式も示している.

図-50,表-24から、ほとんどの計算事例において最適減 衰定数は h=2~6%の範囲内にあることが確認できる.ただ し、計算条件によってはより大きな減衰定数が最適減衰定 数となることもある. 一方で、最適減衰定数とせん断剛性比の対数近似式の決 定係数は非常に小さいため、近似式により減衰定数を設定 することは難しいと判断される.

図-50 各計算事例における最適減衰定数と作用震度の関係

表-24 最適減衰定数とせん断剛性比の関係

(3) 減衰定数の設定

前項に述べたとおり,個々の計算事例における減衰定数 とせん断剛性との近似式は決定係数が小さく成立しない. そこで,全ての計算事例について作用震度の解析値と予測 値との残差分散を求め,減衰定数ごとに残差分散を比較す る.これにより,個々の計算事例については最適ではない 可能性があるものの,本研究における計算事例全体として は標準的である減衰定数について検討する.

全ての計算事例についての減衰定数ごとの残差分散を図 -51に示し、残差分散が最小となる減衰定数を表-25に示す. 表-25からは、N値が小さくなるほど残差分散が最小となる 減衰定数は大きくなる傾向が認められるが、これは地盤に よる減衰が大きくなるためである.しかしながら、N=10 とN=15の計算事例については、N=10の事例の方が小さな 減衰定数となりこの例から外れている.これは、N=10の 断面では杭剛性が小さい条件のみ解析を実施していること から、減衰が大きくなる強い地震動に対しては、桟橋杭が 全塑性に達することで検討対象事例から除外されるためと 考えられる.

図-51 各減衰定数における作用震度の残差分散

表-25 残差分散が最小値となる減衰定数

N 値	減衰定数
1	7%
5	6%
10	3%
15	5%

ところで, 表-25 は全ての計算事例を包括して算出した 減衰定数であるため, L1 地震動としては過大な値に振幅調 整された計算事例も検討範囲に含まれている.このため, 検討範囲を実用的な作用震度までに留めることで,より適 切な減衰定数について検討する.

表-23 からは,作用震度の予測値が kh=0.4~0.5 程度とな るのを境として,解析値に対する予測値のばらつきが大き くなっていることがわかる.そこで,減衰定数の適用範囲 を kh=0.4,もしくは kh=0.5 までに限定すると,残差分散が 最小となる減衰定数は図-52 や表-26 に示すとおりとなる. 表-26 からは,作用震度の適用範囲を kh=0.4 までとする場 合は減衰定数を h=3%程度, kh=0.5 までとする場合は h=4% 程度とすることが適切と考えられる.

図-52 減衰定数ごとの作用震度の残差分散

表-26	残差分散が最小値となる	減衰定数
------	-------------	------

N 値	減衰定数 (kh=0.4 まで)	減衰定数 (kh=0.5 まで)
1	4%	4%
5	3%	3%
10	3%	4%
15	3%	4%

4.4. 照査用震度の推定精度の評価

減衰定数を 20%(現行法)および 4%(補正法)とした場合に ついて、1 次元地震応答解析による作用震度が kh=0.5 未満 となる範囲での作用震度の推定精度を評価する.ここでは、 作用震度の解析値を正とし、各減衰定数に基づいて算出し た作用震度の予測値の誤差割合により推定精度を評価する. なお、作用震度の予測値の算出においては、桟橋固有周期 は 2 次元地震応答解析から得た解析値を適用した.

誤差割合の頻度分布は表-27 に示すとおりである. 誤差 割合の平均値を比較すると,現行法は誤差割合の平均値が -0.553~-0.508となっており,全体的な傾向として2次元地 震応答解析から得られる作用震度の5割程度の値を算出し ていることが確認できる.これに対し,補正法は誤差割合 の平均値が-0.193~-0.124であり,現行法と比較すると2次 元地震応答解析に近い値を算出することがわかる.その一 方で,標準偏差については現行法の方が小さな値となるが, これは補正法と比較して現行法の誤差割合の平均値が非常 に小さいためである.

いずれにせよ,補正法による作用震度の予測値は,2次 元地震応答解析による作用震度の解析値と比較して小さな 値となる傾向がある.これは,個々の計算事例の設計条件 に関わらず減衰定数を一律に設定したことに起因しており, より高い精度で作用震度の予測値と解析値と整合させるた めには,設計条件に応じた減衰定数の設定法を構築する必 要がある.

表-27 現行法および補正法における照査用震度の誤差割合の頻度分布

表-28 現行法および補正法における照査用震度の誤差割合の平均値と標準偏差

		N=1	N=5	N=10	N=15
補工	平均值μ	-0.124	-0.147	-0.193	-0.140
正法	標準偏差σ	0.197	0.150	0.099	0.119
現	平均值μ	-0.553	-0.544	-0.514	-0.508
1] 法	標準偏差 σ	0.104	0.098	0.108	0.103

5. 補正法の提案と応力照査の比較

5.1. 検討の目的

本章では、前章までの検討を取りまとめることで、現行の照査用震度算出手法に対し、2次元地震応答解析から求められる作用震度と整合させるための補正法を提案する.

また,2次元地震応答解析や現行法,補正法から得られ る作用震度を外力とした骨組解析により杭の曲げモーメン トを求め,2次元地震応答解析から得られる杭の曲げモー メントと比較することで,骨組解析と2次元地震応答解析 の応力照査の整合性について検討する.

5.2. 補正法の提案

図-53 に補正法による照査用震度の算出過程を示す.ここに,静的状態における桟橋のバネ定数補正係数 M_Kは 2. 微小地震動に対する桟橋固有周期算出式の補正に,固有周期の動的特性を表す桟橋固有周期比 R_{Tk}は 3. 地盤の非線形 性を反映した固有周期の補正に,減衰定数の修正(h=0.04)は,4. 減衰定数の検討に示したとおりである.

すなわち,桟橋固有周期の算出においては,仮想固定点 周辺地盤における N 値,および 1 次元地震応答解析より求 めたせん断剛性比 *G*_{rmax}/*G*₀を入力パラメータとして,下式 により地盤非線形性を反映した補正を行うことができる.

$T_{S_{dyna}} = R_{TS} \cdot T_{S_{stat}}$	(3.25)再撂
$T_{S_{stat}} = 2\pi \sqrt{W/gM_kK}$	(3.24)再撂

<N=5未満>

 $R_{Ts} = (1.3845 R_{G 1D} \cdot N^{0.0853})^{(0.0777 \ln(N)-0.264)}$ (3.22)再掲 <N=5以上>

 $R_{Ts} = (1.4854 R_{G 1D} \cdot N^{0.0434})^{(0.0352 \ln(N) - 0.1961)}$ (3.23)再揭

ここに,

Tsdyna:地震時における桟橋の固有周期

- R_{Ta}:固有周期比(静的状態を基準とした,地震時に おける固有周期の変化率)
- Tsstat:静的状態における桟橋の固有周期(s)
 - W:杭1列が受け持つ自重・載荷重(kN)

g: 重力加速度(m/s²)

- Mk: 補正係数(表-17)
- K:桟橋バネ定数(kN/m)
- N: 仮想固定点周辺地盤における N値
- R_{G 1D}:1 次元地震応答解析より求めたせん断剛性比 G_{tmax}/G₀

である.

これに加え、仮想固定点における加速度時刻歴から桟橋

の加速度応答スペクトルを求める際の減衰定数を h=0.04 と することで、2 次元地震応答解析から求めた作用震度と整 合させるための補正を加えることができる.

表-17 桟橋バネ定数補正係数(再掲)

図-53 補正法による照査用震度の算出過程

5.3.2次元地震応答解析と骨組解析との杭応力の比較

前節に示した補正法を用いることで, 骨組解析による杭 応力照査に対し, 2 次元地震応答解析における上部工加速 度最大値と整合した照査用震度を与えることが可能となる. しかしながら, 骨組解析に入力される照査用震度が 2 次元 地震応答解析における上部工加速度最大加速度を反映した 値であったとしても, 出力として得られる杭応力まで 2 次 元地震応答解析と一致するとは限らない. このため, 杭に 発生する最大曲げモーメントについて, 2 次元地震応答解 析と骨組解析との比較を行う.

(1) 照査用震度算出手法ごとの最大曲げモーメントの比較

杭諸元①の各検討断面について、2 次元地震応答解析か ら求めた杭の最大曲げモーメントと、骨組解析から求めた 杭の最大曲げモーメントを表-29 に示す. なお、骨組解析 における照査用震度は以下の3 手法を比較するものとした.

①予測値(提案する補正法から求めた照査用震度)

- ②解析値(2次元地震応答解析における上部工加速度最大値から求めた作用震度)
- ③現行法(耐震強化岸壁以外の桟橋に対する部分係数法) から求めた照査用震度の設計用値

各照査用震度算出法と2次元地震応答解析との最大曲げ モーメントの相関係数は表-30に示すとおりであり,概ね 以下のことが確認できる.

- ①現行法は桟橋杭の最大曲げモーメントを過小評価する 傾向がある
- ②補正法や解析値はほとんどの事例において桟橋杭の最 大曲げモーメントを過大評価する
- ③補正法や解析値を照査用震度とする骨組解析は,設計 水深が浅く,原地盤N値が大きい断面ほど,2次元地 震応答解析と高い相関性を示す傾向がある

- ④その一方で、特に原地盤N値が非常に小さい桟橋においては、補正法や解析値を照査用震度とする骨組解析は2次元地震応答解析との相関性が著しく低下する
- ⑤N 値が小さい断面において相関係数が低下する原因としては、N値が小さい断面においては、2次元地震応答解析に対する相関性が杭列ごとに異なることが挙げられる(表-31).この場合、N値の低下に対し、海側杭(杭1)からばらつきが大きくなり、海側に近い杭列ほどばらつきが生じやすい

以上のとおり,照査用震度が同値であっても,骨組解析 と2次元地震応答解析とでは応力照査の結果として得られ る杭の曲げモーメントは必ずしも一致しない.

表-29 桟橋杭に発生する最大曲げモーメントの比較

[※]現行法(非耐震)は耐震強化岸壁以外の桟橋の部分係数を用いた曲げモーメント

N	「値		N=1			N=5		N=15			
照査用震度の		補正法	解析值	値 現行法 補正法		解析值	現行法	補正法	解析值	現行法	
設定法		0	\bigtriangleup		0	\bigtriangleup		0	\bigtriangleup		
쾌卦	-10m	0.800	0.741	0.760	0.915	0.960	0.916	0.963	0.993	0.863	
「又口」	-13m	0.746	0.637	0.691	0.899	0.896	0.885	0.967	0.971	0.900	
水深	-16m	0.564	0.474	0.687	0.807	0.808	0.804	0.947	0.957	0.888	

表-30 曲げモーメント最大値の相関係数

(2) 補正法における杭の最大曲げモーメントの乖離の要因

上述したとおり,補正法より求めた照査用震度を外力と する骨組解析は,2次元地震応答解析と比較して杭の発生 曲げモーメントを過大評価する.

その原因として, 骨組解析により桟橋をモデル化する際 に, 桟橋の剛性を2次元地震応答解析と比較して過小に評 価していることが考えられる.これは,2次元地震応答解 析から直接算出した作用震度を外力としても, 骨組解析か ら出力される杭応力が,2次元地震応答解析と比較して過 大であることによる.

(3) 杭の発生応力に対する補正法の設定

骨組解析により算出される杭応力を,2次元地震応答解 析と整合させるための手法は複数考え得るが,大別すると 以下の4つである.

①骨組解析においてモデル化された桟橋の剛性の補正

骨組解析が2次元地震応答解析と比較して桟橋剛性を 過小に評価することが,算出される杭応力が乖離する要 因であるならば,当然,桟橋剛性そのものを適切に補正 することが最も望ましい補正法である.

これについて, 桟橋固有周期の算出においては, 桟橋 バネ定数 Kの補正により桟橋剛性の乖離を是正できるこ とは, 2. 微小地震動に対する桟橋固有周期算出式の補正 に示したとおりである. しかしながら, 骨組解析による 杭応力算出では桟橋バネ定数 K は用いられないため, 桟 橋剛性の補正には, 杭諸元や捨石基礎・原地盤各層の地 盤反力係数, 荷重条件といった複数の入力パラメータに 対して補正係数を設定する必要がある.

②地盤反力係数の補正

骨組解析と 2 次元地震応答解析との桟橋剛性の乖離が, 地盤反力係数のみによって生じていると仮定すると,補 正係数は基礎捨石および原地盤の地盤反力係数にのみ適 用されるため,補正法の設定は手法①と比べていささか 容易となる.これについて,大久保・小濱・楠^っは,2 次元地震応答解析の杭-地盤相互作用ばねから逆算した 水平方向地盤反力係数を骨組解析に適用することで,算 出される杭応力が2次元地震応答解析とよく整合するこ とを示している(図-54)

ただし、1 次元地震応答解析では桟橋杭のモデル化は されず、したがって杭-地盤相互作用ばねも設定されない ことから、大久保・小濱・楠^つの手法をそのまま 1 次元 地震応答解析に適用することはできない.このため、1 次元地震応答解析から地盤反力係数を推定する手法を構 築する必要がある.また,図-16(再掲)に示すとおり,2 次元地震応答解析から逆算された地盤反力係数は,現行 法から算出される地盤反力係数と比較して遥かに大きな 値であり,また同じ土層であっても標高により大きく変 化することにも留意する必要がある.

図-54 杭頭に作用するモーメントの比較⁷⁾

図-16 逆算した地盤反力係数の鉛直分布 ⁷⁾(再掲)

③照査用震度の補正

桟橋剛性ではなく,照査用震度の補正により杭応力を 整合させることができれば,補正係数は照査用震度のみ に設定されるため,補正法の設定はさらに容易となる.

ただし、本研究で提案した照査用震度の設定法が、2 次元地震応答解析における上部工加速度最大値を高い精 度で推定していることを踏まえると、骨組解析で出力さ れる杭応力を2次元地震応答解析と整合させるために、 敢えて照査用震度を過小評価することが合理的であると は言い難い.また、骨組解析における杭応力が2次元地 震応答解析と整合するように照査用震度の補正係数を設 定するためには、各検討断面における照査用震度と杭応 力の関係についてのパラメトリックスタディが必要とな る.このため、手法①や手法②に比べて容易とはいえど も、補正法の設定には計算負荷を伴う.

④算出された杭応力の補正

骨組解析により算出された杭応力に対して補正係数を 設定すれば、入力値に補正係数を設定する手法①~③と 比較して遥かに容易に補正法の設定が可能である.これ については、特に原地盤N値の大きな検討断面では骨組 解析と2次元地震応答解析との発生曲げモーメントの相 関係数が非常に高く(表-30)、線型関数による補正法の設 定が可能である.

ただし、この手法では出力値に補正を掛けることから、 曲げモーメントや軸力、周面摩擦力といった杭応力の照 査項目ごとに補正法を設定する必要がある.

なお,著者ら¹³⁾は船舶接岸力の増減に対する直杭式横 桟橋の杭応力の変化について整理しており,杭に生じる 曲げモーメントは船舶接岸力の増減に対してほぼ正比例 の関係にあることを示している(図-55).一方で,軸力に ついては陸側杭と海側杭とで傾向が異なっている(図 -56).

図-55 接岸力と曲げモーメントの関係¹³⁾

(4) 骨組解析における杭の最大曲げモーメントの補正

骨組解析における桟橋剛性の評価方法は,直杭式桟橋の 杭応力照査において重要な課題と考えられるが,本研究は 桟橋固有周期や照査用震度を2次元地震応答解析と整合さ せることを目的としたものである.このため,ここでは桟 橋剛性の補正については詳細な検討は行わず,手法④に基 づいた最大曲げモーメントの補正についてのみ検討する.

本研究における検討断面においては、N=5 以上であれば 設計水深によらず r=0.8 以上の相関係数を確保しており、線 型関数による補正による補正式の導出が可能である. すな わち、下式により、骨組解析から求めた杭の曲げモーメン トを 2 次元地震応答解析から求めた杭の曲げモーメントと 整合させる.

$$M_{2D} = M_m \cdot M_{FRM} \tag{5.1}$$

ここに,

M_{2D}: 2 次元地震応答解析から求めた杭の発生曲げモ ーメントの最大値

Mm:曲げモーメント補正係数(表-32)

MFRM: 骨組解析より求めた杭の発生曲げモーメントの 最大値

である.

なお、曲げモーメント補正係数 Mm は、各計算事例にお ける 2 次元地震応答解析から求めた杭の発生曲げモーメン トの最大値を、骨組解析より求めた杭の発生曲げモーメン トの最大値で割った値の平均値であり、表-32 に示される とおり設計水深と N 値および照査用震度の設定手法により 異なる値となる.

補正式より求めた杭の曲げモーメント最大値は表-33 に 示すとおりであり,特にN値が大きい断面や設計水深が浅 い断面において,2次元地震応答解析とよく整合すること が確認できる.

照査用震度	設計		N值	
の設定法	水深	N=1	N=5	N=15
	-10m	0.65	0.55	0.51
補正法	-13m	0.87	0.56	0.51
	-16m	1.18	0.88	0.77
	-10m	0.66	0.53	0.49
解析值	-13m	0.76	0.56	0.51
	-16m	1.03	0.69	0.58
	-10m	1.38	1.52	1.41
現行法	-13m	1.59	1.52	1.41
	-16m	2.14	1.91	1.65

表-32 曲げモーメント補正係数 Mm

※現行法(非耐震)は耐震強化岸壁以外の桟橋の部分係数を用いた曲げモーメント

6. 結論

6.1. 本稿の取りまとめ

本研究では,直杭式桟橋の固有周期や照査用震度につい て,現行の算出手法と2次元地震応答解析とを整合させる ための検討を行った.本稿の主要な結論を以下に示す.

①図-47に示したように、現行法は2次元地震応答解析と 比較して桟橋固有周期を長く評価する傾向があり、2次 元地震応答解析より算出される固有周期は現行法の 50%程度の値となることもある(表-22).したがって、特 に短周期地震動に対しては、現行法は照査用震度を過小 評価する可能性があり注意する必要がある.

図-47 固有周期の予測値と解析値の比較(現行法)(再掲)

②作用震度と固有周期には関係性があり、作用震度が大きくなるほど、固有周期は長くなる(図-23).これは、加震に伴い桟橋杭周辺地盤のせん断剛性が低下し、仮想固定点が下方に遷移することに起因すると考えられる.

図-23 作用震度と固有周期の関係(N 値別整理)(再掲)

③仮想固定点周辺地盤のせん断剛性比と桟橋固有周期の 動的特性は近似式により定式化できる.すなわち,仮想 固定点周辺地盤のN値と1次元地震応答解析より求めた せん断剛性比 Grmax/Goを入力パラメータとして,下式に より動的特性を反映した桟橋固有周期を算出すること ができる.

$$T_{s_{dyna}} = R_{Ts} \cdot T_{s_{stat}}$$
 (3.25)再揭
 $T_{s_{stat}} = 2\pi \sqrt{W/gM_kK}$ (3.24)再揭

<N=5未満>

 $R_{Ts} = (1.3845 R_{G1D} \cdot N^{0.0853})^{(0.0777 \ln(N)-0.264)}$ (3.22)再掲 <N=5以上>

 $R_{Ts} = (1.4854 R_{G1D} \cdot N^{0.0434})^{(0.0352 \ln(N) - 0.1961)}$ (3.23)再揭

- ここに,
 - Tsdyna: 地震時における桟橋固有周期
 - R_{Ts}: 固有周期比(静的状態を基準とした,地震時に おける桟橋固有周期の変化率)
 - Tsstat:静的状態における桟橋固有周期(s)
 - W: 杭1列が受け持つ自重・載荷重(kN)

g: 重力加速度(m/s²)

- Mk: 補正係数(表-17)
- K: 桟橋バネ定数(kN/m)
- N: 仮想固定点周辺地盤における N 値
- R_{G1D}:1 次元地震応答解析より求めたせん断剛性比 G_{rmax}/G₀

である.

なお、補正法や現行法と2次元地震応答解析との比の平 均値と標準偏差は表-21に示すとおりである.したがって、 本研究の範囲においては、補正法や現行法に基づく固有周 期に対し、表-21に示す推定精度を考慮することで、2次 元地震応答解析に対する誤差を考慮することができる.

表-17 桟橋バネ定数補正係数(再掲)

捨石の地盤反力係数(kN/m³)	補正係数 Mk
3500	3.38
7500	2.87

表-21 固有周期の解析値/予測値の平均値と標準偏差(再掲)

		N=1	N=5	N=10	N=15
堵工社	平均值 μ	1.031	1.018	1.019	1.027
佣止伝	標準偏差 σ	0.133	0.073	0.057	0.057
珀伝法	平均值 μ	0.656	0.615	0.607	0.608
现11公	標準偏差 σ	0.124	0.068	0.053	0.052

- ④2 次元地震応答解析における上部工最大加速度と加速度応答スペクトルにおける最大加速度とを整合させるためには、本研究の範囲内では減衰定数を4%程度とすることが適当である.ただし、設計条件や作用震度により最適な減衰定数は異なるため、それらを反映したより詳細な減衰定数の設定方法も有り得る.
- ⑤本研究より提案する照査用震度の算出過程は図-53 に示すとおりである.なお、算出される照査用震度の推定精度は表-28 に示すとおりであり、精度の高い照査用震度の設定が可能となったといえる.

図-53 補正法による照査用震度の算出過程(再掲)

表-28 現行法および補正法における照査用震度の誤差割合 の平均値と標準偏差(再掲)

		N=1	N=5	N=10	N=15
堵工社	平均值 μ	-0.124	-0.147	-0.193	-0.140
補止伝	標準偏差σ	0.197	0.150	0.099	0.119
再行注	平均值 μ	-0.553	-0.544	-0.514	-0.508
5亿1万	標準偏差σ	0.104	0.098	0.108	0.103

なお、本研究で検討対象とした設計条件は以下に示すと おりである.

- ○設計水深:-10~-16m
 ○土質条件:砂地盤(N=1~15),ただし液状化しない
 ○土層構成:仮想固定点周辺地盤は単層地盤
 地震動 :L1地震動
 上部工 :RC
 渡版 :なし
- ○上載荷重:なし

⑥補正法により算出した照査用震度を外力とすると、骨組 解析は2次元地震応答解析と比較して杭応力を過大に評 価する.したがって、現行設計法では、骨組解析におい て桟橋をモデル化する際に、その剛性を過小に評価して いると考えられる.

一方で,現行の部分係数法は,骨組解析による杭応力が 2次元地震応答解析と比較して過小に評価される傾向が あり,注意する必要がある.

6.2. 今後の課題

今後の主な課題としては以下が挙げられる.

①2次元地震応答解析と強震観測との整合性検証

本研究では、2次元地震応答解析を正として現行設計法 の補正を図っているが、2次元地震応答解析と実現象との 整合性検証は行っていない.これは、本研究の開始段階で 直杭式桟橋における強震観測記録の収集を図ったものの、 適切な事例が抽出できず2次元地震応答解析との比較が困 難であったためである.

強震観測記録から桟橋固有周期を算出するためには,桟 橋上部工,背後地表面,工学的基盤面の3点で強震記録計 を設置する必要があるが,この条件を満たす港湾施設は, 大水深のコンテナ岸壁などに限られている.これらの港湾 施設では,L2 地震動に対応するため一般的な直杭式桟橋 は採用されにくいことや,大型ガントリークレーンなどの 施設があることから,本研究における2次元地震応答解析 と実現象との整合性検証のためのケーススタディとはな り得ない.

以上から、今後の課題としては、より一般的な直杭式桟 橋に対する強震観測記録の充実を図り、2次元地震応答解 析と実現象との整合性検証のケーススタディを積み上げ ていくことが挙げられる.

なお,既往の研究事例として,長尾³⁾が川崎港および横 浜港の直杭式桟橋を対象に実施した検証が挙げられる.こ の研究では,背後地表面における最大加速度が 86.1Gal(川 崎港),60.7Gal(横浜港),61.6Gal(横浜港)の強震観測記録を 2次元地震応答解析により再現しており,固有周期の観測 値と解析値は良く整合していることが示されている.ただ し,この研究では地震動や対象桟橋によっては,渡版の影 響を適切にモデル化する必要があることも示されている.

②2次元地震応答解析と常時微動観測との整合性検証

強震観測は、観測網整備のための多大な費用と適当な地 震動が発生するまでの膨大な時間を要するため、数多くの 直杭式桟橋に対して2次元地震応答解析と強震観測記録と の整合性検証を行うことは容易ではない.これに対し,常時微動観測であれば,比較的容易に観測記録を確保することができる.したがって,2次元地震応答解析と常時微動 観測記録との整合性検証のケーススタディを充実させ,少 なくとも地盤非線形性が殆ど生じていない状態において, 2次元地震応答解析が実現象をよく再現することを示すこ とは今後の重要な課題であるといえる.

これについて,既往の研究事例として長尾³⁾や田代ら⁴⁾ がある.長尾³⁾は川崎港および横浜港の直杭式桟橋に対し 常時微動観測を行い,固有周期の観測値と2次元地震応答 解析から得られた解析値が良く整合することを示した.ま た,田代ら⁴⁾は常時微動観測から得られた固有周期と,最 大加速度1Galのホワイトノイズを与えた2次元地震応答 解析から得られた固有周期とを比較し,両者が概ね整合す ることを示している.

なお、図-13 および巻末資料に示すとおり、最大加速度 10Gal 程度の地震動であれば、仮想固定点と背後地表面と で桟橋上部工までの伝達関数の周期特性に大きな差は生 じない.これから、背後地表面と桟橋上部工の2点におい て常時微動観測を実施することで、常時微動に対する桟橋 固有周期を実測することが可能であると考えられる.

③骨組解析における桟橋剛性の適切な設定方法

提案した補正法から算出した照査用震度や,2次元地震 応答解析における上部工加速度最大値から算出した作用 震度を外力とする骨組解析は,2次元地震応答解析と比較 して杭応力を過大に評価する.つまり,たとえ照査用震度 が同値であっても,現行法に基づいた骨組解析では2次元 地震応答解析と異なる杭応力が出力されるといえる.した がって,入力値である照査用震度が同一であれば,出力値 である杭応力も骨組解析と2次元地震応答解析とで整合す るように,骨組解析における入力パラメータの設定法を修 正する必要がある.

④比較対象としなかった設計条件についての検討

本研究では、複数の設計条件に基づいて検討断面を設定 しているものの、あらゆる設計条件を網羅的に検討したも のではない.これは、2次元地震応答解析や Parzen 窓を掛 けたフーリエスペクトル変換、加速度応答スペクトル算出 にはある程度の計算時間を要することや、解析結果として 得られるデータファイル群の容量が非常に大きいことか ら、研究に使用する計算機の処理速度や記憶容量、計算機 の数により解析可能な断面数が制限されるためである.

しかしながら、本研究において提示した補正法が様々な 設計条件において2次元地震応答解析の固有周期や照査用 震度を推定できることを示すためには、本研究では比較対 象としなかった以下の設計条件についても補正法と2次元 地震応答解析との比較を行う必要がある.

イ)荷重条件(上載荷重の大小,PC桁,クレーン荷重等) ロ)鋼管杭の杭径および肉厚 ハ)渡版の有無 ニ)捨石基礎の有無,勾配,配置 ホ)粘性土地盤 ヘ)単層でない地盤

特に荷重条件については,桟橋の固有周期や現行法にお ける仮想固定点の標高に大きく影響すると考えられるこ とから,複数の荷重条件に基づいて比較検討を加える必要 があるといえる.

また、本研究では杭諸元について断面性能が強弱2種類 となるように設計条件を設定しているものの、杭の断面性 能が同一であるときに杭径と杭肉厚が桟橋の動的特性に どのような影響を及ぼすかについては検討していない.杭 径の違いは杭と地盤反力との関係に大きく影響すると考 えられることから、適切な杭径と肉厚の考え方について整 理する必要があるといえる.

⑤背後土留構造および背後地盤の影響検討

本研究で設定した検討断面は,桟橋の設計水深等に関わ らず土留護岸はL型擁壁としている.また,各検討断面に おける土層構成や各土層の土質定数など,基本的な地盤条 件は海側地盤と陸側地盤で同一としている.

しかしながら、特に強い地震動に対しては、桟橋杭は土 留護岸や背後地盤に起因する側方からの作用を受けると 考えられるため、これらの影響を減衰定数などに適切に反 映させることで、補正法の精度向上を図ることが可能と考 えられる.

⑥L2 地震に対する適用性の検討

現行港湾基準は,偶発状態における港湾施設の性能照査 法として,数値解析法や模型実験,現地試験に基づく方法 を推奨している.このため,現在の設計実務においては, L2 地震動に対する桟橋の照査法として FLIP による 2 次元 地震応答解析を適用することが一般的となっている。しか しながら,2 次元の非線形地震応答解析は解析結果を得る までのタイムラグが長く,最適断面の追求に多大な負荷が 要求されるという問題がある.また,解析モデルの設定方 法が複雑であるうえ,強大な地震動が入力されることから, 解析結果の妥当性検証や第三者による照査も容易でない. したがって、本研究で示したような比較的簡易な手法によ り L2 地震動に対する直杭式桟橋の挙動を把握することが 可能となれば、L2 地震動に対する桟橋の最適断面追及や、 2 次元地震応答解析から得られた解析結果の妥当性検証、 第三者照査の効率化に大きく寄与すると考えられる.

これに対し、本研究は L1 地震動を検討対象としている ことから、各検討断面における桟橋杭は L1 地震動への対 応を念頭にその諸元を設定している.このため、L2 地震動 のような非常に強い地震動に対する適用性や、耐震強化岸 壁に適用されるような高剛性の杭についての適用性は検 討していない.また、地盤の液状化についても考慮の対象 外としている.すなわち、これらの設計条件に対する検討 を加え、補正法の修正と適用範囲の拡大を図ることは、L2 地震動に対する設計実務の効率化に繋がる重要な課題で あると考えている.

⑦組杭式桟橋への適用性検討

本研究は直杭式桟橋を対象としており,組杭式桟橋に対 する適用性は検討していない.しかしながら,組杭式桟橋 においても,現行設計法と2次元地震応答解析とでは算出 される固有周期や照査用震度に乖離があると考えられる.

したがって、本研究で提案した補正法の組杭式桟橋に対 する適用性の検討や、同様の手法による補正法の構築が必 要であるといえる.

(2017年11月15日受付)

謝辞

本稿をとりまとめるにあたり,既往事例や地震動の評価 法について,港湾空港技術研究所の野津厚地震防災研究領 域長より様々な御助言を賜りました.また,港湾施設研究 室の交流研究員である田端優憲氏,港湾施設研究室に交流 研究員として在籍されていた佐藤健彦氏,高野向後氏には, 本稿の執筆方針および検討内容に対して貴重なご意見を 頂きました.ここに記して,深く感謝の意を表します.

参考文献

- 1) 日本港湾協会:港湾の施設の技術上の基準・同解説, 2007.
- 2)横田弘,竹鼻直人,南兼一郎,高橋邦夫,川端規之: 鋼管杭式桟橋の地震応答解析結果に基づく設計水平震 度の考察,港湾技術研究所報告,第37巻第2号,pp.75 ~130,1998.
- 3) 長尾毅: 桟橋式岸壁の耐震性照査手法に関する解析的 研究, 国土技術政策総合研究所資料, No.61, 2003.
- 田代聡一,井合進,一井康二,井福周介,高原裕一: 常時微動観測による既設桟橋の振動特性の検討(解析編), 土木学会第54回年次学術講演会,pp.166-167, 1999.
- 5) 桒原直範,長尾毅:直杭式桟橋の動的特性を考慮した 照査用震度の算出方法に関する基礎的研究,国土技術政 策総合研究所資料, No.591, 2010.
- 6) 日本港湾協会:港湾の施設の技術上の基準・同解説, 1999.
- 7) 大久保,小濱英司,楠謙吾:直杭式横桟橋の異なる照 査手法による桟橋応答の比較,土木学会論文集B3, Vol.68, No.2, I 438- I 443, 2012.
- 8) 横山幸満:くい構造物の計算法と計算例,山海堂,1977.
- 9) 国土技術政策総合研究所 港湾施設研究室HP,
- http://www.ysk.nilim.go.jp/kakubu/kouwan/sisetu/sisetu.html
- 10) 沿岸技術研究センター:港湾構造物設計事例集, 2007.
- 11) 菊池喜昭,小椋卓美,石丸守,近藤武司:捨石地盤の 横方向地盤反力係数,土木学会第53回年次学術講演会, pp.52-53, 1998.
- 12) 大崎順彦:新・地震動のスペクトル解析入門,鹿島出版会,1994.
- 13)勝俣優,竹信正寛,宮田正史,村上和康:直杭式横桟 橋の船舶接岸時のレベル1信頼性設計法に関する諸考 察(その2),国土技術政策総合研究所資料,No.931, 2017.
- 14)長尾毅,菊池喜昭,藤田宗久,鈴木誠,佐貫哲朗: 桟橋式係船岸のレベル1地震動に対する信頼性設計法, 構造工学論文集,Vol.52A,2006.

附録 A 計算事例と検討対象事例

本研究では、地盤非線形性と固有周期の動的特性との関係を定式化するために、地盤非線形性の強さが異なる様々 な条件に対して地震応答解析を実施した.

計算事例数は903例であるが,加震中に桟橋杭が全塑性 した計算事例は検討対象から除外したため,検討対象とし た計算事例は833例である.振幅調整を200Gal,300Gal, 500Galとした計算事例,およびL1地震動に対する計算事例 について,杭の全塑性の有無を付表A-2~付表A-5に示す.

付表 A-1 入力地震動(原波形)

設計 水深	N 値	杭径 (mm)	肉厚 (mm)	石巻	八戸	常陸 那珂	千葉	清水	四日市	舞鶴	神戸	岩国	博多
	1	700	14.9	0	0	0	0	0	0	0	0	0	0
-10m	5	700	14.1	0	0	0	0	0	0	0	0	0	0
	15	700	13,4	0	0	0	0	0	0	0	0	0	0
	1	800	13.2	0	0	0	0	0	0	0	0	0	0
-13m	5	800	12.4	0	0	0	0	0	0	0	0	0	0
	15	800	11.9	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
	1	900	12.3	0	0	0	0	0	0	0	0	0	0
-16m	5	900	11.5	\bigcirc	0	0	0	0	0	0	0	0	0
	15	900	11.0	0	0	0	0	0	0	0	0	0	0
	1	700	10.4	0	0	0	0	0	0	0	0	0	0
10m	5	700	10.0	\bigcirc	0	\bigcirc	0	\bigcirc	0	0	0	0	0
-10111	10	700	9.7	\bigcirc	0	0	0	0	0	0	0	0	0
	15	700	9.6	\bigcirc	0	0	0	0	0	0	0	0	\bigcirc
	1	700	11.5	0	0	0	0	0	0	0	0	0	0
12m	5	700	10.9	\times	\times	0	0	0	0	0	0	0	0
-13111	10	700	10.6	0	0	0	0	0	0	0	0	0	0
	15	700	10.5	\bigcirc									
	1	800	11.1	0	0	0	0	0	0	0	0	0	0
16m	5	800	10.5	×	×	0	0	0	0	0	0	0	0
-10111	10	800	10.2	\times	×	0	0	0	0	0	0	0	0
-10m -13m -16m -10m -13m -16m	15	800	10.1	\times	×	0	0	\bigcirc	0	0	\bigcirc	0	\bigcirc

付表 A-2 各計算事例における桟橋杭の全塑性の有無(振幅調整なし)

付表 A-3 各計算事例における桟橋杭の全塑性の有無(振幅調整 200Gal)

設計	N估	杭径	肉厚	工类	八百	常陸	千華	≽৵	回口士	無如	抽古	出国	捕タ
水深	IN 11	(mm)	(mm)	山仓		那珂	「衆	们小	四日川	夕中街同	747	石凹	時多
	1	700	14.9	0	0			0				0	0
-10m	5	700	14.1	0	0			0				0	0
	15	700	13,4	0	0			0				0	0
	1	800	13.2	0	0			0				0	0
-13m	5	800	12.4	0	0			0				0	0
	15	800	11.9	0	0			0				0	0
	1	900	12.3	0	0			×				0	0
-16m	5	900	11.5	0	0			0				0	0
	15	900	11.0	0	0			0				0	0
	1	700	10.4	0	0			×				0	0
10	5	700	10.0	0	0			0				0	0
-10m	10	700	9.7	0	0			0				0	0
	15	700	9.6	0	0			0				0	0
	1	700	11.5	0	0			\times				0	0
12m	5	700	10.9	0	0			0				0	0
-13111	10	700	10.6	0	0			0				0	0
	15	700	10.5	0	0			0				0	0
	1	800	11.1	0	0			×				0	0
16	5	800	10.5	0	0			0				0	0
-10111	10	800	10.2	0	0			0				0	0
	15	800	10.1	0	0			×				0	0

設計 水深	N值	杭径 (mm)	肉厚 (mm)	石巻	八戸	常陸 那珂	千葉	清水	四日市	舞鶴	神戸	岩国	博多
	1	700	14.9	0	0			×				0	0
-10m	5	700	14.1	0	0			×				0	0
	15	700	13,4	0	0			\bigcirc				0	0
	1	800	13.2	0	0			\times				0	0
-13m	5	800	12.4	0	0			\times				0	0
	15	800	11.9	0	0			\bigcirc				0	0
	1	900	12.3	0	0			\times				0	0
-16m	5	900	11.5	0	0			\times				0	0
	15	900	11.0	0	0			\times				0	0
	1	700	10.4	0	×			×				0	0
10	5	700	10.0	×	×			×				0	0
-10m	10	700	9.7	0	×			×				0	0
	15	700	9.6	0	\times			\times				0	0
	1	700	11.5	0	0			\times				0	0
12m	5	700	10.9	\times	\times			\times				0	0
-13111	10	700	10.6	\times	\times			\times				0	0
	15	700	10.5	\times	\times			\times				0	0
	1	800	11.1	0	0			×				0	0
16m	5	800	10.5	×	×			×				0	0
-10111	10	800	10.2	×	×			×				0	0
-10m -13m -16m -10m -13m	15	800	10.1	×	×			×				0	0

付表 A-4 各計算事例における桟橋杭の全塑性の有無(振幅調整 300Gal)

付表 A-5 各計算事例における桟橋杭の全塑性の有無(振幅調整 500Gal)

設計	N価	杭径	肉厚	乙类	시금	常陸	千莊	洼水	而日本	無如	抽古	巴国	捕タ
水深	IN 但	(mm)	(mm)	口仓	ЛГ	那珂	栄	们小	四日巾	歹 平 售局	ተዋ /ግ	石国	時多
	1	700	14.9		×							0	0
-10m	5	700	14.1		×							0	0
	15	700	13,4		×							0	0
	1	800	13.2		×							0	0
-13m	5	800	12.4		×							0	0
	15	800	11.9		×							0	0
	1	900	12.3		×							0	0
-16m	5	900	11.5		×							0	0
	15	900	11.0		×							0	0
	1	700	10.4		×							0	0
10	5	700	10.0		×							0	0
-10m	10	700	9.7		×							0	0
	15	700	9.6		×							0	0
	1	700	11.5		×							0	0
12m	5	700	10.9		×							0	0
-15111	10	700	10.6		×							0	0
	15	700	10.5		\times							0	\bigcirc
	1	800	11.1		×							0	0
16m	5	800	10.5		×							0	0
-10m	10	800	10.2		×							0	0
	15	800	10.1		×]				0	0

附録 B 2次元地震応答解析における固有周期

本研究において,2次元地震応答解析における桟橋固有 周期は,仮想固定点から桟橋上部工までの伝達関数(仮想 固定点と桟橋上部工のフーリエスペクトル比)が極大値を 取る周期として定義した.

2次元地震応答解析における桟橋固有周期の算出結果一 覧は付表B-1,付表B-2にを示すとおりであるが,全般的な 傾向として,最大加速度が増加するほど桟橋固有周期が長 周期化することが確認できる.また,岩国波や博多波と比 較して,八戸波や石巻波で桟橋固有周期が長周期化しやす い傾向があり,地震動の卓越周期が桟橋固有周期に影響を 与えていることが示されている.

なお、本検討においては現行法により桟橋の仮想固定点 を設定したが、適切な仮想固定点の設定方法については検 討の余地があると考えられる.付表B-3~付表B-23は、最 大加速度を10Gal, 100Gal, 300Galおよび無調整とした計 算事例について,仮想固定点,杭下端,背後地表面の3点 から桟橋上部工までの伝達関数の周期特性を示したもの であるが,弱い地震動においては,いずれの地点において も伝達関数が極大値を取る周期はほぼ同一でありながら, 地震動が強くなるに連れ極大値を取る周期にずれが生じ ることが確認できる.すなわち,L1地震動程度の強い地震 動においては,仮想固定点付近の地盤と杭下端付近や背後 地表面とでは異なる挙動を取ると考えられるため,強震観 測により桟橋の動的特性を把握する際に注意する必要が あるといえる.なお,強い地震動においては,背後地表面 から桟橋上部工までの伝達関数に明瞭な極大値が生じに くくなるため,どちらかというと仮想固定点や杭下端(基 盤面付近)から桟橋上部工までの伝達関数を桟橋固有周期 と捉える方が適当と思われる.

設計	水深		-10m			-13m			-16m	
N	值	1	5	15	1	5	15	1	5	15
杭径	(mm)	700	700	700	800	800	800	900	900	900
肉厚	(mm)	14.9	14.1	13.4	13.2	12.4	11.9	12.3	11.5	11.0
	八戸	0.65	0.64	0.64	0.64	0.60	0.60	0.73	0.70	0.70
5Gal	岩国	0.65	0.64	0.64	0.63	0.60	0.60	0.73	0.70	0.69
	博多	0.65	0.64	0.64	0.64	0.60	0.60	0.73	0.70	0.69
	八戸	0.66	0.65	0.65	0.65	0.61	0.61	0.74	0.71	0.70
10Gal	岩国	0.65	0.64	0.64	0.63	0.60	0.60	0.73	0.70	0.69
	博多	0.66	0.65	0.65	0.64	0.61	0.61	0.73	0.70	0.69
	八戸	0.66	0.66	0.66	0.66	0.62	0.61	0.76	0.72	0.71
20Gal	岩国	0.66	0.65	0.65	0.64	0.61	0.60	0.73	0.70	0.70
	博多	0.67	0.67	0.67	0.64	0.63	0.61	0.73	0.71	0.70
	八戸	0.70	0.69	0.69	0.70	0.66	0.65	0.82	0.76	0.73
50Gal	岩国	0.68	0.67	0.67	0.67	0.63	0.63	0.76	0.72	0.71
	博多	0.69	0.67	0.67	0.69	0.64	0.64	0.77	0.73	0.73
	石巻	0.73	0.70	0.70	0.73	0.69	0.66	0.83	0.78	0.74
	八戸	0.77	0.72	0.72	0.82	0.70	0.68	0.75	0.79	0.77
100Gal	清水	0.80	0.74	0.74	0.71	0.71	0.67	0.99	0.81	0.79
	岩国	0.69	0.68	0.68	0.69	0.66	0.66	0.77	0.72	0.72
	博多	0.73	0.70	0.70	0.73	0.67	0.67	0.81	0.77	0.77
	八戸	0.84	0.77	0.76	1.02	0.77	0.71	1.18	0.85	0.84
150Gal	岩国	0.70	0.69	0.69	0.69	0.69	0.68	0.79	0.77	0.73
	博多	0.74	0.73	0.73	0.72	0.70	0.70	0.86	0.79	0.78
	石巻	0.84	0.74	0.73	0.86	0.62	0.70	1.03	0.88	0.82
	八戸	1.19	0.84	0.78	1.19	0.84	0.78	1.40	0.76	0.85
200Gal	清水	0.72	0.77	0.80	1.15	0.76	0.80	#N∕A	0.72	0.77
	岩国	0.72	0.72	0.72	0.72	0.69	0.69	0.80	0.78	0.77
	博多	0.77	0.74	0.74	0.82	0.74	0.73	0.92	0.80	0.80
	石巻	0.87	0.83	0.82	1.04	0.84	0.62	1.11	0.88	0.88
	八戸	1.24	1.02	0.85	1.40	1.02	0.85	1.10	0.95	1.01
300Gal	清水	#N∕A	#N∕A	0.77	#N∕A	#N∕A	0.74	#N∕A	#N∕A	#N∕A
	岩国	0.72	0.72	0.72	0.77	0.70	0.70	0.84	0.80	0.80
	博多	0.73	0.74	0.78	0.84	0.73	0.74	0.98	0.87	0.86
	八戸	#N∕A								
500Gal	岩国	0.70	0.79	0.79	0.80	0.70	0.73	0.93	0.84	0.81
	博多	0.98	0.73	0.80	1.06	0.87	0.80	1.12	0.98	0.92
	石巻	0.86	0.82	0.75	0.86	0.83	0.73	1.09	0.88	0.83
	八戸	1.19	0.84	0.78	1.19	0.84	0.78	1.40	1.20	0.85
	常陸那珂	0.82	0.76	0.75	0.86	0.75	0.72	1.00	0.85	0.82
	千葉	0.76	0.76	0.72	0.76	0.72	0.72	0.87	0.80	0.80
L1	清水	0.77	0.80	0.77	0.99	0.76	0.75	1.16	0.80	0.82
Original	四日市	0.74	0.72	0.71	0.80	0.70	0.69	0.89	0.80	0.77
	舞鶴	0.71	0.72	0.72	0.74	0.71	0.67	0.80	0.81	0.78
	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	0.80	0./4	0./4	0.83	0./4	0./3	0.98	0.85	0.83
	「一日国」	0./2	0./3	0./3	0.//	0.70	0.70	0.85	0.80	0.80
1	THE			11/2						. n /u

付表 B-1 2 次元地震応答解析における桟橋固有周期算出結果一覧(杭諸元①)

※表中の「#N/A」は、2次元地震応答解析において桟橋杭が全塑性した解析事例を示す。

設計	水深		-1	0m			-1	3m			-1	6m	
N	値	1	5	10	15	1	5	10	15	1	5	10	15
杭径	(mm)	700	700	700	700	700	700	700	700	800	800	800	800
肉厚	(mm)	10.4	10.0	9.7	9.6	11.5	10.9	10.6	10.5	11.1	10.5	10.2	10.1
	八戸	0.73	0.73	0.73	0.73	0.76	0.74	0.74	0.74	0.84	0.84	0.84	0.83
5Gal	岩国	0.73	0.72	0.72	0.72	0.75	0.73	0.73	0.73	0.84	0.83	0.82	0.82
	博多	0.73	0.72	0.73	0.73	0.75	0.73	0.73	0.73	0.84	0.83	0.83	0.83
	八戸	0.75	0.73	0.73	0.73	0.76	0.76	0.75	0.75	0.85	0.84	0.84	0.84
10Gal	岩国	0.73	0.72	0.72	0.72	0.75	0.73	0.73	0.73	0.84	0.83	0.83	0.82
	博多	0.74	0.73	0.73	0.73	0.76	0.74	0.74	0.74	0.85	0.84	0.83	0.83
	八戸	0.76	0.76	0.76	0.76	0.78	0.77	0.76	0.76	0.87	0.86	0.85	0.85
20Gal	岩国	0.74	0.72	0.73	0.73	0.76	0.75	0.75	0.74	0.84	0.83	0.83	0.83
	博多	0.75	0.73	0.74	0.73	0.76	0.76	0.76	0.76	0.86	0.85	0.84	0.84
	八戸	0.79	0.78	0.78	0.78	0.84	0.82	0.82	0.82	0.94	0.89	0.89	0.89
50Gal	岩国	0.76	0.76	0.76	0.76	0.77	0.77	0.77	0.76	0.85	0.85	0.84	0.84
	博多	0.77	0.77	0.77	0.77	0.79	0.79	0.79	0.78	0.89	0.88	0.87	0.87
	石巻	0.83	0.81	0.81	0.79	0.88	0.83	0.82	0.82	0.99	0.93	0.92	0.89
	八戸	0.85	0.84	0.84	0.84	0.81	0.86	0.86	0.85	1.01	0.96	0.95	0.95
100Gal	清水	0.87	0.83	0.83	0.83	0.95	0.87	0.87	0.87	1.02	0.97	0.96	0.95
	岩国	0.77	0.77	0.77	0.77	0.79	0.79	0.79	0.79	0.88	0.87	0.86	0.86
	博多	0.80	0.81	0.81	0.81	0.80	0.82	0.82	0.82	0.92	0.92	0.91	0.91
	八戸	0.84	0.85	0.86	0.85	1.01	1.01	0.95	0.85	1.19	1.02	1.01	1.01
150Gal	岩国	0.79	0.79	0.79	0.79	0.81	0.80	0.80	0.80	0.90	0.89	0.88	0.87
	博多	0.80	0.83	0.83	0.82	0.87	0.88	0.87	0.86	0.98	0.93	0.93	0.93
	石巻	0.93	0.88	0.84	0.84	0.93	0.93	0.92	0.88	0.87	1.04	1.03	1.02
	八戸	0.95	0.82	0.85	0.85	1.19	1.02	1.01	1.01	1.25	1.20	1.02	1.02
200Gal	清水	#N∕A	0.96	0.96	0.95	#N∕A	1.02	1.01	0.96	#N∕A	1.17	1.02	#N∕A
	岩国	0.81	0.80	0.80	0.80	0.82	0.82	0.82	0.81	0.92	0.91	0.89	0.89
	博多	0.87	0.87	0.87	0.86	0.91	0.91	0.91	0.90	0.98	0.99	0.98	0.98
	石巻	0.82	#N∕A	0.93	0.93	0.88	#N∕A	#N∕A	#N∕A	1.11	#N∕A	#N∕A	#N∕A
	八戸	#N/A	#N/A	#N/A	#N/A	1.40	#N/A	#N/A	#N/A	1.11	#N/A	#N/A	#N/A
300Gal	清水	#N/A											
	岩国	0.82	0.82	0.82	0.82	0.86	0.86	0.85	0.83	0.95	0.93	0.93	0.92
	博多	0.92	0.91	0.91	0.91	0.98	0.92	0.92	0.92	1.05	1.03	1.00	0.99
		#N/A											
500Gal	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	0.87	0.87	0.87	0.86	0.92	0.92	0.89	0.88	0.99	0.99	0.99	0.98
	博多	0.98	0.92	0.92	0.92	1.14	0.99	0.99	0.99	1.12	1.14	1.04	1.04
		0.83	0.93	0.88	0.88	0.82	#N/A	0.93	0.93	1.10	#N/A	#N/A	#N/A
		1.19	1.01	1.01	0.85	1.19	#N/A	1.01	1.01	1.40	#N/A	#N/A	#N/A
	吊陸那切	0.90	0.86	0.86	0.85	0.96	0.91	0.91	0.90	1.07	1.01	0.99	0.96
1.4	十采	0.86	0.83	0.83	0.83	0.87	0.86	0.86	0.85	0.99	0.93	0.93	0.92
	「「「」「」「」「」「」「」「」「」「」「」」「」「」」「」」「」」「」」「」	0.97	0.87	0.87	0.87	0.99	0.95	0.88	0.88	1.10	1.02	0.99	0.98
Uriginal	一四日巾	0.84	0.82	0.82	0.82	0.90	0.88	0.84	0.84	0.98	0.95	0.94	0.93
	<u> </u>	0.02	0.06	0.06	0.80	0.05	0.80	0.80	0.80	0.98	0.93	0.92	0.92
	 些国	0.92	0.00	0.00	0.00	0.90	0.92	0.91	0.91	1.00	0.99	0.99	0.90
	石巴 描名	0.02	0.02	0.02	0.02	0.00	0.00	0.80	0.00	0.90	0.94	0.93	0.93

付表 B-2 2 次元地震応答解析における桟橋固有周期算出結果一覧(杭諸元②)

※表中の「#N/A」は、2次元地震応答解析において桟橋杭が全塑性した解析事例を示す。

付表 B-3 仮想固定点, 杭下端, 背後地表面から桟橋上部工までの伝達関数の周期特性(-10m, N=1, 杭諸元①)

付表 B-4	仮想固定点,	杭下端,	背後地表面から桟橋上部工までの伝達関数の周期特性(-10m,	N=5,	杭諸元①)
--------	--------	------	--------------------------------	------	-------

付表 B-5 仮想固定点, 杭下端, 背後地表面から桟橋上部工までの伝達関数の周期特性(-10m, N=15, 杭諸元①)

付表 B-6	仮想固定点,	杭下端,	背後地表面から桟橋上部工までの伝達関数の周期特性(-13m,	N=1,	杭諸元①)
--------	--------	------	--------------------------------	------	-------

付表 B-7 仮想固定点, 杭下端, 背後地表面から桟橋上部工までの伝達関数の周期特性(-13m, N=5, 杭諸元①)

付表 B-8 仮想固定点, 杭下端, 背後地表面から桟橋上部工までの伝達関数の周期特性(-13m, N=15, 杭諸元①)

付表 B-9 仮想固定点, 杭下端, 背後地表面から桟橋上部工までの伝達関数の周期特性(-16m, N=1, 杭諸元①)

付表 B-10 仮想固定点, 杭下端, 背後地表面から桟橋上部工までの伝達関数の周期特性(-16m, N=5, 杭諸元①)

付表 B-11 仮想固定点, 杭下端, 背後地表面から桟橋上部工までの伝達関数の周期特性(-16m, N=15, 杭諸元①)

付表 B-12	仮想固定点,	杭下端,	背後地表面から桟橋上部工までの伝達関数の周期特性(-10m,	N=1,	杭諸元②)
---------	--------	------	--------------------------------	------	-------

付表 B-13 仮想固定点, 杭下端, 背後地表面から桟橋上部工までの伝達関数の周期特性(-10m, N=5, 杭諸元②)

付表 B-14	仮想固定点,	杭下端,	背後地表面から桟橋上部工までの伝達関数の周期特性(-10m,	N=10,	杭諸元②)
---------	--------	------	--------------------------------	-------	-------

付表 B-15	仮想固定点,	杭下端,	背後地表面から桟橋上部工までの伝達関数の周期特性(-10m,]	N=15,	杭諸元②)
---------	--------	------	----------------------------------	-------	-------

付表 B-16 位	反想固定点,	杭下端,	背後地表面から桟橋上部工までの伝達関数の周期特性(-13m,	N=1,	杭諸元②)
-----------	--------	------	--------------------------------	------	-------

付表 B-1/ 仮想固	定点,杭卜端	背後地表面から桟橋	上部工までの伝達関数の	の周期特性(-13m,	N=5,	杭諸元②)
-------------	--------	-----------	-------------	-------------	------	-------

	付表 B-18	仮想固定点,	杭下端,	背後地表面から桟橋上部工までの伝達関数の周期特性(-13m,	N=10,	杭諸元(
--	---------	--------	------	--------------------------------	-------	------

表 B-19	仮想固定点,	杭下端,	背後地表面から桟橋上部工までの伝達関数の周期特性(-13m, N=15,	杭諸元②)
--------	--------	------	--------------------------------------	-------

付

付表 B-20	仮想固定点,	杭下端,	背後地表面から桟橋上部工までの伝達関数の周期特性(-16m, N=	1, 杭諸元②)
---------	--------	------	-----------------------------------	----------

付表 B-21	仮想固定点,	杭下端,	背後地表面から桟橋上部工までの伝達関数の周期特性(-16m,	N=5,	杭諸元②)
---------	--------	------	--------------------------------	------	-------

付表 B-22	仮想固定点,	杭下端,	背後地表面から桟橋上部工までの伝達関数の周期特性(-16m,	N=10,	杭諸元②)
---------	--------	------	--------------------------------	-------	-------

付表 B-23	仮想固定点,	杭下端,	背後地表面から桟橋上部工までの伝達関数の周期特性(-16m, N=1	5, 杭諸元②)
---------	--------	------	------------------------------------	----------

附録C 2次元地震応答解析におけるせん断剛性比

設計	·水深		-10m		-13m			-16m		
N	値	1	5	15	1	5	15	1 5 15		15
杭径	(mm)	700	700	700	800	800	800	900	900	900
肉厚	(mm)	14.9	14.1	13.4	13.2	12.4	11.9	12.3	11.5	11.0
	八戸	0.98	0.99	0.99	1.00	1.00	1.01	0.98	0.97	0.97
5Gal	岩国	0.99	0.99	0.99	1.00	1.00	1.00	0.99	0.99	0.98
	博多	0.99	0.98	0.98	1.00	1.00	1.00	0.99	0.97	0.96
	八戸	0.96	0.97	0.97	0.98	0.99	1.00	0.95	0.94	0.94
10Gal	岩国	0.99	0.98	0.98	1.00	1.00	1.00	0.99	0.97	0.97
	博多	0.97	0.95	0.95	0.99	0.98	0.98	0.97	0.94	0.92
	八戸	0.92	0.93	0.93	0.95	0.95	0.95	0.90	0.88	0.88
20Gal	岩国	0.97	0.97	0.96	0.99	0.98	0.99	0.97	0.94	0.94
	博多	0.94	0.90	0.88	0.97	0.94	0.93	0.94	0.88	0.84
	八戸	0.76	0.77	0.78	0.80	0.79	0.79	0.75	0.71	0.72
50Gal	岩国	0.92	0.90	0.88	0.96	0.91	0.92	0.93	0.84	0.83
	博多	0.86	0.75	0.69	0.89	0.78	0.73	0.85	0.73	0.65
	石巻	0.64	0.66	0.65	0.69	0.65	0.66	0.63	0.56	0.58
	八戸	0.50	0.54	0.54	0.55	0.53	0.57	0.51	0.44	0.47
100Gal	清水	0.47	0.45	0.38	0.51	0.45	0.40	0.45	0.39	0.34
	岩国	0.84	0.78	0.74	0.89	0.78	0.74	0.86	0.72	0.68
	博多	0.73	0.56	0.46	0.76	0.64	0.52	0.71	0.57	0.46
	八戸	0.31	0.33	0.36	0.36	0.31	0.34	0.35	0.24	0.26
150Gal	岩国	0.77	0.68	0.64	0.82	0.68	0.62	0.80	0.62	0.56
	博多	0.62	0.44	0.33	0.65	0.49	0.40	0.60	0.45	0.36
	石巻	0.35	0.34	0.36	0.40	0.33	0.34	0.39	0.25	0.26
	八戸	0.20	0.18	0.19	0.27	0.17	0.18	0.29	0.13	0.13
200Gal	清水	0.11	0.12	0.11	0.14	0.11	0.11	#N∕A	0.08	0.08
	岩国	0.71	0.60	0.55	0.76	0.60	0.53	0.72	0.55	0.47
	博多	0.51	0.38	0.30	0.54	0.39	0.34	0.51	0.34	0.27
	石巻	0.23	0.15	0.16	0.29	0.16	0.16	0.31	0.14	0.10
	八戸	0.15	0.08	0.06	0.20	0.08	0.06	0.21	0.09	0.05
300Gal	清水	#N∕A	#N∕A	0.05	#N∕A	#N∕A	0.03	#N∕A	#N∕A	#N∕A
	岩国	0.59	0.48	0.39	0.66	0.49	0.38	0.66	0.44	0.35
	博多	0.36	0.24	0.19	0.40	0.25	0.20	0.38	0.22	0.16
	八戶	#N/A	#N/A	#N/A	#N/A	#N∕A	#N/A	#N∕A	#N/A	#N∕A
500Gal	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	0.46	0.32	0.25	0.56	0.32	0.25	0.48	0.29	0.22
	博多	0.25	0.14	0.09	0.27	0.15	0.09	0.26	0.14	0.09
	石巻	0.28	0.23	0.25	0.33	0.22	0.25	0.35	0.18	0.16
	八戸	0.19	0.15	0.16	0.25	0.14	0.16	0.27	0.12	0.10
	常陸那珂	0.38	0.39	0.34	0.45	0.37	0.34	0.43	0.29	0.33
	<u>千</u> 葉	0.60	0.56	0.51	0.64	0.55	0.51	0.61	0.53	0.50
	<u> </u>	0.31	0.32	0.28	0.33	0.30	0.29	0.27	0.25	0.24
Original	四日市	0.55	0.53	0.51	0.59	0.54	0.51	0.50	0.45	0.43
	<u> </u>	0.58	0.40	0.27	0.58	0.41	0.30	0.54	0.46	0.27
	一件尸	0.44	0.38	0.30	0.49	0.34	0.30	0.40	0.31	0.25
	「石国」	0.58	0.46	0.37	0.65	0.48	0.37	0.65	0.42	0.34
	博多	0.59	0.42	0.30	0.61	0.45	0.38	0.57	0.40	0.34

付表 C-1 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性比算出結果一覧(杭諸元①)

出力	番号	33											
出力	項日						せん断	副性比					
設計	水深		-1	0m			-1	3m			-1	6m	
N	値	1	5	10	15	1	5	10	15	1	5	10	15
杭径	(mm)	700	700	700	700	700	700	700	700	800	800	800	800
肉厚	(mm)	10.4	10.0	9.7	9.6	11.5	10.9	10.6	10.5	11.1	10.5	10.2	10.1
	八戸	0.98	0.99	0.99	0.99	1.00	1.00	1.00	1.01	0.97	0.97	1.00	0.97
5Gal	岩国	0.99	0.99	0.99	0.99	1.00	1.00	1.00	1.00	0.99	0.99	1.00	0.98
	博多	0.98	0.98	0.97	0.97	1.00	1.00	0.99	1.00	0.98	0.97	0.99	0.95
	八戸	0.96	0.97	0.97	0.97	0.99	0.99	0.99	1.00	0.95	0.94	0.99	0.94
10Gal	岩国	0.98	0.98	0.98	0.98	1.00	1.00	1.00	1.00	0.98	0.97	0.99	0.97
	博多	0.97	0.95	0.94	0.94	0.99	0.98	0.97	0.98	0.97	0.94	0.98	0.91
	八戸	0.91	0.93	0.92	0.93	0.94	0.96	0.96	0.98	0.88	0.88	0.94	0.88
20Gal	岩国	0.97	0.96	0.95	0.95	0.99	0.98	0.99	1.00	0.97	0.93	0.98	0.93
	博多	0.93	0.90	0.87	0.87	0.97	0.93	0.91	0.93	0.93	0.87	0.91	0.83
	八戸	0.74	0.77	0.77	0.78	0.78	0.79	0.81	0.82	0.70	0.70	0.76	0.71
50Gal	岩国	0.91	0.90	0.87	0.87	0.95	0.91	0.90	0.94	0.91	0.84	0.89	0.84
	博多	0.84	0.74	0.69	0.67	0.88	0.77	0.73	0.73	0.82	0.71	0.68	0.64
	石巻	0.60	0.64	0.64	0.63	0.64	0.64	0.65	0.67	0.59	0.54	0.56	0.56
	八戸	0.46	0.53	0.54	0.56	0.51	0.53	0.56	0.58	0.46	0.43	0.44	0.45
100Gal	清水	0.44	0.44	0.39	0.38	0.47	0.45	0.41	0.40	0.39	0.38	0.33	0.31
	岩国	0.82	0.77	0.74	0.73	0.87	0.77	0.75	0.76	0.83	0.71	0.72	0.67
	博多	0.70	0.55	0.47	0.44	0.74	0.58	0.53	0.51	0.68	0.56	0.45	0.42
	八戸	0.26	0.32	0.34	0.36	0.31	0.30	0.32	0.39	0.30	0.24	0.23	0.25
150Gal	岩国	0.75	0.67	0.63	0.62	0.79	0.67	0.62	0.63	0.75	0.61	0.58	0.55
	博多	0.60	0.43	0.33	0.30	0.61	0.52	0.38	0.35	0.57	0.43	0.36	0.31
	石巻	0.32	0.32	0.32	0.34	0.38	0.32	0.32	0.33	0.37	0.29	0.24	0.25
	八戸	0.17	0.17	0.18	0.21	0.23	0.17	0.16	0.18	0.24	0.13	0.10	0.12
200Gal	清水	#N∕A	0.11	0.11	0.11	#N∕A	0.11	0.11	0.14	#N∕A	0.07	0.06	#N∕A
	岩国	0.68	0.59	0.54	0.52	0.72	0.58	0.52	0.52	0.68	0.54	0.48	0.46
	博多	0.48	0.37	0.27	0.24	0.52	0.39	0.35	0.28	0.46	0.34	0.27	0.26
	石巻	0.21	#N∕A	0.14	0.15	0.27	#N∕A	#N∕A	#N∕A	0.28	#N∕A	#N/A	#N∕A
	八戸	#N/A	#N∕A	#N/A	#N∕A	0.16	#N∕A	#N/A	#N∕A	0.17	#N∕A	#N/A	#N∕A
300Gal	清水	#N∕A	#N/A	#N∕A									
	岩国	0.56	0.46	0.40	0.38	0.61	0.46	0.38	0.38	0.61	0.42	0.32	0.31
	博多	0.34	0.27	0.20	0.18	0.36	0.27	0.21	0.20	0.34	0.25	0.18	0.17
	八戸	#N∕A											
500Gal	岩国	0.42	0.32	0.24	0.22	0.50	0.30	0.24	0.22	0.43	0.28	0.21	0.20
	博多	0.21	0.14	0.11	0.10	0.24	0.17	0.13	0.12	0.23	0.13	0.11	0.11
	石巻	0.25	0.22	0.22	0.23	0.31	#N∕A	0.21	0.23	0.32	#N∕A	#N/A	#N∕A
	八戸	0.16	0.14	0.15	0.17	0.22	#N∕A	0.13	0.15	0.23	#N∕A	#N/A	#N∕A
	常陸那珂	0.36	0.39	0.36	0.34	0.43	0.40	0.38	0.36	0.38	0.30	0.29	0.30
	千葉	0.56	0.56	0.53	0.53	0.61	0.59	0.59	0.59	0.54	0.49	0.50	0.49
L1	清水	0.27	0.32	0.28	0.27	0.28	0.32	0.29	0.30	0.22	0.25	0.23	0.22
Original	四日市	0.52	0.52	0.49	0.48	0.56	0.55	0.52	0.52	0.45	0.44	0.44	0.44
	舞鶴	0.54	0.39	0.31	0.26	0.54	0.39	0.30	0.28	0.49	0.45	0.28	0.26
	神戸	0.41	0.37	0.33	0.31	0.43	0.34	0.30	0.30	0.35	0.29	0.23	0.23
	岩国	0.54	0.44	0.39	0.37	0.60	0.44	0.37	0.36	0.60	0.41	0.31	0.30
	博多	0.56	0.41	0.30	0.27	0.58	0.45	0.35	0.33	0.54	0.40	0.33	0.29

付表 C-2 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性比算出結果一覧(杭諸元②)

付表 C-3 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-10m, N=1, 杭諸元①)

付表 C-4 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-10m, N=5, 杭諸元①)

付表 C-5 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-10m, N=15, 杭諸元①)

-73-

付表 C-6 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-13m, N=1, 杭諸元①)

付表 C-7 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-13m, N=5, 杭諸元①)

付表 C-8 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-13m, N=15, 杭諸元①)

付表 C-9 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-16m, N=1, 杭諸元①)

付表 C-10 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-16m, N=5, 杭諸元①)

付表 C-11 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-16m, N=15, 杭諸元①)

-79-

付表 C-12	2次元地震応答解析におけ	る仮想固定点周辺地盤のせ	ん断剛性の時刻歴(-10m,	N=1, 杭諸元②)
---------	--------------	--------------	----------------	------------

断面	-10m, N=5						
杭径	700(mm)						
肉厚	10.0(mm)						
波形	10Gal	100Gal	300Gal	L1			
八戸	UAMO \$962UAM623 9106/Л 0 0 0 0 0 0 0 0 0 0 0 0 0	ULMIO \$&LULMICD 9100.Л.Р 000000(())000 00000000000000000000000	全塑性	UARDO SACULARRAD DIDEALP			
岩国	ULAMO 9 ФЪС ULAMIC 2) 9516 थ 199 0 0 0 0 0 0 0 0 0 0 0 0 0	ULMIO TOLUMIC 2) 9518280	ULMO SOLULATION DISING	ULATIO 976/21/6/16/27 9519/26/16			
博多	UANGO SALUANGO JI INTO INFO UANGO JI INTO INFO UANGO SALUANGO JI INTO INFO UANGO JI INTO INFO UANG	ULMIO SALUANICO STOTIS	ULATO SACULATION DO UNICA	UARGO SACULARIGO STOLINA UARGO STOLINA UARGO SACULARIGO STOLINA UARGO STOLINA			
石巻		UAMO \$>LUAMO \$ 90057 UAMO \$ 20057 UAMO \$ 2	全塑性	UA%050とUA%601910568			
清水		ULAMO TOLUAMICT SOOMAL	全塑性	ビル紙のすみとせん紙応力 5005済ま 000000000000000000000000000000000000			

付表 C-13 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-10m, N=5, 杭諸元②)

付表 C-14 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-10m, N=10, 杭諸元②)

断面	-10m, N=15							
杭径	700(mm)							
肉厚	9.6(mm)							
波形	10Gal	100Gal	300Gal	L1				
八戸	せん物のすみとせん物協力 3100人戸 0000000000000000000000000000000000	ULMIO TOLUMICJ SIOCAP	全塑性	ULMIO \$2 LULMID 1906/Л.F ULMIO \$2 LULMID 1906/Л.F 0 0 0 0 0 0 0 0 0 0 0 0 0				
岩国	ULMIO 96-21-56 (0) 00000000000000000000000000000000000	UMBO 96-EUMBRD D DEEXEM	UMBO 96-EUMBO 20 DESEM UMBO 9	ULMIO FAEULAMICA 9918810				
博多	ULMIG 90-2144/HG23 9701199	ULMIC 96-EULMIRC J 9701198	ULMO VALUARICA POTIBA	ULMIG FALULAIGA J STOLING				
石巻		UAWO 90-214-WKD 191057.8 UAWO 90-214-WKD 191057.8 UAWO 90-214-WKD 191057.8 UAWO 90-214-214-214-214-214-214-214-214-214-214	UAWO SACUAWGJ SIGST	ULMIC FOLULING 1910558				
清水		UAMO 90-EUAMBD 1900/01 #	全塑性	ULMBO F&EUMBICJ) 9309/#.#				

付表 C-15 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-10m, N=15, 杭諸元②)

付表 C-16 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-13m, N=1, 杭諸元②)

断面	-13m, N=5						
杭径	700(mm)						
肉厚	10.9(mm)						
波形	10Gal	100Gal	300Gal	L1			
八戸	UAWO 78-210.WG/D 9102./F	ULMO 50-210.6%& 3100.AF	全塑性	全塑性			
岩国	ULMO 5% ULMED 9519510	ULAMO 962 EULAMO 2 99185(8)	ULMO SALUAMICA 991951 0000000 0000000 0000000 0000000000	ULMIO 962ULMIG.2 9918126			
博多	UARO 96-UARG/1 970199	U/WO 50/U/WG/D 300199	UANO 50-210-NRG/1 970199	UAWO SALUAWGA HOTHS			
石巻		U.MRO 9AtU.MR6.7 91056 0 0 0 0 0 0 0 0 0 0 0 0 0	全塑性	全塑性			
清水		UA時のすみとUA時応力 soot対水	全塑性	UA桁OでのとUA桁応力 soot方水			

付表 C-17 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-13m, N=5, 杭諸元②)

断面	-13m, N=15							
杭径	700(mm)							
肉厚	10.5(mm)							
波形	10Gal	100Gal	300Gal	L1				
八戸	UARD 9 A LUARD 1 910 M P	UMR0 TA:UMR67 J SIGA/F	全塑性	ULMRO \$762ULMR67) \$100.Г.Р 0000(C)000 0				
岩国	ULANO 70-21/АЛКА № 1041 0000001 0000001 0000001 0000001 0000001 00000001 00000000	UAMO 76-210.416.27.391421	UAMO 76-21/А #0.7 ВОНСТВИ 000000000000000000000000000000000000	ULAWO 47 & ULAWA 27 № 1918/219 000000000000000000000000000000000000				
博多	ULMIO/Factority ULMIO/Factority ULMIO/Factority ULMIO/Factority ULMIO/Factority ULMIO/Factority ULMIO/Factority	ULMIO SOLULARICO STOLES	£4.5%0 5%2£4.5%6.2h этот∰≫	ULMIO FAEULANIC JI STOTHA UMIO FAEULANIC JI ST				
石巻		せん物のすみとせん物応力 9106石 巻	全塑性	せん粉のすみとせん粉応力 9105石巻				
清水		Uん粉のすみとせん粉応力 soot消水	全塑性	ULAMO TALUAMICIJ 9309/A.k				

付表 C-19 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-13m, N=15, 杭諸元②)

付表 C-20 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-16m, N=1, 杭諸元②)

断面	-16m, N=5						
杭径	800(mm)						
肉厚		10.50	mm)				
波形	10Gal	100Gal	300Gal	L1			
八戸	ULMO TO LULMED DIOGLE	ULMOTALUMED SOULF	全塑性	全塑性			
岩国	ULANO 962ULANG 7 9510500	ULMIO \$26ULMICD 9518810	UMIO 46-UMIK D. DISIKU UMIO 46-UMIK D. DISIKU UMIO 40-UMIK D. DISIKU UMIK D. DISIKU D. DISIKU UMIK D. DISIKU D. DISIKU D. DISIKU D. DISIKU UMIK D. DISIKU	ULMG0 \$25ULMBC 19 9518世日			
博多	ULMO 962ULM %C 7 970199	ULANG FOLULANG 27 OF 18 OF 19	ULMO SALUANGA I STOLING ULMO SALUANGA I STOLING ULMO SALUANGA I STOLING ULMO SALUANGA I STOLING	ULMIC FALULMIC J STOLIDS			
石巻		UAMO \$22UAMED \$1055 UAMO \$22UAMED \$1055 0 0 0 0 0 0 0 0 0 0 0 0 0	全塑性	全塑性			
清水		ULMBO TOLUMBOT DOOMAN	全塑性	ULMIO FOLUMICJ 9009A+			

付表 C-21 2 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-16m, N=5, 杭諸元②)

付表 C-22	2次元地震応答解析におけ	る仮想固定点周辺地盤のせん断剛性の時刻歴(-16m,	N=10, 杭諸元②)
---------	--------------	----------------------------	-------------

断面	-16m, N=15						
杭径	800(mm)						
肉厚	10.1(mm)						
波形	10Gal	100Gal	300Gal	L1			
八戸	UARO \$\$200,000	ULMO \$\$LULMICD 9104/F	全塑性	全塑性			
岩国	ULMIO TALULANICO SELUCANICO 000000000000000000000000000000000000	ULM%0 ФЪСULA%КСЛ 95182800	ULMO 96-EULMBO 20 BERE	ULMIO \$26ULMIG 19518810			
博多	UARO 90-UARO 1970199	ULMIO SALUANICO JI ITO INFO	UARO SALUARIZA ROMBA	ULMIO \$\$2ULMIG:D \$70109			
石巻		UAMO JOLUAMICO BOLOGIA	全塑性	全塑性			
清水		ULA MIC STOLELLA MICTO SOOSATA	全塑性	UAMO TALUAMED 3003#*			

付表 C-23	2次元地震応答解析におけ	る仮想固定点周辺地盤のせん断剛性の時刻歴(-16m	, N=15, 杭諸元②
---------	--------------	---------------------------	--------------

附録D 1次元地震応答解析におけるせん断剛性比 各計算事例における仮想固定点周辺地盤のせん断剛性 比の算出結果を付表 D-1, 付表 D-2 に示し, 各計算事例 におけるせん断応力とせん断ひずみの時刻歴の一部を付 表 D-3~付表 D-23 に示す.

本研究では、設計した地震動の PSI 値を整理していな いため詳細の検討はしないが、入力地震動の PSI 値や卓 越周期と地盤のせん断剛性比には関係があると予想され る. 作用震度と地盤のせん断剛性比には相関性があるこ

とから、整理結果によっては入力地震動の PSI 値と卓越 周期,原地盤のN値から,直杭式桟橋のせん断剛性比を 予測するための関係式を構築することが可能となるかも しれない.この場合、本研究で提案した照査用震度算出 法と組み合わせることで、1次元地震応答解析を用いず に簡易的に直杭式桟橋の照査用震度を予測することが可 能となるため、今後の研究課題となり得るとは考えられ る.

設計水深		-10m				-13m		-16m			
N	值	1	5	15	1	5	15	1 5		15	
杭径	(mm)	700	700	700	800	800	800	900 900		900	
肉厚	(mm)	14.9	14.1	13.4	13.2	12.4	11.9	12.3	11.5	11.0	
	八戸	0.60	0.52	0.50	0.69	0.57	0.53	0.73	0.59	0.54	
5Gal	岩国	0.67	0.62	0.58	0.74	0.66	0.62	0.72	0.67	0.63	
	博多	0.62	0.59	0.55	0.79	0.64	0.58	0.76	0.65	0.59	
	八戸	0.59	0.51	0.49	0.67	0.56	0.52	0.71	0.58	0.53	
10Gal	岩国	0.66	0.61	0.57	0.74	0.65	0.61	0.71	0.66	0.62	
5Gal 10Gal 20Gal 50Gal 100Gal 150Gal 200Gal 300Gal	博多	0.60	0.57	0.53	0.77	0.62	0.57	0.74	0.63	0.58	
Image: Control of the second	八戸	0.55	0.49	0.47	0.64	0.54	0.50	0.67	0.56	0.50	
	岩国	0.64	0.58	0.55	0.73	0.66	0.59	0.70	0.64	0.59	
	博多	0.57	0.53	0.50	0.73	0.58	0.54	0.70	0.59	0.54	
	八戸	0.47	0.43	0.41	0.54	0.48	0.44	0.57	0.50	0.44	
10Gal 20Gal 20Gal 200Gal 200Ga	岩国	0.59	0.52	0.50	0.70	0.59	0.53	0.67	0.60	0.53	
	博多	0.56	0.44	0.42	0.65	0.49	0.45	0.61	0.49	0.45	
	石巻	0.38	0.33	0.32	0.50	0.36	0.35	0.56	0.37	0.35	
	八戸	0.36	0.34	0.33	0.41	0.39	0.35	0.43	0.39	0.35	
100Gal	清水	0.38	0.31	0.29	0.44	0.34	0.31	0.41	0.34	0.31	
	岩国	0.53	0.44	0.41	0.65	0.49	0.44	0.62	0.50	0.43	
	博多	0.44	0.32	0.31	0.54	0.35	0.33	0.52	0.34	0.33	
		0.26	0.27	0.26	0.33	0.30	0.28	0.33	0.31	0.28	
150Gal	岩国	0.48	0.36	0.34	0.61	0.41	0.36	0.63	0.43	0.36	
	博多	0.32	0.22	0.22	0.43	0.26	0.24	0.45	0.25	0.23	
	<u> 白</u> 登 ハーラ	0.24	0.18	0.17	0.35	0.21	0.18	0.42	0.23	0.18	
2000-1	<u>八尸</u> 注业	0.20	0.18	0.21	0.25	0.20	0.22	0.26	0.21	0.22	
ZuuGai	一	0.22	0.15	0.15	0.27	0.17	0.10	#N/A	0.16	0.15	
	<u>石国</u> 捕夕	0.44	0.30	0.28	0.00	0.34	0.32	0.00	0.37	0.32	
	<u> </u>	0.27	0.10	0.15	0.38	0.19	0.10	0.41	0.19	0.10	
	<u>口它</u> 八百	0.10	0.10	0.09	0.23	0.14	0.10	0.20	0.10	0.10	
3000-01	<u>八尸</u> 洼水	U.11 #NI/A	U.U0 #NI/A	0.08	U.14 #NI/A	U.U6 #NI/A	0.09	U.14 #NI/A	U.U9 #NI/A	U.TU #NI/A	
500 Gai	川小	#N/A	#N/A	0.00	#N/ A	#N/A	0.07	#N/A		#N/ A	
		0.00	0.21	0.20	0.31	0.20	0.22	0.45	0.20	0.23	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.20 #N/Δ	±Ν/Δ	±N/Δ	±N/Δ	#N/A	#N/Δ	±N/Δ	#N/Δ	±N/Δ	
500Gal		0.30	0.13	0.10	0.37	0.18	0.12	0.38	0.20	0.13	
	<u></u> 植多	0.00	0.06	0.04	0.22	0.08	0.04	0.00	0.09	0.04	
	石券	0.20	0.14	0.12	0.28	0.17	0.13	0.33	0.19	0.13	
		0.18	0.16	0.19	0.21	0.18	0.21	0.23	0.19	0.20	
	常陸那珂	0.38	0.28	0.28	0.43	0.34	0.31	0.42	0.32	0.33	
	千葉	0.42	0.37	0.35	0.52	0.42	0.37	0.50	0.42	0.38	
	清水	0.31	0.24	0.24	0.38	0.27	0.26	0.35	0.26	0.25	
L1 Original	四日市	0.41	0.30	0.31	0.49	0.35	0.33	0.48	0.35	0.33	
	舞鶴	0.37	0.20	0.13	0.38	0.24	0.16	0.38	0.25	0.17	
	神戸	0.26	0.16	0.15	0.36	0.19	0.16	0.36	0.18	0.16	
	岩国	0.37	0.20	0.19	0.49	0.25	0.21	0.44	0.27	0.22	
	博多	0.30	0.20	0.19	0.41	0.23	0.21	0.43	0.23	0.20	

付表 D-1 1次元地震応答解析における仮想固定点周辺地盤のせん断剛性比算出結果一覧(杭諸元①)

設計水深			-1	0m		-13m				-16m			
N	値	1	5	10	15	1	5	10	15	1 5 10		10	15
杭径	(mm)	700	700	700	700	700	700	700	700	800	800	800	800
肉厚	(mm)	10.4	10.0	9.7	9.6	11.5	10.9	10.6	10.5	11.1	10.5	10.2	10.1
	八戸	0.58	0.51	0.50	0.48	0.66	0.55	0.55	0.52	0.70	0.57	0.54	0.52
5Gal	岩国	0.65	0.61	0.59	0.56	0.71	0.67	0.63	0.61	0.70	0.65	0.61	0.62
	博多	0.60	0.58	0.55	0.53	0.76	0.63	0.58	0.57	0.75	0.63	0.60	0.57
	八戸	0.56	0.50	0.49	0.47	0.64	0.54	0.54	0.51	0.69	0.56	0.53	0.51
10Gal	岩国	0.64	0.60	0.58	0.55	0.70	0.66	0.62	0.60	0.69	0.64	0.59	0.61
	博多	0.58	0.56	0.53	0.52	0.74	0.61	0.56	0.56	0.72	0.61	0.58	0.56
		0.54	0.48	0.47	0.45	0.61	0.52	0.52	0.49	0.65	0.54	0.51	0.49
20Gal	一一一日	0.62	0.57	0.56	0.53	0.69	0.64	0.59	0.58	0.68	0.62	0.57	0.59
	博多	0.55	0.52	0.50	0.49	0.71	0.57	0.53	0.53	0.69	0.57	0.54	0.53
500 1		0.46	0.42	0.41	0.40	0.51	0.47	0.47	0.43	0.55	0.48	0.45	0.43
SUGai	<u>石</u> 白 拔 夕	0.57	0.51	0.49	0.47	0.66	0.57	0.53	0.52	0.64	0.57	0.51	0.52
	(円夕)    二米	0.04	0.43	0.41	0.41	0.01	0.47	0.44	0.44	0.59	0.47	0.44	0.44
	1111111111111111111111111111111111111	0.30	0.33	0.31	0.31	0.45	0.30	0.35	0.34	0.32	0.30	0.34	0.34
1000-0		0.34	0.34	0.32	0.32	0.39	0.30	0.30	0.34	0.41	0.30	0.30	0.34
Tuudai	<u></u> 一一月	0.30	0.31	0.20	0.20	0.42	0.33	0.30	0.30	0.59	0.33	0.30	0.30
		0.30	0.43	0.40	0.35	0.01	0.47	0.43	0.43	0.55	0.43	0.43	0.42
-	トロ	0.41	0.01	0.25	0.25	0.30	0.04	0.31	0.32	0.31	0.33	0.32	0.31
150Gal		0.24	0.27	0.33	0.20	0.57	0.39	0.37	0.27	0.55	0.20	0.20	0.27
		0.32	0.00	0.00	0.02	0.39	0.00	0.22	0.23	0.00	0.23	0.00	0.00
	石巻	0.22	0.17	0.16	0.16	0.32	0.20	0.20	0.18	0.38	0.21	0.18	0.17
	八戸	0.18	0.18	0.20	0.20	0.23	0.20	0.26	0.22	0.24	0.20	0.22	0.21
200Gal	清水	#N/A	0.15	0.14	0.14	#N/A	0.17	0.16	0.15	#N/A	0.15	0.14	#N/A
	岩国	0.41	0.29	0.28	0.27	0.53	0.33	0.32	0.31	0.52	0.34	0.32	0.30
	博多	0.25	0.16	0.14	0.14	0.34	0.18	0.16	0.15	0.37	0.18	0.15	0.15
	石巻	0.16	#N∕A	0.08	0.08	0.22	#N∕A	#N∕A	#N∕A	0.24	#N/A	#N/A	#N/A
	八戸	#N∕A	#N∕A	#N∕A	#N∕A	0.13	#N∕A	#N∕A	#N/A	0.13	#N/A	#N/A	#N/A
300Gal	清水	#N/A	#N/A	#N/A	#N/A								
	岩国	0.34	0.21	0.19	0.19	0.46	0.25	0.25	0.21	0.44	0.26	0.23	0.21
	博多	0.18	0.09	0.07	0.06	0.27	0.13	0.11	0.08	0.30	0.12	0.09	0.07
	八戸	#N∕A	#N∕A	#N/A	#N∕A	#N/A	#N/A	#N∕A	#N/A	#N/A	[ #N/A	[#N/A	#N/A
500Gal	岩国	0.27	0.13	0.10	0.10	0.35	0.17	0.15	0.12	0.36	0.18	0.14	0.12
	博多	0.12	0.05	0.04	0.03	0.19	0.08	0.06	0.04	0.20	0.08	0.05	0.04
	石巻	0.18	0.13	0.12	0.11	0.26	#N/A	0.16	0.13	0.31	#N/A	#N/A	#N/A
		0.17	0.16	0.18	0.19	0.20	#N/A	0.24	0.20	0.22	#N/A	#N/A	#N/A
	「 宮陸 那切	0.36	0.27	0.27	0.27	0.41	0.32	0.32	0.30	0.41	0.35	0.32	0.31
	十采	0.40	0.36	0.36	0.33	0.50	0.40	0.38	0.37	0.48	0.40	0.39	0.36
L1 Original	<u> </u>	0.29	0.24	0.23	0.23	0.36	0.20	0.25	0.25	0.34	0.25	0.25	0.24
-	一些口巾	0.38	0.30	0.29	0.30	0.40	0.33	0.33	0.32	0.40	0.33	0.32	0.32
	一 舛 锔	0.30	0.19	0.13	0.12	0.37	0.23	0.18	0.15	0.30	0.23	0.18	0.10
		0.23	0.15	0.14	0.14	0.32	0.18	0.17	0.10	0.30	0.17	0.10	0.15
	石巴 捕名	0.34	0.20	0.10	0.10	0.40	0.24	0.24	0.20	0.43	0.20	0.22	0.20
	得夕	0.20	0.19	0.10	0.19	0.37	0.22	0.20	0.20	0.40	0.21	0.19	0.20

付表 D-2 1 次元地震応答解析における仮想固定点周辺地盤のせん断剛性比算出結果一覧(杭諸元②)



付表 D-3	1次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-10m,	N=1,	杭諸元①)
--------	----------------------------------------	------	-------



# 付表 D-4 1次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-10m, N=5, 杭諸元①)



付表 D-5	1次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-10m,	N=15,	杭諸元①)
--------	----------------------------------------	-------	-------



### 付表 D-6 1 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-13m, N=1, 杭諸元①)



# 付表 D-7 1次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-13m, N=5, 杭諸元①)



### 付表 D-8 1次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-13m, N=15, 杭諸元①)



付表 D-9 1次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-16m, N=1, 杭諸元①)



# 付表 D-10 1 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-16m, N=5, 杭諸元①)



# 付表 D-11 1 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-16m, N=15, 杭諸元①)



付表 D-12 1 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-10m, N=1, 杭諸元②)


付表 D-13 1 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-10m, N=5, 杭諸元②)

断面		-10m,	N=10	
杭径		700(	mm)	
肉厚		9.7()	mm)	
波形	10Gal	100Gal	300Gal	L1
八戸	U.MIO 70-LU.MIG.2) 9106.Л.F	ULAMO SOLUAMED 9100/AF	全塑性	ULAMO \$26LUAM6.7) 9106//.F 000000000000000000000000000000000000
岩国	ULMO 962ULMIG 7 958019	ULMIO TOLULATIO DO OLOGO ULMIO TOLULATION ULMIO TOLULATIO ULMIO TOLULATIO ULMIO TOLULATION ULMIO	ULMO SA LUMAR DI SERGIO	ULMO \$25ULMED 9516810
博多	UARO TALUARIC 7 570183		UARO SALUARG.) SOUB	ULARO TALUARO, JI STOTIRA
石巻		ULMID TOLULATION 910658	U.MIO 7 & LU.MIG.D. 1919ET &	ULAMO TALUAMO J DIGTO
清水		UANGO SOLUANGE JI 9300/11-X	全塑性	ULMBO \$32UL/MBD7D 9309/# #

付表 D-14 1 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-10m, N=10, 杭諸元②)



付表 D-15	1次元地震応答解析におけ	る仮想固定点周辺地盤のせん断剛性の時刻歴(-1	0m, N=15, 杭諸元(	2)
---------	--------------	-------------------------	----------------	----



付表 D-16 1 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-13m, N=1, 杭諸元②)



付表 D-17 1 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-13m, N=5, 杭諸元②)

断面		-13m,	N=10	
杭径		700(	ímm)	
肉厚		10.60	(mm)	
波形	10Gal	100Gal	300Gal	L1
八戸	せん粉の すみとせん粉 応 力 9106 八戸	ULMIG SACULARIS, JI SIGAL	全塑性	ULANO \$762ULANO D SOGAF
岩国	ULMID SACULARIG D SEISCIA UMUCON ULMID SACULARIG D SEISCIA ULMID SACULARIGULARIG D SEISCIA ULMID SACULARIG D SEISCIA ULMID S	UMBO 96-EULAMBO.7D DESERTION	ULMO SACULARICA DESIGNAL	ULMRO \$25ULMRich 9518¥Ш
博多	Uhter SALUhter brings           000000000000000000000000000000000000		UARDO TACULARICA STORES	<u>ULMRO \$AUL/MRC/1 570189</u>
石巻		U.MIO TO-LU.MIG.D 9105D8	全塑性	ULMIO \$2 ULMID 19056 ULMID 10 C 10 ULMID 10056 ULMID 10 ULMID 10 ULMID 10056 ULMID 10 ULMID 10 ULMID 10056 ULMID 10056
清水		U.MIG 76.ttA.MIG.D soositi.t U.MIG 76.ttA.MIG 76.ttA.MIG.D soositi.t U.MIG 76.ttA.MIG 76.ttA.MIG 76.ttA.MIG.D soositi.t U.MIG 76.ttA.MIG 76.ttA.MI	全塑性	ULMIO TALUAMICH SOORAA

付表 D-18 1 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-13m, N=10, 杭諸元②)



付表 D-19	1次元地震応答解析におけ	る仮想固定点周辺地盤のせん断剛性の時刻歴(.	-13m, N=15,	杭諸元②)
---------	--------------	------------------------	-------------	-------

断面		-16m	, N=1	
杭径		800(	mm)	
肉厚		11.10	(mm)	
波形	10Gal	100Gal	300Gal	L1
八戸	UANO SOLUMING J 9100AF	ULMIO \$62ULMICD 900L/P	ULMO SOLUMER, JI DIOLA	ULMED \$2 EULAMECH 9100LF
岩国	UAWO 962UAWG2 95580	ULMIO 962ULMIICD 9998UB	U.MR0 96-210-MR.21 95192/01 0 0 0 0 0 0 0 0 0 0 0 0 0	ULMO FOLULMO DISIENCE
博多	UMIC 762UMBG7 3701B9           000000000000000000000000000000000000			ULARIO \$762UARIG:D \$701B9
石巻		ULMID TOLULATION 910658	U.MIO TO-LU.MIG.D. 91056.8	ULMO \$24:ULMED \$10568
清水		ULANGO TOLULANGC JI SOOSMAK	全塑性	ULMEO \$32ULMED 3000##

付表 D-20 1 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-16m, N=1, 杭諸元②)



付表 D-21 1 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-16m, N=5, 杭諸元②)

断面		-16m,	N=10	
杭径		800(	mm)	
肉厚		10.20	(mm)	
波形	10Gal	100Gal	300Gal	L1
八戸	ULAMO TOLULAMICA DISOLULA           ULAMO TOLULA           ULAMO TOLULA	ULMIC SOLULATION DIOLAT	全塑性	全塑性
岩国	ULMIO/TA-216.416/12 951921	ULMBO \$26ULMBC/1 9518280	ULMO SACULARIO, DISUCIO ULMO SACULARIO DI SACULARIO ULMO SACULARIO DI SACULARIO ULMO SACULARIO DI SACULARIO ULMO SACULARIO ULMO SACULARIO DI SACULARIO ULMO SACULARIO ULMO SACULARIO DI SACULARIO ULMO SACULARIO ULMO SACULARIO DI SACULARIO ULMO	ULMIO \$252ULMIG27) 95168/30 0 0 0 0 0 0 0 0 0 0 0 0 0
博多	UARO TALUARIC 7 570189			ULANO \$42UANG23 \$70109
石巻		ULMID TOLULATION 91065*	全塑性	全塑性
清水		U/MiO/Ta-EU/Mic/J 9009/11-k	全塑性	U/MiO/JacU/Mic/J 9009/A+

付表 D-22 1 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-16m, N=10, 杭諸元②)

断面		-16m,	N=15									
杭径	800(mm) 10.1(mm)											
肉厚	享 10.1(mm)											
波形	10Gal	100Gal	300Gal	L1								
八戸	UARO \$22UARG21 950U/F	UARO \$42UARG29 STORATE	全塑性	全塑性								
岩国	ULARO TOLUMENCI DESERTION ULARO TOLUMENCI DESER	ULMO TALULARIC D SEICH ULMO T	ULMO SA LULMICA DI SIGUE ULMIO SA LULMICA DI SI LULMIO SI SI LULMICA DI SI	UARO SA ELIARIO DI DIENE UMBO SA ELIARIZO DI DIENE UMBO DI DIENE UMBO DI DIENE UMBO DI DIENE								
博多	UARO \$42UAR6;7) \$701#9	UARDO TA-LUARRIC 7) 570189	UMBO SACUMBRZ J STORIBS									
石巻		U.MR0 970-EU.MR27 р зос578	全塑性	全塑性								
清水		U.AWO TO-EUKAWACH 9300/11/4	全塑性	U.MRO \$0.216.MR6.70.9308/ff.#								

付表 D-23 1 次元地震応答解析における仮想固定点周辺地盤のせん断剛性の時刻歴(-16m, N=15, 杭諸元②)

## 附録 E 2 次元地震応答解析における上部工加速度最大値

設計水深		-10m			-13m			-16m		
N	値	1	5	15	1	5	15	1	5	15
杭径	(mm)	700	700	700	800	800	800	900	900	900
肉厚	(mm)	14.9	14.1	13.4	13.2	12.4	11.9	12.3	11.5	11.0
	八戸	16.29	18.82	15.37	13.83	18.70	15.78	15.06	14.81	12.89
5Gal	岩国	8.85	12.08	10.73	6.29	9.39	7.90	5.30	6.82	6.08
	博多	16.00	21.82	18.18	12.85	19.89	16.68	8.17	10.28	8.22
	八戸	29.80	33.65	27.46	26.57	35.66	30.38	29.50	29.85	23.21
10Gal	岩国	17.01	22.59	19.72	12.30	18.12	15.35	10.14	13.18	11.86
	博多	29.37	38.65	32.06	24.50	38.51	33.11	16.15	20.42	16.45
	八戸	51.53	59.34	50.01	50.59	64.32	56.35	56.60	59.92	46.58
20Gal	岩国	31.89	40.97	35.48	23.32	34.45	29.15	18.74	24.78	22.54
	博多	50.75	64.91	54.96	46.01	69.47	63.00	31.54	40.24	33.47
	八戸	119.48	128.38	111.04	120.39	124.33	113.04	138.65	137.43	122.10
50Gal	岩国	66.70	79.08	67.72	51.21	72.46	66.48	38.18	52.83	49.29
	博多	97.03	116.56	94.67	95.82	139.88	133.12	74.85	92.73	86.22
	石巻	163.32	195.13	173.33	143.21	165.11	144.47	145.17	174.39	164.59
	八戸	247.13	247.08	206.72	242.36	211.24	202.90	252.24	304.91	258.74
100Gal	清水	250.84	336.07	306.67	200.14	268.99	252.90	199.02	259.80	244.70
	岩国	108.04	129.32	112.12	90.74	130.36	126.34	68.53	90.42	83.36
	博多	147.36	184.88	171.57	158.64	209.86	210.00	137.71	171.23	171.59
	八戸	373.59	393.67	316.00	343.43	341.59	274.59	282.65	428.81	415.69
150Gal	岩国	141.25	173.72	154.69	137.46	172.36	166.80	93.79	139.93	115.81
	博多	201.25	257.69	251.99	201.46	258.89	262.63	168.51	238.46	244.53
	石巻	274.45	297.19	273.04	290.90	284.34	286.97	275.43	322.67	271.10
	八戸	420.39	543.01	484.99	380.14	482.52	419.29	320.06	462.97	542.70
200Gal	清水	355.02	440.54	489.95	367.76	355.39	455.62	#N∕A	373.38	373.17
	岩国	164.82	206.88	188.44	170.93	216.30	198.27	117.94	176.82	162.07
	博多	251.23	307.95	334.16	268.13	294.99	319.92	209.18	283.53	302.23
	石巻	359.04	414.63	399.83	343.23	415.51	390.39	287.99	437.43	471.82
	八戶	427.92	646.07	730.74	488.49	577.86	662.56	503.55	461.08	585.78
300Gal	<u>清水</u>	#N/A	#N/A	499.66	#N/A	#N/A	480.16	#N/A	#N/A	#N/A
	二 岩国	193.95	252.62	237.91	224.23	283.92	282.90	165.21	203.09	227.81
	博多	301.34	398.19	424.54	416.21	353.82	377.60	364.83	3/3.62	403.18
5000 1		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
SUUGai	「二日」	290.98	350.51	359.21	301.05	341.99	371.03	229.15	301.41	270.88
	博多	498.93	416.23	4/5.05	/02.03	509.29	438.35	629.83	463.08	4/4.11
	白苍	332.78	365.01	340.47	333.48	322.03	310.40	2/1.85	396.71	363.33
		420.75	5/5.81	530.16	388.27	511.51	466.60	345.01	456.16	5/0.14
	<u> </u>	3/2.09	437.20	302.31	204.21	300.01	334.13	292.74	420.78	397.00
1.1	ー 丁朱	207.00	344.92	294.09	200.91	313.03	290.11	194.43	300.22	203./0
Original	<u> </u>	256.64	201.00	397.30	222.10	265.01	227 70	249.40	293.93	227.55
Unginal	毎館	150.04	196.91	190.69	102.00	102.01	10161	122.07	146.00	161.57
	<u> </u>	260.62	3/18/11	307.57	230.83	327.76	320.05	286.61	395.67	360.43
	11世/2	106.02	261 50	242.45	233.03	220.27	200.47	160.9/	202.07	222.45
	<u> 白</u> 出 捕 名	017.00	201.09	242.40	230.19	203.37	230.47	109.04	202.99	200.40
	得多	217.20	211.09	201.02	219.90	212.01	2/0./2	1/0.00	200.44	200.10

付表 E-1 2 次元地震応答解析における上部工加速度最大値(1)

設計	水深		-1	0m			-13m			-16m			
N	値	1	5	10	15	1	5	10	15	1 5 10		15	
杭径	(mm)	700	700	700	700	700	700	700	700	800	800	800	800
肉厚	(mm)	10.4	10.0	9.7	9.6	11.5	10.9	10.6	10.5	11.1	10.5	10.2	10.1
	八戸	17.85	16.18	14.15	13.27	16.24	15.24	13.79	13.11	19.04	16.81	14.70	13.97
5Gal	岩国	4.86	5.56	4.79	4.40	4.70	5.20	4.55	4.26	3.35	2.77	2.32	2.14
	博多	9.24	9.95	8.56	8.11	8.49	8.71	7.56	6.83	10.26	8.20	6.91	6.45
	八戸	32.87	30.57	27.06	25.50	32.31	27.99	25.07	24.14	35.97	32.11	27.83	26.50
10Gal	岩国	9.38	10.78	9.32	8.57	9.35	9.94	8.68	8.08	6.65	5.59	4.68	4.30
	博多	16.94	17.70	15.41	14.15	16.69	17.32	15.26	13.90	20.40	16.58	13.84	12.84
	八戸	65.74	56.22	49.74	47.52	63.75	56.71	50.26	47.06	69.37	61.23	53.91	50.93
20Gal	岩国	17.55	20.10	17.54	16.20	18.41	19.66	17.35	15.85	13.26	11.36	9.61	8.83
	博多	33.32	35.01	31.25	28.56	31.87	35.08	31.47	28.87	41.47	34.57	28.82	26.57
	八戸	157.25	148.04	131.58	123.59	146.46	137.67	122.51	114.96	165.38	144.38	124.40	119.39
50Gal	岩国	43.34	46.56	41.50	38.11	41.28	46.80	41.61	38.68	35.23	30.29	25.81	23.49
	博多	79.44	89.13	82.39	77.32	76.18	78.99	73.54	70.04	94.61	88.05	77.95	73.93
	石巻	183.02	158.39	144.43	138.05	197.61	143.38	129.75	124.88	307.34	210.99	160.75	139.81
	八戸	286.94	286.21	256.27	239.49	244.72	260.62	239.04	226.31	315.67	317.87	293.15	281.33
100Gal	清水	239.09	244.88	221.64	209.20	238.93	232.03	202.42	185.43	330.91	321.27	281.35	266.03
	岩国	77.32	88.35	79.40	74.78	67.45	72.75	65.60	62.81	66.07	59.95	53.14	50.63
	博多	145.47	159.35	146.45	138.66	141.64	137.51	126.48	120.91	158.99	145.13	131.66	126.86
	八戸	361.21	414.60	380.48	359.24	368.74	377.52	337.77	316.05	417.04	459.01	434.67	415.46
150Gal	岩国	103.58	115.41	104.78	100.68	88.52	96.00	85.87	80.62	94.75	88.11	76.67	72.03
	博多	227.40	227.18	203.97	187.29	211.20	223.77	201.32	186.46	242.41	213.32	188.38	177.36
	石巻	429.86	359.39	287.17	257.93	391.04	407.30	324.03	284.88	436.39	553.99	505.08	473.51
	八戸	429.70	502.66	483.02	461.70	456.77	516.97	487.56	467.01	454.89	585.47	563.54	551.37
200Gal	清水	#N∕A	503.35	502.23	503.24	#N∕A	469.11	497.72	493.38	#N∕A	494.74	519.62	#N∕A
	岩国	130.07	137.08	123.43	117.10	109.57	117.94	105.49	97.88	121.54	109.94	100.67	96.27
200Gal	博多	306.97	334.46	305.40	285.23	247.58	277.04	260.28	253.03	289.75	294.75	270.22	254.82
	石巻	456.72	#N∕A	566.99	505.79	447.19	#N∕A	#N∕A	#N∕A	412.83	#N∕A	#N∕A	#N∕A
	八戸	#N∕A	#N∕A	#N∕A	#N∕A	522.17	#N∕A	#N∕A	#N∕A	445.26	#N∕A	#N∕A	#N∕A
300Gal	清水	#N∕A											
	岩国	166.37	186.27	168.17	158.28	152.45	156.79	144.83	134.62	182.14	156.25	135.42	128.07
	博多	389.44	439.00	425.01	411.80	329.70	362.89	346.42	333.67	310.39	376.43	377.57	369.48
	八戸	#N∕A											
500Gal	岩国	281.52	290.37	260.00	242.62	246.74	248.21	222.96	207.20	245.81	272.88	250.46	242.78
	博多	441.55	573.85	585.48	572.35	440.39	473.63	495.60	497.60	497.37	458.26	495.40	500.94
	石巻	450.80	503.69	410.71	359.46	428.34	#N∕A	472.72	412.46	440.96	#N∕A	#N∕A	#N∕A
	八戸	458.30	517.59	510.60	487.66	479.04	#N∕A	528.79	504.77	453.84	#N∕A	#N∕A	#N∕A
	常陸那珂	402.26	373.34	326.22	305.08	363.96	328.66	297.27	279.31	353.32	407.54	341.78	313.55
	千葉	239.64	244.38	219.83	207.22	204.12	194.39	183.73	179.70	260.70	196.96	185.29	177.04
L1	清水	312.54	330.81	297.34	271.33	306.70	331.62	299.95	275.11	362.51	419.72	393.82	367.42
Original	四日市	274.37	259.37	222.37	204.14	240.95	222.78	204.40	195.61	279.80	241.10	214.02	200.20
	舞鶴	108.02	140.25	143.19	141.81	113.36	134.48	135.10	132.91	111.46	91.20	85.73	88.44
	神戸	420.95	391.31	343.37	320.84	340.51	350.59	310.11	288.98	357.40	358.53	326.56	311.47
	岩国	171.16	191.33	173.66	162.72	158.57	160.47	149.86	139.29	188.79	164.47	141.44	132.99
	<b> </b>	258 37	260 15	235 21	217 80	223 51	244 61	224 37	213 46	264 87	241 36	213 42	199 17

付表 E-2 2 次元地震応答解析における上部工加速度最大値(2)

## 附録 F 1次元地震応答解析における加速度応答値

設計水深		-10m				-13m		-16m		
N	値	1	5	15	1	5	15	1	5	15
杭径	(mm)	700	700	700	800	800	800	900	900	900
肉厚	(mm)	14.9	14.1	13.4	13.2	12.4	11.9	12.3	11.5	11.0
	八戸	14.47	14.60	11.54	12.46	14.32	11.26	12.27	9.77	8.82
5Gal	岩国	8.74	8.18	6.39	6.11	7.95	6.37	3.49	4.49	4.32
	博多	14.76	17.99	13.92	11.80	16.96	13.69	6.23	8.40	7.80
	八戸	27.39	26.97	21.53	24.08	30.05	23.86	24.03	19.58	17.68
10Gal	岩国	17.27	16.39	12.81	12.05	15.88	12.77	6.96	9.00	8.65
	博多	26.25	33.78	25.82	22.75	34.96	28.18	12.45	16.83	15.66
	八戸	52.36	49.20	39.75	44.78	60.58	47.98	43.91	39.60	35.50
20Gal	岩国	32.81	33.16	25.60	26.28	31.32	25.66	13.80	18.05	16.35
	博多	44.36	53.44	42.29	42.15	70.01	57.05	24.82	31.79	29.12
500 1		127.53	117.06	92.23	109.67	11/./6	108.03	117.61	105.97	92.82
50Gal	「一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	61.47	/3.80	58.79	53.26	/8.68	66.09	33.66	39.16	38.43
	博多	80.68	133.38	160.70	156.25	106.08	144.60	55.41	/4.58	125.52
	<u> 日</u> を ハ 一	100.07	210.01	108.70	100.00	190./4	144.94	127.30	134.07	135.53
100Gal	<u></u> 注水	203.87	241.31	191.90	170 55	214.49	220.62	207.40	190.60	100.12
roodar	川小 半国	102 10	122.26	106 54	77.06	151 11	127.01	63.24	70.00	72.40
		1/1 20	192.20	163.62	100.01	233 57	210.57	03.24	11/1 07	133.80
	トロ	377.02	384 17	316.62	408.76	364.43	213.34	369.63	350.17	331.10
150Gal		128.53	177.66	143.24	102 77	165.21	159 13	84 03	98.37	102.43
		164 58	252.99	235.05	136.80	234 68	244 30	177 51	195 17	209.34
	石巻	308.80	361.19	288.97	256.12	279.53	350.57	490.15	228.81	237.52
	八戸	628.47	531.81	459.16	526.94	494.98	450.11	374.91	450.35	448.44
200Gal	清水	362.96	574.70	401.24	530.34	546.84	394.11	#N∕A	499.82	525.03
	岩国	146.60	186.74	158.49	114.21	217.28	190.25	102.44	126.58	122.69
	博多	193.31	317.41	317.17	163.56	272.13	306.97	197.22	231.23	255.18
	石巻	404.39	439.27	379.89	630.91	401.31	414.12	562.81	351.75	331.00
	八戸	683.16	869.61	722.03	560.08	790.66	701.42	641.71	906.47	817.94
300Gal	清水	#N/A	#N∕A	765.17	#N/A	#N/A	727.82	#N/A	#N/A	#N/A
	岩国	193.06	273.39	242.75	160.22	291.20	269.49	104.20	158.78	144.89
	博多	218.76	361.27	433.46	221.06	328.44	411.16	274.94	364.44	370.49
5000 1		#N/A	#N/A							
500Gal	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	2/4.33	344.40	316.08	182.12	436.41	357.82	169.28	191.42	231.78
	博多	395.94	405.97	469.64	289.84	493.95	421.20	255.30	469.28	521.90
	1 巻	354.00	3/3.12	3/9.08	295.03	525.65	358.01	220.08	280.50	285.31
	一八日	007.87	200.01	490.09	070.07	205.00	480.08	400.44	008.0Z	483.00
	<u>市性が明</u> 工	222.22	421.92	205 57	2/9.07	252.09	201 1/	165.57	293.93	210.23
	<del></del>	340.31	300.43	343 11	349.05	402.67	369.68	299.48	242.00	214.17
L1 Original	四日市	241 75	272.31	222 48	199 57	268 45	235 77	186 79	197 50	187 11
	舞鶴	94 96	167.05	173 16	66 20	137.20	188.31	54 26	96 47	121.87
	神戸	325.34	382.35	314.43	287.93	352.23	331.01	247.69	302.35	262.86
		198.30	263.18	235.71	164.41	301.55	280.60	111.52	165.92	151.45
	博多	172.52	274.08	263.64	125.95	241.22	271.18	184.31	200.78	224.46

付表 F-1 1 次元地震応答解析における加速度応答値(減衰定数 h=4%)(1)

設計	水深		-1	0m			-1	3m			-16m		
N	値	1	5	10	15	1	5 10 15 1 5 10		15				
杭径(	(mm)	700	700	700	700	700	700	700	700	800	800	800	800
肉厚(	(mm)	10.4	10.0	9.7	9.6	11.5	10.9	10.6	10.5	11.1	10.5	10.2	10.1
	八戸	16.46	11.44	9.98	9.50	14.01	11.02	9.71	9.53	12.04	11.15	10.53	10.32
5Gal	岩国	4.88	4.58	3.96	3.70	4.17	4.00	3.62	3.37	2.02	1.80	1.90	1.85
	博多	8.95	8.90	7.09	6.43	6.78	7.97	7.00	6.32	5.79	4.82	4.59	4.47
	八戸	31.34	22.99	20.00	19.03	27.80	22.99	19.41	18.77	23.95	22.35	21.12	20.51
10Gal	岩国	9.70	9.17	7.94	7.42	8.29	8.02	7.26	6.75	4.04	3.58	3.50	3.70
	博多	16.38	17.04	14.27	12.94	13.91	15.40	13.55	12.22	12.14	9.78	9.21	8.98
	八戸	63.85	48.37	41.05	39.06	56.73	46.56	39.86	38.68	47.10	44.22	42.11	40.87
20Gal	岩国	18.94	18.43	14.83	13.85	16.15	15.33	13.33	12.45	8.09	7.13	7.00	6.78
	博多	33.03	34.45	27.92	26.25	27.19	29.83	27.18	24.89	24.95	20.41	18.23	17.57
	八戸	159.74	124.49	110.39	104.83	141.36	125.52	113.02	109.43	146.51	107.93	100.92	97.46
50Gal	岩国	47.72	39.66	34.71	32.72	38.96	37.31	33.55	32.17	18.84	15.23	16.03	15.59
	博多	81.08	81.70	70.82	65.33	62.07	72.75	65.39	62.78	59.10	54.40	51.10	49.37
	石巻	179.96	150.48	133.13	130.48	150.92	133.84	124.16	119.25	232.63	146.51	132.91	99.24
		304.35	265.09	237.53	224.43	251.11	249.07	223.13	219.32	270.28	260.55	249.96	243.51
100Gal		272.26	218.75	187.31	174.19	301.43	221.28	181.21	181.25	248.00	216.78	201.45	196.09
	一一一日	90.82	79.56	69.29	65.10	69.51	65.87	58.44	54.94	37.70	31.97	29.53	28.51
	博多	133.00	139.02	122.39	113.78	104.83	121.18	109.68	106.47	101.94	91.85	88.02	85.00
150Gal		396.47	402.89	360.38	343.97	448.45	410.24	3/9.91	338.55	3/3.56	364.46	343.19	332.22
	二 右国	11/.1/	106.52	91.31	84.81	82.74	88.75	//.58	/3.30	56.00	49.88	46.96	44.48
	博多	168.26	183.62	167.99	1/0./2	224./3	193.56	100.90	162.26	156.25	141.32	131.97	126.74
	日を	400.23	208.27	243.37	228.20	357.41	510.01	2/4.00	214.24	203.43	483.42	400.82	440.91
2000-01	ᅸᅶ	/13.08 #NI/A	502.21	497.00	4/1.13	<u>555.79</u> #NL/A	5/0.11	432.20	400.49	442.20 #NL/A	408.81	4/9.00	400.38 #NL/A
2000ai	<u></u> 月小 些国	#N/A	120 72	100.07	400.00	#N/A	02 75	70.42	4/8.44	#N/A	62.06	62.76	#N/A
		224.01	129.72	255 52	101.40	251.00	93.75	19.43	100.44	09.79	106.90	105.70	170.66
	日子 日	320.44	293.73 #N/A	457.90	233.20	262 17	#N/A	#NI/A	199.44 #NI/A	502.04	190.04 #NI/A	#NI/A	170.00 #NI/Λ
	시 그 같	442.30 #N/Δ	#N/Δ	#N/Δ	#N/Δ	602.17	#N/Δ	$\frac{\pi N}{\Delta}$	$\frac{\pi N}{\Delta}$	668.84	$\frac{\pi N}{\Delta}$	$\frac{\pi N}{A}$	#N/A #N/Δ
300Gal		#N/Δ	#N/A #N/Δ	#N/Δ	#N/Δ	±N/Δ	#N/Δ	#N/Δ	#N/A #N/Δ	±N/Δ	#N/Δ	#N/A #N/Δ	#N/A #N/Δ
000 441	一	145.38	159.76	136.18	123.41	145 58	111.30	96.60	110.23	106.04	93.11	88.42	87.05
		368.32	39111	354 38	331.69	321.05	346.16	289.86	313.51	189.22	245.41	296.80	299.15
	八百	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
500Gal		276.21	220.15	191.60	179.64	214.53	182.37	172.31	175.25	171.32	151.15	140.97	143.09
	博多	427.45	571.44	600.82	596.89	246.82	524.85	501.97	569.87	268.76	287.72	379.73	394.51
	石巻	384.18	405.91	301.19	282.34	334.47	#N/A	362.88	360.98	569.52	#N/A	#N/A	#N/A
	八戸	686.13	673.25	583.10	508.20	577.49	#N/A	488.66	532.83	417.97	#N/A	#N/A	#N/A
	常陸那珂	389.14	341.08	295.08	275.15	324.24	327.45	279.72	280.36	298.52	250.73	233.92	220.97
	千葉	248.01	240.80	203.95	189.91	210.12	183.49	156.85	167.46	169.96	143.58	132.39	135.70
	清水	431.89	315.52	274.02	253.90	367.85	339.77	250.93	257.18	310.98	306.10	278.36	265.75
LI Uriginal	四日市	266.47	220.96	191.84	178.88	229.28	207.42	180.65	176.95	166.27	166.29	158.32	155.81
	舞鶴	63.20	114.98	122.02	122.20	59.75	105.38	126.22	116.49	52.46	65.92	74.30	72.50
	神戸	436.52	359.26	306.82	283.86	327.59	331.90	272.15	279.11	206.17	237.19	221.06	231.85
	岩国	149.19	167.37	142.39	129.61	151.42	116.58	99.73	103.15	110.68	96.43	92.30	89.58
	尵多	278 57	206 71	187 43	177 72	227.28	190 22	174 19	186.66	174 38	159 20	148.63	142 74

付表 F-2 1 次元地震応答解析における加速度応答値(減衰定数 h=4%)(2)

設計水深		10m				-13m		16m		
<u>N值</u>		1	5	15	1	5	15	1	5	15
杭径	(mm)	700	700	700	800	800	800	900	900	900
肉厚(	(mm)	14.9	14.1	13.4	13.2	12.4	11.9	12.3	11.5	11.0
	八戸	7.78	6.83	5.66	6.50	6.67	5.74	6.29	6.13	5.68
5Gal	岩国	2.65	3.03	2.70	2.55	3.30	2.81	2.07	2.05	2.14
	博多	5.40	8.22	7.26	4.43	8.68	8.14	3.93	6.17	5.92
	八戸	15.55	13.50	11.43	12.96	13.24	11.41	12.51	12.31	11.38
10Gal	岩国	5.27	6.07	5.40	5.06	6.61	5.62	4.12	4.10	4.28
	博多	10.55	15.78	14.08	8.75	16.63	15.80	7.83	12.30	11.91
	八戸	30.66	26.65	23.07	25.62	26.17	22.92	24.67	24.73	22.91
20Gal	岩国	10.22	11.83	10.47	9.82	12.78	11.24	8.13	8.21	8.17
	博多	20.14	29.08	26.44	17.14	30.45	31.71	15.51	23.43	23.17
	八戸	75.37	67.68	59.14	62.14	64.44	57.29	56.70	62.60	58.25
50Gal	岩国	23.02	27.44	24.45	21.73	29.14	26.48	17.15	19.22	19.35
	博多	45.53	68.77	66.82	38.89	68.19	72.01	34.67	51.50	53.42
	石巻	85.33	89.10	73.64	75.23	85.53	73.58	66.59	72.97	68.75
	八戸	136.08	137.97	121.68	124.64	130.72	117.81	110.60	125.12	118.77
100Gal	清水	139.51	153.46	135.33	106.66	148.72	149.56	113.96	128.65	117.25
	岩国	40.91	51.08	46.89	36.65	50.47	48.15	29.89	38.42	36.45
	博多	78.92	109.84	119.93	64.81	106.49	127.94	56.62	74.49	93.61
150Gal	八戸	210.14	209.50	187.09	216.73	197.84	180.99	179.91	174.27	170.58
	岩国	54.43	72.21	67.62	49.23	66.90	66.96	37.17	45.47	51.82
	博多	103.45	138.76	157.01	83.47	127.79	164.37	64.98	103.46	128.76
	石巻	168.89	164.62	153.65	168.18	161.86	153.57	160.82	144.15	138.61
	八戸	277.79	257.55	252.06	232.29	244.43	246.78	169.16	245.13	226.35
200Gal	清水	192.21	276.94	267.31	211.83	251.22	260.00	#N∕A	238.95	263.69
	岩国	64.49	85.51	78.54	52.35	86.10	85.09	44.69	59.82	57.05
	博多	114.35	163.37	187.15	85.29	151.69	178.48	75.74	132.31	141.99
	石巻	226.88	238.26	220.30	247.27	215.46	231.76	233.24	213.38	214.19
	八戸	289.86	449.57	359.22	209.89	418.15	354.17	273.29	389.76	403.91
300Gal	<u>清水</u>	#N/A	#N/A	376.40	#N/A	#N/A	352.75	#N/A	#N/A	#N/A
	岩国	87.29	119.33	112.06	64.72	122.48	116.18	58.05	83.78	73.51
	博多	140.81	212.29	212.90	144.93	188.48	216.33	111.46	138.49	170.89
5000 1		#N/A	#N/A	#N/A						
500Gal	二 古国	119.50	136.18	140.68	87.41	1/6.38	169.18	69.31	106.10	126.23
	博多	1/5.64	245.37	270.80	191.28	185.94	250.43	1/7.59	1/7.26	207.78
	<u> </u>	206.34	191./3	188.85	195.99	1/9.42	187.21	196.87	177.96	1/4.10
		286.35	2/5.02	2/1.00	237.34	262.91	264.50	1/0.01	253.26	243.00
	常陸那珂	166.00	168.33	141.94	136.36	159.86	137.91	118.27	146.05	134.54
	 注 北	164.02	102.00	104.80	94.00	105.20	172.90	91.43	90.48	80.89
L1 Original	<u> </u>	104.83	130.90	1/2.02	100.01	100.32	1/3./1	00 27	10267	00.04
	<u>当口</u> 们 毎娘	66 52	110.10	100.00	60.00	106.05	100./3	90.37 60.94	01 07	99.31
		126.01	161 50	150.90	120 50	140.93	157.07	106.54	01.07	97.04
	<u>1甲厂</u> 岩国	89.56	120.33	112/19	66.42	197.23	120.96	58.96	87.10	76.83
	<u> </u>	100 60	1/5 02	170.99	77 07	121.23	177 11	30.90 70.96	07.13	122 71
	导 夕	109.09	140.93	1/0.32	//.0/	131.09	//.	/0.20	112.37	133./1

付表 F-3 1 次元地震応答解析における加速度応答値(減衰定数 h=20%)(1)

設計水深		-10m				-13m				-16m			
N値		1	5	10	15	1	5	10	15	1	5	10	15
杭径(mm)		700	700	700	700	700	700	700	700	800	800	800	800
肉厚(mm)		10.4	10.0	9.7	9.6	11.5	10.9	10.6	10.5	11.1	10.5	10.2	10.1
5Gal	八戸	8.44	6.85	6.20	5.91	7.36	6.65	6.15	5.87	6.15	5.84	5.54	5.47
	岩国	2.23	2.25	2.08	1.96	1.91	2.03	2.19	1.79	1.38	1.24	1.26	1.26
	博多	5.16	6.40	5.76	5.36	4.14	5.78	6.28	5.27	3.28	4.22	4.00	3.81
10Gal	八戸	16.92	13.72	12.43	11.85	14.61	13.33	12.33	11.77	12.03	11.69	11.10	10.79
	岩国	4.41	4.49	4.17	3.91	3.78	4.06	4.38	3.59	2.76	2.47	2.45	2.52
	博多	9.91	12.32	11.56	10.76	8.08	11.09	12.22	10.21	6.40	8.17	8.03	7.65
20Gal	八戸	33.56	27.70	25.07	23.89	28.59	26.72	24.72	23.65	23.48	22.68	21.93	21.33
	岩国	8.49	8.97	7.93	7.45	7.29	7.46	7.97	6.82	5.49	4.93	4.88	4.87
	博多	18.72	24.34	22.44	21.69	15.88	20.44	23.19	19.27	12.39	15.76	15.72	15.03
50Gal	八戸	79.51	69.89	63.32	60.28	65.88	65.24	60.45	57.79	63.03	54.32	53.15	52.09
	岩国	19.24	18.98	17.06	16.11	16.94	16.96	18.05	15.40	13.09	11.79	11.86	11.83
	博多	42.74	50.91	50.95	48.19	35.24	43.47	54.15	45.67	27.77	34.48	36.56	35.44
100Gal	石巻	94.63	81.50	73.11	69.53	86.89	77.09	68.26	67.81	82.22	73.17	69.10	66.54
	八戸	150.93	134.71	122.91	116.88	128.54	123.70	116.42	113.09	137.90	116.16	110.41	108.06
	清水	152.49	144.88	127.24	117.63	137.96	132.09	110.37	110.25	116.15	106.40	97.27	93.74
	岩国	34.95	36.14	33.26	31.80	30.02	30.44	32.46	28.04	23.21	22.41	22.57	22.69
	博多	72.66	79.98	87.18	85.27	60.62	69.65	99.76	80.15	46.70	51.88	63.59	64.14
150Gal	八戸	217.66	198.95	181.69	175.91	226.58	207.01	169.69	172.54	184.78	190.14	174.87	169.07
	岩国	47.85	49.95	45.94	44.67	40.03	43.49	45.46	40.43	31.34	31.73	32.63	32.76
	博多	96.44	108.57	114.27	119.92	77.59	91.28	119.44	101.93	59.77	78.06	80.07	86.76
200Gal	石巻	201.49	165.03	153.21	146.12	175.30	162.08	146.60	144.60	158.79	147.80	143.47	142.71
	八戸	294.97	269.66	248.69	238.41	245.41	293.31	230.99	245.28	212.81	234.70	246.50	237.17
	清水	#N∕A	266.87	241.10	230.37	#N/A	248.86	198.05	222.81	#N∕A	207.84	213.99	#N/A
	岩国	58.65	64.38	58.61	56.96	50.36	54.77	57.15	51.66	36.90	39.54	42.59	41.96
	博多	117.75	129.54	124.06	131.86	90.63	109.93	120.16	109.66	74.08	92.01	94.06	97.38
300Gal	石巻	223.28	#N/A	244.92	235.81	215.61	#N/A	#N/A	#N/A	242.70	#N/A	#N/A	#N/A
	八戸	#N/A	#N/A	#N/A	#N/A	224.65	#N/A	#N/A	#N/A	283.46	#N/A	#N/A	#N/A
	清水	#N/A											
	岩国	78.60	87.61	81.89	78.28	62.90	72.62	75.26	71.16	49.27	56.34	57.29	59.44
	博多	146.18	170.04	165.34	165.15	119.34	149.15	159.57	155.38	104.71	109.11	130.20	137.31
500Gal	八戸	#N/A	#N∕A	#N/A									
	岩国	101.04	115.38	114.43	111.46	88.36	95.17	109.07	103.40	67.72	80.50	84.13	86.48
	博多	177.76	222.97	239.60	247.21	171.55	197.13	202.93	203.12	177.20	157.03	182.79	186.26
L1 Original	石巻	203.25	219.06	194.26	187.00	200.12	#N/A	186.05	186.05	203.10	#N/A	#N/A	#N/A
		299.36	328.76	288.61	256.37	251.36	#N/A	248.86	266.92	185.51	#N/A	#N/A	#N/A
	常陸那珂	169.69	164.80	145.74	137.44	139.39	150.34	125.82	129.20	116.18	124.88	117.75	116.86
	<u>十</u> 集	123.57	101.36	90.04	84.46	108.17	93.73	85.16	81.38	89.06	82.20	76.32	73.34
		200.52	185.80	167.04	154.58	173.67	160.90	150.22	150.36	132.10	134.26	128.94	123.72
	四日市	121.41	118.10	104.29	96.92	102.07	100.59	98.94	92.23	85.37	79.01	76.91	76.83
		55.44	97.25	100.91	99.68	51.13	88.17	102.77	95.88	43.25	60.81	69.09	69.12
	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	152.48	133.35	126.01	122.68	126.69	119.47	117.12	114.53	110.39	113.21	111.98	110.29
	二 二 五 国	80.91	91.11	84.98	81.32	64.68	75.55	75.12	71.18	50.98	57.30	59.09	60.60
	四	103.70	120.02	122.0/	126.51	81.99	96.09	117.93	106.90	64./1	/9.11	84.90	93.01

## 国土技術政策総合研究所資料

TECHNICAL NOTE of NILIM

No. 1001 January 2018

編集·発行 ©国土技術政策総合研究所

本資料の転載・複写のお問い合わせは ^{〒239-0826} 神奈川県横須賀市長瀬 3-1-1 管理調整部企画調整課 電話:046-844-5019 E-mail:ysk.nil-kikaku@ml.mlit.go.jp