ISSN 1346-7328 国総研資料 第994号 平成29年10月

国土技術政策総合研究所資料

TECHNICAL NOTE of National Institute for Land and Infrastructure Management

No. 994

October 2017

津波浸透流を考慮した防波堤の支持力設計法に対する 解析的検討

佐藤健彦・高橋英紀・宮田正史・竹信正寛

Analytical Study of the Bearing Capacity Design Method of Breakwaters Considering Seepage Flow Caused by Tsunami

Takehiko SATO, Hidenori TAKAHASHI, Masafumi MIYATA, Masahiro TAKENOBU

国土交通省 国土技術政策総合研究所

National Institute for Land and Infrastructure Management Ministry of Land, Infrastructure, Transport and Tourism, Japan

国土技術政策総合研究所資料 2017年10月 No. 994 (YSK-N-378)

津波浸透流を考慮した防波堤の支持力設計法に対する解析的検討

佐藤健彦* • 高橋英紀** • 宮田正史*** • 竹信正寬****

要 旨

2011年に発生した東北地方太平洋沖地震が引き起こした巨大津波によって、防波堤をはじめとする 多くの港湾施設が被災した. 津波に対する防波堤の安定性に関しては, 震災後に行われた遠心模型実 験や有限要素法等を用いた数値計算による研究によって,防波堤の港内外の水位差によって腹付工を 含む基礎マウンド内に浸透流が発生し、この浸透流によって基礎マウンド内に浸透力が働き、基礎マ ウンドの支持力を低下させることが明らかにされているが、津波によって発生する浸透流を考慮した 支持力設計法の構築には至っていない.

本研究では、津波によって基礎マウンド内に発生する浸透流に関して、腹付工や基礎マウンドの形 状を変化させた様々な防波堤断面を対象として有限要素法を用いた数値計算を行い,浸透流が基礎マ ウンドの支持力を低下させることを確認した.また,数値計算結果から支持力低下の程度は防波堤の 港内外の水位差と関係があり、本研究が対象とする防波堤の断面諸元の範囲においては、港内外の水 位差が10mのとき最大2割程度であることがわかった.現在の基礎マウンドの支持力性能照査に用い られる簡易ビショップ法による円弧すべり計算において,耐力作用比の許容値を港内外の水位差に応 じて割り増すことで、津波によって発生する浸透流による基礎マウンドの支持力低下を間接的に考慮 する方法を,浸透流を考慮した支持力設計法として提案した.

キーワード:津波,浸透流,基礎マウンド,支持力,設計法,防波堤

^{*} 港湾研究部 港湾施設研究室 交流研究員(五洋建設株式会社)

^{**} 港湾空港技術研究所 地盤改良研究グループ グループ長 *** 港湾研究部 港湾施設研究室 室長

^{****} 港湾研究部 主任研究官

^{〒239-0826} 横須賀市長瀬3-1-1 国土交通省国土技術政策総合研究所 電話:046-844-5019 Fax:046-842-9265 e-mail : ysk.nil-kikaku@ml.mlit.go.jp

Technical Note of NILIM No. 994 Oct.2017 (YSK-N-378)

Analytical Study of the Bearing Capacity Design Method of Breakwaters Considering Seepage Flow Caused by Tsunami

Takehiko SATO* Hidenori TAKAHASHI** Masafumi MIYATA*** Masahiro TAKENOBU****

Synopsis

Tsunamis caused by the Great East Japan Earthquake of 2011 damaged many port facilities including breakwaters. After the earthquake, many studies of the stability of breakwaters under the tsunami were conducted using centrifugal model tests and the finite element method. As one research result, it has been clarified that seepage flow occurs in a foundation mound including a reinforcing embankment due to the water level difference outside and inside a breakwater and that seepage force works in the foundation mound and lowers the bearing capacity of the foundation mound. However, the bearing capacity design method considering the seepage flow generated by a tsunami has not yet been established.

In this study, numerical calculation was performed using the finite element method for various breakwater sections with variously shaped reinforcing embankments and foundation mounds and it was confirmed that the seepage flow lowered the bearing capacity of the foundation mound. In addition, from the numerical calculation results, the degree of decrease in the bearing capacity was related to the water level difference inside and outside the breakwater, and when the water level difference inside and outside the breakwater, and when the water level difference inside and outside the breakwater was 10 m, the bearing capacity of the foundation mound decreased by up to 20%. For the circular slip failure analysis by the simplified Bishop's method currently used for the verification of the bearing capacity of a foundation mound, a method of increasing the allowable value of the resistance action ratio according to the water level difference inside and outside the breakwater was proposed as a method to indirectly consider the lowering of the bearing capacity of the foundation mound caused by the seepage flow.

Key Words : tsunami, seepage flow, foundation mound, bearing capacity, design method, breakwater

Ministry of Land, Infrastructure, Transport and Tourism

Phone : +81-46-844-5019 Fax : +81-46-842-9265 e-mail: ysk.nil-kikaku@ml.mlit.go.jp

^{*} Exchanging Researcher, Port Facilities Division, Port and Harbor Department, NILIM

⁽PENTA-OCEAN CONSTRUCTION Co., Ltd.)

^{**} Head, Soil Stabilization Group, Geotechnical Engineering Division, PARI

^{***} Head, Port Facilities Division, Port and Harbor Department, NILIM

^{****} Senior Researcher, Port and Harbor Department, NILIM

National Institute for Land and Infrastructure Management

³⁻¹⁻¹ Nagase, Yokosuka, 239-0826 Japan

1. はじめに ・・・・・・・・・・・・ 1
2. 津波に対する防波堤の設計法の現状 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.1 本章の概要 ······ 2
2.2 最新の知見の整理 ······2
 3. 津波浸透流に関する既往の研究成果 ······ 4
3.1 本章の概要 ······· 4
3.2 津波浸透流を考慮した防波堤の支持力に関する既往の研究 ・・・・・・・・・・・・ 4
4. 有限要素解析を用いた津波浸透流の影響検討
4.1 本章の概要 6
4.2 検討条件
4.3 検討結果 12
5. 津波浸透流を考慮した設計法の検討 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.1 本章の概要 ······ 15
5.2 津波浸透流を考慮した支持力設計法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 15
5.3 有限要素解析と円弧すべり計算の比較 ································ 16
5.4 提案法の適用範囲に関する注意点 19
6. 結論 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
7. おわりに ・・・・・・・・・・・ 19
謝辞 ····· 19
参考文献
付録 A 有限要素法を用いた数値計算結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
付録 B 円弧すべり計算を用いた支持力検討結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. はじめに

「港湾の施設の技術上の基準・同解説(平成19年)」)」 (以下, 「H19 技術基準」という.)には, 作用が津波 の場合に対する防波堤の設計法が示されており、これま で、これに準拠して津波防波堤が造られてきた.しかし、 2011年3月に発生した東北地方太平洋沖地震が引き起こ した巨大津波によって,防波堤をはじめとする港湾の施 設は甚大な被害を受け、この未曽有の災害を契機に、津 波に対する防波堤の設計法の認識を変えざるを得なくな った. その後, 防波堤の被災調査や被災メカニズムおよ び巨大津波への対策方法に関する研究等が数多く行われ た. 2013 年 9 月に国土交通省港湾局から「防波堤の耐 津波設計ガイドライン²⁾」(以下,「ガイドライン」と いう.)として最新の研究成果による知見が取りまとめ られ、これにより津波に対する設計の概念や考え方等が 更新されている.ガイドラインでは、防波堤の倒壊原因 は津波による水平力に加え、これまであまり知見がなか った越流や基礎マウンド内に発生する浸透流も要因とな っている可能性があるとされている.

津波が防波堤に作用するとき,防波堤の港内外で水位 差が生じて基礎マウンド内に浸透流が発生する(図-1.1).ガイドラインでは、浸透流によって基礎マウン ド内に浸透力が発生し,基礎マウンドの支持力が低下す ることも示されている.しかし現時点においては,浸透 流による基礎マウンドの支持力低下を考慮した設計法は 確立されていないため,今後,成果が期待される課題と なっていた.

津波が防波堤に作用する際に基礎マウンド内に発生す る浸透流(以下,「津波浸透流」という.)に関して, 今瀬ら³⁾は,遠心模型実験装置を用いて,防波堤に津波 が作用した実験を行った.この実験において,津波によ る波力,揚圧力,浸透力が同時に作用した場合の防波堤 の破壊現象の再現に成功している.笠間ら⁴⁾は,重力場 において防波堤模型の港内外に、津波を模擬した水位差 を与え、防波堤模型に鉛直荷重を作用し沈下を発生させ た.この実験により、基礎マウンドの沈下に対する支持 力が低下することを確認している.高橋ら 5%は、遠心 模型実験装置を用いて、浸透流の影響のみを分離した実 験を行い、その結果から、防波堤に津波が作用すること で生じる港内外の水位差と基礎マウンドの支持力低下の 関係について、定量的に評価している.これらの既往の 研究成果から、津波浸透流が基礎マウンドに与える影響 については、実験の条件下においてはある程度把握され ている.

本研究では、複数の防波堤断面に対して有限要素法を 用いた数値計算(以下,「FEM解析」という.)を実施 し、津波浸透流が基礎マウンドの支持力低下に与える影 響を定量的に検討する.また、津波浸透流の影響を, H19技術基準で支持力性能照査に用いられている簡易ビ ショップ法を用いた円弧すべり計算(以下、「円弧すべ り計算」という.)において考慮する方法を検討し、津 波浸透流の影響を考慮した設計法を提案することを目的 とする.

本資料の構成は以下のとおりである.第2章では,津 波に対する防波堤の設計法の現状について,ガイドライ ンにおける支持力設計法の考え方を整理し,現在の設計 法の課題を整理する.第3章では,津波が越流した防波 堤に関する既往の研究を整理し,津波浸透流が基礎マウ ンドの支持力に与える影響に関する知見を整理する.第 4章では,FEM解析結果を用いて,津波浸透流が支持力 に与える影響について検討する.第5章では,第4章で 確認された津波浸透流が支持力に与える影響を,円弧す べり計算を用いた設計法において考慮する方法について 検討する.第6章には,津波浸透流の影響を考慮した設 計法について本研究の成果をまとめる.

図-1.1 防波堤堤内外で水位差が生じた場合における外力と被災の概念図²⁾⁵⁾

2. 津波浸透流に対する防波堤の設計法の現状

2.1 本章の概要

本章では、 津波に対する防波堤の基礎地盤の支持力 設計に関する最新の知見として、ガイドラインの記載内 容のうち、津波と支持力に関する内容について整理する.

2.2 最新の知見の整理

(1)対象施設

ガイドラインの位置付けに関しては、『本ガイドライ ンは、港湾の施設としての防波堤を対象とした耐津波設 計の基本的考え方を示すものであり、防波堤の耐津波設 計を行う際に「港湾の施設の技術上の基準・同解説(平 成 19 年)」に対して付加的に考慮すべき点をとりまと めたものである.』と記載がある.また、『本ガイドラ インの適用対象施設は、「港湾の施設の技術上の基準・ 同解説(平成 19 年)」に示す外郭施設としての防波堤 のうち、港湾機能を維持するために津波発災直後から波 浪に対して一定の港内静穏度を確保する必要がある防波 堤や、津波を低減する効果を期待する防波堤である.な お、その構造型式としては、主に混成堤及び消波ブロッ ク被覆堤を対象としている.』とも記載がある.

すなわち,港湾の施設としての防波堤のうち,混成堤 と消波ブロック被覆堤が対象であり,「偶発対応施設の 防波堤」と「偶発対応施設の津波防波堤」の両者に同じ く適用可能と解釈できる.

(2)設計津波の考え方

津波の設定に関してガイドラインには、『港湾におけ る津波対策の検討にあたっては、「発生頻度の高い津波」 及び「最大クラスの津波」の二つのレベルの津波を踏ま え、地域防災計画や海岸保全基本計画等を踏まえた上で、 背後の構造物等の重要度に応じて、「発生頻度の高い津 波」から「最大クラスの津波」までの間で設計外力とし ての津波を「設計津波」として設定する.』と記載され ている.

(3)基礎地盤の支持力の性能照査式

ガイドラインの性能照査式は、H19 技術基準に準じて いる. 基礎地盤の支持力の性能照査式を式(2.1)に示す.

$$\sum \left[\left\{ c'_d s + \left(w'_d + q_d \right) \tan \phi'_d \right\} \sec \theta / \left(1 + \tan \theta \tan \phi'_d / F_f \right) \right] \\ \left/ \left[\gamma_a \left[\sum \left\{ \left(w'_d + q_d \right) \sin \theta \right\} + a_1 P_{H_d} / R \right] \right] = F_f \ge 1.0$$
(2.1)

- ここに,
 - PH:津波の水平波力(kN/m)
 - *a*₁ : 津波の水平波力のアーム長(m)
 - c':粘性土地盤の場合においては,非排水せん断 強さ,砂質土地盤の場合においては,排水条 件における見掛けの粘着力(kN/m²)
 - s : 分割細片の幅(m)
 - w':分割細片の重量(kN/m)
 - q : 分割細片に作用する上載荷重(kN/m)

 - θ :分割細片の底面となす角(°)
 - F_f : 耐力の設計用値と作用効果の設計用値の比を 示す補助パラメータ
 - *R* : すべり円弧の半径 (m)
 - γ_a:構造解析係数

※添え字 d は設計用値を示す.

(4)部分係数

部分係数についてガイドラインでは、「構造解析係数 を除き全て1.00を用いても良い.構造解析係数は、防波 堤に要求される性能に応じた適切な値を設定する.」と 記載されている.

また、「設計津波」に対する当面の安定性照査手法と して、構造解析係数の参考値が表-2.1 のように示され ている.これは、2011年東北地方太平洋沖地震に伴う津 波の作用を受けた港湾の第一線防波堤を対象として、防 波堤の大規模な被災の発生有無について整理した結果で あるが、基礎の支持力の構造解析係数は₂₄=1.0 と設定さ れている.

表-2.1 構造解析係数の参考値²⁾

照查項目	構造解析係数
直立部の滑動	1.2
直立部の転倒	1.2
基礎の支持力	1.0

(5)粘り強い構造の検討

ガイドラインでは、「設計津波」を超える規模の津波 に対して「粘り強い構造」を目指している.粘り強い構 造については、『「設計津波」を超える規模の津波に対 しても可能な限り防波堤の全体安定性を損なわない』構 造と定義されており、『津波の規模に応じた防波堤の破 壊形態と構造上の弱点について十分な検討を行ったうえ で、施設の重要度や費用対効果等を踏まえつつ、その弱 点部分に付加的な対策を施すことによって、「設計津波」 を超える規模の津波に対しても防波堤が変形しつつも倒 壊しない』と記載されている.

粘り強い構造の具体的な設計法は明示されていないが, 粘り強い構造を目指すために,「津波の規模に応じた防 波堤構造の弱点を抽出し,その弱点部分に構造上の工夫 を施す」ことや,「滑動安全率等が 1.0 を上回るレベル」 が一つの目安になると考えられることが示されている.

(6)津波波力算定式

ガイドラインでは、2011年東北地方太平洋沖地震によって襲来した津波を考慮して、「波状段波の発生の有無」 と「越流の発生の有無」により、「修正谷本式」、「谷 本式」、「静水圧差による算定式」から津波波力算定式 を選定することとなっている.津波波力の算定手順を図 -2.1 に示す.本研究では、津波が防波堤を越流する場 合を検討対象とするため、静水圧差による算定式が対象 となる.

津波波力の算定式を式(2.2)から式(2.4)に示し,津波 波力の考え方を図-2.2に示す.

$$p_1 = \alpha_f \rho_0 g \big(\eta_f + h' \big) \tag{2.2}$$

$$p_2 = \frac{\eta_f - h_c}{\eta_f + h'} p_1 \tag{2.3}$$

- $p_3 = \alpha_r \rho_0 g(\eta_r + h') \tag{2.4}$
 - p1 : 直立壁前面の底面における波圧強度(kN/m²)
 - p2:直立壁前面の天端面における波圧強度(kN/m²)
 - *p*³:直立壁背面の底面における波圧強度(kN/m²)
 *p*₀*g*:海水の単位体積重量(kN/m³)

- h':直立壁の底面の水深(m)
- hc :静水面から直立壁天端面までの高さ(m)
- η_f:直立壁前面の静水面からの津波高さ(m)
- ηr: 直立壁背面の静水面からの津波高さ(m)
- af: 直立壁前面の静水圧補正係数(=1.05)
- ar: 直立壁背面の静水圧補正係数(=0.90)

図-2.2 津波波力の考え方(静水圧差による算定式)²⁾

また,ガイドラインは,取りまとめられた時点におい て得られている知見に基づくものであり,耐津波設計に 係る様々な課題の全てが必ずしも明確になっているわけ ではない.そのため,ガイドラインの中では今後期待さ れる成果についていくつかの項目が挙げられている.そ の中で,津波浸透流に関する項目は,次の2項目である.

- ・津波水位差による浸透流の評価手法
- ・浸透流が基礎の支持力と全体安定性に及ぼす影響の評価手法

すなわち,津波浸透流の影響を考慮した支持力性能照 査方法の確立が望まれていた.

図-2.1 防波堤に対する津波波力算定手順2)

3. 津波浸透流に関する既往の研究成果

3.1 本章の概要

本章では、本研究で行う FEM 解析の参考とするため に、津波浸透流が基礎マウンドの支持力低下に及ぼす影 響に関する既往の成果として、高橋ら ^{5)の}による研究成 果を紹介する.

3.2 津波浸透流を考慮した防波堤の支持力に関する既 往の研究

(1)高橋ら⁵⁾による模型実験並びに FEM 解析

高橋ら⁵は,浸透流が作用したマウンドの支持力低減 効果を確認するために,遠心模型実験装置を用いた遠心 力場における実験を行っている.実験は,浸透流を発生 させずに支持力を調べる水平載荷実験と,浸透流を発生 させた条件下での支持力を調べる実験であり,両者を比 較することで,支持力の低下を確認している.

浸透流を発生させない実験の断面を図-3.1 に示す. この断面は仮想断面であり,支持力破壊が卓越するよう に、マウンドを高く,法勾配を大きく,法肩幅を狭くし ている.マウンド上のケーソン上端に対して水平載荷す る実験を行い,基礎マウンドが極限状態に至った水平力 を支持力とする.この実験により,浸透力が発生しない ときの支持力として,861kN/m が得られている.

浸透流を発生させた実験の断面を図-3.2 に示す.こ の断面の止水壁左側に給水すると、止水壁の両側に設置 された排水孔の高さに水位が固定されることで、基礎マ ウンドを挟んで水位差が発生する.この水位差で浸透流 を発生させている.このとき、止水壁を設けて下部から 浸透を行うことで、揚圧力による支持力低下の影響を取 り除く工夫をしている.しかし、この対策によりケーソ ン下部に水平方向に発生する浸透力の向きが、上向きと なってしまうため、浸透力による支持力の低減効果がい くらか大きめとなっていることが注意点とされている. 浸透力の作用時間内で水平荷重を作用させることが困難 なため、ケーソンに対して滑車を介しておもりをぶら下 げておき,浸透流を発生させたときの挙動を確認してい る.この実験により、図−3.3の結果が得られている. 水平荷重が 548kN/m では防波堤は破壊せず,水平荷重が 663kN/m では防波堤が破壊している. したがって, 破壊 時における基礎マウンドの浸透流による支持力低下の割 合は、23%と36%の間のどこかにあることが示されてい る.

浸透流がマウンドの支持力に与える影響をさらに詳細 に調べるために, FEM 解析を実施した結果を図-3.4 に 示す. 例えば,水圧差 98kN/m² (水位差 10m) では支持 力低減効果が 17% (2 割弱) であることが示されている.

図-3.4 防波堤前後の水圧差と支持力の関係 5)

(2) 高橋らのによる模型実験

(1)に示す高橋ら⁵⁾の実験では,揚圧力の影響を除去す る工夫から浸透力の方向が現場でのものと異なっている 箇所があった.このため,高橋ら⁶⁾の実験では,浸透流 を発生させる実験において,揚圧力に相当する鉛直荷重 をケーソンの重量からあらかじめ引いておき,浸透流を 発生しない実験との支持力の差分が浸透力の影響のみに なるようにした.浸透力が作用したマウンドの支持力低 減効果を確認するため,遠心模型実験方法にこのような 工夫を追加し,より厳密な実験を行って支持力の低下を 確認している.

浸透流を発生させない実験の断面を図-3.5 に示す. この実験により,浸透力が発生しないときの支持力とし て,3,740kN/mが得られている.

浸透流を発生させた実験の断面を図-3.6 に示す.こ の断面のケーソン左側に給水すると,排水口の高さで水 位が固定され,港内外に一定の水位差が発生する.この 水位差で浸透流を発生させる.港内外の水位が保たれて いる時間は6秒間ほどであり,浸透流の作用時間内で水 平荷重を作用させることが困難なため,ケーソンに対し て滑車を介しておもりをぶら下げておき,浸透流を発生 させたときの挙動を確認している.この実験により,図 -3.7の結果が得られている.水平荷重が3,144kN/mでは 防波堤は破壊せず,水平荷重が3,363kN/mでは防波堤が 破壊している.また,浸透流を作用した実験における水 位差のピーク時は8.3mから9.3mである.この結果から, 破壊時における基礎マウンドの浸透力による支持力低下 の割合は,8.3mから9.3mの水位差の間で,10%と16% の間のどこかにあることが示されている.

(3)まとめ

浸透力が基礎マウンドの支持力を低減する割合につい ては、高橋ら⁵⁾の FEM 解析によると水位差 10m で 17% 減少し、高橋ら⁶⁾の遠心模型実験によると水位差 8.3m か ら 9.3m の間で 10%から 16%の間で減少することが示さ れている.また、水位差が大きくなるほど支持力の低減 も大きくなることも示されている.以上から、これらの 実験や解析で対象とした防波堤の断面諸元の範囲では、 浸透力による基礎マウンドの支持力低下は水位差に応じ て異なり、浸透力を考慮しない場合に対して、おおよそ 水位差 10m で最大 2 割程度、水位差 5m で最大 1 割程度 の支持力低下が生じていることとなる.

図-3.5 水平載荷実験の概略断面図⁶⁾

図-3.6 載荷·浸透複合実験の概略断面図⁶⁾

4. 有限要素解析を用いた津波浸透流の影響検討

4.1 本章の概要

本章では、津波浸透流を考慮する場合と考慮しない場合の FEM 解析結果を比較することで、津波浸透流による基礎マウンドの支持力低下について検討する. 4.2 には検討条件を示し、4.3 では FEM 解析結果を示す.

4.2 検討条件

(1)解析プログラム

FEM 解析のプログラムとして、「地盤解析汎用プロ グラム(GeoFem)改良版⁷⁾⁸⁾⁹⁾」(以下、「GeoFem」と いう.)を用いる.本解析プログラムは、運輸省港湾技 術研究所(当時)で開発されたプログラムで、2011年東 日本大震災の後に津波浸透流の影響を考慮できるよう、 浸透流解析の機能が追加されたプログラムである. GeoFem は仮想的な弾・粘塑性アルゴリズムに基づく計 算法(仮想粘性法)を導入し、地盤など一部要素が破壊 状態に近い条件であっても安定的に計算を行える特徴を 有している.

GeoFem を用いた解析フローを図-4.1 に示す. GeoFem では,浸透流解析と支持力解析は別解析で行われる.はじめに浸透流解析により解析モデル全体に発生する浸透力を計算し,その浸透力を支持力解析に引き継ぐことで浸透流を考慮した支持力解析となる.具体的には,浸透流解析でマウンドの各要素の積分点に作用する 浸透力 F を式(4.1)で求め,支持力解析時にこの浸透力 Fをマウンド各要素の積分点に付加させる方法を採っている.なお,浸透流の平均流速vと動水勾配iの関係には式(4.2)に示すダルシー則を仮定し,式(4.1)に代入する動水勾配iを算定している.基礎マウンドの中の流れは乱流であり,実際には非線形となるが,高橋らのによると,線形と非線形の差は小さく,ここでは線形関係であるダルシー則を適用した.浸透流解析の結果を支持力解析に引き継がない場合は,浸透流を考慮しない支持力解析となる.

$$F = i \times \gamma_w \tag{4.1}$$

$$=k \times i$$
 (4. 2)

ここに, i : 動水勾配

γw :水の単位体積重量(kN/m³)

v :浸透流の平均流速 (m/s)

k : 透水係数(m/s)

(2)検討対象断面

v

検討対象断面を図-4.2から図-4.14に示す. 原地盤は N 値が N=10 相当の砂地盤とし,基礎マウンドおよび腹 付工の材料は一般的な捨石材であるとする. Casel-2, Casel-3, Casel-4 は,それぞれ Casel-1 に対して,水深 を浅くしたケース,基礎マウンドを薄くしたケース,ケ ーソン幅を広くしたケースである. Case2 シリーズは Casel シリーズに対して,腹付工を追加したケースであ る. Case3 シリーズは Case2-1 に対して,腹付工の形状 を様々に変化させたケースである.

図-4.1 GeoFem における解析フロー⁹ ※図に一部加筆

図-4.13 検討断面図【Case3-4】

図-4.14 検討断面図【Case3-5】

(3)浸透流解析モデル

浸透流解析モデルの例を図-4.15 に示す.解析は,港 内外の水位差を考慮し,津波水位を漸増させるステップ 解析を実施する.解析に用いる地盤等の透水係数は図-4.15 に示すとおりである.

本資料における解析モデルでは、全検討断面に対して 最大の水位差を20.0mとし、解析ステップ数は100ステ ップ、すなわち、1ステップあたり0.20mの水位増を基 本とする.ただし、本研究ではガイドラインの静水圧差 による算定式を用いるため、次のような補正を行う.ガ イドラインによると、津波が防波堤を越流する場合、港 内外の静水圧に、直立壁前面の静水圧補正係数 a/=1.05 と直立壁背面の静水圧補正係数 a/=0.90 を考慮、すなわ ち、静水圧に対して港外側を 5%増加し、港内側を 10% 低減することとなっている.これは水圧への補正である ため、浸透流解析における水位差に対しても同じ補正係 数を考慮する.ただし、本研究では FEM 解析の特性上 直接この係数を考慮することができないため、図-4.16 に示す水位差を与えて解析することとした.

図-4.16 浸透流解析で与える水位差の考え方

(4)支持力解析モデル

支持力解析には、浸透流解析と同じ有限要素メッシュ を用いる(図-4.15).支持力解析を実施するにあたっ て、基礎マウンドの応力状態を再現するために、まずは 自重解析を実施する.自重解析は、1段階目で砂地盤、 2段階目で基礎マウンド、3段階目でケーソンと腹付工 の荷重を考慮する解析を実施する.自重解析によって求 められた基礎マウンドの応力状態を初期状態とし、引き 続き支持力解析を実施する.解析は、港内外の水位差を 考慮し、津波水位を漸増させるステップ解析を実施する. ケーソンの前面と背面には、港内外の水位差に応じた静 水圧差による算定式で計算される津波波力が作用する (図-4.15).浸透流を考慮する場合は、各ステップに

おいて浸透流解析において計算される浸透力を支持力解 析に引き継ぐため,最大の水位差と解析ステップ数は, 浸透流解析に合わせる.

解析に用いる地盤等の物性値を図-4.15 に併せて示し ている. 原地盤は N 値が N=10 の砂質土層としているた め,透水係数は H19 技術基準 ¹)における砂層に対する透 水係数の概略値 (*k*=10⁻²cm/s) を適用する.変形係数に ついては,GeoFem マニュアル ⁷)に準じて *E*=6*N*+10 (kgf/cm²) (日本道路協会)を用いて設定した.基礎 マウンドのせん断強度については,ケーソン後趾から港 外側と港内側で物性値を使い分ける.ケーソン後趾から 港外側は,ケーソンの重量によって基礎マウンドの拘束 圧が大きくなっているが,ケーソン後趾から港内側は,

ケーソンの重量が作用しないため基礎マウンドの拘束圧

がケーソン直下に比べて小さく,更に上向きの浸透流の 発生により基礎マウンドの拘束圧が低下しているという 違いを考慮するためである.ケーソン後趾から港外側に ついては,見かけの粘着力を考慮して見かけの粘着力 *c*=20.0kN/m² および摩擦抵抗角 *φ*=35°を用いる(図-4.17 の Line(2)). これは,小林ら¹⁰によって示された,大 型三軸試験の結果から安全側に求めた値であり,港湾構 造物の設計において,簡易ビショップ法を用いた基礎マ ウンドの支持力計算を行う場合の,通常の捨石材に対し て一般的に用いられる物性値である.ただし,ケーソン 後趾から港内側については浸透力の影響により,見かけ の粘着力を見込むとせん断強度を大きく見積もるため, 高橋ら¹¹に倣い見かけの粘着力 *c*=5.0kN/m² および摩擦 抵抗角*φ*=40°(図-4.17 の Line(1))を用いた.

図-4.17 基礎マウンドのせん断強度の考え方 11)

4.3 検討結果

(1)浸透流解析結果

浸透流解析を実施すると,水位差に応じて基礎マウン ド内には浸透流が生じ,浸透流によって浸透力が発生す る. Case1-1 における浸透流の流速および浸透力の分布 を図-4.18 および図-4.19 に示す. 流速については, 原 地盤では非常に小さく, 基礎マウンドで局所的に, ケー ソン前趾付近で港内側下方に大きく,ケーソン後趾付近 で港内側上方に大きくなる. 浸透力については、原地盤 も含めた全体において発生していることがわかる. 原地 盤は透水係数が非常に小さいため、流速が非常に小さく ても浸透力がある程度発生することがわかる. 浸透力が 大きくなるのは、流速と同じく、基礎マウンドのケーソ ン前趾と後趾付近である. 浸透力の大きさは最大でおお よそ9.0kN/m³となっており、この浸透力の大きさは、基 礎マウンドの水中単位体積重量と同程度であるため、ケ ーソン後趾付近で石材が移動する程度の大きさに相当し ている.

図-4.20 に高橋ら %によって観察された遠心模型実験 中の基礎マウンドの様子を示す.10mm 砕石を用いた実 験では、ケーソン後趾付近の石が数個移動しており、 2mm 硅砂を用いた実験では、ケーソン後趾付近にボイ リングが発生している様子が観察される.したがって、 浸透流解析の結果は、遠心模型実験の結果と同じ傾向を 示すことが確認できる.

(a)10mm 砕石

(b)2mm 硅砂 図-4.20 浸透中のケーソン後趾付近の様子の

Case1-1と同じ水位差のときの, Case2-1における浸透 流の流速および浸透力の分布を図-4.21 および図-4.22 に示す. Case1-1 と異なる点として,腹付工があること によって,同じ水頭差に対しては浸透力が全体的に小さ くなることがわかる.また,腹付工があることによって, 基礎マウンド表面における浸透力の集中を回避できるこ とがわかる.腹付工があることによって,浸透力が全体 的に小さくなり,更に腹付工の表面における局所的な浸 透力の集中も回避できることから,基礎マウンドの安定 性向上に腹付工が有効であることを示している.

(2)支持力解析結果

支持力解析で発生するケーソン天端の変位出力点(図 -4.15)の水平変位と、ケーソン前面波力から背面波力 を引いた水平力(図-4.15)の関係を示した解析結果に ついて、代表として、Case1-1の結果を図-4.23に、 Case2-1の結果を図-4.24に示す.その他のケースの結果 については、付録Aに整理する.

解析ステップに応じて水平力が増加すると、水平変位 も増加し、あるステップで解析が発散する.一般に、 弾・完全塑性による塑性破壊と計算による発散には強い 相関があるため¹²⁾、本研究では、計算の発散を基礎マウ ンドの破壊と考える.計算が発散する1ステップ前の水 平力は、防波堤が抵抗できる水平力の極限値であるため、 この水平力の極限値を基礎マウンドの支持力を代表する 指標(以下、「極限支持力」という.)とした.浸透流 を考慮した場合は、浸透流を考慮しない場合に対して、 極限支持力が低下していることがわかる.この現象は全 検討ケースにおいて同様に確認される.

極限支持力を発揮する時(以下,「破壊時」という.) の変形図について, Case1-1の結果を図-4.25に, Case2-1の結果を図-4.26に示す.ケーソン下の基礎マウンド に着目すると,浸透流を考慮した場合は,浸透流を考慮 しない場合に対して基礎マウンドの変形量が大きいこと がわかる.今回の解析においては,変形係数を水平力の 増加に伴う基礎地盤内の拘束圧の変化に依らず一定とし ているので,この変形量の差は,浸透力によるせん断変 形に起因するものと考えられる.この現象は全検討ケー スにおいて同様に確認される.

図-4.23 水平変位~水平力関係【Case1-1】

図-4.27 に,浸透流を考慮した場合と浸透流を考慮し ない場合の極限支持力の比(以下,「極限支持力の比」 という.)を,防波堤の港内外の水位差ごとで整理した 結果を示す.極限支持力の比が全て 1.0 を下回っている ことから,全てのケースで浸透流の影響により極限支持 力の低下が起こっていたことがわかる.また,水位差が 大きくなるほど極限支持力の比が小さくなる傾向にある ため,浸透流による極限支持力の低減量は,水位差によ って異なると考えられる.ここで,Case2-4 については 浸透流を考慮しない場合,基礎マウンドが破壊に至らな かったため,検討対象から除外している.

FEM 解析結果から得られた極限支持力の比に対して, 全てのプロットを安全側に包括するラインを図-4.27 に 併せて示す. 浸透流を考慮しない FEM 解析で得られた 極限支持力に対して、ラインで示される水位差に応じた 余裕を見込むことで、浸透流を考慮した FEM 解析で得 られた極限支持力より全てのケースで安全側となる.こ のラインは、浸透流を考慮した場合の FEM 解析で得ら れる極限支持力が、浸透力を考慮しない場合に対して、 水位差 10m で最大 2 割,水位差 5m で最大 1 割低下する ことを示しており、既往の研究成果と整合している。た だし、基礎マウンドが薄い場合(Case1-3, Case2-3)や ケーソン幅が大きい場合(Case1-4),腹付工が極端に 大きい場合(Case3-5)等は、ラインから遠い位置にプ ロットがあるなど、必ずしも全てのケースで水位差の増 加に応じた極限支持力の低減の程度が同じであるとは限 らないことに留意する必要がある.

図-4.24 水平変位~水平力関係【Case2-1】

図-4.27 FEM(浸透流無し)とFEM(浸透流有り)の結果の比較

5. 津波浸透流を考慮した設計法の検討

5.1 本章の概要

本章では, 第4章の結果を参考とし, 現在用いられて いる支持力の設計法に, 津波浸透流の影響を考慮する方 法について検討する. 5.2 では,本研究で提案する津波 浸透流を考慮した支持力設計法(以下,「提案法」とい う.)について説明する. 5.3 では,提案法で計算した 結果と FEM 解析の結果を比較することで,設計法とし ての妥当性を確認する. 5.4 に,提案法を用いる場合の 留意点等について示す.

5.2 津波浸透流を考慮した支持力設計法

港湾の施設の設計において,基礎マウンドの支持力の 性能照査には円弧すべり計算が用いられる.この方法に おいて直接浸透流を考慮する設計法は未だ構築されてい ないため,何らかの形で津波浸透流の効果を考慮する必 要がある.

図-5.1 は、Casel-1 において、破壊時の浸透力の向き と大きさを示したものである。矢印の向きに矢印の大き さに相当する浸透力が発生する。ケーソン後趾付近から 港内側の基礎マウンドに着目すると、上向きの浸透力が 発生していることがわかる。上向きの浸透力は、基礎捨 石部分に上向きの物体力として作用するため、見かけ上 は基礎マウンドの有効単位体積重量が減少することにな る。これにより、基礎マウンド内部の有効拘束圧が低下 し、基礎マウンド部分のせん断強度が小さくなることで、 基礎マウンドの極限支持力(抵抗)が低下すると考えら れる。また、ケーソン下部付近には港内側へ向かう水平 方向の浸透力も発生している。水平方向の浸透力は、地 盤や基礎捨石等に対する水平方向の物体力として作用す るため、支持力破壊を起こす側の荷重(作用)が増加す ると考えられる。

円弧すべり計算に浸透流の影響を考慮するにあたって、 津波浸透流は支持力破壊に対して、上述したとおり作用 側にも抵抗側にも影響し、その影響の割合は作用側と抵 抗側に分解できないことや、断面や外力等の条件によっ て一定ではないと考えられることから、津波浸透流の影 響は、作用と抵抗の両者にまとめて考慮できる方法とす ることを考える.基礎マウンドの支持力設計法として、 高橋らのと佐藤ら¹³⁾は腹付工がある場合にも対応した円 弧すべり計算の方法を示している.性能照査式を式 (5.1)から式(5.3)に、荷重の概念図を図-5.2 に示す. 支持力性能照査は式(5.1)に示されるとおり、抵抗値 *R* が荷重値 *S* 以上であることを確認する.そこで性能照査 式を式(5.4)のように変形する.このとき,耐力作用比 *R/Sが*1.0以上であることを確認する式となるが,提案法 では,この耐力作用比 *R/S*の許容値 1.0 を水位差に応じ て割り増すことで,津波浸透流の影響を支持力設計法に 考慮することとする.ここでは第4章の結論に基づき, 耐力作用比 *R/S*の許容値を港内外の水位差が 5mの場合 に1.1,10mの場合に1.2とし,それ以外の水位差につい ては線形補間した値とする.

$$R \ge S \tag{5.1}$$

$$R = \sum \left\{ \frac{cs + (w' + q) \tan \phi}{\cos \theta (1 + \tan \theta \tan \phi / (R/S))} \right\}$$
(5.2)

$$S = \sum \{ (w'+q)\sin\theta \} + \frac{a_{C1}P_{H1} + a_{C2}P_{H2}}{R_R}$$
(5.3)

(5.4)

$$R/S \ge 1.0$$

S:支持力照査における荷重の合計値(kN/m)

- R:支持力照査における抵抗の合計値(kN/m)
- c:粘性土地盤においては非排水せん断強さ,砂 質土地盤の場合においては0,基礎マウンド又 は腹付工(石材)の場合においては排水条件 における見かけの粘着力(kN/m²)
- s:分割細片の幅(m)
- w':分割細片の有効重量(kN/m)(水面上で気中重量、水面下で水中重量)
- q:分割細片に作用する鉛直荷重(kN/m)
 (q_v, P_V を含む)
- θ:分割細片底面が水平面となす角度(°)
- *P*_{H1}: 基礎マウンドに作用する水平荷重(kN/m)
- PH2:腹付工に作用する水平荷重(kN/m) (作用高さは補強体の高さaの1/3の高さ)
- *a*_{C1}: *P*_{H1}の作用位置の円弧すべりのすべり円中心から腕の長さ(m)

5.3 有限要素解析と円弧すべり計算の比較

(1)津波浸透流を考慮しない場合

基礎マウンドの支持力性能照査には、円弧すべり計算 が用いられるが、この計算方法は津波浸透流の影響を考 慮していない.初めに、FEM 解析と円弧すべり計算に 対して、計算手法の違いによる計算結果の違いを確認す るために、浸透流を考慮しない FEM 解析と円弧すべり 計算の結果を比較する.

Case1-1 の計算結果として、図-5.3(a)に浸透流を考慮 しない円弧すべり計算で求められるすべり面を示す.ま た,図-5.3(b)に津波浸透流を考慮しない FEM 解析の変 形図を,図-5.3(c)にせん断応力の分布図を示す.円弧 すべりはケーソンの下面から発生し、基礎マウンドの港 内側法面に向かう形状をしている. FEM 解析の変形図 は、ケーソン下面の基礎マウンド内にせん断ひずみが集 中している様子がわかる. せん断応力についても, 円弧 すべりが発生する付近に大きな値が出ていることがわか る. Case2-1の結果について、図-5.4に示すが、Case1-1 と同様な結果となっている.したがって、浸透流を考慮 しない FEM 解析と円弧すべり計算では、概ね同じ位置 の円弧すべり面を検討しているため、計算結果を比較し た違いは、同じ条件に対する計算手法の違いと見ること ができる. その他のケースについて, FEM 解析の結果 を付録Aに、円弧すべり計算の結果を付録Bに整理する.

図-5.5 に、浸透力を考慮しない場合の、円弧すべり 計算と FEM 解析の極限支持力の比を、港内外の水位差 ごとで整理した結果を示す.極限支持力の比が全て 1.0 を上回っていることから、FEM 解析は、円弧すべり計 算より極限支持力を大きく計算することがわかる.特に、 基礎マウンドが薄い場合(Case1-3, Case2-3)や腹付工 が極端に大きい場合(Case3-5)は、FEM 解析の結果は 円弧すべり計算の結果と乖離が大きくなるが、このメカ ニズムの究明や対策については今後の課題である.

(2)津波浸透流を考慮した場合

基礎マウンドの支持力性能照査に津波浸透流の影響を 考慮する方法として,耐力作用比 R/S の許容値を水位差 に応じて割り増す方法を,5.2 で提案法として示した. 浸透流を考慮した FEM 解析と提案法の結果を比較する ことで,提案法の妥当性について確認する.

Case1-1 の計算結果として、図-5.6(a)に浸透流を考慮 した提案法で求められるすべり面を示す.また、図-5.6(b)に津波浸透流を考慮した FEM 解析の変形図を、図 -5.6(c)にせん断応力の分布図を示す.円弧すべりはケ ーソンの下面から発生し、基礎マウンドの港内側法尻に 向かう形状をしている.FEM 解析の変形図は、ケーソ ン下面の基礎マウンド内にせん断ひずみが集中している 様子がわかる.せん断応力についても、円弧すべりが発 生する付近に大きな値が出ていることがわかる.Case2-1 の結果について、図-5.7 に示すが、Case1-1 と同様な 結果となっている.したがって、浸透流を考慮した FEM 解析と提案法では、概ね同じ位置の円弧すべり面 を検討していることを確認できる.その他のケースにつ いて、FEM 解析の結果を付録Aに、円弧すべり計算の結 果を付録Bに整理する.

図-5.8 に,浸透力を考慮した場合の,提案法と FEM 解析の極限支持力の比を,港内外の水位差ごとで整理し た結果を示す.極限支持力の比が全て 1.0 を上回ってい ることから,浸透流を考慮した FEM 解析は,浸透流の 影響を考慮した提案法より極限支持力を大きく計算する ことがわかる.

浸透流を考慮しない円弧すべり計算結果と FEM 解析 結果の比較から,計算手法による計算結果の違いを確認 したところ,FEM 解析の方が極限支持力を平均で2割程 度大きく計算することがわかった.浸透流を考慮した FEM 解析と提案法の結果においても,FEM 解析の方が 極限支持力を平均で2割程度大きく計算することが確認 された.したがって,(1)で述べた浸透流を考慮しない 場合の,計算手法の違いによる計算結果の比率と同等で あり,提案法でも浸透流の影響をうまく評価できている.

なお,基礎マウンドが薄い場合(Case1-3, Case2-3) やケーソン幅が広い場合(Case1-4),腹付工が極端に 大きい場合(Case3-5)は,FEM解析の結果は円弧すべ り計算の結果と乖離が大きくなるが,このメカニズムの 究明や対策については,浸透流を考慮しない場合同様, 今後の課題である.

図-5.5 円弧すべり計算と FEM 解析(浸透流無し)の極限支持力の比

5.4 提案法の適用範囲に関する注意点

本提案法の適用範囲に関する注意点を以下に示す.

①本提案法は、津波が越流する場合を対象としており、 作用として「防波堤の耐津波設計ガイドライン²⁾」にお ける「静水圧差による算定式(静水圧補正係数も所与)」 を用いた場合を想定している.このため、津波が越流し ない場合や、「静水圧差による算定式」以外を用いる場 合には、その適用性について確認が必要である.

②本提案法は、本文中に示す防波堤の断面諸元と図-5.8に示す水位差の範囲のFEM解析に基づき構築された ものである.また、港内側基礎マウンドの被覆材等を考 慮しておらず、被覆材は透水性が極めて大きいことを前 提としている.このため、対象とする防波堤の断面諸元 や水位差等が、上述した条件と大きく異なる場合には、 その適用性について確認が必要である.

6. 結論

本研究では,複数の防波堤断面に対して有限要素法を 用いた数値計算を実施し,津波浸透流が基礎マウンドの 極限支持力低下に与える影響を定量的に検討した.また, 津波浸透流の影響を,H19技術基準で支持力性能照査に 用いられている簡易ビショップ法を用いた円弧すべり計 算へ考慮する方法を検討し,津波浸透流の影響を考慮し た設計法を提案した.本研究の結論は以下のとおりであ る.

有限要素法を用いた検討の結果,本研究で対象とした 防波堤の断面諸元の範囲では,浸透流の影響により基礎 マウンドの極限支持力は低下し,その低下程度は防波堤 の港内外の水位差と関係があり,港内外の水位差が 5m で最大1割程度,10m で最大2割程度の低下であること を示した.この結果は,既往の遠心模型実験の結果と同 様であった.

提案法は、簡易ビショップ法による円弧すべり計算に 対して、耐力作用比 R/S の許容値を港内外の水位差に応 じて割り増すことで、円弧すべり計算に対して津波によ って発生する浸透流による基礎マウンドの極限支持力低 下を間接的に考慮するものである.提案法の妥当性につ いては、浸透流を考慮しない FEM 解析と円弧すべり計 算結果との比較により評価された計算手法の違いに起因 する極限支持力の余裕代(図-5.5 の平均 19%)が、浸 透流を考慮した FEM 解析と提案法による計算結果との 比較においても確保(図-5.8 の平均 24%)されている ことにより確認された.

7. おわりに

本研究で示した,支持力の耐力作用比 R/S の許容値を 割り増す方法は,防波堤の断面形状に依らず,FEM 解 析結果や既往の実験結果より少なくとも安全側となるよ うに設定している.そのため,断面形状によっては, FEM 解析結果や既往の実験結果と同等の結果の場合も あれば,かなり安全側の場合もある.したがって,今後, 浸透流の影響を耐力作用比の許容値に精緻に加味すれば, 断面形状によっては更に合理的な断面形状にできる可能 性もある.そのためには,計算上において津波浸透流の 影響が大きいパラメータの把握や津波条件や断面条件に よる違いの把握,および津波浸透流による支持力メカニ ズムの解明等が期待される.また,腹付工を含む基礎マ ウンドの更に合理的な形状を選択する手法として,FEM 解析手法の一般化も今後の成果として期待される.

(2017年8月31日受付)

謝辞

本稿をとりまとめるにあたり,港湾研究部の交流研究 員である高野向後氏,勝俣優氏,田端優憲氏には,本稿 の執筆方針および検討内容に対して貴重な意見を頂きま した.ここに記して,深く感謝の意を表します.

参考文献

- 日本港湾協会:港湾の施設の技術上の基準・同解説, 2007.
- 2)国土交通省港湾局:防波堤の耐津波設計ガイドライン, 2013.
- 3)今瀬達也,前田健一,三宅達夫,鶴ヶ崎和博,澤田 豊,角田紘子:捨石マウンドー海底地盤への津波浸 透による混成堤の不安定化,土木学会論文集B2(海 岸工学), Vol.67, No.2, 2011, pp.I 551-I 555.
- 4)笠間清伸,善功企,春日井康夫:浸透流に着目した ケーソン式混成防波堤の安定性に関する水理模型実 験,土木学会論文集B2(海岸工学), Vol.69, No.2, 2013, pp.I 966-I 970.
- 5)高橋英紀, 佐々真志, 森川嘉之, 高野大樹:津波に よる浸透作用下の防波堤基礎地盤の安定性に関する 研究, 港湾空港技術研究所報告, Vol.52, No.2, 2013.

6)高橋英紀, 佐々真志, 森川嘉之, 渡部要一, 高野大

樹:津波に対するケーソン式防波堤マウンドと腹付 工の安定性,港湾空港技術研究所報告, Vol.54, No.2, 2015.

- 7)沿岸開発技術研究センター: GeoFem (地盤解析汎用 プログラム) マニュアル, 1997.
- 8)小林正樹:有限要素法による地盤の安定解析,港湾 技術研究所報告, Vol.23, No.1, 1984, pp.83-102.
- 9)沿岸技術研究センター:地盤解析汎用プログラム (GeoFem)改良版,

http://www.cdit.or.jp/program/geo.html, 2017.

- 10)小林正樹, 寺師昌明, 高橋邦夫, 中島謙二郎, 小谷 拓:捨石マウンドの支持力の新しい計算法, 港湾技 術研究所報告, Vol.26, No.2, 1987, pp.371-411.
- Takahashi, H., Sassa, S., Morikawa, Y., and Takano, D.: Bearing capacity of breakwater mound under tsunamiinduced seepage flow, Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls, Springer, 2017, pp.27-36.
- 12)公益社団法人地盤工学会:入門シリーズ32 斜面の安定・変形解析入門一基礎から実例まで一,2006, pp.43-50.
- 13)佐藤健彦,宮田正史,高橋英紀,竹信正寛,下迫健 一郎,鈴木高二朗:腹付工を有する防波堤の耐波設 計法の提案,国土技術政策総合研究所資料,No.954, 2017.

付録 A 有限要素法を用いた数値計算結果

浸透力を作用させた場合と作用させない場合について, FEM解析の結果を示す.図-A.1から図-A.13に水平力と 水平変位の関係図を示す.津波に対して防波堤が極限支 持力を発揮する時(以下,「破壊時」という.)におけ る変形図を,図-A.14から図-A.26に示す.また,この 時のせん断応力 *t*_{sy}の分布図について,浸透力を考慮し ない場合を図-A.27から図-A.39に,浸透力を考慮する 場合を図-A.40から図-A.52に示し,浸透力 *i*_{sy}の分布図 を図-A.53から図-A.65に示す.浸透力については,同 じ水位差における比較のために,水位差が 6.4mの場合 の浸透力 *i*_{sy}の分布図を図-A.66から図-A.78に示す.

1. 水平力~水平変位の関係

図-A.4 水平力~水平変位関係【Case1-4】

図-A.6 水平力~水平変位関係【Case2-2】

図-A.7 水平力~水平変位関係【Case2-3】

図-A.8 水平力~水平変位関係【Case2-4】

500

- 浸透力無し

図-A.12 水平力~水平変位関係【Case3-4】

図-A.13 水平力~水平変位関係【Case3-5】

2. 変形図(破壊時)

図-A.17 変形図【Case1-4】

図-A.19 変形図【Case2-2】

図-A.20 変形図【Case2-3】

図-A.21 変形図【Case2-4】

図-A.22 変形図【Case3-1】

図-A.23 変形図【Case3-2】

図-A.25 変形図【Case3-4】

- 28 -

5. 浸透力分布図(破壊時)

6. 浸透力分布図(水位差 6.4m で比較)

- 33 -

付録 B 円弧すべり計算を用いた支持力検討結果

浸透流を考慮しない場合の支持力検討結果を表-B.1 に,提案法を用いて浸透流を考慮した場合の支持力計算 結果を表-B.2に示す.

表-B.1 の計算結果の詳細を表-B.3 から表-B.15 に示 し,この時の円弧すべりの発生位置を,図-B.1 から図-B.13に示す.表-B.2の計算結果の詳細を表-B.16から表 -B.28 に示し,この時の円弧すべりの発生位置を,図-B.14 から図-B.26 に示す.

	浸透流を考慮しない場合						
検討 ケース		円弧すべり)計算結果	FEM 解	析結果	極限支持力の比	
	水位差	極限支持力 (水平力)	耐力作月 許容値	用比 <i>R/S</i> 計算値	水位差	極限支持力 (水平力)	FEM解析 円弧すべり
Case1-1	6.5	1,128	1.00	1.00	7.2	1,246	1.11
Case1-2	6.7	986	1.00	1.00	8.2	1,209	1.23
Case1-3	6.0	1,043	1.00	0.99	7.6	1,314	1.26
Case1-4	14.2	2,435	1.00	1.00	15.8	2,706	1.11
Case2-1	10.0	1,722	1.00	1.00	11.8	2,027	1.18
Case2-2	10.3	1,524	1.00	1.00	12.6	1,862	1.22
Case2-3	9.6	1,654	1.00	1.00	12.0	2,061	1.25
Case2-4	19.2	3,283	1.00	1.00	—	—	—
Case3-1	11.8	2,027	1.00	1.00	13.8	2,367	1.17
Case3-2	8.6	1,484	1.00	1.00	10.2	1,756	1.18
Case3-3	8.9	1,527	1.00	1.00	10.4	1,790	1.17
Case3-4	10.5	1,810	1.00	1.00	12.0	2,061	1.14
Case3-5	15.5	2,655	1.00	1.00	20.2	3,453	1.30

表-B.1 浸透流を考慮しない場合の支持力検討結果

平均: 1.19

※Case2-4 は平均の対象外

	浸透流を考慮した場合							
検討 ケース	μ]弧すべり計算	結果(提案法)	FEM解	析結果	極限支持力の比		
	水位差	極限支持力 (水平力)	耐力作) 許容値	用比 <i>R/S</i> 計算値	水位差	極限支持力 (水平力)	FEM解析 円弧すべり	
Case1-1	5.6	978	1.13	1.13	6.4	1,111	1.14	
Case1-2	5.9	867	1.14	1.14	7.2	1,060	1.22	
Case1-3	5.2	907	1.14	1.15	7.2	1,246	1.37	
Case1-4	10.4	1,791	1.27	1.27	13.4	2,299	1.28	
Case2-1	8.5	1,467	1.20	1.20	10.0	1,722	1.17	
Case2-2	8.8	1,298	1.22	1.22	10.8	1,595	1.23	
Case2-3	8.1	1,396	1.22	1.22	11.0	1,892	1.36	
Case2-4	13.5	2,316	1.36	1.36	17.8	3,046	1.32	
Case3-1	9.9	1,701	1.24	1.24	11.8	2,027	1.19	
Case3-2	7.1	1,229	1.17	1.17	8.6	1,484	1.21	
Case3-3	7.6	1,314	1.18	1.18	9.0	1,552	1.18	
Case3-4	9.1	1,569	1.21	1.21	10.4	1,790	1.14	
Case3-5	11.9	2,044	1.32	1.31	16.0	2,740	1.34	

表-B.2 浸透流を考慮した場合の支持力検討結果

平均: 1.24

※Case2-4 は平均の対象外

1. 支持力検討結果(浸透流を考慮しない場合)

表-B.3 浸透流を考慮しない

支持力検討結果【Case1-1】

	定義	記号	単位	値
	堤体天端幅	B'	m	10.00
	堤体前面における水深	hc	m	12.00
	フーチング幅	b _F	m	1.50
	フーチング高	h_F	m	1.50
堤	腹付工の高さ	a	m	0.00
14-	提体単位体積重量(気中)	Ϋ́c	kN/m ³	21.00
		7 C f	Ki () III	0.75
	■「小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小	W	kN/m	3 454 50
	但休底五幅	R	m (111	13.00
	堤中区画幅 熱水盃上の前面沖波真さ	<i>D</i>	m	6.50
	静水面上の削固律仮向さ 約水面上の北面決定す	η_f		0.50
		<i>1</i> / <i>r</i>		12.00
	堤(半の))) 国にわける水休 ともの当たけまま見	n	III 111/ 3	12.00
	海水の単位体積重量	ρ_{0g}	kN/m ³	10.10
	静水面から直立壁大端面までの局さ	h _C	m	4.00
波	係数	a _I		1.05
庄	係数	a _{IB}		0.90
	静水面における前面波圧強度	<i>p</i> ₁	kN/m ³	196.28
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	26.52
	静水面における背面波圧強度	<i>p</i> 3	kN/m ³	109.13
	フーチング上面における波圧(前面)	p'_1	kN/m ³	180.36
	フーチング上面における波圧(背面)	p'_3	kN/m ³	95.49
	前面波力	PI	kN/m	1,782
	背面波力	P _B	kN/m	655
	浮力	P _B	kN/m	1,662
合	堤体重量	W	kN/m	3,455
力		P'_{f}	kN/m	271
	後側アーチング上面波力	P'_r	kN/m	143
		P _v	kN/m	0
	<u></u> 腹付工の滑動抵抗力	Rs	kN/m	0
	前面波力モーメント	M _{B1}	kN/m	10.638
	背面波力モーメント	Map	kN/m	2.619
千	浮力合力チーメント	M pB	kN/m	10 804
ī	世休重号チーメント	<i>M</i>	kN/m	22.454
メ	売伊里里 アンド 	M	kN/m	3 314
ント	前側/ パ/ 上面扱力モーアント	M Pf	kN/m	107
1.	後側/ /// 上面扱力で アント 時盃廠搬に上て共手て、コント	M P'r	l/m	107
	空山岸像による何里モーアント	M P'r		0
	腹竹工の有動抵抗力によるモーメント	IVI Rs	KIN/III	10
		r	137/	1.0
	基礎マワンドに作用する水平荷重	Pa	kN/m	1,128
	腹付工に作用する水平荷重	Pb	kN/m	0
	腹付工に作用する鉛直荷重	Pv	kN/m	0
+-	判定			0.K.
メ持	分割細片に作用する上載荷重	q	kN/m ²	345
力	載荷幅	2b'	m	6.40
	基礎マウンドに作用する水平荷重	Н	kN/m	1,128
	腹付工に作用する水平荷重	Pb	kN/m	0
	腹付工に作用する鉛直荷重	Pv	kN/m	0
	耐力作用比(許容値)			1.000
		R/S		0.996

表−B.4 浸透流を考慮しない

支持力検討結果【Case1-2】

	定義	記号	単位	値
	堤体天端幅	B'	m	10.00
	堤体前面における水深	hc	m	12.00
堤体	フーチング幅	b _F	m	1.50
	フーチング高	h _F	m	1.50
		а	m	0.00
	堤体単位体積重量(気中)	Ϋ́c	kN/m ³	21.00
	 摩擦係数(摩擦増大マット)	f		0.75
		W	kN/m	3,034.50
		В	m	13.00
	静水面上の前面津波高さ	η_f	m	6.70
	静水面上の背面津波高さ	η_r	m	0.00
		h'	m	10.00
		ρ_{0g}	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波	係数	a 1		1.05
圧	係数	a _B		0.90
	 静水面における前面波圧強度	<i>p</i> ₁	kN/m ³	177.18
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	28.65
	静水面における背面波圧強度	<i>p</i> 3	kN/m ³	90.94
	フーチング上面における波圧(前面)	p'_{1}	kN/m ³	161.26
	フーチング上面における波圧(背面)	p'3	kN/m ³	77.30
	前面波力	PI	kN/m	1,441
	背面波力	Р _в	kN/m	455
	浮力	P _B	kN/m	1.460
合		W	kN/m	3,035
力	前側フーチング上面波力	P'_{ℓ}	kN/m	242
	後側フーチング上面波力	P'_r	kN/m	116
	壁面摩擦による荷重	P _v	kN/m	0
	<u> </u>	Rs	kN/m	0
	前面波力モーメント	M _{PI}	kN/m	10,004
	背面波力モーメント	M _{PB}	kN/m	2,183
モ	浮力合力モーメント	M _{PII}	kN/m	9.490
1	堤体重量モーメント	M _W	kN/m	19.724
メ	前側フーチングと面波カモーメント	M BYC	kN/m	2.963
ŀ	後側7-チング上面波力モーメント	M _{P'n}	kN/m	87
	壁面摩擦による荷重モーメント	M _{B'n}	kN/m	0
	腹付工の滑動抵抗力によるモーメント	M _P	kN/m	0
	荷重分担比	r		1.0
	<u>基礎マウンドに作用する水平荷</u> 重	Pa	kN/m	986
	腹付工に作用する水平荷重	Ph	kN/m	0
	腹付工に作用する鉛直荷重	Pv	kN/m	0
	判定	- /	<u> </u>	0 K
支		a	kN/m ²	341
持		$\frac{1}{2b'}$	m	5.66
Л	基礎マウンドに作用する水 平荷 重	_0 H	kN/m	986
	<u> </u> 腹付丁に作用する水亚荷重	Ph	kN/m	0
	腹付工に作用する鉛直荷重	P_{ν}	kN/m	0
	耐力作用比(許容值)	- *		1 000
	耐力作用比(計算值)	R/S		1.002

表-B.5 浸透流を考慮しない

支持力検討結果【Case1-3】

	定義	記号	単位	値
	堤体天端幅	B'	m	10.00
	堤体前面における水深	hc	m	12.00
	フーチング幅	b _F	m	1.50
	フーチング高	h _F	m	1.50
堤休	腹付工の高さ	а	m	0.00
14.	堤体単位体積重量(気中)	γ _c	kN/m ³	21.00
	摩擦係数(摩擦増大マット)	f		0.75
	堤体気中重量	W	kN/m	3,454.50
	堤体底面幅	В	т	13.00
	静水面上の前面津波高さ	η_f	m	6.00
	静水面上の背面津波高さ	η_r	m	0.00
	堤体の前面における水深	h'	m	12.00
	海水の単位体積重量	$\rho_{0}g$	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波	係数	a _I		1.05
圧	係数	a _{IB}		0.90
		p_1	kN/m ³	190.97
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	21.22
		<i>p</i> 3	kN/m ³	109.13
	フーチング上面における波圧(前面)	p'_1	kN/m ³	175.06
	フーチング上面における波圧(背面)	p'_3	kN/m ³	95.49
	前面波力	PI	kN/m	1,698
		P _B	kN/m	655
	 浮力	P _B	kN/m	1,662
合		W	kN/m	3,455
力	前側フーチング上面波力	P'_{f}	kN/m	263
	後側フーチング上面波力	P'_r	kN/m	143
	 壁面摩擦による荷重	P _V	kN/m	0
		Rs	kN/m	0
	前面波力モーメント	M _{PI}	kN/m	9,959
	ず面波力モーメント	M _{PB}	kN/m	2,619
モ	 浮力合力モーメント	M_{PU}	kN/m	10,804
1	堤体重量モーメント	M_{W}	kN/m	22,454
メン	前側フーチング上面波力モーメント	M _{Pf}	kN/m	3,217
ŀ	後側フーチング上面波力モーメント	M P'r	kN/m	107
	壁面摩擦による荷重モーメント	M _{P'r}	kN/m	0
	腹付工の滑動抵抗力によるモーメント	M _{Rs}	kN/m	0
	荷重分担比	r		1.0
	基礎マウンドに作用する水平荷重	Pa	kN/m	1,043
	腹付工に作用する水平荷重	Pb	kN/m	0
		Pv	kN/m	0
				O.K.
支	分割細片に作用する上載荷重	q	kN/m ²	317
持力	載荷幅	2b'	m	6.94
/ 5	基礎マウンドに作用する水平荷重	Н	kN/m	1,043
	腹付工に作用する水平荷重	Pb	kN/m	0
	腹付工に作用する鉛直荷重	Pv	kN/m	0
	耐力作用比(許容値)			1.000
	耐力作用比(計算值)	R/S		0.992

表−B.6 浸透流を考慮しない

支持力検討結果【Case1-4】

	定義	記号	単位	値
	堤体天端幅	B'	m	20.00
	堤体前面における水深	hc	m	12.00
堤体	フーチング幅	b _F	m	1.50
	フーチング高	h _F	m	1.50
	腹付工の高さ	а	m	0.00
	堤体単位体積重量(気中)	Ŷc	kN/m ³	21.00
	摩擦係数(摩擦増大マット)	f		0.75
	堤体気中重量	W	kN/m	6,814.50
	堤体底面幅	В	т	23.00
	静水面上の前面津波高さ	η_f	m	14.20
	静水面上の背面津波高さ	η_r	m	0.00
		h'	m	12.00
	海水の単位体積重量	ρ_{0g}	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	$h_{\rm C}$	m	4.00
波	係数	a 1		1.05
圧	係数	a _{IB}		0.90
	静水面における前面波圧強度	D 1	kN/m ³	277.97
	場体上端部における前面波圧強度	p_2	kN/m ³	108.22
	静水面における背面波圧強度	D 3	kN/m ³	109.13
	フーチング上面における波圧(前面)	D'1	kN/m ³	262.06
	フーチング上面における波圧(背面)	p'2	kN/m ³	95.49
-	前面波力	P_{I}	kN/m	3.089
	背面波力	P _P	kN/m	655
	浮力	P _P	kN/m	3.279
	堤体重量	W	kN/m	6.815
力	前側7-fング上面波力	P'_{f}	kN/m	393
	後側7-チング上面波力	P'.	kN/m	143
	田本(1) 昭本(1) 昭本(1)	P _V	kN/m	0
	腹付工の滑動抵抗力	Rs	kN/m	0
	前面波力モーメント	M _{PI}	kN/m	21.095
	背面波力モーメント	Mpp	kN/m	2.619
モ	浮力合力モーメント	M _{PU}	kN/m	37.707
1	堤体重量モーメント	M _w	kN/m	78.367
メ	前側フーチングト面波力チーメント	M pro	kN/m	8 746
ト	後側フーチング上面波力モーメント	M _P	kN/m	107
	府面を換による荷面モーメント	M pr	kN/m	0
	<u> 車間序派になる時里で </u> シレー	M _P	kN/m	0
	荷重分担比	r		1.0
	基礎マウンドに作用する水平荷重	Pa	kN/m	2 435
	腹付工に作用する水平荷重	Ph	kN/m	0
	腹付工に作用する鉛直荷重	P _v	kN/m	0
支持,	判定	- /	<u>m o m</u>	<u>ОК</u>
	分割細片に作用する上載荷重	a	kN/m ²	267
	載荷幅	$\frac{4}{2h'}$	m	15.24
Л	基礎マウンドに作用する水平荷重	 H	kN/m	2.435
	腹付丁に作用する水亚荷重	Ph	kN/m	0
	腹付工に作用する鉛直荷重	Pv	kN/m	0
	耐力作用比(許容值)	- 1		1 000
	耐力作用比(計算值)	R/S		1.002
				1.002

表-B.7 浸透流を考慮しない

支持力検討結果【Case2-1】

	定義	記号	単位	値
	堤体天端幅	B'	m	10.00
	堤体前面における水深	hc	m	12.00
	フーチング幅	b_F	m	1.50
	フーチング高	h_F	m	1.50
堤休	腹付工の高さ	а	m	5.33
144	堤体単位体積重量(気中)	Ϋ́c	kN/m ³	21.00
		f		0.75
	堤体気中重量	W	kN/m	3,454.50
		В	m	13.00
	静水面上の前面津波高さ	n e	m	10.00
	静水面上の背面津波高さ	η.	m	0.00
	堤体の前面における水深	h'	m	12.00
	海水の単位体積重量	Pog	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	$h_{\rm C}$	m	4.00
波	係数	a ₁		1.05
匠	係数	а _{тв}		0.90
	静水面における前面波圧強度	<i>p</i> ₁	kN/m ³	233.41
	場体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	63.66
	 静水面における背面波圧強度	D 3	kN/m ³	109.13
	フーチング上面における波圧(前面)	<i>p</i> ' ₁	kN/m ³	217.50
	フーチング上面における波圧(背面)	p'_{3}	kN/m ³	95.49
	前面波力	P_1	kN/m	2,377
	背面波力	Р _Р	kN/m	655
	浮力	P _B	kN/m	1.662
合		W	kN/m	3,455
力		P'_{f}	kN/m	326
	後側フーチング上面波力	P'_r	kN/m	143
	壁面摩擦による荷重	P _v	kN/m	206
		Rs	kN/m	770
	前面波力モーメント	M _{PI}	kN/m	15,391
	背面波力モーメント	M _{PB}	kN/m	2,619
モ	浮力合力モーメント	M _{PU}	kN/m	10,804
1	堤体重量モーメント	M _w	kN/m	22,454
メ	前側フーチング上面波力モーメント	M P'f	kN/m	3,996
ĥ	後側フーチング上面波力モーメント	M _{P'r}	kN/m	107
	壁面摩擦による荷重モーメント	M _{P'r}	kN/m	0
	腹付工の滑動抵抗力によるモーメント	M _{Rs}	kN/m	1,368
	荷重分担比	r		0.56
	基礎マウンドに作用する水平荷重	Pa	kN/m	964
	腹付工に作用する水平荷重	Pb	kN/m	758
	腹付工に作用する鉛直荷重	Pv	kN/m	203
	判定			O.K.
支	分割細片に作用する上載荷重	q	kN/m ²	490
持力	載荷幅	2b'	m	4.20
<i>)</i> J	基礎マウンドに作用する水平荷重	Н	kN/m	964
		Pb	kN/m	758
	腹付工に作用する鉛直荷重	Pv	kN/m	203
	耐力作用比(許容値)			1.000
	耐力作用比(計算值)	R/S		1.003

表-B.8 浸透流を考慮しない

支持力検討結果【Case2-2】

	定義	記号	単位	値
	堤体天端幅	B'	m	10.00
堤体	堤体前面における水深	hc	m	12.00
	フーチング幅	b _F	m	1.50
	フーチング高	h _F	m	1.50
		а	m	5.33
	堤体単位体積重量(気中)	Ŷc	kN/m ³	21.00
		f		0.75
	堤体気中重量	W	kN/m	3,034.50
		В	т	13.00
	静水面上の前面津波高さ	η_f	m	10.32
	静水面上の背面津波高さ	η_r	m	0.00
		h'	m	10.00
		$\rho_{0}g$	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波		a _I		1.05
圧	係数	a _{IB}		0.90
	静水面における前面波圧強度	p_1	kN/m ³	215.59
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	67.05
	静水面における背面波圧強度	<i>p</i> ₃	kN/m ³	90.94
	フーチング上面における波圧(前面)	p'_{1}	kN/m ³	199.67
	フーチング上面における波圧(背面)	p'_{3}	kN/m ³	77.30
	前面波力	PI	kN/m	1,978
	背面波力	P _B	kN/m	455
	浮力	P _B	kN/m	1,460
合		W	kN/m	3,035
力		P'_{f}	kN/m	300
	後側フーチング上面波力	P'_r	kN/m	116
	 壁面摩擦による荷重	P _v	kN/m	206
		Rs	kN/m	770
	前面波力モーメント	M _{PI}	kN/m	14,920
	背面波力モーメント	M _{PB}	kN/m	2,183
モ	浮力合力モーメント	M _{PU}	kN/m	9,490
1	堤体重量モーメント	M _w	kN/m	19,724
メ	前側フーチング上面波力モーメント	M P'f	kN/m	3,669
ŀ	後側フーチング上面波力モーメント	M _{P'r}	kN/m	87
	壁面摩擦による荷重モーメント	M _{P'r}	kN/m	0
	腹付工の滑動抵抗力によるモーメント	M _{Rs}	kN/m	1,368
	荷重分担比	r		0.50
	基礎マウンドに作用する水平荷重	Pa	kN/m	762
	<u> </u> 腹付工に作用する水平荷重	Pb	kN/m	762
	腹付工に作用する鉛直荷重	Pv	kN/m	204
支持力	判定			O.K.
	分割細片に作用する上載荷重	q	kN/m ²	612
	載荷幅	2b'	m	2.92
75	基礎マウンドに作用する水平荷重	Н	kN/m	762
	腹付工に作用する水平荷重	Pb	kN/m	762
	腹付工に作用する鉛直荷重	Pv	kN/m	204
	耐力作用比(許容值)			1.000
	耐力作用比(計算值)	R/S		0.998

表-B.9 浸透流を考慮しない

支持力検討結果【Case2-3】

	定義	記号	単位	値
	堤体天端幅	B'	m	10.00
	堤体前面における水深	hc	m	12.00
	 フーチング幅	b _F	m	1.50
	フーチング高	h _F	m	1.50
堤休	腹付工の高さ	а	m	5.33
1444	堤体単位体積重量(気中)	Υc	kN/m ³	21.00
	摩擦係数(摩擦増大マット)	f		0.75
	堤体気中重量	W	kN/m	3,454.50
	堤体底面幅	В	m	13.00
	静水面上の前面津波高さ	η_f	m	9.60
	静水面上の背面津波高さ	η_r	m	0.00
		h'	m	12.00
		ρ_{0g}	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波	係数	a _I		1.05
圧	係数	a _{IB}		0.90
	静水面における前面波圧強度	p_1	kN/m ³	229.17
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	59.41
	静水面における背面波圧強度	<i>p</i> 3	kN/m ³	109.13
	フーチング上面における波圧(前面)	p'_{1}	kN/m ³	213.25
	フーチング上面における波圧(背面)	p'_3	kN/m ³	95.49
	前面波力	PI	kN/m	2,309
	背面波力	P _B	kN/m	655
	浮力	P _B	kN/m	1,662
合	堤体重量	W	kN/m	3,455
力	前側フーチング上面波力	P'_{f}	kN/m	320
	後側フーチング上面波力	P'_r	kN/m	143
	壁面摩擦による荷重	P _V	kN/m	206
		Rs	kN/m	770
	前面波力モーメント	M _{PI}	kN/m	14,848
	背面波力モーメント	M _{PB}	kN/m	2,619
モ	浮力合力モーメント	MPU	kN/m	10,804
1	堤体重量モーメント	M _w	kN/m	22,454
*	前側フーチング上面波力モーメント	M P'f	kN/m	3,918
ŀ	後側フーチング上面波力モーメント	M P'r	kN/m	107
	壁面摩擦による荷重モーメント	M _{P'r}	kN/m	0
	腹付工の滑動抵抗力によるモーメント	M _{Rs}	kN/m	1,368
	荷重分担比	r		0.54
	基礎マウンドに作用する水平荷重	Pa	kN/m	893
	腹付工に作用する水平荷重	Pb	kN/m	761
	腹付工に作用する鉛直荷重	Pv	kN/m	204
	判定			O.K.
支	分割細片に作用する上載荷重	q	kN/m ²	438
行力	載荷幅	2b'	m	4.68
<i>,</i> ,	基礎マウンドに作用する水平荷重	Н	kN/m	893
	腹付工に作用する水平荷重	Pb	kN/m	761
	腹付工に作用する鉛直荷重	Pv	kN/m	204
	耐力作用比(許容値)			1.000
	耐力作用比(計算値)	R/S		1.003

表-B.10 浸透流を考慮しない

支持力検討結果【Case2-4】

	定義	記号	単位	値
	堤体天端幅	B'	m	20.00
		hc	m	12.00
堤体	フーチング幅	b _F	m	1.50
	フーチング高	h _F	m	1.50
	腹付工の高さ	а	m	5.33
	堤体単位体積重量(気中)	Ŷc	kN/m ³	21.00
	 摩擦係数(摩擦増大マット)	f		0.75
	堤体気中重量	W	kN/m	6,814.50
	堤体底面幅	В	m	23.00
	静水面上の前面津波高さ	η_f	m	19.20
	静水面上の背面津波高さ	η_r	m	0.00
		h'	m	12.00
	 海水の単位体積重量	$\rho_{0}g$	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波		a _I		1.05
圧		a _{IB}		0.90
	静水面における前面波圧強度	p_1	kN/m ³	331.02
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	161.26
		<i>p</i> 3	kN/m ³	109.13
	フーチング上面における波圧(前面)	p'_1	kN/m ³	315.10
	フーチング上面における波圧(背面)	p'_3	kN/m ³	95.49
	前面波力	PI	kN/m	3,938
	背面波力	P _B	kN/m	655
	浮力	P _B	kN/m	3,279
合		W	kN/m	6,815
力		P'_{f}	kN/m	473
	後側フーチング上面波力	P'_r	kN/m	143
		P _v	kN/m	206
		Rs	kN/m	770
-	前面波力モーメント	M _{PI}	kN/m	27,885
		M _{PB}	kN/m	2,619
モ	浮力合力モーメント	M _{PU}	kN/m	37,707
1	堤体重量モーメント	M _W	kN/m	78,367
*		M _{P'f}	kN/m	10,517
ŀ	後側フーチング上面波力モーメント	M _{P'r}	kN/m	107
	壁面摩擦による荷重モーメント	M _{P'r}	kN/m	0
		M _{Rs}	kN/m	1,368
	荷重分担比	r		0.77
	基礎マウンドに作用する水平荷重	Pa	kN/m	2,528
		Pb	kN/m	755
	腹付工に作用する鉛直荷重	Pv	kN/m	202
	判定			O.K.
支	分割細片に作用する上載荷重	q	kN/m ²	285
持力	載荷幅	2b'	m	13.86
75	基礎マウンドに作用する水平荷重	Н	kN/m	2,528
	腹付工に作用する水平荷重	Pb	kN/m	755
		Pv	kN/m	202
	耐力作用比(許容値)			1.000
	耐力作用比(計算值)	R/S		1.002

表-B.11 浸透流を考慮しない

支持力検討結果【Case3-1】

	定義	記号	単位	値
	堤体天端幅	B'	m	10.00
	堤体前面における水深	hc	m	12.00
	フーチング幅	b _F	m	1.50
堤 体	フーチング高	h _F	m	1.50
	腹付工の高さ	а	m	5.33
	堤体単位体積重量(気中)	Ŷc	kN/m ³	21.00
	摩擦係数(摩擦増大マット)	f		0.75
	堤体気中重量	W	kN/m	3,454.50
	堤体底面幅	В	т	13.00
	静水面上の前面津波高さ	η_f	m	11.80
	静水面上の背面津波高さ	η_r	m	0.00
	堤体の前面における水深	h'	m	12.00
	海水の単位体積重量	$\rho_{0}g$	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波	係数	a _I		1.05
圧	係数	a _{IB}		0.90
		p_1	kN/m ³	252.51
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	82.75
		<i>p</i> ₃	kN/m ³	109.13
	フーチング上面における波圧(前面)	p'_1	kN/m ³	236.59
	フーチング上面における波圧(背面)	p'_3	kN/m ³	95.49
	前面波力	P _I	kN/m	2,682
		P _B	kN/m	655
	 浮力	P _B	kN/m	1,662
合	堤体重量	W	kN/m	3,455
力	前側フーチング上面波力	P'_{f}	kN/m	355
	後側フーチング上面波力	P'_r	kN/m	143
	 壁面摩擦による荷重	P _V	kN/m	303
		Rs	kN/m	1,130
	前面波力モーメント	M _{PI}	kN/m	17,835
	ず面波力モーメント	M _{PB}	kN/m	2,619
モ	 浮力合力モーメント	M_{PU}	kN/m	10,804
)	堤体重量モーメント	M _W	kN/m	22,454
メン	前側フーチング上面波力モーメント	M _{Pf}	kN/m	4,347
۰ ۲	後側フーチング上面波力モーメント	M P'r	kN/m	107
	壁面摩擦による荷重モーメント	M P'r	kN/m	0
		M _{Rs}	kN/m	2,008
	荷重分担比	r		0.5
	基礎マウンドに作用する水平荷重	Pa	kN/m	1,014
	腹付工に作用する水平荷重	Pb	kN/m	1,014
		Pv	kN/m	272
	———————————————————— 判定			O.K.
支	分割細片に作用する上載荷重	q	kN/m ²	759
行力	載荷幅	2b'	m	2.66
//	基礎マウンドに作用する水平荷重	Н	kN/m	1,014
	腹付工に作用する水平荷重	Pb	kN/m	1,014
	腹付工に作用する鉛直荷重	Pv	kN/m	272
	耐力作用比(許容値)			1.000
	耐力作用比(計算值)	R/S		1.004

表-B.12 浸透流を考慮しない

支持力検討結果【Case3-2】

	定義	記号	単位	値
	堤体天端幅	B'	m	10.00
堤体	堤体前面における水深	hc	m	12.00
	フーチング幅	b_F	m	1.50
	フーチング高	h _F	m	1.50
	腹付工の高さ	а	m	5.33
	堤体単位体積重量 (気中)	Ŷc	kN/m ³	21.00
	摩擦係数(摩擦増大マット)	f		0.75
	堤体気中重量	W	kN/m	3,454.50
	堤体底面幅	В	m	13.00
	静水面上の前面津波高さ	η_{f}	m	8.60
	静水面上の背面津波高さ	η_r	m	0.00
		h'	m	12.00
	 海水の単位体積重量	$\rho_{0}g$	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波		a _I		1.05
圧		a _{IB}		0.90
		p_1	kN/m ³	218.56
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	48.80
		<i>p</i> 3	kN/m ³	109.13
	フーチング上面における波圧(前面)	p'_1	kN/m ³	202.64
	フーチング上面における波圧(背面)	p'_3	kN/m ³	95.49
	前面波力	PI	kN/m	2,139
	背面波力	P _B	kN/m	655
	 浮力	P _B	kN/m	1,662
合		W	kN/m	3,455
力		P'_{f}	kN/m	304
	後側フーチング上面波力	P'_r	kN/m	143
	壁面摩擦による荷重	P _v	kN/m	171
		Rs	kN/m	640
	前面波力モーメント	M _{PI}	kN/m	13,490
	背面波力モーメント	M _{PB}	kN/m	2,619
モ	浮力合力モーメント	M _{PU}	kN/m	10,804
1	堤体重量モーメント	M _w	kN/m	22,454
*		M _{P'f}	kN/m	3,724
ĥ	後側フーチング上面波力モーメント	M _{P'r}	kN/m	107
	壁面摩擦による荷重モーメント	M _{P'r}	kN/m	0
		M _{Rs}	kN/m	1,137
	荷重分担比	r		0.57
	基礎マウンドに作用する水平荷重	Pa	kN/m	846
		Pb	kN/m	638
	腹付工に作用する鉛直荷重	Pv	kN/m	171
	判定			O.K.
支	分割細片に作用する上載荷重	q	kN/m ²	372
持	載荷幅	2b'	m	5.56
75	基礎マウンドに作用する水平荷重	Н	kN/m	846
	腹付工に作用する水平荷重	Pb	kN/m	638
	腹付工に作用する鉛直荷重	Pv	kN/m	171
	耐力作用比(許容值)			1.000
	耐力作用比(計算值)	R/S		0.997

表-B.13 浸透流を考慮しない

支持力検討結果【Case3-3】

	定義	記号	単位	値
	堤体天端幅	B'	m	10.00
	堤体前面における水深	hc	m	12.00
	フーチング幅	b _F	m	1.50
堤体	フーチング高	h _F	m	1.50
	腹付工の高さ	а	m	4.00
	堤体単位体積重量(気中)	Ŷc	kN/m ³	21.00
	摩擦係数(摩擦増大マット)	f		0.75
	堤体気中重量	W	kN/m	3,454.50
	堤体底面幅	В	т	13.00
	静水面上の前面津波高さ	η_f	m	8.85
	静水面上の背面津波高さ	η_r	m	0.00
		h'	m	12.00
	海水の単位体積重量	$\rho_{0}g$	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波	係数	a _I		1.05
圧	係数	a _{IB}		0.90
		p_1	kN/m ³	221.21
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	51.46
	静水面における背面波圧強度	<i>p</i> ₃	kN/m ³	109.13
	フーチング上面における波圧(前面)	p'_1	kN/m ³	205.29
	フーチング上面における波圧(背面)	p'_3	kN/m ³	95.49
	前面波力	PI	kN/m	2,181
	背面波力	P _B	kN/m	655
	浮力	PB	kN/m	1,662
合		W	kN/m	3,455
力	前側フーチング上面波力	P'_{f}	kN/m	308
	後側フーチング上面波力	P'_r	kN/m	143
	 壁面摩擦による荷重	P _V	kN/m	147
		Rs	kN/m	550
	前面波力モーメント	M _{PI}	kN/m	13,829
	 背面波力モーメント	M _{PB}	kN/m	2,619
モ	浮力合力モーメント	M _{PU}	kN/m	10,804
1	堤体重量モーメント	M _W	kN/m	22,454
メン	前側フーチング上面波力モーメント	M _{P'f}	kN/m	3,772
ĥ	後側フーチング上面波力モーメント	M _{P'r}	kN/m	107
	壁面摩擦による荷重モーメント	M _{P'r}	kN/m	0
	腹付工の滑動抵抗力によるモーメント	M _{Rs}	kN/m	733
	荷重分担比	r		0.64
	基礎マウンドに作用する水平荷重	Pa	kN/m	977
	腹付工に作用する水平荷重	Pb	kN/m	550
	腹付工に作用する鉛直荷重	Pv	kN/m	147
	判定			O.K.
支	分割細片に作用する上載荷重	q	kN/m ²	435
持力	載荷幅	2b'	m	4.82
/5	基礎マウンドに作用する水平荷重	Н	kN/m	977
		Pb	kN/m	550
	腹付工に作用する鉛直荷重	Pv	kN/m	147
	耐力作用比(許容値)			1.000
	耐力作用比(計算値)	R/S		0.999

表-B.14 浸透流を考慮しない

支持力検討結果【Case3-4】

	定義	記号	単位	値
	堤体天端幅	B'	m	10.00
堤体	堤体前面における水深	hc	m	12.00
	フーチング幅	b _F	m	1.50
	フーチング高	h _F	m	1.50
	腹付工の高さ	а	m	4.00
	堤体単位体積重量(気中)	Ŷc	kN/m ³	21.00
	摩擦係数(摩擦増大マット)	f		0.75
	堤体気中重量	W	kN/m	3,454.50
	堤体底面幅	В	т	13.00
	静水面上の前面津波高さ	η_f	m	10.52
	静水面上の背面津波高さ	η_r	m	0.00
		h'	m	12.00
	海水の単位体積重量	ρ_{0g}	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	$h_{\rm C}$	m	4.00
波	係数	a 1		1.05
圧	係数	a _{IB}		0.90
	静水面における前面波圧強度	<i>D</i> 1	kN/m ³	238.93
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	69.17
	静水面における背面波圧強度	D 3	kN/m ³	109.13
	フーチング上面における波圧(前面)	D'1	kN/m ³	223.01
	フーチング上面における波圧(背面)	p'2	kN/m ³	95.49
	前面波力		kN/m	2.465
	背面波力	Ръ	kN/m	655
	浮力	P _P	kN/m	1.662
	堤体重量	W	kN/m	3.455
力	前側7-fング上面波力	P'_{f}	kN/m	335
	後側7-チング上面波力	P'.	kN/m	143
	田本(1) 昭本(1) 昭本(1)	P _V	kN/m	228
	腹付工の滑動抵抗力	Rs	kN/m	850
	前面波力モーメント	M _{PI}	kN/m	16.097
	背面波力モーメント	Mpp	kN/m	2.619
モ	浮力合力モーメント	Мрц	kN/m	10.804
1	場体重量チーメント	M	kN/m	22,454
メ	施用2-4ンガト面波力チーメント	M w	kN/m	4 098
ン ト	後側フーチンガと面波カモーメント	M _{pj}	kN/m	107
	時面摩擦によろ荷重モーメント	M pr	kN/m	0
	<u>車面序派になる所至こうです</u> 腹付工の滑動抵抗力に上ろモーメント	M _p	kN/m	1 133
	荷重分扣比	r	in o in	0.54
	基礎マウンドに作用する水平荷重	Pa	kN/m	977
	<u>電機・ノン・ドに日かりの水牛肉里</u> 腹付丁に作用する水平荷重	Ph	kN/m	833
	腹付工に作用する鉛直荷重	P _v	kN/m	223
	<u>版门工作作用,③如置间重</u> 判定	1,	Ki () III	0 K
支	分割細片に作用する上載荷重	a	kN/m^2	602
持	載荷幅	2h'	m	3 40
力	基礎マウンドに作用する水亚荷重	20 H	kN/m	977
	<u>御付工に作用する水 亚荷</u> 重	Ph	kN/m	833
	腹付工に作用する公正問題	P_{ν}	kN/m	222
	耐力作用比(許究值)	V	KI 1/111	1 000
	耐力作用比(計算值)	R/S		1 001
1	101/2111/12日 (日) 25(11)	10.0		1.001

表-B.15 浸透流を考慮しない

支持力検討結果【Case3-5】

	定義	記号	単位	値
	堤体天端幅	B'	m	10.00
		hc	m	12.00
	 フーチング幅	b _F	m	1.50
堤体	フーチング高	h _F	m	1.50
		а	m	10.67
	堤体単位体積重量(気中)	Ŷc	kN/m ³	21.00
	摩擦係数(摩擦増大マット)	f		0.75
	堤体気中重量	W	kN/m	3,454.50
	堤体底面幅	В	т	13.00
	静水面上の前面津波高さ	η_f	m	15.50
	静水面上の背面津波高さ	η_r	m	0.00
	堤体の前面における水深	h'	m	12.00
	海水の単位体積重量	$\rho_{0}g$	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波	係数	a _I		1.05
圧	係数	a _{IB}		0.90
	静水面における前面波圧強度	<i>p</i> ₁	kN/m ³	291.76
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	122.01
	静水面における背面波圧強度	<i>p</i> ₃	kN/m ³	109.13
	フーチング上面における波圧(前面)	p'_1	kN/m ³	275.85
	フーチング上面における波圧(背面)	<i>p</i> ′ ₃	kN/m ³	95.49
	前面波力	P_{I}	kN/m	3,310
	背面波力	P _B	kN/m	655
	浮力	P _B	kN/m	1,662
合	堤体重量	W	kN/m	3,455
力	前側フーチング上面波力	P'_{f}	kN/m	414
	後側フーチング上面波力	P'_r	kN/m	143
	壁面摩擦による荷重	P _V	kN/m	520
	腹付工の滑動抵抗力	Rs	kN/m	1,940
	前面波力モーメント	M_{PI}	kN/m	22,860
	背面波力モーメント	M_{PB}	kN/m	2,619
モ	浮力合力モーメント	M_{PU}	kN/m	10,804
 -2	堤体重量モーメント	M_{W}	kN/m	22,454
~	前側フーチング上面波力モーメント	M _{Pf}	kN/m	5,069
F	後側フーチング上面波力モーメント	$M_{P'r}$	kN/m	107
	壁面摩擦による荷重モーメント	$M_{P'r}$	kN/m	0
	腹付工の滑動抵抗力によるモーメント	M_{Rs}	kN/m	6,900
	荷重分担比	r		0.5
	基礎マウンドに作用する水平荷重	Pa	kN/m	1,328
	腹付工に作用する水平荷重	Pb	kN/m	1,328
	腹付工に作用する鉛直荷重	Pv	kN/m	356
	判定			O.K.
支持	分割細片に作用する上載荷重	q	kN/m ²	1,510
行力	載荷幅	2b'	m	1.32
	基礎マウンドに作用する水平荷重	Н	kN/m	1,328
	腹付工に作用する水平荷重	Pb	kN/m	1,328
	腹付工に作用する鉛直荷重	Pv	kN/m	356
	耐力作用比(許容値)			1.000
	耐力作用比(計算值)	R/S		1.001

2. すべり面発生位置(浸透流を考慮しない場合)

図-B.2 すべり面発生位置【Case1-2】

1.5m → ≥

+6.0m

-10.0m

-13.0m

 $\nabla + 20$

10.0m

ケーソン

原地盤

基礎

図-B.3 すべり面発生位置【Case1-3】

1.5m

5.5m

6.0m

図-B.6 すべり面発生位置【Case2-2】

図-B.7 すべり面発生位置【Case2-3】

図-B.8 すべり面発生位置【Case2-4】

図-B.4 すべり面発生位置【Case1-4】

図-B.13 すべり面発生位置【Case3-5】

図-B.10 すべり面発生位置【Case3-2】

図-B.11 すべり面発生位置【Case3-3】

図-B.12 すべり面発生位置【Case3-4】

3. 支持力検討結果(提案法で浸透流を考慮した場合)

表−B.16 提案法により浸透流を考慮した

	定義	記号	単位	値
	堤体天端幅	B'	m	10.00
	堤体前面における水深	hc	m	12.00
	フーチング幅	b _F	m	1.50
	フーチング高	h _F	m	1.50
堤休		а	m	0.00
144	堤体単位体積重量(気中)	Ŷc	kN/m ³	21.00
		f		0.75
	堤体気中重量	W	kN/m	3,454.50
	堤体底面幅	В	т	13.00
	静水面上の前面津波高さ	η_f	m	5.62
	静水面上の背面津波高さ	η_r	m	0.00
		h'	m	12.00
	海水の単位体積重量	ρ_{0g}	kN/m ³	10.10
波圧	静水面から直立壁天端面までの高さ	h _C	m	4.00
	係数	a _I		1.05
	係数	a _{IB}		0.90
	静水面における前面波圧強度	<i>p</i> ₁	kN/m ³	186.94
	堤体上端部における前面波圧強度	p_{γ}	kN/m ³	17.19
	静水面における背面波圧強度	p 3	kN/m ³	109.13
	フーチング上面における波圧(前面)	p'_1	kN/m ³	171.03
	フーチング上面における波圧(背面)	p'_3	kN/m ³	95.49
	前面波力	PI	kN/m	1,633
	背面波力	P _R	kN/m	655
	浮力	Рв	kN/m	1.662
	提体重量	W	kN/m	3,455
力	前側フーチング上面波力	P'_{c}	kN/m	257
	後側7-チング上面波力	P'.	kN/m	143
		P _V	kN/m	0
	腹付工の滑動抵抗力	Rs	kN/m	0
	前面波力モーメント	Мат	kN/m	9.443
	背面波力モーメント	Mpp	kN/m	2.619
モ	浮力合力モーメント	M _{BU}	kN/m	10.804
Ī	堤体重量モーメント	M _w	kN/m	22.454
メ	前側フーチング上面波カモーメント	Мру	kN/m	3.143
~ ト	後側フーチング上面波カモーメント	M _P	kN/m	107
	暗面摩擦による荷重モーメント	M _{Pr}	kN/m	0
	<u> 車間からによる同業にプレー</u> 腹付丁の滑動抵抗力に上スチーメント	M p	kN/m	0
	荷重分担比	r	KI 1/111	10
	基礎マウンドに作用する水亚荷重	Pa	kN/m	978
	<u>単純に、フィールにに加りる小十何里</u> 腹付丁に作用する水亚荷重	Ph	kN/m	978 0
	12日上に1F/11,3小十円里 暗付丁に作田する公古芸香	P _v	kN/m	0
	版ロエに下用する如単物里 判会	1 V	NIN/III	
支	TIAE 公割細臣に佐田才ると耕井香	C	LNL/2	0.K. 200
持	ノ司ハルフ に1F用りる上戦何里 載芸記	26'	KIN/M	298
力	戦仰触	20 11	In IcNI/	/.36
	≃硬×ソントにTF用りる小平何里 暗けてに佐田ナス水豆共手	11 D1-	LeNI/m	9/8
	腹凹上にTF用9の小半何里	PD Du	kin/m	0
	腹凹上に作用する鉛直何里 ニーケール(たった)	PV	KIN/M	1 120
	町 川作用比(計谷値)	D/C		1.128
	町刀作用比(計鼻値)	K/S	1	1.128

支持力検討結果【Case1-2】

	定義	記号	単位	値
	堤体天端幅	Β'	m	10.00
	堤体前面における水深	hc	m	12.00
堤体	フーチング幅	b_F	m	1.50
	フーチング高	h _F	m	1.50
	腹付工の高さ	а	m	0.00
	堤体単位体積重量(気中)	Υc	kN/m ³	21.00
	摩擦係数(摩擦増大マット)	f		0.75
	堤体気中重量	W	kN/m	3,034.50
	堤体底面幅	В	т	13.00
	静水面上の前面津波高さ	η_f	m	5.90
	静水面上の背面津波高さ	η_r	m	0.00
	堤体の前面における水深	h'	m	10.00
	海水の単位体積重量	$\rho_{0}g$	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波	係数	a _I		1.05
圧	係数	a _{IB}		0.90
	静水面における前面波圧強度	p_1	kN/m ³	168.69
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	20.16
	静水面における背面波圧強度	<i>p</i> ₃	kN/m ³	90.94
	フーチング上面における波圧(前面)	p'_1	kN/m ³	152.78
	フーチング上面における波圧(背面)	p'_3	kN/m ³	77.30
	前面波力	P _I	kN/m	1,322
	背面波力	P _B	kN/m	455
	·····································	P _B	kN/m	1,460
合	堤体重量	W	kN/m	3,035
力	前側フーチング上面波力	P'_{f}	kN/m	229
	後側フーチング上面波力	P',	kN/m	116
	 壁面摩擦による荷重	P _V	kN/m	0
		Rs	kN/m	0
	前面波力モーメント	M_{PI}	kN/m	8,918
	背面波力モーメント	M _{PB}	kN/m	2,183
モ	浮力合力モーメント	M _{PU}	kN/m	9,490
1	堤体重量モーメント	M _W	kN/m	19,724
メン	前側フーチング上面波力モーメント	M _{P'f}	kN/m	2,807
ŀ	後側フーチング上面波力モーメント	M _{P'r}	kN/m	87
	壁面摩擦による荷重モーメント	M _{P'r}	kN/m	0
	腹付工の滑動抵抗力によるモーメント	M _{Rs}	kN/m	0
	荷重分担比	r		1.0
	基礎マウンドに作用する水平荷重	Pa	kN/m	867
	腹付工に作用する水平荷重	Pb	kN/m	0
	腹付工に作用する鉛直荷重	Pv	kN/m	0
	判定			O.K.
支	分割細片に作用する上載荷重	q	kN/m ²	288
持力	載荷幅	2b'	m	6.66
/5	基礎マウンドに作用する水平荷重	Н	kN/m	867
	腹付工に作用する水平荷重	Pb	kN/m	0
	腹付工に作用する鉛直荷重	Pv	kN/m	0
	耐力作用比(許容値)			1.144
	耐力作用比(計算值)	R/S		1.144

表-B.18 提案法により浸透流を考慮した支持力検討結果【Case1-3】

	定義	記号	単位	値
	堤体天端幅	<i>B'</i>	m	10.00
	堤体前面における水深	hc	m	12.00
	フーチング幅	b _F	m	1.50
堤体	フーチング高	h_F	m	1.50
	腹付工の高さ	а	m	0.00
	堤体単位体積重量(気中)	γc	kN/m ³	21.00
		f		0.75
	堤体気中重量	W	kN/m	3,454.50
	堤体底面幅	В	т	13.00
	静水面上の前面津波高さ	η_f	m	5.20
	静水面上の背面津波高さ	η_r	m	0.00
		h'	m	12.00
	海水の単位体積重量	ρ_{0g}	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波	係数	a ₁		1.05
圧	係数	a _{IB}		0.90
	静水面における前面波圧強度	<i>p</i> ₁	kN/m ³	182.48
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	12.73
	静水面における背面波圧強度	<i>p</i> ₃	kN/m ³	109.13
	フーチング上面における波圧(前面)	p'_1	kN/m ³	166.57
	フーチング上面における波圧(背面)	p'_3	kN/m ³	95.49
	前面波力	PI	kN/m	1,562
	背面波力	P _B	kN/m	655
	浮力	P _B	kN/m	1,662
合	堤体重量	W	kN/m	3,455
力	前側フーチング上面波力	P'_{f}	kN/m	250
	後側フーチング上面波力	P'_r	kN/m	143
	壁面摩擦による荷重	P _V	kN/m	0
	腹付工の滑動抵抗力	Rs	kN/m	0
	前面波力モーメント	M _{PI}	kN/m	8,872
	背面波力モーメント	M_{PB}	kN/m	2,619
モ	浮力合力モーメント	M_{PU}	kN/m	10,804
-	堤体重量モーメント	M_{W}	kN/m	22,454
~	前側フーチング上面波力モーメント	M_{Pf}	kN/m	3,061
ト	後側フーチング上面波力モーメント	$M_{P'r}$	kN/m	107
	壁面摩擦による荷重モーメント	$M_{P'r}$	kN/m	0
	腹付工の滑動抵抗力によるモーメント	M _{Rs}	kN/m	0
	荷重分担比	r		1.0
	基礎マウンドに作用する水平荷重	Pa	kN/m	907
	腹付工に作用する水平荷重	Pb	kN/m	0
	腹付工に作用する鉛直荷重	Pv	kN/m	0
	判定			O.K.
支持	分割細片に作用する上載荷重	q	kN/m ²	279
力	載荷幅	2b'	m	7.84
	基礎マウンドに作用する水平荷重	Н	kN/m	907
	腹付工に作用する水平荷重	Pb	kN/m	0
	腹付工に作用する鉛直荷重	Pv	kN/m	0
	耐力作用比 (許容値)			1.144
	耐力作用比(計算値)	R/S		1.146

表-B.19 提案法により浸透流を考慮した

支持力検討結果【Case1-4】

	定義	記号	単位	値
	堤体天端幅	B'	m	20.00
堤体	堤体前面における水深	hc	m	12.00
	フーチング幅	b _F	m	1.50
	フーチング高	h _F	m	1.50
	腹付工の高さ	а	m	0.00
	堤体単位体積重量(気中)	Ϋ́c	kN/m ³	21.00
	 摩擦係数(摩擦増大マット)	f		0.75
	堤体気中重量	W	kN/m	6,814.50
	堤体底面幅	В	т	23.00
	静水面上の前面津波高さ	η_f	m	10.41
	静水面上の背面津波高さ	η_r	m	0.00
		h'	m	12.00
		$\rho_{0}g$	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波		a _I		1.05
圧		a _{IB}		0.90
	静水面における前面波圧強度	p_1	kN/m ³	237.76
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	68.01
	静水面における背面波圧強度	<i>p</i> ₃	kN/m ³	109.13
	フーチング上面における波圧(前面)	p'_1	kN/m ³	221.84
	フーチング上面における波圧(背面)	p'_3	kN/m ³	95.49
	前面波力	PI	kN/m	2,446
	背面波力	P _B	kN/m	655
	浮力	P _B	kN/m	3,279
合	堤体重量	W	kN/m	6,815
力	前側フーチング上面波力	P'_{f}	kN/m	333
	後側フーチング上面波力	P',	kN/m	143
	 壁面摩擦による荷重	P _v	kN/m	0
	<u> </u>	Rs	kN/m	0
	前面波力モーメント	M _{PI}	kN/m	15,948
	背面波力モーメント	M _{PB}	kN/m	2,619
モ	浮力合力モーメント	M _{PII}	kN/m	37.707
1	堤体重量モーメント	M _W	kN/m	78,367
メ	前側フーチング上面波力モーメント	M B'C	kN/m	7.404
- -	後側フーチング上面波力モーメント	M	kN/m	107
	壁面摩擦による荷重モーメント	M _{P'n}	kN/m	0
	腹付丁の滑動抵抗力によるモーメント	M _P	kN/m	0
	荷重分扣比	r		1.0
	基礎マウンドに作用する水平荷重	Pa	kN/m	1.791
	腹付丁に作用する水平荷重	Ph	kN/m	0
	腹付丁に作用する鉛直荷重	Pv	kN/m	0
	割定	- /		<u>ок</u>
支	分割細片に作用する上載荷重	a	kN/m ²	231
持	載荷幅	$\frac{4}{2b'}$	m	17.38
Л	基礎マウンドに作用する水平荷重	 H	kN/m	1.791
	<u> </u> 腹付丁に作用する水亚荷重	Ph	kN/m	0
	腹付工に作用する鉛直荷重	Pv	kN/m	0
	耐力作用比(許容值)	- *		1 268
	耐力作用比(計算值)	R/S		1.267

表-B.20 提案法により浸透流を考慮した支持力検討結果【Case2-1】

	定義	記号	単位	値
	堤体天端幅	B'	m	10.00
	堤体前面における水深	hc	m	12.00
	フーチング幅	b _F	m	1.50
堤 体	フーチング高	h _F	m	1.50
	腹付工の高さ	а	m	5.33
	堤体単位体積重量 (気中)	Ŷc	kN/m ³	21.00
	摩擦係数(摩擦増大マット)	f		0.75
	堤体気中重量	W	kN/m	3,454.50
	堤体底面幅	В	т	13.00
	静水面上の前面津波高さ	η_{f}	m	8.50
	静水面上の背面津波高さ	η_r	m	0.00
	堤体の前面における水深	h'	m	12.00
	海水の単位体積重量	ρ_{0g}	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波	係数	a _I		1.05
圧	係数	a _{IB}		0.90
	静水面における前面波圧強度	<i>p</i> ₁	kN/m ³	217.50
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	47.74
		<i>p</i> ₃	kN/m ³	109.13
	フーチング上面における波圧(前面)	p'_1	kN/m ³	201.58
	フーチング上面における波圧(背面)	<i>p</i> ′ ₃	kN/m ³	95.49
	前面波力	PI	kN/m	2,122
	背面波力	P _B	kN/m	655
	 浮力	P _B	kN/m	1,662
合	堤体重量	W	kN/m	3,455
力	前側フーチング上面波力	P'_{f}	kN/m	302
	後側フーチング上面波力	P'_r	kN/m	143
		P _V	kN/m	206
		Rs	kN/m	770
	前面波力モーメント	M_{PI}	kN/m	13,354
	背面波力モーメント	M _{PB}	kN/m	2,619
モ	 浮力合力モーメント	M_{PU}	kN/m	10,804
	堤体重量モーメント	M_{W}	kN/m	22,454
メン	前側フーチング上面波力モーメント	M _{Pf}	kN/m	3,704
ŀ	後側フーチング上面波力モーメント	M P'r	kN/m	107
	壁面摩擦による荷重モーメント	M _{P'r}	kN/m	0
	腹付工の滑動抵抗力によるモーメント	M _{Rs}	kN/m	1,368
	荷重分担比	r		0.50
	基礎マウンドに作用する水平荷重	Pa	kN/m	734
	腹付工に作用する水平荷重	Pb	kN/m	734
	腹付工に作用する鉛直荷重	Pv	kN/m	197
	判定			O.K.
支せ	分割細片に作用する上載荷重	q	kN/m ²	346
行力	載荷幅	2b'	m	5.90
	基礎マウンドに作用する水平荷重	Н	kN/m	734
	腹付工に作用する水平荷重	Pb	kN/m	734
	腹付工に作用する鉛直荷重	Pv	kN/m	197
	耐力作用比(許容値)			1.200
	耐力作用比(計算值)	R/S		1.199

表-B.21 提案法により浸透流を考慮した

支持力検討結果【Case2-2】

	定義	記号	単位	値
	堤体天端幅	B'	m	10.00
堤体	堤体前面における水深	hc	m	12.00
	フーチング幅	b _F	m	1.50
	フーチング高	h _F	m	1.50
	腹付工の高さ	а	m	5.33
	堤体単位体積重量(気中)	Ϋ́c	kN/m ³	21.00
	 摩擦係数(摩擦増大マット)	f		0.75
	堤体気中重量	W	kN/m	3,034.50
	堤体底面幅	В	т	13.00
	静水面上の前面津波高さ	η_f	m	8.80
	静水面上の背面津波高さ	η_r	m	0.00
		h'	m	10.00
		$\rho_{0}g$	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波		a _I		1.05
圧		a _{IB}		0.90
		p_1	kN/m ³	199.46
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	50.93
		<i>p</i> ₃	kN/m ³	90.94
	フーチング上面における波圧(前面)	p'_1	kN/m ³	183.54
	フーチング上面における波圧(背面)	p'_3	kN/m ³	77.30
	前面波力	PI	kN/m	1,753
	背面波力	P _B	kN/m	455
	浮力	P _B	kN/m	1,460
合		W	kN/m	3,035
力	前側7-チング上面波力	P'_{f}	kN/m	275
	後側7-チング上面波力	P',	kN/m	116
	壁面摩擦による荷重	P _v	kN/m	206
	<u> </u>	Rs	kN/m	770
	前面波力モーメント	M _{PI}	kN/m	12,856
	背面波力モーメント	M _{PB}	kN/m	2,183
モ	浮力合力モーメント	M _{PII}	kN/m	9.490
1	堤体重量モーメント	M _W	kN/m	19.724
メ	前側フーチング上面波力モーメント	M B'C	kN/m	3.373
- -	後側フーチング上面波力モーメント	M	kN/m	
	壁面摩擦による荷重モーメント	M _{B'n}	kN/m	0
	腹付工の滑動抵抗力によるモーメント	M _{Pr}	kN/m	1.368
	荷重分担比	r		0.50
	基礎マウンドに作用する水平荷重	Pa	kN/m	649
	腹付工に作用する水平荷重	Pb	kN/m	649
	腹付工に作用する鉛直荷重	Pv	kN/m	174
	判定	- /		0.K.
支	 分割細片に作用する上載荷重	a	kN/m ²	385
持	載荷幅	$\frac{1}{2b'}$	m	4.66
75	基礎マウンドに作用する水平荷重	H	kN/m	649
	腹付工に作用する水平荷重	Ph	kN/m	649
	腹付工に作用する鉛直荷重	Pv	kN/m	174
	耐力作用比(許容值)			1.216
	耐力作用比(計算值)	R/S		1.216

表-B.22 提案法により浸透流を考慮した支持力検討結果【Case2-3】

	定義	記号	単位	値
堤体	堤体天端幅	B'	m	10.00
	 堤体前面における水深	hc	m	12.00
	フーチング幅	b _F	m	1.50
	フーチング高	h _F	m	1.50
	腹付工の高さ	а	m	5.33
	堤体単位体積重量(気中)	Ŷc	kN/m ³	21.00
	摩擦係数(摩擦増大マット)	f		0.75
	堤体気中重量	W	kN/m	3,454.50
	堤体底面幅	В	т	13.00
	静水面上の前面津波高さ	η_f	m	8.08
	静水面上の背面津波高さ	η_r	m	0.00
	堤体の前面における水深	h'	m	12.00
	海水の単位体積重量	ρ_{0g}	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波	係数	a _I		1.05
圧	係数	a _{IB}		0.90
	静水面における前面波圧強度	<i>p</i> ₁	kN/m ³	213.04
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	43.29
		<i>p</i> ₃	kN/m ³	109.13
	フーチング上面における波圧(前面)	p'_1	kN/m ³	197.12
	フーチング上面における波圧(背面)	<i>p</i> ′ ₃	kN/m ³	95.49
	前面波力	PI	kN/m	2,051
	背面波力	P _B	kN/m	655
	 浮力	P _B	kN/m	1,662
合	堤体重量	W	kN/m	3,455
力	前側フーチング上面波力	P'_{f}	kN/m	296
	後側フーチング上面波力	P'_r	kN/m	143
		P _V	kN/m	206
	腹付工の滑動抵抗力	Rs	kN/m	770
	前面波力モーメント	M_{PI}	kN/m	12,783
	背面波力モーメント	M_{PB}	kN/m	2,619
モ	浮力合力モーメント	M_{PU}	kN/m	10,804
	堤体重量モーメント	M_{W}	kN/m	22,454
、 ン	前側フーチング上面波力モーメント	M _{Pf}	kN/m	3,622
Ъ	後側フーチング上面波力モーメント	$M_{P'r}$	kN/m	107
	壁面摩擦による荷重モーメント	$M_{P'r}$	kN/m	0
	腹付工の滑動抵抗力によるモーメント	M_{Rs}	kN/m	1,368
	荷重分担比	r		0.5
	基礎マウンドに作用する水平荷重	Pa	kN/m	698
	腹付工に作用する水平荷重	Pb	kN/m	698
	腹付工に作用する鉛直荷重	Pv	kN/m	187
支持力	判定			O.K.
	分割細片に作用する上載荷重	q	kN/m ²	323
	載荷幅	2b'	m	6.32
	基礎マウンドに作用する水平荷重	Н	kN/m	698
	腹付工に作用する水平荷重	Pb	kN/m	698
	腹付工に作用する鉛直荷重	Pv	kN/m	187
	耐力作用比(許容値)			1.220
	耐力作用比(計算值)	R/S		1.218

表-B.23 提案法により浸透流を考慮した

支持力検討結果【Case2-4】

	定義	記号	単位	値
堤体	堤体天端幅	B'	m	20.00
	堤体前面における水深	hc	m	12.00
	フーチング幅	b _F	m	1.50
	フーチング高	h _F	m	1.50
	腹付工の高さ	а	m	5.33
	堤体単位体積重量 (気中)	Ŷc	kN/m ³	21.00
	摩擦係数(摩擦増大マット)	f		0.75
	堤体気中重量	W	kN/m	6,814.50
	堤体底面幅	В	т	23.00
	静水面上の前面津波高さ	η_f	m	13.50
	静水面上の背面津波高さ	η_r	m	0.00
	堤体の前面における水深	h'	m	12.00
	海水の単位体積重量	ρ_{0g}	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波		a _I		1.05
圧	係数	a _{IB}		0.90
	静水面における前面波圧強度	p_1	kN/m ³	270.54
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	100.79
	静水面における背面波圧強度	<i>p</i> ₃	kN/m ³	109.13
	フーチング上面における波圧(前面)	p'_1	kN/m ³	254.63
	フーチング上面における波圧(背面)	p'_3	kN/m ³	95.49
	前面波力	PI	kN/m	2,971
	背面波力	P _B	kN/m	655
	浮力	P _B	kN/m	3,279
合	堤体重量	W	kN/m	6,815
力		P'_{f}	kN/m	382
	後側フーチング上面波力	P'_r	kN/m	143
	壁面摩擦による荷重	P _v	kN/m	206
		Rs	kN/m	770
	前面波力モーメント	M _{PI}	kN/m	20,144
	背面波力モーメント	M _{PB}	kN/m	2,619
モ	浮力合力モーメント	M _{PU}	kN/m	37,707
1	堤体重量モーメント	M _w	kN/m	78,367
*	前側フーチング上面波力モーメント	M _{P'f}	kN/m	8,498
́ Ь	後側フーチング上面波力モーメント	M _{P'r}	kN/m	107
	壁面摩擦による荷重モーメント	M _{P'r}	kN/m	0
		M _{Rs}	kN/m	1,368
	荷重分担比	r		0.67
	基礎マウンドに作用する水平荷重	Pa	kN/m	1,552
支持力	腹付工に作用する水平荷重	Pb	kN/m	764
	腹付工に作用する鉛直荷重	Pv	kN/m	205
	判定			O.K.
	 分割細片に作用する上載荷重	q	kN/m ²	225
	載荷幅	2b'	m	17.16
	基礎マウンドに作用する水平荷重	Н	kN/m	1.552
	<u>腹</u> 付工に作用する水平荷重	Pb	kN/m	764
	腹付工に作用する鉛直荷重	Pv	kN/m	205
	耐力作用比(許容值)			1.356
	耐力作用比(計算值)	R/S		1.355

-

表-B.24 提案法により浸透流を考慮した 支持力検討結果【Case3-1】

	定義	記号	単位	値
堤体	堤体天端幅	B'	m	10.00
	堤体前面における水深	hc	m	12.00
	 フーチング幅	b _F	m	1.50
	フーチング高	h _F	m	1.50
	腹付工の高さ	а	m	5.33
	堤体単位体積重量(気中)	Ϋ́c	kN/m ³	21.00
		f		0.75
	堤体気中重量	W	kN/m	3,454.50
	堤体底面幅	В	т	13.00
	静水面上の前面津波高さ	η_f	m	9.88
	静水面上の背面津波高さ	η_r	m	0.00
	堤体の前面における水深	h'	m	12.00
	海水の単位体積重量	$\rho_{0}g$	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波	係数	a _I		1.05
圧	係数	a _{IB}		0.90
	静水面における前面波圧強度	<i>p</i> ₁	kN/m ³	232.14
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	62.38
	静水面における背面波圧強度	<i>p</i> ₃	kN/m ³	109.13
	フーチング上面における波圧(前面)	p'_{1}	kN/m ³	216.22
	フーチング上面における波圧(背面)	p'_3	kN/m ³	95.49
	前面波力	PI	kN/m	2,356
	背面波力	P _B	kN/m	655
	浮力	P _B	kN/m	1,662
合	堤体重量	W	kN/m	3,455
力	前側フーチング上面波力	P'_{f}	kN/m	324
	後側フーチング上面波力	P'_r	kN/m	143
	 壁面摩擦による荷重	P _V	kN/m	303
		Rs	kN/m	1,130
	前面波力モーメント	M _{PI}	kN/m	15,228
	背面波力モーメント	M _{PB}	kN/m	2,619
モ	 浮力合力モーメント	M _{PU}	kN/m	10,804
	堤体重量モーメント	M _W	kN/m	22,454
メン	前側フーチング上面波力モーメント	M _{Pf}	kN/m	3,973
ŀ	後側フーチング上面波力モーメント	M _{P'r}	kN/m	107
	壁面摩擦による荷重モーメント	M _{P'r}	kN/m	0
	腹付工の滑動抵抗力によるモーメント	M _{Rs}	kN/m	2,008
	荷重分担比	r		0.5
	基礎マウンドに作用する水平荷重	Pa	kN/m	851
	腹付工に作用する水平荷重	Pb	kN/m	851
	腹付工に作用する鉛直荷重	Pv	kN/m	228
	———————————————————— 判定			O.K.
支持力	分割細片に作用する上載荷重	q	kN/m ²	446
	載荷幅	2b'	m	4.56
	基礎マウンドに作用する水平荷重	Н	kN/m	851
	腹付工に作用する水平荷重	Pb	kN/m	851
	腹付工に作用する鉛直荷重	Pv	kN/m	228
	耐力作用比(許容値)			1.236
	耐力作用比(計算値)	R/S		1.239

表-B.25 提案法により浸透流を考慮した

支持力検討結果【Case3-2】

_

	定義	記号	単位	値
堤体	堤体天端幅	B'	m	10.00
	堤体前面における水深	hc	m	12.00
	フーチング幅	b _F	m	1.50
	フーチング高	h _F	m	1.50
	腹付工の高さ	а	m	5.33
	堤体単位体積重量(気中)	Ϋ́c	kN/m ³	21.00
	 摩擦係数(摩擦増大マット)	f		0.75
	堤体気中重量	W	kN/m	3,454.50
		В	т	13.00
	静水面上の前面津波高さ	η_f	m	7.10
	静水面上の背面津波高さ	η_r	m	0.00
		h'	m	12.00
	海水の単位体積重量	ρ_{0g}	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波	係数	a 1		1.05
圧	係数	a _B		0.90
	 静水面における前面波圧強度	<i>p</i> ₁	kN/m ³	202.64
	堤体上端部における前面波圧強度	p_{2}	kN/m ³	32.89
	静水面における背面波圧強度	<i>p</i> 3	kN/m ³	109.13
	フーチング上面における波圧(前面)	p'_{1}	kN/m ³	186.73
	フーチング上面における波圧(背面)	p'3	kN/m ³	95.49
	前面波力	PI	kN/m	1,884
	背面波力	Р _в	kN/m	655
	·····································	P _B	kN/m	1.662
合	堤体重量	W	kN/m	3,455
力	前側フーチング上面波力	P'_{ℓ}	kN/m	280
	後側フーチング上面波力	P'_r	kN/m	143
	壁面摩擦による荷重	P _v	kN/m	171
	<u> </u>	Rs	kN/m	640
	前面波力モーメント	M _{PI}	kN/m	11,453
	背面波力モーメント	M _{PB}	kN/m	2,619
モ	浮力合力モーメント	M _{PII}	kN/m	10.804
1	堤体重量モーメント	M _W	kN/m	22,454
メ	前側フーチング上面波力モーメント	M BYC	kN/m	3.431
- -	後側フーチング上面波力モーメント	M _{P'n}	kN/m	107
	壁面摩擦による荷重モーメント	M _{p'r}	kN/m	0
	腹付工の滑動抵抗力によるモーメント	M _{Pr}	kN/m	1.137
	荷重分担比	r		0.5
	基礎マウンドに作用する水平荷重	Pa	kN/m	615
	腹付工に作用する水平荷重	Pb	kN/m	615
支持力	腹付工に作用する鉛直荷重	Pv	kN/m	165
	判定	- /		0.K.
	分割細片に作用する上載荷重	a	kN/m ²	282
	載荷幅	2b'	m	7,26
	基礎マウンドに作用する水平荷重	H	kN/m	615
	腹付丁に作用する水平荷重	Ph	kN/m	615
	<u>腹付工に作用する鉛直荷</u> 重	Pv	kN/m	165
	耐力作用比(許容值)	- *		1 172
	耐力作用比(計算值)	R/S		1.174

-

表-B.26 提案法により浸透流を考慮した支持力検討結果【Case3-3】

堤体天端幅 B' m 堤体前面における水深 hc m フーチング幅 b _F m	10.00 12.00 1.50
足(F)(ス)(m) 上 加 堤体前面における水深 hc m フーチング幅 b _F m	12.00
$ フーチング幅 b_F m $	1.50
	1 / \ /
フーチング享 h- m	1 50
	4 00
体 $\frac{R(12.0)}{R(12.0)}$ 化 $\frac{R(12.0)}{R(12.0)}$	21.00
	0.75
単原体気(単原相)(、)() リ 提休気中重量 W kN/m 3	454 50
	13.00
	7.60
静水面上の背面津波高さ n m	0.00
時が留上の有面になける水深 h' m	12.00
	10.10
海水の半位体積重量 P_{08} KIVIII	4.00
	1.05
	0.90
	207.05
膨小面における前面返江渡及 p_1 KIVM 場休上濃邨における前面波正確度 n hN/m^3	38 10
	100 13
靜水面における自面似上强度 p_3 KIVIII フーチングト声になける波匡(前西) p' bN/m^3	102.03
フーチング上面における彼上(前面) p_1 KIVIII	05.40
	1 060
	655
目面扱力 了 B KN/m ※ 力 P kN/m	1 662
仔/J / B KN/m	3 455
	288
前則 $//// 上面 /// 上面 /// /// ////////////////$	1/3
	145
重田岸孫による何里 崩付工の漫動抵抗力 Rs kN/m	550
前面波力エーメント M kN/m	12 132
前面彼力モーメント $M_{}$ kN/m	2 619
$T = \frac{1}{2} $	10 804
$\frac{1}{4} \frac{1}{4} \frac{1}$	22 454
χ \hat{m}_{W} \hat{n}_{W} \hat{n}_{W} \hat{n}_{W}	3 529
b \mathcal{W} and \mathcal{W} because \mathcal{W}	107
\mathbf{E} в в в в в в в в в в в в в в в в в в в	
重由岸原による何重と グジー M_{Pr} $R(m)$ 瞳付工の漫動抵抗力によるモーメント M_{-} kN/m	733
	0.59
同重分担に 基礎マウンドに作用する水亚荷重 P_a kN/m	775
	539
腹付工に作用する公司告責 P_{V} kN/m	144
	144 N K
支 分割細片に作用する上載荷重 の いい2	333
持 <u>新荷幅</u> 2b' m	6.24
フ <u> </u>	775
<u>海城で、ノマー(CIF/U 7 5 小 F M 2</u> 1 N/m 簡付丁に作田する水亚荷香 Ph kN/m	530
取日子に日7月7~3/5日回生 日2 日2 N/m 腹付丁に作田する鉛直荷重 Pv N/m	144
□2□1-1℃[F/1] 7 3 3 10 E 回 里 1 V K1(/11) 耐力作用 P (許 欠 値)	1 180
耐力作用比(計算值) R/S	1,175

表-B.27 提案法により浸透流を考慮した

支持力検討結果【Case3-4】

-

	定義	記号	単位	値
堤体	堤体天端幅	B'	m	10.00
	堤体前面における水深	hc	m	12.00
	フーチング幅	b _F	m	1.50
	フーチング高	h _F	m	1.50
	腹付工の高さ	а	m	4.00
	堤体単位体積重量(気中)	Ŷc	kN/m ³	21.00
	摩擦係数(摩擦増大マット)	f		0.75
	堤体気中重量	W	kN/m	3,454.50
	堤体底面幅	В	т	13.00
	静水面上の前面津波高さ	η_f	m	9.10
	静水面上の背面津波高さ	η_r	m	0.00
	堤体の前面における水深	h'	m	12.00
	海水の単位体積重量	$\rho_{0}g$	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波	係数	a _I		1.05
圧	係数	a _{IB}		0.90
	静水面における前面波圧強度	<i>p</i> ₁	kN/m ³	223.86
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	54.11
	静水面における背面波圧強度	<i>p</i> ₃	kN/m ³	109.13
	フーチング上面における波圧(前面)	p'_1	kN/m ³	207.95
	フーチング上面における波圧(背面)	<i>p</i> ′ ₃	kN/m ³	95.49
	前面波力	PI	kN/m	2,224
	背面波力	P _B	kN/m	655
	浮力	P _B	kN/m	1,662
合	堤体重量	W	kN/m	3,455
力	前側フーチング上面波力	P'_{f}	kN/m	312
	後側フーチング上面波力	P'_r	kN/m	143
	 壁面摩擦による荷重	$P_{\rm V}$	kN/m	228
	腹付工の滑動抵抗力	Rs	kN/m	850
	前面波力モーメント	M_{PI}	kN/m	14,169
	背面波力モーメント	M _{PB}	kN/m	2,619
Ŧ	浮力合力モーメント	M_{PU}	kN/m	10,804
-	堤体重量モーメント	M_{W}	kN/m	22,454
$\hat{\boldsymbol{\Sigma}}$	前側フーチング上面波力モーメント	M _{Pf}	kN/m	3,821
ŀ	後側フーチング上面波力モーメント	$M_{P'r}$	kN/m	107
	壁面摩擦による荷重モーメント	$M_{P'r}$	kN/m	0
	腹付工の滑動抵抗力によるモーメント	M_{Rs}	kN/m	1,133
	荷重分担比	r		0.5
	基礎マウンドに作用する水平荷重	Pa	kN/m	784
	腹付工に作用する水平荷重	Pb	kN/m	784
	腹付工に作用する鉛直荷重	Pv	kN/m	210
支持力	判定			O.K.
	分割細片に作用する上載荷重	q	kN/m ²	409
	載荷幅	2b'	m	4.98
	基礎マウンドに作用する水平荷重	Н	kN/m	784
	腹付工に作用する水平荷重	Pb	kN/m	784
	腹付工に作用する鉛直荷重	Pv	kN/m	210
	耐力作用比(許容値)			1.208
	耐力作用比(計算值)	R/S		1.207

表-B.28 提案法により浸透流を考慮した支持力検討結果【Case3-5】

	定義	記号	単位	値
堤体	堤体天端幅	B'	m	10.00
	堤体前面における水深	hc	m	12.00
	 フーチング幅	b _F	m	1.50
	フーチング高	h _F	m	1.50
	腹付工の高さ	а	m	10.67
	堤体単位体積重量(気中)	Ŷc	kN/m ³	21.00
	摩擦係数(摩擦増大マット)	f		0.75
	堤体気中重量	W	kN/m	3,454.50
	堤体底面幅	В	т	13.00
	静水面上の前面津波高さ	η_f	m	11.90
	静水面上の背面津波高さ	η_r	m	0.00
	堤体の前面における水深	h'	m	12.00
	海水の単位体積重量	$\rho_{0}g$	kN/m ³	10.10
	静水面から直立壁天端面までの高さ	h _C	m	4.00
波	係数	a _I		1.05
圧	係数	a _{IB}		0.90
	静水面における前面波圧強度	<i>p</i> ₁	kN/m ³	253.57
	堤体上端部における前面波圧強度	<i>p</i> ₂	kN/m ³	83.82
	静水面における背面波圧強度	<i>p</i> 3	kN/m ³	109.13
	フーチング上面における波圧(前面)	p'_1	kN/m ³	237.65
	フーチング上面における波圧(背面)	<i>p</i> ′ ₃	kN/m ³	95.49
	前面波力	PI	kN/m	2,699
	背面波力	P _B	kN/m	655
	浮力	P _B	kN/m	1,662
合	堤体重量	W	kN/m	3,455
力	前側フーチング上面波力	P'_{f}	kN/m	356
	後側フーチング上面波力	P'_r	kN/m	143
	壁面摩擦による荷重	Pv	kN/m	520
	腹付工の滑動抵抗力	Rs	kN/m	1,940
	前面波力モーメント	M_{PI}	kN/m	17,971
	背面波力モーメント	M_{PB}	kN/m	2,619
Ŧ	浮力合力モーメント	M_{PU}	kN/m	10,804
1	堤体重量モーメント	M_{W}	kN/m	22,454
~	前側フーチング上面波力モーメント	M_{Pf}	kN/m	4,367
F	後側フーチング上面波力モーメント	$M_{P'r}$	kN/m	107
	壁面摩擦による荷重モーメント	$M_{P'r}$	kN/m	0
	腹付工の滑動抵抗力によるモーメント	M_{Rs}	kN/m	6,900
	荷重分担比	r		0.5
	基礎マウンドに作用する水平荷重	Pa	kN/m	1,022
	腹付工に作用する水平荷重	Pb	kN/m	1,022
	腹付工に作用する鉛直荷重	Pv	kN/m	274
支持力	判定			O.K.
	分割細片に作用する上載荷重	q	kN/m ²	463
	載荷幅	2b'	m	4.36
	基礎マウンドに作用する水平荷重	Н	kN/m	1,022
	腹付工に作用する水平荷重	Pb	kN/m	1,022
	腹付工に作用する鉛直荷重	Pv	kN/m	274
	耐力作用比 (許容値)			1.320
	耐力作用比(計算值)	R/S		1.314

4. すべり面発生位置(提案法で浸透流を考慮した場合)

図-B.14 すべり面発生位置【Case1-1】(提案法)

図-B.18 すべり面発生位置【Case2-1】(提案法)

図-B.15 すべり面発生位置【Case1-2】(提案法)

図-B.19 すべり面発生位置【Case2-2】(提案法)

図-B.20 すべり面発生位置【Case2-3】(提案法)

図-B.22 すべり面発生位置【Case3-1】(提案法)

図-B.26 すべり面発生位置【Case3-5】(提案法)

図-B.23 すべり面発生位置【Case3-2】(提案法)

図-B.24 すべり面発生位置【Case3-3】(提案法)

図-B.25 すべり面発生位置【Case3-4】(提案法)

国土技術政策総合研究所資料

TECHNICAL NOTE of NILIM

No. 994 October 2017

編集·発行 ©国土技術政策総合研究所

本資料の転載・複写のお問い合わせは ^{〒239-0826} 神奈川県横須賀市長瀬 3-1-1 管理調整部企画調整課 電話:046-844-5019 E-mail:ysk.nil-kikaku@ml.mlit.go.jp