ISSN 1346-7328

 国総研資料 第754号

 平 成 25 年 9月

国土技術政策総合研究所資料

TECHNICAL NOTE of National Institute for Land and Infrastructure Management

No.754

September 2013

大型バルク船を中心とした湾域での避泊実態の分析 (NILIM-AISによる分析)

安部 智久・安藤 和也・赤倉 康寛

An Examination on the Actual Harborage Behavior in Major Bay Areas, Focusing on Large Bulk Carriers(Analysis by NILIM-AIS)

Motohisa ABE, Kazuya ANDO, Yasuhiro AKAKURA

National Institute for Land and Infrastructure Management Ministry of Land, Infrastructure, Transport and Tourism, Japan

大型バルク船を中心とした湾域での避泊実態の分析 (NILIM-AIS による分析)

安部智久*・安藤和也**・赤倉康寛***

要 旨

今後バルク戦略港湾政策により大型船がより多く入港すれば,港湾利用の安全確保の観点から 荒天時における避泊水域の確保などの対応が必要になるものと考えられる.

本研究は、NILIM-AIS による実際の船舶避泊挙動分析等から、3大湾地域を対象に大型バルク 船を中心とした荒天時の避泊実態の分析や避泊円の規模算定手法に関する考察などを行ったもの である.

キーワード:大型バルク船,荒天時避泊,避泊面積,船間距離

〒239-0826 横須賀市長瀬3-1-1 国土交通省国土技術政策総合研究所 電話:046-844-5027 Fax:046-844-5027 e-mail:abe-t252@ysk.nilim.go.jp

^{*} 港湾研究部 港湾計画研究室長

^{**} 前港湾研究部 港湾計画研究室 研究官

^{***} 前港湾研究部 港湾計画研究室長(現京都大学 防災研究所 准教授)

An Examination on the Actual Harborage Behavior in Major Bay Areas, Focusing on Large Bulk Carries (Analysis by NILIM-AIS)

Motohisa ABE * Kazuya ANDOU ** Yasuhiro AKAKURA ***

Synopsis

It is expected that more large bulk carriers will call Japanese ports under the strategic international bulk port initiative. However this might raise concerns on safety under stormy weather: appropriate size of water areas for harborage will be required in the future.

For the reason above, this study deals with an examination on the actual harborage behavior in major bay areas (Tokyo/Ise/Osaka Bay) by NILIM-AIS, focusing on large bulk carries. The analysis also includes the examination on methods for estimation of necessary size of water areas for harborage.

Key Words: Large Bulk Carriers, Harborage, Size for Harborage areas, Necessary Distance between Vessels

Head of Planning Division, Port and Harbour Department

^{**} Former Researcher of Planning Division, Port and Harbour Department

^{***} Former Head of Planning Division, Port and Harbour Department

National Institute for Land and Infrastructure Management, Ministry of Land, Infrastructure ,Transport and Tourism 3-1-1 Nagase, Yokosuka, 239-0826 Japan

Phone : +81-468-44-5027 Fax : +81-468-44-5027 e-mail: abe-t252@ysk.nilim.go.jp

目

次

1. は	じめに	1
2. 分材	折の方法	1
2.1	対象水域の選定	2
2.2	解析対象台風の設定	2
2.3	風速データの選定と解析対象時間の設定	4
3. 湾均	或における船舶の避泊実態	6
3.1	東京湾における避泊実態	6
3.2	大阪湾における避泊実態	11
3.3	伊勢湾における避泊実態	12
3.4	3 大湾に関する比較	14
4. 船舶	船の船間距離に関する分析	14
5. 泊均	地規模算定式に関する考察	18
5.1	3 大湾におけるデータによる考察	18
5.2	大型バルク船と他の船舶との比較	19
5.3	避泊円と走錨の関係についての基本的考察	19
6. お	わりに	21
謝辞…		21
参考文	献	21

1. はじめに

2011年に国際バルク戦略港湾政策により戦略バルク港湾 が選定された.この政策目標として,鉄鉱石や石炭等のばら 積み貨物輸送の効率化をめざし,超大型バルク船の導入が挙 げられている.この結果30万DWT級のVLOC (Very Large Ore Carrier:超大型鉱石運搬船)や,15万DWT級のケープサイズ バルカーが3大湾をはじめとする湾域に従来よりも頻繁に 入港すれば,万一の事故の際の周辺環境へのダメージも甚大 となる.また超大型船のみならず,荒天時には多くの船舶が 一定の区域の海域で避泊を行うことから,そのために必要な 面積を予め算定し,荒天時の避泊地として整備・指定するこ とも検討に値すると考えられる.このような背景にも関わら ず,大型船についての避泊実態を分析した文献は少ないのが 現状である.

一方2007年に改正された「港湾の施設の技術上の基準・同 解説」¹⁾(以下 技術基準・同解説)では,荒天時の泊地規 模についての定量的な記述はなされていない.過去の技術基 準・同解説(例えば1989年の技術基準・同解説)では表-1.1 に示す定量的な算定式(以下 算定式)が記述されていたが, 1999年の改正の際に,その根拠が十分に確認できなかったた め削除された.荒天時における船舶の避泊実態を踏まえ,当 該算定式の適用性を考察することも課題となっている.

表-1.1	荒天時の避泊を目的と	した泊地の規模
-------	------------	---------

風速毎秒20m以上	半径:L+3D+ 90m
風速毎秒30m以上	半径:L+4D+145m

(L:対象船舶の船長(m), D:水深(m)) このような中で外航船・内航船ともに一定規模以上の船 舶へのAIS (Automatic Identification System:船舶自動識別装 置)の搭載が義務化されており, 荒天時での詳細な避泊実 態の把握が可能となっている.港湾研究部港湾計画研究室 では、国総研船舶動静解析システム(NILIM-AIS)を構築 することで、台風が通過した際の湾内での船舶の避泊実態 の観測を行っている. 高橋らは2007年台風9号が東京湾を 通過した際の観測結果をもとに、国総研資料No.431²⁾にお いて東京湾の避泊実態分析を行い、さらに国総研資料 No.500³⁾, No.529⁴⁾ では観測された船舶の避泊実態の分析 から,技術基準・同解説で示された表-1.1の算定式と実態観 測結果とを比較分析している.しかしこれらの分析はいず れも単一の台風を対象としていたことから、さらに多くの 台風を対象とした分析・検証を行う必要性があると結論付 けされていた.

上記を踏まえて本研究は以下を目的とする. 1)3大湾(東京湾,大阪湾,伊勢湾)において,大型バ ルク船を中心とした船舶の避泊実態を把握すること.

- 2)湾域のより安全な利用を確保する観点から、個別の船 舶の避泊に必要な水域面積に加えて、船舶と船舶との安 全な距離(以下「船間距離」)ならびにそれを用いた避泊 水域面積算定の考え方を検討すること.
- 3)上記1)の分析結果を踏まえ表-1.1の算定式(以下 泊 地規模算定式)の関係を考察すること.

図-1.1は船間距離の概念を説明したものである.表-1.1は 個別の船舶の避泊のための泊地の規模を与えるものである がこの式のみでは複数の船舶を想定した避泊水域面積の算 定はできない(上図).そこで船間距離を導入することで, ある一定の水域(例えば東京湾内)での必要な避泊水域面 積の算定を行うことが可能となる(下図).

なお,本分析は3大湾地域での大型船を主な検討対象としており,避難港等の狭い水域における小型船の避泊行動 やそのために必要な避泊円の分析を行うものではない.

図-1.1 船間距離導入の考え方

2. 分析の方法

船舶の避泊実態については、国総研資料No.500³⁾, No.529 4)と同様に、国総研船舶動静解析システム(NILIM-AIS) を使用し、台風が対象水域を通過した時間帯において所在 する超大型船をはじめとした船舶の分布や挙動を分析する ことで解析した.

2.1 対象水域の選定

以下の理由から対象水域は3大湾とした.

- ・解析の観点が台風等荒天時における必要避泊面積,必要 船間距離であることから、多くの船舶が避泊する海域が 対象となる.この際避泊において制約がなくまた密度が 低いと考えられる外洋は対象外であり、一定の規模を有 する海域が対象となる.
- ・広大な海域を有する湾域として、瀬戸内海、大阪湾、伊 勢湾、東京湾が挙げられるが、大型船が今回の解析対象 となっていることから、大型船の避泊の可能性が低い瀬 戸内海は対象外とする.

分析は3大湾とするが、台風はその進路の東側の風速が 西側と比較して強くなる傾向にあることから、最も東側に 位置する東京湾を分析の対象とした場合により厳しい条件

(より強い風速)での分析が可能になると考えられる.こ のため東京湾において複数の台風を対象とした分析を行い, 他の湾についてはこの結果と比較するための分析を行った.

2.2 解析対象台風の設定

解析対象とする台風は以下に基づき選択した.

- ・可能な限り最近発生した台風とすること
- ・可能な限りNILIM-AISにおいてデータ観測の欠測がない 台風とすること
- ・東京湾等への風速による影響が著しい台風とすること

この際重要となるのが、風速と船舶挙動との関連づけで ある. 表-1.1 の算定式は、風速が毎秒 20m ないしは 30m 以 上において使用することとされており、実際にこの程度な いしはそれ以上の風速が発生したと考えられる台風・時間 帯を抽出して分析する必要がある.本研究では以下の4台 風を選択した.以下に気象庁のHPから得た状況を示す⁵⁾. 風速は平均風速を指し、これは風向風速計で観測されたデ ータから10分間の平均風向・風速を算出し毎正時前10分 間平均風向・風速を正時の観測データとしたものである.

1) 2007年台風9号(2007年9月)

8月29日09時に南鳥島の南東海上で発生した台風第9 号は、9月4日に小笠原諸島の北海上を西に進んだ後、6日 には伊豆諸島の西海上を北上した、7日00時前に強い勢力 で静岡県伊豆半島南部に上陸すると、徐々に勢力を弱めな がら関東地方から東北地方を縦断し、8日01時前に北海道 函館市付近に、03時半頃に北海道胆振支庁西部に再上陸し た、台風は同日09時に石狩湾付近の海上で温帯低気圧に変 わった(図-2.2.1参照).この台風により、関東甲信地方か ら北海道にかけての各地と東海地方、北陸地方の一部で大 雨となった.降り始めからの総雨量は、関東甲信地方と東 海地方の一部で600mmを超え、東京都、埼玉県、群馬県で は9月の月間平均雨量の2倍を超える記録的な大雨となっ た.24時間雨量は7日に静岡県伊豆市湯ヶ島で627mmとなるなど、東海地方の一部と関東甲信地方の各地で観測史 上最大となった.また、東海地方から北海道の各地で暴風 となり、台風の通過した小笠原諸島や伊豆諸島から北海道 の太平洋では波の高さが6mを超える大しけとなった.

2) 2009年台風18号(2009年10月)

9月29日21時にマーシャル諸島付近で発生した台風第 18 号は、西北西に進みながら発達し、10 月4日には中心 付近の最大風速が 55m/s と猛烈な勢力となった. 台風は, 6 日には進路を北寄りに変え、中心付近の最大風速が 45m/s と非常に強い勢力で南大東島の南へ進んだ.7日には非常 に強い勢力を維持したまま、四国の南海上に進んだ.8日 には中心付近の最大風速が 40m/s と強い勢力で紀伊半島の 南を北東に進み、同5時過ぎに知多半島付近に上陸し、そ の後, 東海地方, 関東甲信地方, 東北地方を進み, 同日夕 方には太平洋に達した.この間,最大風速は徐々に弱まっ たが、強風域は広がり、8日9時に高崎市付近で大型の台 風となった、台風は9日には、暴風域を保ったまま、北海 道の南を北東へ進んだ後、同日 15 時に千島近海で温帯低 気圧となった (図-2.2.2 参照). この台風は,非常に強い勢 力を保ったまま,南西諸島から西日本に接近し,強い勢力 で上陸したため、沖縄地方から北海道地方にかけての広い 範囲で暴風となった.また、台風をとりまく発達した雨雲 の影響で、8 日朝に茨城県と千葉県で竜巻が発生した.こ の台風により、愛知県東海市東海で8日5時48分までの 1時間に83.5mmの猛烈な雨が降ったほか、近畿地方の一 部で6日から9日までの総雨量が300mm をこえるなど, 沖縄地方から北海道地方の広い範囲で大雨となった.7日 から9日には南西諸島から北日本の太平洋側や日本海沿岸, オホーツク海沿岸で高さ 4mを超えるしけとなり, 近畿や 東海の太平洋側と伊豆諸島では, 高さ 9m をこえる猛烈な しけとなったところもあった.

図-2.2.2 2009年台風18号の進路 3)2011年台風15号(2011年9月)

9月13日21時に日本の南海上で発生した台風第15号 は、北に進んだ後西に向きを変え、16日にかけて大東島地 方に向かって進んだ. 台風は、南大東島の西海上を反時計 回りに円を描くようにゆっくり動いた後、19 日 21 時には 最大風速が 35m/s の強い台風となって奄美群島の南東海上 を北東に進み, 20 日 21 時には中心気圧が 940hPa, 最大風 速が 50m/s の非常に強い台風となった。台風は、速度を速 めつつ四国の南海上から紀伊半島に接近した後,21 日 14 時頃に静岡県浜松市付近に上陸し、強い勢力を保ったまま 東海地方から関東地方,そして東北地方を北東に進んだ. その後台風は、21 日夜遅くに福島県沖に進み、22 日朝に 北海道の南東海上に進み、同日 15 時に千島近海で温帯低 気圧となった(図-2.2.3 参照). 台風が,南大東島の西海上 にしばらく留まり、湿った空気が長時間にわたって本州に 流れ込んだことと、上陸後も強い勢力を保ちながら北東に 進んだことにより、西日本から北日本にかけての広い範囲 で,暴風や記録的な大雨となった.9月15日0時から9月 22 日 24 時の総降水量は、宮崎県美郷町神門(ミカド)で 1128.0mm となるなど、九州や四国の一部で 1000mm を超 え、多くの地点で総降水量が9月の降水量平年値の2倍を 超えた.風については、東京都江戸川区江戸川臨海におい て最大風速が 30.5m/s となり, 統計開始以来の観測史上1 位を更新するなど、各地で暴風を観測した.

4) 2012年台風4号(2012年6月)

6月12日15時にカロリン諸島付近で発生した台風4号

図-2.2.3 2011年台風15号の進路

は太平洋上を西に進み,フィリピンの東で進路を北に変え た.南西諸島の東をかすめるように北東に進み,強い勢力 を保ったまま時速 65km~70km という速いスピードで 6 月 19 日午後 5 時に和歌山県南部に上陸した.6月に上陸した 台風としては 8 年ぶり,観測史上 7 番目に早く上陸した台 風となった.志摩半島を縦断後一時伊勢湾海上に抜け,勢 力を落とすことなく同日 20 時に愛知県東部に再上陸し,中 部・関東・東北南部を北東方向に縦断して太平洋上に抜け, 同日午前 9 時に温帯低気圧となった.その後も温帯低気圧 が伴っていた前線によって,前線が温帯低気圧から分離し た後も含めて前線と前線上に発生した別の温帯低気圧によ る大雨となった(図-2.2.4 参照).

図-2.2.4 2012年台風4号の進路 東京湾については上記4台風全てについて,また伊勢湾・ 大阪湾については2009年台風18号を分析対象とした.これは 伊勢湾地域において観測史上最も強い風速を記録した台風 の一つとして記録されている.

2.3 風速データの選定と解析対象時間の設定

風速データについて気象庁は東京湾周辺に複数の観測点 を有しているが、そのうち臨海部に所在するのは羽田、横 浜、千葉である.本研究では、以下の理由から羽田の観測 点におけるデータを用いた.

- ・3つの観測点の中で、分析対象4台風いずれの接近時においても最も大きい風速を記録していた。このことから羽田における観測点が他の観測点と比較して周辺に遮蔽する建物がなく、より海上での風速に近いものであると判断できる。
- ・羽田は、東京湾のほぼ中心部に位置し、羽田での観測値 を東京湾での代表値としても大きな誤差は生じない.

図-2.3.1~図-2.3.4 に羽田における分析対象4台風について風速・風向データを示す⁵⁾.いずれの場合でも、平均 風速で毎秒25m程度が記録されており、変動を考慮すれば、 毎秒30m程度の風速が東京湾において吹いていたものと判 断できる.羽田の観測点を東京湾の代表点として、分析対 象4台風について最大風速が観測された時刻を基準時刻 (風速図において〇で示した)とし、その前後12時間(合 計24時間)を分析対象期間とした.

上記の考察から,海上空港であれば船舶が受ける海上での 風速に近くまた周辺地域で最も大きな風速が得られるもの と判断されることから,大阪湾については関空島,伊勢湾 についてはセントレアの風速データを用いた.対象地点の 風速・風向データを図-2.3.5 ならびに図-2.3.6 に示す.

図-2.3.1 風速・風向 (東京湾, 2007 年台風 9 号)

図-2.3.2 風速·風向 (東京湾, 2009 年台風 18 号)

図-2.3.4 風速·風向(東京湾, 2012年台風4号)

図-2.3.5 風速・風向(大阪湾, 2009年台風18号)

図-2.3.6 風速·風向(伊勢湾, 2009年台風18号)

今回分析した東京湾,大阪湾,伊勢湾に共通の対象台風 は 2009 年台風 18 号である.最大風速の値が最も大きいの は伊勢湾であるが,風向は大きく変化していない.東京湾 については,最大風速は伊勢湾よりも小さいが,短い期間 に風向が大きく変化している点が特徴的である.当該台風 において大阪湾のデータについては最大風速が毎秒 20m 程 度となっている.実際にはこれ以上の風速を観測した台風 も存在するが,今回分析対象とした台風以外のケースでは, 避泊を行っている船舶が少ないなどの分析上の制約があっ たことから,当該台風を分析対象としたものである.

3. 湾域における船舶の避泊実態

3.1 東京湾における避泊実態

1) 東京湾における避泊の状況

4 つの台風について,解析対象時間(ここでは基準時刻 前後の12時間としている)における船舶動静を東京湾全体 について連続表示により整理した.2007年台風9号につい て図3.1.1,2009年台風18号について図3.1.2,2011年台風 15号について図-3.1.3,2012年台風4号については図-3.1.4 に示している.避泊を行った船舶は点ないしは小さい丸で, 移動していた船舶は線(航跡)で示されている.

これらの分析結果から、アクアライン北側での船舶の移 動量は少なく、大半が錨泊していたと見られる.一方アク アライン南側での船舶の移動量は多く中央部周辺では多く の船舶が航行していたことが確認される.

2007年台風9号では湾全域での船舶移動量が少なく、これに対して他の台風,特に2012年台風4号では湾全域,

特にアクアライン南側の船舶での移動量および湾口航路の 通航量が多いことが確認される.これは,表-3.1.1 に示す解 析対象時間内での風速の変化が影響していると想定される. 例えば 2012 年台風 4 号では図-2.3.4 によれば,一旦弱まり かけていた風が再度強まるという傾向があった.

すなわち風速の変動に合わせて安全な水域を求めて移動 を行っていたためと考えられる.

			単位:風速(毎秒)
台風名	解析開始時刻風速	基準時刻風速	解析終了時刻風速
2007年台風9号	14	25	13
2009年台風18号	9	23	9
2011年台風15号	4	26	1
2012年台風4号	2	24	14

表-3.1.1 対象台風の風速変化(東京湾)

これらの図から、千葉港内にはどの台風の場合にも多く 存在し、またアクアライン南側での木更津港沖、中ノ瀬沖 も多くの船舶が位置していることが確認される.これに対 して、横浜港・川崎港沖は船舶の移動が大きい海域である ことから、他の海域と比較して必ずしも避泊船舶数は多く ないことが確認される.

図-3.1.2 避泊等の状況 (東京湾, 2009 年台風 18 号)

図-3.1.4 避泊等の状況 (東京湾, 2012 年台風 4 号)

2) 大型船の避泊状況

表-3.1.2 は分析対象とした 4 つの台風について, 避泊を行ったと判断される船舶について DWT クラス別の割合を見たものである.最大では 22 万トンクラス(全長約 330m)のバルク船の避泊が観測された.

いずれの場合でも,湾内に 10 隻以上の大型船(3万 DWT 以上)の避泊が確認される.

図-3.1.5 は4つの台風のうち最も大型船の隻数が多かった 2011 年台風 15 号を例に、大型船の避泊水域の位置とそ

の周辺の状況を示したものである.大型船については,木 更津沖,千葉沖において他の海域より多く避泊が見られる.

大型バルク船は安全な避泊のため一定の水深を必要とす るため、湾内でも水深の大きい海域で避泊を行うが、その 海域では他の船舶による避泊・移動も多くみられ、すなわ ち東京湾では大型バルク船等が一定の輻輳海域で避泊を 行っていることが確認できる.

表-3.1.2 避泊船舶の DWT 別分布(東京湾)

DWTクラス

<u>2007年台風9号(東京湾)</u>		
DWTクラス	隻数	割合
10万トン以上	2	2.0%
3万トン以上10万トン未満	12	11.9%
5千トン以上3万トン未満	43	42.6%
5千トン未満	44	43.6%
合計	101	100.0%

5	2.4%
13	6.3%
60	29.0%
129	62.3%
207	100.0%
	5 13 60 129 207

隻数

割合

<u>2009年台</u>	<u>風18号(東京湾)</u>

DWTクラス	隻数	割合
10万トン以上	1	0.4%
3万トン以上10万トン未満	12	5.4%
5千トン以上3万トン未満	72	32.3%
5千トン未満	138	61.9%
合計	223	100.0%

2012年台風4号(東京湾)

2011年台風15号(東京湾)

DWTクラス	隻数	割合
10万トン以上	3	1.7%
3万トン以上10万トン未満	8	4.6%
5千トン以上3万トン未満	49	28.3%
5千トン未満	113	65.3%
合計	173	100.0%

図-3.1.5 大型船の避泊位置 (東京湾, 2011 年台風 15 号)

3) 泊地規模算定式に関する考察

泊地規模算定式(表-1.1)の妥当性を確認するため,当該 式による必要面積と実際に AIS で観測した避泊円の比較を 行った.

図-3.1.6 に示すように,船舶は荒天時には錨を用いて風上 に船首を向けて避泊を行う.風向の変化に合わせ船舶も錨 の周りを振れ回ることから,その軌跡を描くことによって 避泊円を描くことができ,その直径が実測できる⁴⁾.

一方, 錨がかりが悪い場合には, 転錨が発生し不安定か つ危険な状態となる(図-3.1.7).本研究では,一定の円が 描ける船舶を抽出し,分析に用いた.

図-3.1.6 避泊円の分析イメージ(文献⁴⁾による)

図-3.1.7 転錨の場合の航跡(文献⁴⁾による)

東京湾については、対象とした4つの台風時に避泊を行っていた船舶のうち63隻を対象に避泊円の実測を行った.

図-3.1.8 は、泊地規模算定式による避泊円の直径とその実 測値を比較したもので、濃い点が「風速毎秒 30m 時の避泊 円の直径/AIS による実測値」、薄い点が「風速毎秒 20m 時 の避泊円の直径/AIS による実測値」をプロットしたもの である. 横軸は船舶の全長(Loa)を取っている.

濃い点が 1.0 の回りに分布しており、実測値は泊地規模

算定式のうち風速毎秒30mの式の方が毎秒20mの式よりも 当てはまりが良いことが確認できる.

図-3.1.9 は横軸に実測値,縦軸に風速毎秒 30m 時の避泊 円の直径を取りこれらの相関を見たものである.これらの 間に概ね相関関係があることが確認できる.相関係数は約 0.88 であり,切片をゼロに回帰直線を作成した場合の傾き は約 0.94 (R²は 0.63) であることから,概ね相関関係にあ るが,やや実測値の方が大きくなっているという傾向が見 て取れる.

図-3.1.8 泊地規模算定式と実測値との関係

1400

3.2 大阪湾における避泊実態

1) 大阪湾における避泊の状況

大阪湾については 2009 年台風 18 号を分析対象とした. 大阪湾全体について連続表示により整理したものを図 -3.2.1 に示す.大阪港から阪南港にかけての沖合の海域(A) ならびにそのエリアから関空を挟んで南側の海域(B)に一 定の避泊船舶(大きめの点/半円)がみられる一方神戸港か ら明石海峡側では船舶の移動が多く避泊船舶は少ない. 2)大型船の避泊状況

表-3.2.1 は分析対象とした台風について, 避泊を行ってい るとみられる船舶について DWT クラスの割合を見たもの である.また図-3.2.2 は大型船(3万 DWT 以上)の避泊水 域の位置とその周辺の避泊状況を示したものである.最大 で17万トンクラス(全長約 290m)のバルク船の避泊が観 測された.当該船舶の避泊海域については神戸港の沖合の 海域であり,この周辺の海域では避泊船舶は見られないが, 移動する船舶が多い状況である.次いで大きい船舶は 8万 DWT クラス(全長約 300m)のコンテナ船であるが,当該 船舶は図-3.2.1の海域(A)に位置し,一定の輻輳海域の中 にあった.

表-3.2.1 避泊船舶の DWT 別分布(大阪湾)

2009年台風18号(大阪湾)

DWTクラス	隻数	割合
10万トン以上	1	2.3%
3万トン以上10万トン未満	6	13.6%
5千トン以上3万トン未満	24	54.5%
5千トン未満	13	29.5%
 合計	44	100.0%

3) 泊地規模算定式に関する考察

図-3.2.3 は、泊地規模算定式による避泊円の直径とその実 測値を大阪湾での実測データから比較したものである。分 析対象は11 隻である。今回対象とした台風に関する実績値 のそれぞれについて、泊地規模算定式の風速毎秒20mの式 と毎秒30mの式とを当てはめて算定した場合の数値と比較 している。

図-3.2.3 によれば、大阪湾での実績値は、これらの二つの 算定式の間に分布する傾向にある.これは東京湾における 実績値と比較してやや小さな避泊円となっていることを意 味している.特に全長が 100m 程度の小型の船舶について その傾向が見られる.

図-3.2.1 避泊等の状況 (大阪湾, 2009 年台風 18 号)

図-3.2.2 大型船の避泊位置 (大阪湾,2009 年台風 18 号)

3.3 伊勢湾における避泊実態

1)伊勢湾における避泊の状況

伊勢湾については 2009 年台風 18 号を分析対象とした. 伊勢湾全体について連続表示により整理したものを図 -3.3.1 に示す.セントレアの沖合の海域(A)ならびにそ のエリアから南側の海域(BならびにC)に一定の避泊船 舶(大きめの点/半円)がみられる.三河湾においては多くの避泊船舶が密集していることが確認できる(図-3.3.2).2)大型船の避泊状況

表-3.3.1 は分析対象とした台風について, 避泊を行ってい るとみられる船舶の DWT クラス別での割合を見たもので あるが大型船(3万 DWT 以上)の割合は3割を超えてい る. 図-3.3.3 は大型船の避泊水域の位置と周辺の避泊状況を 示したものである.

表-3.3.1 避泊船舶の DWT 別分布(伊勢湾)

2009年台風18号(伊勢湾:三河湾を除く)

DWTクラス	隻数	割合
10万トン以上	5	13.5%
3万トン以上10万トン未満	8	21.6%
5千トン以上3万トン未満	17	45.9%
5千トン未満	7	18.9%
合計	37	100.0%

2009年台風18号(三河湾)

DWTクラス	隻数	割合
10万トン以上	0	0.0%
3万トン以上10万トン未満	0	0.0%
5千トン以上3万トン未満	11	16.4%
5千トン未満	56	83.6%
合計	67	100.0%

伊勢湾(三河湾を除く)では、10万DWTクラス以上の超 大型バルク船4隻の避泊がみられた(最大の船型は 30万 DWT クラスのタンカーである). これらの大型船の多くは 海域 C のような水深の深い海域で避泊し,周辺には一定数 の避泊船舶がみられるがこれらの船舶の間には一定の距離 が保たれている.三河湾については、1万DWT以上の避泊 船舶は3隻のみであり、その他は2,000~3,000DWTクラス の一般貨物船が多くを占めていた.

3) 泊地規模算定式に関する考察

図-3.3.4 は, 泊地規模算定式による避泊円の直径とその実 測値を伊勢湾での実データから比較したものである.伊勢 湾について15 隻, 三河湾について9 隻を分析対象とした.

伊勢湾については今回対象とした台風に関する実績値は, 大阪湾と同様に泊地規模算定式のうち風速毎秒 20mの式の 値と毎秒 30mの式の値との間に分布しているが,やや毎秒 30mの式による値に近い傾向がある.

毎秒 30m の式による値を大きく超える実績値がみられる が、これは観測条件によるものと考えられる.対象台風は 非常に強い風速を伴っており、観測機器のトラブルによる ものとみられる AIS データの欠測があった.このため、避 泊円の円弧が小さく全体の円の推定が難しい場合もあった (図-3.3.5).このようなデータ制約にも留意すべきである.

図-3.3.3 大型船の避泊位置 (伊勢湾, 2009 年台風 18 号)

図-3.3.4 泊地規模算定式と実測値との関係

図-3.3.5 避泊円の円弧が小さく円全体の推定が難しい例

3.4 3大湾に関する比較

3つの湾で共通する 2008 年 18 号台風について避泊実態 の比較を行った.表-3.4.1 は、湾域毎の避泊隻数やその密度 を比較したものである.避泊隻数については東京湾が多く、 また1隻あたりの水域面積も小さく、密集した海域で避泊 を行っている実態が推察される.木更津沖では大型バルク 船が輻輳海域に避泊している状況も見られた(図-3.1.5).

また図-3.4.1 は避泊船舶における大型船の割合を比較した ものである.割合としては最も伊勢湾が大きくなっている ことがわかる一方,1隻当たりの水域面積が最も大きいの も伊勢湾であり,大型船の避泊に関する危険度は相対的に 低いものと考察される.

表-3.4.1	避泊隻数等に関す	る湾域毎の比較
---------	----------	---------

	水域面積	避泊隻数	避泊船1隻あたりの 水域面積		
東京湾	1,160	223	5.20		
伊勢湾	1,738	37	46.97		
三河湾	604	67	9.01		
大阪湾	1,400	44	31.82		
*2009年台風18号の実績					

図-3.4.1 大型船の割合に関する湾域毎の比較

■10万トン以上の割合

■3万トン以上10万トン

未満の割合(%)

(%)

4. 船舶の船間距離に関する分析

東京湾 伊勢湾 三河湾 大阪湾

*水域面積の単位はKM²

25

20

15

10

5

Λ

*伊勢湾の面積には三河湾は含まない

個別の避泊円のみでは複数の船舶を想定した避泊水域面 積の算定はできない.そこで船間距離を導入することで, ある一定の水域(例えば東京湾内)での必要な避泊水域面 積の算定を行うことが可能となる(図-1.1).この際湾内各 港への入港隻数ができるだけ多く,かつ湾域面積が狭い東 京湾を分析の対象とした場合に,より厳しい条件(より船 舶密度が高い危険側)での分析が可能になる.このため東 京湾を対象に避泊船舶間の実際の距離を分析することによ り,必要船間距離に関する考察を行う.

分析は、以下の二通りの観点から実施した.

- ①船間距離の観点からの分析:台風等の荒天時に錨泊している船舶間距離を実際に計測し、それぞれの船舶の避泊円の半径との関係との比較分析を行う.
- ②面積の観点からの分析:避泊エリアの総面積に対して、 エリア内の全避泊船舶の避泊円面積の合計値との比較分 析を行う.

ここで解析対象としたのは、4台風それぞれの基準時の 状態の中で最も稠密に船舶が避泊していると判断される海 域とした.具体的には2012年台風4号でのアクアライン南 側の木更津沖エリアが最も稠密に船舶が避泊したと判断し 分析対象とした. 1) 船間距離の観点からの分析

エリア内の各船舶間で最接近距離(自船周辺において自 船に最も接近している船舶までの距離)を与える直線(以 下 リンク)の数は分析対象エリア内では26リンク存在す る.図-4.1.1ではこれら26リンクを示している.この図に おいて各ノードが船舶となっている.

この結果をもとに分析する考え方を図-4.1.2に示す.

図-4.1.1 対象エリア内での26リンク (2012年台風4号、6月19日午後11時)

ここでは、全避泊船舶が風速毎秒 30m の荒天時において 避泊しているとする. その状況を図-4.1.2 の上図に示す. こ の上図の状況で船間距離は 2R2+d で避泊円の中心間距離で ある R1+R2+d とは異なる. しかし風向が 180 度逆に向きに なった場合には観測された船間距離は 2R1+d となる. 平均 的には (2R1+2R2+2d) /2=R1+R2+d となることから観測さ れた船間距離は二つの避泊円の中心間距離(A) であると 平均的に近似する.

この実測値の中心間距離(A)と算定式(風速毎秒30m) による二つの避泊円の半径の和(B)が等しい場合には, これらの船舶は算定式と同じ半径で避泊していることとな る(図-4.1.2 左下).一方図-4.1.2 右下のように避泊円同士が 離れている場合には A/B は 1.0 よりも大きくなる.この状 況は,これらの船舶が算定式よりも大きな船間距離を持っ て避泊している状況を示すことから,船間距離の実測値 (A)と算定式の比(B)を分析することで,船間距離に 関する安全率を求めることが出来る.

逆に安全率 A/B が実測値から明らかになれば、必要な船 間距離を計画することが可能となる.たとえば安全率 A/B が 1.2 であれば、必要な船間距離は算定式(風速毎秒 30m) によって求められる二つの避泊円の半径の和の 1.2 倍とし て算定が可能となる.さらに図-1.1 の考え方により、必要 な避泊エリアの面積が求められることとなる.

エリア内での船舶を対象とした分析結果を表-4.1.1 及び 図-4.1.3 に示す.表-4.1.1 では,船間距離の観測結果のリン ク別のデータとA/Bの結果を示す.このA/Bの26リンク の結果を昇順でならべたものを図-4.1.3 に示す.この表から A/Bは0.9~1.8 であり全体の平均値は1.31 となった.

図-4.1.2 リンクを用いた分析の考え方

すなわち,船舶が避泊する場合には最接近の船舶との距離 として,それぞれに必要な避泊円の半径の長さに平均的に 30%程度の余裕(安全率)を確保していると考えられる. ただし仮に安全率として 1.3 とした場合には 26 リンクの平 均値であるため 50%のカバー率に過ぎない.仮にこれを 1.5 とすると 26 の船間距離データのうち 21 のデータ,すなわ ちカバー率 80%の安全率(21/26 = 0.81)になり,1.5 はこの ような船間距離の安全率の一つの目安になり得る.

図-4.1.4 のように、風向きの変化により大きく避泊の位置 を変えたとみられる場合があり、また走錨の危険性が常に あることから十分な船間距離を常に保つ必要性がある. こ の一方 A/B が 1.0 未満であれば避泊円が互いに重なること となるが、今回の分析では1例そのような事例があり AIS での観測では衝突は発生していない. 船舶の挙動を踏まえ た必要十分な規模の検討が必要であると考えられる. 2) 面積の観点からの分析

面積の観点からの船間距離分析の概念を図-4.2.1 に示す. エリア内に算定式による避泊円およびそれに対する余裕 (安全率)を確保した避泊円が全て接するように稠密な状

態で避泊している場合には図-4.2.1の左図のようになる.

しかし図-4.2.1 右図に示すようにエリア内全体に稠密に 避泊していないのが実態であり、エリア全体面積とエリア 内の避泊船舶に対する算定式により算定される避泊円の面 積合計値との比較を行うことで平均的な船間距離比率を求 めることとした.具体的には、図-4.2.2 に示すように予め 設定した矩形のエリアに対して航路の存在や水深等を勘案 し避泊が可能と考えられるエリアの絞込みを点線に示すよ うに行い、このエリア面積と算定式避泊円の面積の比率を 算定し、船間距離という長さの次元とするためにその値の 平方根を求めた.

	船舶1	船舶2	A:船舶1−2の	避泊円半径:注1)			
	(船長)	(船長)	船間距離	船舶1	船舶2	B:合計	A/B
1	98	99	790.1	323	324	647	1.22
2	99	167	852.4	324	392	716	1.19
3	118	167	1063.2	343	392	735	1.45
4	167	104	1126.4	392	329	721	1.56
5	104	290	1006.5	329	515	844	1.19
6	100	290	1178.7	325	515	840	1.40
7	290	111	1099.7	515	336	851	1.29
8	129	111	1151.8	354	336	690	1.67
9	111	179	742.5	336	404	740	1.00
10	179	292	980.7	404	517	921	1.06
11	292	99	1129.5	517	324	841	1.34
12	99	149	811.3	324	374	698	1.16
13	99	110	897.4	324	335	659	1.36
14	104	94	741.0	329	319	648	1.14
15	62	94	553.0	287	319	606	0.91
16	94	105	698.8	319	330	649	1.08
17	105	75	712.0	330	300	630	1.13
18	75	84	880.0	300	309	609	1.44
19	84	50	695.8	309	275	584	1.19
20	72	50	860.1	297	275	572	1.50
21	84	76	925.2	309	301	610	1.52
22	76	75	852.1	301	300	601	1.42
23	75	80	720.8	300	305	605	1.19
24	80	113	1022.3	305	338	643	1.59
25	113	110	1220.4	338	335	673	1.81
26	82	72	705.1	307	297	604	1.17
注1)半径=Loa+4·D+145 平均值 1							1.31

表-4.1.1 船間距離に関する分析結果

図-4.1.4 避泊行動の例(東京湾)

表-4.2.1 にエリア内に存在した船舶 29 隻の避泊円の面積 (実測値)を示す.これらの和は約 10,689 (千 m2) である. 一方対象エリア面積は約 35,715 (千 m2) であるため,

(35,715,000/(10,689,247)) ^{0.5}=1.83

となり,船間距離分析(距離分析)での安全率と同様の概 念の値1.83が得られた.逆に安全率が実測値から明らかに なれば,必要避泊面積を以下のように求めることが出来る. ①対象水域での避泊船舶の需要隻数の算定

②①の個別船舶毎の泊地規模算定式による避泊面積の算定

③②の避泊面積×1.8² (≒3.3) により避泊水域規模を算定

なお上記では対象隻数を29 隻としたが, 避泊船舶以外の 航行中の船舶等10 隻を含めると39 隻が存在していた.この10 隻の船舶についても,ここでの算定経過に大きな影響 を及ぼすと考えた場合には,次のように概算結果を得ることができる.

 $(35,715,000/(10,689,247 * 39/29))^{0.5} = 1.58$

先の船間距離分析においてカバー率 80%の安全率として一つの目安とした 1.5 と同程度の値が得られる.

図-4.2.1 面積の観点からの船間距離の算定 (小さい円は個別船の算定式による避泊円を,大きい円はそれに安全率分を加えた 円をそれぞれ示している.) 表-4.2.1 水域面積による船間距離の分析

図-4.2.2 分析対象としたエリア (2012年台風4号、6月19日午後11時)

	IMO	船種文字列	LOA	全幅	DWT	GT	喫水	喫水(AIS)	風速30m基準値 半径 =Loa+4+D(20m)+145m	避泊円面積 =m2
1	1E+07	Bulk Carrier	292	45	179,000	93,200	18.2	17.3	517	839,713
2	9E+06	Bulk Carrier	290	47	184,872	93,199	18.0	13.4	515	833,229
3	9E+06	Bulk Carrier	179	28	33,399	21,192	10.0	6.8	404	512,758
4	9E+06	Limestone Carrier	149	23	17,000	10,741	8.4	8.0	374	439,433
5	9E+06	Ro-Ro Cargo Ship	167	24	6,759	9,832	7.2	6.5	392	482,750
6	9E+06	General Cargo Ship	111	21	10,810	8,739	8.3	4.2	336	354,673
7	9E+06	Ro-Ro Cargo Ship	118	20	9,523	8,652	7.9	5.7	343	369,605
8	9E+06	General Cargo Ship	113	20	9,118	7,636	7.3	6.5	338	358,908
9	1E+07	General Cargo Ship	110	19	8,767	7,057	8.0	5.1	335	352,565
10	9E+06	General Cargo Ship	100	19	8,572	6,102	8.5	0.0	325	331,831
11	0		129	22	4,752	5,599	13.5	6.0	354	393,692
12	9E+06	General Cargo Ship	99	19	7,301	4,441	7.1	3.9	324	329,792
13	9E+06	Products Tanker	104	16	4,998	3,676	6.3	4.8	329	340,049
14	9E+06	Products Tanker	104	16	5,676	3,535	6.6	5.8	329	340,049
15	9E+06	Products Tanker	105	15	5,663	2,986	6.6	6.4	330	342,119
16	9E+06	General Cargo Ship	84	13	3,606	2,091	5.9	4.0	309	299,962
17	9E+06	General Cargo Ship	80	14	1,600	1,998	5.6	4.7	305	292,247
18	9E+06	Grab Dredger	73	15	3,313	1,945	5.5	3.2	298	278,986
19	9E+06	Ro-Ro Cargo Ship	98	15	2,768	1,658	5.5	5.0	323	327,759
20	9E+06	General Cargo Ship	75	12	2,544	1,510	5.4	3.8	300	282,743
21	9E+06	Container Ship (Fully C	94	14	1,829	749	3.6	3.7	319	319,692
22	1E+05		75	12	2,059	749	5.3	3.5	300	282,743
23	9E+06	General Cargo Ship	72	15	2,015	749	4.5	4.5	297	277,117
24	9E+06	General Cargo Ship	82	14	1,900	699	4.6	5.0	307	296,092
25	9E+06	LPG Tanker	62	11	870	698	4.1	4.0	287	258,770
26	9E+06	General Cargo Ship	76	12	1,595	497	4.1	4.0	301	284,631
27	0		50	0	0	0	0	0	275	237,583
28	1E+07		99	26	0	0	0.0	5.0	324	329,792
29	0		84	14	0	0	0.0	5.8	309	299,962
			No.27の船長は不明なので仮定						避泊円:半径	10,689,247
									避泊円:半径*1.5	24,050,806
									避泊円:半径*2.0	42,756,988

5. 泊地規模算定式に関する考察

5.1 3大湾におけるデータによる考察

泊地規模算定式の関係を考察するため、3大湾で観測さ れた避泊円の直径の実測値と、泊地規模算定式による直径 の算定値との比較を行う.

図-5.1.1 は横軸に船長(Loa),縦軸に避泊円の直径を取り, 実線で泊地規模算定式による直径の算定値を示しその上に 3大湾での実測値をプロットしたものである.ここで水深 は平均的な数値として18mと仮定している.

東京湾における実測値は,毎秒 30mの式による値の回り に分布している一方,伊勢湾(三河湾を除く)ならびに大 阪湾の実測値は,風速毎秒 20mの式の値と毎秒 30mの式の 値との間に分布している.以下の理由から,毎秒 30mの式 について一定の適用性があるものと考察できる.

・瞬間風速は平均風速の 1.5 倍~2倍程度の間で変動する (ガストファクター) ため,風速毎秒 20m を想定しても, 実際には毎秒 30m 以上の風を受けることがあり得る.

・図-5.1.1 から、観測値のほとんどは風速毎秒 20m の式の

値よりも大きい. すなわち風速毎秒 20m の式の値による 直径では不足する可能性が高い.

ただし毎秒 30m の式を使用した場合でも、それ以上の実 測値があることにも留意が必要である.避泊面積は船舶航 行の安全にかかわるものであるため、さらに危険側を考慮 すべきであるとの考え方もあり得る.たとえば図-5.1.1 では 毎秒 30m の式による数値を一定の倍数した場合の直線も合 わせて示している.仮に毎秒 30m の式による数値を 1.2 倍 した場合、ほとんどの実測値をカバーすることが出来る.

船舶の全長が小さな領域(概ね全長が 120m 未満)にお いては、風速毎秒 20m 以上の式の値よりも実測値が小さい ケースが見られる.たとえば三河湾では船舶が輻輳してお り、このことが個別船の避泊行動に影響を及ぼしている可 能性がある(例:危険性が増大することを認識しつつも、 水域が狭いため避泊円を小さくしている).船舶の全長が小 さいケースについては、避泊水域の広さなど他の条件も加 味してさらに分析を行う必要があろう.

また, 避泊円の面積は以下のような条件にも左右される 可能性があることから, 今後もさらに分析を継続して行い

図-5.1.1 実測値と算定式との比較(湾域全体)

情報の蓄積をしていく必要があると考えられる.

・海底の錨がかりの良さ・悪さが海底の土質に左右される⁶⁾

- ・荒天時の風速・風向の変化の度合い:風向の変化が大きければ、より円弧の大きな避泊円となり分析においても 避泊円を容易に描くことが出来、分析の精度が向上する.
 本研究でも、伊勢湾・大阪湾においては東京湾と比して 風向の変化が小さくまた AIS データの欠測があったため、
 図-3.3.5 に示したように小さい円弧から円の全体を描く 必要がある場合が多く、このことは避泊円の直径の実測 値の精度を低下させている可能性がある.実測値が泊地 規模算定式より大きいケースの多くはこのためである.
- ・台風の位置との関係:台風の西側と東側では風による影響が異なることが指摘されている(東側の方がより影響を受けやすい).

DWT	観測値/30m式 (大型バルク船)	観測値/20m式
227,183	0.95	1.05
233,584	0.96	1.12
203,163	1.03	1.16
179,000	1.01	1.13
207,991	1.02	1.20
175,837	1.13	1.26
184,887	1.25	1.41
184,872	0.92	1.03
177,638	0.90	1.06
176,391	0.83	0.98
176,760	1.01	1.14
151,220	0.94	1.11
76,015	0.97	1.10
53,688	1.12	1.28
56,040	1.23	1.51
55,447	1.29	1.58
53,452	1.05	1.21
53,343	1.15	1.34
42,183	1.13	1.32
32,741	1.09	1.28
32,728	1.12	1.31
31,734	1.04	1.21
不足率	0.32	0.05

表-5.2.1 観測値と算定式の比較(大型バルク船)

5.2 大型バルク船と他の船舶との比較

大型バルク船は船型が大きいことから,他の船舶と別の 算定式を適用することの是非について検討した.

表-5.2.1 は、3 万 DWT 以上の大型バルク船のみのデータ について、観測値と算定式を比較したものである. 毎秒 20m の算定式については観測値/算定式の数値のほとんどが1 を超えており、毎秒 20m の算定式では泊地規模が不足する ことが示される. 一方毎秒 30m の場合には、サンプル数全 体の約7割が1を超えており、毎秒 30m の算定式でも泊地 規模の不足の可能性が示唆される. ここで表中の不足率と は、観測値/算定式の数値が1を下回るサンプル数の割合で ある.

同様の分析を他の船舶(ただし約 5,000DWT 以上の船舶 に限定した)について行い,横軸に DWT,縦軸に観測値/ 算定式(毎秒 30m)をプロットしたのが図 5.2.2 である.

図-5.2.2 によれば、大型バルク船とそれ以外の船舶について、観測値/算定式(毎秒 30m)は1.0の回りに同様に分布している(両者の平均値はともに1.05でほぼ同じ値である)ことから、大型バルク船のみに特化した避泊規模の算定式の必要性は現段階では認められない.

5.3 避泊円と走錨の関係についての基本的考察

旧海難審判庁は、内航船事業者を対象に避泊行動につい てのアンケート調査を実施している⁷⁾. ここでは東京湾に 関する公表データをもとに、避泊円と走錨の関係について 基本的な動向を考察する. ただし、アンケート対象は内航 船のみでまた最大船型も最大1万トン (GT) 程度であり大 型船は対象となっていない.

当アンケート結果からは、対象船舶についての基本的な 情報(船種,GT)の他、実際に避泊を行った水域の水深, 避泊のために使用した錨鎖の長さ、実際に経験した最大瞬 間風速ならびに波高が示されている. 走錨した場合には、

図-5.2.2 観測地と算定式の比較(大型バルク船・それ以外の船舶)

走錨時の風速が示されている.

東京湾において避泊(単錨泊)した船舶36隻について(うち走錨した船舶は6隻), 錨鎖の長さから避泊円の直径を算定(ここでは単純に水深を考慮せず錨鎖の長さに船舶の全長を加えたものを半径とした)し,泊地規模算定式と比較したものが図-5.3.1 である. 横軸には船の全長(Loa)を取っている.

「アンケートでの回答値/風速毎秒風速 20m の式」はいずれ も1を超えており、ここでも風速毎秒風速 20m の式による 避泊円では不足することが考察される.一方、「アンケート での回答値/風速毎秒風速 30m の式」の数値は概ね1程度と なっており、当該式の適用性が確認できる.特に全長 100m 未満の小型船では1を下回る船舶が多く、全長 150mを超 える船では1ないしはそれ以上(最大では約1.2)である 点は図-5.1.1 での東京湾に関する実測値の傾向とも一致し ている. またこれらの船舶が実際に経験した最大瞬間風速を横軸 に,波高を縦軸にとったものが図-5.3.2 である.現実には, 瞬間最大風速で毎秒 50m を超えるような強風を経験してい る船舶もあることがわかる.また図において,ひし形が走 錨ありのケース,四角がなしのケースである.一定の風速・ 波高を超えると走錨の危険性が高まることがわかる.逆に 四角で囲った部分は,走錨の確率が低いと思われる組み合 わせの範囲である.また風速・波高が高くても,走錨しな いケースが見られるが,その多くはエンジンを使った場合 である (図-5.3.2 において〇で囲んだ四角).

これらの図から,瞬間最大風速が毎秒風速 30m より相当 程度大きくなっても,避泊円の大きさは比例して大きくな っておらず,エンジンを用いて走錨が防止されている.

以上から,泊地規模算定式は毎秒 30m の式が一般的に使用されており,これ以上の風速(ならびに高い波高)が見 込まれる場合には,避泊円の大きさを大きくするのではな くエンジンを使用して走錨を防ぐという考え方が,船舶側

図-5.3.1 アンケート回答値と算定式の比較

図-5.3.2 走錨と風速(瞬間風速)・波高との関係

の荒天時の基本的な行動であると考察できる.図-5.3.3 は 船舶が経験した風速と避泊円の直径(「アンケートでの回答 値/風速毎秒風速 30m の式」)との関係であるが,両者に相 関関係は見られなかった.

ただしこの分析は限られた数の船舶についての実態分析 であり、また今後大型船についても同様の傾向となってい るかどうか情報の収集と分析が必要である.

6. おわりに

本研究の成果は以下のとおりである.

1) 3大湾(東京湾,大阪湾,伊勢湾)において,これま で十分に把握されていなかった大型バルク船を中心とした 船舶の避泊実態を分析し,いずれの湾においても対象とし て台風の通過時において 10 万トン級以上の超大型バルク 船が避泊していること,ならびにこれらのバルク船が避泊 船舶で輻輳する海域で避泊している場合があることを確認 した.

2)湾域のより安全な利用を確保する観点から,個別の船 舶の避泊に必要な水域面積に加えて,船舶と船舶との安全 な距離(以下「船間距離」)ならびにそれを用いた避泊水域 面積算定の考え方を検討した.実測値によれば,カバー率 を 80%とした場合,避泊船舶の間の距離は二つの避泊円の 半径の和の 1.5 倍程度であった.なおこのカバー率 80%は, 今後避泊のための泊地の整備に要するコストも勘案して設 定されるべき数値である.

3) 3大湾における避泊円の直径に関する実測値と泊地規 模算定式の関係を考察し,湾域において当該式のうち毎秒 30m の式について一定の適用性があることを示した.この 際,大型バルク船についてもこの適用性は他の船舶と同様 であることを考察した.ただし,毎秒 30m の式の値よりも 実際の泊地規模が大きい場合があることにも留意すべきで ある.

本研究について以下の課題が残されている.

第一に, 避泊円については必ずしも綺麗な円となってい るとは限らず, このことが実測の精度を減じている可能性 がある.実測円を描く範囲について一定の整理が必要であ る.

第二に,船の全長が小さい場合(概ね全長 120m 未満) については,泊地規模算定式の適用性についてさらなる検 討が必要である.

第三に、本分析は3大湾地域での大型船を主な検討対象 としており、避難港等の狭い水域における小型船の避泊行 動やそのために必要な避泊円については、本分析結果が適 用できるという確認はされていない.このため今後このよ うな狭い水域での小型船を対象とした避泊実態の分析を行 うことが必要である.

上記を踏まえつつ,今後泊地規模算定式の技術基準化に 向けた検討を行う予定である.

謝辞

本研究の実施に際しては,近畿地方整備局神戸港湾事務 所,中部地方整備局三河港湾事務所および関東地方整備局 千葉港湾事務所から AIS データの提供を頂きました.

また AIS を用いた分析・考察に際しては大津皓平先生, 芳村康男先生,津金正典先生,高橋宏直氏より貴重なコメ ントやご指導を賜りました.ここに深く謝意を表します. (2013年9月2日受付)

参考文献

- 国土交通省港湾局監修:港湾の施設の技術上の基準・同 解説,港湾協会,2007
- 高橋宏直,後藤健太郎:NILIM-AISによる東京湾避泊実態(平成19年台風9号)に関する分析 一浦賀水道航路の航行可能容量に関する考察-:国土技術政策総合研究所資料No.431,2007
- 3) 高橋宏直,後藤健太郎: NILIM-AIS による荒天時の泊地 規模に関する分析:国土技術政策総合研究所資料 No.500, 2009
- 高橋宏直,後藤健太郎:NILIM-AISによる荒天時の泊地 規模に関する分析(その2):国土技術政策総合研究所資 料 No.529,2009
- 5) 気象庁ホームページ
- 6) 本田啓之:操船通論,成山堂書店,2008年
- 7) 海難審判庁:台風と海難, 2006年

国土技術政策総合研究所資料

TECHNICAL NOTE of NILIM

No. 754 September 2013

編集·発行 ©国土技術政策総合研究所

本資料の転載・複写のお問い合わせは ^{〒239-0826} 神奈川県横須賀市長瀬 3-1-1 管理調整部企画調整課 電話:046-844-5019