第2編【住まい手向け】長持ち住宅ガイドライン

第Ⅱ章 木造住宅の耐久性を向上させる家造りガイドライン
情報伝達ツールTG 委員

主査：宮村雅史（国土技術政策総合研究所）
書記：井本翔太（透湿ルーフィング協会）
委員：石川廣三（東海大学）
　　　西多　致（前東海大学）
　　　近江戸征介（一般社団法人　全国中小建築工事業団体連合会）
　　　大場喜和（NPO 法人　湿式仕上技術センター）
　　　一糸修身（透湿ルーフィング協会）
　　　神谷昭範（全国陶器瓦工業組合連合会）
第Ⅱ章 木造住宅の耐久性を向上させる家造りガイドライン

本文 目次

（　）内：執筆者

1. この手引きの目的と役割 .. 1
 1.1 外皮とは（石川） .. 1
 1.2 木造住宅の耐久性と外皮の関わり（石川） ... 1
 1.2.1 木材と水分 ... 1
 1.2.2 外皮と水分 ... 2
 1.3 住まい手（居住予定者）にとっての手引きの役割（宮村） .. 5
 1.4 造り手にとっての手引きの役割（宮村） .. 5

2. 住宅外皮仕様に関わる情報の重要性（宮村） ... 6
 2.1 住宅デザイン・仕様の変化と外皮に関わる情報の多様化 .. 6
 2.1.1 軒およびけらばの出の変化 .. 6
 2.1.2 床・外壁・屋根の高気密化、雨水の滞留 ... 7
 2.1.3 情報の多様化 ... 8
 2.2 住まい手にとっての情報伝達の現状と問題点 ... 9
 2.2.1 情報伝達の現状 .. 9
 2.2.2 住まい手による住宅の情報収集 .. 10
 2.3 造り手にとっての情報伝達の現状と問題点 ... 10
 2.3.1 造り手と住まい手への情報伝達の現状 ... 10
 2.3.2 元請け住宅会社と下請け施工業者の情報伝達の現状 ... 10

3. 外皮について知る .. 12
 3.1 住宅外皮の基本的構成（石川） .. 12
 3.2 外皮の構法と納まりの種類（近江戸） ... 16
 3.2.1 屋根について ... 16
 3.2.2 外壁について .. 17
 3.2.3 脚部=基礎及び1階の床について .. 19
 3.2.4 バルコニーについて ... 21
 3.3 外皮を構成する部材と材料（近江戸） .. 22
 3.3.1 屋根 ... 23
 3.3.2 外壁 ... 26
 3.3.3 脚部（基礎及び最下階の床） ... 27
 3.3.4 バルコニー ... 28
4. 耐久性を確保するための外皮構造の手引き（宮村） ... 29
 4.1 手引きの役割と概要 .. 29
 4.2 手引きの利用方法 .. 30
 4.2.1 注文住宅に対する利用方法 ... 30
 4.2.2 分譲（建売り）住宅に対する利用方法 .. 31
 4.2.3 既存住宅に対する利用方法 .. 31

5. 自然災害による被害や設計・施工上の不具合を未然に防ぎ長寿命化するための情報（宮村） 33
 5.1 手引きの目的 .. 33
 5.2 近年の地震・津波に関する情報 ... 33
 5.3 建設予定地の災害リスクに関する情報 ... 36
 5.3.1 過去の地震・津波からの検討 ... 36
 5.3.2 将来の災害予測 .. 36
 5.3.3 建設地の選定と災害対応の検討 ... 38
 5.4 設計・施工上の不具合を未然に防ぐための対応策 .. 38
 5.4.1 各種制度の活用 ... 38
 5.4.2 ツールおよびシートの活用 ... 40
 5.4.3 耐久性を確保するための重要チェック項目 ... 40
1. この手引きの目的と役割

1.1 外皮とは

住宅において、外皮とは居住空間を包み込む外周部の構造の総称です。ここで外周部とは具体的には屋根、外壁、基礎を含む床下を指します。

外皮の構造は建物の種類によって様々なです。たとえば倉庫や工場の屋根や壁では、屋根材一枚が外皮を構成する場合もありますが、木造住宅では屋根や外壁の内側に天井や内壁などの内装があり、またその中間に下地材や断熱材が組み込まれているのが普通です。この場合、屋根であれば天井面から屋根材の外側表面まで、外壁であれば内装表面から外壁仕上げの表面までの全部を外皮と考えます。

外皮と躯体（建物を支える柱や梁などの骨組み）とは、建物の構造形式によっては分離して設けられる場合もありますが、近年の木造住宅では躯体の内外全面に外装と内装を行い、躯体が見えない構造形式（構造形式の分類では大壁形式と呼びます）がほとんどです。この形式では躯体が外皮に内包されることになり、住宅の耐久性上最も重要な躯体の劣化は、不適切な外皮の構造や仕様による雨水浸入や結露などの不具合が深く関わっています。

図1.1 外皮の範囲の例

1.2 木造住宅の耐久性と外皮の関わり

1.2.1 木材と水分

木造住宅の耐久性をおびやかす最大の敵は水分です。これは木材に一定以上の水分が含まれた状態が長期間継続すると、建物内外に存在する木材腐朽菌の生育に好適な条件となり、腐朽が発生するためです。木材腐朽菌の生育には水分の他、栄養分、適切な温度、空気（酸素）が必要ですが、このうち活動に適した温度範囲と空気は人の居住環境と同じなので、これを制御することはできません。養分である木材については、もとより耐久性の高い樹種を選択したり、木材保存剤で処理することによって、腐朽菌が容易に栄養分として利用できなくすることが可能です。しかしながら、住宅木部全てにこうした材料を使うことは現実的ではなく、腐朽を防ぐためには水分を制御することが最も普遍的で重要な対応策となります。
水分に関しては、腐朽菌は大気中の木材が含んでいる程度の水分（気乾状態）では生育できず、液状の水で濡れるような条件（湿潤状態）が必要です。また、腐朽菌は酸素を必要としますから木材中の水分が多すぎても生育できず、最適な含水率の範囲が存在します。腐朽危険最小含水率は30%と言われてきましたが、最近の知見によると木材の腐朽が発生するには一定期間（16週間）30%以上の含水率が維持される必要があるようです。従って、木材が長期間このような含水状態にならないように保つことは腐朽発生を防止できることになります。しかし、いったん腐朽が始まると腐朽菌が自ら水分を生成するので周辺の木部の含水率が30%以下でも腐朽は進行します。従って、このような状況とならないように、木材周辺を乾燥させることが重要となります。

腐朽と並ぶ木材の生物劣化の要因として、木材を食害する虫、木材食害虫があります。木材食害虫の中には乾燥材を食害するものもあり、必ずしも水分をコントロールするだけでは食害を防止できません。しかし、全国的に分布するヤマトシロアリの活動条件は木材腐朽菌の生育条件と似通っており、二つの被害が同時に確認されることが多いようです。

腐朽菌やシロアリなどの生物劣化を除けば、木材は非常に耐久性に優れた構造材料です。コンクリートのように中性化などの化学的な劣化や凍害を受けることも、あるいは鋼材のように錆びることもあります。従って、水に濡らさないようにさえすれば木材は長期間健全性を保つことができます。このことは建造後何世紀も経た木造の歴史的建造物の解体修復工事で、少なくからぬ数の創建当時の部材が再利用されることが証明しています。

1.2.2 外皮と水分

1.2.1 で、木材の耐久性が水分に大きく影響されることを述べました。ところで、住宅内外の水分の行き来をコントロールする役割を負っているのが外皮です。従って外皮の構造や仕様は木造住宅の耐久性に深く関わることになります。このことを以下で詳しく述べます。

「1.1 外皮とは」で述べたように、外皮は住宅内外の仕切りとなる存在です。住宅の外部環境における水分の要因として、雨、雪その他があり、更にこれらの水分を外皮に吹き付け、押し込む要因として風があります。外皮の構造が不適切であると水分が外皮内部に浸入します。水分が浸入する形態や仕組みは様々ですが、浸入量や頻度が大きい場合、これらの水分によって外皮内の木材の長期湿潤がもたらされます。

また、住宅内外の温度差に応じて、外皮内の各部材の温度は高いところから低いところまで連続的に変化します。たとえば、冬期、住宅内が暖房されていると外皮内の温度は断熱材の室内側の部分は高く、外部側の温度は低くなります。逆に夏期、特に外皮表面が日射熱を受けるような条件では、温度の分布は逆転します。低温になる部分の温度が外皮内の空気の含む水蒸気量に応じて一定の温度（露点温度）以下になるとそこで結露が発生します。この結露水もまた、量や頻度が大きい場合、外皮内の木材の長期湿潤をもたらします。
空気中の水蒸気量が多いほど（相対湿度が高いほど）露点温度は高いので、より広範囲に結露が発生することになります。外皮内の空気の水蒸気量を高める要因には、地中の水分、建設時に構成材が含有する水分、調理や入浴などを含め、室内で発生する水蒸気などがあります。これらの水蒸気が外皮内に入り込むかどうかには外皮の構造や仕様、および施工方法の適切さが関わっています。外部から外皮内に浸入し、滞留・保持された雨水もまた、外皮内の空気の水蒸気量を高める要因となります。これらの水分による外皮内木材の長期湿潤化を防ぐには、言うまでもなく、まず水分を外皮内に入れないことです。このためには建設時に十分乾燥した材料を使用する。外部からの水分の浸入に対しては外皮を完璧に防水する。湿気に対しては移動経路を完全に遮断することが基本となります。しかし、果たして木造住宅でそれが常に可能でしょうか？

木造住宅は多種多様な部材の組合せによって作られ、施工には変動が激しい環境の中で、多くの職種が複雑な工程に関与します。まして戸建住宅の多くは中小規模の工務店によって建設され、施工管理体制が万全でないケースも多く見られます。このような状況で生み出される住宅に完全はあり得ません。雨水や湿気はわずかな隙間や孔からも浸入します。外皮内への水分の浸入は多少なりとも必ず起きると考えるべきです。

その水分が木材の劣化を引きおこさないために木材を濡らす水分が速やかに気中に放散され、排出されて木材が乾燥状態に保たれる必要があります。写真1.1のように日本の古い木造住宅で100年を超える長寿命を保っているものは珍しくありません。これらはほとんどが真壁形式（室内外から柱などが見える形式）で、軸体木部は外気に露出しており、雨で濡れても直ぐ乾く条件にありました。昭和中期頃から我が国で一般化した大壁造（内外装材に囲まれて室内外から柱などが見えない形式）の住宅で、建築後数十年経過したものを調査すると、外皮の構造や仕様が雨水浸入防止上必ずしも適切でないとも拘わらず、軸体の木材の劣化はあまり進行していない事例が多く

写真1.1 真壁造の住宅（福島県会津前沢曲屋集落）
見られます。これは断熱や気密性が必ずしも十分で無かったために、内部結露の発生も少なくて、また、外皮は隙間だらけで内部を自由に空気が通り抜けるような構造であったため、雨水が浸入しても比較的容易に放散できる条件であったことが理由と考えられます。

写真 1.2 建築後 40 年経過した木造住宅の外壁内部の状態
（外壁はラスモルタル直張り大壁構法、ラス下地板、躯体にはほとんど劣化が見られない）

近年の気密化が進んだ大壁構造の木造住宅では、いったん外皮内に浸入した水分は抜けにくいため、図 1.2 に示すように外皮内に空間（通気層）を確保して木材中の水分がこの空間に分散されやすくし、更にこの空間を外気と連通させて、湿気を排出させることが有効です。このように外皮内で通気が効果的に行われる構造になっているかどうか、木造住宅の耐久性に大いに関係があります。

以上から、木造住宅の外皮の構造や仕様が如何に住宅全体の耐久性に深く関わっていることが分かります。

図 1.2 通気構法によるモルタル外壁の例
第Ⅱ章 家造りガイドライン

1.3 住まい手（居住予定者）にとっての手引きの役割

住宅にとって必要な性能は、「耐震性」、「耐風性」、「耐積雪性」、「防火防火性」、「劣化対策」、「メンテナンス性」、「省エネルギー性」、「空気環境」、「防音性」、「高齢者対応」、「防犯性」などがあります。これらの諸性能の高さは、「省建築法（住宅の品質確保の促進等に関する法律）」に基づく住宅性能表示制度（Link先：一般社団法人住宅性能評価・表示協会）により、等級区分で評価することが可能となっています。各種の性能に対して要望する等級を事前に造り手に伝え、それにに基づいて設計・施工することが可能となります。これらの等級は、住宅全体の総合的な性能を表すものではないが、学識経験者や各業界関係者の知見に基づき、各種の性能について公平に評価したものであるので、住まい手にとって重要なものであるとされるものです。

一方、本共同研究では、木造住宅の耐久性を主なテーマにしており、雨水浸入、結露、通気・換気などについて実験・調査を実施し、産学官が集まり5年間にわたり横断的に協議を重ねてきました。その研究成果の資料は膨大なものとなり、専門的な技術資料のままでは一般的な住まい手に理解してもらえない場合があると思われます。本章では、主に戸建て住宅の建設予定者を対象として、共同研究の成果の中から耐久性を確保する上で特に重要と思われる項目を選選び、わかりやすく解説することを目的とした手引きを作成しています。その具体的な内容と利用方法は、「4.耐久性を確保するための外皮構造の手引き」に示されています。

1.4 造り手にとっての手引きの役割

現在、造り手が住まい手に住宅の性能を示す制度として、「住宅性能表示制度」「長期優良住宅認定制度」「低炭素建築物認定制度」などがあります。これらの制度は、造り手が各等級、各対策（性能表示項目）を把握するとともに、住まい手に建築物の性能や評価を示すことが可能となっています。仕様、納まりに関しては、「木造住宅工事仕様書」など、基本的な仕様をまとめ、用語解説、参考図を掲載しているものもあります。しかし、これらがほとんど利用されていないのが現状です。

一方、耐久性については、上述の制度だけでは設計・施工状況が不明な部分もあります。

本共同研究により作成された手引きでは、数多くの建築資材がある中、どの建築資材が推奨されているのか、住宅の耐久性を確保するためにはどのような推奨する納まりがあるのかを明確化しています。

元請け住宅会社が、下請け施工業者間へ材料や施工方法を指定していない場合や、現場管理者が施工方法や納まりを確認していないことがありますので、本資料を利用して住まい手と造り手の情報の共有に役立てれば良いと思います。
2. 住宅外皮仕様に関わる情報の重要性

2.1 住宅デザイン・仕様の変化と外皮に関わる情報の多様化

2.1.1 軒およびけらばの出の変化

東アジア、東南アジア、アメリカ・メキシコ東海岸、メキシコ西海岸周辺では、世界的に見て台風やハリケーンの襲来が大変多い地域となり、欧州はこのようなハリケーンなどの襲来は稀となります。

従って、欧州では下図のように屋根の軒やけらばの出が少なくても、それが原因となる雨水浸入のリスクは低くなります。[軒やけらばの出は、外壁より外側へ出っ張っている屋根の部分を示します]

一方、わが国では長期間にわたる梅雨や、秋の台風があるため、軒やけらばの出が少ないと屋根と外壁との取り合い部から雨水浸入するリスクが高まります。最近は、軒の出などがほとんど無く、いわゆる「軒ゼロ」住宅が存在し、外壁との取り合い部から雨漏りする事例が報告されています。狭い土地に対して広い住宅を建設する場合、斜線制限や建築面積の問題などにより、やむを得ず軒やけらばの出が少なくなってくることもあります。郊外で土地に余裕がある場合でもデザインの好み、建設費用の削減から軒やけらばの出を極端に少なくすることがあります。

「軒ゼロ」住宅は、必ずしも雨漏りするわけではありませんが、一般的な防水納まりでは、雨水浸入のリスクが高まるので、綿密な防水設計と施工が必要となります。また、軒やけらばの出が少ない場合、外壁に掛かる雨の量が増えるため、外壁面の窓・ドアや貫通部分（エアコン、換気口、配線など）からの雨水浸入リスクも高まることになります。住宅瑕疵担保责任保険会社によると、現在、屋根よりも外壁の雨水浸入事故事例が多くなっており、軒やけらばの出は、雨水浸入事故に大きく関係しているようです。

また、軒やけらばの出は、住宅の省エネルギー性にも影響します。
例えば、軒やけらばの出が大きい場合、この部分により夏の強い日射は影になり、外壁や窓へ侵入する日射による熱量は少なくなり冷房に要するエネルギーも少なくななります。一方、「軒ゼロ」住宅の場合、夏の日射は、直接、外壁や窓を照らし、省エネ性だけではなく、住居内の温度分布もむらになりやすく、快適性も損なわれるおそれがあります。冬は太陽の日射の角度が水平方向へ緩くなりますので、軒やけらばの出が少し大さくても日射が入り、日射エネルギーを確保する上で問題はありません。日本の気候に適応した旧来の住宅は、深い軒およびけらば、庇（耐久性）や省エネルギー性に配慮した住宅が多くありました。単純に欧州の屋根を模倣した場合は、わが国の気候に適応していない場合があります。旧来の気密性を考慮していない場合、十分に気密を確保することが重要です。

2.1.2 床・外壁・屋根の高気密化、雨水の滞留
従来、在来軸組構法は、下図の通り根太を土台の上に掛け板を張っていたため、床板と土台の間に隙間が生じており、壁内の断熱材も薄かったため、床下の空気が壁内へ流入し、壁内は通気状態に近い状態となっていました。そのため、仮に雨水が壁内へ流入した場合でも、湿潤状態となった部材は壁内の通気により乾燥し、壁内は劣化しにくい環境でした。近年は根太を省略して大引きの上に直接、厚い合板を張る方法が数多く採用され、断熱材も厚くなったため隙間がなくなり、下地に透湿抵抗の高い（湿気を通しにくい）面材を使用した場合は、気密性が高くなる可能性があります。このように、気密性の高い外壁に通気層の無いモルタル直張り構法などを併用し、何らかの要因により雨水が浸入した場合、壁内は透湿抵抗の高い材料に囲まれているため、乾燥しにくい環境となり、下地材や躯体材が劣化しやすくなります。乾式外壁では通気構法が標準となりますが、モルタル外壁を採用する場合でも、通気構法が推奨されます。また、通気構法で耐力面材を使用する場合は、なるべく透湿抵抗の低い（湿気を通しやすい）材料を使用すると、壁内の水分も通気層へ排出しやすくなります。

図2.1.2 新旧在来軸組構法の納まり例
従来、屋根の下地には製材による野地板が使用されており、野地板の相互間は目透かしが設けられ、野地板および小屋裏空間が乾燥しやすい状況でした。しかし、最近は屋根面の強度や剛性（外力に対する変形の少なさ）を確保して、住宅全体の耐震性を高めるため、下地に合板などの構造用の面材を使用するようになりました。面材の上に下葺材（防水紙）を葺いた後に、瓦屋根の場合は瓦桝を、その他の屋根は屋根材を直接葺くことが多く、屋根材の下へ雨水が浸入すると下葺材の上に水溜りが生じやすい納まりとなっています。この水溜り付近に屋根材や下葺材を留め付けて接合具（釘、ステープルなど）がある場合、釘孔から雨水が浸入しやすくなります。雨水浸入リスクを低下させるためには、屋根内に雨水が滞留する部分を無くし、乾燥しやすくなるような下記の通気層の納まり（通気下地屋根構法）が望まれます。

他の屋根材も「通気構法」でない限り、雨水が滲留する可能性があります。

図2.1.3 一般構法と通気下地屋根構法

2.1.3 情報の多様化

従来の住宅は、本来、要求されている「耐震性」、「耐風性」、「耐積雪性」、「防耐火性」、「劣化対策」、「メンテナンス性」、「省エネルギー性」、「空気環境」、「防音性」、「高齢者対応」、「防犯性」などの諸性能を示したり、評価を受けたりすることが少なく、仕様も現在ほど複雑になっていませんでした。

また、気密性も極めて低かったため、雨漏りがあっても著しく広範囲に劣化することは少なく、現在ほど厳しい状況では無かったと思われます。近年は住宅性能表示が確立していますが、要求される性能も高く、仕様も複雑化しており、適切に設計・施工することは難しくなりつつあります。従来は、棟梁が狭い領域の施工方法について指示していましたが、職種が少なく関係者が住宅全体を理解していました。しかし、現在は住宅を構築する際の業種も細分化されており、各業種間の共通する情報を伝えるには、現場管理者の深い知識や経験が必要となります。一方、Webサイトには、設計・施工に関する情報が数多くありますが、誤った情報も含まれています。その中から、適切な情報を得るためには、関係する基礎知識が必要となります。ここに示す手引きは、公平かつ適切な情報によりサポートするようにしました。

第Ⅱ章 家造りガイドライン
2.2 住まい手にとっての情報伝達の現状と問題点

2.2.1 情報伝達の現状

住まい手が注文住宅を取得しようとする際、一般的に住宅の特徴を把握するため、住宅関連の Web サイトを見たり、近郊の住宅展示場や住宅設備機器のショールームなどを訪れたりすることが考えられます。Web サイトには、住宅に関する数多くの情報が溢れていますが、一般的な住まい手はシステムキッチン、システムバス、トイレ、内外装のデザインや雰囲気、間取りなどについて重要視して情報を収集することが多く、住宅の耐久性について調べることは少ないと思われます。しかし、建設後に雨漏り、結露、蟻害（シロアリ）などが発生し、住宅の構成部材が劣化した際に多額の改修費が必要となると、耐久性確保の重要性をはじめて痛感することになります。

住宅展示場では、多額の建設費を掛けて、標準仕様にオプション仕様をちりばめた広く開放的なモデルハウスを構築することが数多く見受けられます。モデルハウスを訪れる際、受付や営業の担当者の態度が印象に残り、住宅の評価に著しく影響を与えることがあります。さらに重要なことは住宅会社の提案力、仕様、構造や材料の性能・材質、各種制度への対応、施工管理、保証、アフターケアの体制などを確認することではないでしょうか。注文住宅では、部屋・窓の配置や広さ、吹き抜け、バルコニーなどを一定の範囲で自由に設計できるため、モデルハウスだけを基準にした場合、住宅を選定する際の判断を誤ることが考えられます。営業の担当者は、自社の住宅の特徴を示すとともに、一般的に顧客が興味を持っていることを説明することが多く、耐久性について説明することは少ないと思われます。

一方、多額となる建設費や維持費により、モデルハウスを持っていない地場の工務店の中にも、安く優れた住宅を提供する会社が数多くあります。

因みに平成 27 年 3 月末現在の建築工事業の許可業者数は、162,538 業者（国土交通省土地・建設産業局資料）となっています。残念ながら、元請けとして戸建て住宅の建設を請け負っている正確な業者の数を把握することは出来ませんが、ある民間の Web サイトを参考にすると、東京都内の建設に対応する一戸建ての住宅供給会社は約 400 社となっています。

一般的に地元の小規模な工務店は、あまり宣伝広告費を掛けられないこともあり、住まい手が数多くある工務店から各種の技術情報を得て、建設を依頼する建設会社の候補を選択するには、評価内容を明確にして要領よく抽出する必要があると思われます。

耐久性を確保するためには、構法（通気構法など）、構成材料、納まりなどが関係しますが、各々の住宅会社によりそれらが著しく異なることがあります。元請けの住宅会社が下請けの施工会社に工事を依頼する際に使用材料や施工方法を指定しない場合、下請け業者は安く品質の低い材料を使用し、施工が容易な方法を選択し、不適切な状態になる事例があります。その要因として、問題意識が低い場合や、安価な下請け費用のため赤字とならないように材料費や施工費を抑制することが考えられます。このような施工部位は、内外装の工事により、住宅が完
成後に見えない場所になってしまうため、住まい手が気付くことはほとんど無いと思われます。

2.2.2 住まい手による住宅の情報収集

住宅のトラブルを未然に防ぐには、数多くの技術的な知識が必要です。そのため、専門家である住宅会社に全て任せれば良いと考えがちです。しかし、住宅会社においても、上述の通り専門的知識や施工技術の内容には差がありますので、住まい手は、優良な住宅会社を選択できる手段が必要となります。この手引きは、住宅の建築を依頼する候補として考えている住宅会社が、住宅の耐久性をどのように確保しようとしているのか、事前に情報を交換し、住まい手が各々の仕様を横並びに比較・評価するのを手助けするものとなります。その具体的な方法については、「4. 耐久性を確保するための外皮構造の手引き」にて示します。

2.3 造り手にとっての情報伝達の現状と問題点

2.3.1 造り手と住まい手への情報伝達の現状

住宅会社は、各部位にそれぞれある数多くの建築材料の中から商品の選定をします。たとえば、屋根に関しては屋根材（瓦、化粧スレート、金属板、シングル）、下葺材（アスファルト系、改質アスファルト系、透湿系など）、断熱材（天井断熱、屋根断熱など）、断熱材（繊維系、発泡系など）、換気方法、換気材の選定などを行っています。

また、メーカーごとに多くの商品が存在しているので、その他外壁や基礎、構造材の種類、施工方法すべてを住宅購入予定者に伝えることは困難なため、住宅会社が各部位の仕様を標準化しています。住宅会社が、数多くあるメーカーの材料を選定する際、メーカーの営業が住宅会社へ訪問して商品説明し、住宅会社はそれを聞いて採用を決定することが多いと思われます。従って、住宅会社により選択できる材料・部材の範囲や性能・品質のグレードも著しく異なることがあります。問題点は、住宅会社が決めた標準施工や標準仕様が住宅購入予定者に説明されているのかです。住宅購入予定者に、プラン作成の為のヒアリングを行うとき、多くの場合「屋根は、外壁は」と決定していきますが、姿かたちが優先され、重要な施工方法の説明や防水層の説明、通気の説明がされていないのが現状です。住宅会社が各部の納まりや部材の性質、性能を熟知していなければ住宅購入予定者に説明ができないことは勿論、結果として耐久性にすぐれた住宅を建てることができないということに繋がります。住宅購入予定者への説明不足が着工後や竣工後のトラブルになることも多くあります。住宅会社は、材料・部材に関する情報を十分に熟知した上で、施工方法や建築材料の説明を住まい手に行うことが重要です。

2.3.2 元請け住宅会社と下請け施工業者の情報伝達の現状

住宅会社は、住まい手と契約したのち、下請け施工業者へ情報を伝えます。たとえば、屋根施工業者へ工事依頼（発注）を行う際、施工方法や納まり、ルーフィング（防水紙）の種類や材質、数量や単価や施工費、屋根材の種類や材質などを把握した後、施工業者へ工事の依頼をして
います。
しかし、屋根一式工事として下請け施工業者へ工事の依頼を掛けている住宅会社もあります。この場合、屋根材の指定はあっても施工方法や納まり、細かな材料の指定がなされていないため、下請け施工業者は利益確保を考えて、施工がし易い方法や、安価な商品を選択し施工していることもあります。単に施工がし易い方法や、安価な商品の使用だけでなく、間違った施工や使用してはいけない商品の使用をして、竣工時には気づかないが後に大きな問題となっていることもあります。
住宅工事では、数多くの施工業者が一つの建物を造っていきます。住宅会社により下請け施工業者の施工範囲が違うのも現状です。
例として、透湿防水シートの施工は大工工事の発注となる場合と、外装工事業への発注となる場合があります。同じ住宅会社の中でも、工事依頼をする下請け施工業者によって施工方法が違っていたり、施工範囲が違っていたりすることもあります。このようなことが、施工ミスや工事管理への影響を及ぼし、元請け住宅会社と下請け施工業者とのトラブルや、住まい手とのトラブルへと繋がっていきます。
多数の施工業者が同時進行で造っていく住宅は、元請け住宅会社と下請け施工業者との間で、施工方法や納まりの確認や統一、材料の指定、発注（数量や価格）の適正化を行うことが重要です。本資料に付随する手引きを利用することにより、住まい手と造り手、下請け工事業者との情報伝達にも応用することも可能です。
3. 外皮について知る

3.1 住宅外皮の基本的構成

外皮の構成を最も簡単に表現する方法は、躯体（柱や梁などの骨組み）、下地、仕上げに分けることです。仕上げにあたるのが表面にある外装材や内装材であり、下地は仕上げと躯体の間にある全ての部材を含みます。この区分は全ての構造形式に当てはまり、表現としては単純で明快ですが、下地には形態や機能が多様な部材が含まれるため、個々の部材の働きを理解しようとする場合には単純すぎます。

外皮の構成部材は、それぞれが果たす役割によっていくつかの層に分けることができ、また各層の間にはこれらを相互に留め付ける部材があります。表3.1は屋根および外壁について、表3.2は床下について、外皮を層に分解した構成を示します。

表3.1 外皮の基本的構成（屋根および外壁の場合）

<table>
<thead>
<tr>
<th>No.</th>
<th>外皮を構成する層</th>
<th>緊結材*</th>
<th>役割</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>外装材</td>
<td></td>
<td>外部環境因子の作用から外皮内部および室内を保護する</td>
</tr>
<tr>
<td>2</td>
<td>外装材緊結材</td>
<td></td>
<td>外装材を外装材支持層に緊結する</td>
</tr>
<tr>
<td>3</td>
<td>外装材支持層</td>
<td></td>
<td>外装材を支持し、作用荷重や外力を躯体に伝達する</td>
</tr>
<tr>
<td>4</td>
<td>外装材支持層緊結材</td>
<td></td>
<td>外装支持層を躯体に緊結する</td>
</tr>
<tr>
<td>5</td>
<td>二次止水層</td>
<td></td>
<td>二次止水から漬入した雨水等を躯体層より室内側へ到達させない</td>
</tr>
<tr>
<td>6</td>
<td>二次止水層緊結部</td>
<td></td>
<td>二次止水層を躯体に緊結する</td>
</tr>
<tr>
<td>7</td>
<td>躯体層</td>
<td></td>
<td>建物各部的作用荷重・外力を安全に支持し、地盤に伝える</td>
</tr>
<tr>
<td>8</td>
<td>断熱層</td>
<td></td>
<td>外皮面への放射熱および内外の気温差による伝熱を遮断する</td>
</tr>
<tr>
<td>9</td>
<td>防湿層</td>
<td></td>
<td>外皮の高温側（通常は室内）の湿気を外皮内部に浸入させない</td>
</tr>
<tr>
<td>10</td>
<td>内装材支持層緊結材</td>
<td></td>
<td>内装支持層を躯体に緊結する</td>
</tr>
<tr>
<td>11</td>
<td>内装材支持層緊結材</td>
<td></td>
<td>内装材を内装材支持層に緊結する</td>
</tr>
<tr>
<td>12</td>
<td>内装材を支持し、作用荷重や外力を躯体に伝達する</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>内装材を内装材支持層に緊結する</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*（注）断熱層、防湿層の緊結の有無、緊結方法は材質や施工方法により多様なので示していない
表 3.2 外皮の基本的構成（床下の場合）

<table>
<thead>
<tr>
<th>No.</th>
<th>外皮を構成する層</th>
<th>緊結材*</th>
<th>役割</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>防湿層</td>
<td>地中の湿気を外皮内部および室内に浸入させない</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>土間コンクリートまたは基礎スラブ</td>
<td>車体を支持するとともに外皮内部から車体を保護する</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>車体層</td>
<td>車体を支持し、地盤に伝える</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>断熱層</td>
<td>内外の気温差による伝熱を遮断する</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>床下張り層紧結材</td>
<td>床下張り層を車体に緊結する</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>床下張り層</td>
<td>床仕上げ材を支持し、荷重を車体に伝達する</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>床仕上げ層紧結材</td>
<td>床仕上げ層を床下張り層に緊結する</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>床仕上げ材層</td>
<td>居住環境を形成し、室内環境因子の作用から外皮内部を保護する</td>
<td></td>
</tr>
</tbody>
</table>

*（注）断熱層の緊結の有無、紧結方法は材質や施工方法により多様なので示していない

これらの表では、どの構造形式の外皮に当てはまるように、考えられる全ての層を示しましたが、構造形式によっては省略される層もあります。また、表では最外面に位置する層を上で、順次内面に向かって下に示しましたが、この順序も標準的なもので、構造形式によっては層の位置が逆転したり、複数の層が同じ位置に並んだりすることもあります。表の層構成の表現だけでは抽象的で分かりにくいと思われるので、図 3.1〜図 3.3 に、一般的な外壁、屋根、床下の部材構成との関連を示しました。
図 3.1 外皮の層構成の一例（サイディング張り通気構法外壁の例）
図3.2 外皮の層構成の一例（瓦葺き、天井断熱屋根の例）
第Ⅱ章 家造りガイドライン

第Ⅱ章-16

図 3.3 外皮の層構成の一例（フローリング張り、床断熱構法の例）

3.2 外皮の構法と納まりの種類

本項は、木造住宅の耐久性能に深く関わる屋根、外壁、床下・バルコニーなどを対象とし、外皮の構成、建築材料、納まりの種類などについて示すものです。

3.2.1 屋根について

建物の屋根には、様々な形式があり、その名称と形の代表的なものを図 3.4 に示します。

図 3.4 屋根の形状の例
敷地にゆとりのない市街地などでは、近隣相互の居住環境に配慮した道路斜線や北側斜線などの斜線制限（建築基準法による建築物の各部位の高さの制限）もあり、複雑な屋根形状により漏水する不具合も少なくありません。

屋根材の下地（野地板）の表面には、二次止水層としてルーフィング等の下葺きがなされ、その上に直接葺き材を留める引掛け構法と呼ばれる納まりが一般的でしたが、近年、葺き材からの雨水の浸入や外気と小屋裏の温度差による結露湿潤や太陽光発電の普及に伴う漏水事故などに対して、二次的な防水、遮熱、排湿対策として有効な通気流し桟木を用いる「通気下地屋根構法」という納まりが推奨（オプション）されています。（下記の解説図参照）

引掛け桟構法【一般的な納まり】 通気下地屋根構法【推奨構法】（オプション）
※屋根構法で推奨できる通気下地屋根構法には棟頂部に換気棟などを併設する事が必要です。

図 3.5 屋根の納まり例

年間を通じて最も温度差が大きい小屋裏には、常時変化する湿気による湿潤しやすい環境を緩和するための換気に加え、下階の室内から侵入しやすい湿気への防湿対策も重要です。

中庭に設ける換気口は軒先全周にまんべんなく配置し、小屋裏頂部に排気に有効な換気棟などと連携した小屋裏空間全域に空気の循環が生じない効果的な換気システムが必要です。

最上階の天井には小屋裏へ窒内からの湿気が通り抜けにくくするため、下地に防湿層（ポリエチレンシート等）を設けることが推奨されます。

3.2.2 外壁について

建物の外壁は、最近では柱や桁などの構造部材が見えない大壁形式の造り方が主流となっていきます。また、下地の造り方で従来の仕上げ材を直接施す塗り壁や張りといった納まりに代わって、通気層を設け外周の壁体内に浸入する水分を屋外へ排出させる通気構法が一般的になっています。

外装も、サイディングやALC版などの外装材を張る乾式構法とモルタルやタイル張りなどの左官材料で仕上げる湿式構法の二つが代表的なものといえます。
第Ⅱ章 家造りガイドライン

※ 郊外の防火規制のない地域では昔ながらの土壁などによる真壁造り等もあります。

写真 3.1 乾式構法と湿式構法の例

外壁は年間を通して日当りの良い南面と日陰となる北面では、日射量が異なることから生じる室温への影響や冷暖房時など空調への負荷を軽減するために壁体内に断熱材を仕込みますが、この断熱性能は壁体空洞部に介在する水分により左右されます。

この水湿分を壁体空洞部から外部に排出処理し、断熱性能への影響を防ぐための仕組みが通気構法です。この通気排湿により、壁体内の空洞部の湿度を一定の割合以下の状態に維持し、急激な外気温度の差により生じ易い壁体内結露を制御することでカビの発生や木部腐朽といった木造の耐久性に関わる劣化リスクを軽減することにも効果が期待できます。

木造住宅の外壁は大半が耐力壁として配置されることから、近年、特に耐震性の向上を意図して外壁下地に建物の剛性を高めるため、合板などの構造用面材が多用されています。

従来、多くみられた直張り下地にかわって、防水性、放湿性を兼ね備えた通気構法が一般的になっています。通気構法にすることで外装仕上げにひび割れや破損による漏水があっても従来

図 3.6 通気構法の効果と注意点

従来、多くみられた直張り下地にかわって、防水性、放湿性を兼ね備えた通気構法が一般的になっています。通気構法にすることで外装仕上げにひび割れや破損による漏水があっても従来
湿防水層により直接雨水が構造体内部に浸水することは少なく、二重の防水としても機能させることができるようにになっています。

3.2.3 脚部＝基礎及び１階の床について

1）基礎

宅地の地耐力や建物の規模に応じて、不等沈下（不等沈下）や長期耐力に対応した基礎が選択されます。土間と立ち上がり部分が一体となったべた基礎と基礎底盤と立ち上がり部分が逆T字型に構成される布基礎の二種類の形式が代表的なものです。（図3.7参照）

従来の布基礎と床下換気孔の構成 ねこによる布基礎 べた基礎（床下土間は防湿・防蟻を省略）

※この他、べた基礎の異種といえる逆スラブ基礎や杭を併用した基礎などもあります。

図3.7 各種の基礎まわりの納まり

木造住宅の基礎の種類は、各々の建設予定宅地の地盤耐力調査の結果に従って、住宅規模に適した範囲で決められます。やみくもにべた基礎であれば安心ということではありません。

宅地地盤の地耐力にムラがあったり不安定な場合にはべた基礎を選択することが多いようですが、地耐力が十分で安定した地盤であれば布基礎でも十分に安全です。近年、一般的にはほとんどがべた基礎になってきていますが、地盤の凍上が懸念される寒冷地では、布基礎の採用が多い状況です。

建物の外周基礎や内周基礎の立ち上がり部分には床下の排湿に必要な床下換気孔の設置が必要とされています。しかし、基礎立ち上り部分に換気のための開口を開削することは相当の補強をしても耐力を大きく損なうことになり、あまり好ましい状態とは言えません。

最近では換気口を基礎立ち上り部に設けず、上部に20mm程度の厚さのスペーサー（「ねこ」ともういう）を敷いて基礎と土台の間にできる隙間を換気孔とする全周スリット方式の構法が、基礎耐力が減少する影響が少なく施工の精度や省力化に役立つことから一般的になっているようです。スペーサーを用いることにより、土台が基礎（コンクリート）に触れないため、基礎が雨などにより湿った場合でも土台が基礎の水分を吸収することが無くなります。
また、基礎外周に付帯する外構施設（犬屋や土間ポーチなど）との納まりにも注意が必要です。特にべた基礎の立上り部と土間との打緩部は、隙間が生じてシロアリの侵入や雨水の浸水箇所となり易いので型枠金物や水抜きなどの貫通孔が残されていないか閉塞処理の有無に注意が必要です。

①一般的な外構土間
②基礎と一体化した外構土間
③基礎と分離した外構土

図3.8 基礎納まりと防蟻

2）1階（最下階）の床

図3.9に示す通り、最下階の床は外部に露呈していませんが、小屋裏空間と接する最上階の天井と同じく床下換気により外気と接する外皮の一部となります。

住宅金融支援機構の「木造住宅工事仕様書」などでは木造の最下階の床下は、防湿と防蟻対策が規定されていますが、床断熱の場合、床は室内と外部とを遮断することから構造と納まりは耐水性、防湿性、断熱性が重要です。

木造床の構成は、土台や大引きに根太材を配して床板を張る方法が一般的でしたが、最近では根太を介さずに床板を土台や大引きに直張りする方式の床組が普及しつつあり、省力化と合理化が可能な構法といえます。以下にその概要を図3.9に示します。
外皮の脚部ではさらに重要な納め方として、外壁の下端には必ず水切りという部材を取り付けてなければならない。この水切りは外壁や軒裏から万が一雨水などが浸水した場合にも、通気層の透湿防水シートの下端から壁体内に浸水することを二次的に防ぐと共に外装材の裏側への流下した漏水が土台や床下側に浸水することを防ぐ役割があります。

乾式外装用のスターター付通気金具の使用例。
防風透湿シートの下端は水切りに防水テープで押え、乾式外装用の金具をその上に取り付ける。
（隅角部水切り役物の立上がり部には防水テープをシート押えとし張り付け処置を施す。）

図 3.10 サイディング下部の納まり例

3.2.4 バルコニーについて

外壁に付帯したバルコニーの構成や種類には以下に示すような様々な形式の選択肢があります。

片持ち出し型 階上型（ルーフバルコニー） 後付型（既製品を別途に取り付けている）
※各々のバルコニーには、構造と一体にしたものや後付けとして取付けるものがあります。

写真 3.2 バルコニーの種類

外壁から突出して設けられるバルコニーは、その全体が外部気候に曝されることから防水に対する一層の注意が必要です。
このタイプは、建物本体とバルコニーが一体化した造りであり、防水上、最も重要な個所は、手すり壁の上端と外壁の取合いの防水納まり部分とされています。特に片持ち出し型（跳ね出し形式）の場合、手すり壁と外壁の取合い部からの漏水は建物本体の構造部分の劣化に
つながる事も少なくないため慎重に防水処理を行うことが求められます。階上型（ルーフバルコニー）は、数多く雨水浸入事例が示されているタイプであり、バルコニーで生じた雨水浸入が階下の居室に影響を及ぼすことも考えられます。

概略図－手すり壁上端や端部と外壁との防水納まりは重要
床部分の雨水排水は二重の対策が必要

図 3.11 バルコニーの外壁取り合い部と床の納まり

バルコニーの床は、防水に加え効率の良い排水についても重要な要素とされます。床面の広さや形状にもよりますが、排水口は 2 箇所設けることが必要です。1 箇所しか排水口が設けられない場合には、必ず床防水の立ち上がり部分にオーバーフロー管を併設し、一時的な豪雨や排水口の目詰まりなどにより、雨水が滞留してプール状態となり、溢れた雨水が室内や壁内へ漏水しないように備えることが必要です。床防水層の立ち上がりは 250 ㎜以上とするのが標準ですが排水口との取合いでも 150 ㎜以上は必要です。なお、バルコニー床面の排水勾配は床下地板で取るのが一般的です。

階上型（ルーフバルコニー）はバルコニーの床裏は下階の天井懐となることから室内とは気密性と断熱性で完全に絶縁しなければなりません。勿論、バルコニーの床裏の空間は、結露による木材の腐朽などを防ぐため外気との通気を通しし湿気を排出する換気にも配慮が必要です。

また、造り付け構造の手すり壁の壁体は空洞化していることから、外装下地は外壁の通気構法と同様の二重構成とし湿気を排出させなければなりません。

3.3 外皮を構成する部材と材料

木造建物の造り方として構造的に大別すると、日本古来の構法を踏襲した軸組構法（在来構法とも称す）構法と戦後アメリカからもたらされ、日本の法令などに適合するよう技術基準が定められた枠組壁工法（ツーバイフォー構法とも称す）の種類があります。

◆軸組構法：通し柱や管柱（縦軸材）と桁や梁（横架材）を使い、筋かいなどの斜材で軸組を構成する構造。（外壁には、強度や剛性を確保する構造用合板などの面材を張る場合もあります。）
第Ⅱ章 家造りガイドライン

◆枠組壁工法：規格化された枠組材と構造用面材で構成される壁枠組（壁版）と床枠組（床版）を、箱状に組み立ててつくる構造。

3.3.1 屋根
1）屋根材と下地材料
主な屋根材料としては、粘土瓦や住宅屋根用化粧スレートが一般的ですが積雪の多い地域には金属板葺きの他、アスファルトシングル葺き等もよく使われる材料といえます。
粘土瓦には、J形瓦やS形瓦のほか、F形瓦など形状は多様であり、脱落しにくい嵌合部のついた防災瓦もあります。また、焼成温度が高いので吸水率が低く、耐凍結性が高くなっていいます。仕上げは、いぶし仕上げや釉薬仕上げ、素地の無釉仕上げなどがあります。

<table>
<thead>
<tr>
<th>場合</th>
<th>□J形</th>
<th>□S形</th>
<th>□F形Uタイプ</th>
<th>□F形Fタイプ</th>
<th>□F形Mタイプ</th>
</tr>
</thead>
</table>

仕上げ：□いぶし瓦 □釉薬瓦 □無釉瓦

機能別：□防災瓦 □桟瓦（防災瓦以外）

防災瓦の嵌合部分詳細

<table>
<thead>
<tr>
<th>住宅屋根用化粧スレート葺き材</th>
<th>金属葺き材（立て平葺と横葺）</th>
<th>アスファルトシングル葺き材</th>
</tr>
</thead>
</table>

写真3.3 各種屋根材の種類

2）防水材（下葺き材）
防水材料には不透湿性のもの（アスファルト系）と透湿性の二種類のルーフィングがあります。
アスファルトルーフィングは、何れの屋根材に対しても防水下地として適しています。透湿ルーフィングは、粘土瓦などのように屋根材と防水材との間に空隙があり、野地（屋根下地材）
から放湿できる場合に適しています。金属屋根、化粧スレート屋根などに透湿ルーフィングを使用する場合は、必ず通気下地屋根構法などのように空間を設けて施工することが必要です。

3）断熱材

屋根および天井の断熱方法は、以下に示す通り最上階の天井裏に設ける天井断熱、天井の上部にある桁の間に設置する桁中断熱、桁の上に設置する桁上断熱、屋根に設ける屋根断熱があります。何れも透湿抵抗の低い繊維系断熱材などは、必ず断熱材の室内側に防湿処理を施します。

・天井断熱：小屋裏（最上階の天井裏）は、間仕切りの間柱、野縁、吊り木、配線、ダクトなどのために平坦ではなく、袋入り断熱材や成型された断熱材などは、隙間なく施工することは難しく、丁寧な施工となっていることを確認する必要があります。隙間なく断熱するための一つの方法としてブローイングなどがありますが、ダウンライトへの吹込みによる火災の危険性に対して配慮する必要があります。天井から室内的湿気が小屋裏のダクト内へ浸入すると、温度の低い部分に接触して結露する恐れがありますので、適切に施工されていることを確認します。間柱の上下端部は、気流止めが必要になります。

・桁中断熱：桁と桁の間に防湿フィルムや断熱材を施工する方法です。天井面から離れているため、断熱材の納まり上、邪魔なものが少ない状態で施工することが出来るため、隙間が生じにくく断熱欠損を防ぎやすくなります。

・桁上断熱：桁の上に防湿フィルムや断熱材を施工する方法です。桁中断熱と同様に断熱材の納まり上、邪魔なものが少ないため、断熱欠損を防ぎやすくなります。

・屋根断熱：屋根に防湿フィルムや断熱材を施工する方法となります。屋根に内装材を張ることにより小屋裏をなくして、室内的上部を勾配天井とし、天井断熱とするよりも部屋を高くすることが可能となります。ロフトを施工するスペースも生まれます。断熱材の屋外側には、通気層が必要です。
4）換気材

小屋裏空間に水分や湿分が滞留しないよう軒先と頂部などに換気口もしくは通気の出入口を設けることが必要です。小屋裏換気は住宅品質法の性能表示制度の劣化対策等級や住宅金融支援機構の「木造住宅工事仕様書」で天井面積に対する換気口の有効面積の割合や位置が規定されています。

軒先換気：小屋裏空間の湿気を排湿するうえで、軒先の換気口は外周の全周にまんべんなく配置しますが、一般的にはライン状のスリット換気材が適しています。

頂部換気：軒裏または小屋裏の外壁面に給気口を設け、小屋裏の頂部へ換気口材などの排気口を設置しますが、規準面積に合致した換気材を設ける場合であっても、垂木の先端などに排気口への連通通気路が必要と思われます。

妻壁換気：一般に屋切と称される外壁の妻壁上部に取り付けられる換気材です。建物の外観意匠に合わせ洋風や和風格子の屋切を設けますが、機能的に筒形のレジスタータイプなども使われています。（防火地域の防火対応に適しています。）
軒先スリット換気の事例
棟換気の事例
妻壁換気材とレジスター型の事例

写真 3.4 屋根まわりの換気部材例

5）小屋裏点検口

小屋裏がある場合、直下階の室内から小屋裏へ出入りができる点検口を設ける必要があります。屋根断熱で小屋裏を設けた場合は、気密性を必要としない通常の点検口で支障はないですが、天井断熱とする場合の点検口は小屋裏内の結露を防ぎ、断熱性を確保するため、気密断熱を備えた点検口を取付けなければなりません。

6）その他関連部材

勾配屋根面には、写真 3.5 に示す通り、落雪防止に必要な雪止めや、急な勾配屋根には保守転換用の足場を支える点検金具などを取り付けることがあります。

・落雪防止：積雪が滑り落ちないよう粘土瓦では瓦自体に雪止めがついた製品があり、化粧スレートや金属葺きの場合では落雪防止のための多様な金物があります。
・点検施設：急勾配屋根の葺き材が破損した場合の補修や雨漏れの点検時などに作業足場を確保するために必要な緊結用の輪環やフック吊具などがあります。

写真 3.5 屋根の関連部材

3.3.2 外壁

外壁仕上げは、主に乾式構法と湿式構法の二つがあげられます。材料については多岐にわたる事から各外装建材メーカーの資料や住宅展示場の実モデル等で選択することが可能です。外壁の耐久性において最も重要となる部材は、通気柵構法に使われる材料といえます。その主要な材料に透湿防水シートと通気柵縫が挙げられます。
また、通気構法における通気層の隙間を確保するための木製の通気胴縁や通気金具などがありますが、いずれも建物の完成後は見えない下地の構成部材となります。

写真3.6 通気層の納まり例

1) モルタル外壁

通気構法用の上手下地には、通気胴縁の外側に紙付きリブラスなどを留め付ける「単層下地」と、通気胴縁の外側にラス下地や面材を留め付ける「二層下地」の二種類があります。紙付きリブラスは、ターポリン紙などとリブラスが一体化したもので、直張り構法や二層下地通気構法のモルタルの裏面にはアスファルトフェルトが使用されますが、建築外装下地として品質と性能が担保されたアスファルトフェルト430または改質アスファルトフェルトを使わなければなりません。（8kg/巻品、17kg/巻品などの梱包用フェルト等は使用できません）

2) サイディング外壁

乾式外装材として一般的なサイディング材には、窯業系サイディング、金属系サイディング、樹脂系サイディング、木質系サイディングなどがあり、各サイディングは様々な意匠と厚さの種類があります。窯業系サイディングの場合、重要なのは板の凍結融解性能と継ぎ目に施される防水シーリング材で、長期にわたる紫外線や日射熱により風化劣化による目地切れを起こすことが良くあります。目地には三面接着を防止するための目地ジョイナー、付着性を確保するプライマーが必要であり、耐候性と弾性を一定期間（10年目安）担保でき接着性を保持できるシーリングを選ぶことが重要です。

長期優良住宅では外壁に通気構法を施することが規定されていますが、外壁の室内側には透湿抵抗値（湿気を通しにくい性質）が高い材料（防湿フィルム、発泡系断熱材など）を施し、躯体（柱などの骨組み）の外側には透湿抵抗が低い面材などを配置するような組合せが必要です。

3.3.3 脚部（基礎及び最下階の床）

基礎は一般的にはベタ基礎もしくは布基礎のどちらかが使われますが、多くの住宅の脚部には基礎に沿って犬歩やポーチあるいは踏み台や設備機器用の基台等の付帯施設があります。基礎に接していることから基礎の外面を仕上げる前に付帯施設を一体化せず造ることが多いよ
うです。特にべた基礎の場合には立ち上りの打継部が付帯施設に隠れて見えなくなったり、基礎の打継の隙間からシロアリや雨水が床下側に入り込んでも判らず、これらの要因による蟻害や腐朽といった木造の耐久性を脅かす事態に至る事も少なくありません。

べた基礎に接する付帯施設は基礎と配筋で一体化するか、出来なければ基礎外面の仕上げを地盤面下まで終えてから改めて設けるなど確実に分離して設けることが必要です。基礎の立ち上がり部表面にモルタル等を塗る基礎幅木や、断熱材を張る基礎断熱は、基礎との間に隙間が生じてモルタルや断熱材の裏側に蟻道がつくられる恐れがあり、発見が困難であるため、十分な対応策を検討する必要があります。基礎断熱は、床下と一階の室内の空気をガラリなどで通じさせることができる、床下に防腐防蟻剤などの薬剤を施すと健康への影響が考えられるので、どのような仕様となるのか確認が必要と思われます。因みに土台や柱などにヒノキやヒバなどを使用している場合でも、辺材部分の防蟻性能は高くありません。

べた基礎による最下階の床組は、コンクリート土間の水分が十分放出された後（約30日程度）に施工することが必要です。

また、床下は常に湿度が高くならないよう、床下空間全域にまんべんなく換気を行い通さるため、外まわりに設けた換気口を設けるのが一般的です。このねこ土台の換気口を覆うカバーは、外壁の下端に取付ける水切りを兼ねて設けるのが一般的です。（床下の排湿が良ければ床断熱材の性能も安定して保持できます。）

基礎立ち上がりの仕上げには、モルタル塗り（基礎幅木）が一般的ですが一部にタイルや自然石を張る仕上げやコンクリート化粧打ち放し若しくは塗装仕上げとする方法などもありま
す。基礎幅木の場合、基礎とモルタル塗りの間に隙間が生じて、蟻道とならないように配慮が必要となります。

図 3.13 床下換気および点検口の納まり

3.3.4 バルコニー

バルコニーの手すり壁は建物本体の外壁と同じ部材と材料で造られるのが一般的ですが、手すり壁上端にはアルミ材などで作られた既成の笠木や手すりを取り付けることが多いようです。手すり壁の上端や建物の外壁との取り合い部には防水下地として柔軟性に富んだ伸長型の防水テープや立体的な面の取り合いをカバーできるように成形された防水カバーなど使って確実に防水処理をする事が必要です。バルコニーの床の防水と排水も重要ですが、特に床のドレ
第Ⅱ章 家造りガイドライン

ベン（排水施設）の目詰まりなどに備えて2箇所以上の排水ドレーンとオーバーフロー管（溢水管等）の排水処置が必要です。

図 3.14 防水納まりの例

建物本体と一体の構造で造られたバルコニーの歩行床面の防水は以下の注意が必要となります。

（1）アスファルト系防水：構造剛性の高いコンクリート造等に多く木造にはあまり適していません。
（2）合成ゴムシート防水：下地の挙動に対して破損しにくく木造の防水材料として適しています。
（3）塗膜複層樹脂系防水：FRP 等の積層塗膜を現場で施工しますが熱膨張で隅部の圧迫破断が起きやすい構法です。
（4）金属板加工成形防水：溶融55%アルミニウム亜鉛合金めっき鋼板や銅板等があり、平
面が単純で小規模のバルコニー等には適しています。
いずれの防水層も暴露せず、歩行による破断防止のために表面をモルタル等で仕上げを兼ね保
護処理をしますが、上にスノコや人工芝などを使えば植栽プランターや空調設備機器の架台な
どの据置の備えにもなります。

4. 耐久性を確保するための外皮構造の手引き
4.1 手引きの役割と概要

住まい手向けに作成した4種類の手引きによる役割と概要を下記に示します。

①「長持ち住宅を選び方（案）」

このWebサイトは、住宅の重要な基本性能を確保して、長期にわたって快適に暮らして顶くため、住宅性能表示制度などの既存の評価システムに関する情報や、共同研究の成果を容易に
得られやすいように作成されたWebサイトです。サイト内では、「はじめに」、「不具合事例」、
「住宅選びと耐久性」、「性能の確保」、「雨掛かりと防水」、「省エネを結露」、「LCC」（ライフサイクルコスト）、「建設地と防災」、「Link」の9項目に分けて示しています。特に、「住宅選びと
耐久性」では、「長持ち我が家を築く！造り手との情報交換ツール」、「住まい手のための材料選
択シート」、「住宅外皮重要ポイントチェックリスト」とリンクされています。これらは、耐久性を確保する上で重要であり、その内容を②以下に示します。

②「長持ち我が家を築く！造り手との情報交換ツール」
このツールは、住宅建設を依頼する候補と考えている各住宅会社が、住宅の耐久性をどのように確保しようとしているのか予め情報を得て、住まい手が提案されている住宅の各種の仕様、性能、必要経費などを横並びに比較・評価するのを手助けするものです。

③「住宅取得予定者のための材料選択シート」
木造住宅は、数多くの材料・部材により構成されており、使用される材料により、耐久性が異なります。例えば、低品質の防水紙を使用した場合、早期に防水紙が劣化することがあります。しかし、防水紙が劣化した場合、雨漏りがしやすくなり、構造躯体まで劣化して、耐震性にまで影響を及ぼすことがあります。このシートは、住宅の建築や建売り住宅の購入を予定している住まい手が外皮を選択する際の参考資料となります。

④「住宅外皮重要ポイントチェックリスト」
このチェックリストは、耐久性を確保する上で重要となる「床下まわり」、「外壁・窓」、「バルコニー」、「屋根」を対象としたものであり、住宅の発注者が設計者や外部の建築士など、住宅関係の有識者と相談しながら、採用を希望する構法・仕様を決める際の技術資料となります。

4.2 手引きの利用方法
新たな住まいを検討する際の比較対象として、以下などがあります。
(1) 戸建て住宅とマンションの比較検討
(2) 新築住宅とリノベーションによる既存（中古）住宅の比較検討
(3) 注文住宅と分譲（建売り）住宅の比較検討
土地を購入する際にも、建設会社が限定されるなどの築造条件付きのものもあります。ここで手引きは、選択範囲が広い新築による木造戸建て注文住宅を主として検討したものですが、戸建て住宅であれば応用することも可能と思われます。

4.2.1 注文住宅に対する利用方法
各々の手引きの利用方法を以下に示します。
①「長持ち住宅の選び方」
このWebサイトにアクセスすると、サイト内に関係機関や下記の②〜④までがリンクされてます。住宅に関して計画をする際の参考となります。
②「長持ち我が家を築く！造り手との情報交換ツール」
住まい手はこのツールをダウンロードした後、希望事項を記入したファイルを候補としている各々の住宅会社に送り、受け取った住宅会社は標準の仕様と必要経費などを記入して、住まい手に送り返します。住まい手は各々の住宅会社から送付されたシートの内容を比較検討し
て、住宅選びの参考技術資料として役立つことが可能になります。シート内にも利用方法が記載されています。

③「住宅取得予定者のための材料選択シート」

本シートは、住宅を構成する各種の材料の中から、適切な材料を選択するためのヒントを示すものですが、建設会社により材料の選択する範囲が限定されていることがあります。

建設する会社が決まっていない場合は、②の情報交換シートを利用して候補となる住宅会社がどのような材料を採用する可能性があるのかを事前に把握した後、その材料がどのような性能・特徴などがあるのかを本シートにより理解して、住宅会社を選定する際の参考資料とします。住宅会社が決定している場合は、住宅会社が対応可能な材料の中から、設計者と相談して、適切な材料を選択する際の参考資料とします。

④「住宅外皮仕様重要ポイントチェックリスト」

本シートは、住宅の建設を計画する際の重要事項について、精通している住宅関係者とともにチェックするリストです。

4.2.2 分譲（建売り）住宅に対する利用方法

分譲住宅は、これまで住宅を建設後に売買するのが一般的でしたが、最近、建築前や工事中に売買したり、間取りの変更に対応したりするものまであります。住まい手が工事状況を把握しないまま、建設後に売買する場合は、現場で住宅の内外装や設備等を確認することは可能ですが、下地材や構造材などの仕様は、造り手が提出可能な図面でしか確認することがありません。

しかし、この手引きを利用することにより、どのような仕様で建設されたか、または、建設を予定しているのかを問い合わせることが可能となります。また、分譲住宅の販売は、不動産業者が携わることもありますので、住宅会社は不動産業者へ十分な情報を提供することも必要と思われます。売買する前に、注文住宅の利用方法と同様に、販売会社へ問い合わせた後、本手引きを送付し、各種の仕様を確認されることも可能です。

4.2.3 既存住宅に対する利用方法

既存（中古）住宅を購入し、そのまま住む場合と、中古住宅をリノベーション（大規模改修など）する場合があります。何れもあらかじめ住宅の状態を把握することが重要となります。新築住宅の場合と異なり、1年以上経過した既存住宅の場合、耐久性に対して実績（結果）があるので、現在の状況が良ければ無事に住むことが可能となります。しかし、壁内や屋根の下地部分など、確認しにくい部分もあるので、注意が必要となります。

リノベーションする場合、外皮の条件が異なることがありますので、事前に防水や結露に対する注意が必要となります。特に既存住宅の場合、通気層が無いモルタル直張り構法が多く、そのまま気密性を高めたり、気流止め（外壁や間仕切りの上下端部などの気流を止める）したりする場合は、壁内の湿気が排出されにくくなり、構成部材が劣化する恐れがあるので注
意が必要です。改修する場合は、本手引きを参考にして雨水浸入、結露、蟻害などが発生しないように配慮するとともに、通気層を設けて壁内の水分を排出しやすいような通気層を設けるなどの対策が望まれます。
5. 自然災害による被害や設計・施工上の不具合を未然に防ぎ長寿命化するための情報

5.1 手引きの目的

本手引きのテーマは、木造住宅の耐久性を向上させることですが、住宅を長期間にわたって維持するためには、木材の腐朽や金属の腐食を防ぐだけではなく、津波の襲来による重大な人的・物的被害を受けない地域に建設し、地震時に大規模な損傷を受けないよう、耐震性能を確保することが前提となります。いくら耐久性が高なくても、容易に自然災害を受けては、耐久性を確保した意味がありません。以下に災害を未然に防ぐための情報や耐震性を確保するための情報の活用について示します。

5.2 近年の地震・津波に関する情報

これまで我が国は、地震、津波、台風、洪水、高潮、豪雪、竜巻など、数多くの自然災害を受けてきました。特に地震は数多く、日本が各プレート（ユーラシアプレート、フィリピン海プレート、太平洋プレート、北米プレート）の境界地域にあるため、M6.0以上の地震は、世界的の22.9%を占めています。（内閣府、3P）

以下に主な地震・津波災害の概要と住まい手が注意すべき要点を示します。

1）地震の揺れによる被害が大きい地震
①兵庫県南部地震（阪神淡路大震災）
地震：1995年1月17日、5:46、Mj（気象庁マグニチュード、以下同様）7.3
震源：淡路島北部、最大震度7
被害：死者6,434名、全壊104,906棟、半壊144,274棟、住家被害計639,686棟
特徴：数多くの建築物が倒壊、冬季の早朝、多くの方が就寝中に発生、家屋の倒壊および家具の転倒などにより圧死、または、都市火災により焼死
参考資料：「阪神・淡路大震災から２０年」特設サイト（気象庁、3P）

②熊本地震
地震：2016年4月16日、1:25（深夜）、Mj7.3
震源：熊本県熊本地方、最大震度7
被害：死者88名、全壊8,125棟、半壊28,424棟（消防庁）
特徴：益城町では、4月14日のMj6.5による前震と4月16日のMj7.3の本震が短時間に発生し、震度7を2回観測。同じ地点で震度7が2回起きたのは、観測史上初
参考資料：「平成28年（2016年）熊本地震」熊本県から大分県にかけての地震活動の状況（気象庁）

2）津波による被害が大きい地震
①明治三陸地震（三陸：青森県南東部から宮城県東部）
地震：1896年6月15日、19：32、Mj8.2〜8.5
震源：岩手県釜石市の東方沖 200km、最大震度 2〜3
津波：最大週上高（津波が海岸から内陸へかけ上がった高さ）は、現大船渡市の 38.2m、約 30 分後に到達（2011 年の東北地方太平洋沖地震では、40.1m）
被害：死者 21,959 名
特徴：本地震は、三陸沖で M8.2 〜 8.5 の巨大地震でしたが、震央が被災地より約 200km 離れた東方沖で発生したため、気象庁の資料によると被災地の最大震度は 2〜3 しかなく、あまり気にとめる住民は少なく、津波が陸地へ到達するまで約 30 分間の猶予がありました。が、直前まで避難しないで津波にのまれた方がいると伝えられています。
（参考：1960 年、日本にとって地球のほぼ裏側になるチリで Mw（モーメントマグニチュー ド、以下同様）9.5 の巨大地震が発生（チリ地震：群馬大学広域首都圏防災研究センター作成）し、22 時間半後に最大 6.1m の津波が早朝の三陸海岸沿岸を中心に襲来し、死者行方不明者 142 名の惨事となりました。国内で震度 1 以上を観測した地点はなく、被災地で大きな地震を感じなくても、就寝中に津波が襲来する可能性があります）
参考資料：災害史に学ぶ（内閣府 中央防災会議「災害教訓の継承に関する専門調査会」編
災害史に学ぶ 海溝型地震・津波編（内閣府）
過去の災害に学ぶ 1896 年明治三陸地震津波（東北大学）
災害教訓の継承に関する専門調査会報告書 原案 1896 明治三陸地震津波（内閣府）
第 1 節 震災からの復興 コラム 三陸の過去の津波災害と高地移転（国土交通白書）

姉吉地区 大津浪記念碑
原文
「高き住居は子孫の和楽 想へ惨禍の大津浪 此処より下に家を建てるな 明治廿九年にも昭和八年にも 津浪は此処まで来て 部落は全滅し生存者 僅かに前に二人 後に四人のみ 共年経るとも要心何従」

おおよその意味
「高所の住まいは子や孫たちの和やかな楽しみ。想い懸けるの大津波、ここより下に家を建てるな。明治 29 年にも昭和 8 年にも津波はここまで来て集落は全滅し、生存者わずかに前の明治三陸津波で 2 人、後の昭和三陸津波で 4 人のみ、何年経っても用心せよ」

②昭和三陸地震
地震：1933 年 3 月 3 日、2：30（深夜）、Mj8.1
震源：岩手県釜石市の東方沖約 200km、最大震度 5
津波：最大週上高は、現岩手県大船渡市三陸町の 28.7m、約 30 分後に到達
被害：死者・行方不明者 3,064 名
参考資料：昭和三陸地震（農林水産省）
③東北地方太平洋沖地震（東日本大震災）
地震：2011年3月11日、14:46、Mw9.0
震源：宮城県仙台市の東方沖70km、最大震度7
津波：最大遡上高は、岩手県大船渡市の綾里湾において40.1m
被害：死者19,418名、行方不明者2,592名
特徴：国内観測史上最大規模の地震であり、東北地方から関東地方にかけての太平洋沿岸で非常に高い津波を受け、各地で甚大な被害が発生。
参考資料：平成23年（2011年）東北地方太平洋沖地震（気象庁）
以上の①〜③に示す通り、三陸沖では1896年の「明治三陸沖地震」から2011年の「東北地方太平洋沖地震」に至る115年間に3回の巨大な津波に襲われていることになります。特に明治三陸地震では震度2〜3の小さな地震であったにも関わらず、最大遡上高38.2mの津波を受け、21,959名の方が亡くなっており、現在でも重い教訓として今後の計画に活かす必要があると思われます。
宮城県沖を震源とする大地震は、平均37.1年間隔で発生しており、2009年1月1日時点の長期評価では今後30年以内の発生確率は99%とされています。（仙台管区気象台）
④北海道南西沖地震
地震：1993年7月12日、22:17、Mj7.8
震源：北海道奥尻島北方沖、最大震度6（推定）
津波：最大遡上高は、藻内地区において31.7m
被害：死者202名、行方不明28名
特徴：地震が発生した4〜5分後に津波が奥尻島へ到達し、特に青苗地区は津波と火災などにより甚大な被害を受け、壊滅状態となりました。
参考資料：主な津波被害の概要（内閣府）
過去の地震津波】北海道南西沖地震津波（1993年7月12日）、（群馬大学）
第1編 北海道南西沖地震の概要（奥尻町役場）
地震・津波は、自然現象ですので、発生時期、時間（就寝、避難、火気の使用）、震源地、規模、地震波の特性などを詳細に予知することは、困難となっています。従って、深夜の就寝中に小さな地震が発生し、その後に巨大な津波が襲ったり、地震直後に津波が襲来したりすることも考えられます。気象庁の「津波について」によると、高さ30cmの小さな津波でも立っていることが困難となって危険であり、高さ1mを超えると木造家屋に被害が出始めます。
5.3 建設予定地の災害リスクに関する情報

5.3.1 過去の地震・津波からの検討

戦前、戦後となる昭和18年から昭和23年の5年以内に死者1,000名を超える地震被害が5回発生（1年に約1回の頻度）しています。東南海地震、三河地震、南海地震では、津波が発生しており、三重県や和歌山県で著しい被害を受けています。

気象庁では東海地震発生の切迫性が公表され、内閣府では、南海トラフ巨大地震が想定されています。南海トラフのような海溝型地震は、一定の間隔で起こる「周期性」と同時に起こる「連動性」が大きな特徴となっています。

<table>
<thead>
<tr>
<th>発生年月日</th>
<th>M</th>
<th>地震名</th>
<th>死者</th>
<th>行方不明者</th>
<th>津波</th>
<th>最大震度</th>
<th>最大震度を観測した観測点</th>
</tr>
</thead>
<tbody>
<tr>
<td>昭和18(1943)年9月10日</td>
<td>7.2</td>
<td>鳥取地震</td>
<td>死者</td>
<td>1,083</td>
<td>6</td>
<td>鳥取県 鳥取市吉方</td>
<td></td>
</tr>
<tr>
<td>昭和19(1944)年12月7日</td>
<td>7.9</td>
<td>東南海地震</td>
<td>死・不明</td>
<td>1,183</td>
<td>○</td>
<td>6</td>
<td>三重県 津市島崎町など2点</td>
</tr>
<tr>
<td>昭和20(1945)年1月13日</td>
<td>6.8</td>
<td>三河地震</td>
<td>死者</td>
<td>1,961</td>
<td>○</td>
<td>5</td>
<td>三重県 津市島崎町</td>
</tr>
<tr>
<td>昭和21(1946)年12月21日</td>
<td>8.0</td>
<td>南海地震</td>
<td>死・不明</td>
<td>1,443</td>
<td>○</td>
<td>5</td>
<td>和歌山県 串本町潮岬など17点</td>
</tr>
<tr>
<td>昭和23(1948)年6月28日</td>
<td>7.1</td>
<td>福井地震</td>
<td>死者</td>
<td>3,769</td>
<td>6</td>
<td>福井県 福井市</td>
<td></td>
</tr>
</tbody>
</table>

東北地方太平洋沖地震など、津波による浸水域では、同程度の津波が発生した場合、繰り返し浸水し、甚大な被害を受ける恐れがありますので、建設地に対して注意が必要となります。

東北地方太平洋沖地震の津波による浸水範囲については、10万分1浸水範囲概況図（国土地理院）を参考として下さい。

5.3.2 将来の災害予測

以下の1）～3）は、有識者が想定した将来の被害予測ですが、地震や津波による現象や被害を適切に予測することは非常に難しいことと思われます。従って、実際には、想定よりも小規模な災害となったり、甚大な災害となるったりすることも考えられます。しかし、我が国は、上記のような地震や津波により甚大な被害を繰り返してきた歴史があり、また、想定されていないかった地域において、巨大地震も発生していますので、新築時にはあらかじめ対応策を十分に検討することが望まれます。

1）南海トラフ巨大地震の被害想定

市町村別の津波高さ、津波到達時間、最大震度を想定（内閣府）。なお、地震発生確率は30年以内に70%程度、想定死者数：323,000人となります。

内閣府「報告発表資料一式（平成24年8月29日発表）」

津波被害：「資料1-5 都府県別市町村別津波到達時間一覧表」を参照

地震被害：「資料1-6 市町村別最大震度一覧表」を参照

「山梨県」、「静岡県」、「愛知県」、「三重県」、「兵庫県」、「和歌山県」、「福岡県」、「愛媛県」、「高知県」、「宮崎県」に震度7が想定されています。
駿河湾内にある駿河トラフから四国沖にある南海トラフにかけてのプレート境界では、過去100年から150年おきに岩盤がずれてマグニチュード8クラスの巨大地震が繰り返しあっており、東南海地震（1944年、マグニチュード7.9、死者1,223名）、南海地震（1946年、マグニチュード8.0、1,330名）

2）首都直下地震の被害想定

市町村別の最大震度、津波高さ、津波到達時間を想定しています。「茨城県」、「埼玉県」、「千葉県」、「東京都」、「神奈川県」、「静岡県」に震度7が想定されています。
首都直下地震モデル検討会（内閣府）
（「都道府県・市町村毎の最大震度の表」を参照）

元禄関東地震（1703年、関東地方を襲った巨大地震）では、千葉県南房総市において高さ10mの津波が4分で到達し、東京都江東区では、高さ3mの津波が140分後に到達することを想定しています。（「津波高さ及び津波到達時間表」（内閣府）を参照）

3）ハザードマップ

「国土交通省ハザードマップポータルサイト」内の「重ねるハザードマップ」では、「水害」、「土砂災害」、「地震」、「地形・地質」、「火山」に関する地図を提供しています。「わがまちハザードマップ」では、「洪水」、「内水」、「高潮」、「津波」、「土砂災害」、「火山」、「地震防災・危険度」に関するハザードマップを提供しています。（操作マニュアル）

各河川の「公表されている想定最大規模降雨による洪水浸水想定区域データ」、「地点別浸水シミュレーション検索システム（浸水ナビ）」、「三大湾の高潮浸水想定」、「都道府県の防災関連ページ」も参考になります。地方自治体においても、自然災害に対するリスクを地図に表しています。例えば、下図に示す通り、東京都都市整備局では、「あなたのまちの地域危険度」、「地域危険度マップ」という資料を発行しており、「建物倒壊危険度」、「火災危険度」、「総合危険度」などを公表しています。

図5.1 東京都の建物倒壊危険度ランク図（東京都都市整備局）
5.3.3 建設地の選定と災害対応の検討

1) 建設地を選択出来る場合

前述の「5.3.1 過去の地震・津波からの検討」、「5.3.2 将来の災害予測」を参考にして、可能な範囲で災害のリスクの低い建設地を検討することが重要と思われます。土地の価格は土地総合情報システム（国土交通省 土地・建設産業局）でも調べられます。

2) 建設地を選択出来ない場合

既に土地を所有しているなど、諸事情により建設地を変更出来ない場合は、災害発生時の対応策を検討する必要があります。津波のリスクが高い地域や沿岸から近い地域の場合は、想定される津波の到達時間以内に高台、中高層のビルなどに避難する必要がありますので、あらかじめ家族で避難計画を立てる必要があると思われます。なお、ビルを避難場所として計画する際は、深夜でも高い場所に避難することが可能であるか、事前に確認が必要となります。

地震については、各機関から想定されている地震以外にも、大規模な地震が発生する可能性も否定出来ないので、「住宅の品質確保の促進等に関する法律」（通称：品確法）で定めている住宅性能表示制度の耐震等級の最高等級と同等以上にしたり、免震建築物にしたりすることが推奨されます。

5.4 設計・施工上の不具合を未然に防ぐための対応策

住宅の不具合を未然に防ぐためには、適切な仕様（構法、材料・部材、納まりなど）と、工事ごとの適切な施工、施工管理、検査が必要となります。住宅の仕様に関しては、一般社団法人 日本建築学会の建築工事標準仕様書・同解説 (JASS)、国土交通省大臣官房官庁営繕部の共建築木造工事標準仕様書、住宅金融支援機構の木造住宅工事仕様書などがあります。これらは、詳細に仕様が記載されていますが、十分に理解し仕様や工事の適切さを判断することは、一般的な住まい手では著しく時間が必要と思われます。しかし、各種の制度を利用して、対応策を参考にしたりすることにより、不具合を未然に防ぐことが可能となります。

以下に示す資料は、トラブルを未然に防ぐための判りやすいものと思われます。

住まいの基礎知識－トラブルを未然に防ぐために－（独立行政法人 国民生活センター）
時系列順で特に本資料に関係が深いと思われるものを以下に示します。

「第1回 建築の三権分立－設計、施工、監理－」
「第2回 土地を購入するときに注意したいこと」
「第3回 住宅を購入するときに気をつけたいこと」
「第11回 施工中の注意点」

5.4.1 各種制度の活用

住宅の諸性能を確保し、不具合を未然に防ぐ方法として、以下に示す諸制度が参考となります。

1) 住宅瑕疵担保履行法（事業者：保険または供託が義務）
この法律で言う瑕疵は、構造耐力上主要な部分と雨水の浸入を防止する部分の欠陥を指しており、本法では新築住宅を供給する事業者に対して、瑕疵の補修などが確実に行われるよう、保険や供託を義務付けています。事業者が倒産した場合でも、2000万円までの補修費用の支払いが保険法人から受けられます。新築住宅を供給する事業者は、住宅のなかでも特に重要な部分である「構造耐力上主要な部分」および「雨水の浸入を防止する部分」の瑕疵に対する10年間の瑕疵担保責任を負っています。しかし、本法において結露の規定は含まれていませんので、事前に結露計算などにより結露が発生しないことを確認することが望まれます。

国土交通省住宅局では、「住宅瑕疵担保履行法について」、「重要事項説明チェックシート」などが案内され、公益財団法人住宅リフォーム・紛争処理支援センターでは、まんがでわかる「住宅かし担保履行法」が発行され、電話相談窓口が開設されています。

2）住宅性能表示制度（任意制度）
住宅性能表示制度は、住宅の基本的な性能について、国が定めた共通のルールに基づき、公正中立な第三者機関の登録住宅性能評価機関が設計図書の審査や施工現場の検査を経て等級などを評価しています。設計住宅性能評価は、設計段階のチェックがあり、建設住宅性能評価は、建設工事・完成段階のチェック（一般的に4回の現場検査）があり、求められている性能通りに設計がなされ、また評価を受けた設計通りに工事が進められているかを確認されます。

建設住宅性能評価書が交付された住宅は、迅速に専門的な紛争処理が受けられます。「日本住宅性能表示基準」で規定する性能表示の内容は、新築住宅の場合33事項あり、以下の10分野に区分され、必須事項は4分野9事項となります。その他については選択項目になり、登録住宅性能評価機関への評価申請の際に、評価を受けるかどうかを自由に選択することができます。

必須事項
①構造の安定に関すること、②劣化の軽減に関すること、③維持管理・更新への配慮に関すること
④温熱環境・エネルギー消費量に関すること、

選択事項
⑤火災時の安全に関すること、⑥空気環境に関すること、⑦光・視環境に関すること
⑧音環境に関すること、⑨高齢者などへの配慮に関すること、⑩防犯に関すること

木造住宅の耐久性に関係する「劣化対策等級」の最高等級の等級3の評価基準は、「評価方法基準」に記載されており、a.外壁の軸組（柱などの主要な骨組み）、b.土台、c.浴室および脱衣室、d.地盤、e.基礎、f.床下、g.小屋裏、h.構造部材について規定されていますが、雨水浸入防止対策に関する詳しい規定はありません。

概要是、「新築住宅の住宅性能表示制度ガイド」をご覧ください。
本制度を活用することにより、住宅の性能を把握し第三者機関の評価を受けられるだけではなく、建設住宅性能評価書が交付された場合、トラブルが発生した際に紛争処理が1万円で受けられます。さらに、地震保険料、住宅ローンなどの優遇を受けることが可能となるなど、多くのメリットがあります。

3) 長期優良住宅認定制度

「長期優良住宅の普及の促進に関する法律」では、長期優良住宅の普及を促進するため、構造躯体などの劣化対策、耐震性、リフォーム時の可変性、維持管理・更新の容易性、高齢者等対策、省エネルギー対策など、一定以上の住宅規模や良好な景観の形成への配慮など定めています。それらの認定基準に適合する住宅の建築計画及び維持保全計画を所管行政庁に申請し、該当する計画の認定を受けた住宅については、認定長期優良住宅建築等計画に基づき、建築及び維持保全を行うこととなります。本制度の認定を受けるメリットとして、税の特例措置、住宅ローンの供給支援などがあります。木造住宅の劣化対策関連では、2)の住宅性能表示制度の劣化対策等級の3等相当に加えて、床下及び小屋裏の点検口を設置することや、床下空間に330mm以上の有効高さを確保することが規定されています。詳しい認定基準は、長期優良住宅に係る認定基準技術解説をご覧ください。

5.4.2 ツールおよびシートの活用

住宅性能表示制度の劣化対策等級では、通気構法、防腐防蟻対策、床下の防湿対策、小屋裏の換気対策などが規定されていますが、本共同研究では、木造住宅の屋根、外壁、開口部、バルコニーやそれらの取合い部を対象として、防水、結露、通気に配慮した推奨仕様が提案されています。

これらは、各部位の納まりについて詳細に解説されており、参考となりますが、住まい手が理解を得るのには、一般的に時間が掛かることと思われます。

住まい手に理解してもらいやすいようにまとめたものが、以下の4つのツールです。

① 「長持ち住宅を築こう！」「長持ち我が家を築く！造り手との情報交換ツール」
③ 住まい手のための材料選択シート」
④ 「住宅外皮重要ポイントチェックリスト」

これらの概要や利用方法は、「4.耐久性を確保するための外皮構造の手引き」に前述してありますのでご覧ください。

5.4.3 耐久性を確保するための重要チェック項目

木造住宅の耐久性を確保するためには、数多くの設計・施工に関するチェック項目がありますが、ここではその中でも特に重要であり、住まい手に理解されやすい項目について、時系列順に解説します。

1) 情報収集・準備段階のチェック項目
住宅を構築するには、各種の構法・材料・納まりについて検討する研究開発者、設計者、各種工事の施工者、工事管理者、事務担当者など、数多くの関係者が携わっています。これらの関係者の高度な技術・知識・協力体制などにより適切な住宅が構築されると考えられます。モデルハウスの雰囲気や営業担当者の対応だけを重要視し過ぎると、適切に住宅を選ぶことが出来ない場合があります。実際に住む段階になりましたら、住宅の各種の性能・仕様が直接的に影響することが考えられますので、研究開発、設計、施工、施工監理、検査、保証、アフターサービスなどの体制・状況についても、総合的に検討する必要があります。各種の性能などについては、住宅性能表示制度や上記のツールやシートなども活用することが出来ます。

2）設計時のチェック項目

設計者は、一般的に建設地域、土地の寸法形状、周辺環境、関係法令など、数多くの要件について配慮しながら、住まい手の要望に対応した仕様や性能などについて総合的に検討し、設計しています。しかし、住まい手の強い要望により、十分に性能を確保することが困難な場合があります。その事例を以下に示します。

a. 軒やけらばの出

都市部など、土地が狭く、建築面積や斜線制限などにより、軒やけらばの出を少なくするのは致し方ないですが、デザインの好みから軒やけらばの出を少なくすることがあります。住宅検査機関によると、このような住宅の雨水浸入事例が多いと指摘されています。特に、軒の出やけらばの出がほとんど無く漏水リスクの高い、いわゆる「軒ゼロ」の住宅は、綿密な防水設計と施工が必要になります。外壁面からの距離が確保された軒、けらば、庇は、外壁への雨掛かりを少なくして、雨水浸入のリスクを低下させるだけでなく、日射角度の高い夏季の日射を防ぐことが可能となり、冷房費用の削減にもつながります。冬季は日射角度が緩くなりますので、これらが日差しを遮ることはほとんどありません。

以上の内容を図5.2にまとめます。

図5.2 軒の出とけらばの出

※冬は、日射の強さが弱くなるので、軒やけらばの出が充分にあっても日射が室内へ入ります。
b. 屋根の傾斜角度

屋根材による種類として、瓦屋根、金属屋根、スレート屋根などがあり、その屋根材の種類により、防水上、必要となる屋根勾配は異なります。屋根勾配は、防水上の上では急勾配が良いのですが、急勾配すぎると、新築時や改築時の施工が困難、施工費用が増大、風圧力が甚大、水平構面として性能が低くなるなどの特徴があります。屋根材のメーカーが指定している屋根勾配の値が参考となります。

図 5.3 屋根の傾斜

c. 通気構法

乾式外壁は、一般的に通気構法が採用されていますが、湿式外壁（モルタル外壁など）は下図に示す通り、通気構法だけでなく、直張り構法も数多く採用されています。通気構法の特徴や機能として、「雨水浸入防止」、「壁内の湿気の排出」、「熱の排出」として用いられます。通気構法と直張り構法を比較すると直張り構法の方が安価ですが、通気層の有無は、耐久性を確保する上で、極めて重要な条件となります。通気構法は、外装から雨水が浸入した場合でも、通気層の空隙があるため、雨水は通気層を流下し、土台水切りより排出される可能性が高く、また、壁内が高含水率の状態であるため、通気層から湿気が排出されることがあります。一方、モルタル外壁の直張り構法は通気層が無いため、防水紙から室内側へ雨水浸入した場合、直接、下地材や断熱材を濡らすことになります。また、屋外側には透湿抵抗の低いアスファルトフェルトがあるため、乾燥しにくい状態となります。従って、雨水浸入防止、結露防止の両面から、通気構法を採用することが推奨されます。
第Ⅱ章 家造りガイドライン

図 5.4 通気構法と直張り構法の納まりと雨水・結露のリスク

3）施工時のチェック項目

a. 施工監理の依頼先

施工監理は、一般的に受注した建設会社が実施することが多いですが、以下に示す独立行政法人 国民生活センターの資料の通り、不適切な施工監理が行われることがありますので、建設会社の施工技術や工事監理に対して不安な場合は、設計事務所や検査機関などに監理を依頼するなど、対処方法を検討する必要があると思われます。

住まいの基礎知識 —トラブルを未然に防ぐために—(国民生活センター)
「第1回 建築の三権分立—設計、施工、監理」
「第11回 施工中の注意点」

建設住宅性能評価書が交付された住宅は、迅速に専門的な紛争処理が受けられますが、住宅性能表示制度の利用も考えられます。

b. 施主も施工状況を確認する場合の例

施工管理者とは別に、建設現場の状況を施主自ら確認・記録する場合は、以下のような方法が考えられます。

①住宅会社への連絡

施工状況を確認するため、あらかじめ建設現場へ入ることが可能であるか否かを元請けの住宅会社へ確認します。また、安全対策や注意事項について、十分に説明を受ける必要があります。

②関係書類、日程調整

工程表、設計図書を入手して工事内容を把握し、建設現場へ行く日程を住宅会社と協議します。

③道具、安全性の確保、周辺への配慮

確認時に便利なものとして、「ヘルメット」、「作業着」、「作業靴」、「設計図書（コピー）」、「筆記具」、「付箋紙」、「カメラ」、「脚立」、「ライト」、「メジャー」、「ノギス」、「傾斜計」、「下げ振り」、「手鏡」、「クラックスケール」、「スマートフォン（連絡、情報収集）」、
「関連資料」などがあります。可能な範囲で準備します。道具の種類によっては、一時的に建設会社から借りることが出来る場合があります。安全用品は必ず着用する必要があります。また、作業者の迷惑とならないようにご注意します。

④搬入資材の確認・記録、養生の確認

搬入された建設資材は、その種類が判るように梱包などに記載されている種類・品番と、管理状況などを写真撮影しておきます。もし、建設資材が適切に保管されず、雨や雪などにより濡れたり、日射などにより劣化したりする恐れがある場合や、予定と異なる種類の資材が搬入された場合は、工事監理者へ問い合わせます。

⑤接合部の確認

住宅には数多くの接合部があります。その中から地震時の著しい被害を未然に防ぐ上で特に重要と思われる部位については、写真撮影されることを推奨します。写真撮影する際は、撮影後に撮影部位を特定することが可能となるようにする必要があります。例えば、1）撮影部位が示されている図面にペンなどで位置を示して撮影、2）場所が特定出来るように広い範囲を撮影、3）対象部位をクローズアップして撮影する、などの様な順番で撮影することが考えられます。なお、撮影日時を記録するため、カメラの時計は事前に合わせる必要があります。撮影部位の例を表5.1に示します。
表 5.1 重要な接合部の撮影ポイント例（図は納まりの一例を示す）

<table>
<thead>
<tr>
<th>部位</th>
<th>撮影ポイント</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>鉄筋の径、配置、被り厚さ、埋め込み深さ、配置、設置位置、軸径、座金の寸法形状、締め込み状況、金物の種類、接合具の種類と留め付け数量</td>
</tr>
<tr>
<td>基礎−外壁</td>
<td>アンカーポルト関係、ホールダウン関係（柱頭柱脚）</td>
</tr>
<tr>
<td>筋かい耐力壁</td>
<td>筋かいの配置と種類、筋かいの断面寸法、筋かい金物の種類、接合具の種類</td>
</tr>
<tr>
<td>外壁共通</td>
<td>面材の種類（材面に印字されている内容を撮影）、厚さ、接合具の種類（釘などの箱に表示）、接合具の留め付け間隔、留め付け状況（面材への食い込み過ぎ）、乾燥状況</td>
</tr>
</tbody>
</table>

![基礎−外壁の接合部](image1)

![筋かい耐力壁](image2)

![外壁共通](image3)
第Ⅱ章 家造りガイドライン

モルタル外壁

ラス

種類（形状、単位質量、径）（印刷されているシートを撮影）

リプラスの例

種類（型番などが示された梱包材を撮影）、
留め付け位置、留め付け間隔
エアータッカー（空気圧を使用した留め付け用機械）で留め付けていない場合
は、規定外の可能性が高い

ステープルの例

ラス留め付け用
ステープル

半端瓦、勝手瓦の留め付け

半端瓦（棟際に使用され、寸法を短くした瓦）と勝手瓦（隅棟や谷に使用され、
斜めに切断された瓦）が適切に留め付けられている状況を撮影。
ガイドライン構法*1（最後から3P目）を推奨。参照：『瓦屋根標準施工要領書』15〜16P
※危険なので屋根には登らないで下さい

半端瓦の留め付け

勝手瓦の留め付け

瓦屋根

棟の下地

瓦の下地の状況を撮影、ガイドライン構法*1（29、30P）を推奨
参照：『瓦屋根標準施工要領書』15〜16P

棟補強金具の一例
*1：ガイドライン構法は、国立研究開発法人建築研究所が監修し、屋根業界（（社）全日本瓦工事業連盟、全国陶器瓦工業組合連合会、全国厚形スレート組合連合会）が発行した「瓦屋根標準設計・施工ガイドライン」による構法となります。本ガイドラインは、設計方法、関連法令、構造計算、標準試験、標準構法、施工方法、試験方法、試験データなどを記載した技術資料です。本構法を採用した場合、施工費などが少し増大することもありますが、台風時や地震時の剥がれや脱落を防止する性能が著しく向上します。

瓦屋根の場合、本構法が採用される予定であるか確認します。

⑥防水の確認

住宅瑕疵担保責任保険法人によると、瑕疵事故の中で9割以上が雨漏り関係であり、その中でも「屋根（軒天井）取合い部」、「開口部（サッシなど）取合い部」、「笠木（パラペット）取合い部」の事故が多くなっています。雨水浸入事例の特に多いこれらの部位を対象として、撮影することを推奨します。撮影ポイントの例を表5.2に示します。
<table>
<thead>
<tr>
<th>部位</th>
<th>撮影ポイント</th>
</tr>
</thead>
<tbody>
<tr>
<td>屋根 - 外壁取合い部</td>
<td>防水紙の最上端の位置、防水紙上端の留め付け状況（最上端の位置が低い場合、軒裏へ吹き込んだ雨水が、防水紙より室内側へ浸入する可能性があるので、垂木の下端付近まで張ることが推奨されます）</td>
</tr>
<tr>
<td>開口部 取合い部</td>
<td>先張り防水シートの施工状況、種類（改質アスファルトルーフィングなど）、伸張タイプ片面防水テープ、水返し透湿防水シートと防水テープには相性があり、経年によりシワが発生して、雨水浸入要因となることがあるので、シート製造者が推奨している防水テープなど、相性が確認されているものを推奨します。</td>
</tr>
<tr>
<td>防水テープ</td>
<td>フィンの縁目ビス施工によりテープとサッシフィンの間に隙間が生じ雨水浸入しやすい部位</td>
</tr>
</tbody>
</table>

表 5.2 雨水浸入事例の多い部位の撮影ポイント例（図は納まりの一例を示す）
壁貫通部
パイプ、パイプ受け、テープの種類（伸張タイプ）、テープ張り付け状況、テープ張り終わり位置、一体成形品
換気口周辺の防水施工マニュアル
（NPO法人住宅外装テクニカルセンター）

手すり壁上端部
透湿防水シートの施工状況、防水テープ、鞍掛けシートの種類、幅、施工状況、笠木固定金具の先孔、切粉の吸引、ビスの留め付け、シーリング

バルコニーの笠木取合い部
外壁と笠木まわりの取合い部
防水テープ、鞍掛けシート、防水紙の加工、ピーナホール、圧着、しきわ、水切り材、エンドキャップ、シーリング

⑦天候への配慮
降雨により柱や梁などの軸体材や下地材に濡れることが予想される場合は、雨中で工事を行わないことを確認します。工事後のシート養生も必要です。木材・木質材料の含水率が高い状態が続くと劣化のリスクやカビが発生するリスクが高くなります。工事中、突然、雨が
降り出し、早急に対処して、木材への雨がかりが少量かつ短時間の場合、問題は少ないと思われますが、長期間にわたり濡れた場合は乾燥後、乾燥状態であることを確認してから、当該箇所の工事を進める必要があります。なお、防水紙は、紫外線劣化することも考えられますので、長期間にわたって日射に当たらないよう、早期に外装材を張る必要があります。JIS A 6111「透湿防水シート」の透湿防水シートでは、2箇月間の日射を想定しています。契約前に搬入資材の養生方法、防水紙を張る前の躯体の養生方法、材料が濡れた場合の対処方法などについても確認することが望まれます。

冬季は、防水テープの張り付けに際して、温度による影響も配慮する必要があります。

⑧防湿性の確保

室で発生した湿気が壁体内に浸入して、高湿度状態になった場合、壁内結露が発生するリスクが高くなります。グラスウールやロックウールなどの繊維系断熱材は、透湿抵抗が低いため、防湿フィルムを室内側に連結的に張る必要があります。しかし、図5.5のような不適切な施工が現実に見受けられ、防湿性が保たず、湿気の侵入が難しくなる状態になっている例があります。

防湿層および断熱層は、室内のまわり（床、外壁、天井または屋根）を隙間無く連結的に包み込んだ状態になっていることを確認します。特に、天井、筋かいまりなどは、施工手間が掛かるので、断熱材や防湿フィルムの施工状態の確認が必要と思われます。
⑨通気胴縁の配置と種類

通気構法で使用する通気胴縁の配置は、通気を確保する上で重要です。例えば、土台水切り周辺の給気口から棟換気の排気口に至るまで通気させるように計画した場合、壁内や小屋裏全体が通気されるように通気胴縁を配置する必要があります。

その途中に開口部がある場合は、雨水浸入事例の多い部位であるため、図5.6のように開口部周辺も通気により乾燥しやすい状態となっていることを確認して下さい。

防腐防蟻処理された通気胴縁を使用した場合、胴縁に雨が掛かると透湿防水シートの防水性が低下する事例があることがWebサイト上で公表（日本透湿防水シート協会）されています。防腐防蟻処理されていない耐久性の高い樹種の木材を使用する方法もあります。サイディングの場合は、木製の通気胴縁ではなく、通気金物を使用することも可能です。
主旨説明・注意事項

本章の関連ツールは、国土交通省国土技術政策総合研究所（以下、国総研と略す）が主催し、大学、住宅瑕疵保険団体、住宅性能評価機関、住宅供給団体、施工団体、材料・部材供給団体など24の産・学・官の団体が協力した共同研究「木造住宅の耐久性向上に関わる建物外皮の構造・仕様とその評価に関する研究」（委員長：東海大学名誉教授・石川広三、2011〜2015年度）の5年間にわたる成果の一部です。

本関連ツールは、一戸建て木造住宅の建設や購入を予定されている方（住まい手）を主な対象として、住まいの長寿命化に関連する情報を提供するとともに、住宅を選ぶ際の要点をとりまとめたものです。

ここでは、主に耐久性を確保する上で重要となる構法や材料などについて示しておりますが、各々の住宅の仕様や条件等を全て網羅しているわけではありませんので、使用者が蒙った如何なる保証責任や賠償責任を負うものではありません。この点について予めご理解の上、使用者の責任のもとご利用下さい。

なお、国総研建築研究部のWebサイトでは、第2編【住まい手向け】長持ち住宅ガイドラインの一部の関連ツールを利用しやすいファイル形式にしていますので、ご利用下さい。
第2編【住まい手向け】長持ち住宅ガイドライン

第II章 木造住宅の耐久性を向上させる家造りガイドライン

関連ツール：「長持ち住宅の選び方」※

※この関連資料「長持ち住宅の選び方」は、Webサイトを出力したものです。

関連Webサイトは、国土技術政策総合研究所建築研究部のWebサイトへ掲載していますので、こちらもご利用下さい。

目次

このサイトについて…………………………………………………………………………………53
はじめに…………………………………………………………………………………………52
不具合事例……………………………………………………………………………………55
住宅選びと耐久性………………………………………………………………………………56
性能の確保……………………………………………………………………………………58
雨掛かりと防水………………………………………………………………………………60
省エネと結露…………………………………………………………………………………..63
ライフサイクルコスト…………………………………………………………………………69
建設地と防災……………………………………………………………………………………71
関連サイト……………………………………………………………………………………76
「長持ち住宅の選び方」ウェブサイトの主旨説明・注意事項

本Webサイト「長持ち住宅の選び方」は、国土交通省国土技術政策総合研究所（以下、国総研と略す）が主催し、大学、住宅瑕疵保険団体、住宅性能評価機関、住宅供給団体、施工団体、材料・部材供給団体など24の産・学・官の団体が協力した共同研究「木造住宅の耐久性向上に関わる建物外皮の構造・仕様とその評価に関する研究」（委員長：東海大学名誉教授 石川廣三、2011～2015年度）の5年間にわたる成果の一部です。

本Webサイトは、一戸建て木造住宅の建設や購入を予定されている方（住まい手）を主な対象として、住まいの長寿命化に関連する情報を提供するとともに、住宅を選ぶ際の要点をとりまとめたものです。

ここでは、主に耐久性を確保する上で重要となる構法や材料などについて示しておりますが、各々の住宅の仕様や条件等を全て網羅しているわけではありませんので、使用者が蒙った如何なる保証責任や賠償責任を負うものではありません。この点について予めご理解の上、使用者の責任のもとご利用下さい。

なお、共同研究の成果全体は、国総研資料のWebサイトにも掲載されており、主に住まい手を対象とした報告（第Ⅱ章、第Ⅲ章）と、木造住宅関係者を対象とした報告（第Ⅳ章～第ⅩⅢ章）があり、本Webサイトは、「第Ⅱ章 木造住宅の耐久性を向上させる家造りガイドライン」の関連ツールです。
本Webサイトは、国土交通省 国土技術政策総合研究所
産学官連携による共同研究「木造住宅の耐久性向上に関わる建物外皮の構造・仕様とその評価に関する研究」
（2011年度～2015年度，委員長 東海大学名誉教授 石川廣三）の成果の一部によるものです

国土交通省 国土技術政策総合研究所
立原庁舎 〒305-0802 茨城県つくば市立原1番地
TEL: 029-864-2211
長持ち住宅の選び方

本ウェブサイトは、国土交通省 国土技術政策総合研究所の主催による産学官連携の共同研究の成果の一部です。

はじめに
不具合事例
住宅選びと耐久性
性能の確保
雨掛かりと防水
省エネと結露
ライフサイクルコスト (LCC)
建設地と防災
関連サイト

共同研究の成果 国総研資料
(造り手用、詳しい住まい手用)

不具合事例

住宅選びと耐久性
性能の確保
雨掛かりと防水
省エネと結露
ライフサイクルコスト (LCC)
建設地と防災
関連サイト

この写真は、新築後6年未満でルーフバルコニーの床や南側外壁が著しく劣化し、構造用合板に孔があいた子供の寝室です。内装は、一部を除き綺麗な状態でした。

住まいの耐久性を一緒に考えてみませんか？

このWebサイトは、一戸建て木造住宅の建設や購入を予定されている方（住まい手）を対象として、住まいの不具合事例、基本性能、助成制度、防水、省エネ、結露、防災など、長期間にわたる耐久性能について情報提供するものです。

我が国では、グルメやファッションに関する情報があふれていますが、衣食住の一角をなし「住」に関する一般向けの技術情報は少ない状況です。Webサイトでは、住宅に関する技術情報が少し掲載されていますが、どの情報が適切かつ公平であるのかを見分けるには、専門的な技術情報が必要となります。ここでは住宅を選択する際に役立つ、基礎的で公平な既往の技術情報と、造り手（住宅会社など）と技術情報を交換するツールを提供しています。（アンダーラインのある文字はリンクされていますのでクリックして下さい）

私どもは、下記に示す通り、国土交通省国土技術政策総合研究所が主催する産学官による5年間の共同研究の成果の重要な部分をまとめております。このような研究成果を住まい手向けに情報発信することは初の試みと思われます。

関連サイト

共同研究の成果 国総研資料
(造り手用、詳しい住まい手用)
一般的に、数千万円となる高額なマイホームを計画する際、美観、間取り、設備機器などについて検討することはあるが、住宅の耐久性について興味を持つ住まい手は少ないと思われます。

住宅の耐久性など専門的なことは、住宅会社や設計事務所などに全て任せておけば良いと考えがちですが、現状において造り手の技術レベルが著しく異なっています。住宅瑕疵担保責任保険機関の統計によると、各種の住宅の不具合の中で、「雨漏れ」による保険支払い件数は最も多く、保険金支払い全体額の約9割以上に至っています。木造住宅で雨漏れや結露が発生した場合、躯体（土台、柱など）が腐朽したり、蟻害を受けやすくなり、被害が大きい場合、耐震性も低下します。

マイホームを住宅会社などから引渡された後、10年以上経過した住宅の雨漏れは、基本的に住宅品確法（住宅の品質確保の促進等に関する法律）の保証の対象外であり、結露は例え新築直後であっても、同法の保証対象となっていません。

計画時に、本サイトをご覧の上、出資者となる皆様の耐久性に関する要望を造り手とともに検討することにより、耐久性が著しく向上することも考えられます。

反対に施主（住まい手）の皆様が耐久性について関心が薄く、住宅会社が建設費（初期費用）を最優先にして、耐久性の低い構法、材料、施工法が採用されていた場合、早期に住まいが劣化することがあります。

土台・柱・梁などの躯体材や合板などの下地材が腐朽したり、シロアリの被害を受けたとき、住まい手は多額の補修費を負担して、初めて耐久性の重要さを痛感することがあります。ほんの少しの建設費の差が、数年後、補修・改修費やライフサイクルコスト（LCC）に大きく影響することもあります。

このWebサイトは、一般の住宅購入予定者にも判りやすいように工夫しております。

これらの基礎的な情報を得た後、各住宅会社の耐久性対策の内容を把握した上で、造り手と住まい手が相互に情報を交換することにより、長寿命の住宅の建設に役立てることが可能と思われます。

参考

・ 良質な住まいを得るための「住宅品確法のポイント」
新築住宅の住宅性能表示制度について
(一般社団法人 住宅性能評価・表示協会)

国土交通省 国土技術政策総合研究所
産学官連携による共同研究「木造住宅の耐久性向上に関わる建物外皮の構造・仕様とその評価に関する研究」
(2011年度〜2015年度, 委員長 東海大学名誉教授 石川廣三)の成果の一部によるものです

国土交通省 国土技術政策総合研究所
立原庁舎 〒305-0802 茨城県つくば市立原1番地
TEL: 029-864-2211

All Rights Reserved, Copyright (C) National Institute for Land and Infrastructure Management
長持ち住宅の選び方

住宅選びと耐久性
性能の確保
雨掛かりと防水
省エネと結露
ライフサイクルコスト (LCC)
建設地と防災
関連サイト

不具合事例と検証試験

共同研究の成果 国総研資料
(造り手用、詳しい住まい手用)
住宅選びと耐久性

マイホームの建設を予定している方（住まい手）は、一般的に住宅会社（造り手）などのWebサイトを訪れたり住宅展示場に通ったりして、その特徴を把握しようとしますが、基礎的な技術情報が少ない場合は、表面的な印象に左右されやすく、住宅が保有する本質的な性能を公平に評価することは難しいと思われます。

住宅の性能を公平かつ明確にはかるものとして、住宅品確法（住宅の品質確保の促進等に関する法律）に基づく住宅性能表示制度があり、耐久性関係は「劣化対策等級」（9P）により等級が定められています。この「劣化対策等級」は、他の等級と同様に「評価方法基準」により定められています。

一方、私ども（共同研究者）は、「雨水浸入（雨漏り）」や「結露」の原因となり得る仕様や施工が、木造住宅の耐久性に著しく影響を及ぼすため、これらについて産学官が、5年間にわたり専門分野を超えて協議しており、現在の住宅性能表示制度だけではなく、本共同研究の成果も参照して頂きたいと思います。

本共同研究では、住宅購入予定の皆様が劣化対策の参考資料として、判りやすく解説するため、下記の「長持ち我が家を築く！造り手との情報交換ツール」、「住まい手のための材料・部材選択シート」、「住宅外皮重要ポイントチェックリスト」を用意致しました。劣化対策は、施工による影響も考えられるため、これらの資料だけで劣化を完全に防ぐことは困難と思われますが、耐久性を確保する上で重要な内容が記載されていますので、ご参照下さい。

参考資料

- 長持ち我が家を築く！造り手との情報交換ツール
- 住まい手のための材料・部材選択シート
- 住宅外皮重要ポイントチェックリスト

国土交通省住宅局が公表しているマンガでわかるシリーズ

- まんがでわかる「住宅かし担保履行法」
- マンガでわかる中古住宅の購入支援制度ガイドブック
- マンガでわかる住宅関連税制とすまい給付金

詳しい技術情報
「木造住宅の耐久性向上に関わる建物外皮の構造・仕様とその評価に関する研究」

国土交通省 国土技術政策総合研究所
立原庁舎 〒305-0802 茨城県つくば市立原1番地
TEL: 029-864-2211

All Rights Reserved, Copyright (C) National Institute for Land and Infrastructure Management
性能の確保

ここでは、住宅の各種の性能を確保するための対応策の例を示します。

① 住宅に必要な諸性能を確認しましょう！

・ 新築住宅の住宅性能表示制度について (一般社団法人 住宅性能評価・表示協会)

契約前までに、どのような性能が確保されるのか、情報交換シートなどで確認しましょう。

住宅性能表示制度（任意）重要

① 構造の安定 ② 火災時の安全 ③ 劣化の軽減
④ 維持管理・更新への配慮 ⑤ 温熱環境・エネルギー消費量
⑥ 空気環境 ⑦ 光・視環境 ⑧ 音環境 ⑨ 高齢者等への配慮
⑩ 防犯

（性能表示制度を適用した場合、赤文字が必須項目 その他は選択項目）

② 第三者機関の評価員により性能をチェック！

・ 「安心」がなによりです - 住宅性能表示制度について (一般社団法人 住宅性能評価・表示協会)

契約前に、造り手が設計住宅性能評価や建設住宅性能評価などの制度を利用出来るか、情報交換シートなどで確認しましょう。

登録住宅性能評価機関に所属する評価員が、設計段階でチェックする「設計住宅性能評価」や、建設工事・完成段階でチェックする「建設住宅性能評価」があります。万一、建設住宅性能評価を受けた住宅の請負契約又は売買契約に関連するトラブルが起きても「指定住宅紛争処理機関」が対応しています。（1件につき1万円）

瑕疵保険に関する事故の90%以上が雨漏りと報告されており、保険機関により、防水検査がオプション設定されている場合があります。任意による申請が必要
③ 長期優良住宅の申請を検討！

長期優良住宅の普及の促進に関する法律（一般社団法人 住宅性能評価・表示協会）

税の特例、住宅ローンの供給支援、長持ち住宅の手引き、長持ち住宅がつくる未来情報交換シートにより対応を確認しましょう。

認定基準（抜粋）

- 劣化対策等級 3
- 耐震等級（倒壊等防止） 2 以上
- 維持管理対策等級（専用配管） 3
- 断熱等性能等級 4

任意による申請が必要

④ 品確法に基づく瑕疵担保責任 請負業者の義務

品確法に基づく瑕疵担保責任の特例の概要（国土交通省）

床下、小屋裏なども含め、検査・点検しやすい住宅にしましょう！

住宅品確法では、構造耐力上主要な部分及び雨水の浸入を防止する部分について、引渡から10年間の瑕疵担保責任を義務付けていますが、住宅内部の劣化が発見しにくい場合があります。床下点検口から土台まわり腐朽や蟻道の有無、小屋裏点検口から屋根裏にある野地の腐朽などが点検しやすい状態にしましょう。

⑤ 結露対策を確認

住宅紛争処理技術関連資料集（公益財団法人 住宅リフォーム・紛争処理支援センター）

結露関係の保証は、住宅品確法・瑕疵担保履行法の対象外なので結露が発生しにくい住宅であることを契約前までに確認しましょう！

結露を防止するためには、住宅品確法の性能表示の断熱等性能等級が等級4であることが望まれます。室内側に防湿層が設置され外気側に通気層が設置されることを確認しましょう。事前に結露計算がされていることが望まれます。

⑥ 雨水浸入対策を確認

乾式外壁の防水対策

（日本窯業外装協会 技術資料）
湿式外壁の防水対策
(国総研 木造住宅モルタル外壁の設計・施工に関する技術資料)

木造住宅の劣化要因のほとんどは、水分が関係するので、構成材料に対する水分の抑制は、耐久性にとって最重要課題となります。防水対策が充分であるか確認しましょう！

住宅瑕疵担保責任保険法人によると、瑕疵による保険支払い件数の内、全体の9割以上が雨水浸入関係と報告されています。建設を予定している住宅が、軒の出やけらばの出を充分に確保したり、防水対策・通気対策が適切に設計・施工されるなど、劣化防止対策が充分に施されているかを確認しましょう！

⑦ 保証制度、アフターサービスを確認

法令で定められている瑕疵担保保証の他に任意で保証が定められている場合がありますので、各種の保証制度の有無やアフターサービスの内容を確認しましょう！（住宅完成保証制度、地盤保証、シロアリ保証、結露保証など）

住宅内には、表面上に現れにくい不具合が内在していることがあり、建設後の目視検査や非破壊検査だけでは内部の構成材料の劣化を発見出来ないことがあります。また、不具合は設計上の問題だけではなく、不適切な施工によるものがありますので、各種の保証制度や保証内容、アフターサービスについて確認しておきましょう！住宅会社の許可を得た後、安全性を確保しながら、建設工事中の撤入材料、各種の納まりについて、写真・ビデオ撮影などにより記録しておきましょう。
雨掛かりと防水

雨じまいの例（軒の出、けらばの出）

都市部など、土地が狭く、建築面積や斜線制限などにより、軒やけらばの出を少なくするのは致し方ないですが、デザインの好みから軒やけらばの出を少なくすることがあります。

住宅検査機関によると、このような軒やけらばの少ない住宅の雨水浸入事例が多いと指摘されています。特に、軒の出やけらばの出がほとんど無く漏水リスクの高い、いわゆる「軒ゼロ」の住宅は、特に綿密な防水設計と施工が必要になります。

外壁面からの距離が確保された軒、けらば、庇は、外壁への雨掛かりを少なくして、雨水浸入のリスクを低下させるだけではなく、日射角度の高い夏季の日射を防ぐことが可能となり、冷房費用の削減にもつながります。

冬季は日射角度が緩くなりますので、著しく軒やけらばが長い場合を除き、これらが日差しを遮ることはありません。
防水仕様の例（通気構法）

乾式外壁は、一般的に通気構法が採用されていますが、モルタル外壁などは下図に示す通り、通気構法だけではなく、直張り構法も数多く採用されています。通気構法の特徴や機能として、「雨水浸入防止」、「壁内の湿気の排出」、「熱の排出」などがあります。

通気構法と直張り構法を比較すると直張り構法の方が安価ですが、通気層の有無は、耐久性を確保する上で、極めて重要です。通気構法は、外装から雨水が浸入した場合でも、通気層の空間があるため、雨水は通気層を流下して、土台水切りより排出される可能性が高く、また、壁内が高含水率となった場合でも、通気層から湿気が排出されることが考えられます。

一方、モルタル外壁の直張り構法は通気層が無いため、防水紙から雨水浸入した場合、直接、下地材や断熱材を濡らすことになります。また、屋外側には透湿抵抗の高いアスファルトフェルトがあるため、乾燥しにくい状態となります。従って、雨水浸入防止、結露防止の両面から、通気構法を採用することが推奨されます。

劣化事例

- 国総研資料 No. 「第Ⅲ章 木造外皮の設計施工に起因する不具合事例集」

外皮の推奨仕様例
国総研資料 No.975「第Ⅶ章 木造住宅外壁の劣化対策重点部位の推奨納まり図（案）」
国総研資料 No.779「木造住宅モルタル外壁の設計・施工に関する技術資料」
住宅の品質確保の促進等に関する法律（住宅品質法）、評価方法基準
公共建築木造工事標準仕様書
住宅瑕疵担保責任保険 設計施工基準
一般社団法人 日本建築学会 建築工事標準仕様書・同解説
JASS 12 屋根工事、JASS 15 左官工事、JASS 24 断熱工事、JASS 27 乾式外壁工事
住宅金融支援機構 木造住宅工事仕様書、枠組壁工法住宅工事仕様書
瓦屋根標準設計・施工 ガイドライン
鋼板製屋根・外壁の設計・施工・保全の手引き MSRW2014
窯業系（ようぎょうけい）サイディングと標準施工 第3版（2017年4月発行）
ラス下地既調合軽量セメントモルタル塗り工法施工要領書（案） 2013.6.21 第1.0版
住宅省エネルギー技術施工技術者講習テキスト（一般社団法人 木を活かす建築推進協議会）
サッシまわりの雨水浸入防止対策（木造住宅用・要約版、一般社団法人 日本サッシ協会）
省エネと結露

省エネルギー性を高め、結露や躯体の劣化を未然に防ぎ、快適性を向上させる方法は？

省エネルギーだけではなく、結露や躯体の劣化を未然に防ぎ、快適に暮らすためには、高気密、高断熱が必要です。

開口部（窓、ドアなど）の断熱性の確保

住まいを高断熱にするためには、外皮（床、外壁、天井、屋根など）の断熱性能を良くするだけではなく、特に開口部の断熱性能を高めることが重要となります。日本の開口部の多くは、アルミが使用されていますが、熱を伝えやすい材質となっています。また、ガラス部分の断熱性能も重要となります。

熱伝導率（λ）の測定例（値が小さいほど、熱を伝えにくい）
アルミニウム合金：200W/mK → アルミサッシ
PVC（塩化ビニール）：0.17W/mK → 樹脂サッシ
ヒノキ、スギなど：0.12W/mK → 木製サッシ
※アルミと樹脂の複合サッシもあります。
フロートガラス：1W/mK
複層ガラスやトリプルガラスの間にアルゴンガス等を充填させて、熱伝導率を低く抑えていることがあります。
空気（0°C）：0.0241W/mK
アルゴンガス：0.0164W/mK

窓全体の断熱性能は、熱貫流率（Uw値）で把握することが出来ます。

参考

・ 各国のサッシの種類と普及率、断熱性

住宅全体の断熱性

住宅全体の断熱性能は、外皮平均熱貫流率（UA値）で把握することが出来ます。
す。しかし、この値は計算値であり、施工時に隙間が多いと所定の断熱性能を発揮することが困難となり、結露の要因ともなり得ます。施工状態も確認して下さい。

気密・換気・通気の役割

「高気密」と聞くと、息苦しく耐久性が低くなると思われる方がいらっしゃいますが、「気密」、「通気」、「換気」は何れも重要な役割を担い、並行して機能する必要があり、何れかが欠けても住宅の耐久性に影響を及ぼすことが考えられます。気密性は、建設時や建設後、気密測定機を設置して、相当隙間面積（C値）を実測し、床面積1㎡当たりの隙間（㎠/㎡）により把握することが可能となります。C値は、小さい値ほど、気密性能が高くなります。しかし、気密性を計測する住宅会社は少ないのが現状です。気密性が高い場合、室内が計画通り換気され、カビや結露の原因となりやすいよう防ぐことも可能となります。高気密、高断熱は、施工時に隙間無く住宅全体をすっぽりと包み込むようにして、はじめて実現します。

■熱交換換気システム

夏季や冬季は室内を暖房や冷房などで空調しますが、外気をそのまま給気する換気システムでは、冬に寒く感じたり、空調に用いられたエネルギーが損なわれたりします。熱交換換気システムでは、室内に取り入れる空気と屋外へ排出する空気の熱を交換することにより、換気による冷暖房エネルギーの損失を少なくするものです。

■夏型結露

夏型結露は、室内をエアコンで冷房した際、夏季に水分を大量に含んだ屋外空気が温度の低い床下で水滴になる現象や、雨などにより水分を含んだ外装材が日射で焙られ水分を放出し外壁内で水滴となる現象です。

上記について検討し、適切に設計・施工することにより、以下の効果が考えられます。

①人に優しい
冬季において、全館の温度環境を快適にすることにより、脱衣所・浴室などのヒートショックによる死亡事故が減少します。
（2011年、ヒートショックによる死亡者数は約17,000名、交通事故の死亡者数は4,611名であり、約3.7倍の死亡者数となります）
夏季、熱中症患者の発生は住宅内が最多多い（図1-8）ので、特に高齢者は、積極的なエアコンの使用が必要です。（省エネのためには、断熱性能を高める必要）結露を防ぐことにカビ、ダニ、腐朽菌の増加を抑制することが出来ます。
③家計に優しい
外壁の室内側へ気密シートなどを施すことにより、室内的湿気が壁内などへ流入するのを防ぎ、屋外側へ通気層を設けることにより、壁内の湿気が通気層へ排出されることが可能となり、結露のリスクを低減させることができます。（天井・床下なども防湿が必要）
結露を原因とした木材の腐朽やシロアリの被害や住宅の補修・改修費用を抑制できます。
また、断熱性能を高めることにより冷暖房費が抑制されます。
熱交換換気システムを設置した場合は、夏や冬など換気する際に奪われる熱を回収することが可能となります。設備投資の費用が増えますが、その後の冷暖房費は少なくなります。
④地球に優しい
省エネルギーにより地球の地下資源の減少の抑制へ対応できます。
• 世界のエネルギー消費量の急増への対応
• 化石燃料エネルギー資源の枯渇への対応

具体的な対策

①外皮（外壁、屋根など）に通気層を設けましょう。
壁内に通気層を設けることにより、壁内に流入した湿気や雨水を排出させることも可能になります。（夏季、外装からの日射熱を排出させる効果もあります）
サイディングなどの乾式外壁は、ほとんど通気構法が採用されています。
モルタルなどの湿式外壁は、直張り構法が多いですが、通気構法もありますので、通気構法も検討しましょう。
→ モルタル外壁通気構法の技術資料（参考資料）

防水対策としても効果があります。
第Ⅲ章 ③
②室内側に防湿層を設けましょう。

室内の湿った空気が壁内、床下、小屋裏へ流入すると、結露の要因となることがあります。防湿層を設けることにより、室内で発生した水蒸気の壁内への流入量を抑制させることができます。特に寒冷地で透湿抵抗の低い断熱材を使用する場合は、断熱材と一体となっていない別張りとなる防湿シートを設置することが推奨されます。

断熱気密の施工の基本は、外壁、天井、床下などを隙間なく連続して住宅全体を包むことです。誤った施工方法も見受けられますので、適切な断熱気密の施工方法は、こちらで確認しましょう。

気密性は、隙間相当面積（C値）の実測により把握することができ、低いほど気密性が高くなります。建設会社によっては、気密性（C値）に対する保証制度などがある場合があります。気密性の高低に関わらず、原則として居室には機械換気設備の設置やそれによる換気回数が法令により規定されていますので、高気密住宅であっても、室内的空気は清浄となり得ます。（24時間換気システムの電源は、切らないようにしましょう）気密性が低い場合、室内的換気が適切にコントロール出来ない場合があります。

不適切な例

③室内的温度環境を制御できるよう、適切な暖房機器などを選択しましょう。
厚生労働省の資料によると、空気が乾燥すると、気道粘膜の防御機能が低下し、インフルエンザにかかりやすくなるので、適切な湿度（50～60%）を保つことが、予防上効果的なようです。

一方、室内の相対湿度が高すぎると、住宅内の結露・カビ発生リスクが高まります。

石油およびガスファンヒーター等（FF式を除く）の開放型暖房器具は、燃焼に伴って多量の排気ガスや水蒸気を発生しますので、頻繁に換気が必要となります。因みに灯油1Lを燃焼させると、1.13kgの水蒸気が放出されるようですね。

電気を使用するエアコンや床暖房機器は、一般的に水蒸気を発生させません。室内的温度、相対湿度、空気環境が適切となり、かつ、省エネルギー性が高くなるよう暖房機器の選択に注意しましょう。

結露が発生しやすい部屋は、温湿度計を設置し、外壁の内装が濡れていないかチェックしましょう。住まい方はこちらの79Pを参考として下さい。（住宅省エネルギートーク施労技術施工技術者講習テキスト）

④暖房の範囲や時間を検討しましょう。

従来、日本の冬は、火鉢やこたつなどを囲んで、暖を採っていました。断熱性が低く、隙間だらけの住宅だったので、部屋全体を暖めることは困難であり、暖房面は暖かいが背中が寒く、我慢した生活でした。また、トイレ、脱衣室、浴室も寒く、ヒートショックも発生しやすい状態でした。

結露は、空気に含まれている水蒸気が露点以下の冷たい部分に触れれて液水になる現象ですので、暖房している部屋の空気が暖房していない部屋へ移動し、露点温度より低く冷えたガラスなどに触れ結露が生じることがあります。また、断熱性能が低い住宅の場合、夜間など暖房を切ることにより、内装や壁内などの温度が外気の影響により下がり、露点温度以下に達して結露を生じることもあります。

このような部分間欠では、地域によっては結露が発生しやすい状況になることがあります。高気密・高断熱により、省エネルギー性を高め、住宅全体の温度差を時間的にも場所的にも少なくし、結露・カビ・ダニ・ヒートショックなどの発生を防ぐことが重要となります。

外皮平均熱貫流率（U値）が低いものほど、住宅全体の断熱性が高まります。各社の住宅の断熱性を比較する際は、U値で比較するのが有効です。断熱性を高めるには、断熱材だけではなく、開口部（窓やドア）の性能を高めることが重要となります。

⑤窓の配置や大きさなどに配慮しましょう。

第Ⅱ章，Ⅲ
春や秋など、屋外と室内的温湿度環境を比較して、屋外の環境の方が快適な季節や時間帯は、エアコンで温湿度を調整するよりも窓を開放した方が効率的で電気代も必要としません。室内的風通しが良くなるよう、窓の配置や大きさ、内部建具などに配慮しましょう。

⑥夏季の日差しについて検討しましょう。

深い軒やけらばの出（外壁より屋根が突き出している長さ）、パルコニー、庇がある場合、太陽高度の高い夏の日射を避けることが可能となります。（防水上も著しい効果があります）

冬は太陽高度が低いので、これらにより日射が遮られることは少ないと思われます。オーニング、シェード、カーテン、すだれ、よしず、窓用フィルム、グリーンカーテンなども効果があります。

なお、冷房期（夏季）の平均日射熱取得率（ηA値、イーターエー）とは、建物の冷房期における日射熱の入りやすさをあらわすもので、ηA値が小さいほど、日射熱が遮蔽でき、冷房効率が高くなります。

【壁内の不具合事例】

壁内に水分が浸入して劣化した直張り構法の耐力壁。構造用合板、防水紙が劣化により剥がれ落ち、錆びた平ラスやモルタルが露出している。
ライフサイクルコスト（Life cycle cost, LCC）は、住宅の場合、建設から解体に至るまでの総費用（生涯費用）を示すものです。建築取得予定者は、住宅を建設する際に建設費用（初期費用、Initial cost）が必要となります。建設費が高額であるため、建設当時は建設費のみに目が行きがちなのが、耐久性の低下に著しく影響を及ぼす構法や低品質の材料・部材を採用した場合、住宅全体の耐久性にも影響を及ぼすことがあります。

例えば、低品質な防水紙を使用すると、防水紙より内部へ雨水が浸入することがあり、下地合板、躯体材（柱や梁など）、接合金物などが劣化（腐朽・蟻害、腐食）することがあります。また、耐久性の低い外装材を使用した場合、外装材の交換費用だけでなく、足場の設置や除去費用も必要になり、改修費が高額になり得ます。

断熱・気密性能が低い場合は、エネルギー消費量（ランニングコスト）が増大することが考えられます。

このように、建設費を低減させた影響で設計・施工・施工管理が不適切な場合も耐久性に影響を及ぼす恐れがあります。

従って、イニシャルコストだけではなく、ライフサイクルコストやライフプラン（人生設計）も考慮し、費用対効果（コストパフォーマンス）の高い住宅を計画することが重要になると思われます。
本Webサイトは、国土交通省 国土技術政策総合研究所
産学官連携による共同研究「木造住宅の耐久性向上に関わる建物外皮の構造・仕様とその評価に関する研究」
（2011年度～2015年度、委員長 東海大学名誉教授 石川廣三）の成果の一部によるものです

国土交通省国土技術政策総合研究所
立原庁舎 〒305-0802 茨城県つくば市立原1番地
TEL: 029-864-2211

All Rights Reserved, Copyright (C) National Institute for Land and Infrastructure Management
建築地と防災

住宅を長期間にわたって維持するためには、木材の腐朽や金属の腐食を防ぐだけではなく、津波、土砂崩れ、洪水などの自然災害による重大な人的・物的被害を受けるにくい建設地域を選ぶとともに、地震や耐風時に大規模な損傷を受けないよう、耐震性能や耐風性能を確保することが前提となります。家族と我が家を災害から未然に守るため、これまでの災害史による教訓とWeb情報を活用しませんか？

1. 過去の主要な地震・津波

1）明治三陸地震

地震	1896年6月15日、19：32、Mj8.2－8.5
震源	岩手県釜石市の東方沖200km、最大震度2-3
津波	最大遡上高は、現大船渡市の38.2m、約30分後に到達（2011年の東北地方太平洋沖地震では、40.1m）
被害	死者21,959名
特徴	本地震は、三陸沖でM8.2～8.5の巨大地震であったが、震央が被災地より約200km離れた東方沖で発生したため、気象庁の資料によると被災地の最大震度は2～3しかなく、あまり気にとめる住民は少なく、津波が陸地へ到達するまで約30分間の猶予がありました。

2）戦前・戦後による一連の地震

戦前、戦後となる昭和18年から昭和23年の5年以内に死者1,000名を超える地震被害が5回発生

（1年に約1回の頻度）しています。東南海地震、三河地震、南海地震では、津波が発生しており、三重県や和歌山県で著しい被害を受けています。

昭和18年～23年までの地震被害（気象庁）
3）北海道南西沖地震

地震
1993年7月12日、22:17、Mj7.8、震源：北海道奥尻島北方沖、最大震度6（推定）

津波
最大遡上高は、藻内地区において31.7m

被害
死者202名、行方不明28名

特徴
地震が発生した4〜5分後に津波が奥尻島へ到達し、特に青苗地区は津波と火災などにより甚大な被害を受けました。

4）東北地方太平洋沖地震（東日本大震災）

地震
2011年3月11日、14:46、Mw9.0

震源
宮城県仙台市の東方沖70km、最大震度7

津波
最大遡上高は、岩手県大船渡市の絹里湾(りょうりわん)において40.1m

被害
死者19,418名、行方不明者2,592名

特徴
国内観測史上最大規模の地震であり、東北地方から関東地方にかけての太平洋沿岸で非常に高い津波を受け、各地で甚大な被害が発生。

参考資料
平成23年（2011年）東北地方太平洋沖地震（気象庁）
東北地方太平洋沖地震による津波の浸水域（国土地理院）
浸水域では、同程度の津波が発生した場合、繰り返し浸水する恐れがあります。

地震・津波は、自然現象ですので、発生時期、時間（就寝、避難、火気の使用）、震源地、規模、地震波の特性などを詳細に予知することは困難となっています。従って、深夜の就寝中に小さな地震が発生し、その後に巨大な津波が襲ったり、地震直後に津波が襲来したりすることも考えられます。
気象庁の「津波について」によると、高さ30cmの小さな津波でも立っていることが困難となって危険であり、高さ1mを超えると木造家屋に被害が出始めます。

2.将来の災害予測

我が国は、上記のような地震や津波により甚大な被害を繰り返してきた歴史があり、近年では想定されていなかった地域においても巨大地震が発生していますので、新築時には予め対応策を十分に検討されることが望まれます。気象庁では東海地震発生の切迫性が公表され、内閣府では、南海トラフ巨大地震、首都直下地震が想定されています。

1）南海トラフ巨大地震の被害想定

市町村別の津波高さ、津波到達時間、最大震度を想定（内閣府）。
地震発生確率は30年以内に70%程度、想定死者数：323,000人となります。
内閣府「報道発表資料一式（平成24年8月29日発表）」
津波被害：「資料1-5都府県別市町村別津波到達時間一覧表」を参照
地震被害：「資料1-6市町村別最大震度一覧表」を参照
「山梨県」、「静岡県」、「愛知県」、「三重県」、「兵庫県」、「和歌山県」、「德島県」、「香川県」、「愛媛県」、「高知県」、「宮崎県」に震度7が想定されています。
駿河湾内にある駿河トラフから四国沖にある南海トラフにかけてのプレート境界では、過去100年から150年おきに岩盤がずれてマグニチュード8クラスの巨大地震が繰り返し発生しています。

2）首都直下地震の被害想定
大規模地震の被害と対策に係る映像資料【首都直下地震編】－全体版（13分）（内閣府）

30年以内の地震発生確率：70%程度（南関東で発生するM7程度の地震）
市町村別の最大震度、津波高さ、津波到達時間を想定しています。
首都直下地震モデル検討会では、「都道府県・市町村毎の最大震度の表」を公表。
「茨城県」、「埼玉県」、「千葉県」、「東京都」、「神奈川県」、「静岡県」に震度7が数多く想定されています。
「津波高さ及び津波到達時間表」によると、元禄関東地震タイプの地震（1703年、関東地方を襲った巨大地震、震源は相模トラフの房総半島南端、マグニチュード（M）7.9～8.5、海溝型地震）では、千葉県南房総市において高さ10mの津波が4分で到達し、東京都江東区では、高さ3mの津波が140分後に到達すると想定。

３）ハザードマップ
「国土交通省ハザードマップポータルサイト」内の「重ねるハザードマップ」では「水害」、「土砂災害」、「地震」、「地形・地質」、「火山」、「わがまちハザードマップ」では「洪水」、「内水」、「高潮」、「津波」、「土砂災害」、「火山」、「地震防災・危険度」に関するハザードマップを提供しています。（操作マニュアル）各河川の「公表されている想定最大規模降雨による洪水浸水想定区域データ」、「地点別浸水シミュレーション検索システム（浸水ナビ）」、「三大湾の高潮浸水想定」、「都道府県の防災関連ページ」もご覧下さい。

４）地方自治体
自然災害に対するリスクを地図に表しています。
例えば、東京都都市整備局では、「あなたの町の地域危険度」という資料を発行しており、「建物倒壊危険度」、「火災危険度」、「総合危険度」などを公表しています。
3. 建設地の選定と災害対応の検討

1) 建設地を選択出来る場合

上記に示す過去の津波の浸水域と将来の災害予測を参考にして、可能な範囲で災害のリスクの低い建設地を検討することが重要と思われます。

2) 建設地を選択出来ない場合

既に土地を所有し、近隣で通勤・通学しているなど、諸事情によりリスクの低い建設地へ変更出来ない場合は、災害発生時の対応策を検討する必要があります。
津波のリスクが高い地域は、想定される津波の到達時間以内に高台、中高層のビルなどに避難する必要がありますので、予め家族で避難計画を立てて下さい。なお、ビルを避難場所として計画する際は、深夜でも高い場所に避難することが可能であるか、事前に確認が必要となります。
津波避難ビル、高台、津波到達予測区域などは、「わがまちハザードマップ」から地域を選択し、「津波ハザードマップ」を選んで知ることが出来ますので、避難方法についてご検討下さい。
地震については、各機関から想定されている地震以外にも、大規模な地震が発生する可能性もあり得ますので、何れの地域においても「住宅の品質確保の促進等に関する法律」（通称：品確法）に基づく住宅性能表示制度による高い耐震等級を選択したり、免震建築物にすることが推奨されます。
「設計住宅性能評価」および「建設住宅性能評価」は、登録住宅性能評価機関へ。
避難の最大の目的は、命を守ることと思われます。避難の阻害要因に関する資料を下記に示します。

- 平成23年東日本大震災における避難行動等に関する面接調査（住民）分析結果
 「家族を探す」、「自宅へ戻る」といった行動が、迅速な避難行動を妨げる要因となっている。
 この要因を少なくすることが被害軽減に結びつく-津波てんでんこ-避難計画・訓練が必要
- 東日本大震災時の地震・津波避難に関する避難支援者ヒアリング調査
 主体的な避難、情報伝達、徒歩避難、自動車避難、福祉施設、避難訓練
- 防災教育から生まれた『釜石の奇跡』、群馬大学 平田敏孝教授（前半、後半）
 子供と大人への防災教育、ハザードマップの想定、率先避難者、情報の途絶、てんでんこ
- 災害時に、なぜ人は逃げないのか
 正常性バイアス、集団同調性バイアス、パニック神話
- 自動車で安全かつ確実に避難できる方策
 30歳代（461人）のうち、自動車で避難した人は61%、自動車避難をせざるを得ない地域、条件

2）既存住宅の耐震性

防災科学技術研究所では、振動台上に建築基準法が大幅に改正された1981年以前の耐震性の比較的低い仕様の木造住宅と、同仕様に耐震改修した住宅を建設し、兵庫県南部地震の地震波（JR鷹取観測波）を入力して加振実験を実施しています。実験概要はこちら。実験動画はこちら。（下から3番目）

この実験映像によると、耐震改修していない住宅は、地震発生直後から住宅が大きく揺れて傾き、屋外への脱出が困難な状況となり、倒壊に至っていることが判ります。

本実験では、兵庫県南部地震の地震波を利用していますが、地震は自然現象ですので、より大規模な地震が発生する可能性もありますので、新築が困難な場合は十分な耐震改修を推奨します。

震源が近い場合、地震により建物が揺れてから緊急地震速報が通知されることがありますが。さらに、巨大地震により著しく耐震性の低い住宅が倒壊した場合、仮に1Fのテーブルの下の潜っても、上部の重い構造物（屋根、小屋組、2階の床・外壁）が瞬時に衝撃的に落下・倒壊するため、生存空間が確保されるとは限りません。

3）耐震診断、耐震改修

住宅の耐震性を確保するため、下記についてご検討下さい。

- 「耐震支援ポータルサイト」日本建築防災協会
- 「徳光＆木佐の知りたいニッポン！～あなたの家は大丈夫？耐震診断・耐震改修」
木造住宅の耐震改修の費用 - 耐震改修ってどのくらいかかるの？

日本建築防災協会

耐震化に関する支援制度について

※耐震診断・耐震改修に対して補助金などを支給する自治体も御座います。

リンク、著作権、免責事項、プライバシーポリシー等について | リンク集 | 国土交通省 | 個人情報保護

国土交通省国土技術政策総合研究所
立原庁舎 〒305-0802 茨城県つくば市立原1番地
TEL: 029-864-2211

All Rights Reserved, Copyright (C) National Institute for Land and Infrastructure Management
住まい手欠陥住宅や不具合等による影響から保護するため、いくつかの制度が定められています。マイホームを計画される際によく有効な制度となり得ますので、概略だけでも把握して下さい。

1. 住宅の品質確保の促進等に関する法律（品確法）

住まい手を保護するための法律です。任意の制度も含まれていますので、検討して下さい。
① 瑕疵担保期間を最低10年間義務づけ（結露は含まれません）
② 第三者機関を設置し住宅の品質を確保
 （設計住宅性能評価書、建設住宅性能評価書：任意） ③ 住宅専門の紛争処理体制
 （建設住宅性能評価書が交付された住宅は、指定住宅紛争処理機関（弁護士会）への申請料は1万円）

住宅性能表示制度

この制度は上記②により、住宅性能に関して10分野35項目について評価されていましたが、2015年度から4分野・9項目となっています。

住宅の各種の性能を公平に評価し、等級の数値で示したものですので、住まい手に判りやすくなっています。建設会社がどのような性能を確保する技術を有しているのかを予め把握して下さい。性能表示の必須分野である「劣化対策等級」は、水分や湿気による木材の腐朽やシロアリの被害を軽減するための対策として、通気・換気をはじめとする構法上の工夫や、高耐久の木材の使用といった材料の選択などを評価しています。

長持ち住宅の選び方

関連サイト

住宅の品質確保の促進等に関する法律（品確法）
国土技術政策総合研究所、東海大学、東洋大学、筑波大学、関東学院大学、早稲田大学、東京大学、横浜国立大学、東京理科大学、ものづくり大
保険団体
一般社団法人 住宅瑕疵担保責任保険協会
住宅供給団体
一般社団法人 日本木造住宅産業協会
一般社団法人 全国中小建築工事業団体連合会
一般社団法人 中小建設業住宅センター
施工団体
一般社団法人 日本左官業組合連合会 （左官工事）
一般社団法人 全日本瓦工事業連盟 （瓦屋根工事等）
材料・部材供給団体
一般社団法人 日本防水材料連合会 （防水材料）
透湿ルーフィング協会 （透湿ルーフィング）
特定非営利活動法人 湿式仕上技術センター （湿式外壁材料）
特定非営利活動法人 住宅外装テクニカルセンター （窯業系外壁材料）
全国陶器瓦工業組合連合会 （陶器瓦）
一般社団法人 日本金属屋根協会 （金属屋根材料）
屋根換気メーカー協会 （屋根換気部材）
関連材料・部材
外壁
石膏ボード
断熱建材
下地面材
合板
木質ボード
防水紙
透湿防水シート
アスファルトフェルト430
改質アスファルトフェルト
外装材
窯業系サイディング
金属サイディング
樹脂サイディング
既調合軽量モルタル
屋根
屋根下葺き材
アスファルトルーフィング940
改質アスファルトルーフィング
透湿ルーフィング
屋根材
粘土瓦
金属屋根葺き材
換気部材
屋根換気部材
第2編【住まい手向け】長持ち住宅ガイドライン

第Ⅱ章 木造住宅の耐久性を向上させる家造りガイドライン

関連ツール
「長持ち我が家を築く！造り手との情報交換ツール」※

※この関連資料は、Excelを出力したものです。

国土技術政策総合研究所 建築研究部のWebサイトには、関連するExcelファイルが掲載されていますのでご利用下さい。

①はじめに………………………………………………………………………………85
②トラブル例…………………………………………………………………………86
③利用方法…………………………………………………………………………87
④住まいの希望………………………………………………………………………88
⑤性能表示など（住まい手確認）…………………………………………………90
　　造り手が提案する住まいの性能など
⑥仕様と価格（造り手記入、住まい手確認）……………………………………93
　　造り手が提案する仕様と価格の目安
⑦仕様と価格（解説）………………………………………………………………100
　　仕様の解説
⑧耐久性評価（回答）…………………………………………………………………109
　　耐久性に関する推奨仕様採用率と建物本体価格の目安
⑤性能表示など（造り手記入）…………………………………………………110
　　造り手が提案する住まいの性能など（造り手記入）
住宅展示場に行きますと、おしゃれで高機能なキッチン、ゆったりくつろげるシステムバス、広くてぬくもりのある空間、未来への夢が広がります。

このようなお家でずっと暮らしていきたい・・・。

住まい手は、デザインや最新の設備の機能性を重視する人が多く、造り手はなるべく皆様の希望を叶えようとされています。

しかし、一部の住宅会社では、他社との価格競争が激化するあまり、住まい手の目の届きにくい部分や評価されにくい部分の費用を必要以上に削減することがあります。

このような住宅は、建設時の費用が少なく、一見、魅力的に見えます。

しかし、材料の品質が低く不適切な構法や施工の場合、耐久性も低くなり、建設後数年で内部構造などが著しく劣化することもあります。最初の建設費が安くなっても、結果的に高額な改修費用が必要となり、かえって全体の費用が大きくなってしまう可能性があります。

もちろん、建設費が安くても、合理化などにより品質の良い材料を使い、適切に建設されている住宅会社もあります。

一方、建設時の費用が大きなくても、造り手の知識や施工技術の不足により、雨漏りや結露など、不適切なトラブルが発生してしまうこともあります。

また、住宅会社により、広告宣伝費、展示住宅関係経費、研究開発費など、関接的な経費も著しく異なります。

住宅の良し悪しは、建設費、会社の規模、知名度だけでは判断することができません。

住宅のトラブルを未然に防ぐには、数多くの専門的な知識が必要です。そのため、専門家である住宅会社に全て任せてしまうのは、住まい手にはかえって不安をもたらすものです。

従って、住まい手は、優良な住宅会社を選択する手段が必要となります。

このツールは、候補となる住宅会社が、住宅の耐久性をどのように確保しようとしているのか情報を収集し、住まい手が各々の仕様（構法、材料、納まりなど）を横並びに比較・評価する目安を示し、手助けするものです。

こちらのツールは、国土交通省国土技術政策総合研究所主催の産学官連携による共同研究「木造住宅の耐久性向上に関わる建物外皮の構造・仕様とその評価に関する研究」（平成23年度～平成27年度、委員長：東海大学名誉教授 石川廣三）の成果に基づいて提案するものです。

対象：一戸建て木造住宅

ご利用にあたり、必ず「主旨説明・注意事項」をご覧下さい。
この住宅は、南側外壁が広範囲に著しい劣化が生じ、新築後6年未満でその状況が発見され改修されています。現在、売り主及び請負人に対し構造耐力上主要な部分と雨水の浸入を防止する部分について10年間の瑕疵担保責任を負うことが義務付けられています。しかし、劣化が著しい場合、改修されるまでの期間、安全性を確保することが困難となります。これらの劣化を防ぐために、利用方法を読み、住宅会社からの回答を参考にして下さい。
利用方法

住まい手

1）木造住宅会社の候補を複数検討します。
2）候補の住宅会社が本ツールへの対応が可能であるか、事前に連絡して確認して下さい。
（その際、本ツールが国総研Webサイトに国総研資料として掲載されている旨を伝えて下さい）
3）緑の「④住まいの希望」シートで、仕様や見積もりに必要となる希望を入力して下さい。
4）本ファイル全体を、候補の住宅会社へ送って下さい。
　よろしければ、希望する間取り図や土地の図面がある場合は添付して下さい。

造り手（工務店、住宅会社、設計事務所など）

5）本ファイルを受け取った住宅会社は、依頼者の家族構成や要望事項に配慮し、
　最後にあるグレーの「⑤性能表示など（造り手記入）」シート及び
　ピンクの「⑥仕様と価格（造り手記入、住まい手確認）」シートの必要情報
　（性能、仕様、それに伴う費用）を入力し、ファイルを依頼者へ返送して下さい。
　本ツールによる回答をされない場合は、その旨を住まい手へお伝え下さい。

問問と回答

住まい手

6）数社から回答された、ブルーの⑤性能表示（住まい手確認）、ピンクの⑥仕様と価格、
　紫の⑧耐久性評価などのシートを印刷し並べて、比較検討してみて下さい。
　※わからない内容がある場合は、リンクされた部分をクリックして解説を読むことができます。
　住宅会社などへ質問（家の仕様や価格など）をする際は、メールや電話、面談などにより
　情報交換をして下さい。
　住宅会社からも、要望事項などの内容について問い合わせがある場合があります。

「住まいの希望」の記載へ
家族構成
※詳細にご記入頂くと返信内容が正確になり、より有効な回答が得られます。
※可能でしたら、希望する間取り図などを添付してお送り下さい。

部屋 面積（坪）
主寝室 面積 0
その他の寝室 面積 0
勾配天井の寝室 面積 0
ロフト 面積 0
和室 面積 0
居間 面積 0
吹き抜けの居間 面積 0
台所・厨房 面積 0
トイレ（1F, 2F） 面積 0
風呂 面積 0
玄関 面積 0
洗面・脱衣室 面積 0
書斎 面積 0
押入れ全体 面積 0
バルコニー 面積 0
納戸（収納室） 面積 0
室内車庫 面積 0
階段 面積 0
廊下 面積 0
エレベーター 面積 0
その他 面積 0
計 0

土地の面積 ㎡
土地の形 東西方向約 m 南北方向約 m
東 □ 西 □ 南 □ 北 □ 角地 □
土地を所有していない場合、希望の方角を選択して下さい。

住まいの希望

白く囲まれた6つの項目だけ入力して下さい

① 可能な範囲で入力して下さい

氏名： 都道府県 市町村
電話：
メールアドレス（必須）：
家族構成
0～6歳 男性 名 女性 名
7～12歳 男性 名 女性 名
13～19歳 男性 名 女性 名
20～39歳 男性 名 女性 名
40～59歳 男性 名 女性 名
60歳以上 男性 名 女性 名

送信日： 年 月 日

② 部屋の数と広さの数値を入力して下さい。

<table>
<thead>
<tr>
<th>部屋</th>
<th>部屋の数</th>
<th>部屋の平均面積</th>
<th>面積（坪）</th>
<th>面積（㎡）</th>
</tr>
</thead>
<tbody>
<tr>
<td>投影室</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他の寝室</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>勾配天井の投影室</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>博物館</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>和室</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1部屋</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2部屋</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3部屋</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4部屋</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5部屋</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

計 0

③ 土地についてご記入下さい。

土地の面積 ㎡
土地の形 東北方向約 m 南西方向約 m
土地に接している道路の方角（複数可選択）

土地を所有していない場合、希望の方角を選択して下さい。

※詳細にご記入頂くと返信内容が正確になり、より有効な回答が得られます。
※可能でしたら、希望する間取り図などを添付してお送り下さい。
居住予定地の危険度を把握し、重点項目を検討しましょう！

居住予定地の過去の気象を把握し、重点項目を検討しましょう！

南海トラフ地震による地震や津波のリスクを把握しましょう！

首都圏直下地震による地震や津波のリスクを把握しましょう！

<table>
<thead>
<tr>
<th>階数</th>
<th>平屋</th>
<th>2階建て</th>
<th>3階建て</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>構法</td>
<td>在来軸組構法</td>
<td>2×4構法</td>
<td>木質系フレーム</td>
<td>その他</td>
</tr>
<tr>
<td>外観の意匠</td>
<td>和風</td>
<td>洋風</td>
<td>その他</td>
<td></td>
</tr>
<tr>
<td>性能</td>
<td>耐久性</td>
<td>耐燃性</td>
<td>耐震性</td>
<td>耐熱性</td>
</tr>
<tr>
<td>基盤</td>
<td>ベタ基礎</td>
<td>ベタ基礎</td>
<td>その他</td>
<td></td>
</tr>
<tr>
<td>外壁</td>
<td>紙面系サイディング</td>
<td>紙面系サイディング</td>
<td>モルタル外壁</td>
<td>ALC</td>
</tr>
<tr>
<td>屋根</td>
<td>瓦屋根</td>
<td>瓦屋根</td>
<td>その他</td>
<td></td>
</tr>
</tbody>
</table>

希望住宅商品名：

希望額 ～ 万円位まで

※建設予定地に係る諸条件により費用が異なるため、上記では建物本体の工事費とします。

別途工事費、設計・工事管理費、諸費用、消費税などは含まれない額となります。

⑥ ご要望をご記入下さい

⑤ 性能表示など

④ 下記の表から特に重視することについて、チェックして下さい。

住宅会社の候補の検索は、こちらをご利用下さい。

https://www.cgr.mlit.go.jp/chiki/kensei/kensetu/pdf/t_03.pdf

③ 仕様と価格

② 下記の表から特に重視することについて、チェックして下さい。

住宅会社の候補の検索は、こちらをご利用下さい。

利用方法

検索例
1. 都道府県選択：「13東京都」
2. 業種（略号）：「建」（建築工事業）
3. 業種（略号）の右側：「一般建設業」または「特定建設業」
4. 結果をソート：「所在地」または「商号または名称」
5. 検索結果表示：「50」件ずつ表示
6. 検索ボタン：「商号又は名称」等をクリック

「一般建設業」と「特定建設業」の違い

「所在地」または「商号または名称」

https://www.cgr.mlit.go.jp/chiki/kensei/kensetu/pdf/t_03.pdf
国土交通省は、住宅の品質を確保し、住まい手が安全・安心して長期間にわたって快適に住むことが可能となるように各種の制度を設けています。その一環として、住宅性能表示制度、長期優良住宅認定制度、各種の省エネルギー制度などを設けており、住宅性能表示制度では、各種の性能を判りやすく等級で区分しています。しかし、これらは任意の制度であるため、造り手が対応していない場合があります。希望を記入したファイルを造り手に送ることにより、造り手がこれらの制度に対応しているか否か、また、対応している場合、提案の仕様がどのような性能を確保することが出来るのかを予め知ることが出来ます。造り手からの返信内容を横並びに比較・検討し、住まい選びの参考にして下さい。

造り手のご担当者へ
「⑤性能表示など（造り手記入）」へ入力して下さい。その結果がこのシートへ自動的に反映されます。

評価関係

設計住宅性能評価書	お選び下さい	メリット
建設住宅性能評価書	お選び下さい	メリット
長期優良住宅認定制度	お選び下さい	メリット
低炭素建築物認定制度	お選び下さい	メリット

登録住宅性能評価機関は、こちら

登録住宅性能評価機関が設計図書の段階の評価結果をまとめたもの。
登録住宅性能評価機関が施工段階と完成段階の検査結果をまとめたもの。
耐久性の確保、税の特例措置、住宅ローンの供給支援
省エネルギー性の確保、優遇税制、ローン控除
<table>
<thead>
<tr>
<th>各種の性能</th>
<th>標準仕様の等級</th>
<th>最高等級</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.構造の安定に関すること</td>
<td>耐震等級</td>
<td>お選び下さい</td>
</tr>
<tr>
<td>(構造躯体(柱,はり,外壁,基礎など)の倒壊防止)</td>
<td>等級3</td>
<td></td>
</tr>
<tr>
<td>2.火災時の安全に関すること</td>
<td>耐火等級</td>
<td>お選び下さい</td>
</tr>
<tr>
<td>(構造躯体の倒壊等防止及び損傷防止)</td>
<td>等級2</td>
<td></td>
</tr>
<tr>
<td>3.劣化の軽減に関すること</td>
<td>耐風等級</td>
<td>お選び下さい</td>
</tr>
<tr>
<td>(構造躯体の倒壊等防止及び損傷防止)</td>
<td>等級3</td>
<td></td>
</tr>
<tr>
<td>4.維持管理・更新への配慮に関すること</td>
<td>耐積雪等級</td>
<td>お選び下さい</td>
</tr>
<tr>
<td>(構造躯体の倒壊等防止及び損傷防止)</td>
<td>等級3</td>
<td></td>
</tr>
<tr>
<td>5.温熱環境に関すること</td>
<td>感知警報装置設置等級(自住戸火災時)</td>
<td>お選び下さい</td>
</tr>
<tr>
<td>6.空気環境に関すること</td>
<td>耐震等級</td>
<td>お選び下さい</td>
</tr>
<tr>
<td>(構造躯体(柱,はり,外壁,基礎など)の倒壊防止)</td>
<td>等級2</td>
<td></td>
</tr>
<tr>
<td>7.音環境に関すること</td>
<td>耐風等級</td>
<td>お選び下さい</td>
</tr>
<tr>
<td>(構造躯体の倒壊等防止及び損傷防止)</td>
<td>等級4</td>
<td></td>
</tr>
<tr>
<td>8.高齢者等への配慮に関すること</td>
<td>断熱性能等級</td>
<td>お選び下さい</td>
</tr>
<tr>
<td>9.高齢者等への配慮に関すること</td>
<td>お選び下さい</td>
<td></td>
</tr>
<tr>
<td>(外装)</td>
<td>等級4</td>
<td></td>
</tr>
<tr>
<td>(外壁)</td>
<td>等級5</td>
<td></td>
</tr>
<tr>
<td>(天井)</td>
<td>等級3</td>
<td></td>
</tr>
<tr>
<td>(天井)</td>
<td>等級3</td>
<td></td>
</tr>
<tr>
<td>1.構造の安定に関すること</td>
<td>耐震等級</td>
<td>お選び下さい</td>
</tr>
<tr>
<td>(構造躯体(柱,はり,外壁,基礎など)の倒壊防止)</td>
<td>等級3</td>
<td></td>
</tr>
<tr>
<td>2.火災時の安全に関すること</td>
<td>耐火等級</td>
<td>お選び下さい</td>
</tr>
<tr>
<td>(構造躯体の倒壊等防止及び損傷防止)</td>
<td>等級2</td>
<td></td>
</tr>
<tr>
<td>3.劣化の軽減に関すること</td>
<td>耐風等級</td>
<td>お選び下さい</td>
</tr>
<tr>
<td>(構造躯体の倒壊等防止及び損傷防止)</td>
<td>等級3</td>
<td></td>
</tr>
<tr>
<td>4.維持管理・更新への配慮に関すること</td>
<td>耐積雪等級</td>
<td>お選び下さい</td>
</tr>
<tr>
<td>(構造躯体の倒壊等防止及び損傷防止)</td>
<td>等級3</td>
<td></td>
</tr>
<tr>
<td>5.温熱環境に関すること</td>
<td>感知警報装置設置等級(自住戸火災時)</td>
<td>お選び下さい</td>
</tr>
<tr>
<td>6.空気環境に関すること</td>
<td>耐震等級</td>
<td>お選び下さい</td>
</tr>
<tr>
<td>(構造躯体(柱,はり,外壁,基礎など)の倒壊防止)</td>
<td>等級2</td>
<td></td>
</tr>
<tr>
<td>7.音環境に関すること</td>
<td>耐風等級</td>
<td>お選び下さい</td>
</tr>
<tr>
<td>(構造躯体の倒壊等防止及び損傷防止)</td>
<td>等級4</td>
<td></td>
</tr>
<tr>
<td>8.高齢者等への配慮に関すること</td>
<td>断熱性能等級</td>
<td>お選び下さい</td>
</tr>
<tr>
<td>9.高齢者等への配慮に関すること</td>
<td>お選び下さい</td>
<td></td>
</tr>
<tr>
<td>(外装)</td>
<td>等級4</td>
<td></td>
</tr>
<tr>
<td>(外壁)</td>
<td>等級5</td>
<td></td>
</tr>
<tr>
<td>(天井)</td>
<td>等級3</td>
<td></td>
</tr>
<tr>
<td>(天井)</td>
<td>等級3</td>
<td></td>
</tr>
</tbody>
</table>
断熱・気密性能値（目安）: モデル住宅の値をご記入下さい

<table>
<thead>
<tr>
<th>性能</th>
<th>JIS等級</th>
<th>高等等級</th>
</tr>
</thead>
<tbody>
<tr>
<td>耐風圧</td>
<td>0%</td>
<td>100%に近い値</td>
</tr>
<tr>
<td>水密性</td>
<td>0%</td>
<td>100%に近い値</td>
</tr>
<tr>
<td>気密性</td>
<td>0%</td>
<td>100%に近い値</td>
</tr>
<tr>
<td>防音性</td>
<td>0%</td>
<td>100%に近い値</td>
</tr>
</tbody>
</table>

代表的なサッシの性能

冷暖房機器 (エアコン, 床暖房等)

遮熱 (オーニング, グリーンカーテン, よしず, すだれ等)

自然風の取り入れ (窓の配置, 手型, 型式等)

その他

シックハウス対策換気設備情報

3〜6P, 32〜34P 注目

断熱・気密性能値

UA値 (外皮平均貫流率)

| 省エネの代表値 | 0 W/m²K以下 |

C値 (相当隙間面積)

| 気密性的測定値の保証 | 0 cm²/㎡以下 |

※C値測定時にテープ等で目張りして良い場所
（換気レジスター, 台所レンジフード, 排気扇・天井扇, 窓の穴, 屋外へ通じる配水管, 集中換気システムの給排気ダクトの屋外側出入り口）: JIS A 2201

熱交換の有無や熱交換率は、省エネ性に影響します。

断熱性

冷暖房機器 (エアコン, 床暖房等)

遮熱 (オーニング, グリーンカーテン, よしず, すだれ等)

自然風の取り入れ (窓の配置, 手型, 型式等)

その他

断熱・気密性能値 (目安): モデル住宅の値をご記入下さい

UA値 (外皮平均貫流率)

| 省エネの代表値 | 0 W/m²K以下 |

C値 (相当隙間面積)

| 気密性的測定値の保証 | 0 cm²/㎡以下 |

※C値測定時にテープ等で目張りして良い場所
（換気レジスター, 台所レンジフード, 排気扇・天井扇, 窓の穴, 屋外へ通じる配水管, 集中換気システムの給排気ダクトの屋外側出入り口）: JIS A 2201

24時間換気システム

給排気の形式

| お選び下さい |

給気・排気

| お選び下さい |

熱交換器の

| お選び下さい |

非熱交換型

| お選び下さい |

熱交換型

| お選び下さい |

熱交換器の

| 0% |

100%に近い値

給排気の形式

| お選び下さい |

給気・排気

| お選び下さい |

熱交換型

| お選び下さい |

非熱交換型

| お選び下さい |

熱交換器の

| 0% |

100%に近い値

断熱性

冷暖房機器 (エアコン, 床暖房等)

遮熱 (オーニング, グリーンカーテン, よしず, すだれ等)

自然風の取り入れ (窓の配置, 手型, 型式等)

その他

代表的なサッシの性能

高い値ほど等級が上位

各種性能 | JIS等級 | 最高等級 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>耐風圧</td>
<td>0%</td>
<td>S-7</td>
</tr>
<tr>
<td>水密性</td>
<td>0%</td>
<td>W-5</td>
</tr>
<tr>
<td>気密性</td>
<td>0%</td>
<td>A-4</td>
</tr>
<tr>
<td>断熱性</td>
<td>0%</td>
<td>H-5</td>
</tr>
<tr>
<td>遮音性</td>
<td>0%</td>
<td>T-4</td>
</tr>
<tr>
<td>防音性</td>
<td>0%</td>
<td>ラベルあり</td>
</tr>
</tbody>
</table>

断熱・気密性能値

UA値 (外皮平均貫流率)

| 省エネの代表値 | 0 W/m²K以下 |

C値 (相当隙間面積)

| 気密性的測定値の保証 | 0 cm²/㎡以下 |

※C値測定時にテープ等で目張りして良い場所
（換気レジスター, 台所レンジフード, 排気扇・天井扇, 窓の穴, 屋外へ通じる配水管, 集中換気システムの給排気ダクトの屋外側出入り口）: JIS A 2201

熱交換の有無や熱交換率は、省エネ性に影響します。

断熱性

冷暖房機器 (エアコン, 床暖房等)

遮熱 (オーニング, グリーンカーテン, よしず, すだれ等)

自然風の取り入れ (窓の配置, 手型, 型式等)

その他

代表的なサッシの性能

高い値ほど等級が上位

各種性能 | JIS等級 | 最高等級 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>耐風圧</td>
<td>0%</td>
<td>S-7</td>
</tr>
<tr>
<td>水密性</td>
<td>0%</td>
<td>W-5</td>
</tr>
<tr>
<td>気密性</td>
<td>0%</td>
<td>A-4</td>
</tr>
<tr>
<td>断熱性</td>
<td>0%</td>
<td>H-5</td>
</tr>
<tr>
<td>遮音性</td>
<td>0%</td>
<td>T-4</td>
</tr>
<tr>
<td>防音性</td>
<td>0%</td>
<td>ラベルあり</td>
</tr>
</tbody>
</table>

断熱・気密性能値

UA値 (外皮平均貫流率)

| 省エネの代表値 | 0 W/m²K以下 |

C値 (相当隙間面積)

| 気密性的測定値の保証 | 0 cm²/㎡以下 |

ラベルあり

断熱・気密性能値

UA値 (外皮平均貫流率)

| 省エネの代表値 | 0 W/m²K以下 |

C値 (相当隙間面積)

| 気密性的測定値の保証 | 0 cm²/㎡以下 |
造り手が提案する仕様と価格の目安（造り手記入、住まい手確認）

<table>
<thead>
<tr>
<th>1</th>
<th>カーテンレール工事</th>
<th>2</th>
<th>照明器具</th>
<th>3</th>
<th>在来軸組構法</th>
</tr>
</thead>
<tbody>
<tr>
<td>造り手のご担当者へ</td>
<td>造作家具</td>
<td>造作家具</td>
<td>枠組壁工法</td>
<td>枠組壁工法</td>
<td></td>
</tr>
<tr>
<td>住まい手の皆様へ（詳しい内容にご興味がある方へ）</td>
<td>太陽光発電機器</td>
<td>太陽光発電機器</td>
<td>木質系プレハブ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他（ □ ）</td>
<td>その他（ □ ）</td>
<td>その他（ □ ）</td>
<td>その他（ □ ）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

通常、本体工事費に含まれないもの

| 地盤改良、盛土客土、給水本管接続、水道負担金局納金、排水放流同意金、屋外電気工事、屋外ガス工事、冷暖房工事、施主支給工事および管理費、照明器具、カーテンレール工事、カーテン工事、セキュリティシステム、造作家具工事、TVアンテナ工事、TVブースター工事、外構造園工事、解体工事、小運搬、工事車両駐車費用、官庁への諸手続費用、見積書および設計図書に明記する別途工事費用 |

造り手のご担当者へ

お客様のご希望をご観頂いた後、対応する住宅の標準仕様について、該当する口のボックスをチェックして下さい。希望に対応したオプションがある場合は、その仕様と価格を表の右欄へご記入下さい。また、表の右下へ建設費等をご記入下さい。なお、黄色い部分が推奨する構法や材料などです。

住まい手の皆様へ（詳しい内容にご興味がある方へ）

このシートは、耐久性を確保する上で重要となる構法や材料などについて示したものであり、施工技術・実績については含んでいません。従って、このシートだけで耐久性の絶対的な評価をすることは出来ませんが、住宅の耐久性について客観的に比較検討するための参考資料となりますので、造り手から返信後ご覧下さい。なお、黄色い部分が推奨する構法や材料などです。

お客様のご希望をご覧頂いた後、対応する住宅の標準仕様について、該当する口のボックスをチェックして下さい。希望に対応したオプションがある場合は、その仕様と価格を表の右欄へご記入下さい。また、表の右下へ建設費等をご記入下さい。なお、黄色い部分が推奨する構法や材料などです。

住まい手の皆さんへ（詳しい内容にご興味がある方へ）

このシートは、耐久性を確保する上で重要となる構法や材料などについて示したものであり、施工技術・実績については含んでいません。従って、このシートだけで耐久性の絶対的な評価をすることは出来ませんが、住宅の耐久性について客観的に比較検討するための参考資料となりますので、造り手から返信後ご覧下さい。なお、黄色い部分が推奨する構法や材料などです。

お客様のご希望をご覧頂いた後、対応する住宅の標準仕様について、該当する口のボックスをチェックして下さい。希望に対応したオプションがある場合は、その仕様と価格を表の右欄へご記入下さい。また、表の右下へ建設費等をご記入下さい。なお、黄色い部分が推奨する構法や材料などです。
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>A欄</th>
<th>B欄</th>
<th>C欄</th>
<th>解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>設計図書保管期間</td>
<td>新規</td>
<td>○</td>
<td>□ 11年間以上</td>
<td>□ 10年間</td>
</tr>
<tr>
<td>6</td>
<td>配置図</td>
<td>新規</td>
<td>○</td>
<td>□ 契約前、施主に渡す</td>
<td>□ 着工前に渡す</td>
</tr>
<tr>
<td>7</td>
<td>平面図</td>
<td>新規</td>
<td>○</td>
<td>□ 契約前、施主に渡す</td>
<td>□ 着工前に渡す</td>
</tr>
<tr>
<td>8</td>
<td>立面図</td>
<td>新規</td>
<td>○</td>
<td>□ 契約前、施主に渡す</td>
<td>□ 着工前に渡す</td>
</tr>
<tr>
<td>9</td>
<td>断面図</td>
<td>新規</td>
<td>○</td>
<td>□ 契約前、施主に渡す</td>
<td>□ 着工前に渡す</td>
</tr>
<tr>
<td>10</td>
<td>矩計図</td>
<td>新規</td>
<td>○</td>
<td>□ 契約前、施主に渡す</td>
<td>□ 着工前に渡す</td>
</tr>
<tr>
<td>11</td>
<td>「他の図面」を渡す時期</td>
<td>新規</td>
<td>○</td>
<td>□ 契約前、施主に渡す</td>
<td>□ 着工前に渡す</td>
</tr>
<tr>
<td>12</td>
<td>工程表</td>
<td>新規</td>
<td>○</td>
<td>□ 契約前、施主に渡す</td>
<td>□ 着工前に渡す</td>
</tr>
<tr>
<td>13</td>
<td>設備図</td>
<td>新規</td>
<td>○</td>
<td>□ 契約前、施主に渡す</td>
<td>□ 着工前に渡す</td>
</tr>
<tr>
<td>14</td>
<td>立ち会い・検査予定表</td>
<td>新規</td>
<td>○</td>
<td>□ 契約前、施主に渡す</td>
<td>□ 着工前に渡す</td>
</tr>
<tr>
<td>15</td>
<td>保証書内容の説明</td>
<td>新規</td>
<td>○</td>
<td>□ 打ち合わせ当初に説明</td>
<td>□ 契約前に内容説明</td>
</tr>
<tr>
<td>16</td>
<td>保守点検資料</td>
<td>新規</td>
<td>○</td>
<td>□ 契約前、施主に渡す</td>
<td>□ 引渡し前に渡す</td>
</tr>
</tbody>
</table>

ここで示す「推奨率」は、黄色く反転している推奨の欄がある行を対象として、耐久性上特に重要な推奨仕様を●印として3ポイント、推奨仕様を◎印として2ポイント、それに準じる推奨仕様を○印として1ポイントとして、全て推奨仕様を採用すると仮定した場合のポイントの合計に対して、実際に推奨仕様内の「□」をチェックしたポイントの合計が占める割合を示しています。なお、推奨仕様は、全て試験や調査による根拠があるとは限りません。共同研究関係者の知見や経験により内部で協議した結果の場合も含まれます。
20	種類（侵入の容易さ）	◯	○	□ ベタ基礎	□ 布基礎・防湿土間コンクリート	□ その他（ ）
21	外周土間と基礎のコンクリート打ち継ぎなど	◯	○	□ 玄関ポーチ土間等と基礎のコンクリートを一体で打設しており、打ち継いではない。	□ 基礎と土間を少し離している。	□ その他（ ）
22	シロアリ対策（避難）	◯	○	□ 基礎の外周に基礎幅木や基礎断熱が無く、全て見える	□ 基礎の外周に見えない部分はあるが、試験により効果が確認された防蟻対策が施されている	□ その他（ ）
23	基礎内側のコンクリート表面（基礎断熱により見えなくなることを含む）	◯	○	□ 基礎の内側には基礎断熱等がなく全て見える	□ 基礎の外周に見えない部分はあるが、試験により効果が確認された防蟻対策が施されている	□ その他（ ）
24	基礎打ち込み部の隙間	◯	○	□ 侵入対策を施している 対策を施さない	□ 対策を施さない その他（ ）	
25	貫通孔周辺	◯	○	□ 全ての床下が点検出来ることが確認された点検部の跡が残る	□ 点検出来ない箇所がある	□ その他（ ）
26	床下	◯	○	□ 有り 無し	□ 無し その他（ ）	
27	GLから基礎天端までの高さ	◯	○	□ 600mm以上 400mm以上	□ 400mm以上 その他（ ）	
28	部位	◯	○	□ 心材のみ 辺材も含む	□ 辺材も含む その他（ ）	
29	防腐防蟻処理	◯	○	□ 加圧注入処理 塗布処理	□ 塗布処理 その他（ ）	
30	耐久性D1樹種、特定樹種以外（ ）	◯	○	□ 耐久性D1樹種、特定樹種（ ）	□ 耐久性D2樹種、特定樹種以外（ ） その他（ ）	
31	JAS製品	◯	○	□ JAS製品	□ 優良木質建材AQ その他（ ）	
32	部位	◯	○	□ K3同等以上	□ K3同等以上 その他（ ）	
33	防腐防蟻処理	◯	○	□ 加圧注入処理 塗布処理	□ 塗布処理 その他（ ）	
34	耐久性D1樹種、特定樹種以外（ ）	◯	○	□ 耐久性D1樹種、特定樹種（ ）	□ 耐久性D2樹種、特定樹種以外（ ） その他（ ）	
35	JAS製品	◯	○	□ JAS製品	□ 優良木質建材AQ その他（ ）	
36	部位	◯	○	□ K3同等以上	□ K3同等以上 その他（ ）	
37	防腐防蟻処理	◯	○	□ 加圧注入処理 塗布処理	□ 塗布処理 その他（ ）	
38	耐久性D1樹種、特定樹種以外（ ）	◯	○	□ 耐久性D1樹種、特定樹種（ ）	□ 耐久性D2樹種、特定樹種以外（ ） その他（ ）	
39	JAS製品	◯	○	□ JAS製品	□ 優良木質建材AQ その他（ ）	
40	部位	◯	○	□ K3同等以上	□ K3同等以上 その他（ ）	
共通事項
<table>
<thead>
<tr>
<th>項目</th>
<th>開放</th>
<th>適用</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>外装材</td>
<td>○</td>
<td>0</td>
<td>□ 塩害系サイディング □ 金属系サイディング □ 枝物系サイディング</td>
</tr>
<tr>
<td>防湿対策</td>
<td>□</td>
<td>0</td>
<td>□ 別張り防湿フィルム □ 断熱材付属フィルム □ なし</td>
</tr>
<tr>
<td>通気層の厚さ</td>
<td>□</td>
<td>0</td>
<td>□ 15mm以上または12mm □ 12mm未満</td>
</tr>
<tr>
<td>遮湿材通気構法</td>
<td>□</td>
<td>0</td>
<td>□ オーバーフロー排水管 □ なし</td>
</tr>
<tr>
<td>塩まわり</td>
<td>□</td>
<td>0</td>
<td>□ 施工する □ 施工しない</td>
</tr>
<tr>
<td>乾式外壁</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>材縁</td>
<td>□</td>
<td>0</td>
<td>□ 縁材縁 □ 通気金物 □ 槌縁</td>
</tr>
<tr>
<td>サイディング</td>
<td>□</td>
<td>0</td>
<td>□ JIS認定品 □ JIS適合品 □ その他</td>
</tr>
<tr>
<td>サイディングの塗膜保証</td>
<td>□</td>
<td>0</td>
<td>□ 10年以上</td>
</tr>
<tr>
<td>推奨率</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

湿式外壁
<table>
<thead>
<tr>
<th>項目</th>
<th>開放</th>
<th>適用</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>モルタル裏面用防水紙</td>
<td>□</td>
<td>0</td>
<td>□ 改質アスファルトフェルト □ アスファルトフェルト</td>
</tr>
<tr>
<td>ステールの長さ</td>
<td>□</td>
<td>0</td>
<td>□ 120mm以上</td>
</tr>
<tr>
<td>推奨率</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

床
<table>
<thead>
<tr>
<th>項目</th>
<th>開放</th>
<th>適用</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>床面の構成</td>
<td>□</td>
<td>0</td>
<td>□ 2層 (2重) □ 1層</td>
</tr>
<tr>
<td>水断切り</td>
<td>□</td>
<td>0</td>
<td>□ 1/50以上</td>
</tr>
<tr>
<td>防水立ち上がり</td>
<td>□</td>
<td>0</td>
<td>□ 250mm以上 □ 250mm未満</td>
</tr>
<tr>
<td>防水の施工順序</td>
<td>□</td>
<td>0</td>
<td>□ サッシ先付け</td>
</tr>
<tr>
<td>推奨率</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>番号</td>
<td>項目</td>
<td>解説</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>天井・屋根断熱密度</td>
<td>目標: ○ ○ ○ JISA6930防湿フィルム その他の防湿フィルム なし</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>断熱方法</td>
<td>解説 - なし ○ 屋根断熱 ○ 焼上断熱 ○ 天井断熱</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>断熱材</td>
<td>解説 - なし ○ 発泡プラスチック系 ○ 繊維系 ○ その他 ()</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>屋根の形状</td>
<td>解説 - なし ○ 坑棟 ○ 切妻 ○ 片流れ</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>勾配</td>
<td>解説 - なし ○ メーカー仕様に準拠 ○ 指定外</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>軒の出(外装表面から屋根裏端部までの距離)</td>
<td>解説 - なし ○ 60cm以上 ○ 30cm以上 ○ 30cm未満</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>けらばの出(外装表面から屋根端部までの距離)</td>
<td>解説 - なし ○ 60cm以上 ○ 30cm以上 ○ 30cm未満</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>暴気</td>
<td>解説 - なし ○ 屋根下地屋根構法 ○ JASS 12、業界仕様、屋根材メーカー仕様と同等以上 ○ その他 ()</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>屋根材相互の隙間等からの雨水浸入しにくさ</td>
<td>解説 - なし ○ 屋根材相互の隙間等が小さく、下葺材上への雨水が浸入しにくい納まり ○ その他 ()</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>防水紙の種類</td>
<td>解説 - なし ○ 屋根材の施工前に接合具による防水紙貫通部が直接、見えない状態 ○ 非採用 ○ その他 ()</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>防水紙上の浸入雨水の排水のしやすさ</td>
<td>解説 - なし ○ 防水紙上の浸入雨水が直接、見えない状態 ○ 直貫き、瓦屋根を防水紙へ直接留め付け ○ その他 ()</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>接合具の防錆</td>
<td>解説 - なし ○ ステンレス ○ 亜鉛めっき ○ 鉄のみ ○ その他 ()</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>金具の状況確認</td>
<td>解説 - なし ○ 小屋裏点検口有り ○ 小屋裏点検口無し ○ その他 ()</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>瓦屋根</td>
<td>瓦屋根標準設計・施工ガイドライン工法により規定されている他の施工、半端瓦・勝手瓦の留め付け</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>推奨率 0%</td>
<td>推奨率には、天井・屋根の共通事項が含まれています。</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>金属屋根</td>
<td>板材の品質</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>推奨率 0%</td>
<td>推奨率には、天井・屋根の共通事項が含まれています。</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>化粧スレート屋根</td>
<td>耐候性</td>
<td></td>
</tr>
</tbody>
</table>

* 第Ⅱ章 家造りガイドライン 関連ツール【工事手との情報交換ツール】*
推奨率 0%
推奨率には、天井・屋根の共通事項が含まれています。

シングル屋根 施工方法
解説 □ ○ □ □ メーカーの仕様による □ その他 ()

推奨率 0%
推奨率には、天井・屋根の共通事項が含まれています。

105	システムキッチン	メーカー名	型式	□	□	□	その他 ()
106	型式						
107	システムブース	メーカー名	型式	□	□	□	その他 ()
108	型式						
109	トイレ	メーカー名	型式	□	□	□	その他 ()
110	型式						
111	給湯設備	メーカー名	型式	□	□	□	その他 ()
112	型式						
113	洗面化粧台	メーカー名	型式	□	□	□	その他 ()
114	型式						
115	オーガン	メーカー名	型式	□	□	□	その他 ()
116	型式						
117	台数	□	□	□	その他 ()		
118	内装材 (洋室)	床種類	□	□	□	その他 ()	
119	部屋種類	□	□	□	その他 ()		
120	天井種類	□	□	□	その他 ()		
121	サッシ	メーカー名	型式	□	□	□	その他 ()
122	型式						
123	断熱材	メーカー名	型式	□	□	□	その他 ()
124	型式						
125	その他	□	□	□	その他 ()		

心材の耐久性区分
※耐久性D1樹種
製材 JAS ヒノキ、ヒバ、スギ、カラマツ、ベイヒ、ベイスギ、ベイヒバ、ベイマツ、ダフリカラマツ及びサイプレスパイン

製材 JAS ウェスタンラーチ、ウェスタンレッドシダー、カラマツ、スギ、ナライフヒ、ダグラスファーマ、ダフリカラマツ、タマラック、パンフィック、コーストイエローシダー、ヒノキ、ヒバ、その他心材の耐久性がこれらに類するもの

集材 AQ ハンプ、ヒバ、スギ、カラマツ、ベイヒ、ベイスギ、ベイヒバ、ベイマツ、ダフリカラマツ及びサイプレスパイン

広葉樹:ケヤキ、クリ、カブ、カクベンダガ、アピトン、ケンパス、ボンゴシ、ゼラ及びジャラ

※耐久性D2樹種
製材 JAS D1以外の樹種

幹材 JAS アカマツ、アガチス、アマピリスファー、アラバマイファー、イースタンヘムロック、ウェスタンホワイトバイン、エルマツ、エンゲルマンスプルース、オウシュウカラマツ、グランドファー、クルマツ、コーストシトスプルース、ジャッカルバイン、ツガ、ドトマツ、バシフィックコーストヘムロック、バワサムファー、ブラックスプルース、ベニマツ、ホワイトスプルース、ボンデローサバイン、メルクシマツ、モミ、ラジアタバイン、レッドスプルース、レッドバイン、ロッジポールバイン、その他心材の耐久性がこれらに類するもの

集成材 AQ D1以外の樹種

心材の耐久性区分
※耐久性D1樹種
製材 JAS ヒノキ、ヒバ、スギ、カラマツ、ベイヒ、ベイスギ、ベイヒバ、ベイマツ、ダフリカラマツ及びサイプレスパイン

製材 JAS ウェスタンラーチ、ウェスタンレッドシダー、カラマツ、スギ、ナライフヒ、ダグラスファーマ、ダフリカラマツ、タマラック、パンフィック、コーストイエローシダー、ヒノキ、ヒバ、その他心材の耐久性がこれらに類するもの

集材 AQ ハンプ、ヒバ、スギ、カラマツ、ベイヒ、ベイスギ、ベイヒバ、ベイマツ、ダフリカラマツ及びサイプレスパイン

広葉樹:ケヤキ、クリ、カブ、カクベンダガ、アピトン、ケンパス、ボンゴシ、ゼラ及びジャラ

※耐久性D2樹種
製材 JAS D1以外の樹種

幹材 JAS アカマツ、アガチス、アマピリスファー、アラバマイファー、イースタンヘムロック、ウェスタンホワイトバイン、エルマツ、エンゲルマンスプルース、オウシュウカラマツ、グランドファー、クルマツ、コーストシトスプルース、ジャッカルバイン、ツガ、ドトマツ、バシフィックコーストヘム洛克、バワサムファー、ブラックスプルース、ベニマツ、ホワイトスプルース、ボンデローサバイン、メルクシマツ、モミ、ラジアタバイン、レッドスプルース、レッドバイン、ロッジポールバイン、その他心材の耐久性がこれらに類するもの

集成材 AQ D1以外の樹種
上記の表に反映されにくい住宅の特徴や諸性能などについて、ご記入下さい。

もし、可能でしたら、平面図や立面図を添付して下さい

⑧耐久性評価
<table>
<thead>
<tr>
<th>表下の右側に示す本体工事費に含まれるもの</th>
<th>カーテンレール工事</th>
<th>造作家具</th>
<th>太陽光発電機器</th>
</tr>
</thead>
<tbody>
<tr>
<td>照明器具</td>
<td>冷暖房工事</td>
<td>設計料</td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

通常、本体工事費に含まれないもの
地盤改良、盛土等土、給水本管接続、水道負担金局納金、排水放流同意金、屋外電気工事、屋外ガス工事、冷暖房工事、施主支払工事および管理費、照明器具、カーテンレール工事、カーテン工事、セキュリティシステム、造作家具工事、TVアンテナ工事、TVブースター工事、外構造園工事、解体工事、小運搬、工事車両運行費、官庁への諸手続費用、見積書および設計図書に明記する別途工事費用

<table>
<thead>
<tr>
<th>結法</th>
<th>構造体</th>
<th>設計年期工法</th>
<th>組立工法</th>
<th>木質系プレハブ</th>
</tr>
</thead>
<tbody>
<tr>
<td>その他 ()</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>推奨率</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>重要度</th>
<th>解説・注意事項</th>
</tr>
</thead>
<tbody>
<tr>
<td>A欄</td>
<td>B欄</td>
</tr>
<tr>
<td>5</td>
<td>設計図書保管期間</td>
</tr>
<tr>
<td>6</td>
<td>配置図</td>
</tr>
<tr>
<td>7</td>
<td>平面図</td>
</tr>
<tr>
<td>8</td>
<td>立面図</td>
</tr>
<tr>
<td>9</td>
<td>断面図</td>
</tr>
<tr>
<td>10</td>
<td>短面図</td>
</tr>
<tr>
<td>11</td>
<td>他の図面</td>
</tr>
<tr>
<td>12</td>
<td>工程表</td>
</tr>
<tr>
<td>13</td>
<td>設備図</td>
</tr>
<tr>
<td>14</td>
<td>立会い・検査予定表</td>
</tr>
<tr>
<td>15</td>
<td>保証書</td>
</tr>
<tr>
<td>16</td>
<td>保証書内容の説明</td>
</tr>
<tr>
<td>17</td>
<td>保守点検資料</td>
</tr>
</tbody>
</table>

推奨率 0%
<table>
<thead>
<tr>
<th>コラム</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>種類(侵入の容易さ)</td>
<td>○ ○ ベタ基礎、布基礎+防湿土間コンクリート</td>
</tr>
<tr>
<td>外側土間と基礎の関係</td>
<td>○ ○ (\text{玄関ポーチ土間等と基礎が一体})</td>
</tr>
<tr>
<td>基礎全周のコンクリート表面 (基礎断熱により見えなくなることを含む)</td>
<td>○ ○ (\text{全て見える})</td>
</tr>
<tr>
<td>基礎全周のコンクリート表面 (基礎断熱により見えなくなることを含む)</td>
<td>○ ○ (\text{全て見える})</td>
</tr>
<tr>
<td>基礎打ち継ぎ部の隙間</td>
<td>○ - (\text{侵入対策を施す対策を施さない})</td>
</tr>
<tr>
<td>貫通孔周辺</td>
<td>○ - (\text{工事終了まで全て密閉隙間は密閉しない})</td>
</tr>
<tr>
<td>点検口</td>
<td>● - (\text{有り無し})</td>
</tr>
<tr>
<td>GLから基礎天端までの高さ</td>
<td>○ ○ (600mm以上 400mm以上)</td>
</tr>
<tr>
<td>部位</td>
<td>○ - (\text{心材辺材も含む})</td>
</tr>
<tr>
<td>樹種(表の下の樹種を参照)</td>
<td>○ ○ (\text{耐久性D1樹種、特定樹種() 耐久性D2樹種、特定樹種以外()})</td>
</tr>
<tr>
<td>防腐防蟻対策</td>
<td>○ ○ (\text{加圧注入処理塗布処理})</td>
</tr>
<tr>
<td>含水率</td>
<td>○ - (19, 20%以下 21%以上)</td>
</tr>
<tr>
<td>規格</td>
<td>○ ○ (\text{JAS製品優良木材建材AQ})</td>
</tr>
<tr>
<td>38</td>
<td>軸体材</td>
</tr>
<tr>
<td>39</td>
<td>部分</td>
</tr>
<tr>
<td>40</td>
<td>耐久性D1樹種、特定樹種（）</td>
</tr>
<tr>
<td>41</td>
<td>防腐防亜処理</td>
</tr>
<tr>
<td>42</td>
<td>含水率</td>
</tr>
<tr>
<td>43</td>
<td>規格</td>
</tr>
<tr>
<td>44</td>
<td>JAS保存処理</td>
</tr>
</tbody>
</table>

推奨率 0%
<table>
<thead>
<tr>
<th>番号</th>
<th>項目</th>
<th>動画</th>
<th>共通事項</th>
<th>補修工事対策</th>
</tr>
</thead>
</table>
| 45 | 窯業系サイディング | 0 | 0 | 壁面に合ったサイディングを適用し、耐久性を確保。
| 46 | 金属系サイディング | 0 | 0 | 耐熱性を持った金属系サイディングを用いる。
| 47 | 防湿対策 | 0 | 0 | 別張り防湿フィルムを設置し、湿気を防ぐ。
| 48 | 断熱材付属フィルム | 15mm以上または12mm | 12mm未満 | 通気層は、湿気や雨水を屋外へ排出する役割を果たす。
| 49 | モルタル通気構法 | 0 | 0 | 通気層は、湿気や雨水を屋外へ排出する役割を果たす。
| 50 | モルタル非通気 | 0 | 0 | 突然の温度変化に適応できる通気構法を選択する。
| 51 | 防湿対策 | 0 | 0 | 別張り防湿フィルムを設置し、湿気を防ぐ。
| 52 | 断熱材付属フィルム | 15mm以上または12mm | 12mm未満 | 通気層は、湿気や雨水を屋外へ排出する役割を果たす。
| 53 | 防湿対策 | 0 | 0 | 別張り防湿フィルムを設置し、湿気を防ぐ。
| 54 | 断熱材付属フィルム | 15mm以上または12mm | 12mm未満 | 通気層は、湿気や雨水を屋外へ排出する役割を果たす。
| 55 | 断熱材付属フィルム | 15mm以上または12mm | 12mm未満 | 通気層は、湿気や雨水を屋外へ排出する役割を果たす。
| 56 | 断熱材付属フィルム | 15mm以上または12mm | 12mm未満 | 通気層は、湿気や雨水を屋外へ排出する役割を果たす。
| 57 | 断熱材付属フィルム | 15mm以上または12mm | 12mm未満 | 通気層は、湿気や雨水を屋外へ排出する役割を果たす。
| 58 | 断熱材付属フィルム | 15mm以上または12mm | 12mm未満 | 通気層は、湿気や雨水を屋外へ排出する役割を果たす。
| 59 | 断熱材付属フィルム | 15mm以上または12mm | 12mm未満 | 通気層は、湿気や雨水を屋外へ排出する役割を果たす。
| 60 | 断熱材付属フィルム | 15mm以上または12mm | 12mm未満 | 通気層は、湿気や雨水を屋外へ排出する役割を果たす。
| 61 | 断熱材付属フィルム | 15mm以上または12mm | 12mm未満 | 通気層は、湿気や雨水を屋外へ排出する役割を果たす。
| 62 | 断熱材付属フィルム | 15mm以上または12mm | 12mm未満 | 通気層は、湿気や雨水を屋外へ排出する役割を果たす。

注意:

- 断熱材付属フィルムの設置は、通気層に沿って設置する。
- 断熱材付属フィルムの設置は、通気層に沿って設置する。
- 断熱材付属フィルムの設置は、通気層に沿って設置する。
- 断熱材付属フィルムの設置は、通気層に沿って設置する。
床下の換気 ◎ - 換気口がある
床下に浸透した雨水や水蒸気を屋外へ排出させるため、換気口が必要となります。

床防水の層構成 ◎ - 2層
床防水の層構成は、1層と2層（重層）とすることが推奨されます。

水勾配 ◎ ○ 1/50以上 1/100以上
床下の換気口がある場合、換気口がない場合、床下に浸入した雨水や水蒸気を屋外へ排出させるため、換気口が必要となります。

オーバーフロー排水管 ◎ - ある
オーバーフロー排水管は、ドレンが詰まった場合の雨水の排出を防ぐために設置されます。

防水立ち上がり ◎ - 250mm以上 250mm未満
防水立ち上がりが低すぎると、豪雨の際には雨水浸入の原因となります。

窓下の施工順序 ◎ - 防水先施工サッシ後付け
「防水先施工サッシ後付け」は、防水層を構築した後、サッシを留め付ける方法であり、防水性の高い施工手順となります。

通気構造 ● - 通気構造 通気構造でない
通気構造は、外壁と屋内の温差を防ぐために設置されます。

木下部の外装材 ◎ - 使用していない
木下部の外装材は、ムダにDur值が下がること、サッシの耐久性を損なうため、使用しないことが推奨されます。

上部への鞍掛けシート ◎ - 使用
上部への鞍掛けシートは、安定性を高めるために設置されます。

維持保全 ◎ - はしごを使用しないで掃除
維持保全は、人が容易に浸透しないバルコニーの場合、排水溝が敷かれていない場合でも、状況の確認が困難なため、バルコニーに溜まった雨水が溢れ、雨水浸入により躯体などが劣化することを考慮しています。
<table>
<thead>
<tr>
<th>78 天井・屋根断熱気密</th>
<th>防湿フィルム</th>
<th>○</th>
<th>○</th>
<th>JISA6930防湿フィルム</th>
<th>その他の防湿フィルム</th>
<th>天井裏面の防湿については、適切に設計・施工しないと室内の水蒸気が小屋裏内へ浸入し、温度の低い野地裏面などで結露が生じることがあるので、防湿方法について充分な対策が必要です。</th>
</tr>
</thead>
<tbody>
<tr>
<td>79 断熱方法</td>
<td>断熱</td>
<td>○</td>
<td>-</td>
<td>屋根断熱</td>
<td>樞上断熱</td>
<td>屋根断熱や樞上断熱を採用すると小屋裏空間を室内として利用することが可能となります。</td>
</tr>
<tr>
<td>80 断熱材</td>
<td>断熱</td>
<td>○</td>
<td>-</td>
<td>発泡プラスチック系</td>
<td>繊維系</td>
<td>断熱材の外側に通気層を設けるなどの対策が必要です。</td>
</tr>
<tr>
<td>81 屋根の形状</td>
<td>断熱</td>
<td>○</td>
<td>-</td>
<td>切妻</td>
<td>前棟</td>
<td>雨水が屋根に流れをさせ止めさせるような複雑な屋根形状は、雨水浸入事故が多いので充分な防水対策が施されていることを確認する必要があります。</td>
</tr>
<tr>
<td>82 勾配</td>
<td>○</td>
<td>-</td>
<td>メーカー指定に準拠</td>
<td>指定外</td>
<td>断熱方法のためには、屋根の勾配は急の方が水はけが良いものでありますが、必要以上に勾配が急すぎると補修・改修の工事が困難となり、必要経費も増額となる場合があります。</td>
<td></td>
</tr>
<tr>
<td>83 軒の出（柱芯から葺材端）</td>
<td>○</td>
<td>60cm以上</td>
<td>30cm以上</td>
<td>最近、デザイン上から軒またはけらばの出が少ない住宅が増えつつあります。軒の出やけらばの出が少ない雨が掛かりやすくなり、外壁下部から雨水が浸入するリスクが高まります。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84 けらばの出（柱芯からの最小値）</td>
<td>○</td>
<td>60cm以上</td>
<td>30cm以上</td>
<td>最近、デザイン上から軒またはけらばの出が少ない住宅が増えつつあります。軒の出やけらばの出が少ない雨が掛かりやすくなり、外壁下部から雨水が浸入するリスクが高まります。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85 换気</td>
<td>○</td>
<td>-</td>
<td>劣化対策等級3同等以上</td>
<td>その他</td>
<td>换気は屋根裏面から上昇してくる暖かい空気を小屋裏内に滞ることなく外気へ排出する排気口の役割を果たしています。</td>
<td></td>
</tr>
<tr>
<td>86 屋根の仕様</td>
<td>○</td>
<td>-</td>
<td>通気下地屋根構法</td>
<td>その他</td>
<td>JASS 12、業界仕様、屋根材メーカー仕様は、耐震性、耐風性などが確保された仕様となります。</td>
<td></td>
</tr>
<tr>
<td>87 屋根材相互の隙間等から雨水浸入のしにくさ</td>
<td>○</td>
<td>-</td>
<td>屋根材相互の隙間等が小さく、下葺材上への雨水が浸入しにくい納まり</td>
<td>その他</td>
<td>屋根材の種類により、屋根材相互の隙間などから雨水が浸入しやすい場合があります。</td>
<td></td>
</tr>
<tr>
<td>88 防水纸の種類</td>
<td>○</td>
<td>-</td>
<td>防水紙の上部に通気層や空間がある部分は透湿ローフィングまたは改質アスファルトルーフィングを使用、防水紙に屋根材などが直葺きされている部分は、改質アスファルトルーフィングを使用</td>
<td>その他</td>
<td>防水紙の上部に通気層や空間がある部分は透湿ローフィングまたは改質アスファルトルーフィングを使用、防水紙に屋根材などが直葺きされている部分は、改質アスファルトルーフィングを使用</td>
<td></td>
</tr>
</tbody>
</table>

共通事項：
天井・屋根断熱気密、通気下地屋根構法、屋根材相互の隙間等から雨水浸入のしにくさ、防水紙の種類についての基準を設け、その他の対策も考慮します。
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>屋根</td>
<td>ホールレス構法（防水紙の留め付け方法）</td>
</tr>
<tr>
<td></td>
<td>屋根葺材施工前に接合具による防水紙貫通部が直接的に見えない状態</td>
</tr>
<tr>
<td></td>
<td>防水紙が著しく劣化しない限り、防水紙自身から雨水が浸透したり、防水紙の重ね部分から漏水するリスクは著しく低いと思われます。ステーク等の接合部が防水紙を貫通する部分は、比較的、漏水するリスクが高くなります。防水紙を留め付ける際には、ステーク等の接合使用するが、接合具の上部に防水紙が留め付けられている場合は、漏水性が高まります。（勿論、雨水が滞留しやすい箇所付近に釘がある場合は、漏水するリスクが高くなります）ホールレス構法は、その特性を利用して、屋根材を葺前に防水紙貫通部が直接的に見えないように止水を高めた構法です。</td>
</tr>
<tr>
<td></td>
<td>防水紙上の浸入雨水の排水のしやすさ</td>
</tr>
<tr>
<td></td>
<td>直葺き、瓦桟を防水紙へ直接留め付ける場合、浸入水が屋根材や瓦桟へ滞留しやすくなります。</td>
</tr>
<tr>
<td></td>
<td>けらば・軒の木口面の防水</td>
</tr>
<tr>
<td></td>
<td>亜鉛めっき</td>
</tr>
<tr>
<td></td>
<td>釘やビスなどの接合具が残された場合、強風時は屋根材に大きく影響します。</td>
</tr>
<tr>
<td></td>
<td>小屋裏点検口</td>
</tr>
<tr>
<td></td>
<td>無し</td>
</tr>
<tr>
<td></td>
<td>小屋裏点検口は、屋根及び小屋裏の劣化を早期に把握するために必要です。</td>
</tr>
<tr>
<td>瓦屋根</td>
<td>金属屋根</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>連絡待ち</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

推奨率 0% 推奨率には、天井・屋根の共通事項が含まれています。
サッシの性能は、造り手から返信された「性能表示など」のシートの「代表的なサッシの性能」の表をご覧下さい。

断熱性能は、造り手から返信された「性能表示など」のシートの「性能表示」、「断熱・気密性能値」、「24時間換気システム」の表が関係するのでご覧下さい。

<table>
<thead>
<tr>
<th>123</th>
<th>サッシ</th>
<th>メーカー名</th>
<th>型式</th>
<th>サッシの性能は、造り手から返信された「性能表示などを」のシートの「代表的なサッシの性能」の表をご覧下さい。</th>
</tr>
</thead>
<tbody>
<tr>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>その他</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>断熱材</td>
<td>メーカー名</td>
<td>型式</td>
<td>断熱性能は、造り手から返信された「性能表示などを」のシートの「性能表示」、「断熱・気密性能値」、「24時間換気システム」の表が関係するのでご覧下さい。</td>
</tr>
</tbody>
</table>
耐久性に関する推奨仕様採用率と建物本体価格の目安

推奨仕様採用率と等級の関係

<table>
<thead>
<tr>
<th>項目</th>
<th>推奨仕様採用率</th>
<th>等級</th>
</tr>
</thead>
<tbody>
<tr>
<td>図面・資料</td>
<td>0%</td>
<td>E</td>
</tr>
<tr>
<td>保証</td>
<td>0%</td>
<td>E</td>
</tr>
<tr>
<td>床下の防腐・防蟻対策</td>
<td>0%</td>
<td>E</td>
</tr>
<tr>
<td>外壁</td>
<td>0%</td>
<td>E</td>
</tr>
<tr>
<td>バルコニー</td>
<td>0%</td>
<td>E</td>
</tr>
<tr>
<td>屋根</td>
<td>0%</td>
<td>E</td>
</tr>
<tr>
<td>躯体材（土台・柱）</td>
<td>0%</td>
<td>E</td>
</tr>
</tbody>
</table>

ここで示す「推奨率」は、⑥仕様と価格のシート内の黄色く反転している推奨の欄の行を対象として、全て推奨仕様と仮定した場合のポイントの合計に対して、推奨仕様内の「□」をチェックしたポイントの合計が占める割合を示しています。

なお、推奨仕様は、全て試験や調査による根拠があるとは限りません。共同研究関係者の知見や経験により内部で協議した結果の場合も含まれます。

※仕様及び建設費用等については、別途、契約書を作成して下さい。
※上記の推奨率は、「⑥仕様と価格」の黄色で示す推奨仕様の採用割合を示すものであり、造り手が選択した結果が反映されています。

③利用方法へ
本ツールは、お客様がより安心して長寿命な住宅を得るため、国土交通省国土技術政策研究所が主催する産学官連帯共同研究の成果を基にして提案されたものです。お客様がWebサイトより本ツールをダウンロードされ、既に、住宅に対するご希望を「④住まいの希望」のシートへ入力されています。御社で、お客様のご希望に沿うよう、下記に示す各種の対応状況や性能と、「⑥仕様と価格（造り手記入、住まい手確認）」のシートに入力し、お客様へ返信して下さい。なお、本ツールによる返信をされない場合は、お客様にその旨をご連絡下さい。

造り手の
ご担当者へ

造り手が提案する住まいの性能など（造り手記入）

会社名：
営業所名：
担当部署：
担当者名：
電話：
メールアドレス：
建物名：

造り手のご担当者は、オレンジ色の部分をご入力下さい。

評価関係

<table>
<thead>
<tr>
<th>登録住宅性能評価機関</th>
<th>お選び下さい</th>
<th>メリット</th>
</tr>
</thead>
<tbody>
<tr>
<td>設計住宅性能評価機関</td>
<td>お選び下さい</td>
<td></td>
</tr>
<tr>
<td>建設住宅性能評価機関</td>
<td>お選び下さい</td>
<td></td>
</tr>
<tr>
<td>長期優良住宅認定制度</td>
<td>お選び下さい</td>
<td></td>
</tr>
<tr>
<td>低炭素建築物認定制度</td>
<td>お選び下さい</td>
<td></td>
</tr>
</tbody>
</table>

セルをクリックし、各評価や制度に対する申請の可否をドロップ

登録住宅性能評価機関は、こちら

本ツールは、お客様がより安心して長寿命な住宅を得るため、国土交通省国土技術政策研究所が主催する産学官連帯共同研究の成果を基にして提案されたものです。お客様がWebサイトより本ツールをダウンロードされ、既に、住宅に対するご希望を「④住まいの希望」のシートへ入力されています。御社で、お客様のご希望に沿うよう、下記に示す各種の対応状況や性能と、「⑥仕様と価格（造り手記入、住まい手確認）」のシートに入力し、お客様へ返信して下さい。なお、本ツールによる返信をされない場合は、お客様にその旨をご連絡下さい。
<table>
<thead>
<tr>
<th>1.構造の安定に関すること</th>
<th>1.耐震等級</th>
<th>等級</th>
<th>最高等級</th>
<th>耐震性能</th>
<th>高い値ほど等級が上位</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.火災時の安全に関すること</td>
<td>2.耐火等級</td>
<td>等級</td>
<td>最高等級</td>
<td>耐火性能</td>
<td>高い値ほど等級が上位</td>
</tr>
<tr>
<td>3.劣化の軽減に関すること</td>
<td>3.耐風等級</td>
<td>等級</td>
<td>最高等級</td>
<td>耐風性能</td>
<td>高い値ほど等級が上位</td>
</tr>
<tr>
<td>4.維持管理・更新への配慮に関すること</td>
<td>4.断熱等級</td>
<td>等級</td>
<td>最高等級</td>
<td>断熱性能</td>
<td>高い値ほど等級が上位</td>
</tr>
<tr>
<td>5.温熱環境に関すること</td>
<td>5.居室の内装仕上げ及び換気等がない天井裏等の下地材等からのホルムアルデヒドの発散量を少なくする対策</td>
<td>等級3</td>
<td>維持管理性能</td>
<td>維持管理性能</td>
<td>高い値ほど等級が上位</td>
</tr>
<tr>
<td>6.空気環境に関すること</td>
<td>6.透過損失等級(外壁開口部)</td>
<td>等級3</td>
<td>維持管理性能</td>
<td>維持管理性能</td>
<td>高い値ほど等級が上位</td>
</tr>
<tr>
<td>7.音環境に関すること</td>
<td>7.透過損失等級(外壁開口部)</td>
<td>等級3</td>
<td>維持管理性能</td>
<td>維持管理性能</td>
<td>高い値ほど等級が上位</td>
</tr>
</tbody>
</table>

| 断熱・気密性能値（目安）：モデル住宅などの値をご記入下さい |
|-----------------------------|-------------|-------|-----------|-----------|---------------------|
| U値 (外皮平均貫流率) | W/m²K以下 | 低い値ほど断熱性が高い | 熱損失量の合計を外皮等の面積の合計で除した値 |
| C値（相当直径面積） | cm²/㎡以下 | 低い値ほど気密性が高い | 空間の換気量を計算する時の基準値 |

※U値測定時にテープ等で目盛りして良い場所（換気レンジ、台所レンジ、換気扇、天井裏、雨の穴、屋外から換気口、集中換気システムの給排気ダクトの屋外側出入り口）：JIS A 2201

第Ⅱ章 造意ガイドライン 関連ツール 造り手との情報交換ツール
24時間換気システム

<table>
<thead>
<tr>
<th>給排気の形式</th>
<th>お選び下さい</th>
</tr>
</thead>
<tbody>
<tr>
<td>給気・排気</td>
<td>お選び下さい</td>
</tr>
<tr>
<td>熱交換型,非熱交換型(省エネ)</td>
<td>お選び下さい</td>
</tr>
<tr>
<td>熱交換器の熱交換率(省エネ)</td>
<td>100%に近い値</td>
</tr>
</tbody>
</table>

代表的なサッシの性能

<table>
<thead>
<tr>
<th>各種性能</th>
<th>JIS等級</th>
<th>最高等級</th>
</tr>
</thead>
<tbody>
<tr>
<td>耐風圧</td>
<td>お選び下さい</td>
<td>S-7</td>
</tr>
<tr>
<td>水密性</td>
<td>お選び下さい</td>
<td>W-5</td>
</tr>
<tr>
<td>気密性</td>
<td>お選び下さい</td>
<td>A-4</td>
</tr>
<tr>
<td>断熱性</td>
<td>お選び下さい</td>
<td>H-5</td>
</tr>
<tr>
<td>遮音性</td>
<td>お選び下さい</td>
<td>T-4</td>
</tr>
<tr>
<td>防犯性</td>
<td>お選び下さい</td>
<td>ラベルあり</td>
</tr>
</tbody>
</table>

サッシメーカー名: ABC 型式: 形状: U値: W/㎡・K

代表的なサッシの性能

シックハウス対策換気設備情報

3〜6P, 32〜34P 注目

第1種換気
ダクト形式
熱交換型

給排気の形式

給気・排気

熱交換型,非熱交換型(省エネ)

熱交換器の熱交換率(省エネ)

100%に近い値

上記に反映されにくい性能・仕様がありましたら、下の欄へご記入下さい。

仕様と価格
住まい手のための材料・部材選択シート
—事前に知って頂きたいこと—

このシートは、国土交通省国土技術政策総合研究所主催の産学官連携による共同研究「木造住宅の耐久性向上に関わる建物外皮の構造・仕様とその評価に関する研究」（平成23年度～平成27年度、委員長 東海大学名誉教授 石川廣三）の成果に基づいて提案するものです。共同研究締結・国総研資料執筆団体
国土交通省 国土技術政策総合研究所、東海大学、東洋大学、関東学院大学、筑波大学、早稲田大学、横浜国立大学
（一社）住宅瑕疵担保責任保険協会、（一社）日本木造住宅産業協会、（一社）全国中小建築工事業団体連合会、
（一財）中小建設業住宅センター、（一社）全日本瓦工事業連盟、（一社）日本金属屋根協会、（一社）日本左官業組合連合会、
（一社）日本防水材料連合会、NPO法人湿式仕上技術センター、NPO法人住宅外装テクニカルセンター、全国陶器瓦工業組合連合会、
透湿ルーフィング協会、屋根換気メーカー協会
第Ⅱ章 家造りガイドライン 関連ツール 【材料・部材選択シート】

目的
本共同研究者の合意のもと、住宅取得予定者を主対象として、既往の知見の中から公正中立的な立場で図表やリンク先を示しながら住宅の各種の材料・部材について説明し、適切な判断により選択して頂くためのシートを提供致します。

目次
透湿度防水シート(外壁用)..113
窯業系サイディング...118
アスファルトフェルト..121
ラス..123
ステープル...125
モルタル...127
仕上塗材..129
アスファルトルーフィング..131
透湿度ルーフィング..133
粘土瓦..135
粘土瓦の耐震棟..138
住宅屋根用化粧スレート(屋根葺き材)...140
金属屋根...142
アスファルトシングル(屋根葺き材)...152
換気棟..153
軒換気..157
サッシ・サッシまわり..159
バルコニー..169
パラペット屋根..181
執筆者

透湿防水シート 一糸修身（透湿ルーフィング協会）
窯業系サイディング 橋本孝之（NPO法人住宅外装テクニカルセンター）
アスファルトフェルト 牧田均（一般社団法人 日本防水材料連合会）
ラス 山中豊茂（NPO法人湿式仕上技術センター）
ステープル 山中豊茂（同上）
モルタル 井上照郷（NPO法人湿式仕上技術センター）
仕上塗材 井上照郷（同上）
アスファルトルーフィング 牧田均（一般社団法人日本防水材料連合会）
透湿ルーフィング 一糸修身（透湿ルーフィング協会）
粘土瓦 神谷環光（全国陶器瓦工業組合連合会）
粘土瓦の耐震棟 神谷環光（同上）
住宅屋根用化粧スレート 坪内秀一
金属屋根 工藤幸則（一般社団法人日本金属屋根協会）
換気棟 近藤肇（屋根換気メーカー協会）
軒換気 近藤肇（同上）
サッシ・サッシまわり 田村公彦（一般社団法人住宅瑕疵担保責任保険協会）
バルコニー 梅田泰成（一般社団法人日本木造住宅産業協会）
神戸睦史（NPO法人湿式仕上技術センター）
パラペット屋根 梅田泰成（同上）、神戸睦史（同上）
提案・取りまとめ 宮村雅史（国土技術政策総合研究所）
第Ⅱ章 家造りガイドライン 関連ツール【材料・部材選択シート】

屋根
アスファルトルーフィング（防水紙）
透湿度ルーフィング（防水紙）
粘土瓦（屋根材）
粘土瓦の耐震棟（屋根の山部）
住宅屋根用化粧スレート（屋根材）
金属屋根（屋根材）
換気棟（屋根の山部の換気部材）
軒換気（軒部の換気部材）

外壁共通
透湿度防水シート（通気層の室内側の防水紙）
乾式外壁
窯業系サイディング（外装材）
湿式外壁
アスファルトフェルト（モルタル壁裏面の防水紙）
ラス（モルタル壁下地の鉄網）
ステープル（ラスや防水紙を留め付ける接合具）
モルタル
仕上塗材（モルタル壁の塗装）
<table>
<thead>
<tr>
<th>外壁-1</th>
<th>透湿防水シート（外壁用）</th>
</tr>
</thead>
<tbody>
<tr>
<td>住宅のどこに使用されるの？</td>
<td>通気構法とする外壁の下地に使用されます。</td>
</tr>
</tbody>
</table>

透湿防水シートの役割は？

- 外壁材の劣化
- 長期にわたる風雨や日射などにより、外壁材だけでの雨水浸入防止は極めて困難

透湿防水シートを使用すると
① 壁側から雨水浸入に対して防水性能を発揮
② 壁体内に含まれてしまった水分の外部への排出

防水性能を確保しながら湿気を排出

透湿防水シートは、通気層の室内側に張ることにより、壁内の湿気を排出する効果が発揮されます。通気層の無い直張り構法で気密性の高い住宅の場合は、湿気を排出するスペースが無く、通気構法のような排湿効果が得られません。従って、通気構法が推奨されています。モルタルの直張り構法を採用する場合、モルタルの裏面には、含水したモルタルからの水蒸気が日射などの影響により壁内側へ流入しないよう、非透湿系の防水紙を使用しましょう。
第Ⅱ章 家造りガイドライン 関連ツール 【材料・部材選択シート】

<table>
<thead>
<tr>
<th>材料・部材選択シート</th>
<th>透湿防水シート</th>
<th>非透湿系防水紙</th>
</tr>
</thead>
<tbody>
<tr>
<td>室内</td>
<td>断熱材</td>
<td>断熱材</td>
</tr>
<tr>
<td></td>
<td>通気層</td>
<td>通気層</td>
</tr>
<tr>
<td></td>
<td>外装材</td>
<td>外装材</td>
</tr>
<tr>
<td>「防水紙に透湿性がある場合」</td>
<td>「防水紙に透湿性が無い場合」</td>
<td></td>
</tr>
<tr>
<td>断熱材や構造材などが濡れたとき</td>
<td>断熱材や構造材などが濡れたとき</td>
<td></td>
</tr>
<tr>
<td>湿気が通気層へ排出されやすい</td>
<td>湿気が壁内に滞留しやすい</td>
<td></td>
</tr>
</tbody>
</table>

透湿防水シートの構造には不織布タイプとフィルムタイプがあります。
【不織布タイプ】
・単層構造のため表裏の捲れ（カール）が発生しにくい
・防水テープとの相性確認が必要です。

[不織布単層（透湿防水層）]

【フィルムタイプ】
・透湿防水層が膜状のため防水性が高い
・複層構造のため捲れ（カール）が発生しやすい。

[フィルム（透湿防水層）]
[基材]
透湿防水シートには「JIS A6111: 2016」があり、規格に適合することが必要です。
(JIS A6111: 2016 の品質は下表の通りです)

<table>
<thead>
<tr>
<th>性能項目</th>
<th>評価項目</th>
<th>一般地域向け(A)</th>
<th>寒冷地向け(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>透過性(透湿抵抗)(m²·s·Pa/μg)</td>
<td>0.19 以下</td>
<td>0.13 以下</td>
<td></td>
</tr>
<tr>
<td>結露防止性</td>
<td>高温室 (20℃ x 60%) 低温室(0℃x 湿度の規定無し)の境界壁にて結露しない</td>
<td>高温室 (20℃ x 60%) 低温室(-5℃x 湿度の規定無し)の境界壁にて結露しない</td>
<td></td>
</tr>
<tr>
<td>強度</td>
<td>引張強さ (N) 縦、横とも 100 以上</td>
<td>縦、横とも 27 以上</td>
<td></td>
</tr>
<tr>
<td>発火性</td>
<td>発火しない</td>
<td></td>
<td></td>
</tr>
<tr>
<td>防水性</td>
<td>水圧(kPa) 10 以上</td>
<td></td>
<td></td>
</tr>
<tr>
<td>耐久性</td>
<td>引張強度残存率(%) 縦、横とも初期値の残存率 50%以上</td>
<td>引張強度残存率(%) 表示する</td>
<td></td>
</tr>
<tr>
<td>熱収縮率</td>
<td>収縮率(%) 1.5 以下</td>
<td></td>
<td></td>
</tr>
<tr>
<td>防風性(通過時間)s</td>
<td>10 以上</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

『透湿性(透湿抵抗)』
透湿性(透湿抵抗) は住宅内の湿気が透湿防水シートを通して、屋外に排出される機能で、m²·s·Pa/μg の単位で表されます。
数値が小さいほど湿気は多く屋外に放出され、壁体内の結露も起きにくくなります。

『強度』
1) 引張強さ
シート施工の際や施工直後、強風にあおられ破れることが想定される為、施工状態を保つための最低限の引張強度が必要とされます。

2) つづり針保持強さ
つづり針とはシートを留め付ける接合具(ステープル) のことです。上記の表の27N（約 2.8kgf）の値は、施工中に風速約 29m/s の暴風にもシートが耐えるよう設定されています。

『発火性』
外装材を通じての温度上昇下において、自然発火が認められない最低限の基準が必要とされます。
<table>
<thead>
<tr>
<th>選定のポイント</th>
<th>経済的メリットは？</th>
</tr>
</thead>
<tbody>
<tr>
<td>『耐久性』</td>
<td>何を参考にして選定すれば良いの？</td>
</tr>
<tr>
<td>『熱収縮率』</td>
<td>①シートのカールしやすさ → カールが大きいと雨水が壁内へ浸入し易くなったり、通気層が閉塞しやすくなることもあります。土台水切り部分でシートのカールによる雨水浸入が懸念される場合は、シート端部を防水テープで水切りに張り付ける等の措置が必要です。</td>
</tr>
<tr>
<td>『透湿性』</td>
<td>③防水テープとの相性 → 不織布タイプの透湿防水シートと防水テープには相性があり、テープの種類によっては、経年により張り付け部にシワが発生する場合があるので、防水テープを選定する際は、相性が確認されたもの、または製造者が推奨する防水テープを使用することが望まれます。</td>
</tr>
</tbody>
</table>
価格の目安

一般財団法人 住宅リフォーム・紛争処理支援センター

※新築時に優良な材料・構法を採用すると、初期費用は少し増加しますが、補修・改修に至るまでの期間が長くなり、補修・改修費の総費用を少なくすることも可能となります。

| グレード | JIS A6111: 2016 に A タイプ(一般地域向け)と B タイプ(寒冷地向け)の 2 種類が定められています。B タイプは A タイプよりも透湿性・結露防止性が優れており、日本全国で使用出来ます。また、長期に渡り使用されるシートは長期耐久性が重要です。JIS 規格には 10 年間、30 年間、50 年間相当の耐久性の項目が設けられており、耐久性能が高い製品が優れていると言えます。10 年保証品、20 年保証品が存在しますが、保証期間が長い方が一般的に高い耐久性を有します。
住宅のどこに使用されるの？

窯業系サイディング

住宅の外壁仕上げ材として使用されます。（横張りのタイプの施工例）

役割は？

・窯業系サイディングは住宅の耐久性向上に大切な通気構法を標準としています。
 木造住宅の壁の中に雨水や湿気が浸入し滯留すると
柱、土台などの木材を腐らせたり、しろありを誘引したりします。

壁体内部の断熱材が湿った状態になると、断熱性能が難持できなくなったります。

住宅の耐久性を高めるには水分を外部に排出できる通気構法の採用が大変重要です。

・外壁材の役割は、雨、風、火災、地震等から建物を守ることです。
 主な性能は、
 ①雨・風に対して・・・・・・風雨の壁体内への浸入を防ぎます。
 ②火災に対して・・・・・・・燃えにくく、火災による被害を最小限に抑えます。
 ③地震に対して・・・・・・・地震の揺れを軽減します。
 ④音に対して・・・・・・・室内への音の侵入を抑えます。
 ⑤デザイン性・・・・・・・・石積調、レンガ・タイル調、木目調など豊富な
 意匠があり、様々な住宅の外観に対応できます。
| 1通気層の効果により壁体内の湿気が外部に排出されます。
2サイディングの接合部等から浸入した雨水も速やかに排出されます。	住宅を長持ちさせることができます

・窯業系サイディングとは
セメント・けい酸質原料、繊維質原料などを用いて工場で成型した外壁材です。
・窯業系サイディングの種類
表面仕上げとサイズに種類があります。
①化粧サイディング（工場塗装品）
多様な住宅外観意匠（和風、洋風、シンプルモダンなど）にマッチする豊富なデザイン（色や柄）が用意されています。

<table>
<thead>
<tr>
<th>石積み調</th>
<th>レンガ・タイル調</th>
<th>木目調</th>
</tr>
</thead>
</table>

②現場塗装用サイディング
現場で塗料を塗装して仕上げる現場塗装用サイディングがあります。

・サイズ（1枚あたり）
①幅 160〜1100mm
②長さ 910〜3300mm
③板厚 14mm 以上
多く普及しているサイズは幅455mm、長さ3030mmです。

・施工法
板厚14mm以上の釘留めと、15mm以上の金具留めタイプがあります。
縦張り用、横張り用のタイプが有り、張り分けることもできます。

<table>
<thead>
<tr>
<th>必要性能は？</th>
<th>窯業系サイディングは、「JIS A 5422」で、形状や寸法、性能が定められています。</th>
</tr>
</thead>
</table>

何を参考に選定すれば良いの？
①地域、規模、用途に応じた防・耐火性能に適合する外壁材を選定します。
②地域、高さに応じた風圧力に対応した留め付け工法を選定します。
③地域に合わせ冷地地域向け、一般地域向け外壁材を選定します。
④ライフサイクル・コスト・機能性などから外壁材とセーリングのグレードを選定します。
⑤住宅スタイル等に合わせ色・柄を選定します。
| 参考 Web サイト | ・日本窯業外装材協会 HP: http://www.nyg.gr.jp/
| | ・住宅外装テクニカルセンター HP: http://www.jtc.or.jp/ |
第Ⅱ章 家造りガイドライン 関連ツール 【材料・部材選択シート】

アスファルトフェルト（モルタル外壁用防水紙）

住宅のどこに使用されるの？
モルタル外壁の防水紙として使用されます。

防水紙の役割は？
長期にわたる繰り返しの降雨や日射などにより、モルタルの表面の塗膜が劣化したり、ひび割れたりすると、モルタル内部に雨水が到達することがあります。

防水紙が無いと、雨水は下地材や構造材がある壁内に容易に浸入します。下地材や構造材は、長期間にわたり水を含んだままになりますと、腐朽し、強度性能が低下して、地震の際にラスモルタルが剥がれやすくなります。

防水紙は、住宅全体の耐久性を確保する上で、重要な材料ですが、モルタルの施工後に隠れてしまうため、容易に補修・交換ができないです。従って、規格外の材料を使用しないことや、丁寧な施工が耐久性を確保する上で重要です。

どんな種類があるの？
モルタル外壁に使用すべき防水紙は、大きく分けて「アスファルトフェルト 430」と、「改質アスファルトフェルト」の２種類があります。
関係法令や建築学会などの公的な仕様では、防水紙がアスファルトフェルト 430と同等以上の性能を有することが規定されています。改質アスファルトフェルトは、アスファルトフェルト 430よりも防水性や耐久性を高めた推奨される防水紙となります。アスファルトフェルト 430よりも防水性や耐久性を高めた推奨される防水紙となります。アスファルトフェルト 430よりも防水性や耐久性を高めた推奨される防水紙となります。アスファルトフェルト 17kg 品や 8kg 品は、JIS 規格外の材料であり、防水性や耐久性などが低くなります。各種の仕様にて使用が禁止されています。建設時に 17kg/巻品や 8kg/巻品が搬入されないことや、丁寧な施工が耐久性を確保する上で重要です。
防水紙の必要性能は、防水紙自身の防水性能は、極めて高いと思います。しかし、防水紙やラスなどを下地材へ留め付けるため、数多くのステープル（コの字形の針）が打ち込まれ、防水紙を貫通します。また、雨水の浸透により防水紙は、含水して膨張したり、日射により乾燥収縮したりするため、留め付けたステープルにより、その孔が拡大することがあります。しかし、改質アスファルトフェルトは、寸法の安定性や釘穴止水性が高いため、孔の拡大は少なくなります。また、耐久性も高い材料となります。一方、JIS規格品外のアスファルトフェルト17kg品や8kg品は、寸法変化が大きく、耐久性も低いため、雨水が浸入する可能性が高くなり、通常、建築への使用が禁止されています。

何を参考にして選定すれば良いの？
住宅瑕疵担保責任保険の技術基準となる設計施工基準には、モルタル外壁の下地となる防水材は、アスファルトフェルト430又は同等以上の防水性能を有するもの（透湿防水シートを除く）を使用することが規定されています。従って、関係する住宅では、アスファルトフェルト17kg品や8kg品の使用を禁止しております。アスファルトフェルト430を規定するJISA6005アスファルトルーフィングフェルトでは、「引張強さ」、「耐折り曲げ性」、「耐熱性」等の性能が規定されています。アスファルトフェルト430と同等以上の性能を保有する改質アスファルトフェルトは、アスファルトルーフィング工業会規格ARK14w-03：2014改質アスファルトフェルトにより、「引張強さ」、「ステープル保持力」、「釘穴止水性」、「耐折り曲げ性」、「耐アルカリ性」、「寸法安定性」等の性能が規定されています。材料選定の際は、各種性能について材料メーカーへお問い合わせ下さい。

推奨品の性能
推奨品の一般名称：改質アスファルトフェルト
特に良い性能（3つまで）：防水性、耐久性、寸法安定性
良い性能：（5つまで）：
注意すべき性能（一つ以上）：

参考Webサイト
国総研資料第779号木造住宅モルタル外壁の設計・施工に関する技術資料
http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0779.htm
アスファルトルーフィング工業会HP：http://www.ark-j.org/
日本防水材料連合会、防水用語辞典：http://www.jwma-yogo.net/
アスファルト防水規格関連技術資料：http://www.ark-j.org/tec/index.html
アスファルトルーフィング工業会規格、改質アスファルトフェルト
http://www.ark-j.org/tec/pdf/kikaku_14w-03.pdf
調査・試験
アスファルトルーフィング工業会調査、日本建築学会発表梗概
http://www.ark-j.org/tec/tec_4_1.html
外壁－4
ラス（モルタル外壁用）

住宅のどこに使用されるの？

ラスにモルタルを塗ったラスモルタル外壁は、平面や曲面、タイル張りなどに対応することが可能です。防火上必要なモルタルの塗厚を確保し、鉄筋コンクリートのようにモルタルの中にラスがあることで、外壁を一体とさせる役割があります。ラスはステープルにより均等に分散して留付けられているため、壁全体がモルタルと一体化し、地震時のモルタルのはく落を防ぐとともに、壁全体の強度や剛性が高まり、住宅の耐震性の向上にも役立てることができます。

ラスの役割は？

木造住宅に対応するラスとして、以下の種類などがあります。

通気構法 二層下地（推奨構法）
- 波形ラス（W700）、こぶラス（K800）、力骨付きラス

通気構法 単層下地（推奨構法）
- リプラス（RC800）

直張り
- 波形ラス（W700）、こぶラス（K800）、力骨付きラス

<table>
<thead>
<tr>
<th>33mm</th>
<th>波形ラス（W）</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2：157mm</td>
<td></td>
</tr>
<tr>
<td>P1：157mm</td>
<td></td>
</tr>
<tr>
<td>150mm以内</td>
<td></td>
</tr>
<tr>
<td>155mm以内</td>
<td></td>
</tr>
<tr>
<td>150mm以内</td>
<td></td>
</tr>
</tbody>
</table>

どんな種類があるの？

- 手書きの説明は省略します。
重さ
ラスは同じ形状でも単位面積当たりの質量により呼び名が変わります。例えば、上記の図に示す通り、波形ラス（W700）の700は、1㎡当たりの重さ700gを示します。重いものほどラスの径が太くなり、地震時にはく落しにくくなります。

耐腐食性
ラスは、原材料の素材の種類により耐久性も変わります。一般的にはJIS G 3302溶融亜鉛めっき鋼板を材料としたラスが使用されていますが、溶融亜鉛—アルミニウム—マグネシウム合金めっき鋼板JIS G 3323やステンレス鋼板を材料とした高耐食のラスがあります。溶融亜鉛めっきの目付量も耐久性に影響します。

JISの呼称
JIS認定品のラスは、素材・形状・質量・山の高さ・溶融亜鉛めっきの目付量を表示しています。例として、旧JIS波形ラス1号はIW700-10Z12と表示され、W:波形・700-10:700g/㎡10㎜山高・Z12:溶融亜鉛めっき鋼板JISのめっき付着量を示します。

ラスの必要性能は？

<table>
<thead>
<tr>
<th>強度</th>
</tr>
</thead>
<tbody>
<tr>
<td>ラスの強度は、形状や種類によっては異なりますが、ほぼ質量と相関関係があり、重量が重くなると、引張強度も高くなります。</td>
</tr>
</tbody>
</table>

防耐火性能
防耐火性能では、一定時間火災を食い止めてくれるために必要な強度として単位面積当たりの最低質量が700g/㎡以上、リプラスCは800g/㎡以上のラスが有効となっています。波形ラスの様な形状は、防火上必要なモルタルの最低厚（砂モルタル20㎜以上・既調合軽量モルタル15㎜又は16㎜以上）を確保するため、モルタルの種類によって10・8・6㎜の山の高さのラスが目印にもなっています。

何を参考にして選定すれば良いの？
材料選定の際は、各種性能について材料メーカーへお問い合わせ下さい。

通気構法 二層下地および直張り下地の場合
波形ラス W700（700g/㎡）、こぶラス K800（800g/㎡）、力骨付きラス（700g/㎡）と同等以上の性能を有するラスを使用して下さい。

通気構法 単層下地の場合
リプラスC RC800（800g/㎡）と同等以上の性能を有するラスを使用して下さい。

推奨品の性能
推奨品の一般名称：重く（線径が太い）、耐久性の高い（ステンレスなど）ラス
特に良い性能（3つまで）：
良い性能（5つまで）：
注意すべき性能（一つ以上）：

参考Webサイト
国総研資料第779号、木造住宅モルタル外壁の設計・施工に関する技術資料
http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0779.htm
近畿メタルラス工業組合HP：http://www.lath.jp/
<table>
<thead>
<tr>
<th>外壁-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ステープル（モルタル外壁用）</td>
</tr>
</tbody>
</table>

住宅のどこに使用されるの？
ステープルは、右の図のようにコの字の形をしており、防水紙やラスなどを下地材に留め付けめるもののです。防水紙を留め付けるステープルは細くても良いですが、ラスを留め付けるステープルは、地震時にモルタル壁が脱落しないように太くて足の長いものが必要になります。その太さや長さは、ラスの種類により異なります。

ステープルの役割は？
ステープルはアルファベットA~Zの順で太くなります。
ラスを留め付けるステープルの線径は、J線(厚み0.6㎜×幅1.15㎜)、M線(0.8×1.3)、MA線(1.05×1.25)、T線(1.37×1.58)などの線材があり、足の長さが19㎜以上を使用します。JISで規定されている製品の呼び名の一例を示しますと、「L1019JS」は、L10 19 JSと分割して考えて頂き、ラス留め付け用（L）、幅10㎜、足の長さ19㎜、J線、ステンレス鋼（S）の製品を示します。

どんな種類があるの？
寸法形状
ステープルは、JIS A5556（工業用ステープル）により、肩幅（A：外幅、B：内幅）、C：足の長さ、線径（D：線厚、E：線幅）などが規定され、選ぶことが出来ます。
線径はアルファベットA～Zの順で太くなります。
ラスを留め付けるステープルの線径は、J線（厚み0.6㎜×幅1.15㎜）、M線（0.8×1.3）、MA線（1.05×1.25）、T線（1.37×1.58）などの線材があり、足の長さが19㎜以上を使用します。
JISで規定されている製品の呼び名の一例を示しますと、「L1019JS」は、L10 19 JSと分割して考えて頂き、ラス留め付け用（L）、肩幅10㎜、足の長さ19㎜、J線、ステンレス鋼（S）の製品を示します。

ステープルの必要性能は？
ラスを留め付けるステープルに必要な性能は、地震などの災害が生じた際にラスモルタルが脱落しないことです。その為には、ラスモルタルを留め付けるための強度と変形性能、長期間にわたり腐食を防ぐ防食性能が必要となります。
ラスとステープルの適切な組み合わせ
波形ラス---足の長さ19㎜以上、線径J線以上
こぶラス
- 足の長さ 19mm 以上、線径 M 線以上

力骨付ラス
- 足の長さ 25mm 以上、線径 T 線以上

リプラス
- 足の長さ 25mm 以上、線径 T 線以上

※ラスを留め付ける際、機械による「エアータッカー」を使用せず、手打ちによる「ハンマータッカー」などを使用している場合は、適切なステープルを使用していないことが考えられますのでご確認下さい。

| 何を参考にして選定すれば良いの？ | 上記に示すように、各種のラスに対応した足の長さや線径のステープルを選定して下さい。耐久性を向上させるためには、ステンレス鋼によるステープルを使用して下さい。異種金属による腐食を防ぐため、ステンレス鋼製などのラスを採用する場合は、ラスと同じ材質のステープルを選定して下さい。
| 推奨品の性能 | 推奨品の一般名称：
- 特に良い性能（3つまで）：
- 良い性能（5つまで）：
- 注意すべき性能（1つ以上）：
| 参考 | 国総研資料第779号、木造住宅モルタル外壁の設計・施工に関する技術資料
http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0779.htm |
第Ⅱ章 家造りガイドライン 関連ツール 【材料・部材選択シート】

外壁-6

モルタル

住宅のどこに使用されるの？

建物の外周部分に使われています。家を人に例えるなら「皮膚」でしょうか。

モルタルの役割は？

安全性では、モルタルには建物を火災から守る役割と地震時に建物を壊れにくくする役割があります。また、さまざまな意匠性を建物に付加させるための下地とての役割もあります。

どんな種類があるの？

モルタル外壁に使用されるモルタルには、大きく分けて2種類あります。1つは現場にてセメントと砂と水を混ぜて作る「普通モルタル」といわれるものと、もう1つは工場でセメントと軽量骨材などの材料を混ぜて袋詰めし現場では水を入れて練り混ぜるだけでよい「既調合軽量セメントモルタル」といわれるものがあります。

普通モルタルのセメントと砂の調合量は JASS15（日本建築学会発行 建築工事標準仕様書・同解説 左官工事）等で示されています。また、既調合軽量セメントモルタルの場合は製造会社が独自のノウハウをもとに調合をしています。

モルタルの必要性能は？

モルタルに求められる性能として、ひび割れが入らないこと、ある程度の強度があることが挙げられます。普通モルタルの場合は、強度はかなり高いものとなりますが、ひび割れしやすい材料である為、ひび割れが入らないようにするための施工方法が JASS15 で決められています。既調合軽量セメントモルタルについては JASS15 の M-102 という規格で品質が規定されています。

建物を火災から守るという点からモルタルを塗付けた壁は、防耐火構造として国土交通大臣が定めた構造方法または国土交通大臣の認定を受けたものが望ましいです。
※立地条件によっては必須となる場合があります。

何を参考にして選定すれば良いの？

既調合軽量セメントモルタルの場合は、物性が JASS15 M-102 に従っているか、また、防耐火構造の認定を受けているかどうかが判断材料となります。普通モルタルの場合は職人次第となるため、JASS15 の内容を熟知している職人かどうかを知る必要があります。

第Ⅱ章-127
推奨品について	現場で調合を行う普通モルタルより、工場にて材料をブレンドし袋詰めした既調合軽量セメントモルタルを推奨します。
参考	セメントモルタル塗のテクスチャ（一般社団法人 日本左官業組合連合会）
http://www.nissaren.or.jp/	
既調合軽量セメントモルタルについて（日本建築仕上材工業会）
第Ⅱ章 家造りガイドライン 関連ツール【材料・部材選択シート】

仕上塗材（モルタル外壁用）

- モルタル外壁表面の塗装・左官仕上げに使われます。

外壁仕上げ	仕上塗材
リシン仕上げ	
吹付けタイル仕上げ	
スタッコ仕上げ	

住宅のどこに使用されるの？

仕上塗材は、吹付け材、塗り壁などとも言われ、塗料（ペンキ）のような平たんな仕上がりではなく、立体的な造形性のある模様に仕上げられる比較的厚みのある塗装・左官材料です。色や模様が多種多様で、外壁表面の化粧材として使用されていますが、下地となるモルタルなどを保護し、外壁の耐久性を向上させる役割も担っています。

仕上塗材の役割は？

仕上塗材は、JIS A 6909（建築用仕上塗材）に規格化されています。外壁用としては次の4つに大別されていますが、主な仕上塗材のJISによると次のとおりです。

- ①薄付け仕上塗材（俗称：アクリルリシン。比較的塗膜厚が薄い塗材）
- ②複層仕上塗材（俗称：吹付けタイル。凹凸状の塗材に塗料を上塗りした塗材）
- ③厚付け仕上塗材（俗称：スタッコ。比較的塗膜厚が厚い塗材）
- ④可とう形改修用仕上塗材（俗称：微弾性フィラー。塗り替え工事用の塗材）

どんな種類があるの？

仕上塗材の種類によって特性が異なりますが、基本的にはモルタル表面の化粧仕上げとして、塗装・左官によって仕上げられますので、共通して次のような性能が要求されます。

- ①色調が均等であること（色ムラがなく仕上がること）
- ②変色が少ないこと（経年で色が変化しないこと）
- ③下地との付着性が良いこと（下地と良く付着し剥がれや膨れを生じないこと）
- ④耐アルカリ性があること（下地モルタルのアルカリ性で変質しないこと）
- ⑤所定の模様に仕上がること（見本と同じように仕上がること）

なお、JIS A 6909（建築用仕上塗材）に規定されている品質項目には、次のようなものがあります。

低温安定性、軟度変化、初期乾燥によるひび割れ抵抗性、付着強さ、温冷繰返し、透水性、耐洗浄性、耐衝撃性、耐アルカリ性、耐候性、伸び、伸び時の劣化、可とう性
仕上塗材は、モルタル表面の化粧を主な目的としていますので、模様、色、光沢（つや）などの外観と価格が重視されています。

① 模様：JIS A 6909 による仕上塗材の種類（薄付け、複層、厚付け）によって塗厚が異なりますし、吹付け、ローラー塗り、こて塗りなどの施工方法によっても模様が異なりますので、製造業者のカタログ等で、好みの模様を選びます。

② 色・光沢：製造業者が供給する製品によっては、色（濃い色、薄い色）や光沢（つや有り、つやなし）の範囲が異なっていますので、製造業者のカタログ等で、好みの色・光沢を選びます。

③ 価格：一般的に製造業者等からは材工設計価格（単位面積当たりの材料費＋工事費）が提示されていますが、（一財）経済調査会が出版している「積算資料」なども参考となります。

その他、特殊な性能が要求される場合は、製造業者等に相談してください。例えば、下表は防水性能を重視する場合の仕上塗材の選び方です。

<table>
<thead>
<tr>
<th>JIS A 6909 呼び名</th>
<th>通称例</th>
<th>透水性 (ml/24h)</th>
<th>透湿度 (g/㎡・24h)</th>
<th>ひび割れ追従性</th>
</tr>
</thead>
<tbody>
<tr>
<td>防水形複層塗材 E</td>
<td>ダンセイタイル</td>
<td>0〜0.2</td>
<td>10〜25</td>
<td>有</td>
</tr>
<tr>
<td>又は RE (3〜5mm程度)</td>
<td>複層弾性</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>防水形外装薄塗材 E</td>
<td>喷火ダンセイ</td>
<td>0〜0.2</td>
<td>15〜45</td>
<td>有</td>
</tr>
<tr>
<td>(3mm程度以下)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>複層塗材 E</td>
<td>吹付けタイプ</td>
<td>0.1〜0.2</td>
<td>35〜70</td>
<td>無</td>
</tr>
<tr>
<td>(3〜5mm程度)</td>
<td>アクリルタイプ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>外装厚塗材 E</td>
<td>樹脂スタック</td>
<td>0〜70</td>
<td>25〜160</td>
<td>無</td>
</tr>
<tr>
<td>(4〜10mm程度)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>可とう形外装薄塗材 E</td>
<td>ダンセイリシン</td>
<td>0〜70</td>
<td>60〜110</td>
<td>やや有</td>
</tr>
<tr>
<td>(3mm程度以下)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>外装薄塗材 E</td>
<td>アクリルリシン</td>
<td>30〜135</td>
<td>200〜500</td>
<td>無</td>
</tr>
<tr>
<td>(3mm程度以下)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※防水性能が大きいのは、透水性や透湿度が小さく塗膜がゴムのように伸び縮みする防水形の仕上塗材ですが、モルタル中の水分が多い場合や上塗材（トップコート）が一液型で色が濃い塗料の場合は、塗膜が膨れることもありますので、新築時には複層塗材、外装厚塗材、可とう形外装薄塗材、外装薄塗材が多く使用されています。

※仕上塗材の選び方に関する情報には、次のようなものがあります。
① 建築物・部材・材料の耐久設計手法・同解説（日本建築学会、2003年）
② JASS23（吹付け工事）（日本建築学会、2006年）
③ JASS15（左官工事）（日本建築学会、2007年）
④ 建築仕上材ガイドブック（株式会社工文社、2006年）

参考
Webサイト
日本建築仕上材工業会
建築用仕上塗材／模様の種類 http://www.nsk-web.org/kikaku/index.html
<table>
<thead>
<tr>
<th>屋根一</th>
<th>アスファルトルーフィング（屋根下葺き材、防水材）</th>
</tr>
</thead>
</table>

住宅のどこに使用されるの？

アスファルトルーフィングは、図に示す通り、屋根葺き材の下にある基本となる防水材です。屋根葺き材相互には、一般的に隙間があるので、台風など一定以上の強風雨を受けると、その隙間から浸水する可能性があります。このため、下葺き層（防水層）を設けて屋根葺き材の隙間からの浸水に備えています。

下葺き材が無いと、雨水は下地材や構造材に容易に浸入します。下地材や構造材は、長期間にわたり水を含んだままになりますと、腐朽し、強度性能が低下して耐震性にも影響を及ぼします。

下葺き材は、住宅全体の耐久性を確保する上で、重要な材料ですが、屋根葺き材の施工後に隠れてしまうため、容易に補修・交換ができません。従って、規格外の材料を使用しないことや、丁寧な施工が長期にわたる耐久性の確保には重要です。

下葺き材の役割は？

下葺き材に使用するアスファルトルーフィングは、「アスファルトルーフィング940」と、「改質アスファルトルーフィング」の2種類があります。

瑕疵担保履行法関係の設計施工基準、建築学会、住宅金融支援機構の仕様では、アスファルトルーフィング940と同等以上の性能がある下葺き材が規定されています。

改質アスファルトルーフィングは、アスファルトに合成ゴムや合成樹脂を混入した改質アスファルトを使用しており、アスファルトルーフィング940よりも止水性や耐久性を高めた推奨される下葺き材となります。
下葺き材の必要性能は？

<table>
<thead>
<tr>
<th>性能</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.止水性</td>
<td>屋根葺き材の間隙から浸入した雨水に対して、下葺き材の仮止めのステープル（コの字形の接合具）や、屋根葺き材や桟木などを下地材へ留め付けるための釘孔周辺部分から、室内への雨漏りおよび野地板への有害な浸水を生じないこと。</td>
</tr>
<tr>
<td>b.耐久性</td>
<td>通常の使用環境において、有害な変質、変形を生じないこと。</td>
</tr>
<tr>
<td>c.施工性</td>
<td>施工時に破断、折損しないこと。</td>
</tr>
<tr>
<td>d.作業性</td>
<td>屋根葺き材施工に支障を与えない作業性を有すること。</td>
</tr>
</tbody>
</table>

何を参考にして選定すれば良いの？

新築住宅を供給する事業者には、住宅のお引き渡しから10年間の瑕疵保証責任が義務付けられ、責任履行のために、「保険」もしくは「供託」のいずれかの措置をとることが、義務化されています。

その住宅瑕疵担保責任保険の技術基準となる設計施工基準には、下葺き材として、アスファルトルーフィング940又は同等以上の防水性能を有するものを使用することが規定されています。

アスファルトルーフィング940を規定するJIS A 6005アスファルトルーフィングフェルトでは、「引張強さ」、「耐折り曲げ性」、「耐熱性」等の性能が規定されています。改質アスファルトルーフィングは、アスファルトルーフィング工業会規格ARK-04改質アスファルトルーフィング下葺き材により、「引張強さ」、「引裂強さ」、「釘穴シーリング性」、「耐折り曲げ性」、「耐熱性」、「寸法安定性」等の性能が規定されています。

材料選定の際は、各種性能について材料メーカーへお問い合わせ下さい。

推奨品の性能

推奨品の一般名称：改質アスファルトルーフィング下葺き材

特に良い性能（3つまで）：止水性、耐久性

良い性能（5つまで）：施工性、作業性

調査・試験

アスファルトルーフィング工業会、日本建築学会発表梗概

http://www.ark-j.org/tec/tec_4_1.html
透湿ルーフィング（屋根下葺き材、防水紙）

| 屋根下地材と呼ばれる野地合板等の上に使用します。透湿性能を活用するため、（瓦などの）屋根仕上げ材と透湿ルーフィング材とは密着させない状態で使用します。 |
| 屋根仕上げ材の隙間などから浸入した雨水を野地合板等への浸入を防ぎます。野地合板や屋根躯体（母屋、たる木）等への水分滞留を防ぐ為に湿気を排出します。腐朽・結露を防ぎます。製品単独の取替えが不可能な為、長期間に渡る性能維持が必要です。 |
| 透湿ルーフィングの役割は？ |
透湿性能と防水性の役目を果たす透湿防水層。
強度を保つために必要な補強層。
滑りを防止を担う防滑層。

| どんな種類があるの？ |
異なる２種類以上の層から成り立つ、複層構造シートとなります。透湿ルーフィング性能上重要な透湿防水層基材は
① 不織布タイプ、②フィルムタイプ。があります。
透湿ルーフィングの必要性能は？

透湿ルーフィング(屋根用透湿防水シート)には「JIS A6111:2016」があり、規格に適合することが必要です。「JIS A6111:2016」の品質は下表の通りです。

<table>
<thead>
<tr>
<th>性能項目</th>
<th>評価項目</th>
<th>屋根用透湿防水シート（透湿ルーフィング）</th>
</tr>
</thead>
<tbody>
<tr>
<td>透過性(透湿抵抗)</td>
<td>(m2·s·Pa/μg)</td>
<td>0.65以下</td>
</tr>
<tr>
<td>強度</td>
<td>引張強さ(N)</td>
<td>縦、横とも100以上</td>
</tr>
<tr>
<td></td>
<td>つづり強さ(N)</td>
<td>縦、横とも50以上</td>
</tr>
<tr>
<td>発火性</td>
<td>発火しない</td>
<td></td>
</tr>
<tr>
<td>防水性</td>
<td>水圧(kPa)</td>
<td>10以上</td>
</tr>
<tr>
<td>耐久性</td>
<td>引張強度残存率(%)</td>
<td>縦、横とも初期値の残存率50%以上</td>
</tr>
<tr>
<td></td>
<td>引張伸度残存率</td>
<td>表示する</td>
</tr>
<tr>
<td>熱収縮率</td>
<td>収縮率(%)</td>
<td>1.0以下</td>
</tr>
<tr>
<td>釘穴止水性</td>
<td>水位低下</td>
<td>10個の平均値が5mm以下かつ水の全流出が1個もないと</td>
</tr>
</tbody>
</table>

何を参考にして選定すれば良いの？

「JIS A6111:2016」で透湿ルーフィングが規格化されました。規格に適合していることが必要です。また、10年間、30年間、50年間の耐久性試験項目が設けられており、長期に渡り性能が維持されていることが重要です。

住宅瑕疵担保責任に関連して、10年保証されている製品もあります。詳細につきまして、各メーカーへお問い合わせ下さい。

推奨品の性能

推奨品の一般名称：透湿ルーフィング

特に良い性能：透湿性、作業性（軽量）

良い性能：防水性、耐久性

参考Web

透湿ルーフィングとは（透湿ルーフィング協会）：http://www.toshitu-r.jp/about.html

透湿ルーフィングはどの程度普及しており、それは日本だけで使われているのか？

国内ではまだ数％ですが、屋根断熱が一般的だったドイツでは、結露の被害が広がり1987年に透湿ルーフィングが開発され1996年ごろから普及し現在では、ほとんどの現場で使われています。

内訳として瓦系で90～95％、スレート系で50～70％、金属系（薄物）で50～70％、金属系（厚物）で90～95％です。

今後、日本国内でも透湿ルーフィングの普及が進むと考えます。
粘土瓦（屋根葺き材、屋根材）

住宅のどこに使用されるの？

粘土瓦は、大切な家を激しい風雨や夏の暑さ、冬の寒さから守り、家族の暮らしがと健康を守る大切な役割を担っています。したがって、屋根材には、「耐水性」、「耐久性」、「耐風性」、「耐震性」、「耐火性」、「防音性」など多くの機能が必要とされます。粘土瓦は、屋根材に求められるこれらの機能を高い次元で確立しています。

粘土瓦の役割は？

粘土瓦は日本の各地区で製造されていますが、愛知県（三州瓦）、島根県（石州瓦）、兵庫県（淡路瓦）が三大産地に数えられており、近年これらの瓦は、出荷構成比の9割近くを占めています。

粘土瓦には多彩な種類があります。先ず「形状による分類」は、主に以下の種類があります。

<table>
<thead>
<tr>
<th>形状による分類</th>
</tr>
</thead>
<tbody>
<tr>
<td>J形</td>
</tr>
</tbody>
</table>

次に「焼成方法による分類」では、大きく分けて「いぶし瓦」、「釉薬瓦」、「無釉薬瓦」があります。

「いぶし瓦」は、焼成の最終段階で瓦をいぶし、表面に炭素を主成分とする皮膜を作ることからこの名があります。

「釉薬瓦」あるいは「陶器瓦」と呼ばれる瓦は、その名の通り、瓦の表面に釉薬をかけて多彩なカラーを生み出します。

「無釉薬瓦」は釉薬を使わずに焼き上げるもので、生地に粘土以外の物質をまぜる練り込み方法や、自然な変化を追求した窯変瓦などがあります。
更に「使用部位による分類」では、「桟瓦」と「役瓦」があります。

この他「J形」には「サイズによる分類」で、1坪に使用する枚数が53枚の「53A判」（三州瓦、淡路瓦他）と「53B判」（石州瓦）を中心に、様々な規格があります。

■耐久性能
屋根は一年中、風雨や寒暖の差、酸性雨等にさらされるなど、過酷な条件にあります。住まいの耐久性を考える場合、屋根材の耐久性は特に検討すべき点です。
○焼成品である粘土瓦は、社寺仏閣に見られるように300年以上使用されている粘土瓦は多数あり、耐久性の高さを実証しています。

■高い断熱性能・結露防止性
粘土瓦は野地と粘土瓦との間に空気層を有するため、外気を粘土瓦と空気層が遮断することにより、夏の暑い熱や冬の野地の結露を防ぐことに有効な屋根材です。

■耐風性能・耐震性能
台風など強風や地震による揺れで、屋根材の飛散やズレが危惧されます。
○粘土瓦は防災機能（瓦と瓦がかみ合わさる構造）を有するものが主流で、瓦屋根標準設計・施工ガイドライン工法の施工で高い、耐風性・耐震性を発揮します。

■耐水性能・耐寒性能
雨の多い日本で「耐水性」は屋根材の必須条件です。また積雪地域など寒冷地での「耐寒性能」も求められます。
○焼成品である粘土瓦は、1,000度以上の高温で焼成されているため、吸水率は低く、雨や雪にも長く耐えることができます。
耐火性能・防音性能
安心して快適に暮らせる住まいを実現するために考慮すべき点です。
○焼成品である粘土瓦は、もらい火（火災の際の隣の家からの火）の場合にも延焼を防ぐことができます。また、粘土瓦自体にある程度の厚みを有するので、雨音など外からの音をある程度防ぐことができます。

<table>
<thead>
<tr>
<th>何を参考にして選定すれば良いの？</th>
</tr>
</thead>
<tbody>
<tr>
<td>粘土瓦にはデザインや色が豊富にあり、「和風」、「新和風」、「洋風」など様々な建築様式に合わせることができます。また、形状や色の違いによる各性能の優劣は殆どありません。選定の自由度が高い屋根材です。材料選定の際、各種デザインや色について材料メーカーへお問い合わせ下さい。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>推奨品の性能</th>
</tr>
</thead>
<tbody>
<tr>
<td>推奨品の一般名称：瓦</td>
</tr>
<tr>
<td>特に良い性能（3つまで）：耐久性、デザイン性、断熱性</td>
</tr>
<tr>
<td>良い性能（5つまで）：耐風性、耐震性、耐寒性、耐火性、防音性</td>
</tr>
<tr>
<td>注意すべき性能（1つ以上）：耐衝撃性</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>関連 URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 愛知県陶器瓦工業組合 HP：http://www.kawara.gr.jp/</td>
</tr>
<tr>
<td>- 淡路瓦工業組合 HP：http://www.a-kawara.jp/</td>
</tr>
<tr>
<td>- 石州瓦工業組合 HP：http://www.sekisyu-kawara.jp/</td>
</tr>
<tr>
<td>- 北陸粘土瓦工業会</td>
</tr>
</tbody>
</table>

第Ⅱ章 家造りガイドライン関連ツール【材料・部材選択シート】
| 住宅のどこに使用されるの？ | 粘土瓦の耐震棟
－瓦屋根標準設計・施工ガイドライン準拠－ |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>■棟は、古来より住宅を守る鬼瓦を端部に取り付け、のし瓦を幾段にも積み上げて地位や権力の高さを表す象徴としての役割がありました。地震の揺れで棟瓦が脱落したり、棟が崩れたりしないよう、耐震性を高めた耐震棟は住宅を守る重要な役割を持っています。</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>どんな種類があるの？</th>
<th>粘土瓦の耐震棟の役割は？</th>
</tr>
</thead>
<tbody>
<tr>
<td>■粘土瓦の棟瓦には、J形・S形・F形Uタイプ・F形Fタイプ・F形Mタイプなどの種類に対応した、専用の棟瓦があります。</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>粘土瓦の耐震棟の必要性能は？</th>
<th>阪神淡路大震災・東日本大震災の際に、旧工法で施工された棟瓦が脱落しました。</th>
</tr>
</thead>
<tbody>
<tr>
<td>■阪神淡路大震災・東日本大震災の際に、旧工法で施工された棟瓦が脱落しました。</td>
<td></td>
</tr>
</tbody>
</table>

阪神淡路大震災をうけて、緊結・棟補強などの耐震工法を検討しました。実大建物・実大屋根での耐震実験でその耐震性を検証しました。また、瓦屋根標準設計・施工ガイドラインを制定し、棟部の瓦の耐震性試験（鉛直回転法）を確立しました。それによりガイドライン工法と呼ばれる標準仕様も作成し、震度7クラスの地震でも棟瓦が脱落し無いように、耐震性を高めました。実際に、東日本大震災や熊本地震において、ガイドライン工法で施工された瓦屋根に被害がなかったことが確認されています。
ガイドライン工法のポイントは以下の通りです。棟補強金具を使用する場合、①半端瓦・勝手瓦を留め付け、②躯体に棟補強金具を連結し、③のし瓦を相互緊結、④棟補強金物に棟芯材を留め付け、⑤棟芯材に冠瓦を留め付ける。

鉄筋コーチボルトを使用する場合、①半端瓦・勝手瓦を留め付け、②棟木へ鉄筋コーチボルトを留め付け、③のし瓦を相互緊結、④鉄筋コーチボルトに横鉄筋（鉄筋丸鋼）を緊結し、⑤横鉄筋に冠瓦を緊結線で留め付ける。

ガイドライン工法を行うことで、冠瓦1枚毎に躯体へ連結することで脱落を防ぐことができますので、安心してご採用いただけます。

また、耐震性能を高めただけでなく美観性を損なうことの無いように努めました。

何を参考にして選定すれば良いの？
粘土瓦にはデザインや色が豊富なあり、「和風」、「新和風」、「洋風」など様々な建築様式に合わせることができます。形状や色の違いによる各性能の優劣は殆どなく、選定の自由度が高い屋根材です。

推奨品の性能
推奨品の一般名称：耐震棟
特に良い性能（3つまで）：耐久性、デザイン性、断熱性
良い性能（5つまで）：耐風性、耐震性、耐寒性、耐火性、防音性
注意すべき性能（1つ以上）：耐衝撃性

関連URL
・愛知県陶器瓦工業組合 HP：http://www.kawara.gr.jp/
・淡路瓦工業組合 HP：http://www.a-kawara.jp/
・石州瓦工業組合 HP：http://www.sekisyu-kawara.jp/
・北陸粘土瓦工業会
・一般社団法人 全日本瓦工事業連盟 HP：http://www.yane.or.jp/
屋根のどこに使われるの？

住宅の屋根仕上げ材

住宅屋根用化粧スレート（屋根葺き材）

<table>
<thead>
<tr>
<th>屋根材の要求性能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 自重：できれば軽い方が良。軸組構造のコスト、耐震性の問題に影響。</td>
</tr>
<tr>
<td>2. 耐震性：軽くて、強風に対して脱落しないように、下地に固定されていること。</td>
</tr>
<tr>
<td>3. 耐久・耐候性：日光、風雨、寒暑による腐食、変質などが小さく、長持ちすること。</td>
</tr>
<tr>
<td>4. 防火性：火災による飛火に対し安全。伝熱熱に対しても自燃しないこと。</td>
</tr>
<tr>
<td>5. 耐風性：地域・場所・高さ等で異なるので、建築基準法の性能を発揮すること。</td>
</tr>
<tr>
<td>6. 耐薬品性：潮風や汚染大気（酸性雨）に十分抵抗力があること。</td>
</tr>
<tr>
<td>7. 遮音・発音性：外部騒音を遮断するとともに、材料自体が発音しにくいこと。</td>
</tr>
<tr>
<td>8. 断熱性：夏季の直射日光（60〜70℃）熱を遮断すること。</td>
</tr>
<tr>
<td>9. 耐凍害性：冬季は寒気団による放射冷却やすがもれに強いこと。</td>
</tr>
<tr>
<td>10. 耐衝撃性：飛来物の衝撃力や人間の歩行に対して丈夫であること。</td>
</tr>
<tr>
<td>11. 施工・補修性：施工しやすく、部分修理も簡単なこと。</td>
</tr>
<tr>
<td>12. 経済性：材料コスト＋施工費が低廉かつメンテナンス費用も最小なこと。</td>
</tr>
<tr>
<td>13. 美観：色調、質感が豊かなこと。</td>
</tr>
</tbody>
</table>

どのような種類があるの？

住宅屋根用化粧スレートとしては、板厚 5.2mm と 6mmw で、板幅 910mm と 600mm のものがあり、葺き足（有効働き）は 182mm の釘留め。

住宅屋根の仕上げ材としては、3 寸勾配から垂直なパラペットまで施工可能でさまざまな外観に対応できます。

必要性能は？

JIS A 5423 に準拠

曲げ破壊荷重、吸水率、吸水による反り、透水性、耐衝撃性、耐摩耗性、耐候性、耐凍結融解性、難燃性に合格すること。
何を参考に選定すれば良いのか？

| 1. 外観としての屋根勾配は防水性能、施工性、経済性、メンテナンス性にも影響します。 |
| ① 防水の観点からは、屋根の勾配が急な方が雨が良く出るように望ましいが、必要以上に勾配が急すぎると補修・改修の工事が困難となり、必要経費も増額となる場合があります。 |
| ② バランスの良い勾配は4.5寸前後と言われています。 |
| 2. 防火・耐火性能、耐風性能は地域、規模、用途、高さ等に応じて適合する構造、施工法を選定します。 |
| 積雪地域、強風地域等や高さによる強風施工法、防・耐火構造は製造者の設計基準書を参考に建築主事の指導により決定します。 |
| 3. 断熱性は夏季の暑さ対策だけでなく、冬季の防露対策も考慮します。 |
| ① 断熱材の種類(繊維系断熱材、発泡プラスチック系断熱材等) |
| ② 屋根構法(小屋裏の有無や勾配天井等)による防湿層の位置 |
| ③ 換気棟有無等は専門家と相談して決定します。 |

推奨品の性能

推奨品の名称：住宅屋根用化粧スレート
1. 特に良い性能：軽量（耐震性）、耐風性、施工性、意匠性
2. 良い性能：防火性、発音性、耐候性、凍害性
3. 注意すべき性能：耐衝撃性（踏割性）、断熱性、防水性は下地構成も重要
屋根－6

<table>
<thead>
<tr>
<th>金属屋根</th>
<th>屋根葺き材</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>住宅のどの部位に使用されるの？</td>
</tr>
<tr>
<td></td>
<td>どのような役割を担っているの？</td>
</tr>
</tbody>
</table>

春秋秋冬、あらゆるシーンで建築物の最外皮シェルターとして、雨や風、日射などの外環境から、また、地震、火災などの災害から家と家族を日々守り、街並みの美観を彩ります。
古来、日本の神社、仏閣では銅板葺きが広く採用されています。金属屋根は日本の風土に根ざした歴史の深い屋根葺き工法といえます。これらの日本の金属屋根葺きに用いられる建築板金技能の伝統は現代に至るまで脈々と受け継がれ、現在では建築板金技能士は厚生労働省の認定資格の一つとなっています。

迎賓館赤坂離宮：銅板葺き屋根 - 1909 年（明治42年）に東宮御所として、ジョサイア・コンドルの弟子で宮廷建築家、片山東熊の設計により建設。特に20世紀後半（国内においては戦後復興期）以降においては、銅板製造技術の進展と共に「めっき」品質および「塗装」品質に関するゆるみ改良が加えられ、現在の溶融55%アルミニウム-亜鉛合金めっき鋼板は従来の亜鉛めっき鋼板に比べて5〜6倍の耐食性を誇ります。

また表面塗装においても、一般的なポリエステル樹脂系焼付塗装のみならずフッ素樹脂系焼付塗装などさらに耐候性および耐久性の高い塗装も開発され、現在では様々な色調の金属屋根が街並みを彩っています。
どのような種類・材質があるの？

<table>
<thead>
<tr>
<th>屋根構法</th>
<th>優先順位</th>
<th>流れ寸法（m）</th>
<th>テーパ状屋根の曲げ半径（m）</th>
<th>下地構法</th>
</tr>
</thead>
<tbody>
<tr>
<td>一文字葺き</td>
<td>30/100</td>
<td>10</td>
<td>5</td>
<td>木造</td>
</tr>
<tr>
<td></td>
<td></td>
<td>以下</td>
<td>以上</td>
<td>鉄骨造</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RC造</td>
</tr>
<tr>
<td>心木あり瓦棒葺き</td>
<td>10/100</td>
<td>10</td>
<td>30</td>
<td>木造</td>
</tr>
<tr>
<td></td>
<td></td>
<td>以下</td>
<td>以上</td>
<td>鉄骨造</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RC造</td>
</tr>
<tr>
<td>心木なし瓦棒葺き</td>
<td>5/100</td>
<td>40</td>
<td>20</td>
<td>木造</td>
</tr>
<tr>
<td>（部分・通し下）</td>
<td></td>
<td>以下</td>
<td>以上</td>
<td>鉄骨造</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RC造</td>
</tr>
<tr>
<td>立平・転排葺き</td>
<td>5/100</td>
<td>10</td>
<td>15</td>
<td>木造</td>
</tr>
<tr>
<td></td>
<td></td>
<td>以下</td>
<td>以上</td>
<td>鉄骨造</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RC造</td>
</tr>
<tr>
<td>波板葺き</td>
<td>30/100</td>
<td>10</td>
<td>20</td>
<td>木造</td>
</tr>
<tr>
<td></td>
<td></td>
<td>以下</td>
<td>以上</td>
<td>鉄骨造</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RC造</td>
</tr>
<tr>
<td>折板葺き</td>
<td>3/100</td>
<td>50</td>
<td>125 ～ 250</td>
<td>木造</td>
</tr>
<tr>
<td></td>
<td></td>
<td>以下</td>
<td>以上</td>
<td>鉄骨造</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RC造</td>
</tr>
<tr>
<td>横葺き</td>
<td>20/100</td>
<td>20</td>
<td>1</td>
<td>木造</td>
</tr>
<tr>
<td></td>
<td></td>
<td>以下</td>
<td>以上</td>
<td>鉄骨造</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RC造</td>
</tr>
<tr>
<td>金属瓦葺き</td>
<td>20/100</td>
<td>10</td>
<td>100</td>
<td>木造</td>
</tr>
<tr>
<td></td>
<td></td>
<td>以下</td>
<td>以上</td>
<td>鉄骨造</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RC造</td>
</tr>
<tr>
<td>ステンレスシート防水</td>
<td>1/100</td>
<td>15</td>
<td>15</td>
<td>木造</td>
</tr>
<tr>
<td></td>
<td></td>
<td>以下</td>
<td>以上</td>
<td>鉄骨造</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RC造</td>
</tr>
</tbody>
</table>
材質の種類の例

<table>
<thead>
<tr>
<th>金物板</th>
<th>塗覆装飾板</th>
</tr>
</thead>
<tbody>
<tr>
<td>冷間圧延ステンレス鋼板</td>
<td>JIS G4305</td>
</tr>
<tr>
<td>塩装ステンレス鋼板</td>
<td>JIS G3320</td>
</tr>
<tr>
<td>各種めっきステンレス鋼板（鋼、電流、アルミウム、鉛・鋼合金）</td>
<td></td>
</tr>
</tbody>
</table>

| 鋼板 | JIS G3100 → H1100 |
| 鋼板表面処理鋼板（人工結晶、表面処理） |
カラーアルミウム板	JIS H4000
電流合金鋼板	JIS H4321 → 1994.7.1廃止
チタンイム板	JIS H4600
鉛板	

| 不銹金板 |
| 断熱圧延鋼板 |
| 帯鋼鋼板 |
| 電流合金鋼板・電流めっき鋼板複合材（接着材） |
| ステンレス鋼板複合材（接着材） |
| ステンレス+（電流合金鋼板、鋼板、チタン板） |
| クラッドステンレス（クラッド圧延） |
| ステンレス+（ニッケル、ニッケル鋼合金、アルミ合金） |
第Ⅱ章 家造りガイドライン 関連ツール 【材料・部材選択シート】

種類ごとの特徴は？

1. 立平ぶき
特に水密性の高い工法で、緩勾配屋根でも可能。歴史の古い工法ですが近年ではシンプルモダンな意匠として人気があります。

2. 横ぶき
シャープな横のラインが特徴です。さらに横のラインを強調した段ぶきも横ぶきの一種です。

3. 成型瓦 (瓦風金属屋根)
伝統ある日本家屋の意匠に合う金属屋根です。
特に優れた3つの性能
1. 雨風に強い
屋根ふき材に要求される最も基本的な性能一つです。
「ハゼ折り」、つかみ込み」などの板金加工補強手、また「かん合」、「差しこみ」などの組立補強手により、あらゆる屋根材の中で最も隙間の小さく水密性の高い工法の部類の一つです。

ハゼ折り補強手の例
寒冷地(北海道、東北)では積雪による雨漏り（スガ漏れ）対策として高い水密性能が要求されるため、屋根のほとんどが金属屋根です。

立平葺きでは、その高い水密性能により緩勾配屋根も可能です。

2. 軽くて強い
あらゆる屋根材の中で最も軽量な部類の一つです。
金属屋根の素材、JIS G 3322 に定める鋼板の厚みはわずか≒0.4mm。強度の高い金属だからこそ可能な超軽量化技術です。

金属屋根
約 5.2kg/㎡

3. 火災に強い
素材のカラー鋼板は建築基準法上の不燃材料※です。防火地域、準防火地域、22条地域などのあらゆる防耐火指定地域で屋根ふき材として採用可能です。
※カラー鋼板の不燃材料認定番号[NM-8697]
また、継ぎ手部の隙間が非常に小さいため、隣家の火災の際にも火の粉の侵入可能性が少なく、延焼の可能性を低減します。

その他の優れた特徴
4. 台風に強い
強度性能の規基準が整備され、十分に余裕ある強度を確認できます。
※鋼板製屋根構法標準(SSR2007)
監修：独立行政法人 建築研究所
編集：社団法人 日本金属屋根協会
社団法人 日本鋼構造協会

※鋼板製屋根・外壁の設計・施工・保全の手引き[MSRW2014]
監修：独立行政法人 建築研究所
編集：一般社団法人 日本金属屋根協会
一般社団法人 日本鋼構造協会

5. メンテナンス
表面層から順に劣化が進みます。
基材鋼板が健全なうちに適切なメンテナンス(塗り替え)を施すことにより、長持ちさせることができるのです。
定期的に適切なメンテナンス(塗り替え)を繰り返せば、基材鋼板そのものが劣化することができません。

金属屋根
約 5.2kg/㎡
鋼板製屋根・外壁の設計・施工・保全の手引き[MSRW2014]より抜粋。

・強度確認試験方法および試験体の例

a. 鋼管を通した積荷重荷試験

b. 圧力箱を用いた耐圧性試験

・載荷手順の例
第Ⅱ章 家造りガイドライン 関連ツール 【材料・部材選択シート】

・評価方法の例

(2) 評価方法

対象とする平板ふき屋根の構成材全体の許容荷重は構成的に有効な野地の有無に応じて、原則として次に掲げる式により算出するものとする。

i）構成的に有効な野地がある場合：

\[w_a = \min\{w_{a1}, w_{a2}\} \quad (2.9.1) \]

ii）構成的に有効な野地がない場合：

\[w_a = \min\{w_{a1}, w_{a2}, w_{a3}\} \quad (2.9.2) \]

ここで、

- \(w_a \)：平板ふき屋根の構成材全体の許容荷重 (N/m²)
- \(w_{a1} \)：最大圧力の 0.5 倍 (N/m²)
- \(w_{a2} \)：支点間距離の 1/300 に相当するたわみ量が生じたときの圧力 (N/m²)
- \(w_{a3} \)：各部に構造耐力上有害又は使用上的支障となる変形や残存変位が生じたときの圧力 (N/m²) である。

・評価結果の例

<table>
<thead>
<tr>
<th>最高圧力方向</th>
<th>評価対象外</th>
<th>途中減圧時の変形・残留の発生状況</th>
<th>許容荷重 (N/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>負圧</td>
<td>-1,000</td>
<td>-0.6</td>
<td>なし</td>
</tr>
<tr>
<td></td>
<td>-2,000</td>
<td>-1.5</td>
<td>なし</td>
</tr>
<tr>
<td></td>
<td>-3,000</td>
<td>-2.5</td>
<td>なし</td>
</tr>
<tr>
<td></td>
<td>-4,000</td>
<td>1.5</td>
<td>なし</td>
</tr>
<tr>
<td></td>
<td>-5,000</td>
<td>-14.8</td>
<td>残留変形大</td>
</tr>
<tr>
<td></td>
<td>-6,000</td>
<td>-17.9</td>
<td>残留変形大</td>
</tr>
<tr>
<td></td>
<td>-7,000</td>
<td>-21.8</td>
<td>残留変形大</td>
</tr>
</tbody>
</table>

材料の選び方を教えて下さい。

一般品：JIS G 3322 に定める鋼板によるポリエステル樹脂系焼付塗装品
高耐久性品：JIS G 3322 に定める鋼板によるフッ素樹脂系焼付塗装品など

推奨品の性能は？

長期耐久性を持つ製品を対象として、JIS では、「3類」の規定があり、一般にフッ素樹脂塗料が使用されております。また原板には溶融55%アルミニウム－亜鉛合金めっき鋼板等の高耐食性亜鉛系合金めっき鋼板が使用されています。このフッ素樹脂塗装鋼板を屋外に暴露したときの光沢残存率の推移と、色差の推移に関するデータを、図4-3、図4-4に示します。通常の環境下で塗膜の耐候性は、20年間の使用に耐えると考えられています。

図4-3 フッ素樹脂塗装鋼板の光沢保有率の推移
図4-4 フッ素樹脂塗装鋼板の色差の推移

第Ⅱ章－150
経済的メリットは？
雨風に強く丈夫、メンテナンスも容易で長持ちなどの特徴による、短期的なLCCのメリットももちろんありますが、金属屋根はさらに地震、火災、台風など災害に強い屋根です。
多くの被災地において家屋の倒壊、焼失などにより尊い人命が失われているいたましい現実を前に、『災害に強い金属屋根』との認識が、あらためて広く共有されつつあります。

参考 Web サイトは？
鉄鋼を知る（一般社団法人 日本鉄鋼連盟）: http://www.jisf.or.jp/knowledge/
ファインスチールの特徴（一般社団法人 日本鉄鋼連盟）
金属屋根を知る（一般社団法人 日本金属屋根協会）
http://www.kinzoku-yane.or.jp/roof/index.html
断熱亜鉛鉄板とは（断熱亜鉛鉄板委員会）
鋼について知る（一般社団法人 日本鋼センター）
建築板金とは（全日本板金工業組合連合会）

調査、試験、評価は？
上記ウェブサイト、特に
・ファインスチール ウェブサイト
・一般社団法人 日本金属屋根協会 ウェブサイト
には市場調査も含め、調査、試験、評価に関する資料が多く公開されています。
<table>
<thead>
<tr>
<th>塁根一七</th>
<th>アスファルトシングル（屋根葺き材）</th>
</tr>
</thead>
<tbody>
<tr>
<td>住宅のどこに使用されるの？</td>
<td>屋根葺材として使用されます。</td>
</tr>
<tr>
<td>材料が柔軟であるため曲面下地にも容易に適応できます。</td>
<td></td>
</tr>
<tr>
<td>アスファルトシングルの役割は？</td>
<td>風雪雨を防ぎ、日差しの遮断するなど、快適な住環境を確保する役割のほか、建物の外観を形成するなど、屋根葺材に求められる役割を担います。</td>
</tr>
<tr>
<td>どんな種類があるの？</td>
<td>国内製造品のほか、輸入品があります。</td>
</tr>
<tr>
<td>国内製造品は50年以上の歴史があります。</td>
<td></td>
</tr>
<tr>
<td>北米では現在でも、80%以上の住宅で使用されており、歴史も100年以上あります。</td>
<td></td>
</tr>
<tr>
<td>アスファルトシングルの性能は？</td>
<td>防水性能</td>
</tr>
<tr>
<td>耐風圧性能</td>
<td>材料の先端に接着材を塗布しているので、風に強くします。また、たとえ飛散しても軽量で柔軟な材料なので、人体への影響は少ないです。</td>
</tr>
<tr>
<td>耐久性能</td>
<td>以前は基材に紙を使用しており経年で変形してしまうものもありましたが、現在はガラス繊維を基材にしており、格段に耐久性が向上しました。</td>
</tr>
<tr>
<td>防火性能</td>
<td>以前は不燃材ではないため使用可能な地域が限定されていましたが、2000年の建築基準法改正により、防火性能に関する認定試験に合格すれば使用可能となっています。</td>
</tr>
<tr>
<td>名称と特徴</td>
<td>一般名称: アスファルトシングル</td>
</tr>
<tr>
<td>特に良い性能: 防水性、耐震（軽量）性、耐衝撃性</td>
<td></td>
</tr>
<tr>
<td>良い性能: 美観性、防音性、柔軟性、雪が滑りにくい性能</td>
<td></td>
</tr>
<tr>
<td>注意すべき性能: 耐風圧性、防火性能</td>
<td></td>
</tr>
<tr>
<td>何を参考にして選定すれば良いの？</td>
<td>適用する地域や建物などの要件が製造所により異なります。各製造所のカタログやホームページを参考にしてください。</td>
</tr>
<tr>
<td>アスファルトルーフィング工業会</td>
<td></td>
</tr>
</tbody>
</table>
第Ⅱ章 家造りガイドライン 関連ツール【材料・部材選択シート】

屋根－8

換気棟

住宅のどこに使用されるの？

建物の小屋裏換気の排気口、（屋根通気の出口）として屋根頂部に使用されます。

暖かい空気は上昇し小屋裏の上部へ移動します。それを効率よく排気させるには小屋裏上部に排気口を設けることが必要です。

屋根の最上部は棟と言えその棟に換気機能を持たせることで効率の良い排気が可能になります。

小屋裏換気の中で最も効率が良い排気方法と言えます。棟全体に施すことでさらに換気効率を高めることができます。

換気棟の役割は？

◆屋根野地面や構造材の結露を防いで住まいを長持ちさせます。

換気棟は壁面や天井面から上昇してくる暖かい空気を小屋裏内に滞ることなく外気へ排出する排気口の役目を果たしています。

小屋裏の換気措置がない場合、暖かく湿った空気が小屋裏内部に滞留し、温度の低い野地面や構造材に触れ、露点温度よりも低い場合に結露現象を起こします。

結露が起こると野地板や構造材に水滴が付着し長時間高湿度の状態が続くと構造材にカビが生えたり腐朽したりします。

「換気棟」は、小屋裏に溜まる湿気を含んだ空気を効果的に排気し、結露を防ぎ、構造材の腐朽や金物の腐食・錆を抑制し、建物の寿命を延ばします。

換気棟の役割 住まいの快適化・長寿命化が図られます。

結露や湿気を防ぐ 木材の腐朽を抑える

冬

換気なし

結露が発生

換気あり

結露を抑制

※小屋裏に湿気がたまり冷やされた野地板にふれたことにより結露が発生する。

※小屋裏の湿気を屋外に排出し、野地板表面での結露を防ぐ。
どんな種類があるの？

小屋裏換気の種類は大きく分けて次の方法があります。

何を参考にして選定すれば良いの？

房屋材、屋根形状、取付け部位、換気棟の材質により様々な種類があります。

○屋根材・・・瓦、化粧スレート、金属等各種に対応する換気棟があります。
○屋根の形・・・切妻屋根、片流れ屋根、寄棟等各種に対応する換気棟があります。
○部位・・・棟部、雨押さえ部、屋根面等各種に対応する換気棟があります。
○換気部材の材質など・・・金属製、プラスチック製があります。各メーカーによって色の種類や構造などに特徴があります。

換気棟の必要性能は？

◆開口面積と換気計画

換気性能に影響するのが換気経路の一番狭いところ。製品の開口面積は一番狭いところで表記するのが一般的です。

また製品内部だけでなく、建物内側の空気を建物の外側へ排出するには、内と外を繋げる空気の道がしっかり確保されていることが必要です。

◆防水性能

屋根に使用される換気棟。雨漏りはかえって結露以上の問題を生じさせます。従って風雨に対して建物内部に浸入させない性能が求められます。

空気の出口が大きいほうが良い。しかし隙間が空きすぎると雨が入りやすくなるというジレンマがあります。そこで協会会員各社では雨の入りにくい工夫をこらしています。

◆耐久性

換気棟は建物に使用される建材です。紫外線や熱に対する性能について、協会会員では実績のある素材や協会で定めた規格に則った素材で製品を提供しています。

<table>
<thead>
<tr>
<th>排気口</th>
<th>1/250</th>
<th>1/300</th>
</tr>
</thead>
<tbody>
<tr>
<td>吸気口</td>
<td>1/250</td>
<td>1/300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>排気口</th>
<th>1/900</th>
<th>1/900</th>
</tr>
</thead>
<tbody>
<tr>
<td>吸気口</td>
<td>1/900</td>
<td>1/900</td>
</tr>
</tbody>
</table>

推奨
第Ⅱ章

家造りガイドライン
関連ツール
【材料・部材選択シート】

◆必要な換気棟（開口面積）
天井面積の1/1600以上。
以下は住宅金融支援機構の基準の算出方法です。

【住宅金融支援機構基準に基づいた算出方法】

例えば・・・
「天井面積」80㎡に必要な「有効換気面積」は
80㎡×10000×1/1600 = 500㎡
となります。

①必要本数は？
・有効換気面積 = 120㎡（1P）の場合
・必要本数 = 500/120 = 4.16
⇒ 2P × 2本 + 0.5P × 1本 または
1P × 4本 + 0.5P × 1本

②必要本数は？
・有効換気面積 = 350㎡（1P）の場合
・必要本数 = 500/350 = 1.43
⇒ 2P × 1本 または
1P × 1本 + 0.5P × 1本

従来、小屋裏換気（小屋裏利用や間仕切りの有無）
等を考慮して、万全で換気できるように設置します。

◆防水性能
送風散水試験または漏水試験（通称：圧力箱）の何れかにて製品評価を実施された協会会員の製品は安心してお使いいただけます。

経済的メリットは？
住宅金融支援機構（フラット35の融資）や長期優良住宅の劣化対策として小屋裏換気は義務付けされており、クリヤされていると住宅ローンや税制優遇処置の対象となる機会が増加します。
住宅全体の費用に比べてごく僅かな初期投資で長期的な住宅の質の保持に役立つ

推奨品の性能
特に良い性能（3つまで）：開口面積と換気計画、防水性
良い性能（5つまで）：防水性、耐久性

図 送風散水試験の装置
出典：建材試験センター

図 漏水試験装置
出典：常滑窯業技術センター
<table>
<thead>
<tr>
<th>参考Web</th>
<th>棟換気の役割（屋根換気メーカー協会）: https://yakankyo.jimdo.com/換気棟の役割</th>
</tr>
</thead>
</table>

ちます。
軒裏換気

住宅のどこに使用されるの？

建物の小屋裏換気の吸排気口（屋根通気の出入口）として軒裏天井部に使用されます。

軒裏換気口の役割は？

- **屋根野地面や構造材の結露を防いで住まいを長持ちさせます。**
- 换気棟は壁面や天井面から上昇してくる暖かい空気を小屋裏内に滞ることなく外気へ排出する吸排気口の役目を果たしています。一方、軒裏換気口も、吸排気口の役割を果たし、効率の良い換気機能を持たせることが可能になります。
- 棟排気+軒裏吸気は高低差が大きいため温度差換気効果が大きく、風による風圧換気と併せることで小屋裏換気の中で最も効率が良い排気方法と言えます。
- 棟及び軒全体に換気口を施すことでさらに換気効率を高めることができます。

どんな種類があるの？

- **軒の出寸法、取付け部位、防火等の法的規制により様々な種類があります。**
 - 軒の出寸法・・・軒の出の寸法、屋根の勾配等、それぞれ対応する換気材があります。
 - 取付け部位・・・壁際取付け、鼻先取付け、軒裏中央等、それぞれ取付け場所に対応する換気材があります。
 - 換気部材の材質など・・・金属製、プラスチック製、ケイ酸カルシウム板等があります。各メーカーによって色の種類や構造などに特徴があります。
 - 換気口を遮蔽させる構造・・・法律に定められた地域では火災により延焼しないような構造が求められます。

軒裏換気材の必要性能は？

- **開口面積と換気計画**
 - 換気性能に影響するのが換気経路の一番狭いところ。製品の開口面積は一番狭いところで表記するのが一般的です。
 - また製品内部だけでなく、建物内側の空気を建物の外側へ排出するには、内と外を繋げる空気のみがしっかり確保されていることが必要です。

- **防水性能**
 - 軒裏といえども暴風雨の場合下から吹き上げる場合もあります。従って風雨に対して建物内部に浸入させない性能が求められます。
第Ⅱ章 家造りガイドライン 関連ツール 【材料・部材選択シート】

| ◆耐久性 |
| 軒裏換気製品の耐久性だけではなく、建物全体の耐久性を確保する換気・防雨性能が必要になります。 |

| ◆防火性能 |
| 法律で定められた地域によっては火災により延焼しないような構造として一定温度に達すると換気孔を塞ぎ炎が換気孔よりはいらない構造等が求められます。 |

| ◆必要な軒裏換気口（開口面積） |
| 軒裏換気口のみの場合、天井面積の 1/250 以上。 |
| 軒裏吸気、妻排気の場合、天井面積の 1/900 以上。 |
| 軒裏吸気、棟排気の場合、天井面積の 1/900 以上。 |

| ◆防水性能 |
| 送風散水試験にて製品評価を実施された製品は安心してお使いいただけます。 |

何を参考にして選定すれば良いの？

推奨品の性能
| 特に良い性能（3つまで）：開口面積と換気計画、防水性 |
| 良い性能（5つまで）：防水性、耐久性 |

経済的メリットは？
| ◆住宅金融支援機構（フラット35の融資）や長期優良住宅の劣化対策として小屋裏換気は義務付けされており、クリヤされていると住宅ローンや税制優遇処置の対象となる機会が増加します。 |
| ◆住宅全体の費用に比べてごく僅かな初期投資で長期的な住宅の質の保持に役立ちます。 |

図 送風散水試験の装置
出典：建材試験センター
第Ⅱ章 家造りガイドライン 関連ツール 【材料・部材選択シート】

開口

住宅用サッシは住宅の外壁に設置され、屋内外を仕切る部位で、雨、空気、光、温熱、
火などを遮断する「閉じる」機能と同時に、光、空気、温暖などを通過させる「開く」
機能が要求されます。一般的な戸建住宅では建物全体の表面積の2〜3割の面積を占

どんな役割があるの？

「採光」「換気・通風」「眺望」といった役割があります。
また、外観デザインの他、断熱性や遮音性、安全性や防犯性などの性能で重要な要
素となっています。
住宅の品質確保の促進等に関する法律（住宅品質法）において、新築住宅を供給する
事業者が10年間の瑕疵担保責任を負う「雨水の浸入を防止する部分」に該当するこ
とから、雨水の浸入を防止する役割も重要となります。

どんな種類があるの？

木造住宅用サッシは、サッシ（枠と障子）とガラスの組合せにより構成されており、
建物の構造、構法等によりサッシ枠の形状や材質、性能、開閉形式等を鰐まり別に選
択できるように様々なものがあります。目的、間取りや好みに合わせてそれぞれを組
合せて使用します。
ここでは、サッシやガラスの種類、開閉形式の違いによる分類を説明します。また、
木造住宅には必ず木造住宅用サッシを使用します。

1. サッシ（窓枠）の種類

【用途別】
木造住宅用とＲＣ造・鉄骨造のビル用サッシがあります。

【材質別】
◆アルミサッシ
一般的に使われる材質です。軽く開閉が楽で腐食には強いが結露しやすく断熱性にやや劣ります。
◆樹脂サッシ
合成樹脂製で熱伝導が低く断熱性が高いサッシです。複層ガラスとの組み合わせで
高断熱性を得られ、水密、気密性にも優れます。価格はアルミよりも高めです。
◆木製サッシ
質感・風合いが良いのが木製サッシです。結露には強いですが腐食・磨耗など耐久性にやや劣ります。無垢材のみ、集成材・積層材を用いたものがあり経年変化によ
る木の狂いなどを克服する工夫もなされています。
◆複合サッシ
室外側にアルミ、室内側に樹脂や木製などを組み合わせたサッシです。アルミサッシ
の結露しやすい欠点を、改善しています。
第Ⅱ章 家造りガイドライン 関連ツール 【材料・部材選択シート】

2. ガラスの種類

<table>
<thead>
<tr>
<th>タイプ</th>
<th>解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>防音サッシ</td>
<td>遮音性能を高めたサッシです。屋外からの騒音を遮断したり、室内の音が屋外へ漏れないように防いだりすることができます。</td>
</tr>
<tr>
<td>断熱サッシ</td>
<td>断熱性能を高めたサッシです。熱移動を抑える機能を備えています。</td>
</tr>
</tbody>
</table>

2. ガラスの種類

- 透明板ガラス（フロート板ガラス）
- すり板ガラス
- 网入りガラス
- Low-Eガラス
- 強化ガラス
- 耐熱ガラス
- 多層ガラス

3. 開閉形式による窓の分類

- 引違い窓
は改良が進み断熱性能等を向上させたサッシがあります。

◆FIX 窓
開閉ができない窓ですが、形の自由度も高く角型や丸型なども制作できるため、採光だけでなくデザイン性も重視して採用されることもあります。開閉が出来ないために掃除が困難という面もあります。

◆片開き窓
片側を固定してどちらか一方に開閉する窓で外開きと内開きがあります。開閉角度が調整できるので通風・採光に有効なため、横幅が狭い窓に重用されます。

◆内倒し窓
ガラス戸の下を軸に室内側に向けて倒れるようにして開く窓です。

◆外倒し窓
ガラス戸の下を軸に上側が外側に倒して開く窓です。高所に取り付ける場合が多く、開放用の引手を引くとダンパーの働きで、ガラス戸が外側に倒れます。外に向かって空気が流れやすいため、排煙や湿気をスムーズに外に逃がすことができますが、雨が室内に入りやすい難点があります。

◆横すべり出し窓
窓の横方向の上側を軸としてスライドし、下側を外に押し出して開閉する窓です。直角近くまで開くので外側の掃除が容易です。

◆縦すべり出し窓
窓の縦方向の片側を軸としてスライドし、回転するように開閉する窓です。直角近くまで開くので外側の掃除が容易です。

◆ルーバー窓
数枚のガラスの細長い羽根板を組み合わせた窓です。ハンドルで連動して開閉させるため通風や換気に優れますが、気密性や防犯性が低い面があります。

◆オーニング窓
複数のガラスをハンドル操作で同時に動かし開閉する窓です。ガラス1枚ずつに窓枠があるため、気密性、防犯性はルーバー窓よりも優れています。

◆上げ下げ窓
欧米では最も一般的に使われていて、上下2枚の障子のうち片方（下側）だけが動くタイプを片上げ下げ窓（シングルハング）、両方動くタイプを両上げ下げ窓（ダブルハング）、障子が同時に動くタイプをバランス下窓という3タイプに大きく分けられます。気密性高く、寒冷地に適したタイプです。

◆トップライト（天窓）
屋根につける窓です。小さな面積で効率よく光を取り入れることができます。

◆出窓
建物の外壁より外側に張り出した窓です。張り出した部分が台形になった台形出窓や弓形に張り出した窓（ボウウィンドウ）、長方形や多角形（ペイウィンドウ）さまざまなデザインがあります。

◆折り戸
第Ⅱ章 家造りガイドライン 関連ツール 【材料・部材選択シート】

<table>
<thead>
<tr>
<th>サッシの必要性能は？</th>
</tr>
</thead>
<tbody>
<tr>
<td>2枚以上の扉を蝶番で連結して、開いたときに折り畳む形になるような窓。開口部を大きく開くことができ、部屋の内と外を一体化させたい場合などに適しています。</td>
</tr>
</tbody>
</table>

一般社団法人 日本サッシ協会では、消費者に正しく情報を伝える目的に窓の性能を10項目（窓の基本性能である3項目／安全・安心に関係する性能の3項目／居住の快適性に関係する4項目）に絞り定義されています。

■ 一般社団法人 日本サッシ協会による窓の性能10項目
① 耐風圧性
② 水密性
③ 気密性
④ 防火性
⑤ バリアフリー
⑥ 防犯性
⑦ 断熱性
⑧ 遮音性
⑨ 防露性
⑩ 遮熱性

※ ④防火性について
防火性能に関しては、建築基準法および同法施行令により要求性能が定められており、防火地域や準防火地域には専用の防火性能が認められたサッシやドアセットを使用する必要があります。

建築物の地域性・立地条件・使用条件などから適した製品を選定してください。雨水浸入の防止の観点から、水密性能が試験により確認されていない場合は注意が必要になります。

JIS A 4706 サッシによる性能区分
第Ⅱ章 家造りガイドライン 関連ツール 【材料・部材選択シート】

1. 建物の構造（納まり）に応じた商品の選定

サッシには建物の構造（納まり）に応じた専用の枠形状サッシがあり、その構造（納まり）に応じた商品を選定する必要があります。

2. サッシの水密性能

水密性等級は、住宅の①地域性・②立地条件・③使用条件などから判断し選定します。

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>市街地住宅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>市街地ビル</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>高層・強風地域</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

● 判断方法
① 地域性：地域は市街地住宅、郊外住宅、川沿い・海岸地域の住宅と風圧力が高く、より高い水密等級必要となります。
② 立地条件：近隣住宅の配列や高さ、道路の状況、立ち木や堤の位置などにより局所的に風が強い立地も考えられます。
③ 使用条件：木造用住宅サッシは3階建以下（軒下9m以下の窓）に適用されます。

木造用サッシ（3階建以下）は、全国どこでも使用できるように水密性W-3等級がほとんどです。階高や立地条件を考慮し、風雨の強くなることが多い場合は、より高い等級のものを選定します。

断熱・防音サッシでは、水密等級W-4も一般化しつつあります。
3.サッシまわりの施工方法

製品自体の水密性とは別に、サッシ枠と躯体との取合い部が防水の弱点となり雨水浸入が問題となる場合があります。サッシまわりの施工方法は、(一社)日本サッシ協会が定める施工方法「サッシまわりの雨水浸入防止対策（木造住宅用）」またはサッシメーカーが定める施工要領書に順守した施工を行う必要があります。どのような施工方法で行うか、設計者に確認しましょう。

また、躯体との取合い部における雨水浸入防止として、サッシ枠の取り付け前に施工する専用防水部材も販売されています。製品の各種性能について設計者やサッシメーカーへお問合せください。

<table>
<thead>
<tr>
<th>サッシまわりの施工方法について、設計者に確認します。</th>
</tr>
</thead>
</table>

- 日本サッシ協会が定める施工方法「サッシまわりの雨水浸入防止対策（木造住宅用）」
 - 主に国内の木造住宅用アルミサッシ、樹脂サッシなど

- サッシメーカー、施工者などが定める施工方法
 - 国内、海外の樹脂木製複合サッシ、木製サッシなど

第Ⅱ章 造住宅ガイドライン関連ツール【材料・部材選択シート】
第Ⅱ章 家造りガイドライン 関連ツール 【材料・部材選択シート】

外壁通気構法の施工

通気構法の外壁を張る前の状況です。透湿防水シート、防水テープ、先張り防水シートなどの防水部材と、通気胴縁が施工されます。

【通気構法】
壁体内に空気の通り道をつくり、躯体内の湿気を放出して住宅の耐久性と快適性を向上させます。また、暴風雨時には外壁サイディングの接合部などから浸入した雨水をすみやかに排出することができます。

【透湿防水シート】
透湿性を保有した防水紙です。JIS A 6111-2004「透湿防水シート」で規定されており、不織布タイプとフィルムタイプがあります。

【先張り防水シート】
サッシ枠が納まる窓台の上端部に設置する防水材です。役割は、万一、サッシ枠が破壊されたりから雨水が浸入した場合でも、先張り防水シートで雨水を受け止めるため、屋内への雨水浸入を防止することや、サッシ枠の結露水から躯体を守ることなどであります。

【通気胴縁】
通気層の厚さを確保するためにスペーサーの役割を担い、また、外装材を柱・間柱と共に留め付け、剥離・剥落を防ぐためのものです。
通気構法で雨水がサッシ上方から通気層の中に浸入した場合、雨水はサッシ枠に沿って回り込みます。サッシまわりは防水の弱点になりやすい部位です。

サッシまわりの施工ポイント:
サッシ釘打ちフィンと透湿防水シートを用い一体化し、雨水の浸入を防ぎます。

下の写真は両面防水テープが留めてあります。テープの上に透湿防水シートを張りますので、テープは見えません（うっすら透けて見えています）。

透湿防水シート
両面防水テープ
サッシ釘打ちフィン
補助胴縁
サッシ枠
両面防水テープ
サッシ釘打ちフィン
工事中、降雨時のサッシ上枠の雨滴
サッシ材質別

日本サッシ協会が定める施工方法
「サッシまわりの雨水浸入防止対策（木造住宅用）」

推奨品：木造住宅用として構造・構法別に専用として開発されたサッシ

アルミサッシ

主に国内の木造住宅用アルミサッシ、樹脂サッシなどのコーナー部は、サッシ枠と釘打ちフィンが工場で一体化されて現場に納入されます。

サッシ釘打ちフィン

サッシ枠

サッシ枠

サッシ材質別

サッシメーカー、施工者が定める施工方法

【アルミサッシ、アルミ木製複合サッシなど】

コーナー部のサッシ釘打ちフィンが一体化されていない海外の製品もあります。

コーナー部は専用防水部材用い、フィンどうしを一体化させます

【樹脂サッシ、樹脂木製複合サッシなど】

サッシ仮固定用、可動フィン

コーナー部は専用防水部材用い、フィンどうしを一体化させます。

可動フィンは防水の弱点になります。防水テープ、シーリング材などを用い、サッシ枠と可動フィンを一体化させます。
推奨品の一般名称：木造住宅用として構造・構法別に専用として開発されたサッシ
特に良い性能（3つまで）：
良い性能：（5つまで）：
注意すべき性能（一つ以上）：水密性

耐風圧性、気密性、水密性、遮音性、断熱性の要求性能に関しては、JIS A 4706-2000（サッシ）とJIS A 4702-2000（ドアセット）に性能等級が設定されています。
バルコニー

どこに使用される の？
建物の外壁から張り出した手すりの設けられたスペースをバルコニーといいます。

どんな役割がある の？
屋根の役割や物干し場や収納場所・娯楽空間等として使われる。

<table>
<thead>
<tr>
<th>どんな種類がある の？</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 形状による分類</td>
</tr>
<tr>
<td>◆ルーフバルコニー</td>
</tr>
</tbody>
</table>
| 居室等の上部にバルコニー床を設置する形状。
バルコニー床が下階の屋根を兼ねる。 |
| ◆跳ね出しバルコニー |
| バルコニー床が建物から跳ね出す形状。
キャンティバルコニーともいう。 |
2．構造による分類
◆躯体一体型タイプ
バルコニー床または手摺部と建物本体が同一の構造体により一体化しているタイプ。構造体で構成するため、バルコニー床の形状は比較的自由な形にできる。防水対策や排水等の工事、下階に居室がある場合には断熱対策等が別途必要。

◆後付タイプ
バルコニーの床、手摺を構成する部品を建物本体に支持金物やボルト等で緊結するタイプ。バルコニー床の形状は設定された部品による為、ある程度制限される。
3. 防水方法による分類

バルコニーの防水方法は様々な仕様がありますが、下記に住宅で使用される代表的な工法を記します。それぞれ一長一短があり、他の防水部材（防水テープ）等との相性があるなど、使用する部材の組み合わせや施工にも注意が必要です。

◆ FRP防水

繊維強化プラスチック（Fiber Reinforced Plastics）の略称。

ポリエステル樹脂を塗布した上にガラスマットを張り付け、その上からポリエステル樹脂を合浸させて硬化させ、さらに所定量のポリエステル樹脂を塗布して防水層をつくる。

様々な形に対応しやすい。材質が硬いため、耐衝撃性や耐摩耗性に優れる。

施工中は有機溶剤を使用する為、臭いに注意が必要。

FRP防水とは（FRP 防水材工業会）

◆塩ビシート防水

塩化ビニル樹脂系のシート状の材料を接着剤等で固定し、防水層を構成する。
伸縮性に富む為、建物の変形に対する追従性が良い。素材自体が予め着色され高い耐久性があるため、防水層の一般的な保護塗装が原則不要。
端部や他の排水部材等との納まりで使用するブチルテープは塩ビシートに直接接しないよう納まり上の配慮が必要。

シート防水の特徴（合成高分子ルーフィング工業会）
http://www.krkroof.net/roofing/toku-index.html

◆ウレタン防水
液体状のウレタン樹脂を塗布し、化学反応により硬化したゴム状で弾性のある防水層を構成する方法。液状の材料を塗布するため、複雑な箇所でも施工することが可能で表面に継ぎ目が発生しない。ウレタン樹脂の厚みが均一になるよう施工上の注意が必要。また材料が硬化するまで時間が必要。
ウレタン防水の特性と可能性（日本ウレタン建材工業会）
http://www.nuk-pu.jp/qa/

◆金属防水
塩ビ鋼板（カラー鋼板）や溶融亜鉛めっき鋼板（トタン板）で防水層を構成する。乾式工法なので、他の工法に比較し、臭いやシックハウスの原因となる有害物質の発生がほとんど無い。
使用時は鋼板に傷がつかないように配慮が必要。

バルコニーの床面では排水の為の配慮、手摺壁については使用する部材や寸法の基準が記されています。下記に一般的に普及している仕様の参考図を記載しますが、この基準を満たせない場合でも納まり等によっては住宅瑕疵担保法などの基準に適合させることもできます。

○バルコニーの床は、1/50以上の排水勾配を設ける。
○防水材は、下地の変形及び目違いに対し安定したものであり、かつ、破断又は穴あきが生じにくいものとする。なお、FRP 防水にあってはガラスマット補強材を2層以上とする。
○壁面との取合い部分の防水層は、開口部の下端で120 mm以上、それ以外の部分で250 mm以上立上げ、その端部にシーリング材又は防水テープを施すこととする。
○排水溝は勾配を確保し、排水ドレイン取付部は防水層の補強措置及び取合部の
止水措置 を施すこととする。

○手すり壁は、次の各号による防水を施すこととする。

（1）防水紙は、JIS A 6005（アスファルトルーフィングフェルト）に適合するアスファルトフェルト430、JIS A 6111（透湿防水シート）に適合する透湿防水シート又はこれらと同等以上の防水性能を有することとする。ただし、透湿防水シートは通気構法とした場合に限る。

（2）防水紙は、手すり壁の下端から張り上げ、手すり壁の上端部にはブチル系の両面粘着防水テープを張った上で鞍掛けシートを覆い被せる。

（3）手すり壁上端部の笠木の固定金具は、雨水浸入経路となりやすい為、弾性系の材料等を用いて確実に止水する。

【参考図】

①後付バルコニーは、まず耐荷重や耐風圧等の強度で、次に耐久性です。アルミ製・鉄製・木製等がありますが、腐朽や腐食により強度と耐久性が著しく落ちる場合があるので注意が必要です。強風地域では風荷重、沿岸地域では塩害と蟻害のチェックが必須です。要注意は、後付のキャンティバルコニーです。下地の状態によって、または住まい手の使い方によって、後付バルコニーがお辞儀をす可能性があります。

②跳ね出しバルコニー（建物一体型）は、比較的に劣化リスクの低いバルコニーです。しかし、よくある劣化事例として、オーバーハング部の通気の入り口が塞がれている場合や手すり壁天端が閉塞されており、逆に開放されている場合があり、注意が必要です。

③ルーフバルコニーは、最も劣化事例の多い部位です。床面の防水が悪いと、下階への漏水により腐朽要因となります。また、手すり壁天端が閉塞されていると結露要因になり、手すり壁天端が開放されていると漏水原因になります。下記にチェック項目を列記しました。
第Ⅱ章 家造りガイドライン 関連ツール 【材料・部材選択シート】

④複合タイプのバルコニーも、注意が必要です。可能であれば、跳ねだしバルコニーかルーフバルコニーの形状にしたほうがリスクは低くなります。どうしても、このタイプを採用しなければいけないときには、取り合い部の監理を慎重にする必要があります。

⑤手すり壁天端の納まり例
手すり壁天端の納まりは、雨水の浸入を防ぎながら、通気・換気の機能も求められる部位です。代表的な手すり壁天端の納まりを、4段階で評価しました。

【納まり例】
第Ⅱ章 家造りガイドライン 関連ツール【材料・部材選択シート】
【性能別評価】 A（高い）⇔D（低い）

<table>
<thead>
<tr>
<th>納まり</th>
<th>通気性能</th>
<th>防水性能</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>D</td>
<td>A</td>
<td>手摺壁天端の養生材のリスク有</td>
</tr>
<tr>
<td>②</td>
<td>D</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>③</td>
<td>B</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>④</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>⑤</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>⑥</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>⑦</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>⑧</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>ルーフバルコニー</td>
<td>跳ね出しバルコニー</td>
<td>独立型（後付）バルコニー</td>
<td>項目</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>① 床下の換気：あり・なし</td>
</tr>
<tr>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>② 床下地：二層・一層</td>
</tr>
<tr>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>③ 床面の水勾配：1/50以上・1/100以上・1/100未満</td>
</tr>
<tr>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>④ 排水ドレン：2カ所・1カ所（オーバーフロー管あり）・1カ所（オーバーフロー管なし）</td>
</tr>
<tr>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>⑤ オーバーフロー管：あり・なし</td>
</tr>
<tr>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>⑥ 防水層立上がり：250mm以上・250mm未満</td>
</tr>
<tr>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>⑦ 開口部下の防水層高さ：120mm以上・120mm未満</td>
</tr>
<tr>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>⑧ 窓下の施工順序：防水先施工・サッシ先施工</td>
</tr>
<tr>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>⑨ 手すり壁外側の通気層：通気層あり・通気層なし</td>
</tr>
<tr>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>⑩ 手すり壁内側の通気層：通気層あり・通気層なし</td>
</tr>
<tr>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>⑪ 通気層：通気金具・縦胴縁・横胴縁・なし</td>
</tr>
<tr>
<td>× ○ ×</td>
<td>× ○ ×</td>
<td>× ○ ×</td>
<td>⑫ 手すり壁天端への、雨仕舞と通気の為の部材の設置：あり・なし</td>
</tr>
<tr>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>⑬ 手すり壁内部のしゅくの排出：あり・なし</td>
</tr>
<tr>
<td>× ○ ×</td>
<td>× ○ ×</td>
<td>× ○ ×</td>
<td>⑭ 手すり壁外側通気層下部の排水処理仕様（オーバーハンギング部）：あり・なし</td>
</tr>
<tr>
<td>○ × ×</td>
<td>○ × ×</td>
<td>○ × ×</td>
<td>⑮ 手すり壁外側通気層下部の排水処理仕様（土台部）：あり・なし</td>
</tr>
<tr>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>⑯ 手すり壁天端へのサイディング：使用しない・使用する</td>
</tr>
<tr>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>○ ○ ×</td>
<td>⑰ 手すり壁天端への鞍掛けシート：改質アスファルトルーフィング・アスファルトルーフィング940・なし17</td>
</tr>
</tbody>
</table>
経済的メリットとは？
品確法（住宅の品質確保の促進等に関する法律）、住宅瑕疵担保法（特定住宅瑕疵担保責任の履行の確保等に関する法律）、住宅性能表示制度、長期優良住宅法（長期優良住宅普及の促進に関する法律）など、維持管理や性能確保のために推奨される寸法や仕様があります。それらの基準を満たすことで、漏水時に保証が受けられたり、税制面や金利、保険金での優遇があります。

価格の目安
一般財団法人 経済調査会

参考WEB
ベランダ・パルコニーのお手入れ（一般財団法人住宅金融普及協会）
FRP 防水とは（FRP防水材工業会）: http://www.fbk-bousui.jp/frpbousui.html
シート防水工法の仕様（合成高分子ルーフィング工業会）
http://www.krkroof.net/method/siyo-index.html

<table>
<thead>
<tr>
<th></th>
<th>○</th>
<th>○</th>
<th>×</th>
<th>⑰ 手すり壁天端の木部への防水テープ：使用する・使用しない</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>×</td>
<td>⑯ 手すり壁天端へのステープルの留め付け：なし・あり</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>×</td>
<td>○</td>
<td>⑰ 後付パルコニーの脚：あり・なし</td>
</tr>
</tbody>
</table>

第Ⅱ章 家造りガイドライン 関連ツール【材料・選材選択シート】
パラペット屋根

<table>
<thead>
<tr>
<th>どこに使用されるの？</th>
<th>建物の屋上やバルコニーの外周部に設けられた低い立ち上がり壁を伴った屋根のこと。</th>
</tr>
</thead>
<tbody>
<tr>
<td>どんな役割があるの？</td>
<td>墜落を防いだり、先端を保護し防水効果を高めるために取り付けられる。また、店舗などで看板を取り付ける目的で、通りに面した部分だけ屋根を隠すような形で立ち上げられた壁もパラペットと呼ばれる。</td>
</tr>
</tbody>
</table>

1. 形状による分類
 ◆ 三方パラペット

2. 防水方法による分類
 パラペット屋根の防水方法は様々な仕様がありますが、下記に住宅で使用される代表的な工法を記します。それぞれ一長一短があり、他の防水部材（防水テープ）等との相性があるなど、使用する部材の組み合わせや施工にも注意が必要です。
 ◆ F R P防水
 繊維強化プラスチックス（Fiber Reinforced Plastics）の略称。
第Ⅱ章
家造りガイドライン 関連ツール 【材料・部材選択シート】

ポリエステル樹脂を塗布した上にガラスマットを張り付け、その上からポリエステル樹脂を合浸させて硬化させ、さらに所定量のポリエステル樹脂を塗布して防水層をつくる。
様々な形に対応しやすい。材質が硬いため、耐衝撃性や耐摩耗性に優れる。
施工中は有機溶剤を使用する為、臭いに注意が必要。

■ＦＲＰ防水の構造
2プライ（2層）は1プライより強くなる
トップコート（着色剤）
ガラスマット1層
ＦＲＰ樹脂
ガラスマット2層
ＦＲＰ樹脂 ＦＲＰ樹脂

◆塩ビシート防水
塩化ビニル樹脂系のシート状の材料を接着剤等で固定し、防水層を構成する。
伸縮性に富む為、建物の変形に対する追従性が良い。
素材自体が予め着色され高い耐久性があるため、防水層の一般的な保護塗装が原則不要。
端部や他の排水部材等との納まりで使用するブチルテープは塩ビシートに直接接しないよう納まり上の配慮が必要。
第Ⅱ章 家造りガイドライン 関連ツール【材料・部材選択シート】

◆ウレタン防水
液体状のウレタン樹脂を塗布し、化学反応により硬化したゴム状で弾性のある防水層を構成する方法。液状の材料を塗布するため、複雑な箇所でも施工することが可能で表面に継ぎ目が発生しない。ウレタン樹脂の厚みが均一になるよう施工上の注意が必要。また材料が硬化するまで時間が必要。
第Ⅱ章 家造りガイドライン 関連ツール【材料・部材選択シート】

◆金属防水
塩ビ鋼板（カラー鋼板）や溶融亜鉛めっき鋼板（トタン板）で防水層を構成する。乾式工法なので、他の工法に比較し、臭いやシックハウスの原因となる有害物質の発生がほとんど無い。
使用時は鋼板に傷つかないように配慮が必要。

◆立平葺き
鋼板で成型された屋根材。0.5寸勾配まで対応可能。はぜ締め機の必要のないタイプが開発されてかわら棒の市場に取って代わった。意匠面からの採用も多い。
パラペットの屋根面では排水の為の配慮、パラペット壁については使用する部材や寸法の基準が記されています。下記に一般的に普及している仕様の参考図を記載しますが、この基準を満たせない場合でも納まり等によっては住宅瑕疵担保法などの基準に適合させることもできます。

○パラペットの屋根は、1/50 以上的排水勾配を設ける。（立平屋根を除く。）
○防水材は、下地の変形及び目違いに対し安定したものであり、かつ、破断又は穴あきが生じにくいものとする。なお、FRP 防水にあってはガラスマット補強材を 2 層以上とする。
○壁面との取合い部分の防水層は 250 ㎜以上立上げ、その端部にシーリング材又は防水テープを施すこととする。
○排水溝は勾配を確保し、排水ドレイン取付部は防水層の補強措置及び取合部の止水措置を施すこととする。
○パラペット壁は、次の各号による防水を施すこととする。
（1）防水紙は、JIS A 6005 （アスファルトルーフィングフェルト）に適合するアスファルトフェルト 430、JIS A 6111 （透湿防水シート）に適合する透湿防水シート又はこれらと同等以上の防水性能を有することとする。ただし、透湿防水シートは通気構法とした場合に限る。
（2）防水紙は、手すり壁の下端から張り上げ、手すり壁の上端部にはブチル系の両面粘着防水テープを張った上で鞍掛けシートを覆い被せる。
（3）手すり壁上端部の笠木の固定金具は、雨水浸入経路となりやすい為、弾性系の材料等を用いて確実に止水する。

【参考図】

何を参考にして選定すれば良いのか？

① パラペット屋根は、劣化事例の多い部位の一つです。屋根面の防水が悪いと、下階への漏水により腐朽要因となります。また、パラペット壁天端が閉塞されていると結露要因になり、パラペット壁天端が開放されていると漏水原因になります。
パラペット壁天端の纳まり例
パラペット壁天端の納まりは、雨水の浸入を防ぎながら、通気・換気の機能も求められる部位です。代表的な手すり壁天端の納まりを、4段階で評価しました。
【納まり例】

② 窓業系サイディング（裏張り）

① 窓業系サイディング（裏張り）（スリット）
【性能別評価】　A（高い）⇔D（低い）

<table>
<thead>
<tr>
<th>納まり</th>
<th>通気性能</th>
<th>防水性能</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>D</td>
<td>A</td>
<td>手摺壁天端の養生材のリスク有</td>
</tr>
<tr>
<td>②</td>
<td>D</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>③</td>
<td>B</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>④</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>⑤</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>⑥</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>⑦</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>⑧</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>
経済的メリットとは？ | 品確法（住宅の品質確保の促進等に関する法律）、住宅瑕疵担保法（特定住宅瑕疵担保責任の履行の確保等に関する法律）、住宅性能表示制度、長期優良住宅法（長期優良住宅普及の促進に関する法律）など、維持管理や性能確保のために推奨される寸法や仕様があります。それらの基準を満たすことで、漏水時に保証受けられたり、税制面や金利、保険金での優遇があります。

価格の目安 | 一般財団法人 経済調査会
第2編 【住まい手向け】 長持ち住宅ガイドライン
第Ⅱ章 木造住宅の耐久性を向上させる家造りガイドライン

関連ツール
住宅外皮重要ポイントチェックリスト

目次

1. 住宅外皮仕様重要ポイントチェックリストの使い方と見方 191
2. 屋根、小屋裏、直下階天井（軸組構法） ... 196
4. 基礎および床下まわり（軸組構法） ... 215
5. バルコニーまわり（軸組構法） ... 224
6. 屋根、小屋裏、直下階天井（枠組壁工法） ... 231
7. 湿式外壁まわり（枠組壁工法） ... 233
8. 基礎、床下まわり ... 235

執筆者：近江戸征介
1. 住宅外皮仕様重要ポイントチェックリストの使い方と見方

A、はじめに

本書は、木造住宅の耐久性能に関わる建物の外皮＝屋根・外壁・脚部・バルコニー＝の仕上げから下地構造及び外気に面した室内側の最上階の天井・壁及び最下階の床の仕上げとその構成並びに建築材料や構法の仕様について示すものです。

1、屋根の形式について

建物にとって最も大事な風雨・陽射しなど外部気候から住まいを守る屋根には、以下に示すような様々な形式があります。その名称とカタチの代表的なものを例示します。

※この他に、矩折屋根や腰折れ屋根、方形屋根、シャーレ(円曲)屋根などがあります。

2、外壁の形式について

建物の印象を決定する外壁には、以下に示すような種別があります。最近では和風の建物であっても一昔前によくみられた柱や桁などの構造部材が見える外壁は殆ど見られなくなって構造部材が見えない大壁形式の造り方が主流となっていますが、その仕上げ方にも、化粧(サイディングやＡＬＣ板など)外装板を張る乾式構法とモルタルやタイル貼りなどの左官材料で仕上げる湿式構法の二つが代表的なものです。

※、市街地を離れ防火規制のない郊外では土壁や羽目板を使った真壁造りなどもあります。
3、脚部＝基礎及び1階の床の形式について

宅地の地盤の耐力（地耐力）と建物の規模を考慮して、適切な基礎を選択する必要があります。基礎は、建物の下全てを耐圧板として使うベタ基礎と、逆T字型の基礎底盤で支える布基礎の二種類の形式が代表的なものです。

布基礎（床下土間には防湿措置が必要）　ベタ基礎（床下土間のスラブが防湿と耐圧板を兼ねる）

※この他、ベタ基礎の異種といえる逆スラブ基礎や、杭を使った独立基礎などもあります。

4、バルコニーの形式について

バルコニーは、以下に示すような様々な形式の選択肢があります。

跳ね出し型　　ルーフバルコニー（階上型）　　後付型

※夫々のバルコニーには、構造と一体にしたものや後付けとして取付けるものがあります。
第Ⅱ章 家造りガイドライン 関連ツール【チェックリスト】

5、木造の構造形式について

木造建物の造り方の構造的特徴としては、代表的な構法として、日本古来の構法を踏襲した軸組構法と、アメリカで普及している構法を日本の法令などに適合するよう昭和46年に技術基準が定められた枠組壁工法があります。

◆軸組構法住宅：一般的に在来工法住宅と呼ばれる事があります。

通し柱や管柱（縦軸材）と桁や梁（横架材）を使い、筋かいなどの斜材で構成される構造体。

◆枠組壁工法住宅：一般的にツーバイフォー住宅と呼ばれています。

柱が無く各階毎に国際規格の枠組材や根太材・合板などで造り積み重ねて造る構造体。

◆軸組構法の概略図と主要な部材名称（全体及び部分）

◆枠組壁工法の概略図と主要な部材名称（部分）
B、本仕様書の使い方

本仕様チェックリストには、木造外皮の各部位を「屋根・直下階天井」、「外壁まわり」、「基礎・床下まわり」、「バルコニー」の四つの部位に分けて、そこに使われている構法と材料について、各部位を構成層として部位別に1〜4迄の符号を附して「外皮仕様チェックリスト」と表記しています。

その種類と順番は1:屋根・直下階天井、2:外壁まわり、3:基礎・床下まわり、4:バルコニー、となっています。それぞれAとBがあり、各部位ごとの仕様(材料と造り方の構成)を、対象となる範囲の概略図に部材名称を附して部位全体の構成をできる限り解り易く表記してあります。

本仕様チェックリストの内容を精査し、これから作りたいと思われる住宅の外皮の工法や建築材料について、自宅となる木造の耐久性に関わる仕様の種別と組み合わせを選択してください。

住宅外皮(屋根・軒・壁・基礎床)仕様概要チェックリスト

<table>
<thead>
<tr>
<th>屋根</th>
<th>1A</th>
<th>部位</th>
<th>屋根・直下階天井</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>設計仕様：屋根および天井の構成</td>
<td>外皮屋根仕上げ～下階天井仕上げ迄</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>【屋根の層構成図】</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>※屋根は下図①〜⑤に示す各層により構成されており、詳細については次頁以降の解説をご覧下さい。想する材料と構法の□をチェックして選択し、その結果を契約前の参考として下さい。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C項「本仕様書の見方」の①〜⑤の項目内にある材料及び工法の項目の左にある□マークに✔印を入れる事で、建築主として希望する住まいの品質や性能に関わる仕様の選択について意思表示できるようになっています。

本書は、住宅の発注者として建築主の希望を意思表示するものであり、以後の住宅の設計が具体化する前の図書として設計者に提示し、設計図書へ反映させることができ可能となります。

C、本仕様書の見方

本仕様書は以下の順序で部位ごとに編集されています。

表紙：外皮仕様概要の概要図

① 外皮の仕上げ範囲の仕様解説と選択

② 外皮の下地範囲の仕様解説と選択（但し、脚部のみは②、構造の範囲と選択）

③ 外皮の構造の範囲と選択（但し、脚部のみは③、下地の構造の範囲と選択）

④ 内装の仕上げの範囲と選択
⑤付帯部材の種類と選択
資料：外皮仕様に関する解説と留意事項及び劣化事象例

①〜⑤の用紙には、各部位に使われる材料又は構法の種類が記載されており選択できるよう作られています。希望する材料名左の□内に✔印を記入し、建築主として予め設計者に提示する事で、要求事項として意思表示する事ができます。

※参考図又は写真の製品は推奨品を示す物ではありません。

<table>
<thead>
<tr>
<th>各構成層仕様説明</th>
<th>※参考図又は写真の製品は推奨品を示す物ではありません。</th>
</tr>
</thead>
<tbody>
<tr>
<td>①屋根葺材仕上げ</td>
<td>[標準的な葺材] [推奨できる葺材]</td>
</tr>
<tr>
<td>仕様の選択：希望する材料の左の□に✔印を入れて下さい。</td>
<td>仕様の種類及び解説</td>
</tr>
</tbody>
</table>

（粘土瓦）□土居葺き□瓦棟直葺き□流し棟葺き□本葺き
□J形
□F形
□S形
□平形
□波形
□本葺形
※、粘土瓦には形種の他口防災瓦口耐寒瓦等がある。

※1〜4各外皮の部位ごとの構成層仕様はAとBに共通する項目は省略されているものがあります。
※仕様の選択の項目で記載のない部分は、個別の住宅設計が完了した時点で「実施予定の仕様」など必要な材料部材等を表記図示するのに使用できます。
※仕様の種類及び解説の項目に該当するものがない場合は、追記して下さい。

新しく造る住まいの「長期優良品質」や「耐久性能」に関わる、木造の品質と性能の向上についての要望書として、設計を委託する前若しくは施工請負契約締結前に準備して置く事が望ましく、本書はその手引書として頂くための有用なものとなります。
2. 屋根、小屋裏、直下階天井（軸組構法）

<table>
<thead>
<tr>
<th>屋根</th>
<th>部位</th>
<th>仕様</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>部位: 屋根・直下階天井</td>
<td>面材仕上げ～下階天井仕上げ</td>
<td></td>
</tr>
</tbody>
</table>

【屋根の層構成図】
※屋根は下図①～⑥に示す各層により構成されており、詳細については次頁以降の解説をご覧下さい。
採用を希望する材料と構法の□をチェックして選択し、その結果を契約前の参考として下さい。

【屋根の層構成】
①仕上げ屋根材
②防水ルーフィング
③桟木又は屋根梁
④野地板
⑤小屋裏換気（妻壁設置）
⑥断熱材
⑦天井下地ボード＋仕上げ

【屋根構成層】
①屋根材仕上層
②防水下地層
③小屋組構造
④天井仕上層
⑤関連附帯品

※小屋組構造は、軸組(在来)構法の一般的な仕様と名称を表記しています。枠組壁(ツーバイフォー)工法は別紙をご覧下さい。
各構成層仕様解説

※参考図又は写真の製品は推奨品を示す物ではありません。

<table>
<thead>
<tr>
<th>屋根に葺く仕上げ材料の選択</th>
<th>※希望する材料を選び□内に✔マークを記入。</th>
</tr>
</thead>
<tbody>
<tr>
<td>参考図又は施工例の写真</td>
<td>屋根材の選択</td>
</tr>
</tbody>
</table>

建物の屋根の仕上げ仕様

屋根に葺く仕上げ材料の選択

予定している住まいの気候環境や建物の屋根勾配や意匠性・立地条件に合せて選択してください。

- **粘土瓦**
 - 〔形状〕 □J形瓦
 - □S形瓦
 - □F形瓦
 - □F形瓦リタイプ、□F形瓦Fタイプ、□F形瓦Mタイプ

※いずれの形状も和風、洋風に係わらず、全ての建築に使用されます。

希望する色調があれば記入して下さい（_________色）

製造方法

- □いぶし瓦：原料である粘土を成形、乾燥、そして焼成した後に黒化をします（いぶします）。それにより瓦に炭素被膜を施し、美しい銀色を作り出します。
- □釉薬瓦：原料である粘土を成形、乾燥した後に、その表面に釉薬を施して焼成します。一般的に陶器瓦とも呼ばれ、様々な色があります。
- □無釉瓦：文字通り釉薬を使わない瓦であり、素焼瓦、わらなどがあります。

機能

- □防災瓦：瓦が連結し外れにくく耐風や耐震対策向きです。

希望する色調があれば記入して下さい（_________色）

瓦については、全国陶器瓦工業組合連合会へ

瓦屋根の施工は、（一社）全日本瓦工事業連盟へ

スレート

- □天然スレート：耐候性に優れている。
 天然の石材（頁岩）を切り出し成型加工した製品です。
 色調は採掘場所の地質により色が微妙に異なります。

- □住宅屋根用化粧スレート
 工場生産された規格成型品です。
 安定した色調の選択ができます。

希望する色調があれば記入して下さい（_________色）

- □波形スレート：凍結する地域には不向きです。
 工場生産された規格成型品です。
 色調は素地もしくは現場着色塗装する事もできます。
第Ⅱ章 家造りガイドライン 関連ツール【チェックリスト】

【金属葺き】

<table>
<thead>
<tr>
<th>金属葺き</th>
<th>立平葺</th>
<th>瓦棒葺</th>
</tr>
</thead>
<tbody>
<tr>
<td>横平葺</td>
<td></td>
<td>平折葺</td>
</tr>
</tbody>
</table>

□ 金属屋根材：□立平葺 □瓦棒葺 □横平葺 □平折葺

葺重ね部分が少なくスガ漏れによる浸水を考慮し寒冷地や多雪地域などの立地環境に適しています。鋼板の葺重ね部はハゼ折（折り曲げ嵌め合せる）されるため雨水や融雪水が漏水しにくいように加工されています。

□溶融亜鉛めっき鋼板：着色は現場塗装で仕上げます。

めっきの量（厚さ）により耐蝕性が異なります。

□溶融 55%アルミニウム亜鉛合金めっき鋼板：着色は塗付け塗装されています。

鋼材とアルミを混成して防蝕性を高めています。

□アスファルト被覆鋼板：耐候性に優れています。

加工費は最も高いが耐久性に優れています。

□塩ビ被覆鋼板：市街地の排気ガス等で腐食しにくく耐候性・耐蝕性に優れています。材料費は高めです。

初めて学ぶ もう一度学ぶ 金属の屋根と外壁 LLM2017 (一社) 日本金属屋根協会

http://www.kinzoku-yane.or.jp/info/LLM2017/index.html

□ 鋼板：□素地磨き仕上げ □緑青被覆仕上げ

□アルミ板：□電解発色仕上げ □アルマイト仕上げ

□ステンレス板：□電解着色 □ヘアーライン仕上げ

希望の色調（色）

□ アスファルトシングル

【付帯施設】希望する場合は□に✔印を入れて下さい。

天窓：□固定型（□二重断熱型□単層型）□開閉型

小屋窓：□角型□三角型□小屋根型□半円型□腰折型

煙突：□飾り角型 □小屋裏換気型 □排煙筒

※屋根の付帯施設には傾斜水面上側に雪割りを施し、付帯施設が雨水排水の障害とならない対策が必要です。
<table>
<thead>
<tr>
<th>畳下地</th>
<th>畳下地の種類</th>
<th>畳下地材の選択と解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) ☐【直葺き構法＝化粧スレート葺き、金属葺き、アスファルトシングル葺き】[標準]</td>
<td>桟木はありません。化粧スレート葺やアスファルトシングル葺の標準的な構法です。</td>
<td>案根材を留め付けるための釘などがルーフィング（防水紙）を貫通している仕様です。屋根材の重ね部から雨や土壌などがルーフィングの上に入り込むこともあり、これらは屋根の勾配に従って流れますが、流れ方向と直交して屋根材や栈木などが防水紙や野地に直接、接触して取付けられている場合、浸入雨水がこれらに堰き止められ、周辺の釘の貫通部分から小屋裏側に漏水する要因となることがあります。</td>
</tr>
<tr>
<td>(2) ☐【棟木＋樋材＝粘土瓦葺きの引掛柾構法】[標準]</td>
<td>☐K3保存処理材 ☐無処理材 ☐その他</td>
<td>野地板の上にルーフィング（防水紙）、樋棟、棟、粘土瓦を一枚一枚留め付ける標準的な構法です。樋棟木により棟木が防水紙より浮いた状態となるため、雨水が滞留しにくく、屋外へ排出されやすい仕様です。瓦の留め付け部は、釘が防水紙を貫通しており、小屋裏側に漏水する要因となることがあります。 （樋棟木を使わず、十分な引抜き強度を持った水抜き桟木を桟木の代わりに使用する場合もあります）</td>
</tr>
<tr>
<td>☐【棟木＋通気流し桟木＝通気下地屋根構法】</td>
<td>☐K3保存処理材 ☐人工木材 ☐合板 ☐無処理木材</td>
<td>瓦葺きの場合、屋根材や桟木などを留め付ける釘がルーフィングや野地板を貫通しないよう桟木の下に直交（流れ方向）する通気流し桟木を設ける仕様であり、防水および防露上からも推奨される仕様となります。通気流し桟木は、浸入雨水を排出させやすくするだけではなく、屋根材裏に通気層を構成し、野地上側に生じ易い湿潤を防ぐ排湿機能を有し、劣化リスクの軽減や小屋裏空間の急激な温度変化を和らげることにも役立ちます。スレート葺きやシングル葺きの場合は、桟木に代えて、「二重野地板」又は「スノコ棟」を使う場合もあります。 金属葺きの場合は、流し桟に添えて網状体シートを使うこともあります。</td>
</tr>
</tbody>
</table>

瓦屋根の施工の情報は、(一社)全日本瓦工事業連盟へ
第Ⅱ章 家造りガイドライン 関連ツール【チェックリスト】

【下葺材（防水紙）】
屋根材の下地にはルーフィングと称する防水紙が野地板の上
に敷き込まれています。

☐ アスファルトルーフィング 940（JIS A 6005）
全ての屋根材に適しています。

☐ 改質アスファルトルーフィング（ARK 04°）
全ての屋根材に適しています。940よりも上位の下葺材（防
水紙）です。

アスファルトルーフィング 940よりも上位の品質です。

アスファルトルーフィング工業会規格
http://www.ark-j.org/tec/pdf/kikaku_04s-03.pdf

☐ 透湿ルーフィング
透湿性を保有しているので、屋根材とルーフィングの間に空
間がある瓦屋根に適しています。直葺きの化粧スレート、金
属葺き、シングル葺きなどでも通気が確保できれば透湿効果
が得られます。

ARK-04°改質アスファルトルーフィング下葺材のおすすめ
（アスファルトルーフィング工業会）

透湿ルーフィングとは（透湿ルーフィング協会）
http://www.toshitu-r.jp/about.html

【野地板】

☐ 面材：□構造用合板 □構造用パネル（OSB・MDF）
☐ 面材：□熱処理加工材 □一般端材
☐ その他：□リブ鋼板 □硅カル板 □野地用ALC板

※ 垂木への釘の留め付け精度が重要です。
第Ⅱ章 家造りガイドライン 関連ツール【チェックリスト】

【屋根材下地構成種別】

- ルーフィング+野地板
- ルーフィング+野地板+桟木

屋根材の棟側の隙に滞留した浸入雨水はルーフィングを貫通した屋根材の留め付け釘まわりへ浸透し、野地へ浸入したり、ルーフィングを留め付けるステープルまわりからも漏水したりすることがあります。

【スレート・シングル材の直葺き構法】

- 【スレート・シングル材の直葺き構法】
 - ルーフィング+野地板
 - ルーフィング+野地板+桟木

雨が流れる方向に縦桟木を設け、縦桟木に対して直交に桟木を留め付けているため、桟木がルーフィングより浮いた状態になります。葺重ね部から雨水等が浸入した場合、その隙間を雨水が流れ屋外へ排出されやすいので、雨水の滞留を防ぐ効果があります。（縦桟木を使わず、十分な引抜き強度を持った水抜き桟木を桟木の代わりに使用する場合もあります）。瓦の留め付け部は、釘の防水紙を貫通しており、小屋裏側に漏水する要因となることがあります。

【通気下地屋根構法】

- 【通気下地屋根構法】
 - ルーフィング+野地板+桟木+通気流し桟木
 - ルーフィング+野地板+桟木+通気流し桟木+発泡系断熱材

通気流し桟木と野地裏の通気層が余剰な水分を排湿し結露や湿潤を防げるため劣化リスクを軽減できます。

備考 屋根材と下地構成の組合せは、木造住宅の耐久性能に大きな影響があります。
第Ⅱ章 家造りガイドライン 関連ツール【チェックリスト】

③ 屋根構造（軸組構法の小屋組）

<table>
<thead>
<tr>
<th>参考図又は施工例の写真</th>
<th>小屋組構造部材の仕様の解説と選択</th>
</tr>
</thead>
</table>
| ![参考図又は施工例の写真](image.png) | 【主要な構造材】
- 構造用集成材：ヒバ、松、杉、米松、輸入材
- K3保存処理木材：栂材、アビトン、その他
- 乾燥無垢材：米松、松、杉、輸入材

※小屋裏は乾燥し易い為乾燥材の使用が原則です。 |

軸組建物の屋根の構造仕様	【補助的な構造材】
![軸組建物の屋根の構造仕様](image.png)	母屋：屋根勾配に直交し垂木を受ける構造材
- 母屋束：屋根勾配を決める母屋材を支持します
- 吊木：下階の天井を母屋等の構造部材から吊ります
- 小屋筋違：屋根勾配と直交方向に掛ける斜材です
- 雲筋違：屋根勾配に平行して付ける斜材です
※小屋筋違や雲筋違は比較的大きな小屋組や急勾配の小屋組などに取付けられる事が基本です。 |

軒の出が短い場合	【京呂組】
![軒の出が短い場合](image.png)	軒の出が短い小屋組に用いられます。本構法において軒の出を著しく長くするには、垂木の断面を増やすなど、強度・剛性を確保して下さい。
※小屋梁と垂木を軒桁の上部へ直接載せており、敷桁はありません。 |

軒の出が長い場合	【折置組=与次郎組】
![軒の出が長い場合](image.png)	軒の出が深くや急勾配の屋根又は重い場所などに適しています。
※小屋梁は柱頭に直接載せ、垂木は軒桁で受けます。
※軒の出が長い場合や、垂木の跳ね出しが長く比較的重い屋根材の場合に採用され、小屋梁を腕木として伸ばして垂木繋受で軒先を支える構法です。 |

| 備考 | ※小屋組には木材の乾燥による変位等を考慮して構造用集成材や乾燥処理された無垢材を使用します。（乾燥処理された木材は反り・捩れ・割れ等が少ない＝含水率が18%以下の製材とされている。）
※小屋組には京呂組（一般的な小屋組）と折置組（与次郎組とも称し敷桁を使う）の二種類の構法があります。 |
<table>
<thead>
<tr>
<th>屋根直下の天井の仕上げ</th>
<th>天井下地と仕上げの仕様の解説と選択</th>
</tr>
</thead>
</table>
| 参考図又は施工例の写真 | 【天井仕上げ材】

最上階の天井は屋根裏（小屋裏＝準外部）の空間との区画面であることから、室内気候に影響を及ぼす断熱性の確保や、直下階の室内から小屋裏への湿気の透過を押える気密性（遮湿）なども必要とされています。

そのほか最上階の天井は小屋裏からの騒音を抑える為、適度な質量と隙間を少なくし一定の遮音性や3階建てなどに求められる防火性を有することが望ましいとされています。

一般的な仕様の構成
- 最上階の天井仕上げの構成としては、石膏ボード12mm厚以上
 - の下地張りにクロス貼り仕上げの他、9mm以上の石膏ボード捨て張りの上に吸音化粧板を重ね張りして仕上げる構成もあります。

高気密高断熱仕様の構成
- 天井裏に断熱材を施し野縁下端に防湿用の気密フィルム（ポリエチレンフィルム0.1mm厚以上）を張った後、石膏ボードを下地張りした上に仕上げのクロス若しくは化粧板を張る。

準耐火仕様の構成（木造三階建ての最上階の天井等）
- 天井裏に断熱材（ロックウール若しくはグラスウール24K50mm以上）を施し通常の石膏ボードであれば（12mm厚+9mm以上）二重張りとし仕上げにクロス貼りとしますが、二層目のボードを9mm厚以上の吸音化粧板などを張って仕上げることもできます。

- 天井裏に断熱材を施さない（屋根断熱仕様などの）場合には、強化石膏ボード12mm厚以上を二重張りしクロス貼り若しくは二層目のボードを12mm厚以上の吸音化粧板などを張って仕上げる事も出来ます。

- 単層張りとする場合は天井裏に断熱材（ロックウール若しくはグラスウール24K50mm以上）を施し強化石膏ボード15mm厚以上の上にクロス貼り若しくは9mm厚以上の吸音化粧板などを重ね張りとする事もできます。

※準耐火仕様として石膏ボードの二重張りや天井裏に断熱材を施した場合でも、高気密高断熱する場合には0.1mm厚以上の気密シートを下張りしなければなりません。

「住宅金融支援機構編：木造住宅又は枠組壁工法住宅の工事仕様書を参照」

※準耐火仕様は、小屋裏からの雨音や小屋裏換気孔から伝わる
外部騒音などを遮音する上でも有効な仕様構成といえます。
※一般的な仕様の天井構成であっても、小屋裏空間に接する最上階の天井下地には室内からの湿気を小屋裏に逃がさない為、防湿フィルムを捨て張りすることで、換気の特性などで生じ易い過剰な湿気による結露を抑制することにつながり、小屋組木部の腐朽やカビの発生を押えるうえで有利といえます。

【天井下地材】
- 石膏ボード：単層張り / 二重張り
- 強化石膏ボード：単層張り / 二重張り
- 合板：耐水合板 / 普通合板 / 構造用合板
- その他：気密シート下地張り / 防音シート

【野縁・吊木】
- 野縁：木製 / 軽量金属製
- 吊木：木製 / 鋼製ボルト / 樹脂製防震吊木
- その他：設備機器吊り込み補強（有 / 無）
※設備機器等の吊り具は構造体に直接取付けます。

【断熱材】

<table>
<thead>
<tr>
<th>位置</th>
<th>外張り断熱</th>
<th>遮熱</th>
<th>垂木間断熱</th>
<th>外断熱</th>
</tr>
</thead>
<tbody>
<tr>
<td>屋根断熱</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>栓上断熱</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>栓中断熱</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>天井断熱</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

種類
- 繊維：グラスウール / ロックウール / 木質
- 吹込：セルローズファイバー / 羊毛系
- 発泡：ウレタン / ステレン / エチレン / フェノール
- 吹付：ウレタン発泡 / 水性発泡 / セル透湿発泡
※高気密・高断熱では隙間の生じない種類を選ぶ事。
※天井下地には、防湿フィルムが推奨されます。

<table>
<thead>
<tr>
<th>厚さ</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>断熱等性能等級：</td>
<td></td>
</tr>
<tr>
<td>等級 4 / 等級 3 / 等級 2 / 等級 1</td>
<td></td>
</tr>
</tbody>
</table>

防湿材：JIS 防湿フィルム / 防湿フィルム
- 袋入り断熱材の防湿フィルム / なし

断熱建材とは（断熱建材協議会）
http://dankenkyou.com/dannetukenzai.html
第Ⅱ章 家造りガイドライン 関連ツール【チェックリスト】

<table>
<thead>
<tr>
<th>建物</th>
<th>屋根の付帯部材</th>
</tr>
</thead>
<tbody>
<tr>
<td>参考図又は施工例の写真</td>
<td>屋根と天井に関する附帯仕様の解説と選択</td>
</tr>
<tr>
<td>⑤ 屋根及び天井関連の付帯部材</td>
<td>【小屋裏換気部材】</td>
</tr>
<tr>
<td></td>
<td>□軒天井：□スポット型 □スリット型</td>
</tr>
<tr>
<td></td>
<td>□有孔板</td>
</tr>
<tr>
<td></td>
<td>※小屋裏空間全域の排湿換気に淀み域が生じないよう換気孔の配置は分散すること。</td>
</tr>
<tr>
<td></td>
<td>配置の選択：□軒先付□壁際付</td>
</tr>
<tr>
<td></td>
<td>□妻 壁：□屋切型 □レジスター型</td>
</tr>
<tr>
<td></td>
<td>□エルボ管</td>
</tr>
<tr>
<td></td>
<td>※妻壁換気孔の設置は棟頂部より 400 mm以内。</td>
</tr>
<tr>
<td></td>
<td>□棟頂部：□越屋根型□換気棟型□棟飾り型</td>
</tr>
<tr>
<td></td>
<td>□他（</td>
</tr>
<tr>
<td></td>
<td>※軒天井に設置する換気材の取付面積が 1箇所当り 100cm²を超える場合は、建築場所の防火規制により</td>
</tr>
<tr>
<td></td>
<td>□防火タイプか□非防火タイプを選択する。</td>
</tr>
<tr>
<td></td>
<td>気密断熱点検口</td>
</tr>
<tr>
<td></td>
<td>気密断熱型点検口</td>
</tr>
<tr>
<td></td>
<td>気密断熱型の内蓋</td>
</tr>
<tr>
<td></td>
<td>点検口枠が一体型</td>
</tr>
<tr>
<td></td>
<td>北海道地域の設置例</td>
</tr>
<tr>
<td></td>
<td>【小屋裏点検口】□通常気密 □高気密高断熱</td>
</tr>
<tr>
<td></td>
<td>□樹脂製：□気密型 □気密断熱型 □通常型</td>
</tr>
<tr>
<td></td>
<td>□金属製：□気密型 □気密断熱型 □通常型</td>
</tr>
<tr>
<td></td>
<td>□切込み：□天井上蓋型 □梯段収納型</td>
</tr>
<tr>
<td></td>
<td>※高気密高断熱住宅の小屋裏への開口は気密性と断熱性が地域の規定基準に適合した点検口が必要。</td>
</tr>
<tr>
<td></td>
<td>【空調機器等設備取り付け補強ほか】</td>
</tr>
<tr>
<td></td>
<td>□24 時間換気用セントラル機器用吊り具</td>
</tr>
<tr>
<td></td>
<td>□天井埋設型空調和機器用吊り具</td>
</tr>
<tr>
<td></td>
<td>【屋根付属施設】</td>
</tr>
<tr>
<td></td>
<td>□落雪止め：□瓦一体型 □吊子金物型</td>
</tr>
<tr>
<td></td>
<td>□点検用金物：□固定型 □振子型</td>
</tr>
<tr>
<td></td>
<td>□棟頂部吊環</td>
</tr>
<tr>
<td></td>
<td>※雪止めを設置する場合は軒樋を着脱式とすること</td>
</tr>
</tbody>
</table>

備考

第Ⅱ章－205
解説及び留意事項

対象部位: 建物の屋根及び直下階の天井部分

【解説】

- 北面勾配屋根下地は南面勾配屋根下地よりも湿潤リスクが高まります。
- 太陽光発電ＰＶ設備の不適切な設置方法により、屋根材下地の湿潤リスクが高まります。
- 下葺材（防水紙）には、不透湿性と透湿性の２タイプがあり、屋根材の種類により適性が異なります。
- 伝統的な屋根材の下地材料（葺き土や杉トントン等）には葺重ね部からの浸水に備えた吸水性と放湿性を有する材料が使われていたが、現在は防水性重視のルーフィングを使う事が多く、屋根材下の調湿と放湿は出来ない。従って、通気層などを適切に設けた通気下地屋根構法が有効な対応策です。
- 小屋裏空間の湿気の程度により、小屋裏内の結露のしやすさが異なります。小屋裏空間の水蒸気量は室内天井面の防湿性が大きく影響します。防湿性能を向上させるには防湿フィルムの別張りが有効です。
- 小屋裏空間の換気孔の配置は、給気孔と排気孔の高低差を90cm以上確保し、給気孔および排気孔ともに分散配置することが推奨されます。（軒裏スリット換気孔や棟換気が有効）
- 通気の軒先又は屋根材先端端部下端（雀口）には4mm目程度の防虫措置を施すことを推奨します。

留意事項

- 寒冷地の屋根葺き仕上げは、スガ漏れに留意する。
- 釘により防水ルーフィング及び野地板を貫通する部分の漏水及び結露に留意する。
- 冬期の小屋裏空間は放射冷却現象により外気より気温が低くなることに留意する。
- 屋根面の天窓や煙突部分には水上側に雪割による排水補助措置を施すこと。

情報

導化事象

<table>
<thead>
<tr>
<th>対象部位</th>
<th>屋根部分【不具合事象事例】不具合が原因とされる具体的な劣化事象</th>
</tr>
</thead>
<tbody>
<tr>
<td>小屋裏の結露によるカビが蔓延する場合がある。（野地板合板の湿潤による剥離が起き易い）</td>
<td></td>
</tr>
<tr>
<td>野地宮の結露による軒先の木部の腐朽。（野地板が湿潤して垂れ下がることがある）</td>
<td></td>
</tr>
<tr>
<td>屋根材の重ね部から雨水や粉塵が入り込むことがあり、一般構法では樋木や野地を腐朽させる場合があるが、通気下地屋根構法では雨水や粉塵が屋外に排出されやすくなり、劣化リスクが低くなる。</td>
<td></td>
</tr>
<tr>
<td>天井は、吊木、野縁、配線などがあるとともに、作業しにくい空間であるため、袋入り繊維系断熱材などで施工する場合は、断熱欠損が生じないように十分に注意する。</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>対象部位</th>
<th>下地部分</th>
</tr>
</thead>
<tbody>
<tr>
<td>野地板と樋木の接合部分の漏水と腐朽</td>
<td></td>
</tr>
<tr>
<td>軒先の広小舞及び樋木先端部と軒桁天端の腐朽</td>
<td></td>
</tr>
<tr>
<td>南面屋根の太陽光発電ＰＶ設備を設置した屋根下地の結露、カビ、湿潤腐朽</td>
<td></td>
</tr>
</tbody>
</table>

第Ⅱ章 家造りガイドライン 関連ツール【チェックリスト】

第Ⅱ章－206
3. 乾式外壁まわり、軒天井（軸組構造）

【乾式外壁まわりの層構成図】
※乾式外壁まわりは下図①〜⑥に示す各層により構成されており、詳細については次頁以降の解説をご覧下さい。希望する材料と構法の□をチェックして選択し、その結果を契約前の参考として下さい。

【軸組構造仕様構成図】
①仕上：□湿式 □乾式
②下地：□通気（□有□無）
③構造：□軸組□改良構法
④内壁：□気密（□有□無）
⑤付帯：□軒天見切□水切り

※外装材が横張りの場合の構成図です。 （縦張りと異なります）
※通気層の排出は軒出しの構成図です。
※①の仕上げは、乾式外壁の一般的な仕様と名称を表記しています。
湿式構法は別紙をご覧下さい。
<table>
<thead>
<tr>
<th>各構成層仕様解説</th>
<th>※参考図又は写真の製品は推奨品を示す物ではありません。</th>
</tr>
</thead>
<tbody>
<tr>
<td>①外壁の仕上げ</td>
<td>外壁仕上げの選択と解説</td>
</tr>
<tr>
<td>建物外壁の仕上げ仕様</td>
<td></td>
</tr>
<tr>
<td></td>
<td>【乾式外装材】☐塗装品 ☐無塗装品</td>
</tr>
<tr>
<td></td>
<td>☐窯業系サイディング ☐木繊維 ☐G繊維</td>
</tr>
<tr>
<td></td>
<td>(☐セメント系 ☐ケイカル系 ☐セラミック系)</td>
</tr>
<tr>
<td></td>
<td>☐金属系サイディング ☐裏打ち無 ☐裏打ち有</td>
</tr>
<tr>
<td></td>
<td>(☐鋼板系 ☐アルミ系)</td>
</tr>
<tr>
<td></td>
<td>☐木質系サイディング</td>
</tr>
<tr>
<td></td>
<td>(☐パネル ☐合板系 ☐無垢材)</td>
</tr>
<tr>
<td></td>
<td>☐塩ビ系サイディング</td>
</tr>
<tr>
<td></td>
<td>(☐被覆鋼板 ☐難燃樹脂製)</td>
</tr>
<tr>
<td></td>
<td>☐【発泡コンクリート板】☐ラス維補強 ☐溶接金補強</td>
</tr>
<tr>
<td></td>
<td>☐厚型ALC板 (☐75mm厚 ☐100mm厚 ☐125mm厚)</td>
</tr>
<tr>
<td></td>
<td>☐薄型ALC板 (☐37mm厚 ☐50mm厚 ☐74mm厚)</td>
</tr>
<tr>
<td></td>
<td>※50mm以上にはデザイン加工されたものもある。</td>
</tr>
<tr>
<td></td>
<td>現場塗装：☐水溶性樹脂塗装 ☐透湿性防水塗装</td>
</tr>
<tr>
<td></td>
<td>☐【その他の外装材】☐耐候塗膜品☐現場塗装品</td>
</tr>
<tr>
<td></td>
<td>☐製作パネル：☐コンクリート板 ☐タイル貼りPC板</td>
</tr>
<tr>
<td></td>
<td>☐木製板張り：☐鍵下見板 ☐縦羽目板 ☐横羽目板</td>
</tr>
<tr>
<td></td>
<td>☐金属板：☐鋼板張り ☐鋼板張り ☐その他：)</td>
</tr>
<tr>
<td></td>
<td>☐石板貼：☐自然石☐人造石 ☐スレート ☐その他：)</td>
</tr>
<tr>
<td></td>
<td>※外装材の塗装は防水性・耐候性・透湿性等が重要で外装の</td>
</tr>
<tr>
<td></td>
<td>継久性に大きな影響を及ぼします。</td>
</tr>
<tr>
<td></td>
<td>※木製等の現場塗装は定期的に塗り直しが必要です。</td>
</tr>
<tr>
<td></td>
<td>【目地等の止水処理】</td>
</tr>
<tr>
<td></td>
<td>シーリング：☐アクリル系 ☐シリコン系 ☐エポキシ系</td>
</tr>
<tr>
<td></td>
<td>※外装の色に合う様々な色があり塗装タイプもある。</td>
</tr>
<tr>
<td></td>
<td>目地下地材：☐目地金物 ☐発泡バックアップ材</td>
</tr>
<tr>
<td></td>
<td>目地下地材は非着性が重要な性能要件です。</td>
</tr>
<tr>
<td>備考</td>
<td>※、乾式外装板の場合は外装板自体の防水性よりも継手や端部のシーリング処理の性能が最も重要となります。</td>
</tr>
</tbody>
</table>
外壁の下地

<table>
<thead>
<tr>
<th>外壁下地の種類</th>
<th>外壁下地の選択と解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>外壁下地の種類</td>
<td>【防水シート】</td>
</tr>
<tr>
<td></td>
<td>透湿防水シート：□単層タイプ □複層タイプ</td>
</tr>
<tr>
<td></td>
<td>※通気構法用の透湿シートは継ぎ重ねの捲れによる通気阻害を少なくする為ス テープルを使用する場合は、できる限り上重ねシートの下端を押えるよう注意 する事。</td>
</tr>
<tr>
<td></td>
<td>※透湿シートの継ぎ重ね部は透湿シート専用の両面粘着テープを使用する事が 望ましい。 (この場合は透湿シートメーカー指定の製品を使用する事が望ま しい)</td>
</tr>
<tr>
<td></td>
<td>アスファルトフェルト（モルタル裏面用）</td>
</tr>
<tr>
<td></td>
<td>□改質アスファルトフェルト</td>
</tr>
<tr>
<td></td>
<td>□アスファルトフェルト 430</td>
</tr>
<tr>
<td></td>
<td>※透湿防水シートは、外装の直張りには使用しないでください。</td>
</tr>
</tbody>
</table>

透湿防水シートとは（日本透湿防水シート協会）：http://www.ntba.jp/

<table>
<thead>
<tr>
<th>通気胴縁</th>
<th>木製胴縁：☐横張り用☐縦張り用</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□K3保存処理材 □合板 □無処理木材□合成木材</td>
</tr>
<tr>
<td></td>
<td>□樹脂胴縁：□金属補強入り □木合成樹脂</td>
</tr>
<tr>
<td></td>
<td>□通気金物：□15 mm厚 □18 mm厚 □その他（</td>
</tr>
<tr>
<td></td>
<td>□その他（</td>
</tr>
<tr>
<td></td>
<td>※外装板の下地不陸を補整する為に設ける厚さ 15 mm未満の調整胴縁を使用する 場合は通気阻害による結露が生じないよう施工する事。</td>
</tr>
<tr>
<td></td>
<td>※透湿シートを押える通気胴縁とシートの界接面には固定具の貫通による浸水 を防ぐための防水テープを添える事が望ましい。</td>
</tr>
<tr>
<td></td>
<td>※施工者は通気金物が転付する外装材の総重量に適合した下地への固定方法と 接合具の組合せなど、金物の製造メーカが保証する仕様・重量を厳守する事。</td>
</tr>
</tbody>
</table>

【重要事項】

※通気金物の取付け部分の下地木部は十分に補強する事が必要です。
第Ⅱ章 家造りガイドライン 関連ツール【チェックリスト】

<table>
<thead>
<tr>
<th>建物外壁の構造仕様</th>
<th>構造の選択と解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>外壁の構造部分</td>
<td>【軸組構法の場合】※主要構造部（土台・柱・桁等）</td>
</tr>
<tr>
<td></td>
<td>樹種：☐K3保存処理材 ☐D 1材（芯持材）☐A0認証材</td>
</tr>
<tr>
<td></td>
<td>☐母材がD 1材の構造用集成材又はLVL積層材</td>
</tr>
<tr>
<td></td>
<td>☐乾燥処理材（含水率18%以下の無垢材）</td>
</tr>
<tr>
<td></td>
<td>☐無乾燥木材（通常グリーン材と呼ばれます）は耐乾燥性能が低いため使用されません。</td>
</tr>
</tbody>
</table>

	【枠組工法の場合】※主要構造部（土台・枠組材等）
	樹種：☐SPF材 ☐ダグラスファー ☐その他 ISO規格材
	☐SPFは、S=スプルス、P=パイン、F=ファー、という樹種の略称です。
	☐国際規格で定められた木材で、含水率19%以下とされています。
	☐枠組工法は一般的にツーバイフォー工法と呼ばれ、その構造用木材はSPFグレード材が使われています。（角は丸みがついています）

	【耐力壁面材】
	住まいの外壁は、建物の主要な耐震壁として構成されているのが一般的です。
	【構造用板材】
	☐構造用合板：☐特類1級（耐水性） ☐特類2級（非耐水性）
	☐構造用パネル：☐耐向性ストランドボード（OSB）
	☐中質繊維板（MDF）
	☐強化セメント板：☐火山性ガラス質複層板（SVB）
	☐珪酸混入セメント板
	☐その他
	（金属製強化パネル、パーティクルボードなどがあります。）

	【構造用軸組材】
	☐筋かい：☐柱半割 ☐柱三つ割 ☐柱角材
	※木造住宅は、軸組構法では耐力壁として耐力壁面材と筋組材を併用する事がありますが、枠組工法住宅の場合は耐力壁面材のみで構成されるのが一般的です。
	※このほか、壁体内に地震対策として「制振又は制震」金具などが組込まれることがあります。

| | 合板の利用（日本合板工業組合連合会）：http://www.jpma.jp/use/index.html |
| | 木質ボードの紹介（日本纖維板工業会）：http://jfpma.jp/seihin/ |
第Ⅱ章 家造りガイドライン 関連ツール【チェックリスト】

<table>
<thead>
<tr>
<th>吹込系</th>
<th>吹付け</th>
</tr>
</thead>
<tbody>
<tr>
<td>発泡</td>
<td>封袋</td>
</tr>
</tbody>
</table>

【断熱材】
※断熱材の室内側に防湿フィルムを施工する事をお勧めします。
無機繊維系：グラスウール、ロックウール
木質繊維系：セルローズファイバー、インシュレーションボード
発泡プラスチック系：ビーズ法ポリスチレンフォーム、押出法ポリスチレンフォーム、硬質ウレタンフォーム、フェノールフォーム
※発泡系はすべて樹脂成型板で内装下地に先立って施工します。

断熱材とは（断熱建材協議会）：http://dankenkyou.com/dannetukenzai.html

備考
第Ⅱ章 家造りガイドライン 関連ツール【チェックリスト】

<table>
<thead>
<tr>
<th>内装の仕上げ</th>
<th>内装仕上げの種類</th>
<th>内装仕上げ材の選択と解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>石膏ボード</td>
<td>内装下地</td>
<td>※構造体との間に気密層を設ける事をお勧めします。</td>
</tr>
<tr>
<td>普通合板: ラワン・シナ・杉若杉</td>
<td>合板: ☐構造用合板 ☐普通合板 ☐化粧板り構造用合板 ☐天然木化粧合板 ☐特殊加工化粧合板</td>
<td></td>
</tr>
<tr>
<td>建物の内装壁の仕上げ材</td>
<td>繊維板: ☐ハーデボード ☐中質繊維板 (MDF) ☐インシュレーションボード ☐バーチュアルボード</td>
<td>石こうボード: ☐石こう (GB-R) ☐普通硬質石こうボード (GB-R-H) ☐シーリング石こうボード (GB-S) ☐強化石こうボード (GB-F) ☐構造用石こうボード (GB-st-A・B) ☐石こうラスボード (GB-L) ☐化粧石こうボード (GB-D) ☐不燃積層石こうボード (GB-NC) ☐吸放湿石こうボード (HC) ☐吸音用あなあき石こうボード (GB-P) ☐火山性ガラス質複層板 (SVB) ☐けい酸カルシウム板 ☐スレートボード ☐その他:</td>
</tr>
<tr>
<td>オスパー構造用パネル</td>
<td>防湿層: ☐住宅用プラスチック系防湿フィルム (JIS A 6930) ☐その他 ()</td>
<td></td>
</tr>
<tr>
<td>石膏ボードについて（一般社団法人 石膏ボード工業会）:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>窯業板</td>
<td>防湿層: ☐住宅用プラスチック系防湿フィルム (JIS A 6930) ☐その他 ()</td>
<td></td>
</tr>
<tr>
<td>普通合板: ラワン・シナ・杉若杉</td>
<td>防湿層: ☐住宅用プラスチック系防湿フィルム (JIS A 6930) ☐その他 ()</td>
<td></td>
</tr>
<tr>
<td>建物の内装壁の仕上げ材</td>
<td>防湿層: ☐住宅用プラスチック系防湿フィルム (JIS A 6930) ☐その他 ()</td>
<td></td>
</tr>
<tr>
<td>石膏ボードについて（一般社団法人 石膏ボード工業会）:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>窯業板</td>
<td>防湿層: ☐住宅用プラスチック系防湿フィルム (JIS A 6930) ☐その他 ()</td>
<td></td>
</tr>
</tbody>
</table>

備考

第Ⅱ章−212
第Ⅱ章 家造りガイドライン 関連ツール【チェックリスト】

付帯部材の種類

<table>
<thead>
<tr>
<th>付帯部材</th>
<th>選択と解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>通常水切り</td>
<td>通常水切り : ☐別付防粗材+水切り ☐水切りのみ</td>
</tr>
<tr>
<td>防鼠付水切</td>
<td>防鼠付水切 : 防鼠開口が開口率 66%以上且つ 75㎠/㎡以上の事。</td>
</tr>
<tr>
<td>外壁下端の水切り</td>
<td>※鼠等の侵入を防ぐ開口幅は 8㎜以下。</td>
</tr>
<tr>
<td>✔防鼠付水切</td>
<td>防鼠付水切 : 防鼠開口が開口率 66%以上且つ 75㎠/㎡以上の事。</td>
</tr>
<tr>
<td>☐防鼠開口</td>
<td>※防細材が水切りと一体となっている為、ねこ部材の種別を選ばない。</td>
</tr>
<tr>
<td>☐防鼠材</td>
<td>※防細材が水切りと一体となっている為、ねこ部材の種別を選ばない。</td>
</tr>
<tr>
<td>☐水切りのみ</td>
<td>※防細材が水切りと一体となっている為、ねこ部材の種別を選ばない。</td>
</tr>
<tr>
<td>☐別付防粗材</td>
<td>※防細材が水切りと一体となっている為、ねこ部材の種別を選ばない。</td>
</tr>
</tbody>
</table>

軒天と軒裏の付帯部材仕様

軒天通気見切	軒天通気見切 : 軒天の通気流は軒天で外部に排出
☐軒天通気見切	軒天通気見切 : 軒天の通気流は軒天で外部に排出
☐軒裏通気見切	軒裏通気見切 : 軒裏の通気流は軒天で外部に排出
☐無開口見切り	無開口見切り : 軒天と軒裏の仕上材の化粧見切のみ

外壁通気見切

| 外壁通気見切 | 外壁通気見切 | 外壁通気見切 |
| ☐外壁通気見切 | 外壁通気見切 | 外壁通気見切 |

軒ゼロの場合は

| 軒ゼロの場合は | 小屋裏換気孔と通気流の吸排気孔として利用する。 |

オーナメント

肉飾り板	肉飾り板
☐肉飾り板	肉飾り板
☐隅角役物	隅角役物

防水用材

| 防水用材 | 防水用材 |
| ☐防水用材 | 防水用材 |

防水用材

| 防水止水処理 | 防水止水処理 |
| ☐防水止水処理 | 防水止水処理 |

備考

※外壁と附帯部材の取合い部分の防水処理を確実に行う事が重要。
【補足添付資料】

<table>
<thead>
<tr>
<th>対象部位：外壁と軒天井部分</th>
</tr>
</thead>
<tbody>
<tr>
<td>【解説】</td>
</tr>
<tr>
<td>・外壁通気構法の通気胴縁には、木製胴縁と通気用金物を使うタイプがあるが、金物の仕様においては特に通気流によるあおりめくれが音鳴りの原因となり易いので上に重ねる防風透湿シートの継手部の下端を確実に押えることが重要。</td>
</tr>
<tr>
<td>・外壁側の室内下地には壁体断熱材の性能を維持するため必ず気密シートを張ること。</td>
</tr>
<tr>
<td>・軒裏に設ける小屋裏換気孔は軒裏の全長にスリット型で設けることが望ましい。</td>
</tr>
<tr>
<td>・軒の出が十分確保できる場合には、壁体の通気排出孔と小屋裏換気孔をできるだけ隔離することが望ましい。又、小屋裏換気孔は軒先寄りに配置する事が強風雨時などに過剰な外気の侵入を防ぐ上で有効である。</td>
</tr>
</tbody>
</table>

※

【留意事項】

- 通気層の透湿シートの継手部は上昇気流による捲れが起きないよう留付けは慎重且つ確実に抑えること。
- 外壁下地に耐力壁合板を用いる場合は室内側の下地の透湿抵抗値が外側より高くなる構成とするよう留意すること。
- 外壁側に設ける設備用アウトレット（コンセントやスイッチ、ガス栓用）ボックスにはすべて気密型のものを取り付けるのが望ましい。

※外壁側の気密層の破れは壁体の空洞部に結露を起こす原因となり易いので注意。

【情報】
4. 基礎、床下まわり（軸組構法）

<table>
<thead>
<tr>
<th>脚部</th>
<th>3A</th>
<th>部位</th>
<th>ベタ基礎・床下まわり</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>設計仕様</td>
<td>基礎及び床下まわりの構成</td>
<td>外皮基礎仕上げ〜内装床仕上げまで</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【層構成図】
※基礎・床下まわりは下図①〜⑤に示す各層により構成されており、詳細については次頁以降の解説をご覧下さい。希望する材料と構法の□をチェックして選択し、その結果を契約前の参考として下さい。

【建物脚部構成区分】
①外装仕上材
②基礎構造部
③床組下地材
④内装仕上材
⑤関連附帯品

※床下土間上面は外部地盤面より50mm〜60mm程度高く設定する。

*床下換気に使用するねこ部材は木造建物全体の耐久性と構造安全性において重要な部材です。
詳細は[本資料末尾の添付資料:解説及び留意事項を参照して下さい。]
各構成層仕様解説

基礎の仕上げ

<table>
<thead>
<tr>
<th>仕上げの選択・解説</th>
<th>仕上げの種類</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 基礎の仕上げ</td>
<td>※希望する材料を選び□内に✔マークを記入。</td>
</tr>
</tbody>
</table>

【湿式仕上げ】
- ☐モルタル刷毛引き仕上げ：左参考写真
- ☐モルタル櫛引き仕上げ
- ☐化粧粒砂洗出し仕上げ
- ☐モルタル鍛押え仕上げ

※仕上げ塗り厚さは15mm以上とすること。

【化粧材直貼り仕上げ】
- ☐タイル・人造石貼り仕上げ
- ☐自然石化粧貼り仕上げ：左参考写真

※基礎の外側に化粧板材を張付ける場合は、コンクリートモルタル用の接着性の強い混和材を使って圧着式で張付ける事が望ましい。

【コンクリート打ち放し仕上げ】
- ☐化粧型枠打ち放し：左参考写真
- ☐鋼製型枠打ち放し

※化粧型枠による施工が推奨される。

【塗装仕上げ】
- ☐防水塗料吹付け仕上げ
- ☐防水被膜塗料塗布仕上：左参考写真

※コンクリート面を十分に乾燥させなければ竣工後に水分による剥離する恐れがあるため注意が必要。

備考

最下階の床は、準外部とされる床下空間と室内空間を区画する部位であり、無垢造住宅の外皮の一部として構成されます。

① 基礎の仕上げ構成

【備考解説】
第Ⅱ章 家造りガイドライン 関連ツール【チェックリスト】

<table>
<thead>
<tr>
<th>棟基礎の仕上げに危険性を認めると要件はありません。</th>
</tr>
</thead>
</table>
| ・基礎断熱を外張とする場合は、発泡系の断熱材を通って基礎の打継部分や基礎天端にシロアリが週行し易く、断熱材に防蟻剤などを処理した材料の使用をお奨めします。

② 基礎の構造種別と構成
【備考解説】
|一般的にベタ基礎はシロアリに対して防蟻性が高いといわれていますが、ベタ基礎の土間と外周の立上り部分の打継や型枠の施工方法によってはシロアリが容易に床下側に侵入することがあり、基礎コンクリートの打継や外周基礎に付帯する犬走やポーチ等との一体化に注意が必要です。（補足添付資料の項参照）|
|布基礎の場合は、定番と立ち上がりの打継部分からシロアリが床下側に週行することが考えられるため、床下土間を基礎と一体なったコンクリート土間としない限り、土間下の土壌に防蟻措置を施す必要があります。（土間防湿シートには防蟻性はありません）|
|最下階の床下は高さ400cm以上とる事と床面を支える床枠には、自立した床高さを調整できる調整束を使用する事で事後の床下点検や設備配管などの作業がし易くなる利点があげられます。|

※基礎外周の仕上げに危険性を認めると要件はありません。
基礎の構造

基礎の種類（ベタ基礎編）

<table>
<thead>
<tr>
<th>基礎の造り方と解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>【内側と外側の型枠を2段工程で組む】</td>
</tr>
<tr>
<td>- 土間コンクリート打設用に堰板型枠を組立てる。</td>
</tr>
<tr>
<td>- 立上がり内外の型枠を全幅セパレーターで組立てる。</td>
</tr>
<tr>
<td>※立上がりの打継部に型枠用幅止金物が貫通した状態で残る為、雨水が浸水しやすい。</td>
</tr>
<tr>
<td>【外側型枠は1段で組み内側の型枠を後工程で組む】</td>
</tr>
<tr>
<td>- 外型枠は土間・立上がりコンクリートを2工程で打設完了まで一貫して組立てておく。【推奨】</td>
</tr>
<tr>
<td>- 内型枠を半セパとコーンセパで組み立てる。</td>
</tr>
<tr>
<td>※外側型枠を立上がりのコンクリート打設完了まで使用する為打継部に金物の貫通孔が無く浸水しにくい。</td>
</tr>
<tr>
<td>【内外周型枠を1体組しコンクリートも1工程打設】</td>
</tr>
<tr>
<td>- 外周の内側の枠組を土間の天面レベルまで浮かす。</td>
</tr>
<tr>
<td>※外周基礎のコンクリートを連続工程で打設し打継や貫通孔もない為、雨の浸水やシロアリ侵入リスクが少ない。豪雨時の床下浸水リスクも軽減できる。</td>
</tr>
<tr>
<td>【外構付帯部分・犬走りorポーチ土間等】</td>
</tr>
<tr>
<td>- 無筋コンクリートを後で外溝として打設</td>
</tr>
<tr>
<td>- 基礎と配筋緊接し一体で打設（段型打継）【推奨】</td>
</tr>
<tr>
<td>- 基礎外側と完全分離した溝付ポーチ土間【推奨】</td>
</tr>
<tr>
<td>【型枠組用セパレーター】</td>
</tr>
<tr>
<td>- 全巾止金物：打継部分に使用しない事が望ましい。</td>
</tr>
<tr>
<td>- 半セパとボルト止め（コーンセパレーター）【推奨】</td>
</tr>
</tbody>
</table>
| ※、巾止金物の裏面の溝（打設後の貫通孔）に注意。

備考

コンクリート打設用の型枠を組立てる際に使用する型枠セパレーター金物には、巾止金物とボルト金物があるが打設後に取外しが難しい為、残置される巾止金物は浸水やシロアリの侵入を起こし易い貫通孔が残されるため、コーンセパレーターの使用が望ましい。
（シロアリの多い沖縄はコーンセパレーターが通常の施工方法とされている。）
<table>
<thead>
<tr>
<th>床組の仕様</th>
<th>床組は事前に情報を確認し理解した後に□内に✔印を記して下さい。</th>
</tr>
</thead>
<tbody>
<tr>
<td>床組の種類</td>
<td>床組材料の仕様の選択と解説</td>
</tr>
<tr>
<td>□根太転ばし床</td>
<td>【土台・大引・床架】※土台以外は主要構造材ではありません。</td>
</tr>
<tr>
<td></td>
<td>□防腐防蟻薬剤K3保存処理材</td>
</tr>
<tr>
<td></td>
<td>□耐久性の高い樹種：□D1材□長期優良A Q認証材</td>
</tr>
<tr>
<td></td>
<td>□乾燥無垢材：□D1材□長期優良A Q認証材</td>
</tr>
<tr>
<td></td>
<td>□D1耐久性の高い樹種の集成材若しくは積層材</td>
</tr>
<tr>
<td>※長期優良住宅では乾燥不足のグリーン材は使ってはならない。</td>
<td></td>
</tr>
<tr>
<td>□受根太：□40×45 mm□40×60 mm□38×89 mm（乾燥材）</td>
<td></td>
</tr>
<tr>
<td>※乾燥不足の根太は床鳴りの原因となり易い為に使用しない事。</td>
<td></td>
</tr>
<tr>
<td>【床板】※根太受け・直貼り夫々に適した厚さの床板を選びます。</td>
<td></td>
</tr>
<tr>
<td>□合板：□ネダレス合板□構造用合板□構造用パネル</td>
<td></td>
</tr>
<tr>
<td>□無垢材：□杉板□松板□その他（土壌土間では全て束石が必要）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>※ネダレス合板は本実手になっている。</td>
</tr>
<tr>
<td></td>
<td>厚さは 24 ㎜・28mm 等があり、一般的な呼称として実付と呼ばれている。</td>
</tr>
<tr>
<td></td>
<td>※木製の床板には芯壁を防ぐ為無垢材の床板を使用して下さい。</td>
</tr>
<tr>
<td></td>
<td>※床下空間は常に高い湿気に出される事から、床下部には十分な換気換気を施し</td>
</tr>
<tr>
<td></td>
<td>乾燥を促進する為、床組木材は十分に乾燥された木材を使用し、水湿分による腐</td>
</tr>
<tr>
<td></td>
<td>条やシロアリの食害に備えることが必要。</td>
</tr>
<tr>
<td>□床板直張り＝ネダレス床</td>
<td></td>
</tr>
<tr>
<td></td>
<td>【床束】</td>
</tr>
<tr>
<td></td>
<td>□鋼製調整束：□溶融亜鉛鍍金（銀） □電解塗膜（黑）</td>
</tr>
<tr>
<td></td>
<td>□樹脂製調整束：□PE+66 ナイロン製□塩ビ製□その他（木製）</td>
</tr>
<tr>
<td></td>
<td>□束石+木製：□K3保存処理材□D1材□現場薬剤処理</td>
</tr>
<tr>
<td></td>
<td>※木製束には脱落防止用の根絡み貫や留金物が必要</td>
</tr>
<tr>
<td></td>
<td>【床裏断熱材】</td>
</tr>
<tr>
<td></td>
<td>□繊維系：□ガラス繊維系 □紡繊維（封袋又は成型板）</td>
</tr>
<tr>
<td></td>
<td>□吹込系：□セルロース系 □木質繊維系 □羊毛系</td>
</tr>
<tr>
<td></td>
<td>※以上の断熱材には断熱受け（受枠又はベーパーバリア）等を設ける。</td>
</tr>
<tr>
<td></td>
<td>□発泡系：□エチレン □ウレタン □スチレン □フェノール</td>
</tr>
<tr>
<td></td>
<td>□吹付系：□ウレタン系吹付け □水性系吹付け</td>
</tr>
<tr>
<td>備考</td>
<td>※床板を直張りする場合であっても、大引を格子組みしない場合は火打ち材が必要となる。</td>
</tr>
</tbody>
</table>

第Ⅱ章 家造りガイドライン 関連ツール【チェックリスト】
<table>
<thead>
<tr>
<th>内装床仕上げ</th>
<th>選択は実際の製品等を確認して希望の材料の□内に✔を入れて下さい</th>
</tr>
</thead>
<tbody>
<tr>
<td>仕上げ材の種類（参考写真）</td>
<td>内装床仕上げ材の選択と解説</td>
</tr>
</tbody>
</table>

建物の内装床の仕上げ仕様

<table>
<thead>
<tr>
<th></th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>内装床仕上げ</td>
<td></td>
</tr>
<tr>
<td>内装床仕上げ材の選択と解説</td>
<td></td>
</tr>
</tbody>
</table>

【床仕上げ材】

洋室一般（洋間・LＤＫ・共用廊下等の床仕上げ）

□化粧ラミネート貼り：□合板下地□積層合板下地

※合板下地に木目等を印刷した樹脂なシートを貼り付けた床材で最も一般的で床材で、厚さは1.2㎜～2.4㎜と様々です。（厚さ□□㎜）

□化粧突板張り：□合板下地□積層合板下地

※合板下地に薄く削いだ無垢材の化粧木目を貼り付けたもので、板の厚さが比較的厚めの18㎜以上のものが一般的です。（厚さ□□㎜）

□無垢床材：□フローリング□縁甲板□単板加工品

※板材の側面木口に本実等の加工を施したものをフローリングと呼び、無加工で突き合せるものを縁甲板と呼びます。（厚さ□□㎜）

□敷き物貼り：□繊織直張り□コルク貼り□絨毯敷

※床板に逆鉤フックや糊貼りをします。置き敷きの製品もありま

和室一般の床仕上げ

□畳：□発泡芯新建畳□本床畳□琉球畳□薄縁畳

※本床畳は芯腐れ予防の為、床板には杉板等の無垢材を組合せる事。

その他（洋間・台所・収納・水回り等）の床仕上げ

□CＦシート□塩ビシート・タイル□リノリウムシート

※クッション裏張りしたものをCＦと呼び、専用の合成樹脂で貼ります。

その他（水回り・内土間・サンルーム等）の床仕上げ

□タイル貼り：□モザイクタイル□内装床用タイル
第Ⅱ章 家造りガイドライン 関連ツール【チェックリスト】

□石貼り：□自然石貼り□人造石貼り□その他（※コンクリート土間の他、乾式の耐水合板や窯業系板材下地等がある。）	□左官：□モルタル鉤押え□色砂洗出し□その他（
□石貼り：□自然石貼り□人造石貼り□その他（※コンクリート土間の他、乾式の耐水合板や窯業系板材下地等がある。）	□左官：□モルタル鉤押え□色砂洗出し□その他（
【床下点検口】	【床下点検口】
□金属製：□通常型（収納庫）□気密型□気密断熱型	□金属製：□通常型（収納庫）□気密型□気密断熱型
□樹脂製：□通常型（収納庫）□気密型□気密断熱型	□樹脂製：□通常型（収納庫）□気密型□気密断熱型
※長期優良住宅の床下点検口は内周基礎の区画毎に一カ所設置が必要。	※長期優良住宅の床下点検口は内周基礎の区画毎に一カ所設置が必要。
※一般には床下収納庫部分を脱着して点検出入口としている。	※一般には床下収納庫部分を脱着して点検出入口としている。

備考

※点検口枠は床材との気密も必要。
<table>
<thead>
<tr>
<th>№</th>
<th>基礎・最下階床の付帯部材</th>
<th>希望する仕様・材料の□内に✔印を記して下さい。</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>基礎と最下階床の付帯部材仕様</td>
<td>付属部材の種類 仕様の選択・解説</td>
</tr>
</tbody>
</table>

【床下換気孔】
- **スポット方式**: 外周基礎に4 m 以下毎に換気開口。
- **スリット方式**: 外壁脚部の全周に換気孔を設ける。

※基礎立ち上がり部に換気孔を開削する方式で、基礎耐力の補強と木造脚部の劣化対策を講じる必要がある。

【床下点検口】
- **気密断熱型点検口**: ☐脱着収納庫付 ☐収納庫無し
- **気密収納型点検口**: ☐気密蓋点検口 ☐和室積変蓋
- **通常一般型点検口**: ☐畳床切抜 ☐床下収納庫型

※床下点検口の蓋は気密タイプとする事が必要。

【気密パッキン】
- **材質**: ☐発泡EPDM ☐合成ゴム ☐弾性樹脂
- **気密シールのみ**: 基礎天端の不陸は断裂の恐れあり
- **耐圧板付シール**: 気密材の耐圧防護材が付いている

【外構土間・設備機器用合基礎】
- **無筋コンクリート打設**: ☐
- **基礎分離無筋土間**: 基礎から10 cm以上離す。
- **基礎一体有筋土間**: 基礎の打継貫通孔は要閉塞。

※設備配管の基礎貫通部に隙間を残さない事。

※外構の無筋土間と基礎は剥離する為、床下への雨水浸水とシロアリ侵入の原因となり易いので要注意。

【水切り】
- **材質**: ☐鋼板製 ☐アルミ製 ☐樹脂製
- **形状**: ☐防鼠付一体型水切り ☐換気孔カバー

備考
【補足添付資料】

<table>
<thead>
<tr>
<th>解説及び留意事項</th>
</tr>
</thead>
<tbody>
<tr>
<td>対象部位：基礎・最下階床組部分</td>
</tr>
</tbody>
</table>

【解説】
- 基礎コンクリートの打継部に多く（外部からの浸水やシロアリの侵入）劣化リスクに対する防御措置の必要性を認識する事。
 - 防御たためして打継コンクリートの接合部は充填閉塞する事。

雨水浸入やシロアリの浸入を防止するため、
- 床下の設備配管の基礎貫通部分に（止水と防蟻シール）閉塞充填処理を怠らないこと。
- 外周基礎を貫通する孔は放置せず必ず閉塞処理する。
- 貫通孔を放置したまま地盤土砂や外構土間等を被せないこと。

- 床下換気措置として全周スリット方式の換気とする場合、基礎と土台の間に敷設するねこ部材は、構造安全性と長期耐久性能を維持するために品質の確かな部材を使用すること。
 - 主要構造部材同等の長期に安定した物性を保証できる事。
 - ねこ材のスリット通気隙間の厚さ寸法は15mm以上を確保する。
 - ねこ材が土台を受ける受圧面は、上部の荷重を均等に伝達するためなるべく平滑であること。

【留意事項】
- ねこ部材は、耐久性と構造安全性を保持できる製品であること。
- 長期間の連続負荷により歪みを生じないものであること。
- ベタ基礎の打継はコールドジョイントと呼ばれており、コンクリートは必ずしも一体化されていないので、シロアリの侵入に注意すること。
- 床下土間には各種設備配管があり、コンクリートに設ける「鞘管方式」と「打設方式」があり、長期の維持管理や補修には「鞘管方式」が適している。
- 床下の有効クリアランスは点検通路として移動する為に必要な寸法を確保する事。

【不具合事象事例】不具合が原因とされる具体的な劣化事象
- 外周壁体内の結露による土台の湿潤と保存処理薬剤の溶出事例。
- ベタ基礎の打継が外部からの浸水による床下空間の湿潤と床組木部の湿潤事例。
- 床下の結露水による湿潤とカビの蔓延に伴う化粧フロア材の変色事例。

対象部位：基礎と外壁の取合い部分
- 水切りへの通気構法用透湿シートの押え不備事例。
- 水切りの通気開口不足が招いた床下換気不足による結露、腐朽事故事例。

※最下階床組は主要構造部分ではないが、劣化事故は日常生活を脅かすことになる。
5. バルコニーまわり（軸組構法）

<table>
<thead>
<tr>
<th>部位</th>
<th>バルコニー</th>
<th>No.__________</th>
</tr>
</thead>
<tbody>
<tr>
<td>設計仕様：片持ち出し式バルコニー</td>
<td>バルコニーの仕上げ〜下地まで</td>
<td></td>
</tr>
</tbody>
</table>

【バルコニー各層構成図】※構造一体式の構成図
※基礎・床下まわりは下図①〜⑤に示す各層により構成されており、詳細については次頁以降の解説をご覧下
さい。希望する材料と構法の□をチェックして選択し、その結果を契約前の参考として下さい。

対

象

範

囲

全

体

仕

様

構

成

図

【バルコニー構成層】
① 外装仕上：□湿式外装仕上げ □乾式外装仕上げ
② 外装下地：□通気層あり □通気層なし □手すり壁中空（床裏断熱材あり □なし）
③ 構造構成：□母屋の構造と一体 □母屋の構造と別構成 □床構造のみ
④ 床面構成：□床板を水平とし防水処理 □床板を耐水防水材とし排水勾配処理
⑤ 附帯部材：□手すり壁に開口あり □手すり壁に開口無し
□手すり壁なし既成仕切柵を取付け
<table>
<thead>
<tr>
<th>バルコニー各部の仕上げ</th>
<th>仕上げ材の種類</th>
<th>仕上材の選択と解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>【手すり壁湿式仕上材】</td>
<td>☐湿式左官：☐刷毛引き ☐鍍押え</td>
<td>☐塗装仕上：☐吹付け ☐刷毛塗り ☐ローラー引き</td>
</tr>
</tbody>
</table>
| ☐化粧材貼り：☐タイル貼り ☐石貼り | ※持出しバルコニーの場合、構造体の挙動があり湿式仕上げはひび割れや端部剥離による漏水対策が必要。
※湿式左官にはひび割れ対策として目地切り処理やひび割れ防止に適した左官材の仕様が望ましい。 |
| 【手すり壁乾式仕上材】 | ☐化粧サイディング：☐窯業系 ☐金属系 ☐塩ビ系 | ☐軽量コンクリート板：☐中空窯業板 ☐ALC板 |
| ☐軽量コンクリート板：☐中空窯業板 ☐ALC板 | ※持出しバルコニーの外装材は出来るだけ軽量である事が望ましい。
※仕上継手のシール材は耐候性に優れた材とすること。 |
<p>| 【手すり壁なし・既成品仕切柵】 | ☐格子形状仕切柵：☐非鉄金属製格子柵 ☐銅製格子柵 | ☐パネル状仕切柵：☐金属製化粧粧板 ☐硝子製化粧板 |
| ☐その他：☐木製化粧板 ☐樹脂製化粧板 ☐その他 | | |
| 【継手部止水処理】 | ☐目地処理：☐アクリル系 ☐シリコン系 ☐ポリザル系 | ☐シール下地：☐金属系 ☐弾性発泡系 ☐乾式目地材 |
| ☐化粧役物：☐サイディング役物 ☐非鉄金属役物 | | |</p>
<table>
<thead>
<tr>
<th>バルコニーの下地</th>
<th>下地の種類</th>
<th>下地の選択と解説</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>【手すり壁下地胴縁】※通気胴縁は天端の防水処理が終わった後。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□不陸調整胴縁：□合板 □木製端柄材</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□通気胴縁：□保存処理材 □木材 □合板 □通気金物</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□下地合板：□T1合板 □構造用合板 □構造用パネル</td>
</tr>
<tr>
<td></td>
<td></td>
<td>※外装下地胴縁は原則として外壁と同じ仕様とする。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>※外装下地調整胴縁は通気閉塞しないよう注意する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>【手すり壁防水層】※通気層を設ける場合は外壁と同じ仕様とします。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□透湿防水シート：□単層 □複層 □その他</td>
</tr>
<tr>
<td></td>
<td></td>
<td>※手すり壁下地防水処理は外壁と同じ仕様とします。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□防水層：□アスファルトフェルト940</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□改質アスファルトフェルト</td>
</tr>
<tr>
<td></td>
<td></td>
<td>※床の主上り防水高さはH=250㎜までとします。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>【手すり壁天端防水処理】※手すり壁防水層を重ね合せ側面で抑えます。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□防水テープ押え：</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□樹脂成型止水材</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□伸張テープ押え：笠木金物の取付固定具部分のみ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□ブッシングテープ処理：笠木金物の固定具部分のみ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>※手すり壁天端の防水処理は天端全長に鞍掛状に張り押え処理とします。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>【歩行床下地】※床の排水主勾配は下地で施工することが望ましい。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□下地板：□耐水合板 □硅酸カルシウム板 □金属板</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□根太受配勾配：左の参考図参照</td>
</tr>
<tr>
<td></td>
<td></td>
<td>※歩行防水下地に構造用パネルを使う場合は水分剥離に注意が必要</td>
</tr>
<tr>
<td></td>
<td></td>
<td>【歩行床防水層】</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□FRP塗膜防水：□エポキシ系 □ポリウレタン系</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□防水シート：□ゴム系 □アスファルト系 □樹脂系</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□金属板：□JIS G 3322に定める鋼板 □非鉄金属板（□SUS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□アルミ □他）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>備考</td>
</tr>
</tbody>
</table>

第Ⅱ章 家造りガイドライン 関連ツール【チェックリスト】
バルコニーの構造

<table>
<thead>
<tr>
<th>構造の種類</th>
<th>構造の選択と解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>バルコニーの形態</td>
<td></td>
</tr>
<tr>
<td>☐ ベランダ型バルコニー：屋根が付帯している。</td>
<td></td>
</tr>
<tr>
<td>☐ バルコニー型：上部に屋根がないバルコニー。</td>
<td></td>
</tr>
<tr>
<td>一体構造の場合</td>
<td></td>
</tr>
<tr>
<td>☐ 枠組壁工法仕様： ☐床根太方式 ☐根太レス方式</td>
<td></td>
</tr>
<tr>
<td>☐ 軸組構法の仕様： ☐床根太方式 ☐床梁方式</td>
<td></td>
</tr>
<tr>
<td>腰壁部分の構成</td>
<td></td>
</tr>
<tr>
<td>☐ 主要構造部分とする： ☐充填断熱あり ☐断熱無し</td>
<td></td>
</tr>
<tr>
<td>☐ 主要構造部としない： ☐充填断熱あり ☐断熱無し</td>
<td></td>
</tr>
<tr>
<td>※腰壁が下階の屋根若しくは室内に2辺以上接する場合は、腰壁本体を中空とせず断熱材を充填することが望ましい。</td>
<td></td>
</tr>
<tr>
<td>※外装側に通気層を設ける場合には、下階の小屋裏空間に達しない上部で下階屋根との取合い部の雨押え部で縁を切ることが必要です。</td>
<td></td>
</tr>
<tr>
<td>※腰壁の通気層（又は調整胴縁）部分を下階の天井及び小屋裏空間の通気処理に併用することはできません。（降雨時の漏水の原因となるので注意）</td>
<td></td>
</tr>
</tbody>
</table>

備考
パルコニー歩行床仕上げ

<table>
<thead>
<tr>
<th>床仕上げの種類</th>
<th>床仕上げの選択と解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>【床面仕上げ】</td>
<td>☐ 防水塗膜仕上げ：☐ F R P ☐ 樹脂塗膜 ☐ 防水シート</td>
</tr>
<tr>
<td></td>
<td>☐ 防水保護仕上げ：☐ 押えモルタル ☐ 保護材敷貼り</td>
</tr>
</tbody>
</table>

【步行床見切り部分】
☐ 水切り：☐ 通気用 ☐ 水切り専用

【排水処理】
☐ フロアードレーン：☐ 樹脂製 ☐ 鉄製 ☐ 金属製
☐ オーバーフロー管：☐ 樹脂製 ☐ 金属製
※床裏に設ける排水管には必ず防露被覆を施し、下階天井裏を点検できる点検口を設置すること。

【構成部材名称】
☐
☐

【構成部材名称】
☐
☐

備考

備考

第Ⅱ章 家造りガイドライン 関連ツール【チェックリスト】
<table>
<thead>
<tr>
<th>バルコニーの付帯部材</th>
<th>付帯部材の種類</th>
<th>付帯部材の選択と解説</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>【付帯部材名称】</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐笠木：☐手摺付笠木 ☐笠木のみ ☐外装直仕上げ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐腰壁通気処理：☐有り ☐なし</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐床裏換気処理：☐有り ☐なし</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐水切り</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐オーバーフロー排水管</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐排水ドレーン</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐通気処理材</td>
</tr>
<tr>
<td></td>
<td></td>
<td>【物干し】</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐専用金物：☐建物側壁取付け☐天井取付☐腰壁取付</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐自立物干：☐床固定 ☐別途据置</td>
</tr>
<tr>
<td></td>
<td></td>
<td>※物干しに腰壁天端の手摺付き笠木を使用すると、繰返しの負荷により手摺を固定する金具の固定部分から漏水を起こす縫みが生じ易いので注意が必要です。</td>
</tr>
</tbody>
</table>

※物干しに腰壁天端の手摺付き笠木を使用すると、繰返しの負荷により手摺を固定する金具の固定部分から漏水を起こす縫みが生じ易いので注意が必要です。
【解説及び留意事項】

<table>
<thead>
<tr>
<th>対象部位：建物のバルコニー部分</th>
</tr>
</thead>
<tbody>
<tr>
<td>【解説】</td>
</tr>
<tr>
<td>- 手すり壁の天端は防水性能を第一に考慮し、天端の全長に亘って下地処理には必ず鞍掛けシートで手すり壁の防水シートを押えることが重要。</td>
</tr>
<tr>
<td>- 手すり壁の天端に手摺や笠木金物を取り付ける場合には、固定用の金具の留め付け部分には必ず弾力性と伸長性のある防水補強処理を施すことが重要。</td>
</tr>
</tbody>
</table>

【留意事項】

- 歩行床面の仕様においては、仕上げ面や防水層を保護するために人工芝や簀子、敷板などを使って養生するなどの配慮が必要。
- バルコニーに植栽用の鉢やプランターなどを置く場合は、仕上げ床面と置物の間に必ず緩衝材を介在させること。
- バルコニー床面は粉塵が堆積し易いため定期的に清掃を心がけて下さい。
- 排水口を塵芥が塞がないよう注意が必要です。
- 手すり壁天端に布団などの大型の干し物を掛け干しする場合は専用の物干し金具等を使用するよう配慮して下さい。（天端の笠木値鵜の固定金具の緩みによる漏水の原因となり易いため注意が必要）

情報

<table>
<thead>
<tr>
<th>対象部位：笠木部分【不具合事象事例】不具合が原因とされる具体的な劣化事象</th>
</tr>
</thead>
</table>

- 画像：鞍掛けシートの外壁取り合い処理例
第Ⅱ章 家造りガイドライン 関連ツール【チェックリスト】

6. 屋根、小屋裏、直下階天井（枠組壁工法）

<table>
<thead>
<tr>
<th>部位</th>
<th>屋根・直下階天井</th>
</tr>
</thead>
</table>

設計仕様：屋根および天井の構成

屋根築上げ～下階天井仕上げ

【屋根構成図】
※屋根は下図①～⑤に示す各層により構成されており、詳細については次頁以下の解説をご覧下さい。

希望する材料と構法の□をチェックして選択し、その結果を契約前の参考として下さい。

※小屋裏空間全域の効果的な排湿換気が重要

※天井面の気密措置が重要

※③の小屋組構造は、枠組壁(ツーバイフォー)の工法の一般的な仕様と名称を表記してい

上記および下記に示す「③枠組壁工法の建物の屋根の構造仕様」以外の
「①建物の屋根仕上げ仕様」、「②屋根葺き下地の仕様」、「④最上階の天井の仕様構成」、「⑤建物屋根の付帯部材仕様」、「補足添付資料」は、全て軸組構法の【1A】と同じですので、そちらをご覧下さい。
第Ⅱ章 家造りガイドライン 関連ツール【チェックリスト】

3. 屋根構造（枠組工法の小屋組）

| 枠組壁工法の建物の屋根の構造仕様 | 小屋裏空間利用 | 小屋裏空間利用に適している。比較的急勾配（4/10 以上）の屋根に適している。※軒先の垂木転び止は垂木よりワンサイズ小さな枠材とする。
| 枠組壁工法の建物の屋根の構造仕様 | 小屋裏空間利用 | 小屋裏空間利用に適している。急勾配（5/10 以上）の屋根に適している。※軒先の垂木転び止は垂木よりワンサイズ小さな枠材とする。
| 枠組壁工法の建物の屋根の構造仕様 | 小屋裏空間利用 | 小屋裏空間利用には適していない。比較的緩勾配（3/10 以上）の屋根にも対応する。※軒先の垂木転び止は垂木よりワンサイズ小さな枠材とする。
| 枠組壁工法の建物の屋根の構造仕様 | 小屋裏利用 | ☐有り（居室・収納） ☐無し

備考：「住宅金融支援機構：枠組壁工法共通仕様書」「ツーバイフォー協会HP」
7. 湿式外壁まわり（枠組壁工法）

<table>
<thead>
<tr>
<th>部位</th>
<th>準備仕様</th>
<th>仕様構成図</th>
</tr>
</thead>
<tbody>
<tr>
<td>2B</td>
<td>湿式外壁まわり</td>
<td>準備仕様:湿式仕様(軒天共)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>外皮外装仕上げ～内装壁仕上げまで</td>
</tr>
</tbody>
</table>

【湿式外壁まわりの層構成図】（通気構法二層下地による例）
※湿式外壁まわりは下図①～⑤に示す各層により構成されており、詳細については次頁以降の解説をご覧下さい。希望する材料と構法の□をチェックして選択し、その結果を契約前の参考として下さい。

【湿式構法仕様構成図】
※通気構法二層下地の構成図です。

【外皮外壁構成層】
① 外壁仕上：☐湿式仕上げ ☐乾式仕上げ
② 下地構成：☐通気構法 ☐直張り構法
③ 構造構成：☐枠組壁工法 ☐軸組構法
④ 内壁仕上：☐高気密・高断熱仕様 ☐気密シート貼りボード下地
⑤ 付帯施設：☐軒天見切 ☐水切り

※①の仕上げは、湿式外壁の一般的な仕様と名称を表記しています。湿式構法は別紙2Bをご覧下さい。
<table>
<thead>
<tr>
<th>① 外壁の仕上げ</th>
<th>外壁仕上げ材の選択と解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>建物外壁の仕上げ仕様</td>
<td></td>
</tr>
<tr>
<td></td>
<td>【湿式外装仕上げ材】</td>
</tr>
<tr>
<td></td>
<td>☐モルタル塗り：☐鎌押え ☐塗落し☐化粧ローラー押え</td>
</tr>
<tr>
<td></td>
<td>☐塗軋塗り：☐鎌磨き ☐塗入鎌押え ☐塗均し</td>
</tr>
<tr>
<td></td>
<td>☐スタッフ塗り：☐粘引仕上 ☐塗押え ☐鎌押え</td>
</tr>
<tr>
<td></td>
<td>☐ショットモルタル：☐ササラ跳ね掛け鎌押え</td>
</tr>
<tr>
<td></td>
<td>☐土壁塗り：☐土壁風吹付け ☐砂壁 ☐雑木壁</td>
</tr>
<tr>
<td></td>
<td>☐その他湿式材：☐リシン吹付け</td>
</tr>
<tr>
<td></td>
<td>※左官材の直塗仕上げには防水材の混和が必要です。</td>
</tr>
<tr>
<td></td>
<td>【化粧貼り仕上げ】</td>
</tr>
<tr>
<td></td>
<td>☐タイル貼り：☐圧着直貼り ☐シート貼り</td>
</tr>
<tr>
<td></td>
<td>☐煉瓦貼り：☐吊子留め ☐絞積のまま</td>
</tr>
<tr>
<td></td>
<td>☐自然石貼り：☐吊子留め ☐圧着直貼り</td>
</tr>
<tr>
<td></td>
<td>☐模造石貼り：☐化粧パネル貼り ☐圧着直貼り</td>
</tr>
<tr>
<td></td>
<td>※各化粧張りには無収縮の防水剤混和目地を使用して雨水の浸水や凍結剥離を防ぐことが必要です。</td>
</tr>
<tr>
<td></td>
<td>【シーリング】</td>
</tr>
<tr>
<td></td>
<td>☐防水モルタル充填：無収縮グラウト混和モルタル</td>
</tr>
<tr>
<td></td>
<td>☐耐候性シーリング材：☐エポキシ系☐シリコン系</td>
</tr>
<tr>
<td></td>
<td>※目地押えはシーリングガンによりへら押えが必要。</td>
</tr>
<tr>
<td></td>
<td>【塗装仕上げ材】</td>
</tr>
<tr>
<td></td>
<td>☐吹き付け</td>
</tr>
<tr>
<td></td>
<td>☐ローラー塗装</td>
</tr>
<tr>
<td></td>
<td>☐刷毛塗</td>
</tr>
<tr>
<td></td>
<td>☐撥水性コート吹付け</td>
</tr>
<tr>
<td></td>
<td>※塗装仕上げに使用する溶剤はすべて紫外線に耐する耐候性に優れたものを使用することが必要です。</td>
</tr>
</tbody>
</table>

備考

②外壁の下地は、下記を参考にして下さい。
 国総研資料 第 779 号 「木造住宅モルタル外壁の設計・施工に関する技術資料」
 ラス下地既調合軽量セメントモルタル塗り工法施工要領書（案）
③～⑤は、2A乾式外壁まわりをご覧下さい。

建築用仕上塗材／模様の種類（日本建築仕上材工業会）：http://www.nsk-web.org/kikaku/index.html
8. 基礎、床下まわり

第Ⅱ章-235

【層構成図】
※基礎・床下まわりは下図①～⑤に示す各層により構成されており、詳細については次頁以降の解説をご覧下さい。希望する材料と構法の□をチェックして選択し、その結果を契約前の参考として下さい。

床下：防湿シートの上に無筋土間コンクリート押え
床組：根子土台方式（厚板構造用合板直張り）

【建物脚部構成区分】
①＝外装仕上材
②＝基礎構造部
③＝床組下地材
④＝内装仕上材
⑤＝関連附帯品

※床下土間面は外部地盤面より50㎜～60㎜程度高くしなければならない。

※床下の土間下土壌防蟻は、防湿押えコンクリートが基礎と配筋により一体とされていない場合は公的規基準に順じて必ず処理しなければなりません。

※床下換気に使用するねこ部材は木造建物全体の耐久性と構造安全性において重要な部材です。詳細は本資料末尾の添付資料：解説及留意事項を参照して下さい。

※①基礎の仕上げ、③床組の仕様、④内装床仕上げ、⑤床下の土間は別紙8Aをご覧ください。
基礎の構造
布基礎の種類

<table>
<thead>
<tr>
<th>布基礎構造の造り方の選択と解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>□標準布基礎:厚さ☐120 mm☐135 mm☐150 mm☐180 mm ※寒冷地や打放しでは標準厚さに+30 mmを付加する。</td>
</tr>
<tr>
<td>□犬走り一体型布基礎:☐基礎一体型☐外構後打ち ※剣離を防ぐ為配筋し基礎と一体化させて造ります。</td>
</tr>
</tbody>
</table>

建物外壁の構造仕様

<table>
<thead>
<tr>
<th>布基礎構造の造り方の選択と解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>□床下土間防湿】※推奨工法以外は土壌防蟻処理が必要です。</td>
</tr>
<tr>
<td>☐無筋コンクリート押え（厚さ 60 mm〜100 mm）</td>
</tr>
<tr>
<td>☐有筋コンクリート土間（厚さ 120 mm以上）[推奨]</td>
</tr>
<tr>
<td>☐防湿シート砂押え（押え砂厚さ 60 mm以上）</td>
</tr>
<tr>
<td>☐真砂土埋戻し整地</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>布基礎構造の造り方の選択と解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>□床下換気孔】※気等の侵入を防ぐ防膿措置が施されている事。</td>
</tr>
<tr>
<td>☐スポット換気方式:☐上端付 ☐中段抜き</td>
</tr>
<tr>
<td>※通気パネル:☐金属製 ☐樹脂製 ☐非鉄金属製</td>
</tr>
<tr>
<td>☐スリット換気方式:☐単枚敷き込 ☐連続敷き込</td>
</tr>
<tr>
<td>※隙間寸法:☐20 mm ☐24 mm ☐40 mm ☐その他</td>
</tr>
<tr>
<td>※開口は有効換気面積 75 c㎡/m 当り以上とする事。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>布基礎構造の造り方の選択と解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>□基礎断熱】※床下側の土台の側面を断熱材等で閉塞しない事</td>
</tr>
<tr>
<td>☐外張断熱：断熱材の縁手には熱橋防止措置が必要。</td>
</tr>
<tr>
<td>☐内外両面断熱：</td>
</tr>
<tr>
<td>☐内張断熱：断熱材の縁手には熱橋防止措置が必要。</td>
</tr>
<tr>
<td>※基礎断熱では基礎周囲に換気孔は設けず、基礎と土台の間に気密パッキンを敷込み、基礎天端の露出面には断熱処理が必要です。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>布基礎構造の造り方の選択と解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>□型枠組方式】</td>
</tr>
<tr>
<td>☐巾止セパレーター金物組</td>
</tr>
<tr>
<td>☐コーンセパレーター組</td>
</tr>
<tr>
<td>※コンクリート打設後もリブ孔が残り浸水やシロアリが侵入し易い。</td>
</tr>
<tr>
<td>※コンクリート打設後も残されるが孔は生じない。</td>
</tr>
</tbody>
</table>

備考
<table>
<thead>
<tr>
<th>基礎・床組の付帯部材</th>
<th>付帯部材の選択と解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>付帯部材の種類</td>
<td>付帯部材の選択と解説</td>
</tr>
</tbody>
</table>

【水切り】
- 通 Z 型水切り：Z 型水切り＋別付け防鼠材の組合せ
- 防鼠付水切り：下面の防鼠材と水切りが一体型

材料：
- 樹脂製
- 鋼板製
- 塩ビ鋼板製
- アルミ製

※通気構法用水切りを使用し、換気不足により床下結露事故を起こした事例。

【換気循環用通気グリル】
- 通気用開口：使用し、換気不足により床下結露事故を起こした事例。

【気密パッキン】
- 弾性ゴムリスト：基礎天端に不陸があると破断する
- シート付きリスト：防湿材が付いている不陸に注意
- 耐圧板付 EPDM：気密材の破断を防ぐ

※気密パッキンを敷設する基礎天端は限りなく水平とする事が必要。

【床下土間排水処理材】
- 土抜きパイプ：基礎打込み式、土間設置式
- 土間抜き排水管：鞘管式、打込式、開削式

※土間抜きの排水管には防湿と防蟻の処置が必要。

【床下出入口揚げ蓋】
- 地下室上蓋：通常型、気密型、気密断熱型
- 地下収納庫：450 角、450×600 角、一畳型
対象部位：基礎と外壁の取合い部分
- 外装下張りの防水、透湿シートは水切りに被せ防水テープ等で隙間なく押える事。
- 床下空間の換気排湿が不全な状態（換気の淀み域等）は木部腐朽の要因となり易い。
- 床下の防湿処置と土壌防蟻処置は木造の劣化制御措置として必須要件です。
- バリアフリーの嵩上措置（スロープ等）による床下換気孔の閉塞に注意する事。

【解説】
- 床組用木材の乾燥材とは、木材全体の含水率が18％以下である木材の事です。
- 高気密とは、通気遮断だけでなく湿気（水蒸気）をも遮断できる処置をいいます。

【ねこ部材の品質についての注意】
* 床下換気措置として全周スリット方式の換気とする場合には、基礎と土台の間に敷設するねこ部材は構造安全性と耐久性能を維持するために長期に亘る耐荷性能を含む「品質の確かな部材」を使用する事。
* ねこ材のスリット通気隙間の厚さ寸法は15㎜以上を確保する事が望ましい。
* ねこ材が土台を受ける受圧面は荷重の均等伝達確保の為平滑である事が望ましい。

【留意事項】
- 基礎断熱材はシロアリの侵入を抑制する為断熱材を土壌と接しないよう留意する。
- 無筋の犬走り、ポーチ土間、設備基礎、勝手口踏み台等の剥離に留意する事。

情報
第Ⅲ章 木造住宅の長期使用に向けた屋根、外壁、床下のメンテナンスガイドライン
維持保全の手引き TG 委員

主査 中島正夫（関東学院大学）

栗田紀之（一般社団法人 全日本瓦工事業連盟）

幹事 中島光彦（一般社団法人 全国中小建築工事業団体連合会）

書記 杉浦憲児（一般社団法人 全日本瓦工事業連盟）

委員 石川廣三（東海大学）

武市英博（一般社団法人 全国中小建築工事業団体連合会）

近江戸征介（一般社団法人 全国中小建築工事業団体連合会）

江原正也（一般社団法人 全日本瓦工事業連盟）

石川保博（一般社団法人 全日本瓦工事業連盟）

石川弘樹（一般社団法人 全日本瓦工事業連盟）

牧田 均（一般社団法人 日本防水材料連合会）

大場喜和（NPO 法人 湿式仕上技術センター）

小林秋穂（全国陶器瓦工業組合連合会）

神谷環光（全国陶器瓦工業組合連合会）

神谷昭範（全国陶器瓦工業組合連合会）

委員・事務局併任 宮村雅史（国土技術政策総合研究所）
第Ⅲ章 木造住宅の長期使用に向けた屋根、外壁、床下のメンテナンスガイドライン

本文 目次

（ ）内：執筆者

1. 木造住宅の耐久性における外皮構造とその維持保全の重要性（中島正夫） 1
 1.1 木造住宅構造体の性能低下要因 .. 1
 1.2 木造住宅構造体に発生する腐朽、蟻害の主たる劣化原因 1
 1.3 木造住宅耐久性確保における外皮構造の役割 .. 3
 1.4 木造住宅構造体の耐久性と外皮構造の維持保全の重要性 4
 1.4.1 木造住宅構造体の耐久性と外皮構造の維持保全の関係 4
 1.4.2 外皮の維持保全と中古住宅評価 .. 5
2. 木造住宅の寿命と外皮の耐用年数の考え方（宮村） 6
 2.1 木造住宅の寿命 ... 6
 2.1.1 我が国の木造住宅の寿命の実態 .. 6
 2.1.2 住宅ストックと流通 .. 6
 2.1.3 住宅に対する意識 .. 8
 2.2 木造住宅の寿命と外皮耐用年数の望ましい関係 8
 2.3 木造住宅外皮の各種構造と耐用年数の在り方 .. 9
 2.3.1 外皮を構成する材料の耐用年数の在り方 9
 2.3.2 住宅全体の雨水浸入リスク .. 9
 2.3.3 床下まわりの劣化リスクと推奨仕様 .. 10
 2.3.4 外壁の雨水浸入リスクと推奨仕様 ... 10
 2.3.5 屋根の雨水浸入リスクと推奨仕様 ... 11
3. 各種外皮構造と経年劣化的傾向 .. 12
 3.1 屋根 ... 12
 3.1.1 粘土瓦葺き（杉浦） ... 15
 3.1.2 住宅屋根用化粧スレート葺き（杉浦） ... 18
 3.1.3 金属板葺き（杉浦） ... 21
 3.1.4 プレスセメント瓦（杉浦） ... 23
 3.1.5 シングル葺き（杉浦） ... 25
 3.1.6 下葺き（牧田） .. 27
 3.2 外壁（中島正夫） .. 30
 3.2.1 乾式外壁材 ... 30
 3.2.2 湿式外壁材 ... 33
3.3 外部建具まわり 36
 3.3.1 防水納まり（宮村） .. 36
 3.3.2 建具本体のうち玄関ドア（中島正夫） 39
 3.3.3 建具本体のうちサッシ（中島正夫） 41
3.4 バルコニー（近江戸） 43
 3.4.1 バルコニーまわりの劣化要因とシグナルの見極め 43
4. 外皮構造・仕様とメンテナンススケジュール例（宮村、栗田） 45
 4.1 屋根 .. 45
 4.1.1 瓦屋根 .. 45
 4.1.2 鋼板葺き屋根 46
 4.2 外壁 .. 48
 4.2.1 窯業系サイディング 48
 4.2.2 金属系サイディング 48
 4.2.3 モルタル外壁 48
 4.3 メンテナンスを考慮に入れた LCC の参考値 50
5. LCC を踏まえた外皮構造・仕様選定の重要性 52
 5.1 LCC とは（栗田） 52
 5.2 屋根・外壁の構造・仕様選定と LCC（栗田） 54
 5.2.1 屋根のメンテナンススケジュール（栗田） 54
 5.2.2 屋根のライフサイクルコスト（栗田） 56
 5.2.3 屋根のライフサイクルコストに関するアンケート結果の概要（栗田、宮村） 57
6. 外皮構造の点検およびモニタリング 62
 6.1 維持保全のあり方と点検（中島正夫） 62
 6.2 点検の重要性と LCC 上のメリット（中島正夫） 62
 6.3 外皮各部の点検箇所と方法（中島正夫） 63
 6.3.1 床下 ... 63
 6.3.2 外壁 ... 67
 6.3.3 小屋裏 .. 73
 6.4 点検結果の考え方と対応措置の取り方（中島正夫） 76
 6.5 点検を容易にする設計上の工夫（中島正夫） 77
 6.5.1 床下 .. 78
 6.5.2 小屋裏 ... 78
 6.5.3 屋根 .. 79
 6.6 木造構造体の予防保全としての外皮モニタリング手法の可能性と課題（武市、中島秀彦） 80
 6.6.1 背景と目的 ... 80
6.6.2 センサー取り付け場所 .. 80
6.6.3 モニタリングシステムの概要 .. 81
6.6.4 想定される効果 ... 82
6.6.5 課題 .. 82
7. 木造住宅の耐久性を損なわない住まい方 83
 7.1 木造住宅の耐久性と住まい方（中島正夫） 83
 7.2 耐久性を損なわない住まい方（近江戸） 84
 7.2.1 屋根の状態について .. 85
 7.2.2 軒裏やひさしなどについて ... 85
 7.3 外壁について（近江戸） ... 86
 7.4 室内壁及び最下階の床について（近江戸） 86
 7.5 外周壁の脚部基礎まわりについて（近江戸） 87
第Ⅲ章 メンテナンスガイドライン

1. 木造住宅の耐久性における外皮構造とその維持保全の重要性

1.1 木造住宅構造体の性能低下要因

木造住宅における木質構造部材の劣化現象には、風化、磨耗、腐朽、虫害などがあります。このうち腐朽は、各種の腐朽菌によって木材組織が化学的に分解される現象ですから、条件さえ整えば短期間に材深部にまで被害が及びやすくなります。また、虫害のうちヒラタキクイムシなどによる害は、一般に被害部材が広葉樹材を中心とした非構造部材に限定されるものの、シロアリによる蟻害は腐朽と同じく条件さえ整えば短期間に湿潤状態や乾燥状態にある構造部材の深部にまで被害が及びやすいことから建物の安全性のほか床や壁の傾斜や床鳴りなど居住性に極めて大きい影響を与えます。

木質構造部材への腐朽、蟻害の発生にともなって、建物には各種の性能低下が生じますが、そのうち最も深刻な問題は構造安全性の低下です。すなわち写真1.1.1に示すように、建物の骨組みである土台、柱、はり、筋かいなどに腐朽や蟻害などの劣化が発生すると、建物そのものの耐震性、耐風性が低下してしまうほか、下地に劣化が生じていた場合はそれによって支持されていた仕上げ材の落下や損傷、あるいは建物の剛性の低下を招いたりします。これにより毎年失われる建物ストックの経済的価値は多大な額にのぼるばかりでなく、場合によっては人命が危険にさらされる状況をも生みかねないため、木造住宅の劣化原因を明らかにしてその防止を図るとは社会的に極めて重要な意味を持ちます。

写真 1.1.1 阪神淡路大震災において見られたモルタル外壁被害と構造部材の腐朽・蟻害例

1.2 木造住宅構造体に発生する腐朽、蟻害の主たる劣化原因

腐朽菌やシロアリが生育するには、栄養分となりうる木材のほか適度な温度と水分、酸素の4条件が整う必要があると言われており、木造住宅に腐朽、蟻害が生じるのは、木造住宅内部にこのような生物の生育に適した環境が形成されるからです。このうち酸素に関する条件は、地下常水面下に埋められた木杭などは例外として、地表面上に構築されている建築物の場合は常に満
第Ⅲ章 メンテナンスガイドライン

たされていると考えざるを得ませんから、残る3条件が劣化発生の鍵を握っていることになります。

まず、栄養分に関する条件では、木材として防腐・防蟻剤処理をしていない耐朽性の低い樹種や、ヒノキなどの耐朽性が高い樹種でも辺材部分を用いた場合は腐朽菌やシロアリの栄養になります。

また、外気温度は腐朽菌、シロアリのいずれをとっても我が国の気候特性からみて、ほとんどどの地域はほぼ生育可能範囲に入っており、いつでも条件は満たされていると考えられます。

これに対して最後の水分は、建物の設計方針として内部には水を浸入させないようにし、また浸入したとしても早期に乾燥しづよいように設計しておくことが大切です。したがって、原理的には建物中の木質構造材料に水分は作用しない。しかし、現実には建物の構造方法や設計ミス、施工不良や維持管理の悪さ、仕上げや防水材料の劣化などの様々な原因により水分・湿分が木質構造材料に作用することによって、最終的に4つの劣化条件が全て満たされてしまうことがあります。以上のことから、水分条件は腐朽・蟻害発生の有無を決める最大の要素とされています。

ところで木造住宅に作用する水分にはその供給形態により雨水、生活用水、結露水などがあり、それらは建築的には次のような原因によってもたらされます。

①雨水

雨水は、主に屋根や外壁などの建物外周部位（ここではこの部位を「外皮」と呼びます）に作用する水で、直接雨掛かりとなる部材以外には、防水、雨仕舞の不良箇所からの漏水ならびに浸水により供給されます。屋根下では、屋根材が破損したりずれたりしている不良箇所から屋根あるいは壁の下地、骨組みへ浸水することがあり、また屋根材や構造に応じた適切な屋根構造をとっておかないと、屋根材接合箇所から小屋組内部へ漏水することがあります。一方、外壁では、隅部を中心とした外壁仕上げ材や目地の亀裂部分あるいは開口部枠廻り、ベランダ、下屋などの他部位との接合部の防水不良箇所から雨水の浸入が生じます。さらに軒樋、壁樋の接合不良箇所や排水容量の不足によるオーバーフローあるいは基礎回りの地盤における跳ね返りによっても外壁壁体へ雨水が供給されることがあります。

②生活用水

生活用水とは、人間が生活していく上で使用する水のうち、一般には台所、浴室、洗面所、トイレなどの水回りにおいて主に建物の床、壁に作用する水です。台所、洗面所、トイレでは、水栓やシンク周りの防水不良箇所、浴室では床、壁、天井などの各部の防水・水仕舞不良箇所や浴槽と壁との取り合い部の防水シール破断箇所などから床や壁の内部に浸入し、木質構造部材に供給されます。

③結露水

結露は、空気が何らかの温度の低い物体に触れ冷やされて露点温度以下に達することにより、空気中の過剰な水蒸気がその物体表面に凝結する現象です。建築の場合は、外周壁な
どの表面温度の低い部位の表面に触れて結露するほか、各部位において適切な防湿措置がとられていない場合には、水蒸気を多く含んだ室内の暖められた空気が壁体や小屋裏などに侵入し内部結露を引き起こすことがあります。部位表面に結露する場合は、発見もしやすく乾燥もしやすいのですが、部位内部の材料表面や断熱材内部で発生する部位内結露は、発見が遅れるうえに乾燥しにくく、最も厄介な水分供給現象の一つです。また、床下や壁体内に組み込まれた給水管まわりに表面結露が生じて、結露水が供給されることもあります。

1.3 木造住宅耐久性確保における外皮構造の役割

木造住宅の耐久性能を確保する基本は、図1.3.1、図1.3.2に示すように材料の耐久性能を低下させる原因となる水分・湿分を長期間継続的に作用させない対策を講じることです。この時、何らかの故障あるいは許容限度を超える事象が生じた場合、その住宅には、二重、三重に水分・湿分の作用を抑制する仕組みが組み込まれていることが必要で、また構造材に生じている何らかの危険な事態を検知し、場合によりそれを容易に修補できる仕組みを備えていることも重要なポイントです。以下、それぞれの仕組み（図では「サブシステム」としています）の内容は以下のとおりです。

劣化しにくい建物環境を作るためには、第一の仕組みとして、建物周辺環境を建物の耐久性能確保上に有利にしつらえることが重要になります。これは、建物の建つ地域の気候・地域特性（気温、湿度、日照時間、風雨・降雪量、卓越風向、海岸からの距離、シロアリの有無等）や局地的気象条件（周辺樹木や地形による建物周辺の風雨の流れ、湿度勾配等）などによって決まります。

つぎに第二の仕組みとして屋根や外壁などの「外皮」と呼ばれる部分の作り方があります。外皮の作り方（構法）により構造材を水分・湿分から保護する仕組みです。このための構法を区分すれば、図1.3.2に示すとおり、1）雨仕舞・水仕舞構法、2）防水・防湿構法、3）通気・換気構法の3種に分類することが可能です。雨仕舞・水仕舞構法は、屋根、外壁、パルコニー、土台、水回り等で雨水、使用水が構造材に作用する前に速やかに遠ざけるための建築の手法
で各部の形状・寸法・勾配等のディテールデザインで対応したり下地・仕上げ材料の組み合わせによって対応します。一方、防水・防湿構法は雨水や使用水あるいは湿気が構造材に作用するのを防水・防湿材料によって防御する手法で、防水・防湿材料のもつ物理化学的性能に大きく依存します。この構法は多くの場合、水・湿気の作用する部位の下地・仕上げ面あるいはそれらの接合部に用いられます。さらに、通気・換気構法は、以上の構法によっても防ぎきれない水分・湿分（床下・小屋裏滞留湿気、外壁、屋根、床下等の部位内結露等）を早期に建物外に排出するための手法です。また、シロアリに対しては、わが国の代表的なシロアリであるイエシロアリやヤマトシロアリが地下シロアリであることから、地盤面にシロアリの侵入を防ぐための措置（床下全体にコンクリートやステンレス金網を敷設する、あるいは薬剤による床下土壌を薬剤で処理するなど何らかのバリアーを設置する）をとることが重要になってきます。

1.4 木造住宅構造体の耐久性と外皮構造の維持保全の重要性

1.4.1 木造住宅構造体の耐久性と外皮構造の維持保全の関係

以上のように木造住宅構造体の耐久性を確保する上では、屋根、外壁、床下などの外皮構造部分が重要な役目を果たすことになります。これらの外皮構造部分の性能は主に設計と施工によって達成されることになりますが、外皮は建築部位の中でも特に日射や風雨などの自然外力を強く受ける部分ですから、時間の経過とともに次第に劣化を生じることになります。これを経年劣化といいますが、これを放置しておくと、いかに当初の設計や施工が良くなると、あるいは外皮としての防雨性能や防湿性能、防蟻性能などが低下してしまい、初期の目的を果たせなくなります。そこで、外皮の性能を長く保つためには外皮各部の状態を適切に維持保全することが大事になります。図 1.4.1 に示すように、外皮を構成する各材料を維持保全することによりその部分の性能は初期の状態に近いレベルにまで回復し、その結果として建物の性能も回復することになります。

図 1.4.1 木造住宅の性能と維持保全との関係
1.4.2 外皮の維持保全と中古住宅評価

現在の中古木造住宅の評価額の算定方法は経年減価方式が基本で、建物が竣工から20年から25年経過すると土地を除いた建物だけの価値はほぼ0にになってしまうます。これは維持保全をしている住宅でもしていない住宅でも基本的には変わることなく、これが日本では維持保全やリフォームが欧米よりも活発に行われない大きな理由と考えられています。その結果として、わが国では相変わらず新築中心の住宅市場となっていて、中古市場が拡大しない背景を作っていいます。しかし、平成26年3月に国土交通省から、このような日本の住宅供給事情を新築中心の社会から中古市場を拡大した社会に変えていくという趣旨のもと、「中古住宅に係る建物評価の改善に関する指針」が出されました。これは現在の不動産流通業界で慣行となっている経年減価方式による建物評価を改めて、個別の住宅が保有する品質・性能に基づいて建物の価値を算定する方向に評価方法を転換させていこうとするものです。この考え方を模式的に示したものが図1.4.2になります。

![図1.4.2 「中古住宅に係る建物評価の改善に関する指針」で示された新しい木造住宅の評価の考え方](出典: 国土交通省土地・建設産業局不動産業課、住宅局住宅政策課)

これからも分かる通り、今後は維持保全を適切に実施している住宅は品質や性能が回復していくと見なして年数が経過した場合でも高く評価されるようになります。維持保全を実施していくことは建物の安全性・快適性などの性能を持続させるだけでなく、資産としての価値を持続させることにもなるのです。
2. 木造住宅の寿命と外皮の耐用年数の考え方

2.1 木造住宅の寿命

2.1.1 我が国の木造住宅の寿命の実態

木造住宅の耐久性を確保するためには、防虫対策の他、腐朽や腐食の要因となる雨水浸入や結露を防ぐ対策が必要となります。特に我が国は、梅雨や高温多湿の夏季があり、冬季には積雪の多い地域もあり、劣化しやすい環境が整っています。気候および住宅の構法、仕様が異なりますが、我が国の住宅の耐用年数を欧米諸国と比較（図2.1.1）すると、アメリカの解体住宅の平均築後年数は約55年、イギリスは約77年となっているのに対して、我が国は約30年と極めて短い期間となっています。

図2.1.1 滅失住宅の平均築後経過年数の国際比較の例

2.1.2 住宅ストックと流通

図2.1.2の建築年代別住宅ストックの推計によりますと、イギリスでは1950年以前の住宅は44.9%、1981年以降の住宅は18.5%となっています。一方、我が国の1950年以前の住宅は4.9%、1981年以降の住宅は60.6%となっており、欧米と著しい差が生じています。即ち、我が国は新築後30年程度の短期間で取り壊し、古い住宅があまり残らない状況となっています。住宅金融支援機構の調査によりますと、建売住宅を購入する平均年齢は37.5歳ですので、30年後の67.5歳位で住宅を取り壊することが一般的と考えられます。
図 2.1.2 建築年代別住宅ストックの国際比較

図 2.1.3 によりますと、アメリカの住宅全体の取引戸数の中で、既存住宅の流通シェアは77.6%、イギリス88.8%、フランス66.4%に及んでいるのに対して、我が国は13.1%と極めて低い状況となっています。このように我が国は、既存住宅を改修して居住環境を良くすることよりも、新築住宅により全てを新しくすることが好まれてきました。しかし、経済成長が鈍化し、資源の枯渇が問題視されている現在、既存住宅を維持保全、リフォーム、リノベーションすることにより、居住環境を快適にするとともに、住宅の耐用年数を長期化する機運も高まりつつあります。
2.1.3 住宅に対する意識

2015年、内閣府の「住宅に関する世論調査」によりますと、住宅を購入するとしたら、どのような住宅がよいと思うかとの質問に対して、「新築の一戸建住宅がよい」との回答者の割合が63.0%、「新築のマンションがよい」が10.0%、「中古の一戸建住宅がよい」が6.1%、「中古のマンションがよい」が3.8%、「いずれでもよい」が14.2%となっています。また、新築が良いと思う理由の全体を100%とした時、「間取りやデザインが自由に選べるから」が66.5%、「全てが新しくて気持ちが良いから」が60.9%（複数回答）となっています。構造面となる「既存住宅は耐震性や断熱性など品質に不安があるから」は、17.5%と低い値でした。住宅を取得する際は、上記のように間取り、デザイン等が優先され、新しいものが好まれています。今後は、住宅の耐久性を高めたり、住み続けたりするための関連情報を提供することにより、住まい手が我が家の長寿命化方法や補修・改修について、より一層興味を持つようにすることが肝要と思われます。

2.2 木造住宅の寿命と外皮耐用年数の望ましい関係

木造住宅に使用される木材および木質材料や接合金物などの劣化は、水分と深い関係を持っています。特に、木造住宅を長寿命化するためには、水分を抑制する防水、雨仕舞い、防露などの技術が必要となります。

外皮からの雨漏りは、人類が住宅を建てた当初からの問題と思われますが、科学技術・防水技術の発達した現在においても不具合などにより無くなってしまいません。住宅瑕疵担保責任保険法人によると、瑕疵による事故のうち、9割以上が雨漏り関係であると報告されています。住宅瑕疵担保責任保険法において、結露は瑕疵の対象となっていません。

外皮の仕様が不適切な場合、雨水浸入、結露、蟻害などにより外皮内の構造躯体（柱や樋などの骨組み）が早期に劣化することがあり、耐力壁まわりや接合部などの重要な部位が著しく劣化した場合、耐震性も低下して人命や財産を損なうことがあります。このように外皮の不適切な仕様により、外皮だけでではなく、構造躯体の劣化を招き、住宅全体の寿命が短くなります。住宅を長寿命化させるためには、耐久性の高い材料や構法を選定し、施工前に推奨される納まりについて検討する必要があります。この場合、初期費用が増加することがありますが、躯体が劣化した場合、躯体材だけではなく外装材または内装材の補修・交換が必要となり、膨大な改修費用が必要になることが考えられます。従って、ライフプランを検討した上で、住宅の新築、維持保全、改
第Ⅲ章 メンテナンスガイドライン

修、解体に至るまでの LCC（ライフサイクルコスト、生涯費用）を抑制する考え方が必要となります。

2.3 木造住宅外皮の各種構造と耐用年数の在り方

2.3.1 外皮を構成する材料の耐用年数の在り方

木造住宅の外皮は、内装材、躯体材、下地材、外装材などにより構成されており、それらの材料、部材、部品は、周辺環境や材料特性が異なるため、各々劣化速度、耐用年数に差が生じます。木造住宅全体として、耐用年数を合理的に確保するためには、各々の材料・部材および構法の耐用年数を予め把握し、なるべく耐用年数が近似した材料・部材により外皮を構成する必要があります。耐用年数の短い構成材料・部材を補修交換するように計画したり、構成材料・部材の耐用年数を調整したりすることを「service life co-ordination」と呼んでいます。

例えば、外壁に耐用年数の短い防水紙を使用した場合、耐用年数の長い外装材（サイディングやモルタルなど）を使用しても、足場を設置して外装材を剥がし、防水紙を交換し、外装材も再施工する必要が生じます。また、屋根に耐久性の低い下葺材（防水紙）を使用した場合、足場を設け、屋根材を剥がしてから、下葺き材を交換し、屋根材も再施工する必要があります。

モルタル外壁には、直張りに多い非通気構法と通気構法があり、非通気構法は初期費用を低く抑えられます。通気層が無いため壁体内への雨水浸入や結露のリスクが高くなるとともに、遮熱性能が低下することが考えられます。建設後、雨水浸入や結露が発生した場合、膨大な改修費用が必要になる場合もあります。また、非通気構法から通気構法へ変更しようとしても、既存の開口部の厚さが薄い場合、対応出来ない場合もあります。

このように外皮を構成する材料・部材の耐用年数が周辺の構成部材と比較して極端に短い場合、前述のような工事が必要となり、多額の改修費が必要になることがあります。従って、新築時および改修時には、想定する各種の構法、材料による費用と耐用年数を比較検討する必要があります。

住宅の外皮の構法および構成材料の耐久性は、外皮の劣化だけではなく住宅全体の劣化や耐用年数に著しく影響するため、雨水浸入や結露のリスク、劣化リスクについて事前に把握することが重要となります。既存の事故事例から判明した各部位のリスクや注意点について記載します。

2.3.2 住宅全体の雨水浸入リスク

一般財団法人住宅保証支援機構の「住宅性能保証制度における事故住宅の特性分析調査」では、屋根、壁、ルーフバルコニー、外壁開口部の4つの雨水浸入事故について、事故発生要因と事故リスクを分析し、以下の結果が公表されています。

・ 南四国・九州・沖縄の地域において、外壁開口部の事故のリスクが高い。
・ 北海道の地域において、屋根の事故のリスクが高い。
・ 陸屋根において、屋根の事故のリスクが高い。
第Ⅲ章 メンテナンスガイドライン

・無落雪屋根において、屋根及び壁の事故のリスクが高い。
・勾配の大きな屋根において、壁及び外壁開口部の事故のリスクが高い。
・軒の出寸法が小さい場合、屋根、壁及び外壁開口部の事故のリスクが高い。
・外壁がモルタル塗の場合、壁及び外壁開口部の事故のリスクが高い。
・通気措置が無い場合、壁の事故のリスクが高い。

また、上記団体などでは、2015 年、日本建築学会大会で保険住宅 1000 件程度、無事故住宅 1000 件程度を抽出した調査「既存保証住宅の瑕疵危険部位等の実態調査」を発表しており、瑕疵危険部位等の事故発生要因と事故リスク分析を実施しています。

各種の仕様による雨水浸入や劣化リスクに関する情報を得て、雨水浸入事故のリスクが低い構法を選択し、住宅の耐用年数を確保することが望まれます。

2.3.3 床下まわりの劣化リスクと推奨仕様

床下まわりは、床組の湿気を防ぐとともに、シロアリの侵入を防ぐ必要があります。床下まわりは、表 2.3.1 に示す推奨仕様を採用することによって、その耐用年数を延ばすことが可能になります。

表 2.3.1 耐久性からみた床下まわりの仕様例

基礎の種類	ベタ基礎	布基礎	ベタ基礎は、比較的シロアリが侵入しにくい。
断熱方法	床断熱	基礎断熱	床断熱は、基礎の被覆がなくシロアリの浸入が発見しやすい。
床の高さ	高い	低い	床が高いと通気が確保され、点検が容易となる。
人通口・床下点検口	あり	なし	床下へ潜れない部分があると点検が不可能となる。
防腐防蟻処理	耐久性D1樹種、特定樹種、K3同等以上のJAS保存処理	耐久性D2樹種、特定樹種以外、K2以下製材の日本農林規格（JAS）で規定されているヒノキ、ヒバなどの腐朽しにくいD1樹種の心材、またはJASのK3同等以上の処理を施すことにより、防腐・防蟻性が一定期間確保される。薬剤処理する際は、プレカット加工された後に加圧注入することが望ましい。なお、ヒノキ、ヒバなどの特定樹種であっても、心材でなければ所要の効果を発揮しない。	

2.3.4 外壁の雨水浸入リスクと推奨仕様

外壁は、雨水浸入事故が最も多いことが住宅瑕疵担保責任保険法人より報告されており、軒やけらばの出や、開口部上部の庇の有無にも影響を受けます。表 2.3.2 に示す各種の仕様によって耐用年数に差が生じるものと思われます。

第Ⅲ章－10
表 2.3.2 耐久性からみた外壁の仕様例

<table>
<thead>
<tr>
<th>構法</th>
<th>推奨仕様</th>
<th>その他の仕様</th>
<th>推奨仕様のメリット</th>
</tr>
</thead>
<tbody>
<tr>
<td>結露計算</td>
<td>実施</td>
<td>未確認</td>
<td>事前に結露計算を実施することにより、結露の発生を抑制する。</td>
</tr>
<tr>
<td>防湿措置</td>
<td>措置</td>
<td>なし</td>
<td>室内からの湿気の流入を防止する効果がある。施工方法に注意。</td>
</tr>
</tbody>
</table>

2.3.5 屋根の雨水浸入リスクと推奨仕様

これまで、我が国の木造建築は、軒やけらばの出（外壁から屋根が出た部分）を充分に確保して、外壁部分になるべく雨が掛からないように工夫してきました。しかし、現在の木造住宅の中には、デザインの好みや斜線制限等の関係から、軒やけらばの出や庇がほとんど無いものが多く、綿密な防水対策を施していない限り、雨漏りのリスクが高くなっています。

外壁には、通気構法が一般化していますが、瓦屋根を除き直葺き構法が一般的になっています。屋根の耐久性や遮熱性能を確保するため、通気構法の採用が望まれます。
3. 各種外皮構造と経年劣化の傾向

3.1 屋根

本項は 2007 年から 2015 年までの 8 年間、首都圏を中心とした約 700 棟の調査記録の中から 147 棟の事例を抽出したものを対象とし、各種の屋根材別に整理した「木造住宅の外皮経年変化事例調査シート」（表 3.1.1 参照、以下、調査シートと略す）と、調査シートを基にして屋根葺材別に各部位の劣化レベルを整理した「木造住宅屋根の経年劣化段階評価表」（表 3.1.2、以下、評価表と略す）を作成し、各種の屋根の経年劣化の傾向を示すものです。

「調査シート」は、建物情報（所在地、立地条件、竣工年、建物用途、構法等）、屋根情報（形状、勾配、下地、下葺き、桟木、葺き材、葺き構法、改修履歴等）、劣化情報（改修履歴、発生部位、事象種別、発生階、方位、劣化写真と解説、推定劣化原因等）、原状回復情報（補修・交換工事の内容と範囲等）、耐久性向上提案（より長く使うための方策提案）から構成されたものです。

「評価表」は、屋根葺き材別に劣化部位と改修に必要なレベルについてまとめたものであり、各種の屋根で発生している様々な劣化状況を「調査シート」により分析し、図 3.1.1 の A～I に示す 9 つの部位に分類するとともに、劣化した部位を現状に回復するために必要な屋根工事の程度をレベル 1 からレベル 3 までの 3 段階に分けて、部位と劣化状況の関係を整理したものとなります。レベル 1 は軽微な劣化あるいはその兆候、経過観察が必要となる程度、レベル 2 は明らかな劣化が局所的に進行して部分的な補修・交換工事が必要となる程度、レベル 3 はレベル 2 の劣化が屋根全面に進行し、大規模な改修・葺き替え工事が必要となる程度としました。

表内の写真をクリックすることで該当する「調査シート」が表示されるようリンクしています。

「木造住宅屋根の経年劣化段階評価表」および「木造住宅の外皮経年変化事例調査シート」には、以下の①〜⑤の屋根葺き材に対応しています。

①粘土瓦葺き
②金属葺き
③住宅屋根用化粧スレート葺き
④アスファルトシングル葺き
⑤プレスセメント瓦葺き

今回は、各種屋根仕上げ材（粘土瓦、プレスセメント瓦、金属板、住宅屋根用化粧スレート、アスファルトシングル類）の代表的な劣化事例を抜粋したものとなります。（表 3.1.1〜3.1.5）
表 3.1.1 木造住宅の外皮経年変化事例調査シートの例

<table>
<thead>
<tr>
<th>物件所在地</th>
<th>千葉県八千代市</th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>坪工経年年</td>
<td>（）年 ~ （）年 = （30）年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>[]戸建住宅 []共同住宅 []その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>[]軸組構法 []枠組構法 []プレハブ構法 []その他（ ） []不明</td>
</tr>
<tr>
<td>星根形状</td>
<td>[]切妻 []寄棟 []片流れ []入母屋 []その他（ ） []不明</td>
</tr>
<tr>
<td>星根勾配</td>
<td>（4/10）勾配</td>
</tr>
<tr>
<td>下地(野地)</td>
<td>[]構造合板 []その他の合板(コンパネ等) []パーティクルボード []硬質木片セメント</td>
</tr>
<tr>
<td>防水下地(下葺)</td>
<td>[]アスファルトルーフィング 940 []改質アスファルトルーフィング []透湿ルーフィ</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>[]木質系 []プラスチック系 []その他（ ） []不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>[]粘土瓦 []プレスセメント瓦 []化粧スレート []金属</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>[]アスファルトシングル・不燃シングル []その他（ ） []不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>[]引掛桟工法(空葺) []土葺 []直葺(野地板直打ち) []通気たて桟構法</td>
</tr>
<tr>
<td>改修履歴</td>
<td>[]平部 []軒部 []けらば部 []大棟 []隅棟 []その他棟部 []谷部 []壁際部</td>
</tr>
<tr>
<td>発生部位</td>
<td>[]1階 []2階 []3階 []その他（ ） []不明</td>
</tr>
<tr>
<td>発生階</td>
<td>[]東 []西 []南 []北 []不明</td>
</tr>
<tr>
<td>経年変化記録</td>
<td>部材（桟瓦）（説明文・写真・図）</td>
</tr>
<tr>
<td>改修履歴</td>
<td>[]ひび []割れ []剥離 []欠損 []変形 []反り []縮み []ずれ []腐食（銹） []腐朽 []変色 []汚れ</td>
</tr>
<tr>
<td>補修内容</td>
<td>部材（桟瓦）（説明文・写真・図）</td>
</tr>
<tr>
<td>主な作用因子</td>
<td>[]雨水 []結露水 []風 []地震 []雪 []低湿 []高湿 []虫 []鳥 []植物 []塩分</td>
</tr>
<tr>
<td>補修内容</td>
<td>部材（桟瓦）（説明文・写真・図）</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>現行の商品は、ねじれが少ないため交換</td>
</tr>
</tbody>
</table>

30年前当時の瓦は、現在と違い多少のねじれのある商品がある。
瓦の下に雨漏れ等がなければ、問題なし。

経過観察
第Ⅲ章
メンテナンスガイドライン

図 3.1.1 「木造住宅屋根の経年劣化段階評価表」で使用する対象部位

表 3.1.2 木造住宅屋根の経年劣化段階評価表
3.1.1 粘土瓦葺き

1）粘土瓦とは
粘土瓦とは粘土を混練、成形、焼成した屋根材であり、いぶし瓦と釉薬瓦、無釉瓦などに分けられます。瓦の形状は、写真 3.1.1 に示す通り、伝統的な J 形、一つの山がある S 形、平らな形の F 形があります。F 形には、U タイプ、F タイプ、M タイプがあります。

全国陶器瓦工業組合連合会では、粘土瓦の種類、性能について、全日本瓦工事業連盟では推奨される施工法を紹介しています。

写真 3.1.1 瓦の主な形状

2）粘土瓦葺き屋根の層構成
層構成は、図 3.1.2 に示す防水通気流し柵構法が推奨されます。下葺材（防水紙）は、二次防水のために使用するもので、野地（下地）の上に張ります。材料の種類は、アスファルト系、透湿系、合成樹脂系、天然素材系があります。

瓦柵木は、瓦を留め付け、ずれ防止のために使用します。材料は良質の杉、檜、松など、またはそれと同等以上の強度及び耐久性を有する合成樹脂などを使用します。

従来の瓦柵構法の場合、強風雨の際、瓦の下に浸入した雨水が、瓦柵によってせき止められると瓦柵の留め付け釘の孔から漏水する恐れがありますが、図 3.1.2 に示す瓦柵の下に流し柵を設けた「防水通気流し柵構法」を採用して瓦柵を浮かせることにより、瓦の留め付け釘が下葺材を貫通することが無くなり、留め付け釘の孔からの漏水を防ぐとともに、下葺材上へ浸入した雨水を瓦柵へ滯留させることなく屋外へ排出する効果が発揮されます。

図 3.1.2 粘土瓦葺き屋根の層構成
第Ⅲ章 メンテナンスガイドライン

3) 粘土瓦葺きの経年劣化
粘土瓦葺き屋根に発生する経年の現象とその発生要因を下記に示します。

① 瓦のずれ、浮き、脱落、飛散
大規模な地震や台風の後、瓦のずれ、浮き、脱落、飛散などにより雨漏れの要因となることがあります。これらが発生する要因として、瓦工事の際に瓦を適切に緊結していない場合と接合具の金属腐食による経年劣化の二通りが考えられます。

瓦を適切に緊結する方法は、「瓦屋根標準設計・施工ガイドライン」に記載されています。「棟部」の桟瓦は、納まりによって瓦を切断する事がありますが、陸棟際の切断した桟瓦（半端瓦）は必ず釘孔をあけ、下地に留め付けた桟木に固定させる必要があります。
また、「谷部」や「棟部」（寄せ棟屋根などの隅棟際）で三角形に切られた桟瓦（勝手瓦）は、釘等で下地に固定させ、併せて、必ず隣接する桟瓦と接着剤で固定させることが示されています。棟部の瓦が下地材などへほとんど留め付けられていない事例もありますので十分な注意が必要となります。

経年劣化を要因とした瓦のずれ、浮き、脱落、飛散は、瓦を瓦桟へ留め付ける「緊結部」などの金属腐食が考えられます。「緊結部」が著しく腐食した状態で大規模な地震や台風を受けた際、地震動や風圧により、これらの現象が発生するものと思われます。

この「緊結部」の金属腐食を防止する方法も「瓦屋根標準設計・施工ガイドライン」に記載されている「瓦緊結用釘」、「棟補強金物」などを使用することにより未然に防ぐことが可能となります。ここで示す瓦緊結用釘は、全てステンレス製となっており、耐食性を確保する上で重要となります。

瓦屋根を補修・改修する際もガイドラインを参考にされることを推奨します。
②瓦のひび割れ、凍害、欠落

瓦表面にひび割れ、表面剥離が見られる症状があります。焼成温度が低く、吸水した雨水が冬凍るため膨張し、ひび割れ、剥離等が発生し欠落することもあるので、現在より約40年以前に施工した瓦屋根に多く見られ、近年の製品においては、ほぼその症状は見られません。

③漆喰の剥離、剥落

棟積には、粘土を接着剤に使用され、表面にシックイを塗る工法があります。経年により、表面のシックイが剥離すると、中の土が流出し棟瓦がずれ、欠落するおそれがあるため、点検時にそのような症状が見られたる、早めにシックイの交換工事が必要です。

現在は、粘土を使わずナンバンシックイのみで棟積みする工法もあります。その場合、シックイの剥離と土の流出はなくなりますが、表面にひび割れ等が発生した場合、雨水が浸入するおそれがあるため、点検し補修が必要となります。

④小屋裏雨漏れ、野地板の腐朽

粘土瓦葺き屋根に限らず長期の雨漏れを放置していると、野地板の腐朽が起きます。野地板や垂木等の腐朽が見られると大規模な工事が必要となるため、部屋側に雨漏れの症状がでていない場合も、定期的に小屋裏点検口より野地板の点検が必要です。
3.1.2 住宅屋根用化粧スレート葺き

1) 住宅屋根用化粧スレートとは

スレートの意味は、粘板岩でできた屋根用の薄い板（天然スレート）です。ここで示す化粧スレートはセメントや有機繊維（石綿、ビニロンなど）を主原料とし、板状に成形、乾燥した後、化粧加工した平形、波形の屋根材です。現在は無石綿化されており、塗装膜を高耐候とした製品もあります。

2) 住宅屋根用化粧スレートの層構成

住宅屋根用化粧スレートの層構成は、図 3.1.3 及び一般社団法人 日本建築学会 建築工事標準仕様書 JASS 12 屋根工事が参考となります。野地の上にアスファルトルーフィング 940 同等品以上の下葺材を使用することが規定されています。一般的に、厚さ 12mm 以上の構造用合板の上にアスファルトルーフィング 940 と同等以上の下葺材を敷いた後、メーカー指定の専用釘で化粧スレートを留め付けます。

![図 3.1.3 住宅屋根用化粧スレートの層構成](image-url)
第Ⅲ章 メンテナンスガイドライン

写真3.1.3 住宅屋根用化粧スレートの部位説明

3) 住宅屋根用化粧スレート葺きの経年劣化

仕上げ面の苔・塗膜劣化、葺き材のめくれ・再塗装時の目地詰まり、板金部のめくれ・錆、野地板・棟木下地板の腐朽等。（表3.1.3）

表3.1.3で示すとおり、スレート本体の劣化は、塗膜劣化により、退色、こけの発生等があります。およそ10年くらいより退色が目視で分かり、その後塗膜が消失すると本体基材が吸水し、反り、破損、こけの発生により、雨漏れを起こす原因となるため、スレート専用の塗装工事をお勧めします。塗装工事の際の注意点は、本体の重なり目（目地）に入った塗料をきちんと（縁切り）作業を行わないと、毛細管現象で浸入した雨水が排出されず、雨漏れを起こすことがありますので注意してください。

また、塗装工事は、塗膜の保護と美観の向上にはなりますが、防水性能の改善にはなりません。防水性能は、スレートの下の下葺材の劣化によるもので、表面からは判断できず、小屋裏点検口より野地板を点検し、雨漏れ等の症状がある場合、葺き替えにて下葺材（防水紙）の交換となります。

葺き替え交換時期の目安は、15年から25年が多いです。

葺き替え前の劣化として、台風等による本体破損によるめくれ、飛散する場合もありますので、台風後に目視にて確認することをお勧めします。

また、写真3.1.3で示す、B 軒部、C 袖部、D 棟部、H 谷部は、鋼板材を釘留めされていて、鋼板材等のサビによる腐食が発生します。そのまま放置していると、風によるめくれ、欠損、雨漏れをおこす原因となるため、部分交換にて補修します。

交換の目安は、15年ぐらいから症状があるため、早めの交換をお勧めします。
表 3.1.3 住宅屋根用化粧スレートの経年劣化段階評価（抜粋）

<table>
<thead>
<tr>
<th>部位</th>
<th>レベル1</th>
<th>レベル2</th>
<th>レベル3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A平部</td>
<td>变色</td>
<td>めくれ</td>
<td>反り</td>
</tr>
<tr>
<td>B軒部</td>
<td></td>
<td>野地腐食</td>
<td></td>
</tr>
<tr>
<td>C袖部</td>
<td></td>
<td>雨漏り</td>
<td></td>
</tr>
<tr>
<td>D棟部</td>
<td>もらいさび</td>
<td>檜下地腐食</td>
<td>野地腐食</td>
</tr>
<tr>
<td>E下葺き</td>
<td>改質25年</td>
<td></td>
<td>9100塗打</td>
</tr>
<tr>
<td>F小屋裏</td>
<td></td>
<td></td>
<td>雨漏り</td>
</tr>
<tr>
<td>G緊結部</td>
<td></td>
<td></td>
<td>棟釘さび</td>
</tr>
</tbody>
</table>
第Ⅲ章メンテナンスガイドライン

3.1.3 金属板葺き

1）金属板とは
カーラー鋼板や銅板などを成形した屋根材料。軽量性、加工性などにすぐれ、屋根の形状に制約されない設計自由度があります。断熱性の向上、発音性の低減など高付加価値化も進み、溶融55%アルミ亜鉛合金メッキ（通称：ガルバリウム鋼板）など高耐久素材の需要が増えています。

2）金属板の層構成
金属板の多くは野地板に直接釘留めしますが、瓦棒葺きは下葺材の上に心木（木質系）を縦に留め付け、金属本体を心木に釘留めをします。（図3.1.4）
3) 金属板の経年劣化

表の3.1.4に示す通り、金属屋根葺きの経年劣化的症状として多くは、もらい錆・折り曲げ部・谷部錆、金属板全体の赤錆、また、屋根の端部（図3.1.4）B軒部、C袖部の破風板などの木部腐朽などがあります。

使用金属板の材質、また表面塗膜の性能によって大きく違いますが、一般的に使用されるガルバニウム鋼板は、10年以降より劣化現象が見られます。変色、塗膜の消失、赤錆となり、軽度の場合錆止めの補修後の塗装工事を行ってください。その際、銅板のような材質によっては、塗膜がすぐに剥離してしまうものもありますので、よく注意してください。

棟部において、木下地の腐朽により、めくれ、欠落、軒部、袖部の水切板金から野地の裏側に水が伝わり木部が腐朽する場合もあります。工法によって違いはあるが、赤錆等の劣化は部分的に交換することもできますが、錆が全体に発生している場合や、錆が進行して金属板に穴があいた場合、雨漏れを起こしますので、葺き替え工事が必要となります。

表3.1.4 金属板の経年劣化段階評価（抜粋）
第Ⅲ章 メンテナンスガイドライン

3.1.4 プレスセメント瓦

1) プレスセメント瓦とは

粘土瓦と同じ窯業系の材料ですが、これはセメントと砂を原料としたモルタルを型枠に入れてプレス成型、養生後に塗料で表面処理したものです。かつて石綿スレートと比較して厚みが厚いので、厚形スレートと呼ばれています。成形性が優れていました。

2) プレスセメント瓦葺き屋根の層構成

粘土瓦と同様に瓦桝に瓦を留め付ける工法です。下葺材、瓦桝、流し桝を利用します。（図 3.1.5）
第Ⅲ章 メンテナンスガイドライン

3）プレスセメント瓦葺き屋根の経年劣化

苔の発生、表面塗膜の劣化、塗膜層の剥離、軒釘や棟釘の錆・浮き、棟面戸の欠落、棟土の流出、基材塗膜の消失・剥離等。 (表 3.1.5)

プレスセメント瓦と粘土瓦の違いは、本体表面が塗料材によって被膜されている製品です。ようって表面塗膜の劣化により、退色、苔の発生、塗膜の剥離等があります。

約 10 年後からその症状は見られ、再塗装にて塗膜の保護する工事が必要となります。再塗装する際の注意点は、塗膜の下地にスラリー層を有する商品があり、塗料材がセメント基材まで含浸せずすぐに剥離する場合があります。塗装前の下地処理材をよく調べてから選択する必要があります。

また、写真 3.1.5 で示す棟部の留め付けに粘土を使用し、表面をシックイにて止水した工法の場合、シックイの剥離、粘土の流出、棟瓦のずれ、欠損する劣化もあります。早めに補修すればシックイの交換、棟取り直し等部分補修で済みますが、雨漏れを起こし野地等の木部の腐朽に至ると、葺き替え、野地補修と大規模な工事になるので注意しましょう。

また、写真 3.1.5 の軒部、袖部の留め付け釘の錆による腐食は、瓦の欠落のおそれがあるため、症状が見られた場合、釘の交換工事を行ってください。

表 3.1.5 プレスセメント瓦の経年劣化段階評価（抜粋）
3.1.5 シングル葺き

1）シングル葺きとは

語源によると、屋根葺き板。柿板（こけらいた）にあたります。日本では、屋根材料はアスファルトシングルと不燃シングル（不燃材）があります。前者は芯材（無機質繊維ガラスマットなど）にアスファルトを浸透・被覆し、その上面に鉱物質の彩色砂粒を、下面には鉱物質の粉粒を焼き付け、又は圧着したものとなります。軽量で柔軟性・防水性が高いためさまざまな形状の屋根に対応できます。後者の不燃シングルは、アスファルトの代わりに無機質の粉粒と合成樹脂を主成分とした塗覆材を組み合わせ、表面に彩色砂粒を焼き付け、又は圧着した不燃材です。

2）シングル葺き屋根の層構成

アスファルトシングルは接着工法と、釘留め+接着する工法があります。共に下葺材に直に留め付けをします。（図 3.1.6）
3）シングル葺き屋根の経年劣化

苔の発生、シングル材の下地からの剥離・欠損・砂落ち・反り・ひび割れ等。（表 3.1.6）シングル葺き屋根の劣化で多いのは、草木の多い場所では苔が発生する場合があります。苔をそのまま放置しておくと、本体の重なり目から雨水が浸入するおそれがあるため、苔の除去をお勧めします。

また、本体の心材が繊維ガラスマット等のため、劣化が進行すると表面の砂落ち、反り等があり台風などで剥離する場合があります。

交換時期としては、15 年ぐらいから劣化状況により、葺き替え、または、シングルにてかぶせ葺きもお勧めします。

表 3.1.6 シングル葺きの経年劣化段階評価（抜粋）
3.1.6 下葺き

1) 下葺き材（防水紙）とは

屋根に降る雨の大半は屋根材の表面を流下します。そのことで建物に水が浸入することを防いでいます（一次防水といいます）。ただし、瓦など屋根材は連続した膜を形成しているわけではないので、一定以上の風雨により隙間から水が浸入してしまいます。その浸入した水を建物に浸入させない（二次防水といいます）ためには、防水紙が必要です。防水紙はシート状の材料で、一般的には下葺き材と呼ばれています。（以降、下葺き材と表現します）なお、下葺き材の種類には、アスファルト系の他、透湿ルーフィング系がありますが、実績が少なく実例の収集が困難であり、そのために劣化現象が不明のため、本稿はアスファルト系に関する記述が中心となります。

2) 経年した下葺き材について

下葺き材は屋根材に覆われているので、建設時や改修時以外目にすることはありません。そのため、下葺き材の劣化状況は、屋根材を取り除かなければならない確証できません。

下葺き材の主な劣化因子としては、熱や、屋根材の間隙から浸入する雨水があります。熱は、図3.1.7のように屋根材を通して反射熱が到達することが考えられます。下葺き材が長期間高温に晒されると、徐々に固くもろくなり、防水性能を維持することが難しくなります。また、変形を伴う現象もあります。変形が大きいと重ね幅が不足したり、くぎなどの貫通部が広がるなど下地が露出してしまうものもあります。変形は熱の他、水分が原因の場合もあります。

主な劣化的例を表3.1.7に示します。
下葺き材の状態を確認するためには屋根材の撤去が必要です。屋根材を固定していた釘が抜けることにより下葺き材には孔が無数に空いてしまいます。したがって確認した下葺き材が、異常のない健全な状態だったとしても葺き替える、または、既存の下葺き材の上にかぶせ葺きする必要があります。

下葺き材の種類は多数ありますが、屋根材の施工後は判別できなくなってしまうので、設計図書には下葺き材の製造所・製品名などを記録しておく必要があります。

表 3.1.7 劣化した下葺き材の状態の例

<table>
<thead>
<tr>
<th>現象</th>
<th>状態例</th>
<th>対応等</th>
</tr>
</thead>
<tbody>
<tr>
<td>異常なし</td>
<td>アスファルトルーフィング’940</td>
<td>[対応] 対応の必要なし※1</td>
</tr>
<tr>
<td></td>
<td>改質アスファルトルーフィング’</td>
<td></td>
</tr>
<tr>
<td></td>
<td>改質アスファルトルーフィング’</td>
<td></td>
</tr>
<tr>
<td>割れ・裂け</td>
<td>アスファルトフェルト8kg/巻品、現在使用不可※2</td>
<td>[対応] すぐに交換が必要あり※3</td>
</tr>
<tr>
<td>孔の広がり</td>
<td>高分子系下葺き材（現在廃番※4）</td>
<td>[対応] すぐに交換が必要あり※3</td>
</tr>
<tr>
<td>状態</td>
<td>現象</td>
<td>対応</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>波打ち</td>
<td>アスファルト・フィンガー 940</td>
<td>[対応] 経過観察※1 ただし、孔の広がりが無いか、縮みが無いか確認する。下地が見える状態であれば、防水紙をすぐに交換。</td>
</tr>
<tr>
<td>縮み</td>
<td>アスファルト・フィンガー 8kg/巻品 現在使用不可※2 高分子系下葺き材（現在廃番※4）</td>
<td>[対応] 経過観察※1 ただし、著しく縮んでいる場合、すぐに交換が必要</td>
</tr>
<tr>
<td>反り</td>
<td>高分子系下葺き材（現在廃番※4）</td>
<td>[対応] 経過観察※1 ただし、重ならなくなるほど反っている場合、すぐに交換が必要</td>
</tr>
<tr>
<td>発泡</td>
<td>アスファルト・フィンガー 940</td>
<td>[対応] 経過観察※1 アスファルト系下葺き材の表面が劣化している現象。ただし防水機能が消失しているわけではないので、撤去しない限り漏水に至らない。</td>
</tr>
<tr>
<td>層間剥離分離</td>
<td>下葺き材を構成している層の剥離や分離を指します。</td>
<td>[対応] すぐに交換が必要※3</td>
</tr>
</tbody>
</table>

※1 本来対応の必要はありませんが、屋根材撤去に伴い釘も抜かれるため、釘孔が無数に空いているので、実際は下葺き材の葺き替え、または、かぶせ葺きが必要です。
※2 本来下葺き材として使用出来ない材料ですが、20年以上前に使用されていた可能性があり、写真は調査時に確認された例です。
※3 下葺き材（防水紙）の交換が必要です。下葺き材を剥がして下地材（野地）が劣化している場合は、下地材も交換が必要です。
※4 過去によく使用されていた下葺き材です。
※5 アスファルトルーフィング940または一部の改質アスファルトルーフィングなどが該当します。

3.2 外壁
3.2.1 乾式外壁材
1）乾式外壁材の特徴
「乾式材料」とは水を使用せずに施工可能な材料の一般的な言い方です。モルタルなどの「湿式材料」は水でセメントと砂を混ぜて施工しますから、「乾式材料」と呼ばれます。戸建木造住宅の乾式外壁材の代表例としてはサイディングがありますが、これは工場で一定のサイズに製造され、それを現場で壁に固定していくため、施工性が良く、地震時などにひび割れや脱落も起こりにくいとされています。
サイディングには、その基材の材質によって大きく窯業系、金属系、樹脂系、木質系の4種類がありますが、ここでは、その中でも使用量の多い窯業系サイディングを例として、経年にともなってサイディング外壁のどこにどのような劣化が生じてくるのか、その一般的な傾向を見ていきます。
2）サイディング外壁仕上げの構成
サイディングによる外壁仕上げは、写真3.2.1に示すように、主としてサイディング材と金物部およびサイディング材間のすき間（目地といいます）を埋めるシーリング材とで構成されています。金物部分はサイディングの裏面になるため、普通は住まい手には見ることができません。
このうち、サイディング材自体は一般には基材と表面塗装部分から構成されます。また、目地を現場で埋めるシーリング材は、サイディング材の幅方向および上下方向に打たれますが、サイディングが重なる上下方向の目地では予めサイディング裏面にシーリング材が接着されている場合もあります。新築後の時間経過によって、これらの各構成部分には次に述べるような経年劣化と呼ばれる性能低下現象が生じてきます。

写真3.2.1 窯業系サイディングによる外壁仕上げの例
3) サイディング外壁仕上げに生じる経年劣化

① サイディング表面のカビや藻による汚損

サイディング材の表面には多かれ少なかれ凹凸があります。そこに雨水や結露水が作用し、藻の胞子が付着すると、日光を浴びて藻が繁殖し、壁面が緑色になります。その後、乾燥状態が続くと藻が死んでそれを栄養としてカビが生えると、今度は表面が黒く汚損されてくることがあります。新築後5年以内でも、水分、温度、酸素、養分の4条件が整うと、自然発生的にこのような生物による汚損が生じ、建物の美観を損なうことがあります。

② サイディング塗膜のチョーキング（白亜化）

サイディング材の表面には、防水や美装のために何らかの塗膜を形成しているのが普通です。その塗膜が長期間にわたって屋外に曝されていると紫外線や雨水により表層から少しずつ劣化していきます。10年前後経過したサイディング材の表面を指でこすると、写真3.2.2に示すように、白い粉のようなものが付着することがあり、これをチョーキングあるいは白亜化といい、表層の塗料（樹脂）が分解したものです。この状態になると、サイディングのもともとの色が褪せてきて光沢もなくなってきているはずで、再塗装をそろそろ考える時期になりつつあります。

写真 3.2.2 チョーキングの例（サイディング表面を手でこすると白い粉が付く状態）
（出典：日本窯業外装材協会監修、不具合は何故起こるか、2009.6）

③ サイディング材表面塗膜のひび割れ、基材の割れ

サイディング材表面塗膜のチョーキングなどの劣化を放置しておくと次第に塗膜が薄くなり、雨水などを吸収しやすくなります。吸収された雨水は日射を受けることで熱とともに湿気として内部に移動するようになり、壁体側にその湿気が出て壁体の下地や構造を傷めることがあります。また、サイディングの吸湿・放湿により湿潤・乾燥が繰り返されると、基材がひび割れを生じることもあります。こうなる前に再塗装などのメンテナンスを行うことが必要です。

④ 目地シーリングのひび割れ・はく離

シーリング材とは材料間のすき間を埋める不定形または定形の充填材です。主な役目は材料間のすき間から水が内部に入らないのを阻止することにあります。一般には、シーリング材の
裏側にはジョイナーと呼ばれる金物があり、また防水紙もありますから、この材料が劣化したからと言ってすぐに壁体木部に水分が作用する事態に陥るということはありませんが、まずはシーリング材で止水することが確かな防水性能を維持する上では重要になります。

シーリング材は新築後10年程度を経過すると時間の経過とともに、光や熱の影響を受けて可塑材（シーリング材に柔軟性や耐候性を付与するための添加物）が抜けだし体積が収縮していきます。これをシーリング材の「痩せ」と呼びます。この段階になったら、本来はシーリング材を打ち替えるのが望ましいのですが、住まい手の方には判断が難しい問題です。

この「痩せ」を放置してしまうと、次にはシーリング材がひび割れるようになります。これは目視でシーリング材を観察すると表面に細かいひびが入っていることから分かります。このひび割れがサイディングとの間に生じると、「はく離」「切れ」ということになり壁の中への水分浸入を許してしまうことになります。この一連の過程を簡単な図で示せば、図3.2.1のとおりです。

シーリング材にはシリコーン系やウレタン系など多様な材質のものがありますが、基本的に有機質ですので紫外線や水分などにより劣化していきます。西側壁面や軒の出の小さい壁面などに以上のような経年劣化が早めにでますので、日常的な清掃時などに点検しておくことが大事になります。

写真3.2.3 シーリング材がサイディング材からはく離した状態（中央部）（出典：NYG監修、不具合は何故起こるか、2009.6）

<table>
<thead>
<tr>
<th>過去</th>
<th>通気層</th>
<th>バックアップ材</th>
<th>シーリング材</th>
<th>サイディング材</th>
</tr>
</thead>
<tbody>
<tr>
<td>初期状態</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>病せた状態</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ひび割れた状態</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

経過年数

図3.2.1 窯業系サイディングによる外壁仕上げの例
3.2.2 湿式外壁材

1) 湿式外壁材の特徴

「湿式材料」とは施工時に水などを混ぜ、それが乾かないうちに施工する材料のことで、モルタルやコンクリートのほか伝統的な左官材料などが代表的なものになります。湿式材料は施工時点では不定形ですから塗り厚や形状を自由に調整可能で柔軟性がある反面、硬化するにつれて体積が収縮してひび割れが入りやすい材料です。また、引張強度が小さいこともひび割れが生じやすい原因となっています。

湿式材料には上で述べたように様々なものがありますが、ここでは現代の木造戸建住宅の外壁材として最もよく使われているモルタル塗りを例として、経年にともなってモルタル外壁のどこにどのような劣化が生じてくるのか、その一般的な傾向を見ていきます。

2) モルタル外壁仕上げの構成

一般的なモルタル外壁仕上げの概略を示せば、図3.2.2のとおりです。製材の板（ラス下地板）や合板などの上に防水紙を介して金属の網（ラス）を取り付け、そこにモルタルを何回かに分けた塗り付け、最後に仕上げ塗材を施工します。したがって、「モルタル外壁仕上げ」とは言っても、直接モルタルが見えるわけではなくて、直接見えるのは防水や美装の役目をもった塗材表面が見えることになります。施工上の瑕疵があったり大地震に遭遇しない限りは、一般にモルタル壁の下地や塗層全体に短期に劣化が生じることは考えにくく、経年にともなう劣化としては仕上げ塗材部分から始まりモルタル層に至るという経過が通常です。ここでは、これらの各構成部分に生じやすい経年劣化と呼ばれる性能低下現象について記載します。
3）モルタル外壁仕上げに生じる経年劣化

①汚損

写真 3.2.4 に示すように、立地や隣家・植栽との関係あるいは仕上げ面の凹凸状況などの条件によっては、早ければ新築後数年経過するころから、塵埃、手垢、油脂、錆などの付着または藻・苔やカビなどの繁殖によって、通常の洗浄方法では除去しきれない汚れが付着することがあります。ただ、これらの汚損が生じても壁体としての機能、性能に問題は生じませんが、藻や苔が発生する環境は改善しておいたほうがよいでしょう。

写真 3.2.4 モルタル外壁仕上げの藻による汚損例

②変退色・光沢度低下

新築後 5 年から 10 年で、外壁塗膜表面の変退色（塗膜の色相、彩度、明度などが低下する現象）や光沢の低下が生じてきます。新築直後は日に当たるとつやつやと輝いていた外壁面が光を反射しにくくなり、また当初の鮮やかな色が褪せてくる状態になるのが塗膜劣化の初期の症状です。ただし、この時点ではまだ再塗装は必要ありません。経過をよく観察していくことが大切です。

③チョーキング（白亜化）（写真 3.2.2 参照）

さらに時間が経過すると、紫外線や雨水などの作用により塗膜表面の劣化が生じ、充填材が離脱しやすくなり、表面が粉末状になることがあります。サイディング材と同じように表面をこすると手に白い粉末がついてくることで分かります。立地条件や塗材種類によりますが、このような状態になるのに、おおよそ 10 年前後かかるのが一般です。このような状態が外壁の広い範囲に確認されたら、再塗装を考えるべきです。

写真 3.2.5 モルタル外壁仕上げ
塗材に生じた膨れの例

写真 3.2.6 モルタル外壁仕上げ塗材
に生じたひび割れおよび剥離の例
④膨れ・ひび割れ・剥がれ

チョーキングが発生している状態を見過ごしたり放置したりすると、次に塗膜に写真3.2.5に示すような膨れが発生することがあります。この膨れは塗膜とモルタルとの境部分あるいは塗膜層の内部で発生することがあります。いずれにせよ、塗膜のひび割れに繋がる現象ですから、これが確認されたら専門業者に診てもらう必要が出てきます。写真3.2.6はひび割れた塗膜の状況です。こうなると塗膜としての機能は発揮できず、雨水などが直接モルタル面に作用することになり、壁内部へ水分浸入リスクが高くなります。

⑤モルタル部分のひび割れ

モルタルは硬化・乾燥にともない体積収縮を生じ、一方で引張りに対する抵抗力にも弱いので、施工上の瑕疵などが無くてもひび割れが生じやすい材料です。ひび割れは写真3.2.7に示すような、ごく細い（多くの場合深さも浅い）ヘアクラックと呼ばれるものと、少し離れたところからでも目視で確認できる幅が1mmを超えるようなひび割れなど多様なひび割れがあります。雨水浸入の観点から見れば、写真3.2.8に示すような0.3mmを超えないひび割れであれば、水分は浸入しにくいと言われており直ちに補修しなくとも、経過観察をしていればよいでしょう。

ところで、ひび割れ幅の計測の仕方ですが、建物検査の専門家は写真3.2.9に示すような、クラックスケールという道具を使います。これは近所のホームセンターなどにも置いてありますが、それを手に入れれば気軽に調べることができ、そのような道具が手に入らない時は太さが分かっているシャープペンシルの芯を使うとおおよその幅を知ることができます。
3.3 外部建具まわり

3.3.1 防水納まり

1）要因と対処について

住宅瑕疵担保責任保険法人によると、保険事故全体のうち雨漏れ関係が9割以上であることが報告されています。特に開口部・建具（窓、ドアなど）まわり関係の雨水浸入事故の割合著しく高くなっています。なお、住宅の品質の確保の促進等に関する法律（住宅品質法）により平成12年4月1日以降に締結された新築住宅の取得契約（請負／売買）では、基本構造部分（柱や梁など住宅の構造耐力上主要な部分、雨水の浸入を防止する部分）について10年の瑕疵担保責任（修補請求権等）が義務づけられています。

表3.3.1に示す通り、建具関係の雨水浸入事故の要因は、建具そのものを要因としたものの他、建具まわりに施す防水テープの不適切な施工などがあります。しかし、壁内にある防水テープは、壁内にあるため建設時や改修時に、工事中しか施工状況を確認出来ません。従って、建設後に建具まわりに雨水浸入事故が発生しても、外装材を剥がさないと明確な診断をする事は困難となります。一方、建具まわりにあるシーリングは、外から目視観察するので、劣化状況を容易に確認することが出来ます。なお、モルタル外壁の場合、シーリングが施されていない場合も数多くあり、特に通気層の無い直張り構法の場合は注意が必要です。また、建具まわりに水染みが確認されたとしても、必ずしも建具まわりが雨水浸入や結露が発生したとは断定出来ません。水は上から下へ流れ落ちますので、上部が要因となって、雨水などが下部の建具まわりへ流下して、内装材などへ染み出すことも数多くあります。

シーリングが劣化していたり、外装材がひび割れたりした場合は、その部分の要因は明確となりますが、内部にも雨水浸入や結露などの要因も隠れている場合もあります。例えば、建具まわりから雨漏りしていたため、検査によりシーリングが劣化していたことを確認し、足場を組んでシーリングを打ち直して工事が終了した後、台風が来て再度、雨漏りが発生することがあります。雨漏りや結露は複合的な要因により発生することもあるので注意が必要です。

住宅の防水納まりは、通気構法の場合、シーリングの劣化により雨水浸入しても、内部に通気層があり、さらに透湿防水シートにより、複合的に防水対策が施されています。従って、室内まで雨水が到達している場合は、内部の不具合が発生している可能性もあり、専門家による総合的な診断が必要と思われます。

今後、新築や改築を予定されている方は、工事前に使用材料や構法を確認するとともに、施工中に防水納まりの状態を確認することをお勧め致します。なお、引き渡し後10年以内の雨水浸入は保証されますが、結露は住宅品質法の対象となっていませんので、注意が必要です。
2) シーリング防水の劣化現象と要因

独立行政法人 建築研究所の建築研究資料 No.145 「建築物の長期使用に対応した外装・防水の品質確保ならびに維持保全手法の開発に関する研究」では、シーリング防水の劣化現象および不具合の種類について表 3.3.1、（一社）日本建築学会では劣化・不具合の現象を図 3.3.1 のように示しています。

<table>
<thead>
<tr>
<th>防水機能関連</th>
<th>劣化現象の種類</th>
</tr>
</thead>
<tbody>
<tr>
<td>灌水またはその痕跡</td>
<td>シーリング材の破断などによる外壁板部などからの灌水またはその痕跡</td>
</tr>
<tr>
<td>被着面からのはく離</td>
<td>シーリング材が被着面からはく離する現象。漏水の原因となる</td>
</tr>
<tr>
<td>シーリング材の破断 (割れ)</td>
<td>シーリング材に発生したび割れが目地補まで達し、完全に破断している状態。漏水の原因となる</td>
</tr>
<tr>
<td>被着体の破壊</td>
<td>シーリング目地周辺の被着体にび割れや欠落が発生する現象。漏水の原因となる</td>
</tr>
<tr>
<td>シーリング材の変形</td>
<td>目地のムーブメントなどによって、シーリング材が外部方向へふくれたり、くびれたりする現象</td>
</tr>
<tr>
<td>シーリング材の軟化</td>
<td>紫外線、熱などによってシーリング材が軟らかくなる現象</td>
</tr>
<tr>
<td>しわ</td>
<td>目地のムーブメント、シーリング材の収縮などによって、シーリング材が波打つ現象</td>
</tr>
<tr>
<td>汚れ</td>
<td>シーリング材表面の汚れ。またはシーリング材の一部が被着体の表面に付着して汚れの現象</td>
</tr>
<tr>
<td>ひび割れ</td>
<td>シーリング材表面に微細なび割れが発生する現象</td>
</tr>
<tr>
<td>自重</td>
<td>シーリング材表面が粉状になる現象</td>
</tr>
<tr>
<td>仕上げ材の浮き、変色</td>
<td>シーリング材の上に施された仕上材（塗料、仕上塗料など）がシーリング材とはく離したり、変色を生じる現象</td>
</tr>
<tr>
<td>変退色</td>
<td>シーリング材の含有成分が表面にブリードし大気中のガスなどによって、シーリング材表面が変色したり、また、シーリング材表面が紫外線などにより劣化退色する現象</td>
</tr>
</tbody>
</table>

表 3.3.1 シーリングの劣化現象および不具合の種類
シーリングが剥離したり破断したりした場合、雨がシーリング部分から浸入する恐れが生じます。シーリング部分から浸入した雨水は、通気層が無い場合、壁内に滞留するリスクが比較的高くなります。通気構法の場合、通気層と透湿防水シートがありますので、ほとんどのが通気層を流下し土台水切りより屋外へ排出されます。しかし、透湿防水シートは釘孔止水性が比較的低いので、その一部が室内側へ浸入する恐れがあります。

シーリングのひび割れが劣化により貫通している場合は、下地材や構造躯体の劣化を招く恐れがありますので、他の雨水浸入要因が無いか検査により事前の確認をするとともに、既存のシーリングを除去して、外装材メーカーなどが推奨する適切な材料と施工方法によりシーリングを打ち直すことが必要となります。
3.3.2 建具本体のうち玄関ドア

1) 玄関ドアの特徴と種類

玄関は建物への主要な出入り口部分です。そこで取り付けられる開口部材としてのドアは、人や物品のほか空気、音、光、水などを適切に透過・遮断する必要がある一方、防犯のためには容易に破壊されにくい性能が求められます。このようなドアは、日常的に頻繁に開閉されると同時に、直接外部からのさまざまな外力（紫外線、熱、雨水、塩分、塵埃・埃など）に触れる部分となり、それらの力によって経年にわたって変化や劣化が進むことになります。

玄関ドアには、その材質によって大きく金属系、木質系、樹脂系の3種類がありますが、ここでは、その中でも使用量の多い金属系ドアを例として、経年にともなってそれらドアのどこにどのような劣化が生じてくるのか、その一般的な傾向を見ていきます。

2) 玄関ドアの構成

親子ドアを例に玄関ドアの構成例を示せば、図3.3.2のようにになります。ドアはドア本体以外にいろいろな部品によって構成されています。これらの部品には、ドア本体をドア枠材に取り付けるための丁番やドアの開閉のための把手のほか、ドアを自動的に閉めさせるためのドアクローザーやドアを施錠するためのシリンダー錠とサムターン及びその相手部品となるストライク（ドアラッチ受け部）やドアガード（ドアチェーン）、子の扉部を固定するためのフランス落としが主なものになります。

また、これらの部材・部品は使われている箇所によって、屋外に面するものと屋内側のものの2つに分かれることになりますが、それによって受ける劣化外力が大きく異なってくる結果、経年にともなう劣化を屋外部品か屋内部品かで異なってくることになります。

以下、経年とともに玄関ドアに発生してくる不具合・劣化現象について紹介します。

3) 経年によって玄関ドアに生じる不具合・劣化

①ドアの外側表面の光沢や色彩の劣化

金属製ドアの主流であるアルミニウム製（正確にはアルミニウム合金製）ドアの場合、経年によってドア外側は紫外線や雨水の影響により長年にわたり徐々に色薄くなってきたり、光沢が失われてくることがあります。アルミニウムの場合はドア表面を一般の塗装ではなく、工場で電解着色仕上げをしてありますので、補修を塗装によって行うことは困難です。一部にはドアそのものの交換が必要になります。一部のリフォーム業者にはアルミニウム製ドアの再塗装を謳っています。
いるものがありますが、検討する場合は塗装の耐久性などに十分注意する必要があります。鋼製ドアの場合は、既存の塗膜をはがして下地処理をやり直した上で、再塗装をかけることで回復させることが可能になります。

②ドア表面の腐食

アルミニウムはイオン化傾向が高い金属で、それを表面に電気化学的に硬い酸化アルミの被膜を形成することで腐食から防いでいます。したがって、アルミニウム製品は鋼材などに比べると耐腐食性は高いものですが、条件によっては比較的短時間に錆が発生します。その原因別にアルミの腐食の仕方を整理したものが表3.3.2です。

<table>
<thead>
<tr>
<th>腐食の主な発生原因</th>
<th>電気化学的腐食</th>
<th>アルカリ腐食</th>
<th>酸性薬品腐食</th>
<th>その他薬品腐食</th>
<th>塩害腐食</th>
<th>鐵分腐食</th>
<th>ガス腐食</th>
<th>塩・泥等の蓄積による腐食</th>
</tr>
</thead>
<tbody>
<tr>
<td>塩分と水分</td>
<td>水分</td>
<td>施工後のクリーニングに使用した薬品</td>
<td>ガラス押えにシリコンを使用し、シリコンをはく離する薬品を使用した場合などに発生</td>
<td>海塩粒子の付着</td>
<td>鉄粉の付着</td>
<td>酸性ガスの作用</td>
<td>鍋突などからなる腐食</td>
<td></td>
</tr>
<tr>
<td>アルミニウムと異種金属の接触</td>
<td>モルタルのアルカリ分</td>
<td>木製額縁の染み抜きなどに使用した薬品</td>
<td>塩害腐食</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>発生期間</td>
<td>施工後約2か月～2年程度で腐食発生</td>
<td>薬品使用後約2日～2か月程度で腐食発生</td>
<td>薬品使用後約1時間～2日程度で腐食発生</td>
<td>施工後3～5年程度で発生</td>
<td>施工後2～5年程度で発生</td>
<td>施工後2～5年程度で発生</td>
<td>施工後5～10年程度で発生</td>
<td></td>
</tr>
</tbody>
</table>

このうち、住宅用のドアやサッシで生じやすいのは、「環境腐食」のうちの塩分による腐食です。海に近い住宅などでは細かい塩分粒子が風に乗って飛来しやすく、それがアルミニウム製ドアの表面に付着し続けることで起こります。こまめに清掃を行っていれば塩分は洗い流されますが、長年放置しておくと、ドア表面に白い粒状の錆が生じてくることがあります。これはアルミニウム表面を工場で電解着色仕上げする際につぶしきれなかった微細な孔に塩分が入り込み生じた化合物で、ドアを非常に見苦しくします。白い錆をアルミ用洗剤などを使って落とすことが第一ですが、それでも落としきれない場合は、ドアそのものを交換することになります。

③ドアの開閉時の問題

ドアを開け閉めする際にドアがかかったり、十分に閉まらなかったりすることがあります。ドア自体のかかつきには、ドアとドア枠を固定している丁番が緩んでいることが考えられます。丁番のネジの締まり具合を確認してみることが必要です。また、ドアが十分に閉まらない原因としては、ドアクローザーの力が弱くなっていること、ドア自体に歪みが生じていることなどが考えられます。
えられます。ドアクローザーに関しては、クローザーの側面については調整ネジを締め直してみることをお薦めします。ドアの歪みは断熱性に優れた断熱ドアなどで発生することがあると言われており、ドア内外の温度差が原因で反りが生じ、ドアが閉まりにくくなることがあります。ただ、この歪みは数mm程度の微小なもののため、ストライク（ラッチ受け）の調節で対応可能です。

3.3.3 建具本体のうちサッシ

1）サッシの特徴と種類

サッシは建物外周部に設けられる開口部材で、サッシ枠内にガラスを固定して光を入れつつ空気、音、熱、水などを選択的に透過・遮断する性能などが求められます。このようなサッシは、日常的に頻繁に開閉されると同時に、直接外部からのさまざまな力（紫外線、雨水など）に触れると、それらによって経年的に不具合や劣化が進むことになります。

サッシには、その開閉方式によって大きく分けると、引違い、押し開き、上げ下げ、回転、FIX（嵌め殺し）などのさまざまな種類がありますが、ここでは、その中でも使用量の多い引違いサッシを例として、経年にともなってサッシのどこにどのような不具合、劣化が生じてくるのか、その一般的な傾向を見ていきます。

2）引違いサッシの構成

引違いサッシは、図3.3.3に示すように、サッシ枠とサッシ本体、戸車、クレセント（2枚の引違いサッシを閉じる際に使用される締め具）、ロック（万が一クレセントが壊されてもサッシが開かないようにするための装置）などで構成されています。このうちサッシ枠とサッシはアルミウム製（正確にはアルミウム合金製）、クレセントはステンレス、戸車とロックはプラスチック製が多いようです。

これら以外に「はずれ止め」というサッシがサッシ枠のレールからはずれにくくするための部品もついています。これも多くの場合、プラスチック製です。

また、図にはありませんが、引違いサッシの外側には一般に夏の虫よけのためにアルミ枠にプラスチック繊維による網を張った網戸が取り付けられます。さらにガラスはサッシ本体とサッシビートというゴム系の固定材で固定されます。

サッシ本体は外側が屋外に向いているため玄関ドアの外側と同じような劣化を生じますが、ブラ
スチック部品についてはさらに紫外線による劣化が問題になります。

3）経年によって引きずりサッシに生じる不具合・劣化

①サッシの外側表面の光沢や色彩の劣化

②サッシ表面の腐食

以上の①、②については、玄関ドアの項を参照して下さい。

③サッシ戸車の摩耗

サッシの戸車が摩耗してくると、開閉時にサッシががたつったり動きが重くなったりします。このような不具合に気が付いたらサッシを外して戸車を確認してみましょう。割れたり、すり減ったりしていたら、取り換える必要があります。戸車はホームセンターにあるものもありますが、無い場合はサッシメーカーまたはサッシ取り付け業者などに問い合わせてみます。

なお、この不具合を放置したまま使い続けると、サッシレールを変形させたり傷つけることになり、場合によってはサッシ本体の交換が必要になることがあるので注意しなければなりません。

④クレセントのがたつき

クレセントはサッシにビスで固定されています。このビスが緩んでくるとクレセントががたつき相手に貼りにくくなったり、クレセントそのものが外れ落ちたりします。クレセントは防犯上、重要な部品ですから、緩みがみられた場合に直ちにビスを締め直す必要があります。

⑤サッシビートの切れ、剥がれ

引違い窓のガラスは、サッシにゴム系のサッシビートという材料で固定されています。この材料は一部が屋外に面しますから、劣化しやすい環境に置かれています。時間の経過とともに、硬くもろくなってきて、弾力性を失い、途中で切れたり縮んできてしまうことがあります。ビートが縮むとビートの継ぎ目が開いてきてここから雨水が浸入してしまうことがあります。隙間が小さい時は、シリコンシーリングなどで隙間を埋めることで対処できますが、隙間が大きかったり切れていたら場合には交換が必要になります。

⑥網戸の不具合

夏、蒸し暑い日本の住宅では、サッシを開閉して風を入れるために引違いサッシの外側に防虫のための網戸を付けることが多く、網の破れ、切れなどが発生します。これは網戸の素材であるプラスチック繊維が紫外線などにより劣化し経年が切れること、あるいは網に硬い物をぶつけたりすることで起きます。これを放置しておくと夏場、サッシを開けた場合の防虫機能が果たせなくなります。破れた範囲がごく狭い場合には、網をパッチワークの要領で張りつけて直せますが、広い範囲になった場合は網全体を交換する必要があります。
3.4 バルコニー

木造住宅のバルコニーには、下階が屋内となっているルーフバルコニーと外壁から跳ね出した片持ち型（構造一体型・既製品別件付型）バルコニーがあり、中でも跳出しバルコニーは経年劣化リスクの高い部位といえます。

バルコニーの使い方における劣化リスクとしては以下のよう部分があげられます。
① 手すり壁上端部分：上端への布団などの掛け外しの繰返しを要因とした笠木金具の緩みによる漏水
② 床の防水層：床面に置く設備機器や植栽プランターの置き方による防水層の劣化
③ 床の雨水排水処理部分：床面の枯葉、土埃、ごみなどの放置を要因とした排水口の目詰まり、漏水、水があふれ出す事故が発生

3.4.1 バルコニーまわりの劣化要因とシグナルの見極め

バルコニーは生活に伴う様々な使われ方があるため、笠木取付け金具の緩みや防水層の破断および排水部分の不全などにより、漏水や結露を起こす原因となることも少なくありません。以下に劣化要因の事例を示します。
① 手すり壁上端は寝具などの日に干しに利用する事も多く、上端に繰り返し大きな力が加えられ手摺や笠木などの固定金具が緩み漏水しやすくなります。この漏水は手すり壁や床裏が空洞となっている事から日当たりの良し悪しにより表面温度の違いが生じ、中空部に結露が発生しやすく木部が湿潤状態になり劣化リスクが高まります。（写真①&②）
② 長期にわたり植栽プランターや植木鉢などは直接置かず、敷板や人工芝などを介して置く事が床防水の保護にもなります。（写真③、④）
③ バルコニーの床は土砂やチリやほこりが堆積しやすく、放置すると排水口の目詰まりの原因となるので定期的な清掃が必要です。（写真⑤）
第Ⅲ章 メンテナンスガイドライン

④ バルコニーの床面に、植栽用のプランターや空調機器の室外機を据置する場合など、防水層に部分的な集中荷重をかけ続けることや、寒暖の繰り返しによる防水層の伸縮が材質の劣化を早める要因となります。床面保護に人工芝やすのこなどの緩衝材を使う（写真③、④）

⑤ 床面に不用意に放置されるちりやほこりは、排水用のドレーンやオーバーフロー管の目詰まりを起こし排水口が1カ所の場合、併設するオーバーフロー管がともに閉塞されると、大雨などで一時的な溜り水が防水層の上端レベルに達し漏水の原因となることもあります。（写真⑤）

造り付けバルコニーの手すり壁や床裏は空洞化されているため、一時的に起きた漏水や結露はカビや腐朽の温床となりやすく、中空部に十分な換気を備えていなければ、長期にわたると腐朽などが進行することがあり、漏水につながるような使い方には十分な注意が必要です。
4. 外皮構造・仕様とメンテナンススケジュール例

建物の外皮は経年にともない劣化していきます。これを放置しておけば構造体の早期の劣化を招き、期待していた年数にわたって建物を使い続けることが困難になります。このような事態を防ぐためには、外皮部分の適切な手入れ・メンテナンスが重要になります。いつどの部分を点検し、必要に応じて補修や交換をすべきかを示したものを、ここでは「メンテナンススケジュール」と呼びます。

建物の使用開始時に予めメンテナンススケジュールを立て、それに従って建物外皮各部の点検や補修を行っていくことは、共同住宅等では資金計画の必要性からも、かねてより必須のこととなっていいます。しかし、戸建て住宅では、CHS等の一部の先進事例を除けば、長期的かつ実効性のある維持保全計画は一般的に考えられていませんでした。2009年に長期優良住宅の認定制度が施行され、30年間以上の「維持保全計画」の提出が求められるようになったことに前後して、その雛形（例、サンプル等の意）が各所で公開されるようになってきました。その中から木造戸建て住宅に関するメンテナンススケジュールの例を以下に示します。

4.1 屋根

4.1.1 瓦屋根

2014年の日本建築学会大会の梗概「木造住宅の耐久性向上に関わる建物外皮の構造・仕様とその評価に関する研究、木造住宅屋根の維持保全計画とライフサイクルコストに関する考察」によると、瓦屋根の維持管理手法については、一般社団法人全日本瓦工事業連盟（以下、全瓦連）及び日本屋根外装工事業協会を母体として2009年に活動を開始した「長期優良住宅に資する屋根工法・仕様検討委員会」（石川廣三委員長）の下の「維持管理分科会」（栗田紀之主査）において検討を進め、成果の一部は同委員会主催のシンポジウムで発表しています。これにLCC（ライフサイクルコスト、生涯費用）の視点を加え、拡大発展させる方向で、2011年に本共同研究に拠点を移しています。瓦屋根の維持保全方法、メンテナンススケジュール、LCCに関する技術資料が少ないため、全瓦連などの協力を得てヒアリング等の調査を行い、その調査結果を基にして図4.1.1に示すメンテナンススケジュールの案を作成しました。
第Ⅲ章 メンテナンスガイドライン

図4.1.1 粘土瓦葺き屋根のメンテナンススケジュールの案

本ヒアリングによりますと、瓦屋根の劣化は、他の屋根葺き材と同様に環境条件や維持管理状況に大きく左右されるが、60年以上の耐久性が期待できるという回答が数多くありました。そこで、60年での更新（瓦から瓦への葺き替え）を仮定し、その間の点検や補修をスケジューリングしました。

ただし下葺き材（防水紙）等については、60年までの耐久性を期待できず、約30年目での更新を計画していますが、その際、瓦はいったん降ろした上で再利用して葺き直すことを想定しています。その間、およそ10年毎に点検を実施し、必要に応じた部分補修を行うことも仮定しています。また、きわめて大まかな参考値ですが、この図には面積約100m²の屋根を想定し、点検、補修、更新（交換）にかかる費用を示しています。

4.1.2 鋼板葺き屋根

1）鋼板

一般社団法人 日本金属屋根協会および日本鋼構造協会の「鋼板製屋根の設計・施工・保全の手引き、MSRW2014」によると、塗装鋼板の劣化は、①塗膜に変化・消耗、②亜鉛の消耗、③鉄地の腐食の順に進行し、各々の段階で特徴的な外観の変化が見られるので、定期点検時には、図4.1.2のような変化の有無に留意する必要があります。
図 4.1.2 塗装亜鉛系めっき鋼板の劣化の進行

図 4.1.2 では、塗装亜鉛系めっき鋼板を例にして、定期点検での項目と判定基準の考え方を紹介します。外観から確認できる汚れや劣化に係る変化に注目し、表 4.1.1 に示す点検項目と判定基準が提供されています。同表の点検項目のほか、必要に応じて局所的な変形や凹み、浮き上がりの有無についても確認しなければなりません。屋根葺き材が局所的に凹んでいると、雨水が常時滞留することによって劣化が早まる可能性があるので、特に注意する必要があります。また、建築物の小屋裏内部からも、明かり漏れや漏水、異音の発生の有無について確認することが必要です。

2) 接合部・附属物

鋼板接合部や附属物（雪止めなど）の点検の結果、緩みが認められた場合には、締め直しを行うほか、場合によっては接合部品を交換することも必要となります。

<table>
<thead>
<tr>
<th>表 4.1.1 塗装亜鉛系めっき鋼板の点検項目と判定基準の例</th>
</tr>
</thead>
<tbody>
<tr>
<td>総合ランクと点検状況</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
</tbody>
</table>

出典：「鋼板製屋根の設計・施工・保全の手引き、MSRW2014」
第Ⅲ章 メンテナンスガイドライン

4.2 外壁

4.2.1 窯業系サイディング

日本窯業外装材協会のWebサイトには、「メンテナンスについて」があり、その中に「メンテナンスの必要性」、「日常の点検」、「一般的な補修方法」、「メンテナンスに関するQ&A」、「リフォームについて」が詳しく解説されています。この中でメンテナンススケジュールの例は、図4.2.1に示す通りとなっています。

<table>
<thead>
<tr>
<th>実施項目</th>
<th>5年</th>
<th>10年</th>
<th>15年</th>
<th>20年</th>
<th>25年</th>
<th>30年</th>
</tr>
</thead>
<tbody>
<tr>
<td>点検</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>お客様様</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>専門業者</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>サイディング</td>
<td>再塗装</td>
<td>再塗装</td>
<td>再塗装</td>
<td>再塗装</td>
<td></td>
<td></td>
</tr>
<tr>
<td>シーリング</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※5年に一度程度の定期的なメンテナンスをおおすすめします。
定期点検は住宅会社様のメンテナンススケジュールに沿って行ってください。また、張り替えの場合は専門家による下地を含めた診断が必要です。

※サイディングは塗装仕上げの上述と建築物の外装条件や使用条件（建物の形状や部位など）により劣化の進行が異なっておりますので、メンテナンス周期は一様ではありません。したがってこのメンテナンススケジュールはあくまでも目安としてご活用ください。なお、サイディングの再塗装についてはご参考に「サイディングの塗り替えについて」を参照してください。

注：このメンテナンススケジュールは一般的な塗装仕上げ（アクリル樹脂系）について作成したもので、その他の塗装仕上げ（タデー塗装など）については住宅会社様（専門業者）へお問い合わせください。

図4.2.1 一般的な窯業系サイディングのメンテナンスのスケジュール例

4.2.2 金属系サイディング

日本金属サイディング工業会のWebサイトには、各種のマニュアルがあり、一般的なメンテナンススケジュールも掲載されています。

4.2.3 モルタル外壁

日本建築仕上材工業会のWebサイトには、「外壁モルタル仕上げの改修マニュアル―木造住宅編」がありますが、木造モルタル外壁のメンテナンススケジュールは掲載されていません。
第Ⅲ章 メンテナンスガイドライン

表 4.2.1 詳細調査の判断基準（出典：建築研究所資料、No.145）

<table>
<thead>
<tr>
<th>調査・診断項目</th>
<th>劣化の状態</th>
<th>劣化原因の判断基準</th>
<th>劣化原因</th>
<th>工法の選定</th>
</tr>
</thead>
<tbody>
<tr>
<td>仕上塗材のふくれ、はがれ</td>
<td>モルタルに浮きが無い</td>
<td>仕上塗材の内部でふくれ・はがれを生じている裏面にモルタルが付着していない</td>
<td>仕上塗材の劣化</td>
<td>劣化原因に基づいて 4. により工法を選定する</td>
</tr>
<tr>
<td>モルタル層の浮き・欠損</td>
<td>上塗りが劣化している</td>
<td>モルタル上塗層のみの劣化</td>
<td>モルタル上塗層のみの劣化</td>
<td>モルタル下塗層の劣化</td>
</tr>
<tr>
<td>ひび割れ</td>
<td>モルタルにひび割れがある</td>
<td>ひび割れ幅 0.3mm 未満</td>
<td>塗膜のみの割れ</td>
<td>劣化原因に基づいて 4. により工法を選定する</td>
</tr>
<tr>
<td>さび</td>
<td>さびがある</td>
<td>ラス・ステールや金具が錆びている</td>
<td>ラス・ステールの劣化</td>
<td>劣化原因に基づいて 4. により工法を選定する</td>
</tr>
</tbody>
</table>

参考資料として、国立研究開発法人 建築研究所の建築研究資料 No.145「建築物の長期使用に対応した外装・防水の品質確保ならびに維持保全手法の開発に関する研究」（表 4.2.1 参照）があります。旧建設省建築研究所では、建設省総合技術開発プロジェクト「建築物の耐久性向上技術の開発」（耐久性総プロ）を 1980 年から 5 年間実施しており、その指針と解説は「外装仕上げの耐久性向上技術」（技報堂出版、1987 年）として出版され、外装塗り仕上げは、第1編「外装塗り仕上げ」として、各種塗料の耐用年数（表 4.2.2 参照）もまとめられています。
表 4.2.2 「耐久性総プロ」で示された標準耐用年数

<table>
<thead>
<tr>
<th>区分</th>
<th>外装塗り仕上げの種類</th>
<th>標準耐用年数（年）</th>
</tr>
</thead>
<tbody>
<tr>
<td>例</td>
<td>JIS 番号</td>
<td></td>
</tr>
<tr>
<td>塗料</td>
<td>アクリル樹脂エナメル K5654※1</td>
<td>6</td>
</tr>
<tr>
<td>薄付け仕上塗材</td>
<td>合成樹脂エマルション系リシン A6909</td>
<td>7</td>
</tr>
<tr>
<td>複層仕上塗材</td>
<td>アクリル系複層塗材 E A6910※2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>アクリル系伸張形複層塗材 E※3 A6910※2</td>
<td>10</td>
</tr>
<tr>
<td>厚付け仕上塗材</td>
<td>セメント系厚塗材 A6915※2</td>
<td>12</td>
</tr>
</tbody>
</table>
※1: JIS K 5654 は2009年に廃止された。
※2: JIS A 6910およびJIS A 6915 は、1995年にJIS A 6909（建築用仕上塗材）に統合された。
※3: 1988年のJIS A 6910改正によって、「伸長形」は「防水形」として規格化されている。

これにより、設計者等の技術者が、使用環境や部位等、耐用年数に影響する要因を考慮し、耐用年数の予測を行い、目標とする耐用年数に応じた材料・部材の選択を行うことが可能となっています。これらの成果は、後に旧建設省の官民連帯共同研究「外装材の補修・改修技術の開発」（1986〜1990年）における検討に反映されています。

4.3 メンテナンスを考慮に入れた LCC の参考値

ライフサイクルコスト（以下、LCC）は、生涯費用とも呼ばれ、建築物の想定される使用年数全体の経済性を推し量る指標であり、本来、資本利子や物価変動等の様々な因子を含んでいます。

ここでは、諸条件を簡略化した上で、3種類の屋根構法について LCC の概算を試みました。

例えば粘土瓦屋根に関しては、図 4.1.1 による維持保全費用と初期費用を仮定し、経過年数を横軸にして積算すると、一定の条件下における LCC を概算することが可能となります。粘土瓦葺きに加えて、住宅屋根用化粧スレート葺き、アスファルトシングル葺きについて以下の仮定で試算を行った結果を図 4.2.2 に示します。

・約 100 ㎡の屋根面積を想定。屋根形状は考慮しない。
・初期点検費用は省略。
・更新時にも同じ材料で葺き替える。
・安全対策費（足場代等）を含んでいない。
・建築物全体のメンテナンスとの整合、建築物そのものの耐用年数、除却について考慮していない。
・金利や物価変動について考慮していない。
図 4.2.2 屋根のライフサイクルコストの概算試算の例

この試算例は、構法ごとの LCC の大小を比較することを目的としたものではなく、LCC の総額に対し、初期費用のそれはわずかに過ぎないことを象徴的に表すものとお考え下さい。
また、この試算は仮定した費用の精度が低いため、全瓦連青年部及び日本屋根外装工事協会を窓口とし、評価精度の向上のため、別途詳細なアンケート調査を実施しています。
5．LCCを踏まえた外皮構造・仕様選定の重要性

5.1 LCCとは

ライフサイクルコスト（Life Cycle Cost、LCC）とは、「生涯費用」と訳されます。想定される製品や構造物の使用期間全体のコストを総計し、経済性の検討をするために用いられます。通常、資本利子と物価変動の影響が加味されます。

LCCの考え方自体は古くからあるものですですが、1960年にアメリカでライフサイクルコスティングという言葉が初めて使われ、以降アメリカの政府機関を中心にLCCを用いた検討手法が開発・導入されてきました。

建築物のLCCは、建築物の企画設計段階、建設段階、運用管理段階及び解体再利用段階の各段階のコストに大別されます。一般に建築物のコストを考えるとき、建設費のみを対象として評価されがちですが、LCC全体からすると保全費、修繕費、改善費、運用費（光熱水費等）、一般管理費等の割合が非常に大きいものになります。建設費は「氷山の一角」という説明がされていま

図5.1.1 建設費とその他経費との関係

企画設計段階のコストはわずかですが、建築物のLCCの低減を図るには、企画設計段階においてLCCを総合的に検討することが必要とされています。

企画設計段階で可能な具体的なLCCの低減策として、以下のような内容が挙げられます。

(1) 建築物の省エネルギー化を図り、光熱費を低減する。
(2) 建築物の長寿命化を図り、期間当たりのコストを低減する。
(3) 建築物の各部材の耐用年数を把握、計画し、効率的な維持管理を実行する。
(4) 維持管理しやすい建築物を設計する。

ここで木造住宅外皮のLCCの検討を進める上で、最も参考すべき既往のLCC推計例として、小松、遠藤による「戸建住宅のライフサイクルコストの推計」が挙げられます。この論文で
は、①部材交換周期の推定、②リニューアル工事費用の推定、③LCCの算出の3つのステップで戸建住宅のLCCを推計していますが、特に①部材交換周期の推定の方法が参考となると思われるため、簡単に紹介しておきます。

この調査では、戸建住宅の居住者を対象とするアンケート調査（回答1,553）を基本データとしています。これを区間残存推計法で分析することによって残存率関数を算出し、残存率50%となる期間を交換周期と設定しています。例えば、図5.1.2は和瓦の交換周期の推計例ですが、残存率50%となる20年強が交換周期になっています。

図5.1.2 小松らのLCC推計における区間残存推計法の例文献1をもとに作成

推計の結果、建築物の外皮の交換周期については、表5.1.1のような結果を得て、LCC推計に用いています。

表5.1.1 小松らのLCC推計における主な外皮の材料別交換周期文献1より抜粋して作成

<table>
<thead>
<tr>
<th>材料</th>
<th>総数</th>
<th>残存率70%</th>
<th>残存率50%</th>
<th>残存率30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>和瓦の交換</td>
<td>567</td>
<td>14</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>洋風瓦の交換</td>
<td>99</td>
<td>15</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>セメント瓦の交換</td>
<td>100</td>
<td>14</td>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>石綿セメント板塗装</td>
<td>307</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>スレート塗装</td>
<td>216</td>
<td>10</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>サイディング交換</td>
<td>291</td>
<td>10</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>モルタルリシン交換</td>
<td>620</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>スタッコ仕上げ交換</td>
<td>217</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>プリント鋼板塗装</td>
<td>71</td>
<td>9</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>サイディング塗装</td>
<td>291</td>
<td>9</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>モルタルリシン塗装</td>
<td>620</td>
<td>10</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>
5.2 屋根・外壁の構造・仕様選定と LCC

5.2.1 屋根のメンテナンススケジュール

建物の LCC を考慮し、維持管理計画を構築することは、共同住宅等では資金計画の必要性からも、かねてより必須当然のことです。しかし戸建て住宅では、CHS*等の一部の先進事例を除けば、長期的かつ実効性のある維持保全計画は考えられてきませんでした。2009 年に長期優良住宅の認定制度が施行され、30 年間以上の「維持保全計画」の提出が求められるようになったことに前後して、その雛形(例、サンプル等)が各所で公開されるようになってきました(図 5.2.1)。当然、屋根も含まれますが、他の部位に比べて記載内容が乏しく、また耐久性の評価も低めになっていると思われます。屋根業界から十分な情報発信がされてこなかったということもあり、全瓦連等の協力を得てヒアリング等の調査を行い、屋根の「メンテナンススケジュール」の案を作成しました。図 5.2.2 は瓦葺き屋根の例です。

*CHS：センチュリーハウジングシステムの略。旧建設省が 1980 年度から「住機能高度化推進プロジェクト」の一環として進め、1988 年に(財)ベターリビングが CHS 認定事業としてスタート。居住空間の可変性や住宅部品等の点検や交換性を向上させ、長期にわたり快適に居住できる住宅のシステムのこと。
図 5.2.1 長期優良住宅認定制度における維持保全計画書の雛形の例

（出典：長期優良住宅化リフォーム推進事業実施支援室）
第Ⅲ章 メンテナンスガイドライン

図 5.2.2 瓦葺き屋根のメンテナンススケジュールの例

粘土瓦葺きの場合、ヒアリングによると、もちろん環境条件や維持管理状況に大きく左右されますが、60 年以上の耐久性が期待できるということでした。そこで、60 年での更新（葺き替え）の仮定をつけて、その間の点検や補修をスケジューリングしました。ただし下葺き材等についてはそこまでの耐久性を期待できないため、瓦はいったん降ろし、約30年目での更新を計画しましたが、その際、瓦はいったん降ろした上から再利用して葺き直すことを想定しました。その間およそ5年ごとに点検を実施し、必要に応じた部分補修を行うことも仮定しています。また、きわめて大ざっぱなモデルですが、面積約100㎡の屋根を想定し、点検、補修、更新にかかる費用を示しています。

5.2.2 屋根のライフサイクルコスト

LCC は本来、資本利子や物価変動等の様々な因子を含んでいますが、ここでは各条件を簡略化した上で、一部の屋根構法について LCC の概算を試みました。図 5.2.2 で維持保全費用の概算を示しましたが、加えて初期費用を仮定した上で、経過年数を軸に積算していければ、限定的な条件にはなりませんが LCC が概算できます。図 5.2.2 の粘土瓦葺きに加えて、住宅屋根用化粧スレート葺き、アスファルトシングル葺きについて、以下の仮定で試算を行いました。結果を図 5.2.3 に示します。

・ 約 100㎡ 屋根面積を想定。屋根形状は考慮せず。
・ 初期点検費用を省略。
・ 安全対策費（足場代等）を含んでいない。
・ 建築物全体のメンテナンスとの整合、建築物そのものの耐用年数、除却について考慮していな
・ 金利や物価変動について考慮していない。
5.2.3 屋根のライフサイクルコストに関するアンケート結果の概要

1) 調査目的

木造住宅の構造躯体の耐久性を向上させるためには、その保護システムとしての「外皮」、すなわち屋根や外壁の耐久性を向上させることが不可欠であり、そのような認識のもと一連の本共同研究を実施してきています。本報告はその一環として、木造住宅の屋根や外壁などを対象に、補修・葺き替えに関する実態とこれらの工事を行う専門工事業者の考えをアンケート方式により明らかにしようとするものであり、今回は屋根についての結果の一部を報告します。

2) 調査概要

a. 調査対象

全日本瓦工事業連盟および日本屋根外装
工事協会などの専門工事業を主とした団体にアンケート用紙を配布し、それらの団体に属する工事業者から64件の回答を得ました。

b. 調査項目

調査は回答者の属性のほか、補修・葺き替え時の諸費用（今回の報告からは除外）、屋根各部位の劣化状況、葺き替え間隔、部材交換の判断基準などに加え、近年増加しているいわゆるカバー工法（被せ葺き）の実施実態について調査しました。

c. 調査時期 調査は2013年11月から2014年2月の間に実施しました。

3) 調査結果と考察

a. 回答事業者の属性

①回答者職種
アンケートに回答した人の職種は、代表者が47人（73%）、幹部職が17人（27%）、職方が9人（14%）、監督が3人（5%）であり（複数回答可）、業務の全体を把握している立場の回答者が大半でした。

②事業規模
1〜5名が39社（61%）、6〜10名が13社（20%）、11〜100人の事業所は12社（18%）でした。事業規模的には、小規模から中大規模事業者まで幅広く回答がなされていたといえます。

③取扱い工事
各事業者が受注しうる工事としては、瓦工事が63社（98%）、化粧スレート工事が39社（61%）、金属屋根工事が37社（58%）、アスファルトシングル工事が33社（52%）でした。その他の工事としては、折板屋根、太陽光発電パネル、雨どいなどの取り付け工事が挙げられます。

④発注元工事の発注
中小工務店からが35%、建て主31%、ハウスメーカー・ビルダー30%などが主体でした。

⑤全体に占める補修・葺き替え工事の割合
件数ベースで補修・葺き替え工事が全体の仕事の半分以上を占める事業者は37社（58%）と過半を占め、補修・葺き替えの割合が70%以上を占めている事業者は約3割でした。

b. 補修・葺き替え実態について
①屋根の補修・葺き替え発注に至るきっかけ
発注者が何をきっかけに補修・葺き替えを依頼してきたかを聞いたところ、雨漏りが最多で52%、ついで葺き材の損傷が20%、屋根の汚損が5%など、屋根の機能・性能の低下をきっかけとするものが大半を占めました。一方、予定補修時期をきっかけとするものは5%に過ぎず、屋根の補修・葺き替えが事後保全中心の形で行われている実態が浮かび上がっています。

②葺き替え間隔
屋根点検の結果から、葺き替えに至る平均的な間隔を聞いたところ、瓦は37年、金属板23年、化粧スレート21年、アスファルトシングル18年であった。瓦にはセメント瓦も含みます。

③葺き替え時の屋根の状況
葺き替え時に観察された既存屋根の劣化状況を聞いたところ、「よくある」現象として挙げられたのは、野地板（合板含む）の腐朽23件、防水紙の劣化20件、葺き材の施工不良15件、留め付け釘の腐食13件など、葺き材の劣化とともに下地各部位の劣化が進んでいることが示唆されています。

④下地各部位の交換実態
屋根材の葺き替え時に合わせて必ず交換する部材としては、防水紙が97%で回答したほ
全事業者が葺き替えに合わせて防水紙も替えていきます。ついで多かったのが瓦桝・流し桝の89%で、瓦葺きの場合は防水紙と瓦桝をほぼ必ず交換すると推定されます。

⑤野地板の交換原因

合板を含む野地板の交換原因で「よくある」とされたのは、カビ・腐朽・割れ・はく離が33件（51%）で最大となり、ついで「劣化はないが早めの交換をする」が13件（20%）でした。発注者に比べて専門知識をもつ事業者は、予防保全的行動をしていることが伺えます。

⑥防水紙の交換原因

防水紙の交換原因で「よくある」とされたのは、穴や亀裂の存在が合わせて46件、まくれや縮みが21件となり、防水紙の劣化が原因とする回答が大半を占めました。また野地板と同様に予防保全的に早めの交換をするとした回答が14件見られました。

⑦瓦桝の交換原因

瓦桝の交換原因で「よくある」とされたのは、腐朽28件、破損14件、反り・たわみ6件などと瓦桝自体の劣化によるものが多く、ついで釘の錆びが原因とするものが12件でした。

c. 他の葺き材への葺き替え工事について

①工事の頻度 他の葺き材への葺き替え工事は、「よくある」とするのが57%、「たまにある」が34%であり、屋根の葺き替え時に仕上げ材を替えることが一般化していることが伺えます。

②他の葺き材への葺き替え工事にあたって調査していること（図5.2.4参照）

「必ずする」としたのは既存屋根材（下地）の点検で48件、屋根勾配の確認が41件、防水紙の確認が37件などとなっています。また3件と少数ではあるが重量計算をするとの回答もありました。

③葺き替え材の選択傾向（表5.2.1左欄参照） 瓦から他材料への葺き替え率は、化粧スレート13%、金属板9%であり、化粧スレート、アスファルトシングルは金属板への葺き替え率が高くそれぞれ31%、45%でした。
第Ⅲ章 メンテナンスガイドライン

図 5.2.4 蓋き替え時の事前確認内容

d. カバー工法（被せ葺き）について

①工事の頻度
既存屋根葺き材を残し新たな葺き材を被せるカバー工法を採用する頻度は、「よくある」 「たまにある」とするのがそれぞれ 24%、30%、「ない」が 46% となり、カバー工法が普及しつつある傾向が見て取れます。

②カバー工法を採用しない理由
カバー工法の採用がないとした 46% の回答者にその理由を聞いたところ、そもそも要望がないとしたのが 14 件（52%）で最多であり、ついで要望はあるが工法に問題があるので断るとしたのが 10 件（37%）、要望はあるが被せる葺き材を扱っていないので断るというのが 2 件（7%）でした。少なからぬ割合の専門工事業者が、カバー工法へ懸念を感じています。

③カバー工法採用にあたって調査していること
「必ずする」としたのは既存屋根材（下地）の点検 29 件、屋根勾配の確認 23 件、防水紙の確認と小屋裏からの野地板確認 11 件などとなっています。重量計算については、「必ずする」は 3 件と少数で、「しない」は 9 件にのぼりました。

④新規葺き材の選択傾向（表 5.2.1 参照）
既存葺き材が化粧スレートの場合は、金属板による被せが 62%、同じ化粧スレートによるものが 29%、既存が金属板の場合は同じ金属板で被せるものが 69% で最多であり、化粧スレートが 19% でした。また、既存がアスファルトシングルの場合は、再度アスファルトシングルで葺く場合と金属板を被せる場合が 42% で同率でした。いずれの既存葺き材でも瓦を被せるという回答はほぼ 0 となっています。カバー工法では重量の増加が耐震上大
きな問題になるために、なるべく軽量な葺き材が選択されている結果と考えられます。

表 5.2.1 蓋替え工事（左）とカバー工法（右）における新規葺き材の選択傾向

<table>
<thead>
<tr>
<th>他材料への葺き替え工事</th>
<th>カバー工法</th>
</tr>
</thead>
<tbody>
<tr>
<td>新規材</td>
<td>既存材</td>
</tr>
<tr>
<td>瓦</td>
<td>化粧スレート</td>
</tr>
<tr>
<td>金属板</td>
<td>13</td>
</tr>
<tr>
<td>化粧スレート</td>
<td>金属板</td>
</tr>
<tr>
<td>金属板</td>
<td>化粧スレート</td>
</tr>
<tr>
<td>アスファルトシングル</td>
<td>化粧スレート</td>
</tr>
<tr>
<td>金属板</td>
<td>金属板</td>
</tr>
<tr>
<td>化粧スレート</td>
<td>金属板</td>
</tr>
</tbody>
</table>

4) おわりに

木造住宅屋根の補修・葺き替えの実態の一端を、屋根の専門工事業者にアンケート調査した結果、屋根の葺き替えや補修では、故障や不具合が生じてからの発注が依然として多数を占める一方、工事業者は下地などを予防的に早めに交換していました。また、下地層の取り換え率が高く何らかの耐久性向上が望まれます。カバー工法については問題を感じている業者も多く、今後技術的な指針などを検討していく必要があると思われます。

最後に本アンケート調査を実施するにあたり各専門工事業団体の方々にご協力いただきました。ここに記して心よりの感謝の意を表します。

参考文献
1) 小松幸夫, 遠藤和義: 「戸建住宅のライフサイクルコストの推計」, 日本建築学会計画系論文集第534号, pp.241-246, 2000年8月
2) 浮田哲, 藤上輝之: 「木造戸建住宅におけるライフサイクルコストの試算」, 日本建築学会大会学術講演概要集（関東）No.8123, 1997年9月
3) 栗田紀之, 石川廣三, 中島正夫, 宮村雅史: 「木造住宅の耐久性向上に関わる建物外皮の構造・仕様とその評価に関する研究 木造住宅屋根の維持保全計画とライフサイクルコストに関する考察」, 日本建築学会大会学術講演概要集（近畿）No.1384, 2014年9月
4) 国土交通省大臣官房官庁常務部監修: 「平成17年版 建築物のライフサイクルコスト」一般財団法人建築保全センター編集・発行, 一般財団法人経済調査会発行, 2005年9月
5) 石塚義高: 「建築経済学と LCC」, 財団法人経済調査会, 2006年9月
6. 外皮構造の点検およびモニタリング

6.1 維持保全のあり方と点検

住宅の各部位、部材は紫外線や雨水などの外力に曝されていて、それぞれの部材の材料的性質や置かれている環境条件などにより、その性能を低下させていきます。これを放置しておけば、いかに設計、施工が良くとも、住宅が建設当初保有していた構造安全性や耐火性、居住性、利便性、美観などの様々な初期性能が経時的に低下し、居住者の生活に不利益を与えるのみならず社会的にも好ましくない存在となってしまいます。このような事態に至るのは、建物を日常的、定期的に点検し、必要に応じて部材や部品の補修や交換、すなわち維持保全をすることが必要不可欠です。

このような維持保全は実施時期に対応して、事後に実施する維持保全と予防的な維持保全とに分けができます。事後に実施するのは建物や設備機器に故障や損傷が生じて、機能や性能が低下したり停止した時点で行う維持保全行為で、住宅の場合の維持保全はほとんどがこれに該当します。これに対して予防的な維持保全とは、計画的に点検、検査、補修などを実施して、建物あるいは機器の故障や性能低下を未然に防ごうとする考え方で、自動車の車検制度などがこれに該当します。事後の維持保全は場合により補修に多大の費用がかかったり、大きな危険を放置することになりがちですから、建物の経済的価値の損失ならびにその回復費用を最小限に抑えかつ居住者の安全と安心を重視するならば、予防的な維持保全の考え方が木質住宅の維持保全にももっと導入されるべきです。

6.2 点検の重要性と LCC 上のメリット

では、点検を定期的に実施して予防的に材料の補修・交換をした場合と、何か事故や不具合が発生してから事後の補修・交換した場合とでは、どの程度経済的なメリットは生じ得るのでしょうか。

右の図 6.2.1 は、屋根を例として、定期的な点検をせずに耐用年数まで放置して補修・交換する場合（青線）と、最初は 5 年目に、10 年目以降は 10 年ごとに点検し必要に応じてその都度補修して最後まで大規模改修無しに使い続ける場合（赤線）との累計の必要投資額を比較したものです。

計算の条件は個別の住宅ごとに仕上げ材や施工条件が異なりますから一概に決定

<p>| 累計投資額 |</p>
<table>
<thead>
<tr>
<th>万円</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>点検無し</td>
</tr>
</tbody>
</table>

図 6.2.1 点検の有無による維持保全総額の比較

<table>
<thead>
<tr>
<th>表 6.2.1 計算の仮定条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>初期建設費</td>
</tr>
<tr>
<td>点検費用</td>
</tr>
<tr>
<td>補修費</td>
</tr>
<tr>
<td>20 年目</td>
</tr>
<tr>
<td>補修時性能回復率</td>
</tr>
<tr>
<td>全体更新</td>
</tr>
<tr>
<td>全体更新時建設費増加率</td>
</tr>
<tr>
<td>劣化係数 b</td>
</tr>
</tbody>
</table>
められませんので、ここでは表 6.2.1 のように仮に設定しています。この仮定条件の精度については今後の検討を待つ必要がありますが、このシミュレーション結果から定期的に点検して大規模な補修・交換をせずに使い続けることができた場合、建物使用期間内の総支出は低く抑えられる可能性があるということが分かります。

6.3 外皮各部の点検箇所と方法

6.3.1 床下

1）床下を覗くと見えるもの

在来軸組構法の床下を床下点検口などから覗くと図 6.3.1 に示すように、基礎の立ち上がり部分をはじめ、土台、柱脚部、筋かい下部、大引、床束、根太、火打土台、床下地などの木部のほか、断熱材、設備配管類などが設置されていることが分かります。これらの部材は、耐震性や耐風性あるいは快適性や省エネ性など建物にとって重要な性能を付与する大事な働きをしています。

![図 6.3.1 1階床組および床下の構造例](出典: 財)日本住宅・木材技術センター、よくわかる長持ちする住宅の設計手法マニュアル、2007)

2）床下地盤面および床下環境の点検

写真 6.3.1 は在来構法による住宅の床下の一例を示したものですが、断熱材の残材や建設中に出たと思われるゴミが散乱しています。特に木片などはシロアリを誘因する原因ともなり得ることからこのような事例はあってはならないものですし、工事管理が行き届いていない現場では起こり得る状況です。このような木家自宅の床下の現状を知るということから床下点検は始まると思うことが大事です。

住み始めから一度も自宅の床下を覗いたことがないという状態は無くしたいものです。

写真 6.3.1 ベタ基礎+在来軸組構法による
1階床下の状況例
さて、床下関係の点検箇所としては、まず床下地盤と床下環境を年に１回は点検する必要があります。具体的には、表 6.3.1 に示すように、床下空間に位置する床組部材や配管類・断熱材の耐久性に重要な意味をもつ床下地盤面状態と床下温湿度、換気状態、木部、金物部の湿り具合などを中心に点検することが必要になります。

<table>
<thead>
<tr>
<th>点検対象部位</th>
<th>被検対象箇所など</th>
<th>点検項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>床下地盤面及び環境</td>
<td>床下の環境</td>
<td>木片（残材）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>木材の湿り具合</td>
</tr>
<tr>
<td></td>
<td></td>
<td>カビ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>換気状況</td>
</tr>
<tr>
<td></td>
<td></td>
<td>温湿度・結露状況</td>
</tr>
<tr>
<td></td>
<td></td>
<td>土壌の状況（植物の生育、湿り気）</td>
</tr>
<tr>
<td>床下シート類（布基礎）</td>
<td>防湿シート</td>
<td>ずれ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>破れ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>めくれ、隙間</td>
</tr>
<tr>
<td>防蟻シート</td>
<td>ずれ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>破れ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>めくれ</td>
<td></td>
</tr>
<tr>
<td>床下防湿コンクリート</td>
<td>ひび割れ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ぬれ（結露）</td>
<td></td>
</tr>
</tbody>
</table>

表 6.3.1 の下段には床下に敷かれることのあるシート類の点検項目を示してあります。これらのシート類は、床下防湿や防蟻のために敷かれることがある材料で、床下地面全面を隙間なく覆って初めて意味のあるもので、したがって、それらのシートにずれ、破れ、めくれなどが発生していなければ確認される必要があります。また、床下面がコンクリートの場合は、大きなひび割れが生じていないか、コンクリート面が濡れていないかなどを確認することが建物の耐久性上は大事な点検項目になります。

3) 1階床組材および床下金物類の点検

床下には、写真 6.3.2 に示すように床組材のほか、土台・柱などの建物の安全性を確保する上で重要なもの数多くの構造材が配置されています。これらは床の荷重を支えるばかりでなく、建物の耐震性や耐風性を確保するための住宅の中でも最も重要な構造部位です。これら
の部位は木材部分とこれを繋ぐための金物部分とからなるので、それらの実態と不具合を把握することが点検の主要目的となります。

自宅の床下に潜って、動ける範囲内で表 6.3.2 に示すような箇所と項目について点検します。腐朽やシロアリ被害の有無などは専門的な診断が必要になりますが、写真 6.3.3 のような状況が木材表面に生じていれば、被害が疑われますので、専門家に相談する必要があります。それ以外の部材の浮き、割れ、ずれ、倒れ、はずれなどは比較的簡単に目視で確認することが可能です。

![写真 6.3.2 在来軸組構法による 1 階床下例（左：布基礎 右：ベタ基礎）](image)
表 6.3.2 1階床組材および床下金物類の点検個所と項目

<table>
<thead>
<tr>
<th>床組、土台、軸組</th>
<th>木部（床組、土台、軸組）</th>
<th>床束の浮き</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>床束のずれ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>床束の倒れ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>根がらみ貫のはずれ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>根がらみ貫の欠損</td>
</tr>
<tr>
<td></td>
<td></td>
<td>根太の折損</td>
</tr>
<tr>
<td></td>
<td></td>
<td>木材の腐朽</td>
</tr>
<tr>
<td></td>
<td></td>
<td>接合部の割れ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>集成材接着層の剥離</td>
</tr>
<tr>
<td></td>
<td></td>
<td>木材のひび割れ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>木材のずれ</td>
</tr>
<tr>
<td></td>
<td>金物類</td>
<td>結露</td>
</tr>
<tr>
<td></td>
<td></td>
<td>鍋</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ゆるみ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>はずれ</td>
</tr>
</tbody>
</table>

注) 基礎断熱工法を採用している場合は、シロアリは基礎内側あるいは外側に施工された断熱材と基礎立ち上がり部の間から侵入することが多く注意する必要がある。

写真 6.3.3 左：土台下部の腐朽例
右：基礎立ち上がり部分に蟻道が構築され土台に達している例
4）1階床下配管類、断熱材等の点検

写真6.3.4に示すように、1階床下には、構造部材以外に、設備配管類、断熱材、換気部材なども位置しています。これらは建物の機能性や快適性のほか、床下空間の乾燥を促して耐久性を確保するなど重要な役割をしている部分です。

主な点検項目は表6.3.3のとおりですが、床下換気部材は屋外側から点検します。また、断熱材の点検項目は断熱材の種類によって見るポイントが異なってきます。「割れ」などは発泡系の断熱材で出てくる点検項目です。

<table>
<thead>
<tr>
<th>床下配管</th>
<th>設備配管等</th>
<th>漏水の有無</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>接合部の漏水チェック</td>
</tr>
<tr>
<td></td>
<td></td>
<td>配管の固定状況</td>
</tr>
<tr>
<td></td>
<td></td>
<td>コンクリート貫通部分の防薬コーティングの欠損</td>
</tr>
<tr>
<td>床下換気部材</td>
<td>ねこ土台</td>
<td>変形</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ずれ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>割れ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>腐れ（特に木質系の場合）</td>
</tr>
<tr>
<td>換気孔、防虫金網</td>
<td>ぐらつき</td>
<td>変形</td>
</tr>
<tr>
<td></td>
<td></td>
<td>破損</td>
</tr>
<tr>
<td></td>
<td></td>
<td>はずれ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>腐食</td>
</tr>
<tr>
<td>断熱材</td>
<td>断熱材本体</td>
<td>たれ下がり</td>
</tr>
<tr>
<td></td>
<td></td>
<td>はずれ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>すき</td>
</tr>
<tr>
<td></td>
<td></td>
<td>割れ</td>
</tr>
</tbody>
</table>

6.3.2外壁

1）外壁仕上げの種類と外壁仕上げ面に見えるもの

1）外壁仕上げの種類

外壁仕上げは、雨水や紫外線などの劣化外力から壁の構造体を保護する重要な部位になります。
ごにひび割れや欠損、劣化が生じていると構造体の劣化につながるので、日頃からの点検が必要です。そのような外壁仕上げの種類には、大きく分けて図6.3.2に示すモルタル仕上げとサイディング仕上げとがあります。モルタル仕上げは、実際にはモルタルの上にさらに防水や美装を目的に何らかの塗装がされているのが普通です。また、サイディング仕上げは金属系、窯業系（セメント系）、木質系、樹脂系など様々な材質の板を張り上げるもので、通常はそれらの素地の上にさらに防水のための塗装被膜を工場または現場で形成します。目地と呼ばれる板と板の間の部分の防水にはシーリング材を埋め込みます。

図6.3.2 外壁モルタル仕上げとサイディング仕上げ例

(2) 外壁仕上げ面に見えるもの

外壁面を見ると、仕上げ材のほかに、窓や面格子、各種ケーブルの引き込み部分、台所や浴室の換気フード、縦樋など様々な付属物があり、このような外壁付属物と外壁仕上げ材との取り合い部から生じることもあるので気を付ける必要があります。また、近年の住宅外壁は通気構法が採用されている場合が多く、その場合には外壁下端部に吸気用の通気金物を取り付けられている場合があります。

2) 外壁仕上げ面および外壁付属物の点検

(1) 外壁仕上げ面の点検

①モルタル仕上げ

モルタル仕上げ面には様々な劣化、不具合現象が生じますが、大きさは表面塗装部分の劣化・不具合とその下地となるモルタル部分の劣化・不具合とに分けることができます。表6.3.4は、それぞれの部位別に点検箇所と項目を示したものです。いずれも目視ないしは手で触れる（触診）などの簡易な方法で確認可能です。

まず表面塗装部では、塗装の白亜化（表面を手でこすると白っぽい粉状の汚れがつく状態）や変色を始めるので目視や触診により点検します。塗装部は経時的には塗装面の膨れ、割れ、欠損に至るので、そうなる前にメンテナンス（塗り替え）をすることが必要です。モルタル部では、モルタルの下地材からの浮き、ひび割れのほか、目地部や他部位との取り合い部に
おけるシーリング材の劣化などに注意する必要があります。浮きはモルタル面を木槌やドライバーの柄の部分などで軽くたたくと空洞音がすることで判断できます。シーリング材は細かいひび割れやはく離が生じていないかを目視で確認します。

<table>
<thead>
<tr>
<th>表 6.3.4 外壁モルタル仕上げ面の点検個所と項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>モルタル仕上げ</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>表面塗装部</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

②サイディング仕上げ

サイディング仕上げもモルタル仕上げと同様に、表面塗装部とサイディング素地部に劣化・不具合の発生が見られます。

表 6.3.5 は、それぞれの部位別に点検個所と項目を示したものです。いずれも目視ないしは手で触れられる（触診）などの簡易な方法で確認可能です。
塗装部はモルタル仕上げの場合と同様の現象に注意する必要があります。また、サイディング部では、材質により異なりますが、サイディングそのものの反りや割れ（写真6.3.5）、ずれ、欠損（写真6.3.6）などのほかに目地シーリング部のひび割れ、はく離などに気を配る必要があります。特に日当たりのよい壁面ではシーリング材の劣化が早く進行するので、一層の注意を払う必要があります。

表6.3.5 外壁サイディング仕上げ面の点検箇所と項目

<table>
<thead>
<tr>
<th>サイディング仕上げ（窯業系の例）</th>
<th>サイディング部</th>
<th>割れ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>反り・変形</td>
<td></td>
</tr>
<tr>
<td></td>
<td>欠損</td>
<td></td>
</tr>
<tr>
<td></td>
<td>はがれ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>下地材の反り</td>
<td></td>
</tr>
<tr>
<td></td>
<td>シーリング材の破断</td>
<td></td>
</tr>
<tr>
<td></td>
<td>シーリング材の接着破壊</td>
<td></td>
</tr>
<tr>
<td>表面塗装部</td>
<td>ひび割れ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>白亜化</td>
<td></td>
</tr>
<tr>
<td></td>
<td>欠損</td>
<td></td>
</tr>
<tr>
<td></td>
<td>変退色</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ふくれ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>剥がれ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>汚れ</td>
<td></td>
</tr>
</tbody>
</table>

（1）外壁付属物の点検

①外壁開口部回り

外壁には窓や出入り口などの開口部がつきます。窓回りを例に外壁仕上げ材との取り合い部の断面を示すと、図6.3.3のとおりです。

これらの開口部材と外壁仕上げ材との取り合い部に隙間やひび割れがあると、そこから雨水が浸入し壁体内木部が濡れることになります。しつこくて、そのような箇所の不具合状況を日常の清掃を行う中で確認していくことが外壁メンテナンスの大事な第一歩となります。

![図6.3.3 外壁開口部まわりの納まり例](image)
第Ⅲ章 メンテナンスガイドライン

表 6.3.6 に外壁開口部回りの点検項目を示しました。開口部そのものの点検に加えて、水切りなどの金属部あるいはシーリング材の劣化が重要な点検項目になります。特に開口枠回りに施工された防水用のシーリング材の劣化は、壁体内への漏水に大きく影響するので定期的に点検することが必要です。

表 6.3.6 外壁開口部回りの点検項目
出典：木造住宅工事仕様書、住宅金融普及協会、2008

<table>
<thead>
<tr>
<th>開口部材と外壁仕上げ材間のシーリング材</th>
<th>開口部（アルミサッシ）</th>
<th>開閉状況（開閉困難）</th>
</tr>
</thead>
<tbody>
<tr>
<td>ひび割れ</td>
<td>開口部（アルミサッシ）</td>
<td>開閉状況（開閉困難）</td>
</tr>
<tr>
<td>ひく離</td>
<td>開口部（アルミサッシ）</td>
<td>開閉状況（開閉困難）</td>
</tr>
</tbody>
</table>

②面格子・各種ケーブル引き込み箇所・換気フード・縦樋回り

さらに外壁には面格子や各種ケーブル引き込み箇所・換気フード・縦樋がついてきます。そのうち、換気フードと縦樋の取り付け詳細の一例を示すと、図 6.3.4 のとおりです。

表 6.3.7 に外壁付属物回りの点検項目を示しました。軒の出が十分ある住宅（600mm〜900mm 以上）であれば、これらの取り合い箇所に雨水が作用する頻度が下がり漏水リスクも低
下しますが、軒の出が無いか小さい住宅ではこれらの箇所からの雨水の浸入に備えて点検を定期的に実施していくことが求められます。具体的には、これら外部付属物と外壁との取り合い部におけるシーリング材のはく離、割れなどの有無、縦樋を固定している金物自体の錆、はずれなどのほかに、縦樋固定金物から雨水が壁体側に伝わらないよう勾配が外に向けて確保されているかなどを確認します。また開口部に面格子が付いている場合は、それらと外壁との取り合い部の点検も必要になります。

表 6.3.7 面格子・各種ケーブル引き込み箇所・換気フード・縦樋回りの点検項目

<table>
<thead>
<tr>
<th>部位</th>
<th>検査項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>面格子</td>
<td>ぐらつき</td>
</tr>
<tr>
<td></td>
<td>破損</td>
</tr>
<tr>
<td></td>
<td>腐食（金属製）</td>
</tr>
<tr>
<td></td>
<td>腐朽（木製）</td>
</tr>
<tr>
<td></td>
<td>はずれ</td>
</tr>
<tr>
<td>ケーブル、管引き込み部</td>
<td>シーリング材の劣化</td>
</tr>
<tr>
<td>換気口取付け部</td>
<td>シーリング材の劣化</td>
</tr>
<tr>
<td>縦樋</td>
<td>縦樋の割れ</td>
</tr>
<tr>
<td></td>
<td>縦樋のはずれ</td>
</tr>
<tr>
<td></td>
<td>栓受け金物の錆・勾配</td>
</tr>
</tbody>
</table>

③外壁通気層回り

近年、外壁に通気層を設ける構造が急速に普及しています。この通気層の主な役割は室内から壁体内に侵入した湿気を外部に排出することにありますが、もう一つの役割には事故的に外壁仕上げ材を通して内部に浸入した雨水を排水することにあります。いわば常に外壁内を乾燥状態に保つための部位が通気層ということで、住宅の柱、土台、筋かいなどの軸組を腐らない状態にしておく上で重要な役目を担っています。図 6.3.5 に示すように、この通気層は、壁の下方に吸気口があり、そこから入った空気が通気層を通って壁上方にある排気口から出てくることで、その機能を発揮するようになっています。したがって、壁の上下にある 2 つの通気層開口部をしっかりと開口として確保することが壁の長寿命化を図る上で重要になります。
第Ⅲ章 メンテナンスガイドライン

第Ⅲ章-73

表 6.3.8 外壁通気層の吸排気口回りの点検項目

<table>
<thead>
<tr>
<th>外壁</th>
<th>通気層の吸排気口回り</th>
<th>つまり</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>はずれ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>がたつき</td>
<td></td>
</tr>
<tr>
<td></td>
<td>変形</td>
<td></td>
</tr>
<tr>
<td></td>
<td>鍛</td>
<td></td>
</tr>
</tbody>
</table>

表 3.6.8 に外壁通気層の吸排気口回りの点検項目を示しました。吸気口にほこりが詰まっていないか、壁が在巣していないかを含めて吸気口回りに「つまり」がないかを確認していくことが重要です。また、それらの部分に金物を使用している場合は、そのはずれ、がたつき、変形、錆なども一緒に確認しておくとよいと思われます。

6.3.3 小屋裏

1) 小屋裏を点検する意味

小屋裏は屋根を支える構造体が露出している空間です。小屋裏空間には、この構造体の全てが目視可能な形で存在していますから、小屋裏を点検することで屋根構造体の健全度を確認することができます。漏水を未然に防ぐためには、屋根仕上げ面（屋根上面）からの点検も必要ですが、住まい手にとっては多くの場合危険が伴うため、より安全を確保しやすい小屋裏側から点検することをお薦めします。

2) 小屋裏を覗くと見えるもの

写真 6.3.7 に示すように、点検口などから小屋裏空間を覗くと屋根の構造体である小屋組材のほかに断熱材や野地板と呼ばれる屋根下地材などが見えます。屋根の断面構成の一例を示したものが、図 6.3.6 になりますが、小屋裏を覗けば断熱材などで覆われている部分を除いて屋根構
造体のほとんどが目視できることが分かります。また、雨水が小屋裏側にまで漏洩している場合は、写真 6.3.8 に示すように野地板や小屋組材の変色・しみ跡が残って確認ができるほか、より事態が進んだ状態としての腐朽も確認することができます。

ただ、小屋裏は足場がありませんので、慣れた人でないと全体をくまなく見て歩くことは困難です。点検口から体を入れて見ることができる範囲を見るという程度に止めておいたほうが無難です。

写真 6.3.7 点検口から覗いた小屋裏の様子

図 6.3.6 屋根の断面構成の一例
出典：住宅金融支援機構、平成 28 年度版、木造住宅工事仕様書、272P

写真 6.3.8 小屋裏漏水箇所の様子

3）小屋裏の点検

小屋裏各部のうち、小屋組材と断熱材の点検項目を示したものが表 6.3.9 です。小屋組木部については、腐朽や蟻害などの生物劣化のほかに接合部の割れや垂木の折損なども目視により確認可能です。小屋組の蟻害は雨漏りがあればヤマトシロアリしか生息していない地域でも発生しうますが、雨漏りがなければイエシロアリの生息地域に限られるのが一般です。小屋組材同士は羽子板ボルトや鍵（かすがい）などの金物で接合されているので、それらの錆も合わせて
確認するようにします。天井断熱材は省エネルギー性能を左右する重要な材料ですから、断熱材間にずれや隙間ができていないかを確認します。発泡系断熱材の場合はさらに割れたりしていないかも確認します。

表 6.3.9 小屋裏の点検項目（1）

<table>
<thead>
<tr>
<th>小屋裏材</th>
<th>木部</th>
<th>小屋裏の点検項目</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>小屋束の浮き、ずれ、傾き</td>
<td></td>
</tr>
<tr>
<td></td>
<td>小屋筋かいのずれ、折損</td>
<td></td>
</tr>
<tr>
<td></td>
<td>たる木の折損</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腐朽</td>
<td></td>
</tr>
<tr>
<td></td>
<td>蟻害、蟻道</td>
<td></td>
</tr>
<tr>
<td></td>
<td>接合部の割れ</td>
<td></td>
</tr>
<tr>
<td>金物</td>
<td>鎖び</td>
<td></td>
</tr>
<tr>
<td></td>
<td>緩み</td>
<td></td>
</tr>
<tr>
<td></td>
<td>はずれ</td>
<td></td>
</tr>
<tr>
<td>断熱材</td>
<td>断熱材本体</td>
<td>浮き（天井断熱）</td>
</tr>
<tr>
<td></td>
<td>ずれ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>割れ（発泡系断熱材）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>すき間</td>
<td></td>
</tr>
</tbody>
</table>

小屋裏の点検としては雨漏りの有無や換気状態などの点検も欠かせません。また、小屋裏空間は屋根面および室内側から侵入してきた熱や湿気を小屋裏換気口から排出し、室内温度が上昇するのを防ぐとともに小屋組材を乾燥状態に保つ機能もあわせ持ちます。さらに小屋裏には様々な配線、配管類が敷設されており、その点検も必要になります。これらの点検項目を表 6.3.10 に示します。点検は基本的に目視で行い、温湿度は簡単な温湿度計で、また換気状況は肌で感じとれる程度で確認します。

表 6.3.10 小屋裏の点検項目（2）

<table>
<thead>
<tr>
<th>小屋裏</th>
<th>小屋裏の環境</th>
<th>雨漏り箇所の有無</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>雨漏り箇所の有無</td>
<td></td>
</tr>
<tr>
<td></td>
<td>温湿度</td>
<td></td>
</tr>
<tr>
<td></td>
<td>換気状況</td>
<td></td>
</tr>
<tr>
<td>換気口</td>
<td>詰まり</td>
<td></td>
</tr>
<tr>
<td></td>
<td>破損</td>
<td></td>
</tr>
<tr>
<td></td>
<td>脱落</td>
<td></td>
</tr>
<tr>
<td>配線、配管（電気、情報配線、空調ダクト等）</td>
<td>配線、配管回りからの漏水の有無</td>
<td></td>
</tr>
<tr>
<td></td>
<td>接合部の抜け、緩みのチェック</td>
<td></td>
</tr>
<tr>
<td></td>
<td>配管固定状況</td>
<td></td>
</tr>
</tbody>
</table>
6.4 点検結果の考え方と対応措置の取り方

点検が終わったら、その結果に対してどう対応すべきかを決めなければメンテナンスを実施したことにはなりません。そのためには一定の診断基準を設けておく必要がありますが、それには一般に次のような6段階の措置があります。

①点検した結果、その部位・部材には劣化や不具合の兆候も被害もない場合・・・健全と考えられますので、特に何らかの措置をとることは不要と考えられます。

②点検した結果、その部位・部材に劣化の兆候（高い明らかに湿っている、床下や小屋裏の湿度が高い、材料表面に軽い変色などが見られる）はあるが、目視や打診・触診をしても明確な劣化が確認できない場合・・・その後の経過をしばらく観察し続ける必要があります。またその兆候が現在の原因としての環境を改善する必要があります。たとえば、屋根や外壁に樹木が覆いかぶさっていることが、それらの部位に劣化の兆候を招いているとすれば、樹木を伐採するなどです。

③点検した結果、その部位・部材に劣化を引き起こす変状が見られた場合・・・その変状を元の姿に回復させる必要があります。たとえば、屋根瓦にずれが生じていて雨漏りの原因となり得ると考えられる場合、瓦を速やかに元の位置に回復させる必要があります。

④点検した結果、その部位・部材に劣化が生じていたが、その程度がごく浅く、狭い範囲に限られている場合・・・劣化が生じている範囲を中心に部材を補修することが必要になります。たとえば、モルタル面のひび割れが外壁の狭い範囲に生じており、しかもひび割れ幅が0.3mm以内程度の小さなものである場合、専門業者に依頼してその部分を補修してもらいます。

⑤点検した結果、その部位・部材に劣化の兆候が生じており、その程度が深く、広い範囲に及んでいる場合・・・専門業者に見てもらった上で、部材の部分交換あるいは全面的な交換が必要になることがあります。

⑥点検した結果、その部位・部材に明確な劣化・不具合（長期にわたる雨漏り、水漏れ、それに伴う高含水・高湿気状態など）があるが、その原因がどこにあるのか不明な場合・・・点検・診断の専門家に依頼をして、たとえば雨水浸入箇所や結露原因の特定などをして対応措置を明確にする必要があります。

部材の補修や交換にあたっては、原状回復を原則としつつ、再発を防ぐために劣化の原因を把握してそれを取り除いておくことが重要になります。ただし、その原因には避けられるものと避けられないものとがあります。たとえば、建物の材料で覆われている構造体が腐朽や虫害により劣化するのは、本来あってはならない構造体への水分浸入やその滞留が生じるからです。これには雨水や雨水、通気・排気などの仕組みを建物の要所に組み込むことで避けることができます。一方、屋根や外壁の仕上げ材のように直射日光を受け、雨露、塵埃に曝されて、変色やしみ、ひび割れなどが生じるのは、建物の最も外側に用いられる「外皮」部材の材料には避けられない変化になります。これらの部位に用いられる部材は必ず、いずれかの
時点で補修したり交換したりすることが必要になります。各種点検項目ごとの点検結果に対する対応措置をまとめて示すと、表6.4.1のようになります。

表6.4.1 建物外皮部分の点検結果と対応措置

<table>
<thead>
<tr>
<th>点検項目</th>
<th>対応措置</th>
</tr>
</thead>
<tbody>
<tr>
<td>変退色</td>
<td>塗装面：3年経過していれば状況により再塗装
 ：5年経過していれば再塗装
合成樹脂：経過観察
 木部：腐朽かカビか詳細調査で特定</td>
</tr>
<tr>
<td>しみ</td>
<td>壁紙：カビが生えていれば張替補修
 木部：腐朽かカビが生じていないか詳細調査</td>
</tr>
<tr>
<td>はく離</td>
<td>塗装面：はく離部分をはがして補修、状況によっては全面再塗装
 塗り壁：補修</td>
</tr>
<tr>
<td>膨れ</td>
<td>膨れ部分を補修</td>
</tr>
<tr>
<td>浮き</td>
<td>仕上げモルタルの場合は浮いた部分をはがして補修
 壁が浮いている場合は専門業者に精密に診断してもらう</td>
</tr>
<tr>
<td>ひび割れ</td>
<td>モルタル：ひび割れ幅0.3mmを超える場合は補修
 タイル：ひび割れ幅0.3mmを超える場合は補修</td>
</tr>
<tr>
<td>払け節</td>
<td>補修（大きい場合は部材交換）</td>
</tr>
<tr>
<td>めくれ</td>
<td>補修（元に戻す）</td>
</tr>
<tr>
<td>ずれ</td>
<td>補修（元に戻す）</td>
</tr>
<tr>
<td>欠損</td>
<td>補修（著しい場合は部材交換）</td>
</tr>
<tr>
<td>脱落</td>
<td>補修（著しい場合は部材交換）</td>
</tr>
<tr>
<td>折損</td>
<td>補修（著しい場合は部材交換）</td>
</tr>
<tr>
<td>詰まり</td>
<td>補修（堆積物の除去）</td>
</tr>
<tr>
<td>腐朽・蟻害</td>
<td>軽微で荷重を受けないものは補修
 広範囲な場合あるいは荷重を受けるものは専門業者に精密に診断してもらう</td>
</tr>
<tr>
<td>開口部隙間</td>
<td>シーリング材にひび割れ・損傷がある場合は補修
 漏水が疑われる場合は専門業者に精密に診断してもらう</td>
</tr>
</tbody>
</table>

6.5 点検を容易にする設計上の工夫

建物の維持保全を適切に行うには、点検が重要であることは既に述べたとおりです。しかし、この点検は、点検対象や点検項目などの点検に関するソフトウェアと点検実施者を用意すれば実施できるというものではありません。建物そのものが、点検を可能とするような、あるいは
点検しやすいような構造になっているかどうかが点検の実効性を確保する上で重要なカギを握ります。せっかく点検にたたけた技術者がいても、建物側が点検しやすい構造になっていなければ現実には十分な点検がされないこともあります。そこでここでは、外皮構造のうち床下と小屋裏、屋根について、点検を容易にするための建物設計上の留意点や工夫について述べていきます。

6.5.1 床下

1) 複数の床下点検口の設置

床下点検を可能にするには、床下に入るための開口部である床下点検口を要所に設けておくことが必要です。一般には台所床下収納庫が床下への進入口になっていることが多いと思いますが、それ以外に台所から離れた場所にも点検口を設けておくと床下全体をくまなく点検しやすくなります。押し入れやクローゼットの中などの目立たないところに点検口を設けるとよいでしょう。

2) 足な床高さの確保

点検口から床下に入れても、床高さが低いと床下空間を自由に移動してくまなく点検ができません。国の長期優良住宅認定基準にもあるとおり、最低でも330mmの床高さ（床下地盤面（あるいはコンクリート面）から大引下端までの高さ）が必要になります。これは人が床下を比較的自由にい回るための最低の高さになります。

3) 間仕切り基礎立ち上がり部における人通口の設置

床下点検をしやすくするもう一つのポイントは、床下にある間仕切り基礎の立ち上がり部分に人が通るに十分な大きさの人通口という開口部を設けておくことです。これがないとそれぞれの部屋の床下が間仕切り基礎で密閉されて、床下全体をくまなく移動することが困難になります。各部屋に点検口を付ければ問題は解決しますが、現実的ではありません。あらかじめ、600×300mm程度の大きさの人通口を設けておくことが大事です。

6.5.2 小屋裏

1) 小屋裏点検口の設置

小屋裏空間を点検するために、空間として区切られた小屋裏ごとに1箇所ずつ点検口を設けておきます。一般には押し入れやクローゼットの天井面に設けることが多いですが、荷物をどけないと出入口が面倒なことが多く、点検が疎かになる一因となります。できれば廊下の天井面に折り畳み階段をつけた点検口を設置しておくと、必要な時に容易に小屋裏に入ることができるようになってこまめな点検が可能となります。

2) キャットウォークおよび点検用電源の設置

点検口をつけて小屋裏に入れたとしても、小屋裏をくまなく点検するためには一般には小屋梁や間仕切り桁の上を歩くことになり、かなり危険が伴います。

そこで、小屋裏に入った経験のない住まい手でも安全かつ簡単に小屋裏を見回すようにキャ
キャットウォーク（もともとは劇場の舞台上部や工場の作業場上部に取り付けられた作業用通路のこと）を小屋裏全体が見て回れる位置に建設当初から設置しておくことが有効です。

写真 6.5.1 は公共施設の例ですが、屋内にメンテナンス用に設けられたキャットウォークの例です。戸建住宅の小屋裏にも足場板程度の簡易なものでもいいので同様のものが付いていると点検が極めて容易になります。また、点検に必要な照明用の電源を確保しておくことも点検をしやすくする上で大事なことです。

写真 6.5.1 メンテナンス用のキャットウォークの例（静岡県天竜区役所）

6.5.3 屋根

1）屋根点検用金具の取り付け

安全の観点から住まい手ができる屋根面の点検範囲は、2階の窓から1階の屋根を目視で点検する程度ですが、今後住まいを建て直したり大規模修繕をする場合には、業者が屋根の点検をしやすいように屋根面の棟に近い箇所に1箇所と屋根の上り口となる軒先近くに1箇所ほど点検用金具を取り付けておくといいでしょう。写真 6.5.2 はドイツの住宅の屋根に設けられた点検用金具の例です。このような準備をしておくことがメンテナンスの容易な屋根を作る上で重要になると思われ、日本での今後の普及を期待したいところです。

写真 6.5.2 屋根点検用金具をつけたドイツの住宅例（写真提供：岩元創）

2）点検瓦の設置
瓦葺きの場合などは瓦そのものが健全でも、下葺き材（ルーフィング等）や下地板（野地板）が傷んでいる場合があります。屋根の専門業者は瓦の上を歩行することで下地の傷みを判断することができますが、このような状態になる前に下葺きや下地の傷みを知ることができれば、大事になる前に手を打つことができるようになります。

点検瓦は予め点検する箇所を定めておき、必要に応じて瓦を外して下地の様子を確認できるようにしたもののです。点検箇所は、基本的に屋根の面ごとに最低1箇所設定するようにしますが、特に北面や日陰となる部分など、下葺き材や下地材が傷みやすい箇所を優先します。

6.6 木造構造体の予防保全としての外皮モニタリング手法の可能性と課題

6.6.1 背景と目的

木造建築物の耐久性を確保するためには、雨水浸入や結露を未然に防ぎ、木材および木質材料などの含水率を低く抑えるなど、劣化を防止する必要があります。床下や小屋裏の状態を把握するには、床下点検口や小屋裏点検口から潜り込み雨水浸入や結露の有無を確認する方法があります。点検口からライトにより光が届く部分は、その表面上の色などを確認できますが、点検口から浸入・移動して床下や小屋裏全体を直接的に点検することは困難を伴い、点検間隔も長くなりがちです。点検間隔が著しく長い場合、その間に雨水浸入や結露が発生して劣化しやすい状態になることも考えられます。

木造住宅の性能、品質を長期にわたって効率的に維持するためには、劣化が発生してから補修をする事後保全ではなく、劣化が発生する前にその兆候をなるべく早く察知して必要な措置をとるようにする予防保全が必要です。そのための手法として建物外皮にある木部周辺の温湿度環境や含水率などをセンサーにより監視するモニタリングシステムが注目されています。ここでは事例に基づいてその可能性と課題を紹介します。

6.6.2 センサー取り付け場所

木造住宅に関する既往の劣化実態調査のデータなどに基づいて、最も劣化リスクの高い場所の部材に表面含水率センサー、温度・相対湿度を測るセンサーを取り付けます。

具体的には、屋根や外壁からの雨水等の浸入があれば柱などをつたい最終的に土台に水分が下りてくること、また腐朽は浴室や洗面所といった水まわりの床下で多く発生していること、さらに蟻害は浴室、玄関・勝手口、洗面所などのほか、排水廻りや居室床下でも多いことなどの調査結果に基づいて床下外周および水まわり各部へ優先的に設置する方式としました。センサー取り付け位置の例については、図6.6.2を参照して下さい。
一般的な木造住宅の場合の事例として、図6.6.2のように家の中の中心付近に温度・相対湿度センサーを配置（1）し、建物の外周に10個の表面含水率のセンサーを配置（2〜11）しました。外周のセンサーは、水を使用する場所（台所と浴室もしくは洗面所）の各箇所のほか各方向別に設置しました。構造によって相対湿度センサーを複数個取り付けることは可能です。

6.6.3 モニタリングシステムの概要

各センサーのデータは、1時間（任意に変更可能）に1回コントローラによりデータを収集し、コントローラは収集したデータを1日1回（任意に変更可能）インターネットを通じてサーバーにデータを送信します。サーバーでは、データを保管管理し、特定されたパソコンからのアクセスによりデータをパソコンに表示させることができるのです。
第Ⅲ章 - メンテナンスガイドライン

6.6.4 想定される効果
機能別に想定される効果と効果の具体例について表6.6.1に示します。

<table>
<thead>
<tr>
<th>機能</th>
<th>想定される効果</th>
<th>効果の具体例</th>
</tr>
</thead>
<tbody>
<tr>
<td>早期発見</td>
<td>修繕費用の軽減</td>
<td>居住者が構造躯体部分の状態を把握</td>
</tr>
<tr>
<td></td>
<td>構造躯体の耐用年数の長期化</td>
<td>早期発見による修繕費の軽減</td>
</tr>
<tr>
<td></td>
<td></td>
<td>木材の腐朽を防ぐ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>大規模な修繕は不要</td>
</tr>
<tr>
<td></td>
<td></td>
<td>施工精度の向上</td>
</tr>
<tr>
<td>遠隔操作</td>
<td>定期診断コストの削減</td>
<td>住宅生産者によるアフターサービス時のコスト削減</td>
</tr>
<tr>
<td></td>
<td>早期対応によるクレームの減少</td>
<td>腐朽を原因とするクレームの減少</td>
</tr>
<tr>
<td></td>
<td></td>
<td>クレーム対応による労力の削減</td>
</tr>
<tr>
<td>不可視箇所の測定</td>
<td>既存住宅等の診断</td>
<td>中古住宅流通活性化</td>
</tr>
<tr>
<td></td>
<td></td>
<td>リフォーム時の事前診断</td>
</tr>
<tr>
<td>データ収集・集積</td>
<td>データのフィードバック</td>
<td>将来の家造りに対し、経年データを活用</td>
</tr>
<tr>
<td></td>
<td></td>
<td>経年変化をデータベース化し、住宅生産者等へ提供可能</td>
</tr>
</tbody>
</table>

6.6.5 課題
今後の長期使用を前提とした木造住宅で必要となるであろう床下を中心としたモニタリングシステムの課題は以下のとおりです。

① センサーの床下取り付け
現在は既往の木造住宅に関する劣化調査結果などに基づきセンサーの設置位置を決めているが、今後はそれに加えてセンサーの感度に応じた最適な取り付け位置や数を決めるガイドラインを作成していく必要があります。

② 床下以外の部位へのセンサー設置
壁面や小屋裏等へのセンサー設置と設置位置について今後検討する必要があります。本センサーの測定は点での測定ですが、より確度の高い検出性能をもたらするために面での測定（特に水濡れ）について検討が必要です。

③ センサーの耐久性
現在、各種センサーは7年間実測を継続していても不具合は出ていません。水濡れなどを検知できる新しいセンサーの開発を含め、長期間の耐久性のあるセンサーの開発が必要です。
7. 木造住宅の耐久性を損なわない住まい方
7.1 木造住宅の耐久性と住まい方

木造住宅に限らず、建物は全て設計と施工が良いだけでは所期の耐久性能を維持し続けることは困難です。その建物をどう使うかによって、劣化の発生時期や程度が変わってくるからです。

図 7-1 は、昭和 55 年に 35 棟ほどの某市営木造住宅の劣化実態調査をした結果です。築年数が 26 年から 27 年経ったものを、解体撤去することに伴って調査したものです。市営住宅ですから同一の間取り、材料、規模、構造の多数の住宅が何箇所にまとまって建設されていたものを対象としたのが、この調査の特徴です。その結果分かったことは、いずれの部位、部材とも劣化率の分布がばらつきの大きいものになっており、特に雨水、使用水（水回りで使用される水）あるいは地盤面からの湿気によって生じたと思われる劣化の割合が建物によって大きく異なっているということでした。それほど広大で地形に変化のある敷地内に建っていた住宅群ではないので、地下水位や雨の作用が局所的に違っていたとは考えにくいことから、劣化率（使用木材量に対する劣化木材量の割合）の分布にばらつきが生じた大きな理由の一つは、建物ごとの使い方の差、あるいは手入れの差だったのではないかと推察されます。

これからも分かるように、「建物をどう使うか」というのは、二つの意味があります。一つは、まさに建物各部の使い方、特に水や湿気あるいは通気、換気への気遣いをどの程度正しくかつ継続的に行えるかということです。たとえば、脱衣室の床は浴室からの水分を每日のように受けるため、劣化環境としては比較的厳しい部位です。そのような箇所の乾燥を図るために、濡れたら直ちに拭く、あるいは日中はできるだけ通気を図って床面の乾燥を心がけるなどの使い方を日頃励行することで劣化の発生を遅らせることができます。また、結露を防ぐうえでは、石油ストーブのような使用時に湿気を放出する開放型の暖房機を控えることも大事です。さらに床下換気や壁面通気に関しては、換気口、通気口を塞ぐように物を置かないことが大事です。通気口に付着しがちな塵埃を年に 1, 2 度は清掃して取り除くことが必要になります。劣化環境が厳しい地方の一つである南紀地方に行けば、今でも年 2 回、盆と暮れに大掃除を実施し、その時期には畳はもちろん床板、根太までは完全に床下や床部材を乾燥させると

写真 7.1.1 お盆の時期における畳の乾燥と床下清掃の習慣（南紀地方）
ともに、床下の清掃、点検をする習慣が今でも残っているのを見ることができます（写真7.1.1）。このような要所のこまめな清掃も材料の劣化を遅らせる上で重要な条件になります。最近は安価にワイヤレス形式の温湿度計が手に入りますから、これらを建物要所に設置して常に各部の温湿度をモニターすることも、「建物をどう使うか」にあたって考えて良いくらいかも知れません。

「建物をどう使うか」のもう一つの意味は、「傷んだら手入れをする」ということに代表される点検、劣化診断を基礎とした維持保全の問題です。ある地方の築120年（調査時点）の伝統的民家（写真7.1.2）の耐久性能を、維持保全要因を除く樹種、床高、屋根勾配、施工の信頼性、環境条件による劣化指数などをもとに、国が監修した方法1）で試算すると、設計時の推定耐久性能値は、両棟とも55〜65年という結果になりました。この結果は、これらの建物は、現代の手法による計算結果の少なくとも2倍から4倍の寿命を実際には保ってきたことを意味しています。計算方法と入力データが正しいとすれば、その差を説明するのは試算に組み込まれなかった維持保全要因しかなく、耐久設計の良し悪しとともに、木造建築物の長寿命化における維持保全の重要性をまさしく物語っているものと思われます。

7.2 耐久性を損なわない住まい方

経年した住宅では、外皮（屋根及び軒裏・外壁・バルコニー・1階床及び脚部基礎まわりなど）の見えない部分に不具合が生じていれば様々な異常を知らせるシグナルが現れます。

住まい手は、住宅の耐久性を維持管理する上でこのシグナル（シミ、汚損、異音、苔生、罅割れ、変色）を見落とさないよう注意する必要があります。

また、建物の外観や外回りの点検に支障となる障害物なども、長期にわたる場合は不具合を見落とす原因ともなり、劣化の予兆を見逃すことで不具合が致命的な耐久性を脅かす一因となることも考慮しなければなりません。建物の点検のしやすさや目視が行き届く状態にすることは、不具合状態の早期発見につながることは言うまでもありません。

写真7.1.2 試算対象とした築120年の民家（土佐地方）
注）1）建設大臣官房技術調査室監修、木造建築物の耐久性向上技術、技報堂、1986
どの様なシグナルがどこにあらわれやすいか、目視で見分けられる以下のような事例を参考にして、住まいの維持保全のための点検に生かしてください。

7.2.1 屋根の状態について

屋根葺き材の表面に苔が発生した事例。（葺き材の防水性能が失効する：北側勾配面に多い）

太陽光発電パネル裏面の結露水で屋根面や外壁上部にシミや変色が発生する。

既存・新築を問わず、屋根裏に太陽光発電システムを設置すると、小屋裏に侵入する外気および埋められた水分が日陰との温度差により水蒸気飽和を起こし結露水となって、屋根葺き面や野地床などの小屋組（軒桁）木部を湿潤させることがあります。

太陽光発電システムの設置後に発生した屋根の水垂や外壁上部にカビが発生した事例（小屋裏湿潤）

（1）湿潤によるカビと腐朽：外壁に接した室内側収納部の結露によるシミ痕跡やカビの発生
（2）雨水の浸水：外壁に後付けする設備機材や付帯施設の取り付け部分からの漏水など
（3）屋根裏の結露：屋根に後付けする太陽光P V設備による野地下地の湿潤
（4）点検障害物：基礎外周に接して設けるサンデッキや車庫用上屋と外溝土間や踏み台など

今後、新築される木造住宅は、その居住サイクルが今までにも増して長期にわたることから、入居後の住まい方や使い方において維持保全に関する注意と関心が求められています。

長期優良住宅においては、住設機器の更新や改変・居住者の高齢化・家族構成の変化などから、改修や更新する事態も少なくありません。当然ハードウェアの劣化や物理的な損傷による補修や更新などもあります。

7.2.2 軒裏やひさしなどについて

軒先の雨だれや軒裏天井の変色の他広や軒裏の黒ずみなどは見えない部分に結露や雨水の浸入が疑われます。早期に補修が必要な状態であるか確認して下さい。
第Ⅲ章 メンテナンスガイドライン

軒樋端部の雨垂れは要補修 軒裏の結露か雨漏れの兆候 軒天や庇裏に結露や漏水の疑い

7.3 外壁について

外壁に付帯する化粧オーナメントなどが雨水の浸水原因となることも少なくなく、乾式外装材の目地切れやひび割れは、見えない裏側の不正常な状態が表面化した状態であり、放置するほど劣化が進めるので速やかに補修することが必要です。

7.4 室内壁及び最下階の床について

室内に現れる内装各部の変色やシミは、外皮に面した壁際や最下階の床などの下地や空洞部に結露もしくは漏水などが疑われる状況が多く、見逃し放置しておくことは隠蔽された構造部分の致命的な劣化につながります。

壁際の床に湿潤が発生した状態 床裏の結露により表面が黒く変色 壁の内部が湿潤し下部にカビが発生
玄関の上がり枠化粧面が変色、枠の心材がシロアリの食害を受けていた。壁表面の剥がれは躯体変異が原因

室内には家具や調度品で普段目にしない箇所も多く、内装に異変が起きても発見が遅れる場合も少なくありません。特に外周に面した壁面の脚部や最下階の床面など、変色や剥裂・亀裂などがみられた場合は、その周辺の下地や隠蔽された躯体に補修が必要な状態が生じている可能性が高く、早期の点検と改修が求められます。

7.5 外周壁の脚部基礎まわりについて

住まいの外回りは普段あまり注意して見ることが少なく、外皮の見えない部分で起きている異常を見逃すこともよくあることです。

特によく見られる建物外回りの不具合状態の事例を以下に示しておきます。

基礎の仕上げ面に雨垂れ状の汚れが付着している状態は床下内側の基礎側面にも見られます。

左の写真は、基礎の外面に張り付けられた発泡系断熱材にシロアリが遡上し、化粧として塗ったモルタルを通して変色が表面化した。サンデッキに隠れていたため発見が遅れた。
関連報告
各種屋根葺き材による経年変化事例調査

【目次】
◆ 粘土瓦葺き・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 89
◆ 化粧スレート葺き・・・・・・・・・・・・・・・・・・・・・・・ 147
◆ 金属葺き・・・・・・・・・・・・・・・・・・・・・・・・・・・ 201
◆ アスファルトシングル葺き・・・・・・・・・・・・ 227
◆ セメント瓦葺き・・・・・・・・・・・・・・・・・・・・・・・・ 237

作成者：一般社団法人 全日本瓦工事業連盟 杉浦憲児、石川弘樹
粘土瓦葺きによる経年劣化事例調査表

経年変化要因・部位	劣化レベル１	経過観察	劣化レベル２	部分補修、部分交換	劣化レベル３	大規模改修、葺き替え
平部 | | | | | | |
- 瓦のねじれ30年
- いぶし変色
- いぶし変色
- 瓦浮き25年
- 瓦ひび30年
- 重なり部ほこりによる漏水

軒部 | | | | | | |
- 落雪
- さび釘穴欠損
- 瓦の凍害45年
- 鉄釘のサビ膨脹による割れ30年

袖部 | | | | | | |
- 袖瓦の欠落
- 凍害40年
- 風切丸のくずれ
- 袖瓦のめくれ

壁際部 | | | | | | |
- サッシ下木部のくさり25年

棟部 | | | | | | |
- 棟瓦の欠落
- 棟瓦のずれ30年
- 棟瓦のずれ35年
- 棟瓦のずれ40年

谷部 | | | | | | |
- 杉皮トントン葺き30年
- アスファルトルーフィング940年
- 穴30年
- 缩み塩ビ系ルーフィング

下葺き | | | | | | |
- 杉皮トントン葺き30年
- アスファルトルーフィング940年
- 穴30年
- 缩み塩ビ系ルーフィング

小屋裏 | | | | | | |
- 粘土瓦の葺きによる経年劣化

緊結部 | | | | | | |
- 木棒のちょび
- 塗料の劣化
- 燃木の乾燥
- 木屋根の欠落
- 木屋根の欠落
- 木屋根の欠落

TOPへ
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県八千代市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>埴工経年</td>
<td>()年～()年＝(30)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他 □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他 □不明</td>
</tr>
<tr>
<td>屋根構配</td>
<td>□木造用合板 □その他の合板(コンパネ等) □パーティックルボード □硬質木片セメント板 □硬質木毛セメント板 □木村(バラ材) □材料(樋板) □その他 □不明</td>
</tr>
<tr>
<td>下地(野地材)</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング</td>
</tr>
<tr>
<td>防水下地(下葺)</td>
<td>□高分子系ルーフィング □土居葺き □樹皮系 □その他 □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法(空葺) □土葺 □直葺(野地板直打ち) □通気たて桟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生部位</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録</td>
<td>部材()(説明文・写真・図)</td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食(錆) □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()</td>
<td></td>
</tr>
</tbody>
</table>

30年前当時の瓦は、現在と違い多少のねじれのある商品がある。瓦の下に雨漏れ等がなければ、問題なし。

経過観察

主な作用因子

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>雨水 □雪 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線</td>
<td></td>
</tr>
<tr>
<td>□その他() □不明</td>
<td></td>
</tr>
</tbody>
</table>

補修内容

雨漏れ等がある場合、部分交換

耐久性向上の提案

現行の商品は、ねじれが少ないため交換
物件所在地	千葉県印西市
立地条件 | 農村部
竣工年 | ()年 ～ ()年 = (50)年
建物用途 | □戸建住宅 □共同住宅 □その他()
建物構法 | □軸組柵法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明
屋根形状 | □切妻 □寄棟 □片流れ □入母屋 □その他(） □不明
屋根勾配 | (6／10)勾配
下地（野地梅） | □構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他（ ） □不明
防水下地（下葺） | □アスファルトルーフィング940 □塩化アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他(） □不明
瓦 材 | □木質系 □プラスチック系 □その他 () □不明
仕上げ材 | □粘土瓦 □プレスセメント瓦 □化粧スレート □金屬 □アスファルトシングル・不燃シングル □その他（ ） □不明
屋根構法 | □引掛け桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明
改修履歴 | 発生部位 | □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明
発生階 | □1階 □2階 □3階 □その他（ ） □不明
方位 | □東 □西 □南 □北 □不明
経年変化記録 | 部材（粘土瓦）（説明文・写真・図）
□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）

いぶし瓦の変色
以前より濃くなった。
いぶし瓦の特性
防水性強度に問題なし。

主な作用因子
□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明

補修内容
経過観察 塗装不可（早期に塗膜が剥離する）

耐久性向上の提案
物件所在地	千葉県習志野市
立地条件 | 住宅地
竣工経年 | ()年～()年＝(25)年
建物用途 | □戸建住宅 □共同住宅 □その他（ ）
建物構法 | □軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明
屋根形状 | □切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明
屋根勾配 | (6 ／10)勾配
下地(野地柵) | □構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木村(幅板) □その他(） □不明
防水下地(下葺) | □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明
瓦桟木 | ■木質系 □プラスチック系 □その他（ ） □不明
仕上げ材 | □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明
屋根構法 | □引掛桟工法(空葺) □土葺 □直葺(野地板打ち) □通気たて桟構法 □その他（ ） □不明
改修履歴
発生部位 | □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明
発生階 | □1階 □2階 □3階 □その他（ ） □不明
方位 | □東 □西 □南 □北 □不明
経年変化記録 部材（瓦本体）(説明文・写真・図）
□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □すれ □腐食(錆) □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）

いぶし瓦は経年により色が濃くなり、場合によっては、むらがでるのが特性。耐久性、防水性に問題なし。

主な作用因子
■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明

補修内容 | 経過観察
耐久性向上の提案 | ペンキ等の塗装工事不可。塗材の塗膜の剥離が起きる。
物件所在地: 千葉県市川市

立地条件: 住宅地

竣工年: ()年 ~ ()年 = (25)年推定

建物用途: □戸建住宅 ■共同住宅 □その他（ ）

建物構法: □軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明

屋根形状: □切妻 ■寄棟 □片流れ □入母屋 □その他（ ） □不明

屋根勾配: (4 / 10) 勾配

下地（野地板）: □構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 ■木材（バラ材） □木村（板竹） □その他（ ） □不明

防水下地（下葺): □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） ■不明

瓦桝木: ■木質系 □プラスチック系 □その他（ ） □不明

仕上げ材: ■粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明

屋根構法: ■引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明

改修履歴

発生部位: ■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明

発生階: □1階 ■2階 □3階 □その他（ ） □不明

方位: □東 □西 □南 ■北 □不明

経年変化記録 部材（桝瓦）（説明文・写真・図）

□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）

台風時に桝瓦がめくれ、瓦の下に雨水が浸入した。

主な作用因子: □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明

補修内容: 葺き直し

耐久性向上の提案: 桝瓦の釘留め

旧工法による施工も考えられる。改修および新築時は、「五種片状樹脂・施工 ガイドライン」による施工が推奨される。
物件所在地	千葉県船橋市
立地条件 | 住宅地
竣工年 | ()年 ～ ()年 = (30)年推定
建物用途 | 2戸建住宅 □共同住宅 □その他(
建物構法 | □軸組構法 □枠組壁工法 □プレハブ構法 □その他()□不明
屋根形状 | □切妻 □寄棟 □片流れ □入母屋 □その他()□不明
屋根勾配 | (4/10)勾配
下地（野地板） | □構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(パラ材) □木材(幅板) □その他()□不明
防水下地（下葺） | □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他()□不明
瓦桟木 | □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他()□不明
仕上げ材 | □引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（)□不明
改修履歴
発生部位 | □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ）□不明
発生階層 | □1階 □2階 □3階 □その他（ ）□不明
方位 | □東 □西 □南 □北 □不明
経年変化記録・部材（桟瓦） | (説明文・写真・図)
主な作用因子 | □ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）□不明
補修内容 | 桟瓦差し替え交換
耐久性向上の提案 | 現行品は、ここまでひびが入るものは少ない。
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県船橋市</td>
</tr>
<tr>
<td>立地条件</td>
<td>近くに畑が多い</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 ～ ()年 = (40)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4 / 10)勾配</td>
</tr>
<tr>
<td>下地（野地槻）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村（バラ材） □木村（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平屋 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（ ）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
<tr>
<td>土ほこりの多い場所</td>
<td>瓦の重なり目に土が堆積し、長期による雨水を土が吸い上げ、瓦下に漏水した。今後瓦下の漏水が、瓦桟の腐朽（瓦のずれ）室内への漏水等を招くおそれ有。</td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>瓦の葺き直し（堆積物の除去）</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>たて棟通気工法や防水性の高い防水下地に変更</td>
</tr>
</tbody>
</table>

第0章 - Ⅱ
物件所在地	千葉県千葉市
立地条件 | 住宅地
竣工経年 | （ ）年 ～ （ ）年 = （ 50 ）年
建物用途 | ■ 戸建住宅 □ 共同住宅 □ その他（ ）
建物構法 | ■ 軸組構法 □ 枠組壁工法 □ プレハブ構法 □ その他（ ） □ 不明
屋根形状 | □ 切妻 ■ 寄棟 □ 片流れ □ 入母屋 □ その他（ ） □ 不明
屋根勾配 | （ 4 / 10 ）勾配
下地（野地材） | □ 構造用合板 □ その他の合板（コンパネ等） □ パーティクルボード □ 硬質木片セメント板 □ 硬質木毛セメント板 □ 木材（パラ材） □ 木材（幅板） □ その他（ ） □ 不明
防水下地 | □ オスファルトルーフィング 940 □ 改質アスファルトルーフィング □ 透湿ルーフィング □ 高分子系ルーフィング □ 土居葺き ■ 樹皮系 □ その他（ ） □ 不明
瓦材 | ■ 木質系 □ プラスチック系 □ その他（ ） □ 不明
仕上げ材 | ■ 粘土瓦 □ プレスセメント瓦 □ 化粧スレート □ 金属 □ アスファルトシングル・不燃シングル □ その他（ ） □ 不明
屋根構法 | ■ 引掛棟工法（空葺） □ 土葺 □ 直葺（野地板打ち） □ 通気たて棟構法 □ その他（ ） □ 不明
改修履歴
発生部位 | ■ 平部 □ 軒部 □ けらば部 □ 大棟 □ 隅棟 □ その他棟部 □ 谷部 □ 壁際部 □ トップライト □ 雪止 □ 煙突 □ その他（ ） □ 不明
発生階 | ■ 1階 □ 2階 □ 3階 □ その他（ ） □ 不明
方位 | □ 東 □ 西 □ 南 □ 北 □ 不明
経年変化記録 部材（ 桟瓦 ）（説明文・写真・図）
▌ひび □ 割れ ■ 剥離 □ 欠損 □ 変形 □ 反り □ 縮み □ ずれ □ 原食（銃） □ 腐朽 □ 変色 □ 汚れ □ かび □ こけ □ 堆積物有り □ シーリング切れ □ その他（ ）

冬に瓦が含水して凍り、膨脹を繰り返し、表面が剥離した。（凍害）
過去の瓦で含水率の高い製品もあった。

主な作用因子
▌ 雨水 □ 冬雪水 □ 風 □ 地震 □ 雪 ■ 低温 □ 高温 □ 虫 □ 鳥 □ 植物 □ 塩分 □ 踏み割れ □ 飛来物 □ ほこり □ 火山灰 □ 化学物質 □ 紫外線 □ その他（ ） □ 不明

補修内容
瓦の交換

耐久性向上の提案
含水率の低い瓦を使用
【木造住宅の外皮経年変化事例調査シート（屋根）】

物件所在地：千葉県千葉市

立地条件：住宅地

竣工経年：（　）年 ～ （　）年 = （35）年

建物用途：■戸建住宅 □共同住宅 □その他（　）

建物構法：■軸組構法 □枠組壁工法 □プレハブ構法 □その他（　） □不明

屋根形状：■切妻 □寄棟 □片流れ □入母屋 □その他（　） □不明

屋根勾配：（4/10）勾配

下地（野地）
□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 ■木材（バラ材） □木材（幅板） □その他（　） □不明

防水下地（下葺）
□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き ■樹皮系 □その他（　） □不明

瓦桝木
□木質系 □プラスチック系 □その他（　） □不明

仕上げ材
□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（　） □不明

屋根構法
■引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（　） □不明

改修履歴

発生部位
□平部 ■軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止め □煙突 □その他（　） □不明

発生階
■1階 □2階 □3階 □その他（　） □不明

方位
□東 □西 □南 ■北 □不明

経年変化記録・部材（説明文・写真・図）
□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □すれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（　）

屋根面に積もった雪がまとまって滑落し、庭木を破損した。

主な作用因子
□雨水 □結露水 □風 □地震 ■雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（　） □不明

補修内容
雪止瓦、雪止金具後付工事

耐久性向上の提案
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県船橋市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>（　）年 ～ （　）年 = （30）年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（4/10）勾配</td>
</tr>
<tr>
<td>下地（野地樋）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(ラバ材) □木村(幅板) □その他</td>
</tr>
<tr>
<td>防水下地 (下葺)</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □切ばら部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録・部材（軒瓦）</td>
<td>(説明文・写真・図)</td>
</tr>
<tr>
<td>□ひび割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他</td>
<td></td>
</tr>
</tbody>
</table>

軒瓦の留付に使用されていた釘が鉄釘だったため、錆びて膨張し瓦が割れた。
軒瓦の破損により欠落のおそれがある。

補修内容
軒先付け直し工事、破損瓦交換

耐久性向上の提案
ステンレス等、錆びづらい釘に変更
【木造住宅の外皮経年変化事例調査シート（屋根）】

物件所在地	千葉県千葉市
立地条件	住宅地
建工経年	()年～()年=（45）年推定
建物用途	□戸建住宅 □共同住宅 □その他 ()
建物構法	□軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明
屋根形状	□切妻 ●寄棟 □片流れ □入母屋 □その他 () □不明
屋根樋配	(4/10)勾配
下地（野地、構造用材）	□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他 () □不明
防水下地（下葺）	□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 () □不明
瓦材	□木質系 □プラスチック系 □その他 () □不明
仕上げ材	□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 () □不明
屋根構法	□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他 () □不明
改修履歴	
発生部位	□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他 () □不明
発生階	□1階 □2階 □3階 □その他 () □不明
方位	□東 □西 □南 □北 □不明

経年変化記録（部材）（説明文・写真・図）

□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他 ()

粘土で冬場水分を吸収し凍ると、このように表面剥離がおきる場合がある。凍害が進行すると、割れ、欠落、雨漏れのおそれがある。

主な作用因子	□雨水 □結露水 □風 □地震 □雪 □低溫 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他 () □不明
補修内容	部分交換
耐久性向上の提案	現行の商品は、このような凍害は少ない。
物件所在地 | 千葉県船橋市
立地条件 | 住宅地
竣工年 | ()年 ～ ()年 = (30)年推定
建物用途 | □戸建住宅 □共同住宅 □その他
建物構法 | □軸組構法 □枠組壁工法 □プレハブ構法 □その他
屋根形状 | □切妻 □寄棟 □片流れ □入母屋 □その他
屋根解釈 | ()
下地（野地材） | □構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（パラ材） □木条（幅板） □その他
防水下地（下葺） | □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他
瓦桝木 | □木質系 □プラスチック系 □その他
仕上げ材 | □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他
屋根構法 | □引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他
改修履歴 | □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他
発生部位 | □1階 □2階 □3階 □その他
方位 | □東 □西 □南 □北 □不明
経年変化記録 部材（軒瓦）（説明文・写真・図） | □ひび割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他
軒瓦を留付に鉄釘を使用。 釘の腐食により膨脹して瓦を破損欠落。
主な作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他
補修内容 | 軒瓦交換工事
耐久性向上の提案 | 鍛びに強いステンレス釘、ビスに変更
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県市原市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年～()年＝(30)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>■戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>■軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>■切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(（/10）)勾配</td>
</tr>
<tr>
<td>下地（野地構）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 ■木材(バラ材) □木村(幅板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>■木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>■粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>■引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>□平部 ■軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生部位</td>
<td>■1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 ■西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録部材（野地）</td>
<td>(説明文・写真・図)</td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） ■腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
<td></td>
</tr>
</tbody>
</table>

雨樋に土ほこりがたまり、機能されておらず、雨樋に当たった水が跳ね返り、野地（広小舞）が常に濡れて、腐朽した。
瓦土葺。
葺き土を止める桟木が腐朽して
葺き土と一緒に瓦が下方向に、
全体にずれてきている。
点検されておらず、長期にわたり
雨水が浸入していたと思われ、木
部の腐り、瓦、葺き土のずれ。
瓦の欠落のおそれ有。

経年変化記録 部材（軒先）（説明文・写真・図）
瓦土葺。構造部材の変位を確認
した上で、必要に応じて補修を
実施すること。

主な作用因子
【雨水】 部材表面の水圧が増大し、
部材の材料特性を超える
【雪】 部材表面の結露が生じ、
部材の材料特性を超える
【地震】 部材が多軸的な応力を受け
【高温】 部材が高温環境にさらされ
【腐食】 部材が腐食環境にさらされ
【変形】 部材が変形環境にさらされ
【変色】 部材が変色環境にさらされ
【汚れ】 部材が汚れ環境にさらされ

補修内容
瓦土葺の補修
瓦の欠落補修、桟木の補修、
瓦の交換を実施することで
耐久性向上の提案
瓦の交換、引掛桟工法、釘止め

旧工法による施工
も考えられる。改
修および新築時
は、「瓦屋根標準
設計・施工 ガイ
ドライン」による
施工が推奨され
る。
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県千葉市</td>
</tr>
<tr>
<td>立地条件</td>
<td>屋敷林の中</td>
</tr>
<tr>
<td>建工経年</td>
<td>（　）年 〜 （　）年 = （40）年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他（　）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（　） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（　） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（　／10）勾配</td>
</tr>
<tr>
<td>下地（野地樹）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □スレート □木組(バリ材) □木組(幅板) □その他（　） □不明</td>
</tr>
<tr>
<td>防水下地</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □高湿度ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（　） □不明</td>
</tr>
<tr>
<td>瓦材</td>
<td>□木質系 □プラスチック系 □その他（　） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（　） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（　） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（　） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（　） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録部材（軒先木部）</td>
<td>（説明文・写真・図）</td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（　）</td>
<td></td>
</tr>
</tbody>
</table>

瓦のずれによる雨漏れを長期にわたり軒天並びに広小舞を濡らし、木部が腐朽した。このままですと屋根自体が崩れ落ちるので腐朽木部の交換が必要です。

主な作用因子

| □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（　） □不明 |

補修内容

腐朽木部の交換後、瓦部葺き直し

耐久性向上の提案

防水紙2層貼りなど高防水にする。

また、瓦桟をうかし、浸入した雨水を途中で溜めないようにする。
【木造住宅の外皮経年変化事例調査シート（屋根）】

物件所在地：千葉県船橋市

立地条件：住宅地

竣工経年：（ ）年 ～ （ ）年 = （35）年推定

建物用途：団地 常居住宅 □その他（ ）

建物構法：軸組工法 □枠組壁工法 □プレハブ工法 □その他（ ） □不明

屋根形状：□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明

屋根勾配：（ 4／10）勾配

下地（野地板）：□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他（ ） □不明

防水下地（下葺）：□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明

瓦桟材：□木質系 □プラスチック系 □その他（ ） □不明

仕上げ材：□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明

屋根構法：□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明

改修履歴

発生部位：□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明

発生階：□1階 □2階 □3階 □その他（ ） □不明

主な作用因子：□雨水 □結露水 □風 □地震 □雪 □低湿 □高温 □虫 □鳥 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明

補修内容：野地板をはがし垂木補修。野地、防水紙、瓦の葺き直し

耐久性向上の提案：垂木補強、雪止めの設置

経年変化記録：部材（ 野地垂木 ）（説明文・写真・図）

発発：□ひび割れ □剥離 □欠損 □変形 □反り □縮み □すれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）

桟瓦が破損部より長期にわたり雨漏れ。
野地板を支える垂木が腐朽していたと思われる。
雪の荷重により桁より先の垂木ごと破損し瓦が欠落した。
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>物件所在地</th>
<th>千葉県船橋市</th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 ～ ()年 = (30)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4 / 10)勾配</td>
</tr>
<tr>
<td>下地（野地板）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木村（幅板） □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて枠構法 □その他（） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
</tbody>
</table>

経年変化記録 部材（軒天ベニア）（説明文・写真・図）

主な作用因子

補修内容 雨漏れ部の補修、軒天ベニアの交換

耐久性向上の提案 水抜き穴を設ける。点検をする。

長期にわたり雨漏れしていて、破風板と軒天の部分に水が溜まっていったと思われ、軒天ベニアが腐朽。剥離部より水が出てきた。
物件所在地：千葉県習志野市

立地条件：住宅地

竣工年：（　）年 ～ （　）年 = （40）年

建物用途：□戸建住宅 ■共同住宅 □その他（　）

建物構法：■軸組構法 □枠組壁工法 □プレハブ構法 □その他（　） □不明

屋根形状：□切妻 □寄棟 □片流れ □入母屋 □その他（　） □不明

屋根勾配：（4/10）勾配

下地（野地板）：□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 ■木村（バラ材） □木村（幅板） □その他（　） □不明

防水下地（下葺）：□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（　） □不明

瓦 栓 木：■木質系 □プラスチック系 □その他（　） □不明

仕上げ材：□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（　） □不明

屋根構法：■引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（　） □不明

改修履歴

発生部位：□平部 □軒部 ■けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □雪突 □その他（　） □不明

発生階：□1階 □2階 □3階 □その他（　） □不明

方位：□東 □西 □南 □北 □不明

経年変化記録：部材（袖瓦）（説明文・写真・図）
□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（　）

台風によって袖瓦がめくられ
袖付用の銅線が切れていた。

補修内容：袖瓦付け直し

耐久性向上の提案：袖瓦の留付を銅線から、ステンレスビス留等に強化する。
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県千葉市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>（ ）年 ～ （ ）年 = （40）年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（4／10）勾配</td>
</tr>
<tr>
<td>下地（野地帯）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村（バラ材） □木村（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（袖瓦）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
</tbody>
</table>

補修内容
剥離した瓦の交換、袖瓦の付け直し。

耐久性向上の提案
現在生産されている瓦は、このような凍害でガレするケースは少ない。

粘土瓦の表面の剥離。冬に吸水した水が凍り、膨張して、表面が剥離したと思われる。剥離を放置しておくと、割れ、欠落するおそれがある。
【木造住宅の外皮経年変化事例調査シート（屋根）】

物件所在地 千葉県鎌ヶ谷市

立地条件 農家 屋敷林の中

竣工年 ()年 ～ ()年 = (50)年

建物用途 □戸建住宅 □共同住宅 ■その他（倉）

建物構法 □軸組工法 □枠組壁工法 □プレハブ工法 □その他（ ） □不明

屋根形状 □切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明

屋根勾配 (6／10)勾配

下地（野地構） □構造用合板 □その他の合板(コンパネ等) □バーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村(バラ材) ■木村(幅板) □その他 () □不明

防水下地（下葺） □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き ■樹皮系 □その他 () □不明

瓦材 ■木質系 □プラスチック系 □その他 () □不明

仕上げ材 □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 () □不明

屋根構法 □引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他 () □不明

改修履歴

発生部位 □平部 □軒部 ■けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他 () □不明

発生階 ■1階 □2階 □3階 □その他 () □不明

方位 ■東 □西 □南 □北 □不明

経年変化記録 部材 () 風切丸 (説明文・写真・図)

□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ ■堆積物有り □シーリング切れ □その他 ()

袖瓦際の風切丸が崩れ中の土が露出。土に風に運ばれた種子により植物が根を張り、奥の方まで崩れた。

このまま放置しておくと、植物の根によって、瓦下に雨水の浸入のおそれ有。

瓦の脱落のおそれ有。

補修内容 植物の伐採、風切丸の取り直し

耐久性向上の提案 風切丸の取り付けに草の生えづらいナンバンモルタルを使用。

主な作用因子 ■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 ■植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他 () □不明

補修内容 植物の伐採、風切丸の取り直し

耐久性向上の提案 風切丸の取り付けに草の生えづらいナンバンモルタルを使用。
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>部材</th>
<th>詳細</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県習志野市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 ～ ()年 = (40)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根構成</td>
<td>(4/10)勾配</td>
</tr>
<tr>
<td>下地（野地）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティールボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>屋根木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
</tbody>
</table>

経年変化記録 部材（袖瓦）（説明文・写真・図）

鋼線緊結されていた袖瓦が、大風であおられ鋼線が切れめくられ欠落。

旧工法による施工も考えられる。改修および新築時は、「瓦屋根標準設計・施工ガイドライン」による施工が推奨される。

主な作用因子	□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み砕け □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明
補修内容	袖瓦の付け直し
耐久性向上の提案	釘、ビス等による緊結
すがり部、袖瓦上部より
雨水が入り、下地木部が
腐り、袖瓦が欠落した。

補修内容
野地、袖、木下地の交換、袖瓦の付け直し

耐久性向上の提案
袖瓦上部雨水の浸入口をシックイでなく、シリコン等でふさぐ。木部防腐材を使用する。
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>物件所在地</th>
<th>千葉県船橋市</th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>() 年 ~ () 年 = (50)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(6 / 10)勾配</td>
</tr>
<tr>
<td>下地（野地模）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>□木質系 □プラスチック系 □その他（ なし ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（袖瓦）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
</tbody>
</table>

![土葺工法、袖瓦がまとまって落ちていた。土が水を吸い雨漏れがした。](image)

土葺工法、袖瓦がまとまって落ちていた。土が水を吸い雨漏れがした。

主な作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明 |

補修内容 | 袖瓦の付け直し |

耐久性向上の提案 | 袖瓦の留付に土だけでなく銅線吊りをする。
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県八千代市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建物経年年</td>
<td>()年 ~ ()年 = (15)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(5/10)勾配</td>
</tr>
<tr>
<td>下地(野地)</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 ■木村(バラ材) □木村(幅板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地(下葺)</td>
<td>□アスファルトルーフィング 940 ■改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法(空葺) □土葺 □直葺(野地板直打ち) □通気たて桟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>15年前に平板瓦の葺き替えた</td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □寄棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化著記 部材</td>
<td>袖瓦(説明文・写真・図)</td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食(錆) □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()</td>
<td></td>
</tr>
<tr>
<td>結果</td>
<td>すがり部、袖瓦上部より雨水が入り、下地木部が腐り、袖瓦が欠落した。</td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □薬物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>野地、袖、木下地の交換、袖瓦の付け直し</td>
</tr>
</tbody>
</table>
| 耐久性向上の提案 | 袖瓦上部雨水の浸入口をシックイでなく、シリコン等でふさぐ。木部防腐材を使用する。
物件所在地: 千葉県八千代市

屋根形状: 木造

下地(野地): 調査

防水下地: 調査

瓦塀木: 調査

仕上げ材: 調査

改修履歴: 調査

経年変化記録: 部材(瓦、のし瓦) (説明文・写真・図)

主な作用因子: 雨水、結露水、風

補修内容: 壁際のし、桟瓦葺き直し

耐久性向上の提案: のしを木下地桟に釘止め等、全数緊結する。

旧工法による施工も考えられる。改修および新築時は、「瓦屋根標準設計・施工ガイドライン」による施工が推奨される。
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>物件所在地</th>
<th>千葉県船橋市</th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>（ ）年 ～ （ ）年 = （25）年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>■戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>■軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>■切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（4/10）勾配</td>
</tr>
<tr>
<td>下地（野地桝）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 ■木質（バラ材） □木村（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング ■高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>■木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>■粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>■引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて柵構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 ■壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>■1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>位方</td>
<td>□東 □西 ■南 □北 □不明</td>
</tr>
<tr>
<td>經年変化記録 部材（ ）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） ■腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
</tbody>
</table>

アルミバルコニーと窓建具、瓦の取合い部分の雨漏れして建具が腐朽した。

主な作用因子
- □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明

補修内容
- バルコニー脱着、窓建具交換、バルコニー取付

耐久性向上の提案
- 取合い部水切板金にて瓦上に水を流す。
【木造住宅の外皮経年変化事例調査シート（屋根）】

物件所在地 千葉県八千代市

立地条件 農家

竣工年 （　）年 ～ （　）年 =（25）年 推定

建物用途 □戸建住宅 □共同住宅 □その他（　）

建物構法 □軸組構法 □枠組壁工法 □プレハブ構法 □その他（　） □不明

屋根形状 □切妻 □寄棟 □片流れ □入母屋 □その他（　） □不明

屋根勾配 （6／10）勾配

下地（野地） □構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他（　） □不明

防水下地（下葺） □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（　） □不明

瓦桝木 □木質系 □プラスチック系 □その他（　） □不明

仕上げ材 □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（　） □不明

屋根構法 □引掛桝工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桝構法 □その他（　） □不明

改修履歴

発生部位 □平部 □軒部 □けらば部 □大棟 □隣棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（　） □不明

発生階 □1階 □2階 □3階 □その他（　） □不明

方位 □東 □西 □南 □北 □不明

経年変化記録 部材（　棟瓦　）（説明文・写真・図）

□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（植物生える）

入母屋の棟、隣棟、風切丸の 取合部、落葉枯草のたまりやすいところ。

草が生えてきた。

草の根が棟内部に生えると、 棟瓦がくずれ雨漏れをおこす おそれがある。

主な作用因子 □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（　） □不明

補修内容 草木の伐採、根が棟瓦の下に生えてたら、棟瓦取り直し。

耐久性向上の提案 たまに点検、落葉のつまりを掃除する。
物件所在地	千葉県船橋市
立地条件 | 住宅地
竣工年 | （ ）年 ～ （ ）年 = （25）年推定
建物用途 | □戸建住宅 □共同住宅 □その他（ ）
建物構法 | □軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明
屋根形状 | □切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明
屋根勾配 | （ ）／10 勾配
下地（野地） | □構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他（ ） □不明
防水下地（下葺） | □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土葺き □樹皮系 □その他（ ） □不明
瓦材 | □木質系 □プラスチック系 □その他の合板 □パーティクルボード □硬質木毛セメント板 □木材(幅板) □木材(バラ材) □その他（ ） □不明
仕上げ材 | □引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明
改修履歴 | 発生部位 □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明
発生階 | □1階 □2階 □3階 □その他（ ） □不明
方位 | □東 □西 □南 □北 □不明
経年変化記録 | 部材（棟シックイ）（説明文・写真・図）
□ひび割れ □剥離 □欠損 □変形 □反り □縮み □すれ □腐食（錆） □腐朽 □変色 □汚れた □かび □こけ □堆積物有り □シーリング切れ □その他（ ）
棟瓦の留付に使用する葺土が風雨によって流出しないようにシックイで覆う。長年により、葺土とシックイが肌別れして剥離した。このまま放置しておくと、中の葺土が流出、棟瓦の崩れ、欠落、雨漏れをおこすおそれがある。

主な作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明
補修内容 | シックイを取り除き再度塗る。交換、重ね塗りは勘めない。
耐久性向上の提案 | 棟に葺土とシックイを使用せずナノパンソルトを使用する。
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>物件所在地</th>
<th>千葉県市川市</th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年～()年＝(35)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □下屋根 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(6／10)勾配</td>
</tr>
<tr>
<td>下地（野地材）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木枠(バラ材) □木材(幅板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桟材</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板打ち） □通気たて桟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □かける部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録・部材（棟シックイ）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □すれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()</td>
</tr>
</tbody>
</table>

地震後点検したら、大棟面戸が数ヶ所欠落していた。このまま放置しておくと、中の葺土が流出、棟瓦のくずれ、欠落、雨漏れをおそれ有。

旧工法による施工も考えられる。改修および新築時は、「瓦屋根標準設計・施工ガイドライン」による施工が推奨される。

主な作用因子

- □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明

補修内容

シックイを取り除き、再度塗る。交換、重ね塗りは勧めない。

耐久性向上の提案

棟に葺材とシックイを使用せず、ナンパンモルタルを使用する。
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県千葉市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>（ ）年 ～ （ ）年 =（30）年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（ 4 ～ 10）勾配</td>
</tr>
<tr>
<td>下地（野地柄）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木板（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桟材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板打ち） □通気たて桟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生部位</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録</td>
<td>部材（シックイ、葺土）（説明文・写真・図） □ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（鉄） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シリリング切れ □その他（ ）</td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>シックイ交換または棟取り直し</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>なんばんシックイ等を使用して、表面の剥離をなくす。</td>
</tr>
</tbody>
</table>

棟瓦の留付に使用する葺土、シックイが剥離して、雨水にあたり流出している。
棟中央部より雨水が瓦下に浸しり雨漏れをおこすおそろがある。
物件所在地	千葉県千葉市
立地条件 | 農家 屋敷林の中
竣工年 | （ ）年 ～ （ ）年 = （ 25 ）年推定
建物用途 | □戸建住宅 □共同住宅 □その他（ ）
建物構法 | □軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明
屋根形状 | □切妻 □寄棟 □片流れ ■入母屋 □その他（ ） □不明
屋根勾配 | （ 6 / 10 ）勾配
下地（野地樋） | □構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 ■木材（バラ材） □木材（幅板） □その他（ ） □不明
防水下地（下葺） | □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き ■樹皮系 □その他（ ） □不明
瓦栓木 | ■木質系 □プラスチック系 □その他（ ） □不明
仕上げ材 | ■粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明
屋根構法 | ■引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明
改修履歴
発生部位 | □平部 □軒部 □けらば部 □大棟 □隅棟 ■その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明
発生階 | ■ 1 階 □ 2 階 □ 3 階 □その他（ ） □不明
方位 | □東 □西 □南 □北 □不明
経年変化記録 | 部材（ 鬼瓦 ）（説明文・写真・図）
□ひび □割れ □剥離れ □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）
入母屋根の下り棟鬼
雪が滑落して鬼に荷重がかかり鬼瓦の留付部が破損、欠落した。

主な作用因子
□雨水 □結露水 □風 □地震 ■雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火災 □化学物質 □紫外線 □その他（ ） □不明

補修内容 | 下り棟の取り直し
耐久性向上の提案 | 雪がまとまって落ちないよう雪止瓦瓦の設置

入母屋根の下り棟鬼
雪が滑落して鬼に荷重がかかり鬼瓦の留付部が破損、欠落した。
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県船橋市</td>
</tr>
<tr>
<td>立地条件</td>
<td>旧街道沿い</td>
</tr>
<tr>
<td>建工経年</td>
<td>（　）年～（　）年 =（30）年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（4／10）勾配</td>
</tr>
<tr>
<td>下地（野地）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(パラ材) □木材(幅板) □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦材種</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法(空葺) □土葺 □直葺(野地板打ち) □通気たて桟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>発生部位 □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止め □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（のし瓦）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
</tbody>
</table>

地震で屋根が揺さわれ、
棟瓦がずれていた。
このままだと瓦が欠落し
下の人や物に被害をもたらす。

主な作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明 |

補修内容 | 棟の取り直し |

耐久性向上の提案 | 瓦全数緊結。強力棟工法など。
【木造住宅の外皮経年変化事例調査シート（屋根）】

物件所在地 千葉県市川市

立 地 条 件 住宅地

竣工年 （ ）年 ～ （ ）年 = （30）年推定

建 物 用 途 ■戸建住宅 □共同住宅 □その他（ ）

建 物 構 法 ■軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明

屋 根 形 状 ■切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明

屋 根 勾 配 （10／10）勾配

下地（野地模） □構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（パラ材） □木材（幅板） □その他（ ） □不明

防水下地（下葺） □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土葺葺き □樹皮系 □その他（ ） □不明

瓦 材 □木質系 □鉄管スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明

仕 上 げ 材 ■粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明

屋 根 構 法 ■引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明

改 修 履 歴

発 生 部 位 □平部 □軒部 □けらば部 ■大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明

発 生 階 □1階 ■2階 □3階 □その他（ ） □不明

方 位 □東 □西 □南 ■北 □不明

経年変化記録 部材（棟瓦）（説明文・写真・図） □ひび □割れ □剥離 □欠損 □変形 □反り □縮み ■ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）

棟瓦がずれている。
強風にあおられてずれたと思われる。

主な作用因子 □雨水 □結露水 ■風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明

補 修 内 容 棟の取り直し

耐久性向上の提案 強力棟工法でビス留め
物件所在地：千葉県市川市

立地条件：住宅地

竣工年度：（ ）年～（ ）年 =（35）年

建物用途：□戸建住宅 □共同住宅 □その他（ ）

建物構法：□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明

屋根形状：□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明

屋根勾配：（4/10）勾配

下地（野地樹）：□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バル材） □木材（幅板） □その他（ ） □不明

防水下地（下葺）：□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明

瓦桟木：□木質系 □プラスチック系 □その他（ ） □不明

仕上材：□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明

屋根構法：□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明

改修履歴

発生部位：□平部 □軒部 □けらば部 □火災 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明

発生階：□1階 □2階 □3階 □その他（ ） □不明

方位：□東 □西 □南 □北 □不明

経年変化記録：部材（棟瓦）（説明文・写真・図）

ひび割れ □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ） □不明

棟瓦がずれている。銅線緊結されてはいるが、中の中のシックイ、土ももろく、風や地震で揺さぶられたと思う。

主な作用因子：□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明

補修内容：棟の取り直し

耐久性向上の提案：強力棟工法のビス留め。
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県船橋市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>() 年 ～ () 年 = (40) 年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>■切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4 / 10) 勾配</td>
</tr>
<tr>
<td>下地（野地棟）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木組(パラ木) □木組(棚板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング ■高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>■木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>■粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>■引掛桟工法(空葺) □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>発生部位 □平部 □軒部 □けらば部 ■大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 ■2階 □3階 □その他（） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（棟瓦）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（）</td>
</tr>
</tbody>
</table>

地震により棟瓦がくずれて欠落した。

主な作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（） □不明 |

補修内容 | 棟瓦の積み直し工事 |

耐久性向上の提案 | 強力棟等を使用する。全数締結（全瓦家ガイドライン工法）
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>物件所在地</th>
<th>千葉県習志野市</th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建物経年年</td>
<td>()年 ～ ()年 = (25)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4/10)勾配</td>
</tr>
<tr>
<td>下地（野地材）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桟材</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（本谷水切）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □すれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
</tbody>
</table>

谷部に使用されている鋼板が錆により腐食した。鋼板の腐食が進行すると穴があき、雨漏れをおこすおそれがある。

神奈川県川崎市

<table>
<thead>
<tr>
<th>主な作用因子</th>
<th>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明</th>
</tr>
</thead>
<tbody>
<tr>
<td>補修内容</td>
<td>本谷板金の交換工事</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>錆に強い鋼板に変更する</td>
</tr>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>物件所在地</td>
<td>千葉県市原市</td>
</tr>
<tr>
<td>立地条件</td>
<td>農家の屋敷林</td>
</tr>
<tr>
<td>建物経年</td>
<td>()年 ～ ()年 = (40)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>■戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>■軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ ■入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構造</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 ■木材(パラ材) □木材(幅板) □その他（ ） □不明</td>
</tr>
<tr>
<td>下地(野地被)</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地(下葺)</td>
<td>□高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>基礎木</td>
<td>■木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>■粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>■引掛挾工法(空葺) □土葺 □直葺(野地板直打ち) □通気たて枠構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 ■谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>■1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録部材(本谷板金)</td>
<td>(説明文・写真・図)</td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ ■腐食(錆) □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
<td></td>
</tr>
</tbody>
</table>

本谷板金 銅製
雨水が主に当たるところが腐食して穴があいている。
雨漏れをおこした。

主な作用因子 | ■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 ■化学物質 □紫外線 □その他（ ） □不明 |

補修内容 | 本谷板金交換工事 |

耐久性向上の提案 | 銅は同じ厚さなら鉄板より耐久性はあるが、30年以降は、こまめに点検と早めの交換 |
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県習志野市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建物経年</td>
<td>()年 ～ ()年 = (30)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4 / 10)勾配</td>
</tr>
<tr>
<td>下地（野地柏）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 ■木村(バラ材) □木村(幅板) □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング ■高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>発 生 部 位</td>
</tr>
<tr>
<td>発 生 階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
</tbody>
</table>
| 經年変化記録 | 部材（谷） | (訳) (説明文・写真・図)
| 練谷部に雪が溜まり、雪解け時に雨漏れ。 | 谷板金と瓦の間に、落葉が堆積していて、水を吸い上げ谷際より雨漏れ。 |
| 主な作用因子 | □ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ） |
| 補修内容 | 堆積物の除去、瓦の葺き直し |
| 耐久性上の提案 | 谷メンドシーラーや落葉除けネット取付 |
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>東京都北区</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建築経年</td>
<td>()年 ～ ()年 = (40)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他 ()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他 () □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4／10)勾配</td>
</tr>
<tr>
<td>下地（野地裏）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他 () □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 () □不明</td>
</tr>
<tr>
<td>瓦棟木</td>
<td>□木質系 □プラスチック系 □その他 () □不明</td>
</tr>
<tr>
<td>上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 () □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他 () □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □くらぶ部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他 () □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他 () □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録・部材（防水下地）</td>
<td>(説明文・写真・図)</td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □すれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他 ()</td>
<td></td>
</tr>
</tbody>
</table>

瓦の破損による雨漏れによる葺き替え。
40年前の樹皮系の下葺材は、至って健全だった。

問題なし

主な作用因子	□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他 () □不明
補修内容	ほこりは溜まっていが、下葺材に剥れ、剥離なし。
耐久性向上の提案	
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県八千代市</td>
</tr>
<tr>
<td>立 地 条 件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建 築 経 年</td>
<td>()年 ～ ()年 = (20)年推定</td>
</tr>
<tr>
<td>建 物 用 途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建 物 構 法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋 根 形 状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋 根 勾 配</td>
<td>(4/10)勾配</td>
</tr>
<tr>
<td>下 地（野 地 板）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他() □不明</td>
</tr>
<tr>
<td>防 水 下 地</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦 案 材</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕 上 げ 材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋 根 構 法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改 修 履 歴</td>
<td></td>
</tr>
<tr>
<td>発 生 部 位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発 生 階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方 位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（防水下地）(説明文・写真・図)</td>
<td>■ひび ■割れ ■剥離 ■欠損 ■変形 ■反り ■縮み ■すれ ■腐食（錆） ■腐朽 ■変色 ■汚れ ■かび ■こけ ■堆積物有り ■シーリング切れ □その他（ ）</td>
</tr>
<tr>
<td>防水下地アスファルトルーフィング 940</td>
<td>20年経っているが、割れや伸縮等の劣化は見られない。</td>
</tr>
<tr>
<td>問題なし。</td>
<td>経過観察</td>
</tr>
</tbody>
</table>

主な作用因子

| □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明 |

補 修 内 容
経過観察、今後不具合が生じれば葺き直し。

耐久性向上の提案
防水性耐久性の高い改質アスファルトルーフィングに変更
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県八千代市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年〜()年 = (25)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>[□戸建住宅 □共同住宅 □その他()]</td>
</tr>
<tr>
<td>建物構法</td>
<td>[□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明]</td>
</tr>
<tr>
<td>屋根形状</td>
<td>[□切妻 □寄棟 □片流れ □入母屋 □その他() □不明]</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4 / 10)勾配</td>
</tr>
<tr>
<td>下地（野地構）</td>
<td>[□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村(バラ材) □木村(幅板) □その他() □不明]</td>
</tr>
<tr>
<td>防水下地</td>
<td>(下葺) [□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明]</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>[□木質系 □プラスチック系 □その他() □不明]</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>[□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明]</td>
</tr>
<tr>
<td>屋根構法</td>
<td>[□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他() □不明]</td>
</tr>
<tr>
<td>改修履歴</td>
<td>[□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明]</td>
</tr>
<tr>
<td>発生部位</td>
<td>[□1階 □2階 □3階 □その他() □不明]</td>
</tr>
<tr>
<td>方位</td>
<td>[□東 □西 □南 □北 □不明]</td>
</tr>
<tr>
<td>経年変化記録 部材（防水下地）（説明文・写真・図）</td>
<td>[□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他() □不明]</td>
</tr>
</tbody>
</table>

雨漏れ調査の場合は、瓦をはずし防水紙を見ると、水が浸入した形跡が残っている場合がある。どこからもったのか原因がわかる。

主な作用因子
[□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明] |

補修内容
雨漏れ部の補修

耐久性向上の提案
<table>
<thead>
<tr>
<th>部材</th>
<th>防水下地 (下葺)</th>
<th>瓦 材</th>
<th>仕 上 材</th>
<th>屋 根 状 法</th>
<th>改 修 履 歴</th>
<th>経年変化記録・部材（防水下地）</th>
<th>補 修 内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>ひび</td>
<td>割れ</td>
<td>剥離</td>
<td>欠損</td>
<td>変形</td>
<td>反り</td>
<td>縮み</td>
<td>異れ</td>
</tr>
<tr>
<td>かび</td>
<td>こけ</td>
<td>堆積物有り</td>
<td>シーリング切れ</td>
<td>その他</td>
<td>堆積物有り</td>
<td>シーリング切れ</td>
<td>その他</td>
</tr>
</tbody>
</table>

主な作用因子

補 修 内 容

耐久性向上の提案

経年変化調査シート（屋根）

物件所在地：千葉県八千代市

立地条件：住宅地

建物経年：()年 ～ ()年 = (25)年推定

建物用途：□戸建住宅 □共同住宅 □その他（ ）

建物構法：□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明

屋根形状：□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明

屋根勾配：(4/10)勾配

下地（野地樋）：□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □木質系 □その他の合板（コンパネ等） □naires等 □不明

防水下地（下葺）：□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明

瓦 材：□木質系 □プラスチック系 □その他の合板（コンパネ等） □naires等 □不明

仕上げ材：□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明

屋根構法：□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明

発生部位：□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明

発生階：□1階 □2階 □3階 □その他（ ） □不明

方向：□東 □西 □南 □北 □不明

主な作用因子

補 修 内 容

耐久性向上の提案

雨漏れ調査の場合、瓦をはずし防水紙を見ると、水が浸入した形跡が残っている場合がある。どこからもったのか原因がわかる。

主な作用因子

補 修 内 容

耐久性向上の提案
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県市原市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年～()年＝(40)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(5／10)勾配</td>
</tr>
<tr>
<td>下地（野地板）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村（バラ材） □木村（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>■粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>■引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>発生部位 □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>■1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（防水下地）（説明文・写真・図）</td>
<td>□ひび割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
</tbody>
</table>

主な作用因子

- ■雨水 □結露水 □風 □地震 □雪 □低湿 □高温 □虫 □鳥 □植物 □塩分
- ■踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線
- □その他（ ） □不明

補修内容

- 防水紙の交換、瓦の葺き直し

耐久性向上の提案

- 曲げ等に強い改質アスファルトルーフィングに変更
物件所在地 | 千葉県船橋市
---|---
立地条件 | 住宅地
竣工年 | ()年 ～ ()年 = (40)年
建物用途 | □戸建住宅 □共同住宅 □その他()
建物構法 | □軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明
屋根形状 | □切妻 □寄棟 □片流れ □入母屋 □その他() □不明
屋根勾配 | (4/10)勾配
下地（野地板） | □構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村（バラ材） □木村（幅板） □その他 () □不明
防水下地 (下葺) | □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 () □不明
瓦材 | ■木質系 □プラスチック系 □その他 () □不明
仕上げ材 | □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 () □不明
屋根構法 | □引掛桟工法（空葺） □土葺 □直葺（野地板打ち） □通気たて桟構法 □その他 () □不明
改修履歴
発生部位 | ■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他 () □不明
発生階 | □1階 □2階 □3階 □その他 () □不明
方位 | □東 □西 □南 □北 □不明
経年変化記録 部材（防水下地） (説明文・写真・図)
□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他 () □不明

防水下地が熱により縮みがおきている。
重なり100㎜あったものがそれ以上縮み、野地が露出している。

主な作用因子 | □雨水 □結露水 □風 □地震 □雪 □低湿 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他 () □不明

補修内容 | 葺き直し工事（防水紙、瓦桟の交換）

耐久性向上の提案 | 熱に強く、防水性の高い下葺材に変更
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県千葉市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 ～ ()年 = (40)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>シ単体住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4/10)勾配</td>
</tr>
<tr>
<td>下地（野地棟）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村（パラ材） □木村（幅板） □その他 () □不明</td>
</tr>
<tr>
<td>防水分地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 () □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他 () □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 () □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他 () □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他 () □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他 () □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（防水下地） (説明文・写真・図)</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縫み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他 () □不明</td>
</tr>
</tbody>
</table>

高分子系ルーフィングは、温度による劣化、縮み、釘や釘の穴が広く裂けていた。

主な作用因子

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他 () □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>防水紙の交換、瓦葺き直し</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>伸縮の少ない防水紙に変更</td>
</tr>
</tbody>
</table>

補修内内容

防水紙の交換、瓦葺き直し
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県八千代市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>（　）年～（　）年＝（30）年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他（　）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（　） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（　） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（4/10）勾配</td>
</tr>
<tr>
<td>下地（野地柵）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（パラ材） □木材（畳板） □その他（　） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（　） □不明</td>
</tr>
<tr>
<td>瓦材</td>
<td>□木質系 □プラスチック系 □その他（　） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（　） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（　） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止め □煙突 □その他（　） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（　） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（防水下地）（説明文・写真・図）</td>
<td>□ひび割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（　）</td>
</tr>
</tbody>
</table>

高分子系ルーフィング熱による劣化、縮み、釘や針の穴が広くさされていている。

主な作用因子

<table>
<thead>
<tr>
<th>因子</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（　） □不明</td>
<td></td>
</tr>
</tbody>
</table>

補修内容

防水紙の交換、瓦葺き直し

耐久性向上の提案

伸縮の少ない防水紙に変更
物件所在地	千葉県八千代市
立地条件 | 住宅地
竣工年度 | （年）年〜（年）年＝（30）年推定
建物用途 | □戸建住宅 □共同住宅 □その他（）
建物構法 | □軸組構法 □枠組壁工法 □プレハブ構法 □その他（） □不明
屋根形状 | □切妻 □寄棟 □片流れ □入母屋 □その他（） □不明
屋根勾配 | （4/10）勾配
下地（野地材） | □構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木条（絹板） □その他（） □不明
防水下地（下葺） | □アスファルトルーフィング940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（） □不明
瓦桝木 | □木質系 □プラスチック系 □その他（） □不明
仕上げ材 | □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（） □不明
屋根構法 | □引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（） □不明
改修履歴
発生部位 | ■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（） □不明
発生階 | □1階 □2階 □3階 □その他（） □不明
方位 | □東 □西 □南 □北 □不明
経年変化記録 部材（防水下地） （説明文・写真・図）
主な変化 | □ひび割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（）
作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（） □不明
補修内容 | 防水紙の交換、瓦葺き直し
耐久性向上の提案 | 伸縮の少ない防水紙に変更
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県船橋市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>（ ）年 ～ （ ）年 ＝（ 30 ）年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（ 4 ／ 10 ）勾配</td>
</tr>
<tr>
<td>下地（野地板）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（原材） □木組（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□補強材 □塩化紙スレート □不燃シングル □木材（気干材） □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛改工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止め □煙突 □その他（小屋裏） □不明</td>
</tr>
<tr>
<td>発生階層</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録</td>
<td>部材（野地板） (説明文・写真・図)</td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□ひび割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ） □不明</td>
</tr>
</tbody>
</table>

雨漏れのしていない健全な野地板。
30年たった今でも雨漏れ、結露がおきなければ新築時の状態が保たれていた。

補修内容
経過観察
耐久性向上の提案
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>物件所在地</th>
<th>千葉県船橋市</th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根構造</td>
<td>()勾配</td>
</tr>
<tr>
<td>下地</td>
<td>(野地板板)</td>
</tr>
<tr>
<td>防水下地</td>
<td>(下葺)</td>
</tr>
<tr>
<td>瓦質材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法(空葺) □土葺 □直葺 (野地板直打ち) □通気たて桟構法 □その他() □不明</td>
</tr>
</tbody>
</table>
| 改修履歴 | 役割
| 発生部位 | □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他 (小屋裏) □不明 |
| 発生階 | □1階 □2階 □3階 □その他() □不明 |
| 方位 | □東 □西 □南 □北 □不明 |

経年変化記録 部材（野地板）（説明文・写真・図）

- □ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()

雨漏れをおこしたばかりの野地板。
雨漏れをおこすと野地板が吸収してこのように色が濃くなり雨漏れ箇所を発見することが出来る。
小屋裏の換気がとれていれば、いずれ乾燥し、また健全な状態に戻る。

<table>
<thead>
<tr>
<th>主な作用因子</th>
</tr>
</thead>
<tbody>
<tr>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>補修内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>雨漏れ原因をみつけ補修する。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>耐久性向上の提案</th>
</tr>
</thead>
<tbody>
<tr>
<td>第2章-...</td>
</tr>
</tbody>
</table>

一覧へ戻る
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県船橋市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4 / 10)勾配</td>
</tr>
<tr>
<td>下地（野地樹）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □軒部 □壁際部 □トップライト □雪止 □煙突 □その他（小屋裏） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録部材（野地板） 説明文・写真・図</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
</tbody>
</table>

主な作用因子
- ■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分
- □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線
- □その他（ ） □不明

補修内容
- 雨漏れ原因をみつけ補修する。

耐久性向上の提案

【木造住宅の外皮経年変化事例調査シート（屋根）】

第①章 メンテナンスガイドライン 関連報告
物件所在地 | 千葉県市原市
立地条件 | 農家の屋敷林
竣工年 | ()年～()年＝(40)年
建物用途 | □戸建住宅 □共同住宅 □その他()
建物構法 | □軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明
屋根形状 | □切妻 □寄棟 □片流れ □入母屋 □その他() □不明
屋根勾配 | (4／10)勾配
防下地（野地板） | □構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（パラ材） □木材（幅板） □その他() □不明
防水下地（下葺） | □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明
瓦棟木 | □木質系 □プラスチック系 □その他() □不明
仕上げ材 | □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明
屋根構法 | □引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他() □不明
改修履歴 | 発生部位 □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（室内） □不明
発生階 | □1階 □2階 □3階 □その他() □不明
方位 | □東 □西 □南 □北 □不明
経年変化記録 部材（天井板）（説明文・写真・図） | □ひび □割れ □剥離 □欠損 □変形 □変色 □反り □縮み □ずれ □腐食（銹） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他() □不明
主な作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明
補修内容 | 雨漏れのため、天井板がぬれ、変色、汚れが出た。無垢材の場合は、乾燥しても跡が残る。補修後の修理工事もあわせて行う。
耐久性向上の提案 | 無垢材は、濡らさなければかなり長持ちします。雨漏れする前の点検
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県千葉市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 ～ ()年 = (60)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4/10)勾配</td>
</tr>
<tr>
<td>下地（野地柵）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（木材） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦木</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（小屋裏） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>■1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>位置</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（野地板）（説明文・写真・図）</td>
<td>□ひび割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
<tr>
<td>長期による雨漏れのため、野地板が含水して腐朽した。</td>
<td></td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>野地板の交換 瓦の葺き直し</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>高耐久の防水下地に変更</td>
</tr>
</tbody>
</table>
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県八千代市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建物用途</td>
<td>■戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>■軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>■切妻 □窪棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4 / 10)勾配</td>
</tr>
<tr>
<td>下地（野地）</td>
<td>□構造用合板 ■その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村（バラ村） □木村（幅板） □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>■粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>■引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生部位</td>
<td>■1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>■東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（瓦桝木留付釘）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他() □不明</td>
</tr>
</tbody>
</table>

瓦桝木の留付に釘が使用されていた。釘に赤錆がでている。現在表面のみで、釘の切れ等は見受けられない。

経過観察

瓦桝木の留付に錆が使用されていた。釘に赤錆がでている。現在表面のみで、釘の切れ等は見受けられない。

主な作用因子

■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明

補修内容

今後腐食が進むと瓦桝が欠落するため、瓦桝木の交換

耐久性向上の提案

留付釘を錆に強いステンレス製に変更
物件所在地 千葉県習志野市

建物用途 □戸建住宅 □共同住宅 □その他（ ）

建物構法 □軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明

屋根形状 □切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明

屋根勾配 (4 / 10) 勾配

下地（野地盤） □構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村（バラ材） □木村（髄板） □その他（ ） □不明

防水下地（下葺） □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明

瓦桝木 □木質系 □プラスチック系 □その他（ ） □不明

仕上げ材 □貼土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明

屋根構法 □引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明

改修履歴

発生部位 □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明

発生階 □1階 □2階 □3階 □その他（ ） □不明

方位 □東 □西 □南 □北 □不明

経年変化記録 部材（軒瓦の緊結材 ）（説明文・写真・図）

軒瓦の緊結に鋼線づり。
銅線が腐食し、軒瓦にかかった雪等の加重により欠線。
軒瓦の欠落のおそれ有。

主な作用因子 □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明

補修内容 軒瓦の付け直し

耐久性向上の提案 釘穴がある場合、スクリュー釘またはビスにて固定
物件所在地	千葉県市川市
立地条件 | 住宅地
竣工年 | （ ）年 ～ （ ）年 =（30）年推定
建物用途 | ■戸建住宅 □共同住宅 □その他（ ）
建物構法 | ■軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明
屋根形状 | ■切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明
屋根勾配 | （4/10）勾配
下地（野地根） | □構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 ■木材(バラ材) □木材(幅板) □その他（ ） □不明
防水下地（下葺） | □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング ■高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明
瓦桝木 | ■木材 □木材 □その他（ ） □不明
仕上げ材 | ■粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明
屋根構法 | ■引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明
改修履歴
発生部位 | □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明
発生階 | □1階 □2階 □3階 □その他（ ） □不明
方位 | ■東 □西 □南 □北 □不明
経年変化記録 部材（袖釘）（説明文・写真・図）
□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ） □不明

袖瓦の留付に鉄釘を使用。銅による腐食が見受けられる。現在まだ欠断されていないが、腐食が進むと釘の切れ、袖瓦の欠落するおそれがある。

主な作用因子 | ■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明

補修内容 | 袖瓦の付け直し
耐久性向上の提案 | 銅に強く引き抜き強度の高い、パッキン付ステンレスビスに変更
【木造住宅の外皮経年変化事例調査シート（屋根）】

物件所在地：千葉県印西市

立 地 条 件：農林

竣工経年：（　）年～（　）年 =（40）年推定

建 物 用途：■戸建住宅 □共同住宅 □その他（　）

建 物構法：■軸組構法 □枠組壁工法 □プレハブ構法 □その他（　） □不明

屋 根 形 状：■切妻 □寄棟 □片流れ □入母屋 □その他（　） □不明

屋 根 勾 配：（４／１０）勾配

下地（野地桝）：□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板
　□硬質木毛セメント板 ■木村（バラ材） □木村（幅板） □その他（　） □不明

防水下地（下葺）：□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング
　■高分子系ルーフィング □土居葺き □樹皮系 □その他（　） □不明

瓦 材：■粘土瓦 □プレスセメント瓦 □化粧スレート □金属
　□アスファルトシングル・不燃シングル □その他（　） □不明

仕 上 げ 材：■引掛桟工法（空葺） □土葺 □直葺（野地板打ち） □通気たて桟構法
　□その他（　） □不明

改 修 履 歴：

発 生 部 位：□平部 □軒部 □けらば部 ■大棟 □隅棟 □その他棟部 □谷部 □壁際部
　□トップライト □雪止 □煙突 □その他（　） □不明

発 生 階：■1階 □2階 □3階 □その他（　） □不明

方 位：□東 □西 □南 □北 □不明

経年変化記録 部材（棟部緊結材）（説明文・写真・図）

□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ
□かび □こけ □堆積物有り □シーリング切れ □その他（　） □不明

40年前の棟施工。
鋼線大まわしが多い。
瓦が緊結されていないため
地震等で揺れた際、腐食した鋼線が緩み、棟瓦が外に飛び出している。
欠落のおそれあり。

旧工法による施工も考えられる。改修および新築時は、「瓦屋根標準設計・施工ガイドライン」による施工が推奨される。

主な作用因子
■雨水 □結露水 ■風 ■地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分
□踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線
□その他（　） □不明

補 修 内 容：棟瓦の積み直し

耐久性向上の提案：現行ガイドライン工法（全数緊結）

第0章 一覧へ戻る
物件所在地	千葉県八千代市
立地条件 | 住宅地
竣工年 | ()年 ～ ()年 = (25)年推定
建物用途 | □戸建住宅 □共同住宅 □その他（ ）
建物構法 | □軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明
屋根形状 | □切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明
屋根勾配 | (4 / 10)勾配
下地（野地材） | □構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他（ ） □不明
防水下地（下葺） | □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明
瓦桟木 | □木材（バラ材） □木材（幅板） □木材（其它） □不明
仕上げ材 | □木質系 □プラスチック系 □その他（ ） □不明
屋根構法 | □引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明
改修履歴
発生部位 | □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明
発生階 | □1階 □2階 □3階 □その他（ ） □不明
方位 | □東 □西 □南 □北 □不明
経年変化記録・部材（瓦桟木）（説明文・写真・図）
□ひび割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）

長期にわたり雨漏れが続いていて、瓦桟木に板状留付釘のさび、瓦桟木の腐朽が生じている。瓦のすれ、欠損の原因となる。

主な作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明
補修内容 | 瓦桟木の交換（瓦の葺き直し）
耐久性向上の提案 | 瓦桟木防腐処理、たて桟工法
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県千葉市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建物経年</td>
<td>（ ）年～（ ）年＝（ 25 ）年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（ 4 ／10 ）勾配</td>
</tr>
<tr>
<td>下地（野地）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木質（バラ材） □木質（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桟</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板打ち） □通気たて棟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>発生部位 □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録・部材（瓦桟）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
</tbody>
</table>

瓦が破損していて気づかず、長期にわたり雨水の浸入。
瓦桟が腐朽して瓦全体が下にずれていた。
瓦桟の腐朽が広範囲に進行すると、瓦全体が欠落するおそれがある。

主な作用因子 |
□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明

補修内容 |
瓦桟の交換 瓦の葺き直し

耐久性向上の提案 |
瓦桟（防腐処理材）たて棟または水抜き穴付を使用
化粧スレート葺きによる経年劣化事例調査表

<table>
<thead>
<tr>
<th>経年変化要因・部位</th>
<th>劣化レベル１</th>
<th>経過観察</th>
<th>劣化レベル２</th>
<th>部分補修、部分交換</th>
<th>劣化レベル３</th>
<th>大規模改修、葺き替え</th>
</tr>
</thead>
<tbody>
<tr>
<td>平部</td>
<td>反復的ひび割れ</td>
<td>塗膜の劣化</td>
<td>本体のひび割れ</td>
<td>部分補修</td>
<td>部分交換</td>
<td>部分補修、部分交換</td>
</tr>
<tr>
<td>軒部</td>
<td>各種さび</td>
<td>塗膜の劣化</td>
<td>本体のひび割れ</td>
<td>部分補修</td>
<td>部分交換</td>
<td>部分補修、部分交換</td>
</tr>
<tr>
<td>袖部</td>
<td>塗膜の劣化</td>
<td>本体のひび割れ</td>
<td>部分補修</td>
<td>部分交換</td>
<td>部分補修、部分交換</td>
<td></td>
</tr>
<tr>
<td>壁際部</td>
<td>部分補修</td>
<td>部分交換</td>
<td>部分補修、部分交換</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>棟部</td>
<td>もらいさび</td>
<td>塗膜の劣化</td>
<td>本体のひび割れ</td>
<td>部分補修</td>
<td>部分交換</td>
<td>部分補修、部分交換</td>
</tr>
<tr>
<td>谷部</td>
<td>もらいさび</td>
<td>塗膜の劣化</td>
<td>本体のひび割れ</td>
<td>部分補修</td>
<td>部分交換</td>
<td>部分補修、部分交換</td>
</tr>
<tr>
<td>下葺き</td>
<td>反復的ひび割れ</td>
<td>塗膜の劣化</td>
<td>本体のひび割れ</td>
<td>部分補修</td>
<td>部分交換</td>
<td>部分補修、部分交換</td>
</tr>
<tr>
<td>小屋裏</td>
<td>反復的ひび割れ</td>
<td>塗膜の劣化</td>
<td>本体のひび割れ</td>
<td>部分補修</td>
<td>部分交換</td>
<td>部分補修、部分交換</td>
</tr>
<tr>
<td>結合部</td>
<td>ステープル</td>
<td>塗膜の劣化</td>
<td>本体のひび割れ</td>
<td>部分補修</td>
<td>部分交換</td>
<td>部分補修、部分交換</td>
</tr>
</tbody>
</table>
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県千葉市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>竣工経年</td>
<td>()年～()年＝(30)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4/10)勾配</td>
</tr>
<tr>
<td>竣工経年</td>
<td>()年＝(30)年推定</td>
</tr>
<tr>
<td>建物構造</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>下地（野地材）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング</td>
</tr>
<tr>
<td>下地（野地材）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板</td>
</tr>
<tr>
<td>下地（野地材）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板</td>
</tr>
<tr>
<td>瓦材</td>
<td>□木質系 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板</td>
</tr>
<tr>
<td>瓦材</td>
<td>□木質系 □パーティクルボード □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構造</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて枠構法</td>
</tr>
<tr>
<td>改修履歴</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟 □谷部 □壁際部</td>
</tr>
<tr>
<td>改修履歴</td>
<td>□トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟 □谷部 □壁際部</td>
</tr>
<tr>
<td>発生階層</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材</td>
<td>（スレート本体）（説明文・写真・図）</td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れる</td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れる</td>
</tr>
<tr>
<td>改修内容</td>
<td>こけの除去、高圧洗浄や薬品の塗布</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>塗装する際、こけの付きづらい塗装材あり</td>
</tr>
</tbody>
</table>

北側壁際にこけが生えている。本体の重なり目にこけが入り込むと、水を吸いやすく、雨漏れをおこす原因になる。
物件所在地：千葉県市川市

立地条件：住宅密集地

竣工年：（　）年 〜 （　）年 =（15）年

建物用途：■戸建住宅 □共同住宅 □その他（　）

建物構法：□軸組構法 □枠組壁工法 ■プレハブ構法 □その他（　） □不明

屋根形状：□切妻 ■寄棟 □片流れ □入母屋 □その他（　） □不明

屋根勾配：（4.5／10）勾配

下地（野地）：■構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（パラ材） □木材（幅板） □その他（　） □不明

防水下地（下葺）：■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（　） □不明

瓦桝木：□木質系 □プラスチック系 □その他（　） □不明

仕上げ材：□粘土瓦 □プレスセメント瓦 ■化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（　） □不明

屋根構法：□引掛棟工法（空葺） □土葺 ■直葺（野地板直打ち） □通気たて棟構法 □その他（　） □不明

改修履歴

発生部位：■平部 □軒部 □けらば部 □大棟 □窓部 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（　） □不明

発生階：□1階 ■2階 □3階 □その他（　） □不明

方位：□東 □西 □南 □北 □不明

経年変化記録・部材（スレート本体）（説明文・写真・図）

主な作用因子：■雨水 □結露水 □風 □地震 □雪 □低湿 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 ■ほこり □火山灰 □化学物質 ■紫外線 □その他（　） □不明

補修内容：洗浄後、塗装工事（防水性能の向上ではない）

耐久性向上の提案：葺き替えまたはカバー工法

経年変化記録

本体塗膜が劣化し、基材のセメントが露出している。

耐候能力の低下により、吸収しきれが全体に生えている。
物件所在地：千葉県船橋市

立地条件：

竣工年：（様）年～（様）年＝（15）年

建物用途：■戸建住宅 □共同住宅 □その他（様）

建物構法：■軸組構法 □枠組壁工法 □プレハブ構法 □その他（様） □不明

屋根形状：□切妻 ■寄棟 □片流れ □入母屋 □その他（様） □不明

屋根勾配：（5／10）勾配

下地（野地構）

瓦木：□構造用合板 ■その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（パラ材） □木材（幅板） □その他（様） □不明

防下地（下葺）

防下地：■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（様） □不明

仕上げ材

瓦木：□木質系 □プラスチック系 □その他（様） □不明

仕上げ材：□粘土瓦 □プレスセメント瓦 ■化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（様） □不明

改修履歴

発生部位：□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 ■谷部 □壁際部 □トップライト □雪止 □煙突 □その他（様） □不明

発生階：□1階 ■2階 □3階 □その他（様） □不明

方位：□東 □西 ■南 □北 □不明

経年変化記録：部材（スレート本体）（説明文・写真・図）

□ひび □割れ ■剥離 □欠損 □変形 □反り □縮み □すれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（様）

経過観察：

谷部の本谷切断面の塗膜の剝離。

木体割れ、ひびはないが、剥離したところから水分を吸収し、表面剝離が進行するおそれがある。

主な作用因子

■雨水 □結露水 □風 □地震 □雪 ■低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 ■その他（様） □不明

補修内容：剥離部から水分を吸収しないように、塗装膜で保護する

耐久性向上の提案
物件所在地	千葉県習志野市
立地条件 | 住宅地（駐車場脇）
竣工年 | （ ）年 ～ （ ）年 =（15）年推定
建物用途 | □戸建住宅 □共同住宅 □その他（ ）
建物構法 | □軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明
屋根形状 | □切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明
屋根勾配 | （6/10）勾配
下地（野地棟） | □構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他（ ） □不明
防水下地 | □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明
瓦棟木 | □木質系 □プラスチック系 □その他（ ） □不明
仕上げ材 | □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明
屋根構法 | □引掛け棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明
改修履歴
発生部位 | □平部 □軒部 □かける部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明
発生階 | □1階 □2階 □3階 □その他（ ） □不明
方位 | □東 □西 □南 □北 □不明
経年変化記録 | 部材（スレート本体）（説明文・写真・図）
□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）
台風で棟際スレート本体が剥離。飛来落下。
主な作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明
補修内容 | 破損部交換工事
耐久性向上の提案

第0章 一覧へ戻る
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県市川市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年～()年＝(20)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>■戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>■軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4.5/10)勾配</td>
</tr>
<tr>
<td>下地（野地権）</td>
<td>□構造用合板 ■その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村(バラ材) □木村(幅板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 ■化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 ■直葺（野地板直打ち） □通気たて棟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>塗装工事</td>
</tr>
<tr>
<td>発生部位</td>
<td>■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>■1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
</tbody>
</table>

経年変化記録 部材（本体）（説明文・写真・図）

□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()

化粧スレートのメンテナンスに塗装工事があるが、塗装材が本体の重なり目をふさぐおそれがある。塗装後必ず重なり目を縁切りをした水の出口をふさがないようにする。

主な作用因子

□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み剥れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（毛細管現象） □不明

補修内容

塗装後必ず縁切りをする

耐久性向上の提案

第Ⅰ章メンテナンスガイドライン 関連報告
物件所在地
千葉県船橋市

立地条件
住宅地・駐車場横・風強い

竣工経年
()年～()年＝(20)年

建物用途
■戸建住宅 □共同住宅 □その他（ ）

建物構法
■軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明

屋根形状
■切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明

屋根勾配
(5°/10)勾配

下地(野地積)
□構造用合板 ■その他の合板(コンパネ等) □バーティクルボード □硬質木片セメント板
□硬質木毛セメント板 □木村(バリ材) □木村(幅板) □その他（ ） □不明

防水下地
■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング
□高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明

瓦計木
□粘土瓦 □プレスセメント瓦 ■化粧スレート □金属
□アスファルトシングル・不燃シングル □その他（ ） □不明

仕上げ材
□引掛桟工法(空葺) □土葺 ■直葺(野地板直打ち) □通気たて桟構法
□その他（ ） □不明

改修履歴
一度、塗装工事

発生部位
■平部 □軒部 □けらば部 □大棟 □寄棟 □その他棟部 □谷部 □壁際部
□トップライト □雪止 □煙突 □その他（ ） □不明

発生階
□1階 □2階 □3階 □その他（ ） □不明

方位
□東 ■西 □南 □北 □不明

経年変化記録 部材（カラーベスト本体）（説明文・写真・図）
□ひび割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（鉄） □腐朽 □変色 □汚れ
□かび □こけ □堆積物有り □シーリング切れ □その他（ ）

補修内容
欠損部の本体をボンド止めまたは交換

耐久性向上の提案
20年の経年劣化により、本体がもろくなっている。葺き替えをお勧めします。
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県市川市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 ～ ()年 = (25)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(3/10)勾配</td>
</tr>
<tr>
<td>下地（野地）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>□木質系 □プラスチック系 □その他(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛挿工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて挿構法 □その他</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録・部材（スレート本体）</td>
<td>（説明文・写真・図）</td>
</tr>
<tr>
<td>ひび割れ</td>
<td>□割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他</td>
</tr>
</tbody>
</table>

スレート本体にひびが発生している。これまま進行すると破損、欠落するおそれがある。

主な作用因子

■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他

補修内容

雨漏れや欠落をするおそれがないものは、シーリングで保護をする

耐久性向上の提案

葺き替え、交換
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>部分</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県佐倉市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>（　）年～（　）年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他</td>
</tr>
<tr>
<td>屋根形状</td>
<td>（３／１０）勾配</td>
</tr>
<tr>
<td>下地（野地盤）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他</td>
</tr>
<tr>
<td>瓦状材</td>
<td>□木質系 □プラスチック系 □その他</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛け桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他</td>
</tr>
<tr>
<td>改修履歴</td>
<td>15年前に葺き替え</td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北</td>
</tr>
<tr>
<td>経年変化記録 部材（本体）</td>
<td>（説明文・写真・図）</td>
</tr>
<tr>
<td>□ひび割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他</td>
<td></td>
</tr>
</tbody>
</table>

スレート本体表面が剥離してきた。剥離部より本体が水分を吸収し、割れが増している。

主な作用因子	□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他
補修内容	本体交換工事
耐久性向上の提案	

第〇章 メンテナンスガイドライン関連報告
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td></td>
</tr>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建物年数</td>
<td>()年～()年=（25）年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>■戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構造</td>
<td>□軸組工法 □枠組工法 ■プレハブ工法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 ■寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>()/10</td>
</tr>
<tr>
<td>下地（野地板）</td>
<td>□構造用合板 □その他の合板(コンパネ等) ■パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦・棟木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □ブレスセメント瓦 ■化粧スレート □重金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 ■直葺（野地板直打ち） □通気たて棟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録</td>
<td>部材（本体）（説明文・写真・図）</td>
</tr>
<tr>
<td>□ひび割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()</td>
<td></td>
</tr>
</tbody>
</table>

カラーベスト本体が塗膜の劣化が進み、基材が含水。本体に反りが生じている。重なり部内部にある本体釘孔に雨水が浸入して、雨漏れをおこす恐れが有る。

主な作用因子 |
| ■雨水 □結露水 □風 □地震 □雪 □低気圧 □高温 □低温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火災 □化学物質 □紫外線 □その他() □不明 |

補修内容 | カラーベストの葺き替え工事 |

耐久向上の提案 | 表面塗膜の高耐久商品に変更 |
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県船橋市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建築年</td>
<td>()年〜()年 = 15年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(5／10)勾配</td>
</tr>
<tr>
<td>下地（野地）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>発生部位 □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録</td>
<td>部材（軒先スタートバー）（説明文・写真・図） □ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
<tr>
<td>考察</td>
<td>谷部の本谷切断面の塗膜の剥離。木体割れ、ひびはないが、剥離したところから水分を吸収し、表面割れが進行するおそれがある。経過観察</td>
</tr>
<tr>
<td>主な作用因子</td>
<td>■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>剥離部から水分を吸収しないように、塗装膜で保護する</td>
</tr>
</tbody>
</table>
| 耐久性向上の提案 | }
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>物件所在地</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>竣工経年</td>
<td>()年～()年=30年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>()年推定</td>
</tr>
<tr>
<td>下地（野地樋）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（パラ材） □木材（幅板） □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録・部材（野地板）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □すれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()</td>
</tr>
<tr>
<td>経年劣化が進み本体釘穴から漏水。野地板が腐朽した。葺き材は工事により撤去中。</td>
<td></td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>野地板張り増し、または交換</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>高耐久の防水紙に変更</td>
</tr>
</tbody>
</table>

補足：

第 0 章 メンテナンスガイドライン 関連報告
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>部材</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>木造住宅の外皮経年変化事例調査シート（屋根）</td>
<td></td>
</tr>
<tr>
<td>物件所在地</td>
<td>千葉県市川市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建物経年</td>
<td>（ ）年 ～ （ ）年 = （30）年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（ 3 ～ 10）勾配</td>
</tr>
<tr>
<td>下地（野地枚）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木面セメント板 □木条（バラ材） □木条（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止め □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
</tbody>
</table>

経年変化記録部材（本体）（説明文・写真・図）

- □ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ
- □堆積物有り □シーリング切れ □その他（ ）

屋根面全面にこけが生えている。
長期にわたる塗膜の劣化により消失し水分を吸収しているので、南面にもこけが生えている。

主な作用因子

- □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分
- □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明

補修内容

- こけの洗浄、再塗装

耐久性向上の提案

- 本体がもろくなっている場合は、全面葺き替え

補修内訳

- こけの洗浄、再塗装
物件所在地 | 千葉県市原市
---|---
立地条件 | 住宅地
竣工経年 | 年～年＝（15）年
建物用途 | □戸建住宅 □共同住宅 □その他（ ）
建物構法 | □軸組構法 □枠組壁工法 ■プレハブ構法 □その他（ ） □不明
屋根形状 | ■切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明
屋根勾配 | （4.5/10）勾配
下地（野地板） | □構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他（ ） □不明
防水下地（下葺） | ■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明
瓦桟木 | □木質系 □プラスチック系 □その他（ ） □不明
仕上げ材 | □粘土瓦 □プレスセメント瓦 ■化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明
瓦柾構法 | □引掛椟工法（空葺） □土葺 ■直葺（野地板直打ち） □通気たて柾構法 □その他（ ） □不明
改修履歴
発生部位 | □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明
発生階 | □1階 □2階 □3階 □その他（ ） □不明
方位 | □東 □西 □南 □北 □不明
経年変化記録 部材（本体）（説明文・写真・図）
□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）
台風時軒先部よりめくれ破損、飛散した。
主な作用因子
□雨水 □結露水 ■風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ ■飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明
補修内容 | 破損部差し替え工事
耐久性向上の提案 | 日頃から点検、本体の浮き、反りは早めの補修
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td></td>
</tr>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>()年〜()年＝(25)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4.5/10)</td>
</tr>
<tr>
<td>下地（野地植）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けすが部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（野地板）</td>
<td>（説明文・写真・図） □ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()</td>
</tr>
</tbody>
</table>

野地合板に漏水痕有。
軒先水切からオーバーフローしたと思われる。

主な作用因子

補修内容

耐久性向上の提案 軒先水切の形状変更
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>立地条件</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>竣工経年</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>建物用途</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>建物構法</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>屋根形状</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>下地(野地紙)</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>防水下地</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>瓦桝材</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>屋根構法</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>改修履歴</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>発生部位</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>発生階</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>方位</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>経年変化記録 部材 (野地合板)</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>主な作用因子</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>補修内容</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>第 0 章 センテナリスガイドライン 関連報告</td>
</tr>
<tr>
<td>物件所在地</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建物経年</td>
<td>年 "～" 年 = () 年 不明</td>
</tr>
<tr>
<td>建物用途</td>
<td>⃝戸建住宅 □共同住宅 □その他 ()</td>
</tr>
<tr>
<td>建物構法</td>
<td>⃝軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>⃝切妻 □寄棟 □片流れ □入母屋 □その他 () □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(/) 勾配</td>
</tr>
<tr>
<td>下地（野地板）</td>
<td>⃝構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(パラ材) □木材(幅板) □その他 () □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>⃝アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 () □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>⃝木質系 □プラスチック系 □その他 () □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 () □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板打ち） □通気たて棟構法 □その他 () □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他 () □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他 () □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
</tbody>
</table>

経年変化記録 部材（野地板）（説明文・写真・図）
□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他 ()

ケラバ部の漏水。
本体ケラバ部より雨水が浸入。
ほこり等により、排出口がふさがれ内部に水が浸入。

主な作用因子
□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □はこり □火山灰 □化学物質 □紫外線 □その他 () □不明

補修内容
カラーベスト本体、ケラバ水切の交換

耐久性向上の提案
本体ケラバ部水切加工（排出経路の確保）
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>物件所在地</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>（ ）年 ～ （ ）年 = （ ）年 不明</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（ ）°～（ ）° =（ ）° 不明</td>
</tr>
<tr>
<td>下地（野地桝）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木片（バラ材） □木片（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
</tbody>
</table>

経年変化記録 部材（野地板 ）（説明文・写真・図）

- □ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）

ケラバ部の漏水。
本体ケラバ部より雨水が浸入。
ほこり等により、排出口がふさがれ内部に水が浸入。

主な作用因子

- □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明

補修内容

カラーベスト本体、ケラバ水切の交換

耐久性向上の提案

本体ケラバ部水切加工（排出経路の確保）
<table>
<thead>
<tr>
<th>物件所在地</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>()年～()年＝(25)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根構成</td>
<td>()年推定</td>
</tr>
<tr>
<td>下地(野地)</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村(バラ材) □木村(焼板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦材</td>
<td>□木質系 □ブラストック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法(空葺) □土葺 □直葺(野地板直打ち) □通気たて棟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生动部</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録</td>
<td>部材(野地合板)（説明文・写真・図）</td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()</td>
<td></td>
</tr>
</tbody>
</table>

けらば水切からの漏水で野地が腐朽した。

主な作用因子 |

補修内容 | 野地腐朽部の交換 |

耐久性向上の提案 | けらば水切、けらば部本体の加工 |
<table>
<thead>
<tr>
<th>件名</th>
<th>木造住宅の外皮経年変化事例調査シート（屋根）</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td></td>
</tr>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>竣工経年</td>
<td>()年 ～ ()年 = ()年</td>
</tr>
<tr>
<td>建物用途</td>
<td>■戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>■軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>■切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(/ 10)勾配</td>
</tr>
<tr>
<td>下地（野地版）</td>
<td>□構造用合板 ■その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(板) □木材(幅板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>□木質系 ■パーティクルボード □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 ■化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛栃工法（空葺） □土葺 ■直葺（野地版直打ち） □通気たて棟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 ■けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（野地版）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） ■腐朽 ■変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
</tbody>
</table>

補修内容
野地板腐朽部の交換

補修内容
耐久性向上の提案
袖の出0の形状
けらば水切り部分より吹き込んだ雨水により漏水。
野地板が腐朽した。
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県船橋市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>（ ）年 ～ （ ）年 = （20）年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>■切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（4.5／10）勾配</td>
</tr>
<tr>
<td>下地（野地樋）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村（バラ材） □木村（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦棒材</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて枠構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>発生部位 □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録・部材（壁際水切）</td>
<td>（説明文・写真・図） □ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
</tbody>
</table>

塩ビ鋼板の表面塗膜が剝離し、板金が錆により腐食。

主な作用因子
■雨水 □結露水 □風 □地震 □雪 □低湿 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明

補修内容
壁際水切の交換

耐久性向上の提案
熱劣化、錆に強い鋼板に変更する。
【木造住宅の外皮経年変化事例調査シート（屋根）】

物件所在地		
立地条件		
建工経年	() 年～()年 = (20)年推定	
建物用途	□戸建住宅 □共同住宅 □その他()	
建物構法	□軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明	
屋根形状	□切妻 □寄棟 □片流れ □入母屋 □その他() □不明	
屋根勾配	(）勾配	
下地(野地)	□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他() □不明	
防水下地(下葺)	□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明	
瓦桝木	□木質系 □プラスチック系 □その他() □不明	
仕上げ材	□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明	
屋根構法	□引掛け工法(空葺) □土葺 □直葺(野地板直打ち) □通気たて枠構法 □その他() □不明	
改修履歴		
発生部位	□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明	
発生階	□1階 □2階 □3階 □その他() □不明	
方位	□東 □西 □南 □北 □不明	

経年変化記録 部材（外壁下地パネル）（説明文・写真・図）
□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食(錆) □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()

壁と屋根の取合部より
雨水が浸入。
長期による雨漏れによって外壁下地パネルの腐朽。

補修内容
外壁、外壁下地パネル、接地屋根材交換

耐久性向上の提案
屋根外壁取合水切の追加、壁止まりの施工

主な作用因子
□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>道具所在地</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>立地条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>()年～()年</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>建物用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>□戸建住宅 □共同住宅 □その他</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>建物構法</th>
</tr>
</thead>
<tbody>
<tr>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>屋根形状</th>
</tr>
</thead>
<tbody>
<tr>
<td>□切妻 □寄棟 □片流れ □入母屋</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>屋根構成</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>下地（野地帯）</th>
</tr>
</thead>
<tbody>
<tr>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>防水下地（下葺）</th>
</tr>
</thead>
<tbody>
<tr>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>瓦材</th>
</tr>
</thead>
<tbody>
<tr>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>仕上げ材</th>
</tr>
</thead>
<tbody>
<tr>
<td>□アスファルトシングル・不燃シングル □その他</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>屋根構法</th>
</tr>
</thead>
<tbody>
<tr>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>改修履歴</th>
</tr>
</thead>
<tbody>
<tr>
<td>()年</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>発生部位</th>
</tr>
</thead>
<tbody>
<tr>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>発生階数</th>
</tr>
</thead>
<tbody>
<tr>
<td>■1階 □2階 □3階 □その他</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>方位</th>
</tr>
</thead>
<tbody>
<tr>
<td>□東 □西 □南 □北</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>経年変化記録 部材（壁際水切）</th>
<th>(説明文・写真・図)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ</td>
<td></td>
</tr>
<tr>
<td>□かび □こけ □堆積物有り □シーリング切れ</td>
<td></td>
</tr>
</tbody>
</table>

壁際水切が腐食（錆）している。進行すると孔あき、欠損して雨漏れをおこす。

<table>
<thead>
<tr>
<th>主な作用因子</th>
</tr>
</thead>
<tbody>
<tr>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>補修内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>水切りの交換、部位によっては、葺き替えが必要</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>耐久性向上の提案</th>
</tr>
</thead>
<tbody>
<tr>
<td>早期時期に錆止め、塗装する</td>
</tr>
</tbody>
</table>

第 章 — メンテナンスガイドライン 関連報告 —— 視に戻る
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>項目</th>
<th>詳細</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td></td>
</tr>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建工年</td>
<td>年 ～ 年 = (30)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根構成</td>
<td></td>
</tr>
<tr>
<td>下地（野地材）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（仮板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桝材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（壁際水切り）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
<tr>
<td>壁際水切りが腐食（錆）している。進行すると孔あき、欠損して雨漏れをおこす。</td>
<td></td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>水切りの交換、部位によっては、葺き替えが必要</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>早期時期に錆止め、塗装する</td>
</tr>
</tbody>
</table>

【第2章 メンテナンスガイドライン関連報告】

一覧へ戻る
物件所在地	東京都江戸川区
立地条件 | 住宅密集地
竣工年 | （ ）年～（ ）年＝（25）年
建物用途 | □戸建住宅 □共同住宅 □その他（ ）
建物構法 | □軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明
屋根形状 | □切妻 □帯棟 □片流れ □入母屋 □その他（ ） □不明
屋根勾配 | （5/10）勾配
下地（野地用） | □構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（パラ材） □木材（幅板） □その他（ ） □不明
防水下地（下葺） | □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土圧葺き □樹皮系 □その他（ ） □不明
瓦桝木 | □木質系 □プラスチック系 □その他（ ） □不明
仕上げ材 | □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明
屋根構法 | □引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明
改修履歴 | 発生部位 | □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明
発生階 | □1階 □2階 □3階 □その他（ ） □不明
方位 | □東 □西 □南 □北 □不明
経年変化記録 部材（棟板金）（説明文・写真・図） | □ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）
アンテナの雨だれで、棟板金が腐食（錆）した。

主な作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明

補修内容 | 棟板金の交換

耐久性向上の提案 | 鋼に強い部材 ステンレス製に変更
<table>
<thead>
<tr>
<th>物件所在地</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 ～ ()年 = (25)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4/10)勾配</td>
</tr>
<tr>
<td>下地 (野地根)</td>
<td>□コンクリート板 □その他の合板 (コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(パラ材) □木材(幅板) □その他 () □不明</td>
</tr>
<tr>
<td>防水下地 (下葺)</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 () □不明</td>
</tr>
<tr>
<td>瓦桝木材</td>
<td>□木質系 □プラスチック系 □その他 () □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 () □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法 (空葺) □土葺 □直葺 (野地板直打ち) □通気たて桟構法 □その他 () □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他 () □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他 () □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材 (棟板金)</td>
<td>(説明文・写真・図)</td>
</tr>
<tr>
<td>ひび割れ</td>
<td>□割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食 (錆) □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他 ()</td>
</tr>
<tr>
<td>棟板金の風により欠落した。留付釘の浮きや、木下地が腐朽していたため、飛散したと思われる。</td>
<td></td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他 () □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>棟板金の交換 (木下地含む)</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>木下地 (防腐処理)</td>
</tr>
</tbody>
</table>
【木造住宅の外皮経年変化例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>東京都足立区</td>
</tr>
<tr>
<td>土地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>修工経年</td>
<td>（ ）年～（ ）年＝（ 25 ）年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>■ 戸建住宅 □ 共同住宅 □ その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>■ 軸組構法 □ 梁組壁工法 □ プレハブ構法 □ その他（ ） □ 不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□ 切妻 □ 帯棟 □ 片流れ □ 入母屋 □ その他（ ） □ 不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（ 5 / 10 ）勾配</td>
</tr>
<tr>
<td>下地（野地枠）</td>
<td>□ 構造用合板 □ その他の合板（コンパネ等） □ パーティクルボード □ 硬質木片セメント板 □ 硬質木毛セメント板 □ 木材（バナナ） □ 木材（幅板） □ その他（ ） □ 不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■ アスファルトルーフィング 940 □ 改質アスファルトルーフィング □ 透湿ルーフィング □ 高分子系ルーフィング □ 土居葺き □ 樹皮系 □ その他（ ） □ 不明</td>
</tr>
<tr>
<td>瓦棟木</td>
<td>□ 木質系 □ プラスチック系 □ その他（ ） □ 不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□ 粘土瓦 □ プレスセメント瓦 ■ 化粧スレート □ 金属 □ アスファルトシングル・不燃シングル □ その他（ ） □ 不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□ 引掛棟工法（空葺） □ 土葺 ■ 直葺（野地板直打ち） □ 通気たて棟構法 □ その他（ ） □ 不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□ 平部 □ 軒部 □ けらば部 □ 大棟 ■ 傘棟 □ その他棟部 □ 谷部 □ 壁際部 □ トップライト □ 雪止 □ 火突 □ その他（ ） □ 不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□ 1階 ■ 2階 □ 3階 □ その他（ ） □ 不明</td>
</tr>
<tr>
<td>方位</td>
<td>□ 東 ■ 西 □ 南 □ 北 □ 不明</td>
</tr>
<tr>
<td>経年変化記録 部材（棟留付釘）（説明文・写真・図）</td>
<td>□ ひび □ 割れ □ 剥離 □ 欠損 □ 変形 □ 反り □ 縮み □ ずれ ■ 塩食（錆） □ 腐朽 □ 変色 □ 汚れ □ かび □ こけ □ 堆積物有り □ シーリング切れ □ その他（浮き ）</td>
</tr>
</tbody>
</table>

棟板金の留付釘が浮いている。

主な作用因子

<table>
<thead>
<tr>
<th>作用因子</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>□ 雨水 □ 結露水 □ 風 □ 地震 □ 雪 □ 低温 □ 高温 □ 虫 □ 鳥 □ 植物 □ 塩分 □ 踏み割れ □ 飛来物 □ ほこり □ 火山灰 □ 化学物質 □ 紫外線 □ その他（ ） □ 不明</td>
<td></td>
</tr>
</tbody>
</table>

補修内容

棟留付釘の打ち増し

耐久性向上の提案

浮き防止の為、ステンレススクリング釘やビスに交換
物件所在地: 千葉県八千代市

立地条件: 住宅地

竣工経年: (年)年～(年)年=(25)年推定

建物用途: □戸建住宅 □共同住宅 □その他()

建物構法: □軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明

屋根形状: □切妻 □寄棟 □片流れ □入母屋 □その他() □不明

屋根勾配: (5/10)勾配

下地(野地): □構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村(バラ材) □木村(幅板) □その他() □不明

防水下地(下葺): □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明

瓦桝木: □木質系 □プラスチック系 □その他() □不明

仕上げ材: □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明

屋根構法: □引掛桟工法(空葺) □土葺 □直葺(野地板直打ち) □通気たて桟構法 □その他() □不明

改修履歴: 塗装工事のみ

発生部位: □平部 □軒部 □けらべ部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明

発生階: □1階 □2階 □3階 □その他() □不明

方位: □東 □西 □南 □北 □不明

経年変化記録: 部材(棟板金) (説明文・写真・図)

主な作用因子: □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明

補修内容: 棟木下地、棟板金の交換

耐久性向上の提案: 棟木下地（防腐処理剤）、釘（ステン釘）に変更。

強風で棟板金が飛散。
棟木下地が雨水により腐朽。
棟板金留め付け釘が錆っていた。
物件所在地：千葉県佐倉市

立地条件：住宅地

竣工年：()年 ～ ()年 = (30)年推定

建物用途：■戸建住宅 □共同住宅 □その他（ ）

建物構法：■軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明

屋根形状：■切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明

屋根勾配：(4 ／10)勾配

下地（野地様）：□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（パラ材） □木材（幅板） □その他（ ） □不明

防水下地（下葺）：□アスファルトルーフィング 940 □改質アスファルトルーフィング □湿度ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明

瓦桟材：□木質系 □プラスチック系 □その他（ ） □不明

仕上げ材：□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明

屋根構法：□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明

改修履歴

発生部位：□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明

発生階：□1階 □2階 □3階 □その他（ ） □不明

方位：□東 □西 □南 □北 □不明

経年変化記録：部材（棟木下地）（説明文・写真・図）

■ひび割れ □割れ □剥離 □欠損 □変形 □反り □縮み □すれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）

棟木下地の腐朽

棟板金の取り付けに対する

保持力の低下

主な作用因子：■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 ☉植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明

補修内容：棟板金、木下地の交換

耐久性向上の提案：棟下地、防腐処理剤に変更
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県市川市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年～()年 =（30）年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(3 / 10)勾配</td>
</tr>
<tr>
<td>下地（野地棟）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（パラ材） □木材（幅板） □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦棟木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生部位</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
</tbody>
</table>

経年変化記録・部材（棟メタル）（説明文・写真・図）
□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他 () □不明

棟メタルの欠落
強風にあおられて、棟部の金属、周辺本体共めくられ、飛散した。

主な作用因子
■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明

補修内容
本体自体の曲げ強度が低いため、葺き替え工事

耐久性向上的提案
野地に対する保持力も低下している場合は、野地張増

第章
<table>
<thead>
<tr>
<th>項目名</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>不明</td>
</tr>
<tr>
<td>立地条件</td>
<td>不明</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 ～ ()年 = ()年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>()勾配</td>
</tr>
<tr>
<td>下地(野地材)</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地(下葺)</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦棒材</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法(空葺) □土葺 □直葺(野地板直打ち) □通気たて棟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材(野地) (説明文・写真・図)</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食(錆) □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()</td>
</tr>
</tbody>
</table>

補修内容：野地腐朽部の交換

耐久性向上の提案：けらば、片棟部取合い板金加工、広小舞キャップ追加等

主な作用因子：■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明

補修内容：野地腐朽部の交換

耐久性向上の提案：けらば、片棟部取合い板金加工、広小舞キャップ追加等
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td></td>
</tr>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>竣工経年</td>
<td>（　）年～（　）年 =（25）年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他（　）</td>
</tr>
<tr>
<td>建物構法</td>
<td>■軸組構法 □枠組壁工法 □プレハブ構法 □その他（　） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □帯棟 □片流れ □入母屋 □その他（　） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（　）勾配</td>
</tr>
<tr>
<td>防水下地</td>
<td></td>
</tr>
<tr>
<td>下地（野地板）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他（　） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（　） □不明</td>
</tr>
<tr>
<td>瓦 箔 木</td>
<td>□木質系 □プラスチック系 □その他（　） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（　） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（　） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（　） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（　） □不明</td>
</tr>
<tr>
<td>位置</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（野地板）</td>
<td>（説明文・写真・図）</td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □欠れ □締め □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（　）</td>
<td></td>
</tr>
</tbody>
</table>

長期の雨漏れまたは、長期にわたる結露のより野地板の腐朽

主な作用因子

■雨水 □結露水 □風 □地震 □雪 □低湿 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（　） □不明

補修内容

野地板の交換（本体、防水紙等）場合によっては隅木の交換

耐久性向の提案

漏水本体隅部の水切加工（結露）小屋裏換気口の設置
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td></td>
</tr>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>（ ）年 ~ （ ）年 =（25）年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（ / 10）勾配</td>
</tr>
<tr>
<td>下地（野地樹）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村（バラ材） □木村（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録・部材（隅木、野地樹）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>腐朽した部の交換</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>雨漏れまたは結露と思われるが、結露の場合、軒天と大棟に換気を設ける</td>
</tr>
</tbody>
</table>

化粧スレートをはがして見ると、野地合板が腐朽。隅木まで腐朽していた。
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県習志野市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地（駐車場脇）</td>
</tr>
<tr>
<td>竣工経年</td>
<td>（ ）年 ～ （ ）年 = （15）年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>■戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>■軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(6/10)勾配</td>
</tr>
<tr>
<td>下地（野地樋）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦・棟木</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>■平部 □軒部 □けらば部 □大棟 ■隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>■東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録</td>
<td>部材（スレート本体）（説明文・写真・図）</td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □風り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
<td></td>
</tr>
<tr>
<td>台風で棟際スレート本体が剥離。飛来落下。</td>
<td></td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 ■風 □地震 □雪 □低溫 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>破損部交換工事</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td></td>
</tr>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>物件所在地</td>
<td></td>
</tr>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 ～ ()年 = (29)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>■戸建住宅 □共同住宅 □その他 ()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他 () ■不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □平面 □入母屋 □その他 () ■不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>() / 10 勾配</td>
</tr>
<tr>
<td>下地（野地樋）</td>
<td>□構造用合板 ■その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他 () ■不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 ■改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 () ■不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>□木質系 □プラスチック系 □その他 () ■不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 ■プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 () ■不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 ■直葺（野地板直打ち） □通気たて桟構法 □その他 () ■不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他 () ■不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 ■2階 □3階 □その他 () ■不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 ■不明</td>
</tr>
<tr>
<td>経年変化記録 部材（防水下地）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他 () ■不明</td>
</tr>
<tr>
<td>主な作用因子</td>
<td>■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他 () ■不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>経過観察</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td></td>
</tr>
</tbody>
</table>

29年たった改質アスファルトルーフィング 釘孔止水能力もまだ問題ない。経過観察
【木造住宅の外皮経年変化事例調査シート（屋根）】

物件所在地		
立地条件		
建工経年	(　)年～(　)年=（29）年推定	
建物用途	□戸建住宅 □共同住宅 □その他(　)	
建物構法	□軸組構法 □枠組壁工法 □プレハブ構法 □その他(　) □不明	
屋根形状	□切妻 □寄棟 □片流れ □入母屋 □その他(　) □不明	
屋根勾配	(　／10)勾配	
下地(野地盤)	□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他(　) □不明	
防水下地(下葺)	□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他(　) □不明	
瓦桝木	□木質系 □プラスチック系 □その他(　) □不明	
仕上げ材	□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他(　) □不明	
屋根構法	□引掛桟工法(空葺) □土葺 □直葺(野地板直打ち) □通気たて桟構法 □その他(　) □不明	
改修履歴		
発生部位	□平部 □軒部 □けらは部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他(　) □不明	
発生階	□1階 □2階 □3階 □その他(　) □不明	
方位	□東 □西 □南 □北 □不明	

経年変化記録 部材（防水下地）(説明文・写真・図)
□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他(　) □不明

29年経った改質アスファルトルーフィング
野地板に漏水の形跡なし。
経過観察

主な作用因子
□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他(　) □不明

補修内容
経過観察

耐久性向上の提案
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td></td>
</tr>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>（　　）年 ～ （　　）年 = （20）年</td>
</tr>
<tr>
<td>建物用途</td>
<td></td>
</tr>
<tr>
<td>建物構法</td>
<td></td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（　　／10）勾配</td>
</tr>
<tr>
<td>下地（野地根）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦・桟木</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引懸桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（防水下地）（説明文・写真・図）</td>
<td>□ひび割れ □剥離 □欠損 □変形 □反り □縮み □すれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
</tbody>
</table>

本体劣化のため交換工事。
改質アスファルトルーフィングの状態。
やぶれ、縮み変形なし。

主な作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明 |

補修内容 | 問題なしだが、本体交換時は再度改質アスファルトルーフィングを施工が望ましい。 |

耐久性向上の提案 | |
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>物件所在地</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>年～年＝（25）年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>■戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>■組合構法 □枠組工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 ■帯棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（4/10）勾配</td>
</tr>
<tr>
<td>下地（野地板）</td>
<td>□構造用合板 ■その他の合板（コンパネ等） □パーティクルボード ■硬質木片セメント板 □硬質木毛セメント板 □木村（バラ材） □木村（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地</td>
<td>■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 ■化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 ■直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □壁部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録・部材（本体）</td>
<td>（説明文・写真・図）</td>
</tr>
<tr>
<td>カラーベスト本体の重なり部より、雨水共同にこぼれがたまり、雨水が本体下の防水紙上に浸入、雨漏れするおそれがある。</td>
<td></td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 ■高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 ■ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>カラーベスト本体、防水紙の交換工事</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>防水性の高い商品（釘孔シール性）に変更</td>
</tr>
</tbody>
</table>

第ⅳ章 メンテナンスガイドライン 関連報告
<table>
<thead>
<tr>
<th>物件所在地</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td></td>
<td></td>
</tr>
<tr>
<td>竣工経年</td>
<td>年～年=年</td>
<td></td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他</td>
<td></td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他 □不明</td>
<td></td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他</td>
<td>□不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(5/10)勾配</td>
<td>□不明</td>
</tr>
<tr>
<td>下地(野地)</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村(バラ材) □木村(幅板) □その他 □不明</td>
<td></td>
</tr>
<tr>
<td>防水下地 (下葺)</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 □不明</td>
<td></td>
</tr>
<tr>
<td>瓦状材</td>
<td>□木質系 □プラスチック系 □その他</td>
<td>□不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他</td>
<td>□不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法(空葺) □土葺 □直葺(野地板打ち) □通気たて桟構法 □その他</td>
<td>□不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他</td>
<td>□不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他</td>
<td>□不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
<td></td>
</tr>
<tr>
<td>経年変化記録部材(外壁木下地)</td>
<td>(説明文・写真・図)</td>
<td></td>
</tr>
<tr>
<td>ひび割れ</td>
<td>□欠損 □変形 □反り □縮み □ずれ □腐食(錆) □腐朽 □変色 □汚れ</td>
<td>□不明</td>
</tr>
<tr>
<td>かび</td>
<td>□堆積物有り □シーリング切れ □その他</td>
<td>□不明</td>
</tr>
</tbody>
</table>

主な作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他 | □不明 |

補修内容 | | |
耐久性向上の提案 | | |

補修内容: けらば雨漏れ部の補修、板金処理
耐久性向上の提案: 袖の出を多く取る設計変更
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>物件所在地</th>
<th>立地条件</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>竣工年：()年～()年=不明</td>
</tr>
<tr>
<td>建物用途</td>
<td>竣工年：()年～()年=不明</td>
</tr>
<tr>
<td>建物構法</td>
<td>竣工年：()年～()年=不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>竣工年：()年～()年=不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>竣工年：()年～()年=不明</td>
</tr>
<tr>
<td>下地（野地敷）</td>
<td>竣工年：()年～()年=不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>竣工年：()年～()年=不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>竣工年：()年～()年=不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>竣工年：()年～()年=不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>竣工年：()年～()年=不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>竣工年：()年～()年=不明</td>
</tr>
<tr>
<td>発生部位</td>
<td>竣工年：()年～()年=不明</td>
</tr>
<tr>
<td>方位</td>
<td>竣工年：()年～()年=不明</td>
</tr>
</tbody>
</table>

経年変化記録 部材（棟木、柱）（説明文・写真・図）

- ひび割れ
- 腐食
- 生涯
- 腐朽
- 欠損
- 变形
- 反り
- 縮み
- ずれ
- 乾燥
- 亀裂
- 堆積物
- シーリング
- 塩分
- 走行
- 吹雪
- 風
- 地震
- 雷
- 雪
- 低気圧
- 低温
- 高温
- 虫
- 鳥
- 植物
- 汚れ
- 火山灰
- 化学物質
- 紫外線
- その他

補修内容

- 枢体木材が腐朽している場合は交換（屋根材、外壁材）
- 耐久性向上の提案

補修内容

- 屋根外壁の防水性的改善

主な作用因子

- 雨水
- 乾燥
- 風
- 地震
- 雪
- 低気圧
- 低温
- 高温
- 虫
- 鳥
- 植物
- 汚れ
- 堆積物
- シーリング
- 塩分
- 走行
- 吹雪
- 風
- 地震
- 雷
- 雪
- 低気圧
- 低温
- 高温
- 虫
- 鳥
- 植物
- 汚れ
- 火山灰
- 化学物質
- 紫外線
- その他

補修内容

- 枢体木材が腐朽している場合は交換（屋根材、外壁材）
- 耐久性向上の提案

補修内容

- 屋根外壁の防水性的改善

補修内容

- 枢体木材が腐朽している場合は交換（屋根材、外壁材）
- 耐久性向上の提案

補修内容

- 屋根外壁の防水性的改善

補修内容

- 枢体木材が腐朽している場合は交換（屋根材、外壁材）
- 耐久性向上の提案

補修内容

- 屋根外壁の防水性的改善
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>東京都内</td>
</tr>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>()年～()年＝(15)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配 (8/10)勾配</td>
<td></td>
</tr>
<tr>
<td>下地(野地)</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(パラ材) □木材(幅板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地(下葺)</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土圧葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法(空葺) □土葺 □直葺(野地板直打ち) □通気たて桟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録</td>
<td>部材(野地板)(説明文・写真・図)</td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反射 □縮み □ずれ □腐食(錆) □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()</td>
<td></td>
</tr>
<tr>
<td>小屋裏に溜まる湿気が結露をして、野地が含水して腐朽した。</td>
<td></td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火災灰 □化学物質 □紫外線 □その他() □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>野地の交換（本体、防水下地、野地交換）</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>結露防止の策として区切られた空間ごとに棟換気等をつける。</td>
</tr>
</tbody>
</table>
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>部分</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td></td>
</tr>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 〜 ()年 = ()年</td>
</tr>
<tr>
<td>建物用途</td>
<td></td>
</tr>
<tr>
<td>建物構法</td>
<td></td>
</tr>
<tr>
<td>屋根形状</td>
<td></td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（10°〜10°）勾配</td>
</tr>
<tr>
<td>下地（野地）</td>
<td></td>
</tr>
<tr>
<td>防水下地</td>
<td></td>
</tr>
<tr>
<td>材</td>
<td></td>
</tr>
<tr>
<td>仕上げ材</td>
<td></td>
</tr>
<tr>
<td>瓦棟木</td>
<td></td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td></td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録</td>
<td>部材（野地板）（説明文・写真・図）</td>
</tr>
<tr>
<td>□ひび割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ</td>
<td></td>
</tr>
<tr>
<td>□かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
<td></td>
</tr>
<tr>
<td>野地板、下側がふさがれた空間があり、結露した水分によって野地が腐朽した。</td>
<td></td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分</td>
</tr>
<tr>
<td>補修内容</td>
<td>換気口の設置、棟換気</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>区切られた空間ごとすべてに換気を設ける</td>
</tr>
</tbody>
</table>

主な作用因子
- 雨水
- 結露水
- 風
- 地震
- 雪
- 低温
- 高温
- 動物
- 鳥
- 植物
- 塩分
- 腐食（錆）
- 変色
- 腐朽
- 堆積物
- シーリング
- 技術
- 化学物質
- 紫外線
- その他（ ）

補修内容
- 換気口の設置、棟換気

耐久性向上の提案
- 区切られた空間ごとすべてに換気を設ける

第10章 メンテナンスガイドラインに関する報告
<table>
<thead>
<tr>
<th>部分</th>
<th>再生</th>
<th>仕上げ材</th>
<th>無し</th>
<th>防水下地</th>
<th>瓦桟</th>
<th>仕上材</th>
<th>改修履歴</th>
<th>経年変化記録</th>
<th>補修内容</th>
<th>耐久性向上の提案</th>
</tr>
</thead>
<tbody>
<tr>
<td>下地(野地)</td>
<td>野地板、下側がふさがれた空間があり、結露した水分によって野地が腐朽した。</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>木造住宅の外皮経年変化調査シート(屋根)</td>
<td>雨水、結露水、風、地震、雪、低温、高温、虫、鳥、植物、塩分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>主な作用因子</td>
<td></td>
</tr>
<tr>
<td>補修内容</td>
<td></td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td></td>
</tr>
</tbody>
</table>
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>□立地条件</td>
</tr>
<tr>
<td>竣工経年</td>
<td>()年 ~ ()年 = ()年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(10 / 10)勾配</td>
</tr>
<tr>
<td>下地（野地部分）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □合板セメント板</td>
</tr>
<tr>
<td></td>
<td>□硬質木片セメント板 □硬質木毛セメント板 □木片(幅板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング</td>
</tr>
<tr>
<td></td>
<td>□高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦 桁 木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属</td>
</tr>
<tr>
<td></td>
<td>□アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板打打ち） □通気たて桟構法</td>
</tr>
<tr>
<td></td>
<td>□その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部</td>
</tr>
<tr>
<td></td>
<td>□トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生部位</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（野地板）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □腐食 □変色 □洗浄 □腐食（錆） □腐朽 □変色 □汚れ</td>
</tr>
<tr>
<td></td>
<td>□かび □こけ □堆積物有り □シーリング切れ □その他() □不明</td>
</tr>
</tbody>
</table>

野地板、下側がふさがれた
空間があり、結露した水分
によって野地が腐朽した。

主な作用因子
□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分
□踏み割れ □飛来物 □ほこり □火災 □化学物質 □紫外線
□その他() □不明

補修内容
換気口の設置、棟換気

耐久性向上の提案
区切られた空間ごとすべてに換気を設ける
<table>
<thead>
<tr>
<th>部位</th>
<th>野地板</th>
</tr>
</thead>
<tbody>
<tr>
<td>内容</td>
<td>下側がふさがれた空間があり、結露した水分によって垂木が腐朽した。</td>
</tr>
</tbody>
</table>

【主な作用因子】

- 雨水
- 結露水
- 風
- 地震
- 雪
- 低温
- 高温
- 虫
- 炎
- 植物
- 塩分
- 跌み割れ
- 飛来物
- ほこり
- 火山灰
- 化学物質
- 紫外線
- その他（）

【補修内容】

- 換気口の設置、棟換気

【耐久性向上の提案】

- 区切られた空間ごとすべてに換気を設ける
<table>
<thead>
<tr>
<th>物件所在地</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>（ ）年 ～ （ ）年 = （ ）年</td>
</tr>
<tr>
<td>建物用途</td>
<td>■戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 ■枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>■切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（ 10 / 10 ）勾配</td>
</tr>
<tr>
<td>下地（野地構）</td>
<td>□構造用合板 ■その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 ■化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 ■直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 ■大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □烟囱 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 ■北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（野地板）</td>
<td>（説明文・写真・図）</td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） ■腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
<td></td>
</tr>
</tbody>
</table>

野地板、下側がふさがれた空間があり、結露した水分によって垂木、桁が腐朽した。

主な作用因子	□雨水 ■結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明
補修内容	換気口の設置、棟換気
耐久性向上の提案	区切られた空間ごとすべてに換気を設ける

第Ⅲ章メンテナンスガイドライン関連報告
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>物件所在地</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>村工経年</td>
<td>() 年 ～ () 年 ～ () 年</td>
</tr>
<tr>
<td>建物用途</td>
<td>戸建住宅 □共同住宅 □その他</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(10 / 10) 勾配</td>
</tr>
<tr>
<td>下地（野地模）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木片セメント板 □木材（ばかり） □木材（幅板） □その他</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトリーフィング 940 □改質アスファルトリーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録</td>
<td>部材（野地板）</td>
</tr>
<tr>
<td>火災</td>
<td></td>
</tr>
<tr>
<td>换気口の設置、棟換気</td>
<td></td>
</tr>
<tr>
<td>補修内容</td>
<td></td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>区切られた空間ごとすべてに換気を設ける</td>
</tr>
</tbody>
</table>

主な作用因子:
- 雨水
- 結露水
- 風
- 地震
- 雪
- 低温
- 高温
- 自然
- 塩分
- 路面
- 飛来物
- 異常
- 火山灰
- 化学物質
- 紫外線
- その他

不明
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td></td>
</tr>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>（ ）年〜（ ）年=（ ）年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（10/10）勾配</td>
</tr>
<tr>
<td>下地（野地板）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桟</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録・部材（野地板）</td>
<td>（説明文・写真・図）</td>
</tr>
<tr>
<td>□ひび割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
<td></td>
</tr>
</tbody>
</table>

野地板、下側がふさがれた空間があり、結露した水分によって垂木、桁が腐朽した。

主な作用因子
- □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分
- □踏み剥れ □飛来物 □ほこと □火山灰 □化学物質 □紫外線
- □その他（ ） □不明

補修内容
- 換気口の設置、棟換気

耐久性向上の提案
- 区切られた空間ごとすべてに換気を設ける
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td></td>
</tr>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>城工経年</td>
<td>()年 ～ ()年 = ()年</td>
</tr>
<tr>
<td>建物用途</td>
<td>■戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>■軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>()／10勾配</td>
</tr>
<tr>
<td>下地（野地盤）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーキングルーフボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 ■化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 ■直葺（野地板直打ち） □通気たて桟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 ■軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録・部材（防水下地）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縦割り □すれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()</td>
</tr>
<tr>
<td>アスファルトルーフィング 940 下地留付ステープルの孔。</td>
<td>裂け、切れ、拡大なし。</td>
</tr>
<tr>
<td>経過観察</td>
<td></td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 □風 □地震 □雪 ■低温 ■高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>経過観察</td>
</tr>
</tbody>
</table>
| 耐久性向上の提案 | }
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td></td>
</tr>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>(　) 年 ～ (　) 年 = (29)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>戸建住宅 □ 共同住宅 □ その他(　)</td>
</tr>
<tr>
<td>建物構法</td>
<td>ア軸組構法 □ 枠組壁工法 □ プレハブ構法 □ その他 (　) □ 不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>切妻 □ 帯棟 □ 片流れ □ 入母屋 □ その他 (　) □ 不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(　) / 10 勾配</td>
</tr>
<tr>
<td>下地（野地植）</td>
<td>構造用合板 □ その他の合板 (コンパネ等) □ バーティカルボード □ 硬質木片セメント板 □ 硬質木毛セメント板 □ 木材(パラ材) □ 木材(腹板) □ その他 (　) □ 不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>アスファルトルーフィング 940 □ 改質アスファルトルーフィング □ 透湿ルーフィング □ 高分子系ルーフィング □ 土居葺き □ 構皮系 □ その他 (　) □ 不明</td>
</tr>
<tr>
<td>瓦材</td>
<td>枠引掛け工法（空葺） □ 土葺 □ 直葺（野地板直打ち） □ 通気たて枠構法 □ その他 (　) □ 不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>平部 □ 軒部 □ けらば部 □ 大棟 □ 隅棟 □ その他棟部 □ 谷部 □ 壁際部 □ トップライト □ 雪止 □ 煙突 □ その他 (　) □ 不明</td>
</tr>
<tr>
<td>発生部位</td>
<td>1階 □ 2階 □ 3階 □ その他 (　) □ 不明</td>
</tr>
<tr>
<td>方位</td>
<td>東 □ 西 □ 南 □ 北 □ 不明</td>
</tr>
<tr>
<td>経年変化記録 部材（防水下地）</td>
<td>説明文・写真・図</td>
</tr>
<tr>
<td>改質アスファルトルーフィングに化粧スレート本体に釘を打ち、引き抜いたら、釘にアスファルトが付着し止水されていた。問題なし</td>
<td></td>
</tr>
<tr>
<td>主な作用因子</td>
<td>雨水 □ 結露水 □ 風 □ 地震 □ 雪 □ 低温 □ 高温 □ 虫 □ 鳥 □ 植物 □ 塩分 □ 踏み割れ □ 飛来物 □ こすり □ 火山灰 □ 化学物質 □ 紫外線 □ その他 (　) □ 不明</td>
</tr>
<tr>
<td>補修内容</td>
<td></td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td></td>
</tr>
</tbody>
</table>
木造住宅の外皮経年変化事例調査シート (屋根)

<table>
<thead>
<tr>
<th>物件所在地</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 ~ ()年 = (29)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他 () □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(/ 10)勾配</td>
</tr>
<tr>
<td>下地（野地根）</td>
<td>□構造用合板 □その他の合板 (コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □材 (バラ材) □木材 (幅板) □その他 () □不明</td>
</tr>
<tr>
<td>防水下地</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 () □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他 () □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 () □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法 (空葺) □土葺 □直葺 (野地根直打ち) □通気たて桟構法 □その他 () □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他 () □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他 () □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
</tbody>
</table>

経年変化記録 / 部材 (シーリング) (説明文・写真・図) □ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他 () □不明

化粧スレート木体上に
太陽光システム
架台のビス留め
28年たった今でも止水されていった。
問題なし。

主な作用因子

- □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分
- □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線
- □その他 () □不明

補修内容

耐久性向上の提案
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県八千代市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年～()年＝(2)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(5/10)勾配</td>
</tr>
<tr>
<td>下地（野地根）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村（パラ材） □木村（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>塗装工事のみ</td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□１階 □２階 □３階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（棟板金）</td>
<td>（説明文・写真・図）</td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □すれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
<td></td>
</tr>
<tr>
<td>強風で棟板金が飛散。</td>
<td>棟木下地が雨水により腐朽。</td>
</tr>
<tr>
<td>棟板金留め付け釘が鈍っていた。</td>
<td></td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>棟木下地、棟板金の交換</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>棟木下地（防腐処理剤）、釘（ステン釘）に変更。</td>
</tr>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>物件所在地</td>
<td>千葉県習志野市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建物経年</td>
<td>()年～()年＝(20)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他 ()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他 () □不明</td>
</tr>
<tr>
<td>屋根匀配</td>
<td>(4 / 10)匀配</td>
</tr>
<tr>
<td>下地（野地植）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木片セメント板 □木村（パラ村） □木村（幅村） □その他 () □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 () □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>□木質系 □プラスチック系 □その他 () □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 () □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛栈工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて栈構法 □その他 () □不明</td>
</tr>
<tr>
<td>改修履歴塗装工事</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他 () □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他 () □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録</td>
<td>部材（釘）（説明文・写真・図）</td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □すれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他 ()</td>
<td></td>
</tr>
<tr>
<td>柲板金の留付鉄釘が錆びて腐食した。</td>
<td></td>
</tr>
<tr>
<td>今後腐食が進行して、釘頭が取り、留付不良のため、</td>
<td></td>
</tr>
<tr>
<td>柲板金が風で剥がれる恐れがある。</td>
<td></td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他 () □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>留付釘の交換</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>鉄釘をステンレス製に交換またはステンレスビス</td>
</tr>
</tbody>
</table>

補修内容
留付釘の交換
耐久性向上の提案
鉄釘をステンレス製に交換またはステンレスビス
物件所在地	千葉県茂原市
立地条件 |
建工経年 | （ ）年 ～ （ ）年 =（30）年推定
建物用途 | □戸建住宅 □共同住宅 ■その他（ ）
建物構法 | ■軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明
屋根形状 | ■切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明
屋根勾配 | （ 3/10 ）勾配
下地（野地） | □構造用合板 □その他の合板（コンベネ等） □パーティクルボード □硬質木片セメント板 □厚み合板 □木村（パラ板） □木材（幅板） ■その他（ なし ） □不明
防水下地（下葺） | □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ なし ） □不明
瓦 材 | □木質系 □プラスチック系 □その他（ ） □不明
仕上げ材 | □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明
屋根構法 | ■引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ タイトフレーム直打ち ） □不明
改修履歴 |
発生部位 | ■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明
発生階 | ■1階 □2階 □3階 □その他（ ） □不明
方位 | ■東 □西 □南 □北 □不明
経年変化記録 部材（ 留付フックボルト ）（説明文・写真・図） | □ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）
30年で本体フックボルトに錆が発生し、留付能力の低下。強風時にめくれた。
主な作用因子 | ■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火災 □化学物質 □紫外線 □その他（ ） □不明
補修内容 | 留付ボルトの交換
耐久性向上の提案 | ステンレス製など錆びないものに変更
金属葺きによる経年劣化事例調査表

<table>
<thead>
<tr>
<th>経年変化要因・部位</th>
<th>劣化レベル1</th>
<th>経過観察</th>
<th>劣化レベル2</th>
<th>部分補修、部分交換</th>
<th>劣化レベル3</th>
<th>大規模改修、葺き替え</th>
</tr>
</thead>
<tbody>
<tr>
<td>平部</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>自体変色（緑青）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>部等もらいサビ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>折り曲げ部サビ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>谷部サビ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平部表面の塩化腐食</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>橫葺き野地の腐食</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>軒部</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>軒樋落雪</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>軒樋破損</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>軒先木部板金腐食</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>折板サビによる孔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>軒先野地の陥没</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>袖部</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>壁際部</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>棟部</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>棟木下地腐朽</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>棟木下地腐食15年</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>谷部</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>下葺き</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>940熱劣化折り曲げると割れる15年</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>小屋裏</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>結合部</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>風神板破損は板が欠落30年</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>頂部サビ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県成田市</td>
</tr>
<tr>
<td>立地条件</td>
<td>市街地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 ～ ()年 = ()年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 ■その他（寺）</td>
</tr>
<tr>
<td>建物構法</td>
<td>■軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ ■入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(8 / 10)勾配</td>
</tr>
<tr>
<td>下地（野地）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村（バラ材） ■木村（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦棟木</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート ■金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 ■直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生部位</td>
<td>■1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（ ）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
</tbody>
</table>

鋼製屋根材は、初期では茶色だが、酸化することにより緑色に変わる。変色のみの場合は問題なし。その後酸化が進むと、孔あきがおきて雨漏れがすることになる。

主な作用因子

| □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明 |

補修内容

変色のみの場合、経過観察

耐久性向上の提案

鋼の酸化による孔あきに対しては、材質の厚いものを使用する。
【木造住宅の外皮経年変化事例調査シート（屋根）】

物件所在地
千葉県八千代市

立地条件
住宅地

竣工年
()年～()年＝18年

建物用途
□戸建住宅 □共同住宅 □その他（商業施設）

建物構法
□軸組構法 □枠組壁工法 □プレハブ構法 □その他（RC造）

屋根形状
□切妻 □寄棟 □片流れ □入母屋 □その他（）

屋根勾配
(4.5/10)勾配

下地（野地板）
□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板
□硬質木毛セメント板 □木材（ラシ材） □木材（幅板） □その他（）

防水下地（下葺）
□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング
□高分子系ルーフィング □土居葺き □樹皮系 □その他（）

瓦板木
□木質系 □プラスチック系 □その他（）

仕上げ材
□粘土瓦 □プレスセメント瓦 □化粧スレート □金属
□アスファルトシングル・不燃シングル □その他（）

屋根構法
□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法
□その他（）

改修履歴

発生部位
□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部
□トップライト □雪止 □煙突 □その他（）

発生階
□1階 □2階 □3階 □その他（）

方位
□東 □西 □南 □北 □不明

経年変化記録・部材（雪止）（説明文・写真・図）
□ひび □割れ □剥離 □欠損 □変形 □変色 □腐食（錆） □腐朽 □変色 □汚れ
□かび □こけ □堆積物有り □シーリング切れ □その他（）

雪止金具に錆が発生し、本体表面にもらい錆が発生している。

主な作用因子
□・雨 □結露 □風 □地震 □雪 □低湿 □高温 □虫 □鳥 □植物 □塩分
□踏み割れ □飛来物 □ほこり □火災灰 □化学物質 □紫外線
□その他（）

補修内容
錆を取り除き錆止めをする。

耐久性向上の提案
鉄製は早期に錆が発生するので、ステンレス製のものに交換

第②章メンテナンスガイドライン関連報告
一覧へ戻る
<table>
<thead>
<tr>
<th>物件所在地</th>
<th>千葉県八千代市</th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年～()年=（18）年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他(商業施設)</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（RC造） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4.5／10)勾配</td>
</tr>
<tr>
<td>下地（野地）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(粋板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □真葺（野地板直打ち） □通気たて桟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>発生部位 □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録</td>
<td>部材（本体）（説明文・写真・図） □ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()</td>
</tr>
</tbody>
</table>

屋根材本体の曲げ加工部に錆が発生している。

主な作用因子
■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明

補修内容
錆を取り除き錆止めを施した後、再塗装

耐久性向上の提案
錆の発生しやすい塗膜材を指定する。

第Ⅲ章 一覧へ戻る
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>千葉県勝浦市</td>
<td></td>
</tr>
<tr>
<td>立地条件</td>
<td>山林地 隔海線より2.5km</td>
</tr>
<tr>
<td>建工経年年</td>
<td>()年 ～ ()年 = (30)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(／10) 勾配</td>
</tr>
<tr>
<td>下地（野地積）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（パラ材） □木材（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桟材</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>30年前に</td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □寄棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階級</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（本体）</td>
<td>(説明文・写真・図)</td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（孔あき）</td>
<td></td>
</tr>
</tbody>
</table>

本体谷部に錆が進行していて孔があいている。

| 主な作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明 |

| 補修内容 | 本体の錆ている部分の交換 その他塗装工事 |

耐久性向上の提案 針に強い材料に葺き替え
物件所在地
- 千葉県銚子市

立地条件
- 住宅地

建工経年
- （ ）年 ～ （ ）年 = (40)年

建物用途
- ■戸建住宅 □共同住宅 □その他（ ）

建物構法
- ■軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明

屋根形状
- ■切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明

屋根勾配
- (1.5 ／10) 勾配

下地（野地材）
- □構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他（ ） □不明

下水下地（下葺）
- □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（フェルト17kg ） □不明

瓦 杉 枝
- □木質系 □プラスチック系 □その他（ ） □不明

仕上げ材
- □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明

屋根構法
- □引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて枠構法 □その他（ ） □不明

改修履歴

発生部位
- ■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明

発生階
- ■1階 □2階 □3階 □その他（ ） □不明

方位
- ■東 □西 □南 □北 □不明

経年変化記録 部材（ 本体 ）（説明文・写真・図）
- □ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）

錆が本体全体に発生している。

主な作用因子
- ■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明

補修内容
- 一部でなく全体に錆が発生しているため、交換工事

耐久性向上の提案
- 錆に強い製品に葺き替える。
【木造住宅の外皮経年変化事例調査シート（屋根）】

物件所在地	千葉県船橋市	
立地条件	住宅地	
竣工経年	（ ）年 ～ （ ）年 =（30）年	
建物用途	□戸建住宅 ■共同住宅 □その他（ ）	
建物構造	□軸組工法 □枠組工法 ■プレハブ工法 □その他（ ） □不明	
屋根形状	□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明	
屋根勾配	（0.5 /10）勾配	
下地（野地）	□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（積板） □木材（板） ■その他（なし） □不明	
防水下地（下葺）	□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 ■その他（なし） □不明	
瓦桝材	□木質系 □プラスチック系 □その他（ ） □不明	
仕上げ材	□粘土瓦 □プレスセメント瓦 □化粧スレート ■金属 □アスファルトシングル・不燃シングル □その他（ ） □不明	
屋根構法	□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 ■その他（タイトフレームボルト止め） □不明	
改修履歴	発生部位	■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止め □煙突 □その他（ ） □不明
発生階	□1階 □2階 □3階 □その他（ ） □不明	
方位	□東 □西 □南 □北 □不明	
経年変化記録 部材（ ）（説明文・写真・図）	□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（孔あき）	

折半屋根材全面に錆発生。孔あき。

主な作用因子 | ■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明 |

補修内容 | 折半カバー工法または交換（葺き替え） |

耐久性向上の提案 | 鋼に強い材料に変更 |

第0章 - 000
<table>
<thead>
<tr>
<th>部材</th>
<th>千葉県勝浦市</th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td>山林地 海岸線より2.5km</td>
</tr>
<tr>
<td>建工経年</td>
<td>（　）年 ～ （　）年 = （30）年</td>
</tr>
<tr>
<td>建物用途</td>
<td>■戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>■軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 ■帯棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（ ）〜（ ）勾配</td>
</tr>
<tr>
<td>下地（野地樋）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） ■木材（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>■木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート ■金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>■引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>30年前</td>
</tr>
<tr>
<td>発生部位</td>
<td>■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>■1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>■東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録・部材（ 本体 ）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（孔あき ）</td>
</tr>
</tbody>
</table>

本体谷部に錆が進行して孔があいている。表面塗膜の剥離。

| 主な作用因子 | ■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明 |

補修内容 全面に錆が発生のため全交換（葺き替え）

耐久性向上の提案 錆に強い材料に葺き替え
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>神奈川県</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建物分間年</td>
<td>（ ）年 ～ （ ）年 = （ ）年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構造（1/10）勾配</td>
<td>□不明</td>
</tr>
<tr>
<td>下地（野地）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦積木</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ドーマ屋根） □不明</td>
</tr>
<tr>
<td>発生部位</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（本体）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □すれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
<tr>
<td>金属屋根材本体の塗装膜がなくなり、前面に錆が発生。</td>
<td>鍔が進行すると孔あき、雨漏れ、木下地の腐朽となる。</td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>屋根材交換（葺き替え）</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>鍔に強い金属材を使用する。</td>
</tr>
<tr>
<td>物件所在地</td>
<td>神奈川県</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 ～ ()年 ⇒ ()年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(1 / 10)勾配</td>
</tr>
<tr>
<td>下地(野地)</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村(バラ材) □木村(幅板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛け杖工法(空葺) □土葺 □直葺(野地板直打ち) □通気たて柵構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他(ドーマ屋根) □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材</td>
<td>(野地) (説明文・写真・図)</td>
</tr>
<tr>
<td>□ひび割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食(錆) □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()</td>
<td></td>
</tr>
</tbody>
</table>

雨水が軒先裏側にまわり、野地が腐朽。風により屋根材がめくれた。

雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明

補修内容 野地板（腐朽した部分）の交換後、新規屋根財の施工

耐久性向上の提案 軒先部の形状、または、屋根勾配変更し、水のまわらないようにする。
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県習志野市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>() 年～()年 = (1)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他(倉庫)</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>■切妻 □寄棟 □片流れ □入母屋 □その他 () □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4 / 10) 勾配</td>
</tr>
<tr>
<td>下地(野地焼)</td>
<td>□構造用合板 □その他の合板(コパネ等) □パーティクルボード □硬質木片セメント板</td>
</tr>
<tr>
<td>□硬質木毛セメント板 □木材(パラ材) □木材(幅板) □その他(なし) □不明</td>
<td></td>
</tr>
<tr>
<td>防水下地</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング</td>
</tr>
<tr>
<td>(下葺) □高分子系ルーフィング □土居葺き □樹皮系 □その他(なし) □不明</td>
<td></td>
</tr>
<tr>
<td>瓦棟木</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属</td>
</tr>
<tr>
<td>□アスファルトシングル・不燃シングル □その他 () □不明</td>
<td></td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法(空葺) □土葺 □直葺(野地板直打ち) □通気たて棟構法</td>
</tr>
<tr>
<td>□その他(鉄骨直張り) □不明</td>
<td></td>
</tr>
<tr>
<td>改修履歴</td>
<td>1年前にスレート屋根から折半に変更</td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部</td>
</tr>
<tr>
<td>□トップライト □雪止 □煙突 □その他 () □不明</td>
<td></td>
</tr>
<tr>
<td>発生階</td>
<td>■1階 □2階 □3階 □その他 () □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材 (雨樋) (説明文・写真・図)</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食(錆) □腐朽 □変色 □汚れ</td>
</tr>
<tr>
<td>□かび □こけ □堆積物有り □シーリング切れ □その他 () □不明</td>
<td></td>
</tr>
</tbody>
</table>

屋根面より滑落した雪が
雨樋にかかり、荷重により割れた。

主な作用因子
□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分
□踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線
□その他 () □不明

補修内容
雨樋交換補修

耐久性向上の提案
屋根面に雪止の設置
木造住宅の外皮経年変化事例調査シート（屋根）

物件所在地	千葉県習志野市
立地条件	住宅地
建工経年	（　）年 ～ （　）年 = （1）年
建物用途	□戸建住宅 □共同住宅 ■その他（倉庫）
建物構法	□軸組構法 □枠組壁工法 ■プレハブ構法 □その他（　） □不明
屋根形状	■切妻 □寄棟 □片流れ □入母屋 □その他（　） □不明
屋根勾配	（4 / 10）勾配
下地（野地根）	□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) ■その他（なし） □不明
防水下地（下葺）	□アスファルトルーフィング 940 □改質アスファルトルーフィング □高分子系ルーフィング □土居葺き □樹皮系 ■その他（なし） □不明
瓦桝木	□木質系 □プラスチック系 □その他（　） □不明
仕上げ材	□粘土瓦 □プレスセメント瓦 □化粧スレート ■金属 □アスファルトシングル・不燃シングル □その他（　） □不明
屋根構法	□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 ■その他（鉄骨直張り） □不明
改修履歴	1年前にスレート屋根から折半に変更
発生部位	□平部 ■軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（　） □不明
発生階	■1階 □2階 □3階 □その他（　） □不明
方位	□東 □西 □南 ■北 □不明
経年変化記録・部材（雨樋）	（説明文・写真・図） □ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（　）

屋根面より滑落した雪が屋根にかかり、荷重により割れた。

主な作用因子

| □雨水 □結露水 □風 □地震 ■雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（　） □不明 |

補修内容

雨樋交換補修

耐久性向上の提案

屋根面に雪止の設置
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県習志野市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>年 ~ 年 = (30)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>■戸建住宅 □共同住宅 □その他（）</td>
</tr>
<tr>
<td>建物構法</td>
<td>■軸組構法 □枠組壁工法 □プレハブ構法 □その他（） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（／10）勾配</td>
</tr>
<tr>
<td>下地（野地）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村（バラ材） □木村（幅板） □その他（） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（） □不明</td>
</tr>
<tr>
<td>瓦材</td>
<td>□木質系 □プラスチック系 □その他（） □不明</td>
</tr>
<tr>
<td>仕上材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート ■金属 □アスファルトシングル・不燃シングル □その他（） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（） □不明</td>
</tr>
<tr>
<td>発生部位</td>
<td>■1階 □2階 □3階 □その他（） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
</tbody>
</table>

経年変化記録 部材（
| 銅板平葺屋根の積もった雪が滑落時に雨樋に荷重がかかり欠損 |

| 主な作用因子 | □雨水 □結露水 □風 □地震 ■雪 □低溫 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（） □不明 |

補修内容 | 雨樋を付け直し |

耐久性向上の提案 | 雨樋吊金具の数を2倍にしてビス留め。強度補充 |

補修内容 | 雨樋を付け直し |
【木造住宅の外皮経年変化事例調査シート（屋根）】

物件所在地：千葉県佐倉市

立地条件：住宅団地

竣工年：（ ）年～（ ）年＝（30）年

建物用途：■戸建住宅 □共同住宅 □その他（ ）

建物構法：□軸組構法 □枠組壁工法 ■プレハブ構法 □その他（ ） □不明

屋根形状：□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明

屋根勾配：（ 2/10）勾配

下地（野地棟）：□構造用合板 □その他の合板（コンパネ等） ■パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村（パラ材） □木村（幅板） □その他（ ） □不明

防水下地：□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明

瓦桝木：□木質系 □プラスチック系 □その他（ ） □不明

仕上げ材：□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明

屋根構法：□引掛桝工法（空葺） □土葺 ■直葺（野地板直打ち） □通気たて桝構法 □その他（ ） □不明

改修履歴：塗装工事

発生部位：□平部 ■軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明

発生階：□1階 ■2階 □3階 □その他（ ） □不明

方位：□東 □西 ■南 □北 □不明

経年変化記録・部材（軒先（鼻算））（説明文・写真・図）

瓦棒葺き（真木なし工法）

軒先部に水が溜まり、錆びて腐食、欠損。

雨水が浸入して木部が腐朽していた。

主な作用因子

補修内容

耐久性向上の提案
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県銚子市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>竣工経年年</td>
<td>()年～()年＝(40)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>戸建住宅□共同住宅□他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>軸組構法□枠組壁工法□プレハブ構法□他（ ）□不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>切妻□寄棟□片流れ□入母屋□他（ ）□不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(1.5/10)勾配</td>
</tr>
<tr>
<td>下地（野地根）</td>
<td>構造用合板□その他の合板（コンパネ等）□パーティクルボード□硬質木片セメント板□硬質木毛セメント板□木材（パラ材）□木材（幅板）□他（ ）□不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>アスファルトルーフィング940□改質アスファルトルーフィング□透湿ルーフィング□高分子系ルーフィング□土居葺き□樹皮系□他（フェルト17kg ）□不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>木質系□プラスチック系□他（ ）□不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>粘土瓦□プレスセメント瓦□化粧スレート□金属□アスファルトシングル・不燃シングル□他（ ）□不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>引掛棟工法（空葺）□土葺□直葺（野地板直打ち）□通気たて棟構法□他（ ）□不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>平部□軒部□けらば部□大棟□隅棟□他棟部□谷部□壁際部□トップライト□雪止□煙突□他（ ）□不明</td>
</tr>
<tr>
<td>発生部位</td>
<td>1階□2階□3階□他（ ）□不明</td>
</tr>
<tr>
<td>方位</td>
<td>東□西□南□北□不明</td>
</tr>
<tr>
<td>経年変化記録部材</td>
<td>野地板（説明文・写真・図）</td>
</tr>
<tr>
<td>□ひび□割れ□剥離□欠損□変形□反り□縮み□ずれ□腐食（錆）□腐朽□変色□汚れ□かび□こけ□堆積物有り□シーリング切れ□他（ ）</td>
<td></td>
</tr>
<tr>
<td>軒先部の雨漏れが以前からあり、野地板が腐朽</td>
<td></td>
</tr>
<tr>
<td>主な作用因子</td>
<td>雨水□結露水□風□地震□雪□低温□高温□虫□鳥□植物□塩分□踏み割れ□飛来物□ほこり□火山灰□化学物質□紫外線□他（ ）□不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>野地板（腐朽した部分）の交換後、新規屋根材を葺く。</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>軒先部防水紙2重張り</td>
</tr>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>物件所在地</td>
<td>千葉県船橋市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建物経年</td>
<td>()年 ～ ()年 = (30)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 ■共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 ■プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(0.5 / 10) 勾配</td>
</tr>
<tr>
<td>下地（野地樋）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（パラ材） □木材（幅板） ■その他（ なし ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 ■その他（ なし ） □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート ■金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 ■その他（タイトフレームボルト止め） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>発生部位 ■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>■東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（ ）</td>
<td>(説明文・写真・図)</td>
</tr>
<tr>
<td>-ひび割れ</td>
<td>□ひび割れ □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（鉄） □腐朽 □変色 □汚れ</td>
</tr>
<tr>
<td>-かびこけ</td>
<td>□かび □こけ □堆積物有り □シーリング切れ □その他（孔あき）</td>
</tr>
</tbody>
</table>

折半屋根材全面に鉄発生。孔あき。

主な作用因子
- □雨水 □結露水 □風 □地震 □雪 □低湿 □高温 □虫 □鳥 □植物 □塩分
- □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線
- □その他（ ） □不明

補修内容
- 折半カバー工法または交換（葺き替え）

耐久性向上の提案
- 腐に強い材料に変更
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>物件所在地</th>
<th>千葉県市川市</th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>() 年 ～ () 年 = (15) 年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他 () □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(5 ／10)勾配</td>
</tr>
<tr>
<td>下地（野地）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（パラ材） □木材（幅板） □その他 () □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 () □不明</td>
</tr>
<tr>
<td>瓦材</td>
<td>□木質系 □プラスチック系 □その他 () □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 () □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛笠工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他 () □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他 () □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他 () □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
</tbody>
</table>

経年変化記録・部材（軒先野地）（説明文・写真・図）

- □ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他 ()

雨樋の跳ね返った水が、軒先裏側にあたり、長年の間で野地が腐朽した。

<table>
<thead>
<tr>
<th>主な作用因子</th>
<th>■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他 () □不明</th>
</tr>
</thead>
<tbody>
<tr>
<td>補修内容</td>
<td>既存屋根材撤去、野地補修、新規屋根材施工</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>野地材耐水合板、軒先水切形状を変更、雨樋をさげる。</td>
</tr>
</tbody>
</table>

一覧へ戻る
物件所在地	千葉県八千代市
立地条件 | 住宅地
建物用途 | □戸建住宅 □共同住宅 □その他（ ）
建物構法 | □軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明
屋根形状 | □切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明
屋根勾配 | （１．５／１０）勾配
下地（野地板） | □構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村（バラ材） □木村（幅板） □その他（ ） □不明
防水下地（下葺） | □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明
瓦棒状 | □木質系 □プラスチック系 □その他（ ） □不明
仕上げ材 | □粘土瓦 □プレスセメント瓦 □化粧スレート ■金属 □アスファルトシングル・不燃シングル □その他（ ） □不明
屋根構法 | □引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明
改修履歴
発生部位 | □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明
発生階 | ■ 1 階 □ 2 階 □ 3 階 □ その他（ ） □不明
方位 | □東 □西 □南 □北 □不明
経年変化記録 部材（軒先野地）（説明文・写真・図）
瓦棒葺
瓦棒葺断熱材付き。
軒先部より侵入した水が
断熱材により吸収し、長期
にわたり水分を含み、野地
が腐朽した。
主な作用因子 | ■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火災 □化学物質 □紫外線 □その他（ ） □不明
補修内容 | 板金撤去、野地補修、新規瓦棒葺
耐久性向上の提案 | 断熱材は端部（雨水にあたる部分）まで敷きこまない。
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>未記載</td>
</tr>
<tr>
<td>立地条件</td>
<td>未記載</td>
</tr>
<tr>
<td>建工経年</td>
<td>（ ）年～（ ）年 =（ ）年</td>
</tr>
<tr>
<td>建物用途</td>
<td>戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（ 1.5/10）勾配</td>
</tr>
<tr>
<td>下地（野地根）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（パラ材） □木材（幅板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>未記載</td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（軒先野地）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>野地板（腐朽した部分）の交換後、新規屋根材の施工</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>軒先部の形状、または、屋根勾配変更し水の回らないようにする。</td>
</tr>
</tbody>
</table>

雨水が軒先裏側にまわり、野地が腐朽。風により屋根材がめくれた。
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県千葉市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年～()年＝(15)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅□共同住宅□その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>■軸組構法□枠組壁工法□プレハブ構法□その他()□不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻■寄棟□片流れ□入母屋□その他()□不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4 ／10)勾配</td>
</tr>
<tr>
<td>下地（野地板）</td>
<td>■構造用合板□その他の合板（コンパネ等）□パーティクルボード□硬質木片セメント板□硬質木毛セメント板□木村（バラ材）□木村（幅板）□その他（ ）□不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■アスファルトルーフィング 940□改質アスファルトルーフィング□透湿ルーフィング□高分子系ルーフィング□土居葺き□樹皮系□その他（ ）□不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系□プラスチック系□その他（ ）□不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦□プレスセメント瓦□化粧スレート■金属□アスファルトシングル・不燃シングル□その他（ ）□不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棹工法（空葺）□土葺■直葺（野地板直打ち）□通気たて棹構法□その他（ ）□不明</td>
</tr>
<tr>
<td>改修歴</td>
<td>15年前にコロニアルの上にカバー工法</td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部□軒部□けらば部□大棟■隅棟□その他棟部□谷部□壁際部□トップライト□雪止□煙突□その他（ ）□不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階□2階□3階□その他（ ）□不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東□西■南□北□不明</td>
</tr>
<tr>
<td>経年変化記録部材（棟木下地）</td>
<td>（説明文・写真・図）</td>
</tr>
<tr>
<td>□ひび□割れ□剥離□欠損□変形□反り□縮み□ずれ□腐食（錆）■腐朽□変色□汚れ□かび□こけ□堆積物有り□シーリング切れ□その他（ ）</td>
<td></td>
</tr>
<tr>
<td>雨水が隅棟板木下地の下にたまり、吸水して木が腐った。</td>
<td></td>
</tr>
<tr>
<td>主な作用因子</td>
<td>■雨水□結露水□風□地震□雪□低温□高温□虫□鳥□植物□塩分□踏み割れ□飛来物□ほこり□火山灰□化学物質□紫外線□その他（ ）□不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>棟木下地の交換</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>下地材を腐朽材に変更（防腐処理剤、合成樹脂等）</td>
</tr>
</tbody>
</table>
物件所在地：千葉県佐倉市

立地条件：住宅地

竣工経年：（ ）年～（ ）年＝（20）年

建物用途：□戸建住宅 □共同住宅 □その他（ ）

建物構法：□軸組工法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明

屋根形状：□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明

屋根勾配：（4/10）勾配

下地（野地樋）：□構成用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（合板） □木枠（合板） □その他（ ） □不明

防水下地（下葺）：■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明

瓦桝木：□木質系 □プラスチック系 □その他（ ） □不明

仕上げ材：□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明

屋根構法：□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明

改修履歴：20年前にコロニアルの上に金属横葺きを施工

発生部位：□平屋部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明

発生階：□1階 □2階 □3階 □その他（ ） □不明

方位：□東 □西 □南 □北 □不明

経年変化記録 部材（棟板金）（説明文・写真・図）
□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）

棟板金の木下地が直に金属に留めつけているため、雨水を吸収し長期にわたり含水。 棟板金、釘が腐食して飛散した。

主な作用因子
□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明

補修内容：棟木地を本体から少しあけて、止水面戸をいれ雨水の浸入を防ぐ。

耐久性向上の提案：棟下地を吸水しない材質に変更（合成樹脂材）
物件所在地: 千葉県千葉市

立 地 条 件

竣工 年: () 年 ~ () 年 = (15) 年

建 物 用 途: □戸建住宅 □共同住宅 □その他(

建 物 構 法: □軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明

屋 根 形 状: □切妻 □寄棟 □片流れ □入母屋 □その他(

屋 根 勾 配: (4 / 10) 勾配

下地(野地樹): □構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村(バラ材) □木村(幅板) □その他() □不明

防水下地(下葺): □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明

瓦 柱 木: □木質系 □プラスチック系 □その他() □不明

仕 上 げ 材: □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明

屋 根 構 法: □引掛桟工法(空葺) □土葺 □直葺(野地板直打ち) □通気たて桟構法 □その他() □不明

改 修 履 歴: 15 年前にコロニアルの上にカバー工法

発 生 部 位: □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明

発 生 階: □1 階 □2 階 □3 階 □その他() □不明

方 位: □東 □西 □南 □北 □不明

経年変化記録・部材(防水下地) (説明文・写真・図)

□ひび割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食(錆) □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他() □不明

コロニアルの上に金属屋根材をカバー工法にて施工。
防水下地 940 が熱劣化により硬化して縮み、割れがおきた。
防水性能の低下

補修内容: 葺き替え工事

耐久性向上の提案: 防水紙の変更（カラーベストに付く、粘着性高耐久性能品）
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>物件所在地</th>
<th>千葉県佐倉市</th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 ～ ()年 = (30)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>■戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>■組み合せ構法 □軸組み壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>■切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(2.5 / 10)勾配</td>
</tr>
<tr>
<td>下地（野地樋）</td>
<td>□構造用合板 □その他の合板（コンパネ等） ■パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（パラ材） □木材（幅板） □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート ■金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 ■直葺（野地板直打ち） □通気たて桟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>■1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（野地板）</td>
<td>（説明文・写真・図）</td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（鉄） ■腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()</td>
<td></td>
</tr>
</tbody>
</table>

雨漏れ部より雨水の浸入により、野地板（パーティクルボード）が吸水し腐朽。

<table>
<thead>
<tr>
<th>主な作用因子</th>
<th>■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明</th>
</tr>
</thead>
<tbody>
<tr>
<td>補修内容</td>
<td>屋根材撤去、野地板交換、新規屋根材施工</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>耐水合板に変更する。</td>
</tr>
</tbody>
</table>

第①章 — ⑩ー
物件所在地：千葉県佐倉市

建物所在地：住宅地

竣工経年：()年～()年＝(30)年

建物用途：■戸建住宅 □共同住宅 □その他（ ）

建物構法：■軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明

屋根形状：■切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明

屋根勾配：(2.5 / 10)勾配

下地（野地枠）：□構造用合板 □その他の合板（コンパネ等） ■パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（パラ材） □木材（幅板） □その他（ ） □不明

防水下地（下葺）：■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明

瓦桝木：□木質系 □プラスチック系 □その他（ ） □不明

仕上げ材：□粘土瓦 □プレスセメント瓦 □化粧スレート ■金属 □アスファルトシングル・不燃シングル □その他（ ） □不明

屋根構法：□引掛桟工法（空葺） □土葺 ■直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明

改修履歴

発生部位：■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明

発生階：■1階 □2階 □3階 □その他（ ） □不明

耐久性向上の提案：耐水合板に変更する。
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県勝浦市</td>
</tr>
<tr>
<td>立地条件</td>
<td>屋林地 海岸線より2.5km</td>
</tr>
<tr>
<td>建工経年年</td>
<td>()年 ～ ()年 = (30)年</td>
</tr>
<tr>
<td>建築用途</td>
<td>□戸建住宅 □共同住宅 □その他</td>
</tr>
<tr>
<td>建築構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 ■帯棟 □片流れ □入母屋 □その他 () □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(/10)勾配</td>
</tr>
<tr>
<td>下地（野地）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片せメント板 □硬質木毛せメント板 □木村（パラ材） □木村（幅板） □その他 () □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 () □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>□木質系 □プラスチック系 □その他 () □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 () □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引張棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて枠構法 □その他 () □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>30年前に</td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □帯棟 □その他棟部 □谷部 □壁間部 □トップライト □雪止 □煙突 □その他 () □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他 () □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（鬼瓦）</td>
<td>(説明文・写真・図)</td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他 ()</td>
<td></td>
</tr>
</tbody>
</table>

鬼瓦のはんだ付けにて留め付けてあった。錆による腐食して欠損。

主な作用因子

<table>
<thead>
<tr>
<th>因子</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他 () □不明</td>
<td></td>
</tr>
</tbody>
</table>

補修内容
腐食部分を交換、鬼瓦を新規取り付け

耐久性向上の提案
風等で取れやすい部位は、ボルト留め等で補強する。
物件所在地	千葉県船橋市
立地条件 | 住宅地
竣工年 | ()年 ～ ()年 = (30)年
建物用途 | □戸建住宅 ■共同住宅 □その他（ ）
建物構法 | □軸組構法 □枠組壁工法 ■プレハブ構法 □その他（ ） □不明
屋根形状 | □切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明
屋根配 | (0.5 / 1.0) 勾配
下地（野地種） | □構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村（木工） □木村（組板） ■その他（ なし ） □不明
防水下地（下葺） | □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 ■その他（ なし ） □不明
瓦棟 | □木質系 □プラスチック系 □他の合板（コンパネ等） □付近のスレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明
仕上げ材 | □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明
屋根構法 | □引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 ■その他（タイトフレームボルト止め） □不明
改修履歴
発生部位 | ■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明
発生階 | □1階 □2階 □3階 □その他（ ） □不明
方位 | ■東 □西 □南 □北 □不明
経年変化記録 | 部材（留付ボルト）（説明文・写真・図）
主な作用因子 | □ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ ■腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（孔あき ）
補修内容 | 葺き替え工事
耐久性向上の提案 | ボルトは、錆に強いステンレス製に変更
シングル葺きによる経年劣化事例調査表

<table>
<thead>
<tr>
<th>経年変化要因・部位</th>
<th>劣化レベル１ 経過観察</th>
<th>劣化レベル２ 部分補修、部分交換</th>
<th>劣化レベル３ 大規模改修、葺き替え</th>
</tr>
</thead>
<tbody>
<tr>
<td>平部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>軒部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>袖部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>壁際部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>棟部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>谷部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>下葺き</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>小屋裏</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>匹結部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>物件所在地</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>立地条件</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 ～ ()年 = (20)年推定</td>
<td></td>
<td></td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
<td></td>
<td></td>
</tr>
<tr>
<td>屋根形状</td>
<td>■切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
<td></td>
<td></td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(/10)勾配</td>
<td></td>
<td></td>
</tr>
<tr>
<td>下地（野地模）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(ラバー) □木材(幅板) □その他() □不明</td>
<td></td>
<td></td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
<td></td>
<td></td>
</tr>
<tr>
<td>瓦桝木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
<td></td>
<td></td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
<td></td>
<td></td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他() □不明</td>
<td></td>
<td></td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
<td></td>
<td></td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
<td></td>
<td></td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
<td></td>
<td></td>
</tr>
<tr>
<td>経年変化記録部材（シングル本体（説明文・写真・図））</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □すれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

こけが発生している。

主な作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明 |

補修内容 | 洗浄後、剥離部がある場合、ボンド止め、または交換。 |

耐久向上の提案 | こけの付きづらい材料に葺き替え |

第Ⅹ章 メンテナンスガイドライン 関連報告
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>物件所在地</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td>() 年 ～ () 年 = (20) 年推定</td>
</tr>
<tr>
<td>建工経年</td>
<td></td>
</tr>
<tr>
<td>建物用途</td>
<td>■戸建住宅 □共同住宅 □その他 ()</td>
</tr>
<tr>
<td>建物構法</td>
<td></td>
</tr>
<tr>
<td>屋根形状</td>
<td>■切妻 □寄棟 □片流れ □入母屋 □その他 () □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>() / () 勾配</td>
</tr>
<tr>
<td>下地（野地権）</td>
<td></td>
</tr>
<tr>
<td>瓦戸材</td>
<td>□機構用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木片セメント板 □木材(バラ材) □木材(幅板) □その他 () □不明</td>
</tr>
<tr>
<td>防水下地</td>
<td></td>
</tr>
<tr>
<td>瓦戸材</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 () □不明</td>
</tr>
<tr>
<td>下まつ木</td>
<td>□木質系 □プラスチック系 □その他 () □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 () □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td></td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □除雪 □その他 () □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>■1階 □2階 □3階 □その他 () □不明</td>
</tr>
<tr>
<td>主な作用因子</td>
<td>■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他 () □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>洗浄後、剥離部がある場合、ボルト止め、または交換。</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>こけの付きづらい材料に葺き替え（陶器釉薬瓦、金属等）</td>
</tr>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>物件所在地</td>
<td></td>
</tr>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>成工経年</td>
<td>()年 ～ ()年 = (25)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() ■不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他(パラペット) □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>()年</td>
</tr>
<tr>
<td>下地(野地構)</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(パラ材) □木材(幅板) □その他() ■不明</td>
</tr>
<tr>
<td>防水下地(下葺)</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() ■不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() ■不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法(空葺) □土葺 □直葺(野地板直打ち) □通気たて桟構法 □その他() ■不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録・部材(シングル本体) (説明文・写真・図)</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食(錆) □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()</td>
</tr>
</tbody>
</table>

本体1部が剥離している。

主な作用因子

| 作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明 |

補修内容

シングル本体 部分交換

耐久性向上の提案

耐風性能の高い商品に葺き替え。(金属他)
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>物件所在地</th>
<th>立地条件</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>竣工経年：()年～()年＝(25)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() ■不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() ■不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(10/10)勾配以上</td>
</tr>
<tr>
<td>下地（野地権）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（筆板） □木条（幅板） □その他() ■不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() ■不明</td>
</tr>
<tr>
<td>瓦 榻 木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>発生部位：■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（シングル）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()</td>
</tr>
</tbody>
</table>

本体1部が剥離している。

| 主な作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明 |

<p>| 補修内容 | シングル本体部分交換 |
| 耐久性向上の提案 | 耐風性能の高い商品に葺き替える（金属他） |</p>
<table>
<thead>
<tr>
<th>物件所在地</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td></td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>()年～()年=30年推定</td>
<td></td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他</td>
<td></td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他</td>
<td></td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他</td>
<td></td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(／10)勾配</td>
<td></td>
</tr>
<tr>
<td>下地(野地被)</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他 □不明</td>
<td></td>
</tr>
<tr>
<td>防水下地 (下葺)</td>
<td>□アスファルトルーフィング940□改質アスファルトルーフィング□透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 □不明</td>
<td></td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他 □不明</td>
<td></td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 □不明</td>
<td></td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法(空葺) □土葺 □直葺(野地板打ち) □通気たて桟構法 □その他 □不明</td>
<td></td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>■平部 □軒部 □けらば部 □大棟 □隣棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他 □不明</td>
<td></td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他 □不明</td>
<td></td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
<td></td>
</tr>
<tr>
<td>経年変化記録 部材(シングル本体)</td>
<td>(説明文・写真・図)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食(錆) □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他</td>
<td></td>
</tr>
</tbody>
</table>

表面のコーティング材（砂）が欠損

| 主な作用因子 | ■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他 □不明 |

補修内容 カバー工法、または、葺き替え工事

耐久性向上の提案 表面耐久性の高い商品に交換
<table>
<thead>
<tr>
<th>物件所在地</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>()年～()年＝(25)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() ■不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() ■不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>()/10□不明</td>
</tr>
<tr>
<td>下地（野地）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他() ■不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() ■不明</td>
</tr>
<tr>
<td>瓦礫木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（シングル本体）（説明文・写真・図）</td>
<td></td>
</tr>
<tr>
<td>■ひび □割れ □剥離 □欠損 □変形 □反り □縮み □すれ □腐食（錆） □傷ël □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ） □不明</td>
<td></td>
</tr>
<tr>
<td>本体が硬化してひび割れして いる。またジョイント部にこけが発生。</td>
<td></td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火災 □化学物質 □紫外線 □その他（ ） □不明</td>
</tr>
<tr>
<td>補修内容</td>
<td>カバー工法または、葺き替え工事</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td></td>
</tr>
</tbody>
</table>
物件所在地 | 千葉市岬町
---|---
立地条件 | 畑の中の家
竣工年 | ()年 ～ ()年 = (25)年
建物用途 | ■戸建住宅 □共同住宅 □その他 ()
建物構法 | ■軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明
屋根形状 | ■切妻 □寄棟 □片流れ □入母屋 □その他 () □不明
屋根勾配 | (6／10)勾配
下地(野地柵) | □構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他 () □不明
防水下地 | □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 () □不明
瓦材 | □木質系 □プラスチック系 □その他 () □不明
仕上げ材 | □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 () □不明
屋根構法 | □引掛桟工法(空葺) □土葺 □直葺(野地板直打ち) □通気たて桟構法 □その他 () □不明
改修履歴
発生部位 | ■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他 () □不明
発生階 | □1階 □2階 □3階 □その他 () □不明
方位 | □東 □西 □南 □北 □不明
経年変化記録 部材 (シングル本体) （説明文・写真・図）
□ひび □割れ □剥離 □欠損 □変形 □火災 □腐食 (錆) □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他 ()
台風の後、本体下部に剥離飛散した。
主な作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他 () □不明
補修内容 | 部分交換
耐久性向上の提案 | カバー工法または葺き替え
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>物件所在地</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>立 地 条 件</td>
<td></td>
</tr>
<tr>
<td>建 工 経 年</td>
<td>()年 ～ ()年 = (30)年推定</td>
</tr>
<tr>
<td>建 物 用 途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建 物 構 法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） ■不明</td>
</tr>
<tr>
<td>屋 根 形 状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() ■不明</td>
</tr>
<tr>
<td>屋 根 勾 配</td>
<td>()／10勾配</td>
</tr>
<tr>
<td>下地（野地板）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □バーティカルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（パラ材） □木材（幅板） □その他（ ） ■不明</td>
</tr>
<tr>
<td>防 水 下 地 （下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □湿潤ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） ■不明</td>
</tr>
<tr>
<td>瓦 材 木</td>
<td>□木質系 □プラスチック系 □その他（ ） ■不明</td>
</tr>
<tr>
<td>仕 上 げ 材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） ■不明</td>
</tr>
<tr>
<td>屋 根 構 法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ） ■不明</td>
</tr>
<tr>
<td>改 修 履 歴</td>
<td></td>
</tr>
<tr>
<td>発 生 部 位</td>
<td>■上部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） ■不明</td>
</tr>
<tr>
<td>発 生 階</td>
<td>□1階 □2階 □3階 □その他（ ） ■不明</td>
</tr>
<tr>
<td>方 位</td>
<td>□東 □西 □南 □北 ■不明</td>
</tr>
<tr>
<td>経年変化記録 部材（シングル本体）（説明文・写真・図）</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □すれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ） ■不明</td>
</tr>
</tbody>
</table>

剥離が多数有
こけが発生
変色、変形、反り

主な作用因子
■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） ■不明

補 修 内 容
葺き替え工事

耐久性向上の提案
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>件名</th>
<th>千葉県岬町</th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td>畑の中の家</td>
</tr>
<tr>
<td>建物用途</td>
<td>■戸建住宅 □共同住宅 □その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>■軸組工法 □枠組工法 □プレハブ工法 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>■切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>（6/10）勾配</td>
</tr>
<tr>
<td>下地（野地敷）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（断板） □その他（ ） □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>□木質系 □プラスチック系 □その他（ ） □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属</td>
</tr>
<tr>
<td>□アスファルトシングル・不燃シングル □その他（ ） □不明</td>
<td></td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他（ ） □不明</td>
</tr>
<tr>
<td>位置</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録</td>
<td>（シングル棟） （説明文・写真・図）</td>
</tr>
<tr>
<td>■ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
<td></td>
</tr>
</tbody>
</table>

シングル棟（本体と同質）
表面の砂が落ちている。
また、基材自体の割れがある。

主な作用因子
■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火災 □化学物質 □紫外線 □その他（ ） □不明

補修内容
棟部シングルの交換

耐久性向上の提案
葺き替え工事
<table>
<thead>
<tr>
<th>部位</th>
<th>劣化レベル1</th>
<th>劣化レベル2</th>
<th>労化レベル3</th>
</tr>
</thead>
<tbody>
<tr>
<td>平部</td>
<td>こけ発生</td>
<td>塗膜の剥離</td>
<td>基材の剥離</td>
</tr>
<tr>
<td>軒部</td>
<td>軒釘の浮き</td>
<td>塗膜の剥離</td>
<td>基材の剥離</td>
</tr>
<tr>
<td>袖部</td>
<td>塗膜の剥離</td>
<td></td>
<td></td>
</tr>
<tr>
<td>壁際部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>棟部</td>
<td>棟釘の浮き</td>
<td>塗膜の剥離</td>
<td>塗膜の剥離</td>
</tr>
<tr>
<td>谷部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>下葺き</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>小屋裏</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>繋結部</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>物件所在地</th>
<th>千葉県習志野市</th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td>住宅地 裏に畑がある</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 ～ ()年 = (20)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4.5/10)勾配</td>
</tr>
<tr>
<td>下地（野地樹）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーキングボード □硬質木片セメント板 □硬質木毛セメント板 □木村(バラ材) □木村(幅板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桟材</td>
<td>□木質系 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>なし</td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
</tbody>
</table>

経年変化記録 部材（セメント瓦本体）（説明文・写真・図）
□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()

表面塗膜が劣化している。裏の畑のほこりにより北面に著しくこけが生えている。ほこり、こけにより、本体重なりから吸収して雨漏れをするおそれがある。

補修内容
洗浄により、こけ、ほこりの除去、塗装工事
※この商品は、塗膜下にスラリー層があるため、塗膜が剥離しやすいので注意

耐久性向上の提案
スラリー層専用の下地処理をしてからの再塗装
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>物件所在地</th>
<th>千葉県船橋市</th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 ~ ()年 = (20)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 ■共同住宅 □その他 ()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 ■プレハブ構法 □その他 () □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>■切妻 □寄棟 □片流れ □入母屋 □その他 () □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4.5 / 1.0)勾配</td>
</tr>
<tr>
<td>下地（野地樋）</td>
<td>□構造用合板 ■その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木村（幅板） □その他 () □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 () □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>■木質系 □プラスチック系 □その他 () □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 ■プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 () □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>■引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他 () □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>10年前に塗装</td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他 () □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他 () □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
</tbody>
</table>

経年変化記録 部材（ （説明文・写真・図））
□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他 () □不明

再塗装された塗膜が劣化し、剥離している。

<p>| 主な作用因子 | ■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 ■紫外線 □その他 () □不明 |
| | |
| 補修内容 | 洗浄により、こけ、ほこりの除去、塗装工事 |
| | ※この商品は、塗膜下にスラリー層があるため、塗膜が剥離しやすいので注意 |
| 耐久性向上の提案 | スラリー層専用の下地処理をしてからの再塗装 |</p>
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県習志野市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 ~ ()年 = (25)年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>() 6/10</td>
</tr>
<tr>
<td>下地(野地樺)</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(パラ材) □木材(幅板)</td>
</tr>
<tr>
<td>防水下地(下葺)</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他(コンパネ等) □パーティクルボード □化粧スレート □金属 □アスファルトシングル・不燃シングル</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法(空葺) □土葺 □直葺(野地板直打ち) □通気たて桟構法 □その他</td>
</tr>
<tr>
<td>改修履歴</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突</td>
</tr>
<tr>
<td>発生部位</td>
<td>□1階 □2階 □3階 □その他</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北</td>
</tr>
<tr>
<td>経年変化記録・部材(本体)</td>
<td>(説明文・写真・図)</td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食(錆) □腐朽</td>
<td></td>
</tr>
<tr>
<td>□かび □こけ □堆積物有り □シーリング切れ □その他</td>
<td></td>
</tr>
<tr>
<td>主な作用因子</td>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線</td>
</tr>
<tr>
<td>補修内容</td>
<td>洗浄により、こけ、ほこりの除去、塗装工事 ※この商品は、塗膜下にスラリー層があるため、塗膜が剥離しやすいので注意</td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>スラリー層専用の下地処理をしてからの再塗装</td>
</tr>
</tbody>
</table>

主な作用因子の説明：

<table>
<thead>
<tr>
<th>因子</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>雨水</td>
<td>□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分</td>
</tr>
<tr>
<td>走行割れ</td>
<td>□踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線</td>
</tr>
<tr>
<td>その他</td>
<td>()</td>
</tr>
</tbody>
</table>

補修内容：

洗浄により、こけ、ほこりの除去、塗装工事

※この商品は、塗膜下にスラリー層があるため、塗膜が剥離しやすいので注意。
木造住宅の外皮経年変化事例調査シート（屋根）

物件所在地: 東京都中央区築地

立地条件: 住宅密集地

竣工年: ()年 ～ ()年 = (50)年推定

建築用途: □戸建住宅 □共同住宅 □その他（ ）

建築構法: □軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明

屋根形状: □切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明

屋根勾配: ()

下地（野地板）: □構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村(バラ材) □木村(幅板) □その他（ ） □不明

防水下地（下葺）: □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ フェルト17kg） □不明

瓦材: □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明

仕上げ材: □木質系 □プラスチック系 □その他の（ なし） □不明

屋根構法: □引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ） □不明

改修履歴: 棟部にセメント詰めをしていた

発生部位: □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止め □煙突 □その他（ ） □不明

発生階: □1階 □2階 □3階 □その他（ ） □不明

方位: □東 □西 □南 □北 □不明

経年変化記録: 部材（本体）（説明文・写真・図）

主な作用因子: □ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ） □不明

補修内容: 本体を推進部材の塗装を塗り替え工事

耐久性向上の提案: 塗膜の高性能の商品で葺き替えられる
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td></td>
</tr>
<tr>
<td>立地条件</td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>()年～()年=（15）年～（20）年推定</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ）■不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() ■不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(）勾配</td>
</tr>
<tr>
<td>下地（野地柵）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(パラ材) □木材(幅板) □その他() ■不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() ■不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスチック系 □その他() ■不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() ■不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他（ ）■不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>■平部 ■軒部 ■けらば部 ■大棟 ■隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ）□不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 ■2階 □3階 □その他（ ）□不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 ■不明</td>
</tr>
<tr>
<td>経年変化記録 部材（説明文・写真・図）</td>
<td></td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □すれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）</td>
<td></td>
</tr>
</tbody>
</table>

本体の先端部より雨水を吸収し、凍結膨張により、表面剥離。

【主な作用因子】
- □雨水 □結露水 □風 □地震 □雪 ■低温 □高温 □虫 □鳥 □植物 □塩分
- □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 ■紫外線
- □その他（ ）□不明

【補修内容】
屋根面全体に症状が見られるため、交換工事

【耐久性向上の提案】
強度の高い商品に変更（凍害対策）
<table>
<thead>
<tr>
<th>物件所在地</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td></td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>()年～()年=（15）年～(20)年推定</td>
<td></td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
<td></td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明</td>
<td></td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
<td></td>
</tr>
<tr>
<td>屋根勾配</td>
<td>()/10</td>
<td></td>
</tr>
<tr>
<td>下地（野地礁）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他() □不明</td>
<td></td>
</tr>
<tr>
<td>防水下地</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
<td></td>
</tr>
<tr>
<td>瓦棟木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
<td></td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
<td></td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他() □不明</td>
<td></td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>■平部 □軒部 □ねら部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
<td></td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
<td></td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
<td></td>
</tr>
<tr>
<td>経年変化記録 部材 ()（説明文・写真・図）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他() □不明</td>
<td></td>
<td></td>
</tr>
<tr>
<td>本体の先端部より雨水を吸収し、凍結膨脹により、表面剥離。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>主な作用因子</td>
<td>■雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明</td>
<td></td>
</tr>
<tr>
<td>補修内容</td>
<td>屋根面全体に症状が見られるため、交換工事</td>
<td></td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>強度の高い商品に変更（凍害に強い）</td>
<td></td>
</tr>
<tr>
<td>物件所在地</td>
<td>不明</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>立地条件</td>
<td></td>
<td></td>
</tr>
<tr>
<td>建工経年</td>
<td>()年～()年＝(20)年推定</td>
<td></td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
<td></td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
<td></td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
<td></td>
</tr>
<tr>
<td>屋根勾配</td>
<td>()～()勾配</td>
<td></td>
</tr>
<tr>
<td>下地（野地板）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □木質木毛セメント板 □木組(バラ材) □木組(幅板) □その他() □不明</td>
<td></td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
<td></td>
</tr>
<tr>
<td>瓦桟木</td>
<td>■木質系 □プラスチック系 □その他() □不明</td>
<td></td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘着漆塗り木 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
<td></td>
</tr>
<tr>
<td>屋根構法</td>
<td>■引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他() □不明</td>
<td></td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>■平部 ■軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
<td></td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
<td></td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
<td></td>
</tr>
<tr>
<td>經年変化記録 部材（防水紙（説明文・写真・図））</td>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他()</td>
<td></td>
</tr>
</tbody>
</table>

北側、瓦の下の防水紙表面が
軒先部が著しく濡れていた。
雨漏れでなく結露と思われる。
常に濡れている状態が続くと,
瓦桟の腐朽、瓦の欠落の原因
となる。
また、野地板の腐朽の原因に
もなる。

主な作用因子
□雨水 ■結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明

補修内容
水分を放出するようにする。瓦桟の水抜き、棟部の換気の取り付け

耐久性向上の提案

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県船橋市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年～()年＝(25)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4.5/10)勾配</td>
</tr>
<tr>
<td>下地（野地マ）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村(バラ材) □木村(幅板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛け桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>□平部 □軒部 □けらば部 □大棟 □小棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生部位</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（軒先釘）</td>
<td>（説明文・写真・図）</td>
</tr>
<tr>
<td>□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食（錆） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（浮き、ぬけ）</td>
<td></td>
</tr>
</tbody>
</table>

軒先留付け銅釘全体に浮きがみられ、抜けてきている。銅の熱により、膨脹伸縮を繰り返したため、浮いてきたと思われる。

主な作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明 |

補修内容 | 銅釘を打ちなおす。 |

耐久性向上の提案 | ステン釘またはビスに変更。戻り止め加工されたものを使用。 |
物件所在地
千葉県習志野市

立地条件
住宅地 裏側が林

竣工経年
（ ）年 〜 （ ）年 = （30）年

建物用途
□戸建住宅 □共同住宅 □その他（ ）

建物構法
■軸組構法 □枠組壁工法 □プレハブ構法 □その他（ ） □不明

屋根形状
□切妻 □寄棟 □片流れ □入母屋 □その他（ ） □不明

屋根勾配
（6 /10）勾配

下地(野地樋)
■構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木村(バラ材) □木村(幅板) □その他（ ） □不明

防水下地
(下葺)
■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他（ ） □不明

瓦桟木
■木質系 □プラスチック系 □その他（ ） □不明

仕上げ材
□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他（ ） □不明

屋根構法
■引掛桟工法(空葺) □土葺 □直葺(野地板直打ち) □通気たて桟構法 □その他（ ） □不明

改修履歴
なし

発生部位
■平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他（ ） □不明

発生階
□1階 □2階 □3階 □その他（ ） □不明

方位
■東 □西 □南 □北 □不明

経年変化記録 部材（本体）（説明文・写真・図）
□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食(錆) □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他（ ）

本体表面塗膜が剥離して水を吸水し、こけが生えている。

主な作用因子
□雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他（ ） □不明

補修内容
こけを取り除き、また剥離をしている塗膜も除き、本体基材に含浸する下地処理 再塗装

耐久性向上の提案
表面塗膜と基材が剥離している場合、下地処理をきちんととして、塗膜が基材に含浸するように注意する
木造住宅の外皮経年変化事例調査シート（屋根）

<table>
<thead>
<tr>
<th>物件所在地</th>
<th>千葉県船橋市</th>
</tr>
</thead>
<tbody>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年〜()年 = (25)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>□戸建住宅 □共同住宅 □その他()</td>
</tr>
<tr>
<td>建物構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他() □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他() □不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4.5/10)勾配</td>
</tr>
<tr>
<td>下地（野地板）</td>
<td>□構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(パラ材) □木材(幅板) □その他() □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土葺き □樹皮系 □その他() □不明</td>
</tr>
<tr>
<td>瓦桝木</td>
<td>□木質系 □プラスチック系 □その他() □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他() □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛桟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて桟構法 □その他() □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他() □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他() □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
</tbody>
</table>

経年変化記録 部材（袖留付釘）（説明文・写真・図）

袖瓦の留付釘の腐食（錆）が進行すると、釘強度が落ち袖瓦が欠落するおそれがある。

補修内容
錆やすい釘を交換、袖付け直し

耐久性向上の提案
錆づらいステンレス釘に変更する

| 主な作用因子 | □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他() □不明 |

| 補修内容 | 錆やすい釘を交換、袖付け直し |

耐久性向上の提案
錆づらいステンレス釘に変更する

第0章−001
物件所在地: 千葉県習志野市

立地条件: 住宅地 裏側が林

竣工年: ()年 ～ ()年 = (30)年

建物用途: □戸建住宅 □共同住宅 □その他

建物構法: □軸組構法 □枠組壁工法 □プレハブ構法 □その他 □不明

屋根形状: □切妻 □寄棟 □片流れ □入母屋 □その他 □不明

屋根勾配: (6/10)勾配

下地(野地): ■構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他 □不明

防水下地(下葺): ■アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 □不明

瓦桝木: ■木質系 □プラスチック系 □その他 □不明

仕上げ材: □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 □不明

屋根構法: □引掛桟工法(空葺) □土葺 □直葺(野地板直打ち) □通気たて桟構法 □その他 □不明

改修履歴: なし

発生部位: ■平部 □軒部 □けらば部 □大棟 □寄棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他 □不明

発生階: □1階 □2階 □3階 □その他 □不明

方位: □東 □西 □南 □北 □不明

経年変化記録: 部材(棟瓦) (説明文・写真・図)
□ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食(錆) □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他

補修内容: こけを取り除き、また剥離をしている塗膜も除き、本体基材に含浸する下地処理 再塗装

耐久性向上の提案: 表面塗膜と基材が剥離している場合、下地処理をきちんととして、塗材が基材に含浸するように注意する

主な作用因子: □雨水 □結露水 □風 □地震 □雪 □低温 □高温 □虫 □鳥 □植物 □塩分 □踏み割れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他 () □不明

本体表面塗膜が剥離して水を吸水し、こけが生えている。
<table>
<thead>
<tr>
<th>部位</th>
<th>南</th>
<th>北</th>
<th>東</th>
<th>西</th>
<th>不明</th>
</tr>
</thead>
<tbody>
<tr>
<td>発生階</td>
<td>1階</td>
<td>2階</td>
<td>3階</td>
<td>その他</td>
<td></td>
</tr>
<tr>
<td>発生部位</td>
<td>平部</td>
<td>平部</td>
<td>平部</td>
<td>大棟</td>
<td>隅棟</td>
</tr>
<tr>
<td></td>
<td>トップライト</td>
<td>雪止</td>
<td>煙突</td>
<td>その他</td>
<td></td>
</tr>
<tr>
<td></td>
<td>不明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>改修履歴</td>
<td>不明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>改修内容</td>
<td>現時点は経過観察</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>耐久性向上の提案</td>
<td>ひび、割れ、欠落の箇所があればナンバンモルタル部補修</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

湧瓦の留付に使用されるナンバンモルタルの変色。新築時は黒から白色に変色。灰墨がなくなっているだけで防水性には何ら問題はない。今後、ひび、剥離、欠落がきた場合補修が必要と思われる。
木造住宅の外皮経年変化例調査シート（屋根）

物件所在地: 千葉県習志野市

立地条件: 住宅地 裏に畑がある

竣工経年: (年) 〜 (年) = (20) 年推定

建物用途: □戸建住宅 □共同住宅 □その他 ()

建物構法: □軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明

屋根形状: □切妻 □寄棟 □片流れ □入母屋 □その他 () □不明

屋根勾配: (4.5 / 10) 勾配

下地(野地材): □構造用合板 □その他の合板(コンパネ等) □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材(バラ材) □木材(幅板) □その他 () □不明

防水下地(下葺): □アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 () □不明

瓦桝材: □木質系 □プラスチック系 □その他 () □不明

仕上げ材: □粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 () □不明

屋根構法: □引掛桝工法(空葺) □土葺 □直葺(野地板直打ち) □通気たて桝構法 □その他 () □不明

改修歴: なし

発生部位: □平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他 () □不明

発生階: □1階 □2階 □3階 □その他 () □不明

方位: □東 □西 □南 □北 □不明

経年変化記録: 部材(棟釘) (説明文・写真・図)

ひび □割れ □剥離 □欠損 □変形 □反り □縮み □ずれ □腐食(錆) □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他 (浮き抜け)

棟瓦留付鋼釘全体に浮きが見られ抜けてきている。
鋼の熱により、膨張収縮を繰り返したため浮いてきたと思われる。

主な作用因子: □雨水 □結露水 □風 □地震 □雪 □低湿 □高温 □虫 □鳥 □植物 □塩分 □踏み剥れ □飛来物 □ほこり □火山灰 □化学物質 □紫外線 □その他 () □不明

補修内容: 鋼釘を打ちなおす。

耐久性向上の提案: ステン釘またはビスに変更。戻り止め加工されたものを使用。
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県船橋市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>建工経年</td>
<td>()年 ～ ()年 = (25)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>戸建住宅 □ 共同住宅 □ その他（ ）</td>
</tr>
<tr>
<td>建物構法</td>
<td>軸組構法 □ 枠組壁工法 □ プレハブ構法 □ その他（ ） □ 不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>切妻 □ 倉棟 □ 片流れ □ 入母屋 □ その他（ ） □ 不明</td>
</tr>
<tr>
<td>屋根勾配</td>
<td>(4.5/10) 勾配</td>
</tr>
<tr>
<td>下地（野地権）</td>
<td>□ 構造用合板 □ その他合板（コンパネ等） □ パーティクルボード □ 硬質木膚セメント板</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□ アスファルトルーフィング 940 □ 改質アスファルトルーフィング □ 透湿ルーフィング</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□ 粘土瓦 □ プレスセメント瓦 □ 化粧スレート □ 金属</td>
</tr>
<tr>
<td>上げ材</td>
<td>□ アスファルトシングル・不燃シングル □ その他（ ） □ 不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□ 引掛桟工法（空葺） □ 土葺 □ 直葺（野地板打ち） □ 通気たて桟構法</td>
</tr>
<tr>
<td>改修履歴</td>
<td>□ その他（ ） □ 不明</td>
</tr>
<tr>
<td>発生部位</td>
<td>□ 平部 □ 軒部 □ けらば部 □ 大棟 □ 小棟 □ その他棟部 □ 谷部 □ 壁際部</td>
</tr>
<tr>
<td>発生階</td>
<td>□ 1階 □ 2階 □ 3階 □ その他（ ） □ 不明</td>
</tr>
<tr>
<td>方位</td>
<td>□ 東 □ 西 □ 南 □ 北 □ 不明</td>
</tr>
<tr>
<td>経年変化記録 部材（棟、シックイ）（説明文・写真・図）</td>
<td>□ひび □ 割れ □ 剥離 □ 欠損 □ 変形 □ 反り □ 縮み □ すれ □ 前食（錆） □ 腐朽 □ 変色 □ 汚れ</td>
</tr>
<tr>
<td></td>
<td>□ かび □ こけ □ 堆積物有り □ シーリング切れ □ その他（ ）</td>
</tr>
</tbody>
</table>

当時棟瓦の留付に粘土を使用し、表面にシックイを塗り、流出止めにしていた。
シックイが剥離して、中の粘土が雨水により流出している。

主な作用因子

□ 雨水 □ 結露水 □ 風 □ 地震 □ 雪 □ 低温 □ 高温 □ 虫 □ 鳥 □ 植物 □ 塩分
□ 踏み割れ □ 飛来物 □ ほこり □ 火山灰 □ 化学物質 □ 紫外線
□ その他（ ） □ 不明

補修内容

流出した粘土を入れて、表面のシックイを交換

耐久性向上の提案

棟瓦を外し、粘土シックイを取り除き、剥離の少ないナンバンモルタルに全交換する
【木造住宅の外皮経年変化事例調査シート（屋根）】

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物件所在地</td>
<td>千葉県八千代市</td>
</tr>
<tr>
<td>立地条件</td>
<td>住宅地</td>
</tr>
<tr>
<td>竣工経年</td>
<td>()年 ～ ()年 = (35)年</td>
</tr>
<tr>
<td>建物用途</td>
<td>■戸建住宅 □共同住宅 □その他 ()</td>
</tr>
<tr>
<td>建物構法</td>
<td>■軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明</td>
</tr>
<tr>
<td>屋根形状</td>
<td>□切妻 □寄棟 □片流れ □入母屋 □その他 () □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□軸組構法 □枠組壁工法 □プレハブ構法 □その他 () □不明</td>
</tr>
<tr>
<td>下地（野地樟）</td>
<td>□構造用合板 □その他の合板（コンパネ等） □パーティクルボード □硬質木片セメント板 □硬質木毛セメント板 □木材（バラ材） □木材（幅板） □その他 () □不明</td>
</tr>
<tr>
<td>防水下地（下葺）</td>
<td>□アスファルトルーフィング 940 □改質アスファルトルーフィング □透湿ルーフィング □高分子系ルーフィング □土居葺き □樹皮系 □その他 () □不明</td>
</tr>
<tr>
<td>瓦桟木</td>
<td>□木質系 □プラスセメント系 □プラスチック系 □その他 () □不明</td>
</tr>
<tr>
<td>仕上げ材</td>
<td>□粘土瓦 □プレスセメント瓦 □化粧スレート □金属 □アスファルトシングル・不燃シングル □その他 () □不明</td>
</tr>
<tr>
<td>屋根構法</td>
<td>□引掛け棟工法（空葺） □土葺 □直葺（野地板直打ち） □通気たて棟構法 □その他 () □不明</td>
</tr>
<tr>
<td>改修履歴</td>
<td>コロニアルから波形化粧スレートに15年前にカバー工法</td>
</tr>
<tr>
<td>発生部位</td>
<td>□平部 □軒部 □けらば部 □大棟 □隅棟 □その他棟部 □谷部 □壁際部 □トップライト □雪止 □煙突 □その他 () □不明</td>
</tr>
<tr>
<td>発生階</td>
<td>□1階 □2階 □3階 □その他 () □不明</td>
</tr>
<tr>
<td>方位</td>
<td>□東 □西 □南 □北 □不明</td>
</tr>
<tr>
<td>経年変化記録 部材（棟面戸）</td>
<td>(説明文・写真・図)</td>
</tr>
<tr>
<td>のひび割れ</td>
<td>□ひび割れ □剥離 □欠損 □変形 □反り □縫み □ずれ □腐食（銹） □腐朽 □変色 □汚れ □かび □こけ □堆積物有り □シーリング切れ □その他 ()</td>
</tr>
</tbody>
</table>

鳥が棟部に使用されている止水面戸を取り除き、棟の中に巣を作っていた。棟面戸は棟部の止水面戸であるため欠損することによって雨漏れをおこす恐れがある。

補修内容
鳥の巣を取り除き、新たに面戸材を取り寄せて再施工する。廃板品のため不可。

耐久性向上の提案
他の資材で代用。鳥がついばめないようにブチルテープ付のシートで棟内部を塞ぐ。

乾式棟換気シート