巻末資料

- 1. SAR 衛星の種類と特徴及び入手方法について
- 2. 2偏波 SAR 画像の判読事例

1. SAR 衛星の種類と特徴及び入手方法について

1.1 SAR 衛星の種類と特徴

人工衛星に搭載された SAR に採用されている波長帯としては、L、C、X バンドがある。このうち分解能 10m 以下の SAR 画像取得が可能な人工衛星(2014 年 6 月時点)の概要を表-1.1 に示す。

表-1.1 SAR 搭載の人工衛星例 (2014 年 6 月現在)

衛星	COSMO-SkyMed	RADARSAT-2	TerraSAR-X
外観		City of SA	
打ち上げ年	1 号機 2007 年 6 月 7 日 2 号機 2007 年 12 月 9 日 3 号機 2008 年 10 月 24 日 4 号機 2010 年 11 月 6 日	2007年12月	2007年6月
開発国 運用機関(会社)	イタリア ASI/ イ タ リ ア 防 衛 省 /e-GEOS 社	カナダ MDA	ドイツ DLR / Astrium GEO
軌道 高度	太陽同期準極軌道 620 km	太陽同期準回帰軌道 798 km	太陽同期準回帰軌道 514 km
傾斜角	98. 6°	98. 6°	97. 4°
回帰日数	16 日	24 日	11 日
周期	98分	101分	95分
設計寿命		7年	5.5年
周波数	X バンド (9.6GHz)	C バンド (5.3GHz)	X バンド (9.65 GHz)
概要	20-50° ・イタリアが開発した4機の X バンド合成開口レーダー 衛星。下図に示すコンステレーションにより最短 1 日・最長 8 日で同条件撮像 が可能。異なる条件では12 時間に1回以上の撮像機会 がある。	20-50° ·Radarsat-1 の後継機。 カナダ宇宙機関(CSA)の支援によって製造および打上げられた衛星。MDA 社が所有し、運用を行なう。	20-45° ・DLR と Astrium 社が共同開発した商用 SAR 衛星 ・TanDEM-X を併用して、Single Pass InSAR による全球レベルの高精度 DEM を作成中
観測モード例 ・分解能 6~8m ・緊急撮影	STRIPMAP HIMAGE モード (単偏波)	Wide Fine モード	Strip Map モード

- ・回帰日数:周回する人工衛星が、自転する地球上のある同一地点の上空に戻るまでの日数。
- ・周期:人工衛星が地球を1周する時間。
- ・入射角:対象物の天頂方向から見た衛星のレーダー照射方向のなす角度

1.2 SAR 画像の入手

緊急時に SAR 画像を入手する際、発注から撮影、画像入手までにかかる時間は、利用する 衛星の撮影頻度や衛星運用者・画像入手先の体制等により異なる。

「第2編 実践編 4.2 衛星撮影の基本仕様」に示した仕様を満たす2偏波 SAR 画像を撮影可能な、RADARSAT-2、TerraSAR-X 及び ALOS-2 (2014 年 5 月打上げ) について、発注から画像入手までにかかる概略の時間を表-1.2 に示す。

SAR衛星名	バンド	観測幅 (3m分解能)	撮影頻度	発注から撮 影までの 最短時間	撮影から 画像入手 までの最 短時間	発注から判読開始 までの最短時間 (撮影頻度は考慮し ていない)	その他留意点
RADARSAT-2	С	(50km刈幅) 直営時 20km刈幅	2日に 1回程度	10時間 (緊急プログラ ミング)	6~8時間	約18時間~	深夜、休祝日は事 前連絡が必要
TerraSAR-X TanDEM-X	X	30km刈幅	4日に 1回程度	12時間 (最優先撮 影)	3時間	約15時間	深夜,休祝日は事 前連絡が必要
ALOS-2 (2014年5月 打上げ)	L	50km刈幅	2~3日に1回程度 12時又は24時頃 (入射角を問わ なければ日本海 付近は毎日可能)	1時間程度	1時間程度	2時間程度	(未定)

表-1.2 災害対応時の SAR 衛星の時間比較 (2014年6月現在)

2014年6月現在で運用されている2つのSAR衛星RADARSAT-2、TerraSAR-Xについて、入手方法(問合せ先、購入申込書等)、推奨する撮影モード・処理レベルは以下のとおりである。

【問合せ先】 (2014年6月現在)

• RADARSAT-2

株式会社パスコ 衛星事業部 営業部

〒164-0001 東京都中野区中野 4-10-1 中野セントラルパークイースト 3F

Tel: 03-5318-1082 Fax: 03-3319-4151 E-mail: satellite_info@pasco.co.jp

• TerraSAR-X

株式会社パスコ 衛星事業部 営業部

〒164-0001 東京都中野区中野 4-10-1 中野セントラルパークイースト 3F

Tel: 03-5318-1082 Fax: 03-3319-4151 E-mail: satellite_info@pasco.co.jp

[・]撮影頻度:撮影時の衛星のオフナディア角(首振り角度)を変える等により、日本の同一地点を撮影できる頻度。

[・]オフナディア角:衛星が撮影する際の、衛星の鉛直直下とレーダー照射方向のなす角度。

(1) COSMO-SkyMed (2014年6月現在)

①入手方法

COSMO-SkyMed はイタリア宇宙庁 (ASI)、イタリア防衛省および e-GEOS 社(商用)が運用する X バンドの軍民両用衛星であり、国内の代理店は日本スペースイメージング (Tel: 03-5204-2727 Fax: 03-5204-2730 E-mail: jsi-info@spaceimaging.co.jp) である。

データの購入に際しては、以下のサイトで公開されている注文フォームを用いて注文する。

http://www.spaceimaging.co.jp/Portals/0/docu/order_CSK_rev6.xls

注文シートに必要事項を記載後、社印(または組織印)を捺印し、日本スペースイメージング社へメール/FAXでの送付後、原本も送付する。

NRT 処理 (Near Real Time 処理:事前に計算した衛星の軌道情報を用いて簡易的に処理を行う)を利用すると撮影後約8時間で画像が提供される。日本地域の観測時刻は、概ね6時又は18時頃が標準。

画像を掲載する際には、オリジナルデータは JPEG 変換などのデータの不可逆変換処理を施し、ライセンスの注記 (COSMO-SkyMed Product – © ASI – Agenzia Spaziale Italiana – yyyy. All Rights Reserved ここで、yyyy: 衛星画像を利用し資料等を作成した年)を必ず画像上に表示させることが求められる。

②撮影モード及び処理レベル

COSMO-SkyMed は、<u>単偏波モードでは高分解能であり天然ダム判読のために利用可能</u>であるが、HH+HV の **2 偏波モードは分解能が低く**崩壊地の判読に適さない**。

※ 本資料では、天然ダム判読に 8m より高分解能を推奨しているが(「2.1 観測条件」「4.2 衛星撮影の基本仕様」を参照)、COSMO-SkyMed の 2 偏波観測(STRIPMAP PINGPONG モード)では分解能 15m (シングルルック)程度である。

(2) RADARSAT-2 (2014年6月現在)

①入手方法

RADARSAT-2 は MDA (MacDonald, Dettwiler and Associates)社が運用する C バンドの SAR 衛星であり、国内の代理店は株式会社パスコ (Tel: 03-5318-1082 Fax: 03-3319-4151 E-mail: satellite_info@pasco.co.jp) である。

指定の注文書を使用する必要はない。株式会社パスコからのシミュレーション結果をも とに購入したいデータが明記された任意の「注文書」を作成し、株式会社パスコ宛に送付 する。

画像を掲載する際には、オリジナルデータは JPEG 変換などのデータの不可逆変換処理を施し、ライセンスの注記("RADARSAT-2 Data and Products © MacDONALD, DETTWILER AND ASSOCIATES LTD. yyyy All Rights Reserved" and "RADARSAT is an official mark of the Canadian Space Agency" ここで、yyyy: 画像を使用する機関が入手した年)を必ず画像上に表示させることが求められる。

②撮影モード及び処理レベル

RADARSAT-2 は表-1.3 に示したとおり 14 種類の撮影モードによる観測が可能である。また、処理プロダクトは表-1.4 に示す 5 種類である。

判読に有効な<u>撮影モードは Wide Fine (HH+HV 偏波、緊急プログラミング・準リアルタイム)</u>であるが、領域が狭い場合は <u>Fine (HH+HV 偏波、緊急プログラミング・準リアルタイム</u>) を採用する。

判読に<u>有効な処理レベルは SLC</u>である。なお、同プロダクトはそのままでは可視化できないため、代行者による加工が必要であることに留意する必要がある。

表-1.3 撮影モード (RADARSAT-2、処理レベル SLC の場合) (黄色のセルは河道閉塞判読に最適なモード)

撮影モード	標準シーンサイズ (アジマス×レンジ)	偏波	空間分解能 (最高)	
SPOT Light ※日本国内を撮影した データのみ販売	18km×8km	HH, HV, VH, VV より選択	1m	
Ultra Fine	$20 \mathrm{km} \! imes \! 20 \mathrm{km}$	HH, HV, VH, VV より選択	3m	
Wide Ultra Fine	$50 \mathrm{km} \times 50 \mathrm{km}$	HH, HV, VH, VV より選択	3m	
Multi-Look Fine	50km×50km	HH, HV, VH, VV より選択	8m	
Wide Multi-Look Fine	90km×50km	HH, HV, VH, VV より選択	8m	
Fine	50km×50km	HH, HV, VH, VV より選択 HH+HV, VV+VH より選択	8m	
	$25 \mathrm{km} \! imes \! 25 \mathrm{km}$	HH+HV+VH+VV		
	150km×150km	HH, HV, VH, VV より選択		
Wide Fine	190KIII ^ 190KIII	HH+HV, VV+VHより選択	8m	
	$50 \mathrm{km} \! imes \! 25 \mathrm{km}$	HH+HV+VH+VV		
	1001 × 1001	HH, HV, VH, VV より選択		
Standard	$100 \mathrm{km} \times 100 \mathrm{km}$	HH+HV, VV+VH より選択	25m	
	25km×25km	HH+HV+VH+VV		
Wide Standard	50km×25km	HH+HV+VH+VV	25m	
Wide	150km×150km	HH, HV, VH, VV より選択 HH+HV, VV+VH より選択	- 30m	
Scan SAR Narrow	300km×300km	HH, HV, VH, VV より選択 HH+HV, VV+VH より選択	50m	
Scan SAR Wide	500km×500km	HH, HV, VH, VV より選択 HH+HV, VV+VH より選択	100m	
Extended High	75km×75km	НН	25m	
Extended Low	170km×170km	НН	25m	

依頼の名称:

・緊急プログラミング ・準リアルタイム

表-1.4 製品レベル (RADARSAT-2)

(黄色のセルは河道閉塞判読に最適な製品処理レベル)

処理レベル	説明
SLC(Single Look Complex)	・オリジナルデータが持つ位相や振幅情報を保持しているスラントレンジ(ななめ距離)画像 ・衛星の受信エラーが補正されており、緯経度の位置情報を含み、他の処理レベルに比べて最も良い分解能を持っている
SGF(Path Image)	・振幅情報を保持しているグランドレンジ画像であり、 緯度経度の情報を保持している ・観測した順序で各画素が並べられているため、アセン ディング Ascending の場合は南が画像の上、Descending の場合は北が画像の上となる
SGX(Path Image Plus)	・Path Image と同等の処理に加えて、ピクセルスペーシングが Path Image より小さくなっている・細かいピクセルスペーシングにより、ターゲットの識別能力が高まり、詳細な空間情報を得ることができる・Path Image 製品よりファイル容量が大きくなる
SSG(Map Image)	・Path Image を処理し、地図に投影した画像。
SPG(Precision Map Image)	・Map Image と同等の処理に加えて、Ground Control Point (GCP) 補正を利用することで、Map Image より位 置精度の高い画像としたデータ

(2014年6月現在)

(3) TerraSAR-X (2014年6月現在)

①入手方法

TerraSAR-X はドイツ航空宇宙センター (DLR) /Astrium 社が共同開発した X バンドの官民両用 SAR 衛星であり、国内の代理店は株式会社パスコ (Tel: 03-5318-1082 Fax: 03-3319-4151 E-mail: satellite_info@pasco.co.jp) である。

株式会社パスコから撮影シミュレーション結果と注文書を受け取ったら、注文書の「送付先・エンドユーザ利用申請申込書(図-1.1)」および「新規撮影申込書(図-1.2)」に必要事項を記載し、株式会社パスコ営業担当宛に送付する。

日本国内へは、撮影後3時間以内でデータを提供することが可能である。日本地域の観測時刻は、概ね6時又は18時頃が標準。

画像を掲載する際には、オリジナルデータは JPEG 変換などの不可逆変換処理を施し、ライセンスの注記 ("© yyyy DLR, Distribution Airbus DS / Infoterra GmbH, Sub-Distribution [PASCO]" ここで、yyyy: 衛星画像を利用し資料等を作成した年) を必ず画像上に表示させることが求められる。

②撮影モード及び処理レベル

TerraSAR-X は表-1.5 に示したとおり 5 種類の撮影モードによる観測が可能である。また、処理プロダクトは表-1.6 に示す 4 種類である。

判読に有効な<u>撮影モードは StripMap(HH+HV、最優先撮影)</u>であり、判読に有効な<u>処理</u>レベルは GEC である。

表-1.5 撮影モード (TerraSAR-X) (黄色のセルは河道閉塞判読に最適なモード)

· · · · · · · · · · · · · · · · · · ·					
撮影モード	標準シーンサイズ (アジマス×レンジ)	偏波	空間分解能 (最高)	依頼の名称:	
Staring SpotLight	4km × 3.7 km	単(VV or HH)	0.25m		
高分解能 SpotLight	5km ×10km	単(VV or HH) 二重(HH & VV)	1m		
SpotLight	10km ×10 km	単(VV or HH) 二重(HH & VV)	2m		
Cr. : W	50km ×30 km	単(VV or HH)	3m		
StripMap	50km ×15 km	二重(HI+VV , HH+HV , VV+VH)	6m	・最優先撮影 (Exclusive)	
ScanSAR	150km ×100 km	単 (VV or HH)	16m		
1	. / /.	/ - m - a.p. vz / 1)) best 6- de /-		

http://www.pasco.co.jp/products/terrasarx/ のTerraSAR-X (テラサーエックス) 価格表 (PDF) をもとに作成 (2014 年 6 月 現在)

表-1.6 製品レベル(TerraSAR-X) (黄色のセルは河道閉塞判読に最適な製品レベル)

処理レベル	説明
SSC (Single Look Slant Range Complex)	・振幅と位相情報を含む複素データ ・スラントレンジ方向- アジマスレンジ方向 ・インターフェロメトリに使用
MGD (Multi Look Ground Range Detected)	・マルチルック処理済み ・グランドレンジ方向- アジマス方向 ・グランドレンジ投影 ・両像回転による補正なし ・正方ピクセル
GEC (Geocoded Ellipsoid Corrected)	・マルチルック処理済み・DEM による幾何補正無し・グランドレンジ投影・測地系 WGS84、UTM または UPS 投影
EEC (Enhanced Ellipsoid Corrected)	・マルチルック処理済み・DEM による幾何補正済み・グランドレンジ投影・測地系 WGS84、UTM または UPS 投影

(2014年6月現在)

送付先・エンドューザ利用申請申込書 (TerraSAR-X)

株式会社 パスコ 衛星事業部 技術部 運用技術課 TerraSAR-X画像販売担当 宛

TerraSAR-X画像使用のため、以下のとおり申請いたします。

		エンドュー ザ 利 用	申請情報	
	- -	日本語		英語
	項 目 ·	記入欄	項目	記入欄
	組織名称	国土交通省	Corporate Name	Ministry of Land, Infrastructure, Transport and Tourism
組織名称	お客様種別【選択】	公共機関	Customer Type	Civil Service Customer
	利用目的【選択】	災害モニタリング	Activity	Disaster Monitoring
	部署名	DO地方整備局	Division name	Regional Development Bureau
	名前	ΔΔ Δ	Name	ΔΔ Δ
	電話番号	**-***-***	TEL(市外局番の0は除ぐ	+81 **-****
	ファックス番号	*_****	FAX(市外局番の0は除	+81 **-****
担当者等の	メールアドレス		E-Mail	■■■@・・・
連絡先	郵便番号	***-***	Postal Code	***_***
所在地	住所(例.東山1-1-2)		Address	^-^
	都市名(例:目黒区)	DO市	City	00
	州・県名(例:東京都)	DO県	State	00
	国名	日本国	Country	Japan 地方整備局等ごとに異

(発送の際	送 付 先 情 報 (発送の際に使用します。送付先がエンドユーザ利用申請情報と異なる場合は、ご記入下さい。)					
	☑ エンドューザと同じ					
項目	記 入 欄					
組織名称						
部署名						
担当者名						
郵便番号						
住 所						
電話番号						
ファックス番号						

- エンドユーザ利用申請情報の取り扱いと注意事項
 ・エンドユーザ利用申請情報のより扱いと注意事項
 ・エンドユーザ利用申請情報は、ドイツ情報セキュリティポリシー法に基づきドイツ国への申請及び、承認に使用されます。
 ・また、承認されない場合は購入ができないことがあります。
 ・画像購入ごとに必ず必要となりますので、購入するお客様は必ずご記入下さい。
 ・また、この審査及び、承認には時間を要します。なるべくお早めにご提出下さい。

1/1

図-1.1 送付先・エンドユーザ利用申請申込書 (TerraSAR-X)

新 規 撮 影 申 込 書 (TerraSAR-X)

株式会社 パスコ 衛星事業部 技術部 運用技術課 TerraSAR-X画像販売担当 御中

緑枠内:災害ごとに異なる

──地方整備局等ごとに異なる

EULA及び、新規撮影サービスに関する注意事項に承諾のうえ、下記の新規撮影を申し込み致します。

	撮影地域名	奈良県十津川町		新規撮影	撮影優先度	Exclusive	撮影希望日	3月14日
申込番号	撮	影 条 仵	処	理 条 件			地 域	
	撮影モード	SM (Single)	処理レベル	GEC		SLは中心座標) /Y:緯度	右上 X:経度/	座標 ′Y:緯度
001N	偏波チャンネル	HH+HV	軌道精度	Predict	135.777778	34 044444		
00114	入射角	Shallow	解像タイプ	SE		座標 /Y:緯度		座標 /Y:緯度
	指定パス	指定無し	備考					
	撮影地域名		購入種別	新規撮影	撮影優先度		撮影希望日	
込番号	撮	影 条 件	処	理 条 件			地域	
	撮影モード		処理レベル			SLは中心座標) /Y:緯度	右上 X:経度/	座標 ⁄Y:緯度
002N	偏波チャンネル		軌道精度					
00211	入射角	指定無し	解像タイプ			座標 /Y:緯度	右下 X:経度/	座標 ⁄Y:緯度
	指定パス	指定無し	備考					
	撮影地域名		購入種別	新規撮影	撮影優先度		撮影希望日	
込番号		影条件		理条件	以示グランプ	朗 心	地域	
	撮影モード	彩本 IT	処理レベル	生术厅		SLは中心座標) /Y:緯度	右上	座標 /Y:緯度
	偏波チャンネル		軌道精度		X. #1/2/	1.114.00	X.1412X/	1.44.2
003N	入射角	指定無し	解像タイプ			座標 /Y:緯度	右下 X:経度/	座標 /Y:緯度
	指定パス	指定無し	備考					
	撮影地域名		購入種別	新規撮影	撮影優先度	Standard	撮影希望日	
込番号		影条件		理条件	1240 127012		地域	
Z 14 'J	撮影モード	30 31 11	処理レベル	- N. 11		SLは中心座標) /Y:緯度	右上	座標 ´Y:緯度
00481	偏波チャンネル		軌道精度	Rapid				
004N	入射角	指定無し	解像タイプ		左下 X:経度。	座標 /Y:緯度	右下 X:経度/	座標 ∕Y:緯度
	指定パス	指定無し	備考					
その他通信欄 -1シーンあたりPriorityはStandardの150%、ExclusiveはStandardの200%の料金です。								
お客様への注意事項 1/1								
	表示の凡例:	同時購入•変更項目	四経·南緯(赤字)	Priority	Exclusive	入力不要	入力の誤り	

図-1.2 新規撮影申込書 (TerraSAR-X)

(4) ALOS-2

ALOS-2 は宇宙航空研究開発機構(JAXA)が開発中のLバンドのSAR衛星であり、防災関連ユーザや民間事業者との調整を進め、今後、提供プロダクトやルートを確定する予定である。災害が発生し、観測依頼を受けてから衛星への観測命令を送信するまで1時間を要する。また、衛星が命令を受信してから観測し、ダウンリンクまでは最短で約10分、最長で約23時間を要し、これは衛星の位置に依存する。データの受信後、データ処理や解析、プロダクト生成を行い、提供まで約1時間である。

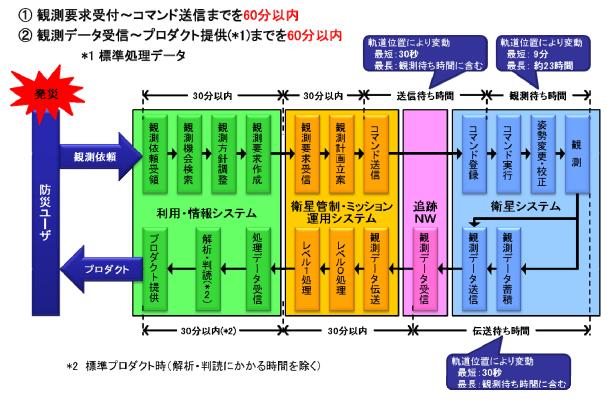


図-1.3 プロダクト提供のタイムライン

ALOS-2 は表-1.7 に示したとおり 6 種類の撮影モードによる観測が可能である。また、処理プロダクトは表-1.8 に示す 4 種類である。判読に有効な<u>撮影モードは高分解能[3m](HH or HH+HV)</u>*もしくは高分解能 [6m] (HH+HV)、処理レベルは 1.5 である。

※ ALOS-2 では、日本国内の高分解能 [3m] HH 偏波でのベースマップ(アーカイブ)を観測予定のため、緊急観測時にも同様の条件で観測することで、災害前後二時期のスタック画像による変化抽出も有効である。ただし、観測時点でベースマップが存在しない場合は、高分解能 [6m] 以上での HH+HV 観測が推奨される(高分解能 [3m] HH+HV については他の撮影モードと圧縮方法が異なるため、打上げ後の実画像を評価した上で利用を検討)。

また、画像を掲載する際には、オリジナルデータは JPEG 変換などの不可逆変換処理を施し、ライセンスの注記("QJAXA")を必ず画像上に表示させることが求められる。

表-1.7 撮影モード(ALOS-2)

(黄色のセルは河道閉塞判読に最適な製品レベル)

撮影モード	標準シーンサイズ (アジマス×レンジ)	偏波	空間分解能	依頼の名称
スポットライト	$25 \mathrm{km} \! imes \! 25 \mathrm{km}$	HH、HV、VH、VV より選択	$3\text{m} \times 1\text{m}$	
高分解能[3m]	70km×50km	HH、HV、VH、VV より選択 または HH+HV、VV+VH より選択	3m	• 緊急観測
高分解能 [6m]	$70 \mathrm{km} \! imes \! 50 \mathrm{km}$	HH、HV、VH、VV より選択、 HH+HV、VV+VH より選択、 円または 45 度直線偏波	6m	
	$70 \mathrm{km} \! imes \! 40 \mathrm{km}$	HH+HV+VH+VV		
高分解能 [10m]	$70 \mathrm{km} \times 70 \mathrm{km}$	HH、HV、VH、VV より選択、 HH+HV、VV+VH より選択、 円または 45 度直線偏波	10m	
	$70 \mathrm{km} \! imes \! 30 \mathrm{km}$	HH+HV+VH+VV		
広域観測 [350km]	355km×350km	HH、HV、VH、VV より選択 または HH+HV、VV+VH より選択	100m	
広域観測 [490km]	355km×490km	HH、HV、VH、VV より選択 または HH+HV、VV+VH より選択	60m	

(http://www.eorc.jaxa.jp/ALOS/conf/workshop/alos2_ws3/ALOS2_1_1_Kankaku_Yukihiro.pdf を基に作成)

表-1.8 製品レベル(ALOS-2)

(黄色のセルは河道閉塞判読に最適な製品レベル)

処理レベル	定義	備考
1.1	・レンジ圧縮及び 1 ルックアジマス圧縮を行ったスラントレンジ上のデータ。 ・位相や振幅情報を含む複素データ。 ・広域観測モードではスキャン単位でイメージファイルが 作成される。	SLC: Single Look Complex インターフェロメトリ処理用
1.5	・レンジ圧縮及びマルチルックアジマス処理を行った振幅データをグランドレンジに投影し、さらに選択された地図投影を行ったデータ。 ・ピクセルスペーシングは観測モードにより選択が可能。補正オプションは以下の通り。 G: Geo-coded による地図投影を行う R: Geo-reference による地図投影を行う	G, R はどちらか一方を指定
2. 1	 ・レベル 1.1 データに数値標高データを用いて幾何補正 (オルソ補正)を行ったデータ。 ・Geo-coded による地図投影を行う。 ・ピクセルスペーシングは観測モードにより選択が可能。 	
3. 1	レベル 1.5 データに画質補正(雑音除去処理、ダイナ ミックレンジ圧縮処理)を行ったデータ。	

(http://www.eorc.jaxa.jp/ALOS-2/doc/fdata/PALSAR-2_xx_Format_CEOS_J.pdf を基に作成)

2. 2 偏波 SAR 画像の判読事例

2.1 平成23年台風12号災害における深層崩壊及び河道閉塞箇所(計6箇所)

平成23年台風12号災害(紀伊半島大水害)において、奈良県内で発生した深層崩壊及び河道閉塞箇所(概ね9月4日頃発生)のうち以下の6箇所を対象として、2偏波画像及びチェックリストを用いた判読事例を示す。

対象箇所 (発生位置については、図-2.1 参照)

- ① 赤谷地区
- ② 清水〔宇井〕地区
- ③ 長殿地区
- ④ 栗平地区
- ⑤ 北股地区
- ⑥ 坪内地区

判読に用いた SAR 画像諸元

衛星名: RADARSAT-2

撮影日 : 2012 年 (平成 24 年) 8 月 6 日

バンド: C バンド軌道: 北行軌道照射方向: 東向き

撮影モード : Fine Quad-Pol

分解能 : 8m **入射角** : 39.6°

偏波 : HH、HV、VH、VV (ただし、今回の判読では HH と HV のみを利用)

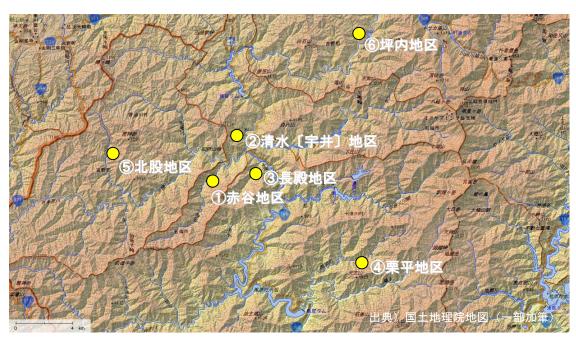
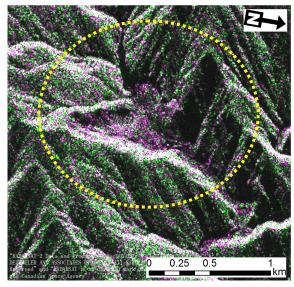
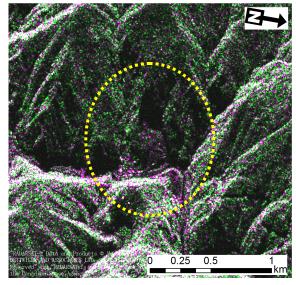



図-2.1 2偏波 SAR 画像判読箇所位置図 (平成 23 年台風 12 号災害)

2 偏波 SAR 画像判読事例① 赤谷地区(平成 23 年台風 12 号災害)


2 偏波 SAR 画像

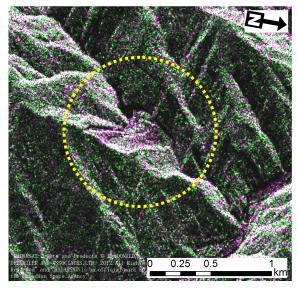
斜め写真

識別番号	1)	所在地·名称·座標	所在地·名称·座標 赤谷地区(奈良県五條市大塔町)				
確認範囲	チェック項目	判断基準					
	裸地	・2偏波画像で赤紫色の初まり、斜面に位置するか(平坦		客、河道ではないか)	0		
	滑落崖	・滑落崖周辺に段差による	・湛水域周辺に滑落崖が確認できるか ・滑落崖周辺に段差によるシャドウ・レイオーバは確認できるか ・滑落崖の形状は斜面方向に対し円弧状となっているか 等				
崩壊地	崩壊地内	・滑落崖の下に崩壊形状・崩壊形状は斜面方向と			0		
חה יפצ אני	崩積土砂(河道閉塞部)	・崩積土の形状は舌状に ・崩積土の到達範囲は地 ・河道閉塞部は谷を埋積 ・河道閉塞部の上流に湛 ・崩積土上に倒木等の形	崩壊地内から下部にかけて崩積土は確認できるか 崩積土の形状は舌状になっているか 崩積土の到達範囲は地形形状と整合しているか 河道閉塞部は谷を埋積する形状となっているか 河道閉塞部の上流に湛水域は形成されているか 崩積土上に倒木等の形状は確認されるか 等				
	崩壊規模	・河道閉塞が発生する程度の崩壊規模か					
・崩壊地下部から流送部が見られるか ・河道の拡幅、植生の流出等による土石流の流下痕段			D流下痕跡が見られるか	0			
	土石流堆積物	・土石流の堆積地(土石流段丘、沖積錐)が見られるか					
周辺地形	斜面勾配	・湛水域近傍に斜面は存・周辺斜面は崩壊地が発	,	配斜面か 等	0		
相対的 位置関係	上下関係等	・滑落崖、崩積土、湛水垣・崩積土の到達範囲は地			0		
河道	湛水域	・湛水域と想定される暗し ・上下流の澪筋幅と比べ ・ダム、取水堰等の人工権	不自然な幅となって	こいるか	0		
		崩壊跡地、露岩地			×		
			表層崩壊		×		
判	定	新規崩壊	大規模崩壊	深層崩壊	0		
			八別悮朋场	河道閉塞	0		
		土石流痕跡					
マント/備考 に記されていると、またその上流側に湛水域と思われる暗い領域が 確認できることから、深層崩壊による河道閉塞が形成されていると判断した。 河道閉塞の下流河道で河道幅が広がり、土砂が流出したと推定される。							

【評価に記入する記号の意味】

2 偏波 SAR 画像判読事例② 清水〔宇井〕地区(平成 23 年台風 12 号災害)

2 偏波 SAR 画像


斜め写真

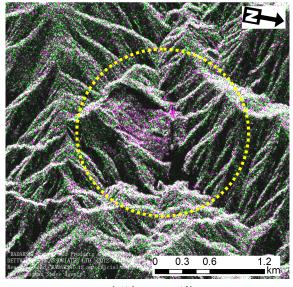
識別番号	2	所在地·名称·座標 清水[宇井]地区(奈良県五條市大塔町)					
確認範囲	チェック項目	判断基準 評価					
崩壊地	裸地	・2偏波画像で赤紫色の裸地を呈するか ・斜面に位置するか(平坦地や緩斜面の集落、河道ではないか)					
	滑落崖	・湛水域周辺に滑落崖が確認できるか ・滑落崖周辺に段差によるシャドウ・レイオーバは確認できるか ・滑落崖の形状は斜面方向に対し円弧状となっているか 等					
	崩壊地内	・滑落崖の下に崩壊形状・崩壊形状は斜面方向と			0		
	崩積土砂(河道閉塞部)	・崩壊地内から下部にかけて崩積土は確認できるか ・崩積土の形状は舌状になっているか ・崩積土の到達範囲は地形形状と整合しているか ・河道閉塞部は谷を埋積する形状となっているか ・河道閉塞部の上流に湛水域は形成されているか ・崩積土上に倒木等の形状は確認されるか 等					
	崩壊規模	・河道閉塞が発生する程	・河道閉塞が発生する程度の崩壊規模か				
土石流痕跡	流下痕跡	・崩壊地下部から流送部が見られるか ・河道の拡幅、植生の流出等による土石流の流下痕跡が見られるか			×		
	土石流堆積物	・土石流の堆積地(土石流段丘、沖積錐)が見られるか			×		
周辺地形	斜面勾配	・湛水域近傍に斜面は存・周辺斜面は崩壊地が発	配斜面か 等	0			
相対的 位置関係	上下関係等	・滑落崖、崩積土、湛水均・崩積土の到達範囲は地		0			
河道	湛水域	・湛水域と想定される暗し ・上下流の澪筋幅と比べ ・ダム、取水堰等の人工	_				
		崩壊跡地、露岩地			×		
			表層崩壊		×		
判	定	新規崩壊	十担措品协	深層崩壊	0		
			大規模崩壊	河道閉塞	×		
		土石流痕跡			×		
コメント/備考	崩壊規模も大	のシャドウが明瞭であり、原 きいことから、深層崩壊であ できないため、河道閉塞の	る可能性が高いと				

【評価に記入する記号の意味】

- :形状が読み取れる。「ある」と言える。該当する。△ :「ある」ように見えるが不明瞭。不明瞭だが該当する。→ :「ある」とも「ない」とも判断できない。わからない。

2 偏波 SAR 画像判読事例③ 長殿地区(平成 23 年台風 12 号災害)

2 偏波 SAR 画像


斜め写真

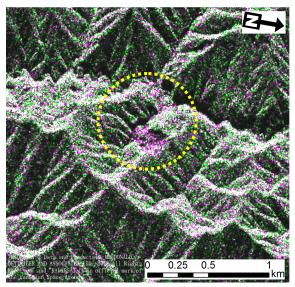
識別番号	(3)	所在地•名称•座標	長殿地区(奈良県			
確認範囲	チェック項目		<u> </u>	評価		
	裸地	・2偏波画像で赤紫色の裸地を呈するか ・斜面に位置するか(平坦地や緩斜面の集落、河道ではないか)			0	
	滑落崖	・湛水域周辺に滑落崖が確認できるか ・滑落崖周辺に段差によるシャドウ・レイオーバは確認できるか ・滑落崖の形状は斜面方向に対し円弧状となっているか 等			0	
崩壊地	崩壊地内	・滑落崖の下に崩壊形状 ・崩壊形状は斜面方向と			0	
ਮ	崩積土砂 (河道閉塞部)	・崩壊地内から下部にかけて崩積土は確認できるか ・崩積土の形状は舌状になっているか ・崩積土の到達範囲は地形形状と整合しているか ・河道閉塞部は谷を埋積する形状となっているか ・河道閉塞部の上流に湛水域は形成されているか ・崩積土上に倒木等の形状は確認されるか 等				
	崩壊規模	・河道閉塞が発生する程度の崩壊規模か			0	
土石流痕跡	流下痕跡	・崩壊地下部から流送部が見られるか ・河道の拡幅、植生の流出等による土石流の流下痕跡が見られるか			_	
	土石流堆積物	・土石流の堆積地(土石流段丘、沖積錐)が見られるか			_	
周辺地形	斜面勾配	・湛水域近傍に斜面は存在するか ・周辺斜面は崩壊地が発生する程度の急勾配斜面か 等			0	
相対的 位置関係	上下関係等	・滑落崖、崩積土、湛水域等の位置関係に不自然さはないか ・崩積土の到達範囲は地形と整合しているか 等			0	
河道	湛水域	・湛水域と想定される暗い領域が確認されるか ・上下流の澪筋幅と比べ不自然な幅となっているか ・ダム、取水堰等の人工構造物による湛水ではないか			0	
		崩壊跡地、露岩地			×	
		表層崩壊		×		
判	定	新規崩壊 大規模崩壊	十 担	深層崩壊	0	
			河道閉塞	0		
		土石流痕跡			-	
裸地の色彩が明瞭で、滑落崖周辺でシャドウ・レイオーバが認められる。 コメント/備考 崩壊土砂が谷を埋積し、澪筋が不自然に変化していること、またその上流側に湛水域と思われる暗い領域 確認できることから、深層崩壊による河道閉塞が形成されていると判断した。				暗い領域が		

【評価に記入する記号の意味】

O:形状が読み取れる。「ある」と言える。該当する。 Δ :「ある」ように見えるが不明瞭。不明瞭だが該当する。 \times :形状が読み取れない。「ない」といえる。該当しない。 -:「ある」とも「ない」とも判断できない。わからない。

2 偏波 SAR 画像判読事例④ 栗平地区(平成 23 年台風 12 号災害)

2 偏波 SAR 画像


斜め写真

識別番号	4	所在地·名称·座標 栗平地区(奈良県吉野郡十津川村)				
確認範囲	チェック項目	判断基準				
	裸地	・2偏波画像で赤紫色の裸地を呈するか ・斜面に位置するか(平坦地や緩斜面の集落、河道ではないか)				
	滑落崖	・湛水域周辺に滑落崖が確認できるか・滑落崖周辺に段差によるシャドウ・レイオーバは確認できるか・滑落崖の形状は斜面方向に対し円弧状となっているか 等				
崩壊地	崩壊地内	・滑落崖の下に崩壊形状は確認できるか ・崩壊形状は斜面方向と整合しているか 等				
朋被地	崩積土砂 (河道閉塞部)	・崩壊地内から下部にかけて崩積土は確認できるか ・崩積土の形状は舌状になっているか ・崩積土の到達範囲は地形形状と整合しているか ・河道閉塞部は谷を埋積する形状となっているか ・河道閉塞部の上流に湛水域は形成されているか ・崩積土上に倒木等の形状は確認されるか 等				
	崩壊規模	河道閉塞が発生する程	0			
土石流痕跡	流下痕跡	・崩壊地下部から流送部が見られるか ・河道の拡幅、植生の流出等による土石流の流下痕跡が見られるか				
周辺地形	料面勾配	・土石流の堆積地(土石流段丘、沖積錐)が見られるか ・湛水域近傍に斜面は存在するか ・周辺斜面は崩壊地が発生する程度の急勾配斜面か 等				
相対的 位置関係	上下関係等	・滑落崖、崩積土、湛水域等の位置関係に不自然さはないか ・崩積土の到達範囲は地形と整合しているか 等			0	
河道	湛水域	・湛水域と想定される暗い領域が確認されるか ・上下流の澪筋幅と比べ不自然な幅となっているか ・ダム、取水堰等の人工構造物による湛水ではないか			0	
		崩壊跡地、露岩地			×	
		表層崩壊			×	
判	定	新規崩壊	土坦塔岩体	深層崩壊	0	
			大規模崩壊	河道閉塞	0	
		土石流痕跡			_	
裸地の色彩が非常に明瞭で、崩壊地・堆積物の形状も明瞭である。明らかに深層崩壊である。 コメント/備考 崩壊土砂が谷を埋積し、澪筋が不自然に変化していること、またその上流側に湛水域と思われる暗い領 確認できることから、深層崩壊による河道閉塞が形成されていると判断した。				る暗い領域が		

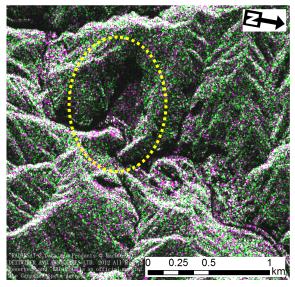
【評価に記入する記号の意味】

O:形状が読み取れる。「ある」と言える。該当する。 Δ :「ある」ように見えるが不明瞭。不明瞭だが該当する。 \times :形状が読み取れない。「ない」といえる。該当しない。 -:「ある」とも「ない」とも判断できない。わからない。

2 偏波 SAR 画像判読事例⑤ 北股地区(平成 23 年台風 12 号災害)

2 偏波 SAR 画像

※湛水池は存在していたが、左に示す SAR 画像撮影時には 既に埋め戻し済みであった。


斜め写真

識別番号	(5)	所在地·名称·座標 北股地区(奈良県吉野郡野迫川村)				
確認範囲	チェック項目	判断基準				
	裸地	・2偏波画像で赤紫色の衫・斜面に位置するか(平坦	坦地や緩斜面の集落、河道ではないか)			
	滑落崖	・湛水域周辺に滑落崖が確認できるか・滑落崖周辺に段差によるシャドウ・レイオーバは確認できるか・滑落崖の形状は斜面方向に対し円弧状となっているか 等				
崩壊地	崩壊地内	・滑落崖の下に崩壊形状 ・崩壊形状は斜面方向と			0	
HH 4 3₹ ₽Ľ	崩積土砂 (河道閉塞部)	・崩壊地内から下部にかけて崩積土は確認できるか・崩積土の形状は舌状になっているか・崩積土の到達範囲は地形形状と整合しているか・河道閉塞部は谷を埋積する形状となっているか・河道閉塞部の上流に湛水域は形成されているか・崩積土上に倒木等の形状は確認されるか・等				
	崩壊規模	・河道閉塞が発生する程度の崩壊規模か			Δ	
土石流痕跡	流下痕跡	・崩壊地下部から流送部は、河道の拡幅、植生の流出		_		
周辺地形	土石流堆積物 斜面勾配	・土石流の堆積地(土石流 ・湛水域近傍に斜面は存 ・周辺斜面は崩壊地が発		Δ		
相対的 位置関係	上下関係等	・滑落崖、崩積土、湛水域等の位置関係に不自然さはないか ・崩積土の到達範囲は地形と整合しているか 等			0	
河道	湛水域	・湛水域と想定される暗い領域が確認されるか ・上下流の澪筋幅と比べ不自然な幅となっているか ・ダム、取水堰等の人工構造物による湛水ではないか				
		崩壊跡地、露岩地			×	
			表層崩壊		Δ	
判	定	新規崩壊	 大規模崩壊	深層崩壊	Δ	
			人况悮朋场	河道閉塞	_	
		土石流痕跡			_	
コメント/備考	規模や斜面勾	非常に明瞭で、尾根付近か 配の程度は不明瞭だが、プ 筋を変化させているように・	に規模な崩壊が発生			

【評価に記入する記号の意味】

- △:「ある」ように見えるが不明瞭。不明瞭だが該当する。
- :形状が読み取れる。「ある」と言える。該当する。× :形状が読み取れない。「ない」といえる。該当しない。
 - :「ある」とも「ない」とも判断できない。わからない。

2 偏波 SAR 画像判読事例⑥ 坪内地区(平成 23 年台風 12 号災害)

2 偏波 SAR 画像

斜め写真

識別番号	(6)	所在地•名称•座標	坪内地区(奈良県	吉野郡天川村)		
確認範囲	チェック項目	判断基準				
	裸地	・2偏波画像で赤紫色の裸地を呈するか ・斜面に位置するか(平坦地や緩斜面の集落、河道ではないか)			0	
	滑落崖	・湛水域周辺に滑落崖が・滑落崖周辺に段差による・滑落崖の形状は斜面方	0			
崩壊地	崩壊地内	滑落崖の下に崩壊形状崩壊形状は斜面方向と			0	
מה אצי הנו	崩積土砂(河道閉塞部)	・崩壊地内から下部にかけて崩積土は確認できるか ・崩積土の形状は舌状になっているか ・崩積土の到達範囲は地形形状と整合しているか ・河道閉塞部は谷を埋積する形状となっているか ・河道閉塞部の上流に湛水域は形成されているか ・崩積土上に倒木等の形状は確認されるか 等				
	崩壊規模	・河道閉塞が発生する程度の崩壊規模か			0	
土石流痕跡	流下痕跡	・崩壊地下部から流送部 ・河道の拡幅、植生の流は ・土石流の堆積地(土石流		_		
周辺地形	料面勾配	・ 温水域近傍に斜面は存・ 周辺斜面は崩壊地が発		0		
相対的 位置関係	上下関係等	・滑落崖、崩積土、湛水域等の位置関係に不自然さはないか・崩積土の到達範囲は地形と整合しているか 等			0	
河道	湛水域	・湛水域と想定される暗い領域が確認されるか ・上下流の澪筋幅と比べ不自然な幅となっているか ・ダム、取水堰等の人工構造物による湛水ではないか			Δ	
		崩壊跡地、露岩地			×	
			表層崩壊		×	
判	定	新規崩壊	大規模崩壊	深層崩壊	0	
			八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八	河道閉塞	Δ	
		土石流痕跡			_	
滑落崖周辺部のシャドウが明瞭であり、裸地の色彩も明瞭である。 コメント/備考 崩壊規模も大きいことから、深層崩壊である可能性が高いと判断した。 湛水域は小規模でシャドウの恐れもあるため、河道閉塞の判定は一とした。						

【評価に記入する記号の意味】

△:「ある」ように見えるが不明瞭。不明瞭だが該当する。一:「ある」とも「ない」とも判断できない。わからない。

○ :形状が読み取れる。「ある」と言える。該当する。 × :形状が読み取れない。「ない」といえる。該当しない。

2.2 平成20年岩手・宮城内陸地震における大規模崩壊箇所(入射角の違い)

入射角とは、対象物の天頂方向から見た衛星のレーダー照射方向のなす角度である(第 1編 基礎知識編 図-1.1.8 参照)。

入射角は可変のものが多く、緊急観測の際に指定することが可能である。大規模崩壊及び 河道閉塞箇所の抽出を念頭に置いた場合、入射角が小さくなるとレイオーバとなり、大きく なるとシャドウとなりやすいため、ある程度の入射角を確保する必要がある。本マニュアル では、山地斜面の勾配等を考慮し、概ね35°~45°程度の入射角を推奨している。

以下の事例は、平成 20 年岩手・宮城内陸地震で発生した①湯ノ倉温泉地区、②湯浜地区、③荒砥沢地区における大規模崩壊箇所において、RADARSAT-2 の 2 偏波画像における入射角の違い(25.4°と 40.0°)を示したものである。いずれの事例においても、入射角 40.0°の方が崩壊地形(裸地)と植生範囲の明暗が明瞭であり、視認性が高いことがわかる。

緊急観測をオーダーする場合、可能であれば発災前のアーカイブデータの有無を確認し、同一軌道で入射角 35~45°程度で観測されているものがあれば、同じ入射角で観測することが望ましい。発災前後で観測条件を揃えることで、発災後の 2 偏波画像に加えて、発災前後の二時期のスタック画像による判読も可能となる。

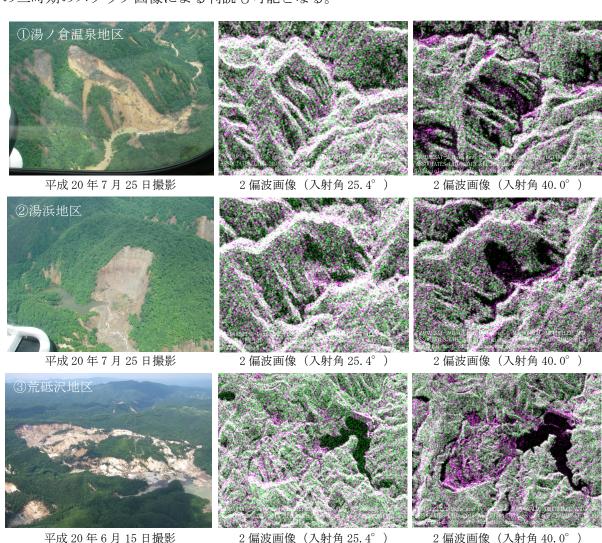


図-2.2 (RADARSAT-2) 異なる入射角における視認性の違い

2.3 平成25年7月25日インドネシア・アンボン島における天然ダム決壊対応

インドネシア共和国マルク州アンボン島ウェイエラ川において、2012年(平成 24年)7月 13日に発生した深層崩壊の崩壊土砂により天然ダムが形成された。この天然ダムは約1年後の 2013年7月 25日に決壊し、下流のヌグリ・リマ村では甚大な被害を受けた(村民約5,000人のほとんどが事前避難済み)。

ここでは、天然ダム決壊状況を把握するため、決壊から 2 日後の 7 月 27 日に観測された SAR 画像をもとに、2 偏波画像(HH+HV+HH)と決壊前後二時期のスタック画像(決壊前は 2012 年 12 月 8 日観測)を作成した事例を示す。

図-2.3 インドネシア・アンボン島の位置図

写真-2.1 天然ダム決壊前後の状況(左:決壊前、右:決壊後)

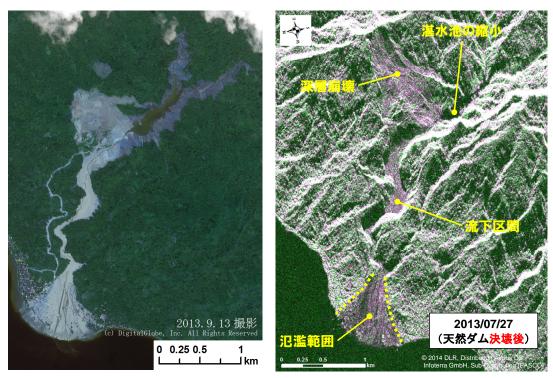


図-2.4 河道閉塞決壊状況の把握

(左:決壊後の光学衛星、右:決壊後の2偏波画像)

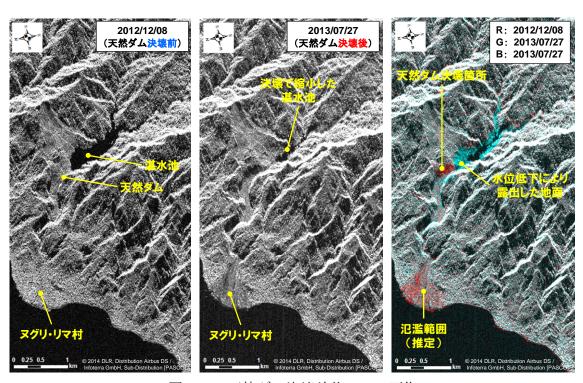


図-2.5 天然ダム決壊前後の SAR 画像

(左:決壊前の単偏波画像、中:決壊後の単偏波画像、右:決壊前後のスタック画像 [R:決壊前、G:決壊後、B:決壊後])