ISSN
 1346-7328

 国総研資料
 第818号

 平
 成
 26
 年
 12月

国土技術政策総合研究所資料

TECHNICAL NOTE of National Institute for Land and Infrastructure Management

No.818

December 2014

空港アスファルト舗装表層の一層仕上がり厚さと 締固め度の関係の考察

大谷 直輝・伊豆 太・森永 真朗・坪川 将丈・森川 嘉之・河村 直哉

Study on Relationship between Lift-thickness and Mat Density of Airport Asphalt Pavement's Surface Course

Naoki OTANI, Futoshi IZU, Masao MORINAGA, Yukitomo TSUBOKAWA, Yoshiyuki MORIKAWA , Naoya KAWAMURA

国土交通省 国土技術政策総合研究所

National Institute for Land and Infrastructure Management Ministry of Land, Infrastructure, Transport and Tourism, Japan

国土技術政策総合研究所資料 No. 818 2014年12月 (YSK-N-300)

空港アスファルト舗装表層の

一層仕上がり厚さと締固め度の関係の考察

大谷直輝*1・伊豆太*2・森永真朗*3・坪川将丈*4・森川嘉之*5・河村直哉*6

要 旨

本研究では、空港アスファルト舗装施工の効率化を図るため、粒状路盤とアスファルト安定処理路 盤の2種類の路盤上で、縦方向に表層の一層仕上がり厚さを変えて試験舗装を構築し、空港アスファ ルト舗装表層の一層仕上がり厚さと締固め度の関係等の考察を行った.また、施工時間への影響を検 討するため、一層仕上がり厚さと舗装表面温度が交通開放が可能な温度に低下するまでに要する時間 の関係、さらに、一層仕上がり厚さと透水性の関係を考察した.

アスファルト安定処理路盤上に構築した現行の最大仕上がり厚さ(8cm)以上の表層の締固め度が, 共通仕様書に定められる値を満足したため,一層最大仕上がり厚さの増厚の可能性を示唆した.

キーワード:空港アスファルト舗装,一層仕上がり厚さ,締固め度,舗装温度

^{*1} 空港研究部空港施設研究室研究官

^{*2} 空港研究部空港施設研究室長

^{*3} 空港研究部空港施設研究室研究官

^{*4} 国土交通省関東地方整備局横浜港湾空港技術調查事務所長(前空港研究部主任研究官)

^{*5} 独立行政法人港湾空港技術研究所構造研究領域空港舗装研究チームリーダー

^{*6} 独立行政法人港湾空港技術研究所構造研究領域空港舗装研究チーム研究官

^{〒239-0826} 横須賀市長瀬3-1-1 国土交通省国土技術政策総合研究所 電話:046-844-5034 Fax:046-844-4471 e-mail: ootani-n92y2@mlit.go.jp

Technical Note of NILIM No. 818 December 2014 (YSK-N-300)

Study on Relationship between Lift-thickness and Mat Density of Airport Asphalt Pavement's Surface Course

Naoki OTANI*1 Futoshi IZU*2 Masao MORINAGA*3 Yukitomo TSUBOKAWA*4 Yoshiyuki MORIKAWA*5 Naoya KAWAMURA*⁶

Synopsis

This study analyzed the relationship between lift-thickness and density of asphalt pavement toward more efficient pavement construction. For this purpose, we built test pavement both on an aggregate base and on an asphalt stabilized base, with various thicknesses in longitudinal direction. We also investigated the relationship between lift-thickness and time needed for opening to traffic after sufficient cooling of the pavement surface and the relationship between lift-thickness and permeability of the pavement surface.

We found that pavement with more than 8cm of lift-thickness on a stabilized base satisfied the construction acceptance limit of the mat density, suggesting the potential applicability of the use of pavement with larger lift-thickness.

Key Words : airport asphalt pavement, lift-thickness, mat density, pavement temperature

^{*1} Researcher of Airport Facilities Division, Airport Department

^{*2} Head of Airport Facilities Division, Airport Department

^{*3} Researcher of Airport Facilities Division, Airport Department

^{*4} Head of Yokohama Research and Engineering Office for Port and Airport, Ministry of Land, Infrastructure and Transport and Tourism

^{*5} Head of Pavement Group, Structural Engineering Division,

Independent Administrative Institution, Port and Airport Research Institute, Japan *6 Researcher of Pavement Group, Structural Engineering Division,

Independent Administrative Institution, Port and Airport Research Institute, Japan 3-1-1 Nagase, Yokosuka, 239-0826 Japan

Phone : +81-46-844-5034 Fax : +81-46-844-4471 e-mail:ootani-n92y2@mlit.go.jp

目 次

1. はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
 2. 関連する施工基準類・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.1 我が国の施工基準 1
2.2 海外の施工基準 1
 3. 実験の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.1 実施工程・気象
3.2 使用材料
3.3 掘削・路床整正 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.4 路盤施工・支持力測定 ······4
3.5 表層施工・熱電対設置 ······4
3.6 ジョイント部 ・・・・・・5
3.7 表層及びジョイント部施工の使用機材 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・5
3.8 基準高及び層厚 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.9 施工時のアスファルト混合物温度 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4. 一層仕上がり厚さと締固め度 ・・・・・・ 8
4.1 コア採取 ・・・・・・
4.2 一層仕上がり厚さと締固め度の関係
5. 一層仕上がり厚さと降温時間等の検討
5.1 表層内の温度測定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.2 一層仕上がり厚さと降温時間の関係
5.3 空港舗装温度解析プログラムによる降温シミュレーション ・・・・・・・・・・・・14
5.4 内部温度の検討
5.5 降温時間の検討
 透水性に関する検討 ····································
6.1 締固め度と透水係数の関係
6.2 一層最大仕上がり厚さと透水係数の関係
7. まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23
8. 今後の課題と展望 ······23
謝辞 ·····24
参考文献 ······24
付録 ····· 25

1. はじめに

空港基本施設のアスファルト舗装(以下,空港アスフ ァルト舗装という.)について,一般的な最大粒径20mm 以下の骨材を使用する場合,表層及び基層の一層仕上が り厚さは8cm以下とすることが空港土木工事共通仕様書 (以下,共通仕様書という.)¹⁾において規定されてい る.

このため、現状において層厚8cmを超える表基層を施 工する場合には2層以上に分けて施工する必要があり、表 層と基層が劣化し舗装打ち換えを実施する場合には、基 層と表層に分けて施工を行う必要がある.この場合、ブ リスタリング(舗装体内に残留した水分の蒸気圧により 舗装表面が膨れる現象.破片等異物(FOD)発生につな がり航空機事故の原因となりうる.)対策を考慮する場 合には表層はなるべく厚い方が望ましいが、この場合、 基層厚が薄くなるため、特にアスファルト混合物の温度 が下がりやすい寒冷時の施工では、締固め度の確保が課 題となる.

設計,施工の自由度や効率性を高めるためには,一層 仕上がり厚さを厚くすることが効果的と考えられる.し かしながら,一層仕上がり厚さを厚くすることに関して は,大きく2つの課題が存在する.

まず,締固め度の確保の問題である.共通仕様書においては,アスファルト混合物の施工管理基準・規格値として,舗装調査・試験法便覧によるマーシャル安定度試験方法²⁾に基づき作成されたマーシャル供試体の密度

(基準密度)の98%以上とすることが定められている. 層厚が厚くなると,転圧等のエネルギーが十分伝わらず, 締固め度が確保されない可能性があり,密度の低下によ り透水性が高くなり,浸水と荷重の作用によるアスファ ルトと骨材のはく離の発生,ひいては航空機運航の支障 となる舗装の破損につながる可能性がある.

2つめは、降温時間に関する課題である(ここでは、降 温時間を、舗装表面温度が、表層の敷均しから交通開放 時の舗装表面温度として定められる温度に下がるまでの 時間とする).層厚が厚くなると、降温時間が長くなる ことが予想される.昨今主となっている滑走路等空港基 本施設舗装の改修工事は、原則夜間に行われるため、施 工時間は概ね8時間以内であることが一般的である.交通 開放後のわだち掘れ等の発生を防止するため、開放時の 舗装表面温度は、ストレートアスファルトを使用した場 合には50℃以下とすることが共通仕様書で定められてい る.このため、施工時間内で十分な降温時間を確保する 必要があるという制約がある. 空港アスファルト舗装の一層仕上がり厚さと締固め度 との関係性を詳細に検討した研究は少ないが,前川ら³⁾ は、いくつかの仕上がり厚さと締固め度との関係につい て、10tロードローラと10tタイヤローラを用いて、コンク リート上に試験舗装を構築し検討を行い、同じ転圧回数 の条件下では8cm厚で締固め度が最大となる結果を示し ている.

本検討では、空港アスファルト舗装の一層仕上がり厚 さの増厚の可能性を検討するため、一般的に使われる2種 類(粒状路盤とアスファルト安定処理路盤)の路盤上に、 施工機械の進歩等を踏まえ、空港舗装工事において使用 が想定される施工機械を用いて、実際に層厚の異なる試 験舗装を構築し、締固め度や透水性、降温時間等につい て考察を行った。

2. 関連する施工基準類

ー層仕上がり厚さに関連する施工基準等について以下 に述べる.

2.1 我が国の施工基準

共通仕様書においては、表層および基層の一層仕上が り厚さは8cm以下と定められている.また、骨材の最大粒 径は、表層の場合は一層仕上がり厚さの1/2.5以下、基層 の場合は1/1.5以下と定められている.すなわち、最大骨 材粒径20mmの骨材を使用するとき、一層仕上がり厚さは、 表層の場合は5cm以上、基層の場合3cm以上となる.空港 舗装補修要領及び設計例⁴⁾では、ブリスタリング対策を 実施する場合は、表層の仕上がり厚さは8cm、空隙率3% 以上を原則としている.

2.2 海外の施工基準

FAA (アメリカ連邦航空局)のStandards for Specifying Construction of Airports(AC150/5370-10G)⁵⁾において は、粒度等が我が国とは異なるものの、アスファルト舗 装の一層仕上がり厚さについて、骨材の最大粒径は一層 仕上がり厚さの1/4を超えてはならないとされている。例 えば、8cm以上の一層仕上がり厚さの場合,最大粒径20mm 以下の骨材を用いる必要がある。(逆に言うと8cm未満の 仕上がり厚では、20mm以上の最大粒径とすることができ ないこととなる。)

また,敷設する層の下に存在する層の温度について, 層厚7.5cm以上の場合には,施工前の表面温度が4℃以上, 層厚5cm~7.5cmの場合には7℃以上という制約を設けて いる. また, 締固め度に関しては, ジョイント部については, 中央部よりも規定の締固め度が低くなっている⁶⁾.具体 的には, 表層(surface course)のアスファルト混合物の締固 め度については, レーン中央部で下限96.3%(上限を設定 する場合101.3%), ジョイント部で下限93.3%とされて いる.

ただし, FAAの場合, この上下限値は, 我が国と異な り, この範囲を逸脱したからといって直ちに不合格とな るわけではなく, 一定の限界を満足していることが条件 ではあるが, 施工管理値が規定内に入った比率に応じて 支払額が変動する制度となっている.

3. 実験の概要

空港アスファルト舗装の表層の一層最大仕上がり厚さ の確認,ジョイント部(コールドジョイント部)における 締固め度の確認,空隙率の違いによるアスファルトの透水 性の確認を目的として,図-1に示す独立行政法人港湾空 港技術研究所野比実験場において,平成25年12月2日から 9日にかけて,試験舗装の構築,各種試験を実施した.

図-1に示すように,野比実験場内において,幅8m,奥 行き25mの範囲に試験舗装を構築した.原地盤の掘削後, 延長方向で二分してアスファルト安定処理路盤と粒状路 盤の2種類の路盤を構築した.

図-1における試験範囲の舗装平面図を図-2に示す.図 -2に示すとおり、レーン1、レーン2の2つのレーンに分け て施工を行った.レーン1は表層施工1日目、レーン2は2 日目に施工した.レーン1とレーン2の間のA-A'はコール ドジョイントとし、レーン2に対して各種試験等を実施し た.

図-2におけるB-B'断面を図-3に示した.一層仕上がり 厚さと締固め度等の関係を確認するため,一層仕上がり 厚さは,図-3に示すとおり,最小で7cm程度,最大で15cm 程度となるよう,表層の厚さを延長方向に変化させ舗装 を構築した.

また,転圧時の舗装体温度やその後の降温過程を測定 するため,熱電対を表層の上部および下部に設置し,一 次転圧後から1分毎に舗装内温度の測定を行った.さらに, 敷均し後,転圧時および舗設完了時に,図-2に示す各コ ア採取箇所直上において,赤外線温度計により表面温度 を測定した.

図-1 独立行政法人 港湾空港技術研究所野比実験場(神奈川県横須賀市野比3丁目24-1)

図-2 試験舗装平面図

3.1 実施工程·気象

試験舗装構築の実施工程および表層施工時の三浦の気 象⁷⁾を表-1に示す.施工時の天候は晴れであり,降水は なかった.

表-1 試験舗装構築の実施工程および気象条件

日付			数量	単位	
12月2日	月	掘削工	200	m	
12月3日	火	路盤工	M-40 t=15~30cm	100	m
12月4日	水	路盤工	As安定処理 t=15~30cm	100	m
12月5日	木	表層エ	密粒度As t=0~15cm	100	m
12月6日	金	表層エ	密粒度As t=0~15cm	100	m
12月9日	月	コア採取		60	ヶ所

	最高気温(℃)	日平均気温(℃)	日平均風速(m/s)
平成25年12月5日	15.7	10.8	2.3
平成25年12月6日	16.8	12.7	3.1

3.2 使用材料

試験舗装構築には、主な材料として、共通仕様書の規 定を満足する表-2に示すものを使用した.表層に使用し た密粒度アスコンの配合を表-3に示す.また、配合設計 の詳細については、巻末の付録Aの図-A.1~6に掲載して いる.

使用区分	材料の種類	規格
粒状路盤	粒度調整 砕石	空港土木工事共通仕 様書上層路盤の規定 による最大粒径 40mm
アスファルト 安定処理路盤	アスファルト 安定処理材	空港土木工事共通仕 様書に記載のタイプ A,最大粒径 30mm, ストアス 60/80
表層	密粒度 アスコン	空港土木工事共通仕 様書に記載の基本施 設表層タイプI,最 大粒径 20mm,ストア ス 60/80

表-2 使用材料

表-3 密粒度アスコンの配合

	配合 試験値	共通仕様書規定値 (区分:①表層)
アスファルト量(%)	5.2	
密度(g/cm ³)	2.401	
空隙率(%)	3.5	2~5
飽和度(%)	77.6	75~85
安定度(kN)	12.65	8.80以上
フロー値(1/100cm)	29	20~40
理論密度(g/cm ³)	2.487	
突固め回数(回)	75	75

共通仕様書には,表層に関しては,比較的大きな航空 機であるLA-1, LA-12, LA-2, LA-3, LA-4の設計荷重区 分に適用することが記載されている.

3.3 掘削·路床整正

既存の地盤200m²を掘削(掘削深さt=30cm)し,路床 の整正・転圧を行った.

3.4 路盤施工·支持力測定

図-2に示すように、延長方向で二分し、A-A'のAから 12.5m (面積100m²) にはアスファルト安定処理材で路盤 を構築し、残る12.5m(面積100m²)には粒度調整砕石で 路盤を構築した.

一般に, 路盤が剛なほど, 上に舗設する舗装が締め固 められやすいなど、 締固め度は路盤剛性の影響を受ける と考えられる. そのため, 路盤構築後, 路盤の剛性を把 握することを目的として,小型FWDにより支持力測定を 実施した.測定位置は、図-2の平面図に示すレーン2中央 部のNo.1,No.2,No.3 (アスファルト安定処理区間) 及び No.6,No.7,No.8(粒状路盤区間)の6ポイントである.測 定時の載荷板直径は100mm, 重錘質量はアスファルト安 定処理路盤においては15kg, 粒状路盤においては10kgと

している.小型FWDの測定結果は、載荷時の荷重強さと 変形量の関係から、FWDおよび小型FWD運用の手引き⁸⁾ に記された関係式を用いて、弾性係数として整理した.

本関係式は, 単層一様地盤上に円形載荷した場合に, 弾性理論により導出されるもので,

$$p = \frac{2E\delta}{a\pi(1-\nu^2)}$$

(p:荷重強さ(MPa), E:弾性係数(MPa), δ:変形量(mm), a:載荷版半径(mm), ν:ポアソン比)となっている. なお, ポアソン比は0.4とした.

整理した弾性係数を表-4に示す.アスファルト安定処 理路盤の弾性係数が粒状路盤の弾性係数の約2倍という 結果となった.

7スファルト安定	処理路盤区間	粒状路盤区間			
測点 弾性係数 (MPa)		測点	弾性係数 (MPa)		
No.1	185.7	No.6	100.1		
No.2	192.2	No.7	105.1		
No.3	202.7	No.8	105.3		

3.5 表層施工·熱電対設置

5

コールドジョイントの締固め度等を確認するため、表層 は2レーンに分けて施工を行い、レーン1は1日目、レーン2 は2日目に施工した.レーン1、レーン2の境は1日目の施工 後カッターで切断し、 (コールド) ジョイントとした. ま た,2日目施工時には,表層の下部(路盤直上)及び上部(表 面から約1cmの位置) に熱電対を設置し, 表層内温度の測定 を行った.

なお,表層舗設時の各転圧回数は,実際の空港工事の施 工を勘案して,

・一次転圧(振動タンデムローラ:有振Lowモード):2往 復

・二次転圧(タイヤローラ):5往復

・仕上げ転圧(振動タンデムローラ:無振):2往復程度 とした.

施工時の問題点であるが、野比実験場は、写真-1に示 すとおり、レーン2のNo.10付近におけるダンプ進入口付 近が狭あいであり、そのため、ダンプからアスファルト 混合物をアスファルトフィニッシャへ荷下ろしする際の 作業性が悪く、荷下ろしから敷均しまでに時間を要した ことがあげられる.

写真-1 No.10付近の表層の施工状況

3.6 ジョイント部

図-2におけるC-C'断面の施工過程を図-4に示した. レ ーン1は1日目, レーン2は2日目に施工した. レーン1とレ ーン2のレーン境界には図-4に示すようにジョイントを 設けた.このジョイントは1日経過して温度が低下した状 態で施工されており,コールドジョイントとなっている.

ジョイント部は、図-4に示すとおり、レーン1の型枠撤 去後、レーン2側境界を切断し、タックコートを塗布した. その後、レーン1上に一層仕上がり厚さの2割程度の高さ の余盛りを行った後、振動タンデムローラ及びタイヤロ ーラで、レーン1上に幅30cm程度車輪を載せて転圧を行 った.また、写真-2に示すプレートコンパクタを用いて、 舗装表面の転圧を行った.

写真-2 ジョイント部の施工状況

3.7 表層及びジョイント部施工の使用機材

表層及びジョイント部の施工に使用した舗設機械及び 転圧機械の諸元を表-5に示す.

表-5 使用機械諸元

機械名	アスファルトフィニッシャ		
型式	SUPER 1900-2		
製造会社	ドイツ フェーゲル社		
能力	3.0m~6.0m		
(施工幅員)	(アタッチメント装着時最大9.5m)		
摘要	装着スク	AB600(タンパー+	
	リード	バイブレータ方式)	

機械名	振動タンデムローラ		
型式	SW 650		
製造会社	酒井重工業株式会社		
能力 (運転質量)	7 t		
摘要	起振力	37 kN (Low) 69 kN (High)	
	締固め幅	1,480 mm	

機械名	タイヤローラ		
型式		T2	
製造会社	酒井重工業株式会社		
能力 (運転質量)		15 t	
摘要	締固め幅	2,275 mm	

次に、表層の施工に使用した機材のうち、締固め度に大 きく関係すると考えられるアスファルトフィニッシャと 振動タンデムローラの特徴について述べる.

(1) アスファルトフィニッシャの特徴

アスファルトフィニッシャは、ドイツフェーゲル社製の SUPER 1900-2という機種で、メーカー製品シリーズの中で は中型〜大型のランクに位置する機種である.舗設能力は 合材質量で時間当たり最大900t,最大舗設厚さは30cmである(いずれも、メーカー公称値).国内では主に、高規格 道路・国道・幹線バイパス・空港(滑走路・誘導路)等の 比較的大規模な舗装工事にて使用されている.

図-5にフェーゲル社製スクリードの締固め方式概要を 示す.ドイツを中心とするヨーロッパのアスファルトフィ ニッシャは、スクリードで混合物を敷均した時点で締固め 度を出来るだけ高くし、平たん性及び最終的な締固め度の 確保や締固め度の均一化、ならびにローラによる転圧作業 の省力化への対応を基本として発展してきた経緯⁹⁰がある. フェーゲル社製スクリードの締固め方式には、前述した 「タンパ・バイブレータ(TV)」より更に締固め性能を向 上させた「タンパ・プレッシャバー(TP1/TP2/TP2 Plus)」 と呼ばれる方式もある.このように、施工機械の能力は 日々向上してきている.

スクリード(敷均し作業装置)の締固め機構には,現在 最も一般的となっている「タンパ・バイブレータ(TV)」 (図-5)と呼ばれる方式を使用した.この方式の特徴は, 従来一般的であったバイブレータ方式に,高い締固め性能 を付加するため,バイブレータスクリードプレートの手前 に,「タンパ」と呼ばれるアスファルト混合物を押し下げ, 締め固める装置を装備している点であり,アスファルト安 定処理の敷均し直後の締固め度として93%程度を実現した との報告⁹もある.

バイブレータ(V)方式

高い締固め性能よりも,所要のきめ と平たん性を得ることを主な目的と している方式.

比較的, 締固めが容易な材料に 主に適用される.

タンパ・1プレッシャーバー(TP1)方式

TV方式とTP2方式の中間的な締固 め性能. タンパがストローク制御なのに対

し、プレッシャーバーは圧力制御に て締固めを行う.

すべての通常合材に適用される.

タンパ・バイブレータ(TV)方式

タンパ・2プレッシャーバー (TP2/TP2 Plus)方式

プレッシャーバーを2本装備すること

により,最も高い締固め性能を有す

る. 一般的な通常合材で敷均し後 直後の締固め度が98%程度を実

すべての通常合材および粒状材料

やRCCPの施工に適用される.

締固め性能と、平たん性仕上げ性 能を両立させた方式。 一般的な通常合材で、敷均し直後 の締固め度が93%程度を実現。

すべての通常合材に適用される. (本検討に使用)

図-5 スクリードの仕様

現.

(2) 振動タンデムローラの特徴

次に,振動タンデムローラについて述べる.使用したものは,酒井重工業株式会社製のSW650で,種類としては一般的に振動(タンデム)ローラと呼ばれているものである. 当該機種の特徴として,優れた締固め能力が挙げられる. 一般的に使われているマカダムローラの静線圧が44kg/cm ~程度であるのに対し,SW650は動線圧で70kg/cm~と2倍 近くの締固め圧力を有する.

また、振動モードの一つとして図-6に示す前進の時に後 輪だけが振動し、逆に後進の時には前輪だけが振動する 「トレール振動」と呼ばれる付加機能を有しており、この 振動モードを使用することにより、進行方向の前側の車輪 の一次静転圧後、後側の車輪が振動をかけることができる ためクラックの発生を抑えることができる.本検討におけ る試験舗装構築時もトレール振動モードによる転圧を行 っている.

図-6 トレール振動モード

3.8 基準高及び層厚

基準高及び層厚の施工管理は以下のとおり行った.ま ず,各層の施工後に各レーンの両端部及び中央部におい て,基準高測定を行った.測定位置を図-7に,レーン2表 層の一層仕上がり厚さを表-6に,基準高一覧と基準高か ら算出した各層厚一覧を付録Bの表-B.1,2に示す.

なお, 表-6の括弧書きの箇所については, 隣接した測 定箇所の値から補間して基準高を算出している.

また,レーン境界に隣接する測定箇所は,なるべくレ ーン境界と離れないようにした.

表-6 レーン2表層の一層仕上がり厚さ

測定箇所	表層:レーン2 一層仕上がり厚さ (cm)
No.1	7.4
No.2	(9.4)
No.3	11.4
No.4	(12.9)
No.5	14.4
No.6	14.9
No.7	(13.5)
No.8	12.0
No.9	(9.7)
No.10	7.4

図-7 基準高の測定箇所

3.9 施工時のアスファルト混合物温度

アスファルト混合物の締固め度は、施工時のアスファ ルト混合物温度に大きく依存するため、アスファルト混 合物の品質管理として、施工時のアスファルト混合物の 温度測定を行った.温度測定結果を表-7に示す.

共通仕様書には,敷均し時のアスファルト混合物の温度は110℃以上とすることとされており,今回の施工ではこの規定を満足している.

表-7 施工時のアスファルト混合物の温度

混合物種類	出荷温度 (℃)	現場到着温度 (℃)	敷均し温度 (℃)	一次転圧温度 (℃)	二次転圧温度 (℃)	仕上げ転圧温度 (℃)
アスファルト安定処理	160	157	151	115	85	75
密粒度アスコン(表層1日目)	161	159	155	110	82	70
密粒度アスコン(表層2日目)	161	159	154	112	80	72

4. 一層仕上がり厚さと締固め度

4.1 コア採取

締固め度を確認するため、試験舗装構築終了後、図-2 の平面図におけるレーン2の横断方向中央部ならびにジ ョイント部のそれぞれ(想定)舗装厚7cm,9cm,11cm, 13cm,15cmの位置にて1箇所につき3本(合計60本)のコ ア採取を行い、舗装調査・試験法便覧(B008-1:密粒度 アスファルト混合物等の密度試験)¹⁰⁾に準拠して、密度 試験を行った。

なお,層厚が厚い箇所から採取したコアは,図-2にお けるNo.3及びNo.8のコアは厚さ方向に2等分割,No.4・ No.5・No.6・No.7のコアは厚さ方向に3等分割し,それぞ れについて試験を実施した.No.1・No.2・No.9・No.10の コアは分割無しとした.

4.2 一層仕上がり厚さと締固め度の関係

ー層仕上がり厚さと締固め度の関係について,中央部 とジョイント部別,路盤材料別,中央部・ジョイントと 路盤材料の全ての組合せ別の比較検討を行った.ここで は,締固め度の分布を箱ひげ図で示した.

箱ひげ図は、データの分布の比較等に用いられている ものである.箱ひげ図の見方を図-8に示した.長方形の 箱の上の線が第3四分位点を、下の線が第1四分位点を、 中央の線が中央値を示す.また、上下に伸びる線(ひ げ)の先端は、箱の上下の値(第1,3四分位点)から外 側に、箱の高さ(第3四分位点-第1四分位点)×1.5の 範囲内で、最も離れた値を示している.また、ひげの外 側の点は、外れ値と考えられる点¹¹⁾を示している.

さらに、図-9,10には箱ひげ図の右に原データを点で、 平均値とばらつきを示す縦線を追加した.縦線の中央の 点が平均値を示しており、上に伸びる線の先端が平均値 に標準偏差を加えた値、下に伸びる線の先端が平均値か ら標準偏差を減じた値になっている.

図-8 箱ひげ図の見方

(1) 中央部とジョイント部別の比較検討

中央部,ジョイント部別で区分した締固め度の分布を 箱ひげ図の形で図-9に示した.

中央部は比較的締固め度が高く,下側四分位までは基 準を満足している.それに比べ,ジョイント部は締固め 度が低かった.また,ジョイント部は中央部に比べ締固 め度のばらつきも大きい.一般に,ジョイント部は転圧 がしにくく,新旧合材の接合や転圧効果に問題があると 言われており¹²⁾,このことが原因で締固め度が低くなっ たものと考えられる.

(2) 路盤材料別の比較検討

路盤材料で区別した締固め度の分布を表わす箱ひげ図 を図-10に示す.

図-10 アスファルト安定処理路盤と粒状路盤の比較

締固め度はアスファルト安定処理路盤上の方が粒状路 盤上よりも大きくなった.また,ばらつきに関してはア スファルト安定処理路盤上よりも粒状路盤上の方が大き くなった.これは、アスファルト安定処理路盤の弾性係 数が粒状路盤の弾性係数の2倍程度あり剛性が高かった こと,また,粒状路盤の方がアスファルト安定処理路盤 の熱伝導率の2倍程度あり,敷均し時に温度が冷めやすか ったことや,3.5節で述べたとおり図-2に示すNo.10付近 において,施工性が悪かったことが原因と考えられる.

アスファルト安定処理路盤中央部における二次転圧後 の一層仕上がり厚さと舗装体温度の関係を図-11,12に示 す.図-11からアスファルト安定処理路盤上では,一層仕 上がり厚さが厚いほど,舗装体温度が高かったことが分 かる.また,図-12から粒状路盤上については,厚さ7.3cm において施工性の悪さに起因する温度傾向が見られる.

図-11 一層仕上がり厚さと舗装体温度の関係(二次転 圧後,アスファルト安定処理路盤)

図-12 一層仕上がり厚さと舗装体温度の関係(二次転圧後,粒状路盤)

(3) 路盤材料と中央部・ジョイントの組合せ別の比較検討

路盤の種類と中央部・ジョイント部の全ての組合せ別 の一層仕上がり厚さと密度の関係を図-13, 14, 15, 16に 示す.

グラフ中の標記について、コア分割を行っていないと ころは「分割無し」、コアを2等分割したところについて は、上部のコアを「上部」、下部のコアを「下部」、3等 分割を行ったところについては、上部のコアを「上部」、 中間部のコアを「中間部」、下部のコアを「下部」と標 記した.

なお, グラフ上でプロット点が重なるため, 便宜上, 上部については右, 下部については左にプロット点を若 干ずらして表示している.

結果は以下のとおりである.

a)アスファルト安定処理路盤 中央部 (図-13)

どの厚さにおいても施工基準値以上の締固め度が得ら れ、データのばらつきも比較的小さい.これは、路盤の 剛性が高かったことに加え、施工性が良好であったため と考えられる.また、図-11から読み取れるように、層厚 が厚い程、舗装体温度が高かったことも原因と考えられ る.さらに、既往研究³⁾と異なり、一層仕上がり厚さが厚 くなるほど、締固め度が高くなる傾向がみられた.この 原因は締固め能力の高い機械を用いたことであると考え られる.

b) 粒度調整砕石路盤 中央部 (図-14)

ー層仕上がり厚さが7.3cmの締固め度が低いのは,先述 のとおり施工場所の制約からダンプの混合物の荷降ろし に時間を要し,図-12のとおり,アスファルト混合物の温 度が高い状態で所定回数の十分な転圧を行えなかったこ とが原因であると考えられる.このため比較検討の基準 となる現行最大仕上がり厚さである8cmとの比較検討を 行うことができなかった.

また,厚さ10.3cmの測定箇所の締固め度が低いのは, 粒状路盤への熱伝導がアスファルト安定処理路盤に比べ て大きいこと,粒状路盤の剛性がアスファルト安定処理 路盤に比べ低かったことが原因と考えられる.

一方,12cmから13cmの範囲の締固め度は施工基準以上の値となったが,15cmを超えると,ばらつきが大きくな

るとともに,締固め度も低下した.特に下部の締固め度 が低くなる傾向がみられ,これについては10.3cm厚と同 様に,粒状路盤がアスファルト安定処理路盤と比べ,熱 伝導が大きく,剛性が低かったことが原因であると考え られる.

c)アスファルト安定処理路盤 ジョイント部 (図-15)

アスファルト安定処理路盤中央部と比べるとばらつき が大きく,全体として98%を2%程度下回った.ジョイン ト部については,中央部に比べて,一層仕上がり厚さが 8cmから12cmまでの平均値については,現行の最大一層 仕上がり厚さである8cm付近の締固め度と比べて,同程 度の締固め度となった.14cmを超えると,ばらつきが大 きくなった.

d) 粒度調整砕石路盤 ジョイント部 (図-16)

全体として施工基準を満たせず,ばらつきも大きいという結果となった.特に、同じコア採取場所であっても、層が深くなると同じ深さのコアグループ内でも締固め度のばらつきが大きくなる傾向がみられる.また、表層上部の締固め度は高く、舗装下部の締固め度は低い傾向にある.一層仕上がり厚さ7~10cmの範囲については、b)で述べたとおり、施工時に問題があったと考えられる.

図-13 一層仕上がり厚さと締固め度 アスファルト安定処理路盤 中央部(施工基準の98%を太線で示している)

図-14 一層仕上がり厚さと締固め度 粒度調整砕石路盤 中央部(施工基準の98%を太線で示している)

図-15 一層仕上がり厚さと締固め度 アスファルト安定処理路盤 ジョイント部(施工基準の98%を太線で示している)

図-16 一層仕上がり厚さと締固め度 粒度調整砕石路盤 ジョイント部(施工基準の98%を太線で示している)

(4)分割したコアの締固め度

先述のとおり,一層最大仕上がり厚さが厚い層については,深さ方向に3つに分けて締固め度を測定している.

深さ方向に3等分割したNo.4・No.5・No.6・No.7のコ アについて、レーン中央部で深さ方向にみてみると、中 間層において高い締固め度が得られた.この結果を図-17,18に示す.

図-18 粒状路盤 中央部

層内の温度分布を考えると、舗装上部については、舗 装表面が大気と接していることから、風などの影響によ り熱が奪われやすいと考えられること、また、舗装下部 については、下に存在する低温の路盤に熱が奪われるこ と、それに対して、中間層については、表面や下の層か らの熱拡散の影響が舗装上部、下部に比べて小さく、締 固め時に高い温度を保持できたことが原因と考えられ る.

(5) 一層仕上がり厚さと締固め度の関係の考察 アスファルト安定処理路盤上に構築した舗装につい て、レーン中央部では、施工規格値98%を超える締固め 度が得られ,ばらつきも小さかった.ジョイント部で は,施工規格値を若干下回っていたものの,現行の一層 最大施工厚8cm以下の厚さの締固め度と比較して大きな 差はなかった.ジョイント部については,施工性を向上 するため,場合により,ジョイントヒータの使用,さら にはハンドガイドローラ等による先行転圧も含めた施工 を行うことが必要と考えられる.

粒状路盤上の舗装については、施工場所の制約等か ら、一部区間について施工時に問題があり、また、ジョ イント部において、締固め度がかなり低い結果となり、 比較すべき8cm厚のデータが正確に取れなかったため、 一層最大仕上がり厚さを8cm以上で行うことについて、 今回の結果から判断を下すことが難しい.大型航空機が 就航する空港では、アスファルト安定処理路盤が主であ ることや、新設よりも改修が主となってきているため、 既設舗装上にオーバーレイをすることが多くなってきて いることもあり、本稿における検討はこれにとどめる が、粒状路盤の場合については今後必要に応じて追加検 討を行うことが必要であると考える.

5. 一層仕上がり厚さと降温時間等の検討

共通仕様書では、ストレートアスファルト混合物の交 通開放時の舗装表面温度は50℃以下とすることとされて いる.これは、初期わだちの発生を抑制するためである.

原則夜間の限られた施設閉鎖時間内に行われる空港ア スファルト舗装の施工では、施工時間内に、表面温度が この開放温度まで低下するために必要な降温時間を確保 する必要がある.層厚が厚くなると、降温時間が長くな ることから、その影響を把握するため、一層仕上がり厚 さと降温時間との関係等について以下のとおり検討を行 った.

まず,表層内に設置した熱電対による舗装温度の測定 結果から,舗装表面温度が交通開放温度まで低下するま での時間について,アスファルト安定処理路盤上の表層 を対象として,いくつかの一層仕上がり厚さに対して整 理を行った.次に,坪川らが開発した国総研保有の空港 舗装温度解析プログラム¹³⁾により,今回の実験結果のシ ミュレーションを行い,実験結果との適合度合いを確認 した.両者の適合度合いはかなり良好であったため,シ ミュレーションの再現性はかなり良いものと考え,最後 に,同プログラムを用いて,いくつかの一層仕上がり厚 さと気温に対して,表層内温度分布と降温時間の計算を 行った.

5.1 表層内の温度測定

温度測定は、先述のとおり表層の上部、下部に設置した熱電対と赤外線温度計により行った。測定結果は測定 温度の経時変化の図として付録Cの図-C.1~10に掲載している.

以降,測定された温度データの整理・検討については, 舗装体温度を1分毎に測定した熱電対のものを用いて行 った.なお,熱電対の設置に時間を要するため,測定開 始は敷均し終了から20~30分程度遅れている.

5.2 一層仕上がり厚さと降温時間の関係

大型機対応の空港アスファルト舗装ではアスファルト 安定処理路盤が主に用いられていることや,空港整備に おいて(アスファルト混合物上に行う)オーバーレイが 多いこと等も考慮して,これ以降はアスファルト安定処 理路盤(熱物性については表,基層と変わらない)を対 象として整理を行った.

(1) 一層仕上がり厚さと降温時間の関係

まず,降温時間を,上部熱電対の測定温度が,表層の 敷き均し直後から,共通仕様書に定められる交通開放温 度である50℃に下がるまでの時間と定義した.

図-19にアスファルト安定処理路盤中央部の表層にお ける一層仕上がり厚さと降温時間の関係を示す.

図-19 一層仕上がり厚さと降温時間(アスファルト安 定処理路盤中央部)

ー層仕上がり厚さ別の降温時間をみると,現行の8cm の一層仕上がり厚さでは2時間35分程度となり,10cm程 度の一層仕上がり厚さでは3時間15分程度となった.ま た,8cmと10cmで約40分,8cmと12cmで約1時間20分程 度の差があった.また,図-19から分かるとおり,降温 時間は,ほぼ一層仕上がり厚さに比例するという結果と なった. (2) 表層における一層仕上がり厚さと上下部の温度差の関係

共通仕様書では、交通開放時の舗装温度に関し、表層 の表面温度についてのみ規定されている.表層厚が厚く なると、表層の上部と下部で温度差が生じ、表層の表面 温度が50℃以下となっても、下部の温度が高いままの状 態にあることが想定される.そこで、表層上部が開放温 度となった時点の表層下部の温度に関する検討を行っ た.

上部熱電対の温度が50℃に下がった時点における下部 熱電対の温度測定結果を図-20に示す.

図-20 一層仕上がり厚さと上部熱電対が開放温度となった時点での下部熱電対温度

ー層仕上がり厚さが厚くなるにつれて、上部熱電対が 50℃に下がっていても、下部熱電対(舗装内部)は、50℃ 以上の温度を示すことが分かる。

下部熱電対の温度は、一層最大仕上がり厚さが厚くな るにつれて高くなるという傾向を示し、本実験において は、一層仕上がり厚さが14cm程度のところで下部熱電対 の温度が60℃程度となった.

ー層仕上がり厚さが厚い場合,敷設された表層の熱に より路盤の温度が上昇し,舗装表面からの熱の流出に比 べ,下部からの熱の流出が小さくなり,上部熱電対の温 度に比べ,下部熱電対の温度が高くなったものと考えら れる.

5.3 空港舗装温度解析プログラムによる降温シミュレー ション

(1) 使用プログラムの概要

降温シミュレーションに使用した空港舗装温度解析プ

ログラムは、坪川らが開発した国総研が保有するもので あり、一次元もしくは二次元の有限要素法により熱収支 解析を実施し、舗装温度の時系列変化を算出するもので ある.

図-21に熱収支解析モデルを示す.舗装内部の熱の流れ を(1)式による熱伝導方程式で,顕熱輸送量を(2)式による アスファルト混合物表面と大気との間の熱伝達方程式で, 舗装表面への日射・舗装表面からの反射日射の影響を(3) 式による等価外気温式でそれぞれ考慮している.なお, 赤外放射(雲・水蒸気・大気等から地表面への下向き放 射と,地表面から上空へ向けての上向き放射)について は本プログラムでは考慮されていない.また,潜熱につ いても,舗装表面に存在する水分が蒸発することによる 影響は無視することとして考慮されていない.

本プログラムにより温度解析を行う上で設定が必要な 条件を表-8に示す.本プログラムは,表-8に示す入力条 件を基に時系列解析を実施するものであるが,その計算 間隔は10分に固定されている.

図-21 熱収支解析モデル

 $\frac{\partial T}{\partial t} = \frac{\lambda}{c\rho} \left(\frac{\partial^2 T}{\partial z^2} \right) \qquad \dots \dots \qquad (1)$

$$Q=h(T_s-T_e) \qquad \qquad \dots \qquad (2)$$

$$T_e = T_a + \alpha \frac{J}{h} \qquad \dots \qquad (3)$$

ここに,

T:舗装温度(K)

t:時間(s)

λ: 熱伝導率(W/m/K)

c:比熱(kJ/kg/K)

 $\rho: 密度(kg/m^3)$

z:空間座標(m)

Q:顕熱輸送量(W/m²)

 $h: 熱伝達率(W/m^2/K)$

Ts:舗装表面温度(K)

 $T_a: 氛温(K)$

 $T_e: 等価外気温(K)$

- J:日射量(W/m²)
- α:舗装表面の日射吸収率

表-8 プログラムの設定条件

条件	設定項目	備考
構造条件	層数	最大10層まで入力可能.
	層厚(cm)	各層厚を入力.ただし,路床厚については,舗装全体厚が250cmとなる ように自動設定される.
材料条件	初期温度(℃)	オーバーレイ層については,混合物敷均し時温度を入力.その他の層に ついては,計算開始時刻における温度を入力.
	熱伝達率(W/m²/K)	一時的にでも舗装表面となる層にのみ入力
	日射吸収率	日射を考慮する場合で、一時的にでも舗装表面となる層に入力.
施工条件	オーバーレイフラグ	オーバーレイ層であるか否かを選択.
	各層施工開始時刻	オーバーレイ層についてのみそれぞれ入力.
気温条件	気温設定	・気温一定(個別入力した固定気温を使用)
		・気温変化(個別入力した時系列気温を使用) を選択.
	固定気温(℃)	「気温設定」で気温一定を選択した場合に入力.
	時系列気温(℃)	「気温設定」で気温変化を選択した場合に入力.
	日射フラグ	日射を考慮するか否かを選択.
	時系列日射量(W/m ²)	日射を考慮する場合に入力.
解析条件	計算開始時刻	計算を開始する時刻を入力.
	計算終了時刻	計算を終了する時刻を入力.
	出力点の深さ(m)	解析結果を出力する舗装表面からの深さを入力.

(2) 降温シミュレーション

入力条件については,表-9のとおり設定した.

シミュレーション時の気温設定は,表層(レーン2)施 工日である平成25年12月6日の敷均し時間帯の三浦の平 均気温に合わせ,15.6℃で一定とした.また,アスファル ト混合物の初期温度は,施工時の記録から154℃とした. 出力点の深さは,本実験による熱電対の埋設箇所を想 定し,表層の舗装表面から1cmの深さ,表層の舗装下面の 深さとした.以降,本稿ではそれぞれを表層上部,表層 中間部,表層下部とよぶこととする.

その後,設定した入力条件に対して,上述のプログラムにより表層の降温シミュレーションを行い実測値との 比較検討を行った.

			設定値					
条件	設定項目	表層	アスファルト 安定処理路盤	路床				
	層数	3(表層,	アスファルト安	定処理路盤,路床)				
構造条件	層厚	試験舗装厚に	基づき設定	表,基層と路床を合わせた 層厚の合計が 250cm にな るように調整				
	初期温度(℃)	154	15	—				
	比熱(J/Kg/K)	890*	1)	1840*1)				
材料条件	密度(t/m³)	2.401	2.401	1.8^{*1}				
	熱伝導率(W/m/K)	1.1*	1)	0.52*1)				
	熱伝達率(W/m²/K)	10*2	2)	—				
広丁冬伊	オーバーレイフラグ		オーバーレィ	イする				
旭上朱件	各層施工開始時刻		11:00					
层鱼冬冲	気温設定		気温一定	Ĩ				
风家朱仲	固定気温	15.6℃:レー	-ン2表層施工時	間帯の三浦の平均気温				
	計算開始時刻		表層敷均し	直後				
解析条件	計算終了時刻	上部熱電対	†の温度が 50℃に	なるのに十分な時間				
	出力点の深さ	上部及	して下部熱電対位	置及び層中間部				

表-9 本実験におけるプログラムの設定条件

*1)国総研資料13)を参考に決定

*2)平均風速とJürges式(粗面)から算出

Jürges式(粗面)

vを風速(m/s)として
6.2+4.2v	$(v \leq 5m/s)$
$7.5v^{0.78}$	(v > 5m/s)

(3) 実測値と降温シミュレーションの推計値との比較検討

図-22, 23, 24に, 一層仕上がり厚さが8cm, 10cm, 12cm の場合における, 表層上部, 表層下部, 及び表層中間部 の温度が154℃から交通開放温度である50℃に下がるま での降温シミュレーションの結果と実測値及び両者の差 を示す.

図-22 熱電対による温度測定結果と降温シミュレーション結果の比較 一層仕上がり厚さ9.4cm (実測値とシミュレーションの差を下のグラフに示す)

図-23 熱電対による温度測定結果と降温シミュレーション結果の比較 一層仕上がり厚さ11.4 cm (実測値とシミュレーションの差を下のグラフに示す)

図-24 熱電対による温度測定結果と降温シミュレーション結果の比較 一層仕上がり厚さ12.9 cm (実測値とシミュレーションの差を下のグラフに示す)

熱電対による温度測定結果は風等の影響により測定開 始直後に急速に温度が低下しているが、熱電対による温 度測定結果と降温シミュレーションの結果は概ね一致し ていると考えられるため、結果の再現性はかなり高いも のと考え、温度解析プログラムによる降温シミュレーシ ョンにより、以降の分析・検討を行った.

5.4 内部温度の検討

共通仕様書においては、ストレートアスファルトを使 用した場合の交通開放時の表層表面温度は50℃以下とす ることが定められているが、表層の内部温度に関する規 定は存在しない.しかし、内部温度が高いと航空機荷重 によるアスファルト混合物の初期わだちの発生が懸念さ れる.

そこで,表層中間部における内部温度を降温シミュレ ーションにより推定し,現行一層最大仕上がり厚さであ る8cmにおける内部温度との比較などの検討を行った.

まず,一層仕上がり厚さを8,10,12cmと変化させ,降温 シミュレーションで表層表面温度が50℃に下がった時点 における表層内部温度分布の計算を行った.図-25,26, 27のグラフにその結果を示す.

図-25 表層内部温度の分布 (一層仕上がり厚さ8cm)

図-26 表層内部温度の分布 (一層仕上がり厚さ10cm)

図-27 表層内部温度の分布(一層仕上がり厚さ12cm)

表層内部温度のピーク値は,一層仕上がり厚さ8cmと 比較して,10cmでは3.5℃,12cmでは5.5℃程度の差が見 られた.表層内部温度は,現行最大仕上がり厚さである 8cmと比べた場合でもそれほど大きな差は見られないと 考えられる.

5.5 降温時間の検討

空港舗装温度解析プログラムにより降温シミュレーションを行い,以下のとおり降温時間を計算した.

(1) 一層仕上がり厚さと降温時間の関係

まず,一層仕上がり厚さを8,10,12cmと変化させて降温 時間の検討を行った.結果を表-10に示す.

表-10 一層仕上がり厚さと降温時間の関係

一層仕上がり厚さ	気温	降温時間
(cm)	(°C)	(h:min)
8	15.0	3:10
10	15.0	4:00
12	15.0	5:00

(2) 気温と降温時間の関係

次に,気温を15,20,25℃と変化させて降温時間の検討を 行った.結果を表-11に示す.

表-11 気温に対する降温時間の関係(層厚8cm)

一層仕上がり厚さ	気温	降温時間
(cm)	(°C)	(h:min)
8	15.0	3:10
8	20.0	3:30
8	25.0	4:00

一層仕上がり厚さ	気温	降温時間
(cm)	(°C)	(h:min)
10	15.0	4:00
10	20.0	4:40
10	25.0	5:20

表-12 気温に対する降温時間の関係(層厚10cm)

一層仕上がり厚さが10cmの場合の降温時間を図-28に 示す.15.0℃で推計した場合に比べ,気温を20.0℃にして 推計を行うと,降温時間が40分長くなり,気温を25.0℃に して推計を行うと,降温時間は1時間20分長くなった.

図-28 気温と降温時間の関係

このことから、シミュレーションを行った気温の範囲 では、気温にほぼ比例して降温時間が増加することが分 かった.

6. 透水性に関する検討

アスファルト混合物に浸水と荷重の作用が生じた場合, アスファルトと骨材のはく離が発生する可能性がある. この場合,舗装の破損による滑走路施設等の閉鎖や,最 悪の場合,発生した破片のエンジン吸引による航空機事 故発生につながるおそれがある.このため,表層アスフ ァルト混合物には,透水性が低いことが求められる.

現在のところ,表層アスファルト混合物の透水係数の 適正範囲に関する規定は存在しない.そこで,今回測定 したコアの透水性と締固め度の関係を推定するとともに 透水性と一層仕上がり厚さの関係について整理した.

6.1 締固め度と透水係数の関係

(1) 透水係数の測定

アスファルト混合物の透水係数は,共通仕様書等の基準には定められていないが,先述のとおり透水係数が大きい場合,浸水と荷重の作用によるアスファルトと骨材

のはく離につながる可能性があるため、透水係数に関す る検討を行った.

透水係数の測定は,密度試験終了後の供試体を用いて, 舗装調査・試験法便覧(B017T:アスファルト混合物の加 圧透水試験方法)¹⁴⁾に準拠して,加圧透水試験により行 った.加圧透水試験は,水圧0.15MPaで24時間加圧を行い, 水の流出がなければさらに0.5MPaで24時間加圧を行っ た.透水性が小さい(1.0×10⁻⁷cm/s以下)場合は不透水と した.

(2) 締固め度と透水係数の関係の推定

切取り供試体の締固め度と透水係数の関係を図-29に 示す. さらに,締固め度・空隙率・層厚及び透水係数の 一覧を付録Dに示す. なお,不透水と判定されたコアにつ いては便宜上,透水係数を1.0×10⁻⁷cm/sとしてプロット している.

図-29 締固め度と透水係数の関係

ここでは、締固め度と透水係数の関係として、

[透水係数 (cm/s)]=a×[締固め度(%)]^b を想定し, a, bを推定した.

具体的には、不透水データを除き、両者の対数をとり、[ln(透水係数)]=ln(a)+b×[ln(締固め度)]

とし, 直線回帰により, ln (a) とbを推定した. 結果は**表-13**のとおりとなった.

表-13 推計結果

ln(a) 419.359 25.203 16.64 <2e-	Ĩ
	16
b -94.232 5.525 -17.05 <2e-	16

決定係数0.7822

推定値のp値が,推計結果から明らかに有意(通常0.05 以下で有意)となったため,推定値を採用することとし, 両者の関係を,

[透水係数 (cm/s)]=1.33×10¹⁸²

×[締固め度(%)]^{-94.232}

と推定した.

図-29 に回帰式による推定値を実線で、予測値の 95% 信頼区間を点線で示している.

6.2 一層最大仕上がり厚さと透水係数の関係

路盤種,場所別の一層仕上がり厚さと透水係数の関係 を図-30に示す.これからわかるとおり,安定処理路盤中 央部ではほとんどのデータが一般的な密粒アスコンの透 水係数とされる 1.0×10⁻⁶~1.0×10⁻⁵cm/s の範囲以下に収 まっており,一層仕上がり厚さが厚くなるほど透水係数 が小さくなることがわかる.安定処理路盤ジョイント部 では,一層仕上がり厚さが厚くなるほど透水係数のばら つきが大きくなっている.

一方,粒状路盤中央部をみると,一層仕上がり厚さが 12cm 以上のデータは相当な部分が透水係数 1.0×10⁻⁶~ 1.0×10⁻⁵cm/s の範囲に収まっているものの,これ以下の 厚さでは全てのデータがこの範囲を超えている.さらに, 粒状路盤ジョイント部については,全てのデータが透水 係数 1.0×10⁻⁵cm/s 以上を示している.一層仕上がり厚さ が厚くなるほど透水係数のばらつきが大きくなっている ことは,アスファルト安定処理路盤と同様であるが,ア スファルト安定処理路盤と比較して,粒状路盤のほうが 透水係数の水準は高くなっている.

図-30 路盤種,場所別の一層仕上がり厚さと透水係数の関係(縦線は透水係数1.0×10⁻⁶~1.0×10⁻⁵cm/sに相当するエリア)

7. まとめ

・空港アスファルト舗装の一層仕上がり厚さの増厚の可 能性を検討するため,舗装厚の異なる試験舗装を構築し, 締固め度や透水性,降温時間等について測定・分析を行 った.締固め度,降温時間との関係については,層厚と の相関関係があることが分かった.

・アスファルト安定処理路盤を用いた舗装の表層につい ては、規定を満足する締固め度が得られていることから、 表層の一層仕上がり厚さを8cmから増厚できると考えら れる.ジョイント部の締固め度、内部温度等の影響を考 慮すると、10cm程度の仕上がり厚を目途に一層仕上がり 厚さ増厚の可能性があると考えられる.

・透水係数については、施工基準ではないものの、一般 的な透水係数の範囲と比較を行った.中央部では一層仕 上がり厚さが厚くなるにつれて、透水係数が小さくなる 傾向が見られた.また、10cm以上の一層仕上がり厚さで は、透水係数のばらつきが大きくなった.

8. 今後の課題と展望

老朽化等にともなう滑走路等空港基本施設舗装の更新

を限られた施工時間の中で効率的に実施していくために は、施工性の向上が重要な課題である.このため、一層 最大仕上がり厚さの増厚は効果的な手段であると考えら れる.今後は一層最大仕上がり厚さ増厚の実現可能性が 比較的高いと考えられるアスファルト安定処理路盤上に 一層仕上がり厚さ10cm等での舗装を構築し、追加確認実 験を実施する予定である.また、近年使用頻度の増えて きているポリマー等を添加することにより耐流動性能を 高めた改質Ⅱ型アスファルトを用いて表層を構築した実 験の実施についても検討を行っていく必要があると考え られる.

謝辞

本研究のとりまとめに際して調査受託者である東亜道 路工業株式会社にご協力いただいた.また,多くの関係 者のご指導を得ることによって本研究をとりまとめるこ とが出来た.ここに,深く感謝の意を表します.

参考文献

- (一財)港湾空港総合技術センター:空港土木工事共 通仕様書,2014年,p.2-85.
- (社)日本道路協会:舗装調査・試験法便覧,第3分 冊,2007年,pp.[3]5-[3]16.
- 前川亮太, 蘇凱:空港アスファルト舗装の施工厚に関 する実験, 土木学会第63回年次学術講演会第V部門, 2008年, pp.123-124.
- (一財)港湾空港総合技術センター:空港舗装補修要 領及び設計例,2011, p.II-21.
- 5) FAA:AC 150/5370-10G Standards for Specifying Construction of Airports,2014.
- NCHRP:Relationship of Air Voids, Lift Thickness, and Permeability in Hot Mix Asphalt Pavements, NCHRP REPORT, 531,2004.
- 気象庁:過去の気象データ検索, http://www.data.jma.go.jp/obd/stats/etrn/index.php
- 8) 土木学会:FWDおよび小型FWD運用の手引き,2004 年,pp.69-72.
- 9) 荒木ほか:最近のアスファルトフィニッシャの動向と 高締固め度スクリードに関する2,3の実験,舗装,第 271号,1988年,pp.13-19.
- 10) (社) 日本道路協会:舗装調査・試験法便覧,第3分 冊,2007年,pp.[3]91-[3]96.
- 11) 間瀬ほか:工学のためのデータサイエンス入門,数 理工学社,2007.
- 12) (一財)港湾空港総合技術センター:空港舗装設計

要領及び設計例,2008年.

- 13) 坪川ほか:空港アスファルト舗装の夜間施工時の降 温時間に関する解析的検討:国総研資料, No.653, 2011.
- 14) (社) 日本道路協会:舗装調査・試験法便覧,第3分 冊,2007年,pp.[3]153-[3]165.

付 録

- 付録-A アスファルトの配合設計
- 付録-B 基準高及び各層厚一覧
- **付録-C** 降温時間
- 付録-D 切り取り供試体の透水係数一覧

付録-A アスファルトの配合設計

混合物0)種類	密粒	度アスプ	アル	卜混合物	吻(2	0)[7	75]	60	/ 8	0	報告年 報 告	月日	201	3年1	0月	<u>日</u>
1. 使月	制材料	の種類	及び産生	也													
	材	料の種	類			the second secon	製造会社	土名				產力	也			材 質	
砕石5号		1			穿	了一石產	運輸(相	朱)			東京都	3西多摩郡	檜原枝	t	硬質研	沙岩	
砕石6号	•				麦	影无石灰	(工業(相	朱)			東京都	3八王子市	美山町	ſ	硬質研	砂岩	
砕石7号					荔	影石贝	云業(材	朱)			東京都	3八王子市	美山町	ſ	硬質研	砂岩	
砕砂				-	3	8摩興商	〔(株)	-			東京都	8八王子市	美山町	1 -	硬質研	沙岩	
細砂					F	葉石商	〔(株)				千葉県	民君津市吉	野		洗いる	沙	
石粉]	FES	ネラル	株)			埼玉県	飯能市			石灰为	岩	100
ストアス	ストアス60/80				J	X日釖	、日石エン	ネルキ	(相	禾)	神奈川	県横浜市	磯子 🛛	(鳳町	StA	1 5 6 0 /	80
		Contraction of															-
and the second second	Letter of the					inter a stree			No.								
2. 配行	合割合										-						
杉	才 米	4	砕石 5	号	砕石 6 号	- 砕	石7号	砕砂)	細研	沙	石粉					計
EI A	生山	A 0/	1.0	0	26	0	11 0	2	0 0	+	10 0	5	0			10	0 0 0
HC D	百川	<u>д</u> 70	0 10	. 0	20.	0	11.0		0.0	-	10.0	0.	0				
3. 合	龙粒度																
\$ 3	61	目	53 mm 3	37.5	31.5	26.5	19	13.	2 9	. 5	4.75	2.36	1.18	600 μm	300	150	75
通過質	量百分	}率%				100.	0 98.	8 8	2.4		56.	0 42.6		25.3	16.4	9.0	5.
目標	粒	度				100	95~ 100	- 7	5~ 00		45~	35~ 50		18~ 30	10~ 21	6~ 16	4~ 8
4 室	为配合	アスフ	アルト	量及7	び製造の	の温度											
72771	レト量	密	度	空	隙	率飽	和	度	安	定	度	7 0 -	· 值	理論領	密度	突固め	り回数
(%)		(g/	c m 3)		(%)		(%)			(k N	1)	(1/10	0 c m)	(g/cı	n 3)])	回)
6	2	2.	. 401		3.	5	77.	. 6		12.	65		29	2.	187	7	7 5
Э,					3~6		70~8	5	7.	351	北	20~4	0				
0.																	
0.				1													_
		0		1		_		1000		19	Second Second	Contract of the				1	
* ~-	シャル	試験の約	吉果はグ	ラフよ	り求めた	と値です	っる。										
* 7-	シャル	試験の約	吉果はグ	ラフよ	り求めた	と値です	かる。										
* ~-	シャル	 試験の約	吉果はグ	ラフよ	り求めた	に値です	かる。										

図-A.1 アスファルト混合物配合試験報告書

混合 :	物の種類	密粒度アスファ	ルト混合物((20)['	75]60	/ 8 0	報告	者		
	試 験	項目	砕石5号	砕石6号	砕石7号	砕砂	細砂	石粉		
an sa an		表 乾	2.676	2.675	2.675	2.633	2.549			
密	度	かさ	2.659	2.659	2.656	2.604	2.489			
		見 掛	2.709	2.705	2.709	2.683	2.646	2.732	-	
吸	水	率 %	0.68	0.61	0.73	1.13	2.38			
す	りへ	り 減 量 %		9.50						
安	定	性 %	2.40	2.60	2.30	2.20	2.60			
微	粒分	量試験%								
軟	石 含	有量%	2.30	3.10						
偏	平 細	長石片%	1.9	1.0						
単	位容	積 質 量		-) 			······		
Met	t	塊 量 %	0.01	0.01						
粘										
粘										
粘	\$ 7	い日の聞き	砕石 5 号	碎石6号	碎石7号	砕砂	細砂	石粉		
粘	ۍ ۲۵ ۲۵	い目の開き	砕石 5 号	碎石6号	砕石7号	砕砂	細砂	石粉		
粘	ふる 53 37	い目の開き mm 5	砕石 5 号	碎石 6 号	砕石7号	砕砂	細砂	石粉		
粘	ふる 53 37 31	い目の開き mm 5 5 5	砕石 5 号	砕石6号	砕石7号	砕砂	細砂	石粉		
粘	ふる 53 37 31 26	い目の開き mm 5 5 5 5 5	碎石5号	碎石6号	砕石7号	砕砂	細砂	石粉		
粘	ふる 53 37 31 26 19	い目の開き mm 5 5 5 5 5 5	砕石 5号 100.0 93.1	砕石6号	砕石7号	砕砂	細砂	石粉		
粘	ふる 53 37 31 26 19 13	い目の開き mm 5 5 5 5 5 1 5	碎石 5号 100.0 93.1 8.7	砕石6号 100.0 95.3	砕石7号 100.0	砕砂	細砂	石粉		
粘	ふる 53 37 31 26 19 13 9.	い目の開き mm 5 5 5 5 5	碎石5号 100.0 93.1 8.7	砕石6号 100.0 95.3	砕石7号 100.0	砕砂	細砂	石粉		
11日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	ふる 53 37 31 26 19 13 9. 4.	い目の開き mm 5 5 5 5 5 5 5 5 7 5	砕石5号 100.0 93.1 8.7	砕石6号 100.0 95.3 3.4	砕石7号 100.0 92.1	砕砂	細砂	石粉		
粘	ی کے تک 5 3 3 7 3 1 2 6 1 9 1 3 9 . 4 . 2 .	い目の開き mm 5 5 5 5 5 5 5 7 5 7 5 3 6	砕石5号 100.0 93.1 8.7	砕石6号 100.0 95.3 3.4 0.3	砕石7号 100.0 92.1 10.8	砕砂 100.0 88.1	細砂 100.0 99.2	石粉		
指	ふる 53 37 31 26 19 13 9. 4. 2. 1.	い目の開き mm 5 5 5 5 5 7 5 3 6 1 8	砕石5号 100.0 93.1 8.7	砕石6号 100.0 95.3 3.4 0.3	砕石7号 100.0 92.1 10.8	砕砂 100.0 88.1	細砂 100.0 99.2	石粉		
11 11 11 11 11 11 11 11 11 11 11 11 11	ی کے تھ 5 3 3 7 3 1 2 6 1 9 1 3 9 . 4 . 2 . 1 . 6 0	い目の開き mm 5 5 5 5 5 7 5 3 6 1 8 0 0 μm		砕石6号 100.0 95.3 3.4 0.3	砕石7号 100.0 92.1 10.8 1.0	砕砂 100.0 88.1 36.5	細砂 100.0 99.2 91.6	石粉		
11日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	ی ج ج ج ج ج ج ج ج ج ج ج ج ج ج ج ج ج ج ج	い目の開き mm 5 5 5 5 5 7 5 3 6 1 8 0 0 μm 0		砕石6号 100.0 95.3 3.4 0.3	砕石7号 100.0 92.1 10.8 1.0	砕砂 100.0 88.1 36.5 22.4	細砂 100.0 99.2 91.6 47.0	石粉 100.0 99.2		
11日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	ふる 53 37 31 26 19 13 9. 4. 2. 1. 60 30 15	い 目 の 開 き m m 5 5 5 5 5 7 5 3 6 1 8 0 0 μm 0 0 0		砕石6号 100.0 95.3 3.4 0.3	砕石7号 100.0 92.1 10.8 1.0	砕砂 100.0 88.1 36.5 22.4 12.7	細砂 100.0 99.2 91.6 47.0 5.3	石粉 		

図-A.2 骨材試験成績表

目之	的 配	合試り	険 (雪	室内) 物(20)	[75]	60/80		告年月日 瞈 考	201	3年1 <mark>0</mark> 月	日
FE C	140071重块	2////	1 PHE	10(20)		00700					
3.	使用予定骨材の	合成粒度	修正後								
	骨材	砕石5号	砕石6号	砕石7号	砕砂	細砂	石粉				
配	合率A%	18.0	26.0	11.0	30.0	10.0	5.0				
	53 m m										
£	37.5	-								-	
<u>田</u> 民	31.5		-			-					
四近	26.5	100.0	100 0							-	
マ 計	19	93.1	100.0	100 0						-	
E F	13.2	8.1	95.3	100.0						1	
行	9.0		3 1	0.2 1	100 0	100 0				1	
室	4.75		0.3	10 8	88 1	99 2				-	
В	1 1 8		0.0	10.0	00.1	55.4				1	
	600 µm			1.0	36.5	91.6	100.0			1	
%	300				22.4	47.0	99.2			1	
	150	1	1		12.7	5.3	94.5			1	
	7 5				4.6	1.4	84.3			-	
	2.5	各骨	材のふ	るい目の	大きさ	別配合	率 (A)	×(B)		合成	予算
	<u>53 mm</u>	-									
-	37.5			-		and the second	Constitution and	Carllen Victoria			
-	31.5	10.0	-	-						100 0	100
	20.5	16.0	26.0							08 8	97
	13 2	10.0	20.0	11 0						82 4	82
	9 5	1.0	24.0	11.0						02.1	01.
-	0.0			10 1	20.0					56.0	55.
	4.75		0.9	1 1 1	30.0	10.0				(158 1 HOLES 201	42.
	4.75		0.9	1.2	26.4	10.0				42.6	
	4.75 2.36 1.18		0.9	1.2	26.4	10.0				42.6	15.
	4.75 2.36 1.18 600 μm		0.9	0.1	26.4 11.0	10.0 9.9 9.2	5.0			42.6	24.
	4.75 2.36 1.18 600 μm 300		0.9	0.1	30.0 26.4 11.0 6.7	10.0 9.9 9.2 4.7	5.0			42.6 25.3 16.4	24. 15.
	4.75 2.36 1.18 600 μm 300 150		0.9	0.1	30.0 26.4 11.0 6.7 3.8	10.0 9.9 9.2 4.7 0.5	5.0 5.0 4.7			42.6 25.3 16.4 9.0	24. 15. 11.
	4.75 2.36 1.18 600 μm 300 150 75		0.9	0.1	30.0 26.4 11.0 6.7 3.8 1.4	10.0 9.9 9.2 4.7 0.5 0.1	5.0 5.0 4.7 4.2			42.6 25.3 16.4 9.0 5.7	24. 15. 11. 6.
4	4.75 2.36 1.18 600 μm 300 150 75		0.9 0.1	0.1	30.0 26.4 11.0 6.7 3.8 1.4	10.0 9.9 9.2 4.7 0.5 0.1	5.0 5.0 4.7 4.2			42.6 25.3 16.4 9.0 5.7	24. 15. 11. 6.
4.	 4.75 2.36 1.18 600 μm 300 150 75 骨材の密度によ 	る配合率(0.9 0.1	0.1	30.0 26.4 11.0 6.7 3.8 1.4	10.0 9.9 9.2 4.7 0.5 0.1	5.0 5.0 4.7 4.2			42.6 25.3 16.4 9.0 5.7	24. 15. 11. 6.
4.	 4.75 2.36 1.18 600 μm 300 150 75 骨材の密度によ 骨材 	る配合率(0.9 0.1	0.1	30.0 26.4 11.0 6.7 3.8 1.4	10.0 9.9 9.2 4.7 0.5 0.1	5.0 5.0 4.7 4.2			42.6 25.3 16.4 9.0 5.7	24. 15. 11. 6.
4. D	 4.75 2.36 1.18 600 μm 300 150 75 骨材の密度によ 骨材 配合比 	る配合率(0.9 0.1	0.1	30.0 26.4 11.0 6.7 3.8 1.4	10.0 9.9 9.2 4.7 0.5 0.1	5.0 5.0 4.7 4.2			42.6 25.3 16.4 9.0 5.7	24. 15. 11. 6.
4. D 2	4.75 2.36 1.18 600 μm 300 150 75 骨材の密度によ 骨 材 配 合 比 密 度	る配合率(0.9 0.1	0.1	30.0 26.4 11.0 6.7 3.8 1.4	10.0 9.9 9.2 4.7 0.5 0.1	5.0 5.0 4.7 4.2			42.6 25.3 16.4 9.0 5.7	24. 15. 11. 6.
4. D 2)	4.75 2.36 1.18 600µm 300 150 75 骨材の密度によ 骨 配合比 密度 里 ① 工 四 二 二 二 二 二 二 二 二 二 二 二 二 二 二 1 1 1 1 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	る配合率(0.9 0.1	0.1	30.0 26.4 11.0 6.7 3.8 1.4	10.0 9.9 9.2 4.7 0.5 0.1	5.0 5.0 4.7 4.2			42.6 25.3 16.4 9.0 5.7	24. 15. 11. 6.

図-A.3 骨材粒度設計(修正後)

	骨 材	の 粒 径	加積曲	線図
目的酯	2 合 試 験 (室内)	報	告年月日 2013年10月 日
混合物の種類 密	活友度アスファルト混	合物(20)[75]	160/80 試	、 験 者
5 合成粒度				
	合成	粒度	マ 占 4 45 由	10-1- ph: /// [11]
ふるい日	作図法	修正後		赵 皮 靶 田
53 m m				
37.5				
26.5	100.0	100.0	100.0	100
19	98.7	98.8	97.5	95 ~ 100
13.2	81.5	82.4	82.5	$75 \sim 90$
9.5				
4.75	55.8	56.0	55.0	$45 \sim 65$
2.36	41.3	42.0	42.5	3.5 10 50
600 μm	27.0	25.3	24.0	18 ~ 30
300	18.5	16.4	15.5	10 ~ 21
150	11.1	9.0	11.0	$6 \sim 16$
7 5	8.0	5.7	6.0	$4 \sim 8$
6. 粒径加積曲線 	 被回 粒度範囲 予定粒度 修正後 			
100				10
90				
80				P
通 70				
」 一個 「個				
量 60			8	
百 50			///	
プ 率 40······			8	
%	سمسيد.	0		
20	0			
10	0			
·				
75	150 300	600 μm 1.18	2.36 4.75	9.5 13.2 19 26.5 37.5 31.5 53 mm
		ふるい目		

図-A.4 骨材の粒径加積曲線図

					5 B 86	<u></u>	TV A	<i>上</i>	日上心	大 (C		. /		1.07		п
2ET	日へル	ドーの日	J E	記 台	試験	(≌))⊡ ∧			E] C	0 / 0	0	報告	中月日	2 0	13年	10 Я	<u> </u>
征	合物	のの相	LE 1	出 程度 /	スファル	/ 下	初(20) [(5] 6	0 / 8	0	可入	泱 白				
										di talina mener							
r	スフ	アル	トの種類	領 ストア:	260/8	0		ア	スファバ	レトの密	度(A)	1.0	3 5 7	アスフィ	マルトの泪	昰度 151:	± 3°C
傦	材	の温度	王 166±	5 °C	突固め	>温度13	9± 3 ℃		突固め	回数_	75	1	力計	の係数	(B) <u>0</u> .	1817	0 k N
		1	2	3	(4)	5	6	7	8	9	10	(1)	(12)	(13)	(14)	15	(16)
試	供	7	供	空	水	表	容	密	度	ア容	空	傦	飽	安	定度	フ	安
	揺	スフ	試	中	中	乾		か	理	スフ		材		力	安	П	定度
験	4	T	平	质	历	后后				7	隙	間	和	計の	定	ł	4
久	14	上 上	均	貝	貝	貝	~			N		隙		読		値	1
木	番	重 (%)	厚 (cm)	重 (g)	重 (g)	重 (g)	積 (cc)	2 (g/cm ³)	前前 (g/cm ³)	ト (%)	率 (%)	举 (%)	度 (%)	or	度 (kN)	1/100 cm	(k N/m)
件	号			137			5-4	3/6		(<u>1)×(7)</u> (A)		9+0	9/1		(B) ×0		
	1			1209.2	702.6	1210.0	507.4	2.383						64	11.63	26	
標	2	4.5		1208.0	701.6	1208.9	507.3	2.381						63	11.45	26	
洲	3			1211.0	705.3	1212.0	506.7	2.390						59	10.72	28	
华																	
	平	均						2.385	2.513	10.4	5.1	15.5	67.1		11.27	27	4174
	4			1213.3	709.2	1214.1	504.9	2.403						68	12.36	28	
標	5	5.0		1213.5	707.7	1214.5	506.8	2.394						68	12.36	29	
準	6			1216.9	711.4	1217.6	506.2	2.404						69	12.54	26	
	平	均						2.400	2.495	11.6	3.8	15.4	75.3		12.42	28	4436
	7			1217.2	710.4	1218.0	507.6	2.398						69	12.54	28	
標	8	5.5		1218.0	710.5	1218.6	508.1	2.397						70	12.72	29	
Ma	9			1218.4	712.5	1218.9	506.4	2.406						72	13.08	29	
华																	
	平	均						2.400	2.476	12.8	3.1	15.9	80.5		12.78	29	440
	10			1221.3	709.8	1221.9	512.1	2.385						67	12.17	32	
標	11	6.0		1222.9	712.8	1223.6	510.8	2.394						70	12.72	32	
淮	12			1224.0	712.3	1224.6	512.3	2.389						70	12.72	31	
								_									
	平	均						2.389	2.458	13.8	2.8	16.6	83.1		12.54	32	391
	13			1223.2	708.6	1223.8	515.2	2.374						65	11.81	36	
標	14	6.5		1223.3	710.6	1223.7	513.1	2.384						66	11.99	36	
準	15			1221.8	709.4	1222.5	513.1	2.381						66	11.99	30	
		1/2															0.01
	4	E)						2.380	2.440	14.9	2.5	17.4	85.6		11.93	36	331
											W=	(1- ())	(8) X 1	U U			

図-A.5 マーシャル安定度試験(その1)

図-A.6 マーシャル安定度試験(その2)

付録-B 基準高及び各層厚一覧

	舗装構築時										
計測位署					基準高(m)						
百次位	現況	床	すけ	As安知	定処理	粒状	路盤	表	層		
		計画	実測	計画	実測	計画	実測	計画	実測		
<u>No.1-1</u>	9.714	9.400	9.400	9.630	9.630			9.700	9.702		
<u>No.1-2</u>	9.731	9.420	9.418	9.650	9.649			9.720	9.726		
<u>No.1-3</u>	9.739	9.440	9.442	9.670	9.671			9.740	9.743		
<u>No.1-4</u>	9.741	9.440	9.442	9.670	9.672			9.740	9.745		
<u>No.1-5</u>	9.738	9.420	9.417	9.650	9.649			9.720	9.722		
No.1-6	9.740	9.400	9.400	9.630	9.630	_	_	9.700	9.699		
<u>No.3-1</u>	9.715	9.400	9.390	9.590	9.595			9.700	9.709		
<u>No.3-2</u>	9.717	9.420	9.424	9.610	9.609			9.720	9.724		
<u>No.3-3</u>	9.720	9.440	9.435	9.630	9.629			9.740	9.742		
No.3-4	9.718	9.440	9.436	9.630	9.627			9.740	9.742		
<u>No.3-5</u>	9.722	9.420	9.417	9.610	9.612			9.720	9.724		
No.3-6	9.745	9.400	9.402	9.590	9.591	_	_	9.700	9.708		
<u>No.5-1</u>	9.698	9.400	9.400	9.550	9.550			9.700	9.693		
<u>No.5-2</u>	9.721	9.420	9.421	9.570	9.573			9.720	9.713		
<u>No.5-3</u>	9.732	9.440	9.441	9.590	9.592			9.740	9.742		
<u>No.5-4</u>	9.735	9.440	9.442	9.590	9.592			9.740	9.742		
<u>No.5-5</u>	9.758	9.420	9.419	9.570	9.568			9.720	9.727		
No.5-6	9.764	9.400	9.400	9.550	9.550	-	-	9.700	9.713		
<u>No.6-1</u>	9.687	9.400	9.400			9.550	9.550	9.700	9.695		
<u>No.6-2</u>	9.684	9.420	9.421			9.570	9.573	9.720	9.719		
<u>No.6-3</u>	9.722	9.440	9.437			9.590	9.589	9.740	9.746		
<u>No.6-4</u>	9.720	9.440	9.438			9.590	9.591	9.740	9.738		
<u>No.6-5</u>	9.735	9.420	9.421			9.570	9.573	9.720	9.715		
No.6-6	9.742	9.400	9.400	-	-	9.550	9.550	9.700	9.697		
<u>No.8-1</u>	9.702	9.400	9.398			9.590	9.591	9.700	9.702		
<u>No.8-2</u>	9.704	9.420	9.418			9.610	9.608	<u>9.720</u>	<u>9.725</u>		
<u>No.8-3</u>	9.703	9.440	9.436			9.630	9.622	9.740	9.755		
<u>No.8-4</u>	9.712	9.440	9.436			9.630	9.623	9.740	9.754		
<u>No.8-5</u>	9.711	9.420	9.415			9.610	9.608	9.720	9.721		
No.8-6	9.710	9.400	9.396	-	-	9.590	9.589	9.700	9.702		
<u>No.10-1</u>	9.706	9.400	9.400			9.630	9.630	9.700	9.706		
<u>No.10-2</u>	9.705	9.420	9.415			9.650	9.647	9.720	9.721		
<u>No.10-3</u>	9.712	9.440	9.438			9.670	9.668	9.740	9.741		
<u>No.10-4</u>	9.715	9.440	9.437			9.670	9.668	9.740	9.741		
<u>No.10-5</u>	9.720	9.420	9.416			9.650	9.649	9.720	9.722		
No.10-6	9.716	9.400	9.400	-	-	9.630	9.630	9.700	9.698		

表-B.1 基準高

表-B.2 基準高から算出した各層厚

計測値		舗装構築時													
		層厚(mm)													
	掘削量			As安定処理			粒状路盤			表層(1日目)			表層(2日目)		
	設計値	実測値	増減量	設計値	実測値	増減量	設計値	実測値	増減量	想定値	実測値	増減量	想定値	実測値	増減量
No.1	300	314	14	230	230	0	-	-	-	70	72	2	70	74	4
No.3	300	306	6	190	193	3	-	-	I	110	115	5	110	114	4
No.5	300	314	14	150	150	0	-	-	I	150	157	7	150	144	-6
No.6	300	296	-4	-	-	-	150	152	2	150	145	-5	150	149	-1
No.8	300	291	-9	-	-	-	190	190	0	110	119	9	110	120	10
No.10	300	295	-5	-	-	-	230	231	1	70	71	1	70	74	4

付録-C 降温時間

図-C.1 赤外線温度計及び熱電対による温度測定結果(No.1)

図-C.2 赤外線温度計及び熱電対による温度測定結果 (No.2)

図-C.3 赤外線温度計及び熱電対による温度測定結果 (No.3)

図-C.4 赤外線温度計及び熱電対による温度測定結果(No.4)

図-C.5 赤外線温度計及び熱電対による温度測定結果(No.5)

図-C.6 赤外線温度計及び熱電対による温度測定結果(No.6)

図-C.7 赤外線温度計及び熱電対による温度測定結果(No.7)

図-C.8 赤外線温度計及び熱電対による温度測定結果(No.8)

図-C.9 赤外線温度計及び熱電対による温度測定結果(No.9)

図-C.10 赤外線温度計及び熱電対による温度測定結果(No.10)

図-C.11 各測定箇所における下部熱電対温度の推移

	No.1	No.2	No.3	No.4	No.5
敷均し後	10:40	10:41	10:42	10:43	10:44
一次転圧後	11:01	11:03	11:03	11:05	11:06
二次転圧後	11:30	11:31	11:32	11:32	11:33

表-C.1 各測定位置における敷均し及び転圧の時刻

	No.6	No.7	No.8	No.9	No.10
敷均し後	10:45	10:46	10:47	10:48	10:49
一次転圧後	11:06	11:07	11:08	11:08	11:09
二次転圧後	11:34	11:35	11:36	11:37	11:38

注) No.は図-2のNo.に対応

付録-D 切り取り供試体の透水係数一覧

No.1~No.5	アスファルト	-安定処理	里路盤区	間	No.6~No.10 粒状路盤区間					
供試体Na	締固め度	空隙率	厚さ	透水係数		締固め度	空隙率	厚さ	透水係数	
供訊件N0.	(%)	(%)	(mm)	K ₁₅ (cm/s)	供訊体N0.	(%)	(%)	(mm)	K ₁₅ (cm/s)	
No.1 - C - 1	98.2	5.2	73	1.99E-05	No.6 - C - 1 上	99.0	4.5	48	1.54E-06	
No.1 - C - 2	98.3	5.1	75	1.09E-05	No.6 - C - 2 上	99.3	4.2	50	不透水	
<u>No.1 - C - 3</u>	98.1	5.3	80	3.39E-06	<u>No.6 - C - 3 上</u>	99.3	4.1	46	不透水	
No.2 - C - 1	98.7	4.7	95	不透水	No.6 - C - 1 中	101.0	2.5	47	不透水	
No.2 - C - 2	98.7	4.7	96	不透水	<u>No.6 - C - 2 中</u>	100.1	3.4	49	不透水	
<u>No.2 - C - 3</u>	98.8	4.7	100	不透水	<u>No.6 - C - 3 中</u>	99.5	3.9	48	不透水	
No.3 - C - 1 上	99.0	4.4	55	不透水	No.6 - C - 1 下	96.7	6.6	52	8.05E-06	
No.3 - C - 2 上	99.3	4.1	57	不透水	No.6 - C - 2 下	97.1	6.2	48	9.20E-06	
No.3 - C - 3 上	99.5	4.0	55	不透水	No.6 - C - 3 下	98.7	4.7	49	3.76E-06	
No.3 - C - 1 下	99.0	4.5	55	1.19E-07	No.7 - C - 1 上	99.0	4.4	37	不透水	
No.3 - C - 2 下	99.3	4.1	55	1.00E-07	No.7 - C - 2 上	99.0	4.4	40	不透水	
No.3 - C - 3 下	99.8	3.7	60	不透水	No.7 - C - 3 上	99.5	3.9	37	不透水	
No.4 - C - 1 上	99.5	3.9	41	5.51E-07	No.7 - C - 1 中	100.0	3.5	42	不透水	
No.4 - C - 2 上	99.8	3.7	44	不透水	No.7 - C - 2 中	100.1	3.4	41	不透水	
<u>No.4 - C - 3 上</u>	99.4	4.0	45	不透水	No.7 - C - 3 中	99.8	3.6	40	不透水	
No.4 - C - 1 中	101.4	2.1	41	不透水	No.7 - C - 1 下	99.4	4.1	44	不透水	
No.4 - C - 2 中	100.5	2.9	42	不透水	No.7 - C - 2 下	99.1	4.3	42	不透水	
<u>No.4 - C - 3 中</u>	100.2	3.2	43	不透水	<u>No.7 - C - 3 下</u>	99.0	4.4	42	不透水	
No.4 - C - 1 下	99.7	3.7	45	不透水	No.8 - C - 1 上	98.8	4.7	58	1.71E-05	
No.4 - C - 2 下	100.1	3.3	45	不透水	No.8 - C - 2 上	98.5	4.9	58	2.55E-07	
<u>No.4 - C - 3 下</u>	99.9	3.5	46	不透水	<u>No.8 - C - 3 上</u>	98.7	4.7	58	1.81E-07	
No.5 - C - 1 上	99.9	3.5	49	不透水	No.8 - C - 1 下	98.3	5.1	61	8.78E-07	
No.5 - C - 2 上	99.8	3.7	44	不透水	No.8 - C - 2 下	98.8	4.6	57	4.33E-07	
No.5 - C - 3 上	99.4	4.0	46	4.27E-07	<u> No.8 - C - 3 下</u>	98.2	5.2	59	2.79E-06	
No.5 - C - 1 中	100.2	3.3	46	不透水	No.9 - C - 1	95.3	8.0	108	2.88E-05	
No.5 - C - 2 中	100.5	3.0	44	不透水	No.9 - C - 2	96.7	6.6	106	1.27E-05	
No.5 - C - 3 中	100.0	3.5	46	不透水	No.9 - C - 3	96.9	6.5	105	1.62E-05	
No.5 - C - 1 下	99.6	3.9	45	1.13E-07	No.10 - C - 1	95.2	8.1	75	6.13E-05	
No.5 - C - 2 下	99.7	3.7	47	不透水	No.10 - C - 2	93.9	9.3	73	6.44E-04	
No.5 - C - 3 下	99.7	3.7	47	不透水	No.10 - C - 3	94.8	8.4	72	1.85E-04	

表-D.1 切り取り供試体の透水係数一覧(その1)

注) No.○-×-△ □ ○: 図-2のNoに対応,×:ジョイント部J,中央部C, △: 採取番号1,2,3本目,□コア分割した場合の深さ 方向の位置 上中下

No.1~No.5	アスファルト	安定処理	里路盤区	間	No.6~No.10 粒状路盤区間					
供試体Na	締固め度	空隙率	厚さ	透水係数	供試体No	締固め度	空隙率	厚さ	透水係数	
庆 武 体N0.	(%)	(%)	(mm)	K_{15} (cm/s)	—————————————————————————————————————	(%)	(%)	(mm)	K_{15} (cm/s)	
No.1 - J - 1	96.9	6.4	69	1.37E-05	No.6 - J - 1 上	95.8	7.5	54	2.83E-05	
No.1 - J - 2	96.8	6.5	72	3.66E-05	No.6 - J - 2 上	95.3	8.0	51	9.83E-05	
No.1 - J - 3	95.4	7.9	74	6.95E-05	No.6 - J - 3 上	95.8	7.5	52	1.41E-05	
No.2 - J - 1	96.9	6.4	83	1.14E-05	No.6 - J - 1 中	95.3	8.0	53	5.42E-05	
No.2 – J – 2	97.0	6.4	88	2.30E-06	No.6 - J - 2 中	94.9	8.4	52	9.46E-05	
No.2 - J - 3	96.6	6.8	91	1.82E-05	No.6 - J - 3 中	95.4	7.9	45	3.30E-05	
No.3 - J - 1 上	97.8	5.6	61	2.01E-07	No.6 - J - 1 下	92.8	10.4	56	5.99E-04	
No.3 - J - 2 上	98.1	5.3	53	1.06E-06	No.6 - J - 2 下	92.3	10.9	58	8.77E-04	
No.3 - J - 3 上	97.8	5.6	58	1.37E-06	No.6 - J - 3 下	92.2	11.0	57	6.40E-04	
No.3 - J - 1 下	96.2	7.2	56	3.91E-05	No.7 - J - 1 上	95.0	8.3	48	2.44E-04	
No.3 - J - 2 下	96.2	7.2	57	2.41E-05	No.7 - J - 2 上	94.5	8.8	45	3.00E-04	
<u>No.3 - J - 3 下</u>	95.9	7.4	57	1.42E-05	<u>No.7 - J - 3 上</u>	94.8	8.5	54	2.61E-04	
No.4 - J - 1 上	97.3	6.1	43	7.01E-06	No.7 - J - 1 中	94.8	8.5	44	2.48E-04	
No.4 - J - 2 上	97.3	6.0	45	2.59E-05	No.7 - J - 2 中	94.7	8.6	49	3.05E-04	
No.4 - J - 3 上	96.8	6.6	45	4.87E-05	No.7 - J - 3 中	94.5	8.8	42	2.33E-04	
No.4 - J - 1 中	97.1	6.3	43	6.70E-06	No.7 - J - 1 下	91.0	12.1	44	7.08E-04	
No.4 - J - 2 中	96.3	7.0	43	1.85E-05	No.7 - J - 2 下	91.5	11.6	45	7.06E-04	
No.4 - J - 3 中	96.2	7.2	42	3.86E-05	No.7 - J - 3 下	91.8	11.3	41	5.80E-04	
No.4 - J - 1 下	93.5	9.8	43	2.26E-04	No.8 - J - 1 上	95.4	7.9	74	3.52E-05	
No.4 - J - 2 下	94.0	9.2	47	3.99E-04	No.8 - J - 2 上	95.3	8.0	70	5.08E-05	
No.4 - J - 3 下	93.8	9.4	47	4.78E-04	No.8 - J - 3 上	95.7	7.6	61	4.23E-05	
No.5 - J - 1 上	97.3	6.1	50	不透水	No.8 - J - 1 下	93.1	10.1	64	2.52E-04	
No.5 - J - 2 上	97.7	5.7	45	2.05E-07	No.8 - J - 2 下	92.8	10.4	66	2.44E-04	
No.5 - J - 3 上	96.3	7.1	45	2.83E-04	No.8 - J - 3 下	93.5	9.7	66	1.82E-04	
No.5 - J - 1 中	98.0	5.4	47	4.31E-07	No.9 - J - 1	92.8	10.4	105	5.73E-04	
No.5 - J - 2 中	97.6	5.7	46	1.85E-06	No.9 – J – 2	93.0	10.2	99	6.90E-04	
No.5 - J - <u>3</u> 中	96.0	7.4	46	2.67E-04	No.9 – J – 3	92.7	10.5	96	8.32E-04	
No.5 - J - 1 下	95.0	8.3	50	1.48E-04	No.10 - J - 1	90.5	12.6	74	1.03E-03	
No.5 - J - 2 下	94.3	9.0	53	1.61E-04	No.10 - J - 2	90.3	12.8	76	7.86E-04	
No.5 - J - 3 下	93.3	9.9	50	9.72E-04	No.10 - J - 3	89.8	13.3	72	1.00E-03	

表-D.2 切り取り供試体の透水係数一覧(その2)

注) No.○-×-△ □ ○: 図-2のNoに対応,×:ジョイント部J,中央部C, △:採取番号1,2,3本目,□コア分割した場合の深さ 方向の位置 上中下

国土技術政策総合研究所資料 TECHNICAL NOTE of NILIM No. 818 December 2014

編集·発行 ©国土技術政策総合研究所

本資料の転載・複写のお問い合わせは ^{〒239-0826} 神奈川県横須賀市長瀬 3-1-1 管理調整部企画調整課 電話:046-844-5018