1 はじめに

地球規模の温暖化は世界的に共通の関心事 になっている。また、ヒートアイランド現象(都 市の気温上昇)は年々深刻化している。ここ 100 年間で東京の気温は約 3℃上昇したが、同期間 の日本全体の気温上昇は約 1℃であった¹⁾。こ の傾向から東京地域の場合は、地球規模の長期 的な気候変動に加えてヒートアイランドによ る気温の変化が顕著に表れていることが強く 示唆される。

気温は、建築や人の生活において基本的な環 境要因であると言える。都市のヒートアイラン ド現象は地域の人口密度とのつながりが強い とされている²⁾。したがって、ヒートアイラン ド化でもたらされた気温の変化は都市の過密 性を反映するものであり、そこに居住する人間 に多大な影響を与える可能性がある。

図1に都市の気温上昇の要因を示す。まず、 地表面被覆の影響が考えられる。東京23区の 地表面の8割近くは建物、道路等の人工的な構 造物で被覆されており、水面・公園等の自然要 素による被覆割合は2割に満たない³⁾。アスフ アルト、コンクリートの表面温度は夏季の日中 に50~60℃に上昇し夜間においても蓄熱効果 で温度がなかなか下がらない性質がある。その 結果、気温も上がってしまうのである。 2 番目の要因は人工排熱である。国土交通 省・環境省は、東京 23 区における建物、交通、 事業所等から発生する人工排熱について時空 間データベースを整備した⁴⁾。人工排熱の日集 計値(8月平均を想定)を調べると東京 23 区全 体で約 2,000TJ/日であり、この値を東京 8月の 日射日総量値と比較すると、快晴日の1割、月 平均日の2割に相当する。自然界では大気を暖 める対流熱量は太陽放射のせいぜい1割程度⁵⁾ であり、それを踏まえると都市の人工排熱は大 変大きい熱源であると言える。また、人工排熱 の中で建物からの発生量が最も大きく、全体の 半分を占めていることも指摘されている。

もう1点は都市の風通しである。東京臨海部 では屏風状の超高層ビル群が建設されており、 環境影響が危惧されている⁶⁾が、高層建築物が もたらす風の変化が周辺の気温に及ぼす影響 は十分解明されていないのが現状である。東京 23 区には建物が160万棟存在し、東京23 区全 体の面積の30%を占有している⁷⁾。建築物は自 然地形と共に都市域の凹凸を形成しており、そ の形態を工夫して都市の風通し改善を図るこ とが必要である。

以上から気温低減のため、まず行うべき対策 は都市で発生する熱量を減らすことである。都 市で発生する熱には地表面被覆からの放熱と

図1 都市が高温化する要因

人工排熱があり、これらの削減を図る必要があ る。これまで、緑化や高反射仕上げ等による表 面温度の低減⁸⁾⁹⁾や室外機への水散霧による顕 熱抑制¹⁰⁾など様々な発生熱源対策が講じられ てきた。個々の対策の推進は極めて重要かつ有 効であるが、ヒートアイランド現象が生じる都 市スケールとの乖離が大きく、対策効果のリア リティを得ることは難しい。

発生した熱を都市空間で澱ませないこと、風 通しを良くすることも重要な視点である。発生 熱源対策が個々の建材や機器の問題であるの に対して、風通しの評価においては大気側を含 めて解析のスケールを拡げて考える必要があ る。都市を俯瞰すると、都市で発生した熱を上 空へ効率良く放散させる都市構造が求められ る。日本の大都市の多くは沿岸部に位置してお り、海陸風循環が発生するのでその冷熱ポテン シャルを活用することも有効であると考えら れる¹¹⁾。しかし、都市の上空を流れる風と同時 に、河川や街路、建物等の都市の複雑な隙間を 流れる風をミクロに再現する解析は実質困難 であった。

都市域には建物、樹木等が複雑に配置されて おり、都市空間内およびその上空で熱や運動量 の輸送が行われている。都市の構成要素は様々 なスケールを有しており、全ての構成要素を一 律に取り扱うことは計算機能力の制約から不 可能である。そこで、全ての構成要素を直接解 像することはあきらめ、メッシュ単位で粗視化 する行為が通常必要になる。メッシュ幅や解析 領域の大きさは目的によるため、それに応じて モデル化が必要である。

数値モデルには大きく、メソスケールモデル ^{12) 13) 14) 15) 16)}、キャノピーモデル^{17) 18) 19) 20) 21)}、CFD (Computational Fluid Dynamics;数値流体力 学)^{22) 23) 24) 25)}の3つが存在する。これらの数値 モデルのメッシュ解像度、解析領域のスケール (水平方向)を整理したのが図2である。本研 究資料では、現実の建物配置・形状を解像する 計算方法を CFD と呼ぶ。CFD は市街地の風環境 予測において有効な手法の一つであり、様々な 適用事例が見られる²⁶⁾が、広域スケールの問題 へはほとんど適用されていないのが現状であ る。メソスケールモデルはメッシュ解像度が粗 いが広域を取り扱いやすく、キャノピーモデル は上記モデルの中間のスケールを取り扱うの に適している。メソスケールモデルやキャノピ ーモデルは原理上、街区の内部を細かく分析す るのには向いていない²⁷⁾。だから、図中にメッ シュ解像度 10m 付近で実用上、"gap"(隙間) があるとして区別している。この"gap" (隙 間)の克服に向けて、CFDの解析領域の拡張、 メソスケールモデルなどの異種モデルとのネ スティング(入れ子式に大小を結合すること) が考えられる。後者については数多くの研究事 例が見られる²⁸⁾ので、本稿では広域 CFD 解析の 可能性について述べる。

広域 CFD 解析には 2 つの視点がある。一つは、 学術的興味に関するものである。図 3 に 1km 四 方領域における風、気温の分布を示す。メソス ケールモデルを用いる場合であればこの領域 は 1km メッシュで代表されることになる。しか し、実際には数多くの建物、道路がこの地区に は存在しており、土地利用、起伏について相当 のばらつきが存在する。もし、これらの複雑な 3 次元形状を考慮して広域の計算を実施したら、 都市境界層にどのような現象が見られるのか。 これが第一の視点である。

第二の視点は都市設計への応用である。図3 を細かく見ると蛇行する河川に沿って風が流 れていることがわかる。しかし、蛇行のコーナ 一部分では風が直進し、そのまま市街地に流入 している。そのような場所の気温はその他の市 街地に比べて1℃程度低い。そういった低温域 は河川の周辺にたくさん見られる。広域のCFD

図2 ヒートアイランドの数値モデル

解析から得られる情報は、パッシブ冷却効果を 都市デザインに取り入れる上でとても重要で ある。

メッシュの高解像度化と十分な解析領域の 確保は、数値解析に携わる研究者が慢性的に抱 える要望であったが、そのためには高性能なス ーパーコンピュータの活用が不可欠であると 言える。独立行政法人海洋研究開発機構が運用 する大規模なベクトル並列型スーパーコンピ ュータ、「地球シミュレータ」は、主記憶容量 と演算処理速度において運用開始時点(2002 年3月)で世界最大の規模と能力を持つ設備で あり、広く外部研究機関にもその利活用が図ら れている。このため、独立行政法人建築研究所 では、2004年度から2008年度まで一般公募利 用として「地球シミュレータ」を活用して研究 を進めてきたところであり、本成果は「地球シ ミュレータ」に負うところが大であった。

なお、「地球シミュレータ」とは、640台のス ーパーコンピュータおよび付帯設備から構成 され、主記憶容量は10テラバイト、演算処理 速度は 40 テラフロップス (テラフロップスと は、コンピュータの処理速度を表す単位の一つ で、1秒間に1兆回の浮動小数点数演算(実数計 算)を実行できることを意味する)である。2009 年3月より新システム(主記憶容量:20テラバ イト、演算処理速度:131 テラフロップス)の 運用を開始しており、2009年度には「地球シミ ュレータ」の一般公募利用として、地球科学分 野16件(地球温暖化、マントル、宇宙等)、先 進・創出分野9件(ゲノム、原子力等)が実施 されている。「地球シミュレータ」は、10~20km メッシュによる全球解析²⁹⁾³⁰⁾を可能とし、気候 変動に関する政府間パネルの 2007 年ノーベル 平和賞受賞に貢献するなど、気候変動予測にお いて大きな役割を果たしている。

本研究は「地球シミュレータ」を都市環境問題に初めて活用し、建物周辺から都市スケール に至る熱環境を高解像度で予測する大規模数 値解析技術の開発に取り組むものである。東京 23 区全域を水平 5m メッシュで詳細に解像した 大規模数値解析を実施した結果について紹介 を行うと共に、都市形態と熱環境の関係を考察 する。なお、本研究資料で述べる、計算プログ

図3 隅田川周辺の気温と風(地上10m)

ラムの最適化や計算の実行は旧システム上で 実施された。

本研究資料で使用する記号について表1に まとめる。

10m/s

表1 本研究資料で使用する記号一覧

記号	意味	単位
а	葉面積密度 (a=1.5)	m^{2}/m^{3}
a _c	葉の吸収率	_
B _C	固定部分のメモリ量	GB
C_d	樹冠の抵抗係数(C_d =0.20)	_
C_{g}	土壌の比熱	J/kg/K
C_p	混合空気の定圧比熱 $\left(=(1-q)C_{p,a}+qC_{p,v}\right)$	J/kg/K
$\mathcal{C}_{ ho,a}$	乾燥空気の定圧比熱	J/kg/K
$C_{\rho,\nu}$	水蒸気の定圧比熱	J/kg/K
$\mathcal{C}_{ hoarepsilon1}$	ϵ 方程式の樹木抵抗項に係る補正係数(\mathcal{C}_{pe1} =1.8)	_
<i>C</i> _{<i>q</i>³}	モデル定数 (C_{q3} =0.25)	_
C_{ε^1}	モデル定数 ($C_{arepsilon1}$ =1.44)	_
C_{ε^2}	モデル定数 ($C_{arepsilon2}$ =1.92)	_
C_{ε^3}	モデル定数 ($C_{arepsilon3}$ =1.44)	_
$C_{ heta3}$	モデル定数 ($C_{ heta3}$ =0.25)	_
C_{μ}	モデル定数 (C_{μ} =0.09)	_
D	拡散係数	kg/m/s
е	水蒸気圧	mmHg
E	蒸発潜熱	W/m ²
E _r	並列化効率	_
e _s	日射ベクトル	_
e _{sat}	飽和蒸気圧	Ра
f	Coriolis $ vert \vec{\neg} vert - vert \left(= 2\Omega \sin \phi \right)$	1/s
F	葉の配置関数	_

F _{ci}	コリオリカ	$kg/m^2/s^2$
F_i	抗力	m/s²
F_k	樹木モデルの K、 <i>E</i> 輸送方程式の付加項	m^2/s^3
F_L	蒸発潜熱	W/m ³
F _s	対流顕熱	W/m ³
<i>g</i> _{<i>i</i>}	加速度	m/s ²
G	伝導熱流	W/m^2
G_{f}	流体の有効占有率	_
<i>G_j</i> (具体的には	座標系第 j軸に垂直な計算セル界面における面開口率	
$G_x, G_y, G_z)$	(G _x : x 軸に垂直、G _y : y 軸に垂直、G _z : z 軸に垂 直)	_
G_k	浮力による乱流エネルギー k の生産項	Pa/s
G_s	流体の面積占有率	_
G_{v}	計算セルにおける流体の体積占有率	_
h	熱伝達係数	$W/m^2/K$
Н	対流顕熱	W/m ²
H_{B}	建物高さ	m
H_{B}'	判定当該メッシュにおける地上からの建物の高さ	m
h_c	解析セルの厚み(高さ方向)	m
h_p	壁面から壁面第1定義点までの距離	m
h_{q}	物質伝達係数 $(= h/C_p)$	$kg/m^2/s$
h_s	太陽高度	rad.
I ₀	太陽定数	W/m^2
k	乱流エネルギー	m^2/s^2
K	運動エネルギー	m^2/s^2
Ŕ	平均流の運動エネルギー	m^2/s^2

k_p	壁面第1定義点の乱流エネルギー	m^2/s^2
<i>k</i> ₁	消散係数	_
L	水の蒸発潜熱	J/kg
L(x)	放射エネルギー	W/m ²
$L_a \downarrow$	大気放射量	W/m ²
ℓ_m	距離	m
$L_s \uparrow$	地表面からの長波放射量	W/m ²
т	メモリ量	GB
m _r	1プロセス数当たりのメモリ量	GB/個
M _s (具体的に は M _a , M _y)	大気成分 s の分子量 (<i>M_a</i> :乾燥空気、 <i>M_v</i> :水蒸気)	kg/mol
N	観測データ数	個
N _P	プロセッサ数	個
N _V	ベクトルプロセッサによる高速化係数	_
N _x	X 軸方向の領域分割数	個
N _y	y 軸方向の領域分割数	個
N _z	こ軸方向の領域分割数	個
р	圧力	Ра
Р	Exner 関数	_
<i>P</i> _a	乾燥空気の分圧	Ра
P_k	平均速度勾配による乱流エネルギー k の生産項	Pa/s
Pr _T	乱流 Prandtl 数 (Pr₇=0.9)	_
P _s	大気透過率	_
p_v	水蒸気の分圧	Ра
<i>p</i> ₀	基準圧力	Ра

<i>q</i>	比湿	kg/kg
$q_{G,sat}$	地表面飽和比湿	kg/kg
$Q_{\scriptscriptstyle L}$	人工排熱(潜熱)	W/m ³
q_m (具体的には	表面比湿(q_R :建物屋上、 q_W :建物壁面、 q_G :地	kg/kg
$q_{\scriptscriptstyle R}$, $q_{\scriptscriptstyle W}$, $q_{\scriptscriptstyle G}$, $q_{\scriptscriptstyle c}$)	表面、 <i>q_c</i> : 葉)	
Q_{RG}	建物の屋上面および地表面からの排熱量	W /m ³
$\widetilde{Q}_{\scriptscriptstyle RG,i}$	当該解析セルの建物の屋上面および地表面からの排 熱のうちセル i に分配される排熱量	W
Q_s	人工排熱(顕熱)	W/m ³
$Q_{\scriptscriptstyle W}$	建物の壁面からの排熱量	W /m ³
$\widetilde{Q}_{\scriptscriptstyle W,i}$	当該解析セルの建物の壁面からの排熱のうちセルiに 分配される排熱量	W
$\widetilde{Q}_{o,i}$	当該解析セルの建物の屋上面、壁面および地表面から の排熱のうちセルiに分配される排熱量	W
r	実質的な格子幅の比	_
R	混合空気の気体定数 $\left(=(1-q)R_a+qR_v\right)$	J/kg/K
R_a	乾燥空気の気体定数 (= R_o/M_a)	J/kg/K
r _c	葉の反射率	_
$R_{RG,k}$	当該解析セルの固体部分を考慮した、建物の屋上面お よび地表面からの余剰排熱が周辺セル k+1(直上)に 分配される割合	_
$R_{_{V}}$	水蒸気の気体定数 (= R_o/M_v)	J/kg/K
$R_{W,ij}$	当該解析セルの固体部分を考慮した、建物の壁面から の余剰排熱が周辺セル i±1、j±1(水平方向)に分配 される割合	_
R_o	普遍気体定数	J/mol/K
R _{o,ijk}	当該解析セルの建物の屋上面、壁面および地表面から の排熱が周辺セル i±1、j±1(水平方向)および k+1 (直上)に分配される割合	_
R ₇	乱流時間スケールの比 (R_{τ} =0.8)	_
S	解析領域	k m ²
S	面素ベクトル	
Sc	Schmidt 数 (<i>Sc</i> =0.5)	
${oldsymbol{\mathscr{S}}}_{ au}$	乱流 Schmidt 数 ($m{\mathscr{L}}_{7}$ =0.9)	_

S _d	法線面直達日射量	W/m^2
$S_d \downarrow$	直達日射量	W/m ²
$S_{g}\downarrow$	全天日射量	W/m ²
$S_{_{m}}$ (具 体 的 に は $S_{_{R}}, S_{_{W}}, S_{_{G}}, S_{_{\ell}}$)	表面積(S_R :建物屋上、 S_W :建物壁面、 S_G :地表面、 S_ℓ :葉)	m ²
$S_n \downarrow$	正味全天日射量	W/m^2
$S_s \downarrow$	天空日射量	W/m ²
t	時間	s
Т	気温	К
T _g	土壤温度	K
$T_{_{m}}$ (具 体 的 に は $T_{_{R}}, T_{_{W}}, T_{_{G}}, T_{_{c}}$)	表面温度 (T_R :建物屋上、 T_W :建物壁面、 T_G :地表面、 T_c :葉)	К
T _{SCALAOR}	スカラプロセッサの総計算時間	s
T _{SINGLE}	シングルプロセッサによる総計算時間	s
T _{PARALLEL}	複数のプロセッサによる総計算時間	s
T _{VECTOR}	ベクトルプロセッサの総計算時間	8
U	スカラー風速、 $U = \sqrt{u_1^2 + u_2^2 + u_3^2}$	m/s
<i>u</i> _b	CFD 解析領域の上端における風速の境界条件	m/s
<i>u</i> _j	風速第 <i>j</i> 成分	m/s
<i>u</i> _p	壁面第1定義点の壁面接線方向速度	m/s
u [*]	摩擦速度	m/s
V	解析セルの体積	m ³
V _c	体積容量	m ³

W_1	中間の変数、 $W_1 = \left(\frac{u^*}{l_m}\right)^2 + \frac{1}{Pr_T} \frac{g_i}{\tilde{\theta}} \frac{\partial \tilde{\theta}}{\partial x_i} + \frac{1}{Sc_T} \frac{g_i}{W_1} \frac{\partial \tilde{q}}{\partial x_i}$	$1/s^2$
<i>W</i> ₂	中間の変数、 $\frac{1}{W_2} = \frac{1}{\widetilde{R}} \left(\frac{R_o}{M_v} - \frac{R_o}{M_a} \right)$	_
W ₃	中間の変数、 $W_3 = \frac{1}{Pr_T} \frac{g_i}{\tilde{\theta}} \frac{\partial \tilde{\theta}}{\partial x_i} + \frac{1}{Sc_T} \frac{g_i}{W_1} \frac{\partial \tilde{q}}{\partial x_i}$	$1/s^{2}$
x	x 座 標	m
X	世界測地系座標(南北方向)	m
<i>x</i> _j	座標系第 <i>j</i> 軸	m
X_n	壁面鉛直方向の座標	m
У	y 座標	m
Y	世界測地系座標 (東西方向)	m
Y _s	気体成分 <i>s</i> の質量分率	kg/kg
z	z 座 標	m
Z _b	CFD解析領域の上端の高さ	m
Z_B	土壌の不易層深さ	m
Z_{s}	判定当該解析メッシュの日射到達地上高さ	m
α	アルベド	_
$\alpha_{_g}$	熱拡散係数	m²/s
α_r	並列化率	_
β	蒸発効率	_
$\beta_{\scriptscriptstyle F}$	比例部分のメモリ量	GB
β_r	ベクトル化率	_
γ	時角	rad.
δ	赤緯	rad.
$\delta_{_{ij}}$	ディラックのデルタ関数	_
ε	乱流エネルギー散逸率	m^{2}/s^{3}
<i>E</i> _c	葉の射出率	_
\mathcal{E}_{G}	地面の射出率	_

${\cal E}_{ijk}$	エディントンのイプシロン	_
<i>E</i> ₀	収束判定のための微小数	_
Е	経験定数 (E=9.0)	_
ζ	物理量	
η	熱伝導係数等の補正値	_
θ	温位	К
$ heta_s$	仰角	rad.
К	カルマン定数	_
λ	混合空気の熱伝導係数	W/m/K
λ_{g}	土壌の熱伝導係数	W/m/K
λ_T	混合空気の乱流熱伝導係数	W/m/K
μ	混合空気の粘性係数	Pa·s
$\mu_{\scriptscriptstyle T}$	乱流粘性係数	Pa·s
ν	動粘性係数	m²/s
ξ	物理量	
ξ_N	同一と見なされる実験条件で繰り返し観測を行ったと きに得られる N 個の物理量 ξ の観測データ	
ξ'	物理量	
Ë.	物理量 <i>ξ</i> の Favre 平均からの変動	
ξ	物理量 <i>ξのアンサンブル</i> 平均	
Ĩ	物理量 <i>その</i> Favre 平均	
ξ_0	物理量	
ρ	混合空気の密度	kg/m ³
ρ_a	乾燥空気の密度	kg/m ³
$ ho_{g}$	土壌の密度	kg/m ³
$ ho_v$	水蒸気の密度	kg/m ³

σ	ステファンボルツマン定数 ($\pmb{\sigma}_k$ =5.67×10 ⁻⁸)	$W/m^2/K^4$
$\sigma_{_k}$	モデル定数(σ_k =1.0)	_
$\sigma_{_q}$	モデル定数(σ_q =0.5)	_
$\sigma_{_{arepsilon}}$	モデル定数 (σ_{ε} =1.3)	_
$\sigma_{ heta}$	モデル定数 ($\sigma_{ heta}$ =0.5)	_
τ	透過率	_
ϕ	計算対象区域の緯度	rad.
$\phi_{\scriptscriptstyle S}$	方位角	rad.
Ψ	天頂角	rad.
Ω	地球の自転角速度	rad./s