ISSN 1346-7328 国総研資料 第 563 号 平成 22 年 1 月

国土技術政策総合研究所資料

TECHNICAL NOTE of National Institute for Land and Infrastructure Management

No. 563

January 2010

耐震強化施設としてのコンテナクレーンの耐震性能照査手法 に関する研究(その3)

宫田正史·吉川慎一·竹信正寬·菅野高弘·小濱英司·久保哲也

Study on the Seismic Performance-based Design Methods for Container Cranes (Part 3)

Masafumi MIYATA, Shinichi YOSHIKAWA, Masahiro TAKENOBU, Takahiro SUGANO, Eiji KOHAMA, Tetsuya KUBO

国土交通省 国土技術政策総合研究所

National Institute for Land and Infrastructure Management Ministry of Land, Infrastructure, Transport and Tourism, Japan 国土技術政策総合研究所資料 2010年1月 No. 563 (YSK-N-204)

耐震強化施設としてのコンテナクレーンの耐震性能照査手法

に関する研究(その3)

宮田正史*·吉川慎一**·竹信正寛***·菅野高弘****·小濱英司*****·久保哲也******

要 旨

『港湾の施設の技術上の基準を定める省令』及び『港湾の施設の技術上の基準の細目を定める告示』 の改正(2007.4)にともない、技術基準対象施設として荷さばき施設のうち石油荷役機械以外の機械 が追加され、さらに耐震強化施設に設置される荷役機械についてはレベル2地震動に対する要求性能 及び性能規定が明確に規定された.しかしながら、技術基準改正に対応した設計事例が存在しないこ となどから,耐震強化施設としての荷役機械を対象とした耐震性能照査手法の標準化及び照査項目等 の明確化が必要とされている.

このため、本研究では、以下の検討を行った.

- ① 既存の免震コンテナクレーンを対象として,免震装置の基本仕様を設定する際の基本的な考え 方および設計手順について例示するとともに、3次元有限要素法を用いた免震コンテナクレー ンのモデル化手法についての検討
- ② 3次元有限要素法を用いた免震コンテナクレーンの地震時応答解析を実施し,係留施設とコン テナクレーンの双方の耐震性を確保するための、レベル2地震動に対する標準的な耐震性能照 査手法、照査項目および許容値の考え方等についての検討

本資料は、以上に示した結果を(その3)として報告するものである.

キーワード:耐震強化施設,コンテナクレーン,3次元FEM,耐震性能照査,レベル2地震動

^{*} 港湾局技術企画課技術監理室課長補佐(前国土技術政策総合研究所港湾研究部主任研究官) ** 株式会社ニュージェック 港湾・海岸グループ 港湾・空港チーム *** (独) 港湾空港技術研究所地盤・構造部構造振動研究室研究官

^{**** (}独) 港湾空港技術研究所地盤·構造部構造振動研究室長 ***** 関東地方整備局横浜港湾空港技術調査事務所設計室長

^{******} 関東地方整備局横浜港湾空港技術調查事務所設計室建設管理官

^{〒100-8918} 東京都千代田区霞が関2-1-3

電話:03-5253-8681 Fax:03-5253-1652

e-mail: miyata-m92y2@mlit.go.jp

Technical Note of NILIM No. 563 January 2010 (YSK-N-204)

Study on the Seismic Performance-based Design Methods for Container Cranes (Part 3)

Masafumi MIYATA* Shinichi YOSHIKAWA** Masahiro TAKENOBU*** Takahiro SUGANO**** Eiji KOHAMA**** Tetsuya KUBO*****

Synopsis

Technical Standards for Port and Harbour Facilities in Japan were just revised in 2007, which include new regulations upon cargo handling equipment such as container cranes. As is the case with a high seismic resistant quaywall (port structure), both a container crane and a quaywall shall be the structures that will sustain only slight damage during Level 2 (L2) earthquake motion and their functions can be quickly restored after the earthquake. In addition, the evaluation method for the L2 earthquake motions was also changed completely. Therefore a standard procedure for the performance-based seismic design, considering both seismic performances of a container crane and a quaywall against the L2 earthquake motions, is required in the actual design works.

From the above point of view, in this study we examine the following issues as a second step;

- 1) seismic design procedures and 3D-FEM modeling methods for seismically isolated container cranes equipped with existing structure types of isolator, and
- 2) performance-criteria to ensure performance-recruitments of both a quaywal and a container crane, based on seismic response analyses with using three-dimensional finite element method.
- Key Words : high seismic resistant quaywall, container crane, performance-based seismic design,

three-dimensional finite element method, Level 2 earthquake motion

^{*} Engineering Administrative Office, Engineering Planning Division, Ports and Harbours Bureau (Ex-Senior Researcher of Port Facilities Division, Port and Harbor Department, NILIM)

^{**} Manager, Port and Airport Division, Port and Coastal Engineering Group, NEWJEC Inc.

^{***} Researcher, Structural Dynamics Div., Geotech. and Structural Eng. Dept., Port and Airport Research Inst.

^{****} Head, Structural Dynamics Div., Geotech. and Structural Eng. Dept, Port and Airport Research Inst.

^{*****} Head, Design Section, Yokohama Port and Airport Technology Investigation Office

^{******} Subsection Chief, Design Section, Yokohama Port and Airport Technology Investigation Office 2-1-3 Kasumigaseki, Chiyoda-ku, Tokyo, 100-8918 Japan

Phone : +81-3-5253-8681 Fax : +81-3-5253-1652 e-mail: miyata-m92y2@mlit.go.jp

1. はじめに	1
2. 三次元有限要素法を用いたコンテナクレーンの耐震性能照査手法	2
2.1 概要 ·····	2
2.2 標準的な耐震性能照査の手順 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2.3 三次元有限要素法を用いた免震コンテナクレーンのモデル化 ・・・・・・・・・・・・・・・・	3
2.4 照査項目および照査規準 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
3. 三次元有限要素法を用いた免震コンテナクレーンの耐震性能照査の事例	26
3.1 概要 ·····	26
3.2 免震コンテナクレーンのモデル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	26
3.3 予備解析	29
3.4 重力式岸壁上における免震コンテナクレーンの耐震性能照査の事例・・・・・・・・・・・・	33
3.5 桟橋式岸壁上における免震コンテナクレーンの耐震性能照査の事例・・・・・・・・・・・・	38
4. まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	50
謝辞 · · · · · · · · · · · · · · · · · · ·	50
参考文献 ·····	50

目 次

1. はじめに

平成18年5月の港湾法改正において,港湾の施設の技術 上の基準の性能規定化が図られ,これを受けて『港湾の 施設の技術上の基準を定める省令(平成19年3月26日国土 交通省令第15号)』及び『港湾の施設の技術上の基準の 細目を定める告示(平成19年3月28日国土交通省告示第 395号)』の改正が行われ,平成19年4月1日より新しい技 術基準(以下,技術基準と呼ぶ)が施行された¹⁾²⁾.この 中で,臨海部における地震時の港湾機能の確保や防災拠 点形成機能の強化等の観点から,技術基準の対象施設と して,廃棄物埋立護岸,海浜,緑地,広場及び荷さばき 施設のうち石油荷役機械以外の機械が新たに追加された.

耐震強化施設に設置される荷役機械の要求性能につい ては、省令及び告示において「レベル二地震動等の作用 による損傷等が,軽微な修復による当該荷役機械の機能 の回復に影響を及ぼさないこと.」及び「耐震強化施設 に設置される荷役機械の性能規定にあっては、主たる作 用がレベル二地震動である偶発状態に対して、作用によ る損傷の程度が限界値以下であることとする. | と規定 され、「港湾の施設の技術上の基準・同解説」²⁾の解説 では、該当する施設を「特定(幹線貨物輸送対応)」と 位置づけ, 「レベル二地震動の作用後, 短期間のうちに 船舶の利用及び幹線貨物の荷役を行うことができる施 設」として規定している.このように、耐震強化施設に 設置される荷役機械については、レベル2地震動に対する 具体的な対応策が求められることとなっている. なお, 一般に耐震強化施設に設置される荷役機械は、橋形クレ ーンの一種で、コンテナ揚げ積み専用の特殊つり具をも つ係留施設用クレーン(以下,コンテナクレーン)であ り,本資料の検討対象はクレーン脚の海陸方向のスパン が30m程度の大型のコンテナクレーンとする.

以上に示したとおり,耐震強化施設のうち特定(幹線 貨物輸送対応)の場合,係留施設の耐震性の確保ととも にコンテナクレーンの耐震性も同時に確保することが必 要とされる.また,基準改正にともない,設計入力地震 動の考え方が変更となり,サイト特性等を考慮した長周 期・長継続時間のレベル2地震動²に対するコンテナクレ ーンの耐震性評価が必要となっている.

しかしながら,現状の設計実務では,以下に示すよう な課題が顕在化している.

 ①コンテナクレーンに関する各種の設計情報の不足
 ②新しいレベル2地震動に対してコンテナクレーンに 要求される耐震性能(性能規定)の明確化及び照査

手法・項目等の標準化

上記①②の課題のうち,課題①については,前々報³⁾ において,係留施設の設計初期段階においてクレーン側 の基本諸元の仮設定を容易にできるように,コンテナク レーン自重などの基本諸元の整理を行った.また,前報 ⁴⁾において,既存コンテナクレーンの固有周期や浮き上 がり限界加速度等の基本情報の整理を行い,また,実機 コンテナクレーンを対象とした各種観測(強震観測,振 動計測,常時微動)及び3次元FEMより得られる固有値解 析に基づく,コンテナクレーンの振動特性について検討 を行った.

課題②については、前々報³⁰において、コンテナクレ ーンの耐震設計に関する課題や、係留施設とコンテナク レーンの双方の耐震性を確保するための標準的な耐震性 能照査の在り方を検討した上で、既に提示されているコ ンテナクレーンの重心位置の加速度応答を評価するため の簡易手法(1質点モデル)の長周期・長継続時間の地震 動に対する適用性について模型実験及び解析による検証 などを行った.

本研究では,課題②に関連する事項として,以下に示 す検討を行った.

〔課題②〕

- i)既存の免震コンテナクレーンを対象として、免震 装置の基本仕様を設定する際の基本的な考え方お よび設計手順について例示するとともに、3次元有 限要素法を用いた免震コンテナクレーンのモデル 化手法についての検討
- ii) 3次元有限要素法を用いた免震コンテナクレーンの地震応答解析を実施し、係留施設とコンテナクレーンの双方の耐震性を確保するための、レベル2地震動に対する標準的な耐震性能照査手法、照査項目および許容値の考え方等についての検討

本資料は,以上に示した結果を(その3)として報告す るものである.

三次元有限要素法を用いたコンテナクレーンの耐震性 能照査手法

2.1 概要

港湾基準の改正にともない,耐震強化施設に設置され るコンテナクレーン(荷役機械)については,レベル2 地震動に対する耐震性能照査を実施して,所要の要求性 能を満足していることを照査する必要がある.また,耐 震強化施設としてのコンテナクレーンについては,当該 施設が技術基準に適合するものであるかについての適合 性確認を受けなければならない.現状では,クレーン設 置者が国土交通大臣による確認を受ける必要がある.

レベル2地震動に対するコンテナクレーンの耐震性能 照査は、3次元 FEM 解析を用いた照査が基本となること が想定される.これは、平成7年兵庫県南部地震以降, 免震コンテナクレーンが導入されたが、その導入段階に あたっては、3次元有限要素法、振動台を用いたコンテ ナクレーン模型の加振試験および免震装置部分(減衰ダ ンパー等)の性能確認試験などが実施され、3次元有限 要素法により一定精度の再現解析が可能であることが既 に確認されているためである.

しかしながら,以上に示す兵庫県南部地震以降の各種 検討は,各クレーンメーカーが各社固有の免震装置に対 して独自に実施したものであり,共通した照査項目や標 準的な照査規準の設定の考え方が整理されている訳では ない.このため,上述した適合性確認の観点からは,標 準的な照査項目や基準値等を整理しておくことは,設計 実務上において有効である.

以上の観点から,本章では,耐震強化施設としてのコ ンテナクレーンの標準的な耐震性能照査手順について整 理した(2.2).その上で,免震コンテナクレーンを3次 元有限要素法でモデル化する際の具体的な方法や留意点 (2.3),および標準的な照査項目・照査規準(2.4)につ いて整理した.

2.2 標準的な耐震性能照査の手順

(1)性能照査の基本

耐震強化施設としてのコンテナクレーンおよび係留施 設の耐震設計については、コンテナクレーンと係留施設 の双方の耐震性能が同時に満足されるように、注意を払 いながら設計を進める必要がある.

一方,現状では,係留施設側の設計・施工の後,数年 後にコンテナクレーンの設計・製造・設置という整備手 順が一般的である.このため,係留施設とコンテナクレ ーンの構造検討について,同時に同精度の検討を実施す

図-2.1 コンテナクレーンおよび係留施設の 標準的な耐震性能照査手順

ることは現状では困難である.

特に、レベル2地震動に対するコンテナクレーンの成 立性については、係留施設側の設計者がコンテナクレー ンを想定し、現状の技術水準においてコンテナクレーン メーカーが製造可能な諸元の範囲内であることを確認し ながら係留施設の設計を実施することが現実的な対応で ある.前々報³⁾では、係留施設とコンテナクレーンの双 方の耐震性を確保するための標準的な耐震性能照査とし て、図-2.1に示すとおり、以下の3段階で行うことを 提案した.

①係留施設の予備検討段階
 ②係留施設の基本設計・詳細設計段階

③コンテナクレーンの設計・製造段階

この照査手順案では、予備検討という新たな段階を位 置づけ、この段階で耐震強化施設としてのコンテナクレ ーンの成立性に関する概略評価を行い、クレーンが成立 することの確認をもって、係留施設の基本設計・詳細設 計に移行することとしている.また、係留施設の基本・ 詳細設計段階では、想定されるコンテナクレーンに対応 して係留施設とクレーン双方の耐震性が確保されている ことを確認するとともに、コンテナクレーン側の構造設 計に対して、係留施設側からの制約事項(設計の申し送 り事項等)を明確に整理しておくことが重要になる.最 後に、コンテナクレーンの設計・製造段階では、係留施 設側からの申し送り事項である制約条件を満足する範囲 でコンテナクレーンを設計することが原則になる.

(2) 3 次元 FEM 解析を利用したコンテナクレーンの 耐震性能照査の流れ

本節では、コンテナクレーンの設計・製造段階において、3次元 FEM 解析の利用を前提とした場合の、コンテナクレーンの標準的な耐震性能照査手順について概説する(図-2.2).

図中に示すとおり、コンテナクレーンの性能照査手順 は、以下の手順が一般的であると考えられる.

①設計条件の設定

②初期断面の設定

③3 次元 FEM によるモデル化

④性能照査1(クレーン構造規格への適合性)

⑤性能照査2(港湾基準のL2地震動に対する照査)

⑥コンテナクレーンの構造設計

⑦技術基準(港湾基準)への適合性

⑧設計完了·製造

①(設計条件の設定)については、コンテナクレーンの設置者(発注者など)が、荷役作業や利用等に対する各種条件の設定及びクレーン構造規格に対応した荷重条件等の設定を行うことが基本となる.これは、免震クレーンの導入可否に関わらず設定が必要な基本的な条件である.さらに、耐震強化施設としてのコンテナクレーンを設置する場合は、港湾基準に対応したレベル2地震動の設定や対応する要求性能の設定が必要である.これらの設定も、クレーンの設置者が行うことが原則である. さらに、係留施設側からの制約条件・所与条件がある場合には、これを適切にコンテナクレーンの設計条件として反映する必要がある。例えば、クレーンレール位置における加速度時刻歴波形やクレーン構造規則の照査項目として必要な輪荷重の許容値などが該当する.

②(初期断面の設定)では、上記の設計条件に対応したコンテナクレーンの主フレーム構造や免震装置の配置や部材諸元等を仮設定する.

③(3次元 FEM によるモデル化)については、②の仮 断面に基づき3次元 FEM によるモデル化を行うことに なる.モデル化の詳細手法については、次節以降で説明 する.

④(性能照査1(クレーン構造規格への適合性))につ

図-2.2 3次元**FEM**解析を利用した コンテナクレーンの標準的な性能照査の手順

いては、クレーン等安全規則⁵⁾およびクレーン構造規格 ⁶⁾に基づく照査を行い、所要の安全性が確保されるよう に断面諸元等を適宜修正して、基本断面を確定する. FEM モデルでは、静的荷重を作用した条件における発生 応力度を算出し、許容値以内(許容応力度)であるかの 照査を行うことになる.

⑤(性能照査2(港湾基準のL2地震動に対する照査)) については、上記④までの手順で設定した基本断面を対 象に、港湾基準に準拠して設定されたレベル2地震動に 対するコンテナクレーンの耐震性能照査を行うことにな る.この場合、3次元 FEM 解析によるクレーンの地震時 応答解析を行い、耐震強化施設としての耐震性能が確保 されているかについて照査することになる.照査項目や 照査規準値等の詳細については、2.4 節において述べる.

⑥(コンテナクレーンの構造設計)においては、上記 ⑤までの手順で決定した最終断面を元に、クレーン構造 部材の詳細設計や図面作成等を、各種附帯設備(電気・ 機械系統等)の設計とあわせて実施する。

⑦(技術基準(港湾基準)への適合性)については、
港湾基準の適合性確認の対象であるコンテナクレーンの

場合,当該施設がレベル2地震動に対して技術基準に適合するものであるかについての適合性確認を受けなければならない.現状では,クレーン設置者が国土交通大臣に申請を行い,確認を受けることになる.

2.3 三次元有限要素法を用いた免震コンテナクレーン のモデル化

本節では、3次元有限要素法で免震コンテナクレーン をモデル化する場合の詳細な方法について述べる.ただ し、通常のコンテナクレーンのモデル化については、既 に前報⁴⁾にて詳細に説明しているため、本報告ではレベ ル2地震動に対するコンテナクレーンの性能照査にあた って考慮すべきクレーン姿勢、免震装置部分の設計・モ デル化の内容、および前報でモデル化の対象外であった クレーン脚の浮き上がりを考慮するための走行装置周辺 のモデル化の内容について説明する.

(1) 解析対象とするクレーン姿勢の設定

a) クレーン構造規格において考慮するクレーン姿勢

一般的なコンテナクレーンの強度計算では、三種類の クレーン姿勢(作業時アウトリーチ,作業時バックリー チ,休止時)を含め、トロリ移動範囲全域について部材 の応力度照査が行われる。これは、クレーン構造規格に おいて、強度計算に対して、「応力の値は、荷重の組合 せにおいて、当該構造部分の強度に関し最も不利になる 場合におけるそれぞれの荷重によって計算するものと する.」と規定されていることによる.

また,クレーン全体の安定度(転倒の照査)について は、「安定度に影響がある質量は,クレーンの安定に関 し最も不利な状態にあるものとすること.」と規定され ており、以下の3つの姿勢を一般的には適用している.

① 〔作業時アウトリーチ〕

荷役作業時は、ブーム(一般に、コンテナクレーン のガーダの海側方向へのカンチレバー(片持ち梁)部 分)を下げた状態で行う.作業時アウトリーチの状態 は、トロリ(一般には、荷を吊ってクレーンガーダ上 を移動する台車をいい、巻上装置を持ち、荷を水平に 移動(横行)させる装置)が最も海側に位置する状態 である.ブームを下げた状態で、かつ海側先端にトロ リ等が位置するため、最も海側に重心位置が寄る姿勢 である.

② [作業時バックリーチ]

作業時バックリーチの状態は、作業時アウトリーチ の状態からトロリ位置を陸側のバックリーチ(海側レ ール中心と吊り具及び荷を最も陸側へ横行させたと きの到達地点との水平距離)が最も陸側に位置する状態である.

③ 〔休止時〕

荷役作業を行わない場合は休止時と呼ばれ、ブーム は上げた状態で固定等を施したクレーン姿勢となる. トロリは、クレーンオペレータが乗降する位置に応じ て、クレーン固有の位置が決まることになる.

クレーン構造規格では,強度計算に係る荷重の組合せ (垂直動荷重,垂直静荷重,水平動荷重,熱荷重,風荷 重,地震荷重,衝突荷重)の規定があり,また各荷重の 組合せに対する許容応力・許容応力の割り増し係数が規 定されている.このため,クレーン構造規格に基づく強 度計算や安定度の照査には,設計上の余裕代が含まれて いると考えられる.このため、レベル2地震動という偶 発的な荷重に対するクレーン姿勢として,上記に示すよ うな作業時アウトリーチの姿勢を対象とすることは,過 度に安全側の照査を課すことになる可能性が高い.この ため、レベル2地震動に対する照査の際に、どのような クレーン姿勢を対象とすべきかについては,議論の余地 がある.

b) レベル2地震動に対するクレーン姿勢

「土木・建築にかかる設計の基本」(国土交通省)に よると、荷重の組合せの基本的原則は、「永続荷重に加 えて,支配的な荷重(変動荷重あるいは偶発荷重)が, 極大設計値(フラクタイル値,社会的目標値等)をとるも のとして設定し、その他の荷重(変動荷重あるいは偶発 荷重)は、支配的な荷重に組み合わせるのに適正なより 発生しそうな値とする.」と規定されている.この荷重 の組合せの考え方は、Turkstra則に従うものであり、主 たる作用と従たる作用の同時生起性が高くない場合は, 従たる作用の特性値は年超過確率の比較的大きな設計供 用期間中にしばしば起こりうる程度の値とすることがで きるとの考えに従うものである.これは、同時生起性の 低い作用の特性値を全て年超過確率の小さな値に設定し て組み合わせることは合理的ではないとの判断に基づく ものである. レベル2地震動作用時のクレーン姿勢につい ても、以上の荷重の組み合わせの考え方に基づき、レベ ル2地震の作用時に実機コンテナクレーンがどのような 姿勢を取っている状態が支配的であるかを考慮し、コン テナクレーンの地震応答解析を実施することが適切であ ると考えられる.

しかしながら、クレーンの運転状況や入船船舶の規模 等は、個々のクレーンや実際の利用形態により大きく異 なるため、レベル2地震時に対するクレーン姿勢を一義的 に設定することは困難である.このため、レベル2地震時 に対するクレーン姿勢については、クレーン設置者が当 該クレーンの設置方針や運用形態等を考慮して個々の設 計案件毎に定める必要がある.

レベル2地震時に対するクレーン姿勢はクレーン設置 者が設定すべきものではあるが、以下では、レベル2地震 動に対する照査対象とすべきクレーン姿勢の設定におけ る基本的な考え方の例を参考として示すものとする.

【休止時】

コンテナクレーンの稼働率(ここでは、クレーンの稼 動時間を全時間で除して得られる率(%)として定義) は、各クレーンの利用状況によって大きく異なると考え られる.後述するS港のクレーン(全3基)およびT港の クレーン(全26基)について、ある期間の作業記録から 平均的な稼働率を算出すると、各々、約12%および約 24%であった. さらに、Y港(全4基)およびN港(全15 基)における同様の記録からは、各々約36%および16% の平均稼働率が算出された.以上に示した稼働率は,バ ース単位のクレーン基数を対象とした作業記録から算 出した数値と複数のバースを合わせた港単位のクレー ン基数から算出した結果の両者があるため, データの解 釈には留意が必要であるが、平均稼働率が30%(休止時 70%に相当)を超過するのは今回調査した範囲では8基 と少なく、大方のクレーンの平均稼働率は10~30%程度 であった.このことから、実際にレベル2地震動が発生 した場合には、クレーン休止時に遭遇する確率が高いと 言える.従って、レベル2地震動に対しては、最低限、 クレーン休止時の姿勢を照査対象とする必要があると 考えられる.

【作業時】

次に,作業時であるが,レベル2地震時の照査対象と して作業時のクレーン姿勢を対象とするかについては, クレーン設置者が総合的な判断を行う必要がある.さら に,作業時を対象とする場合は,次章で後述するとおり, 同じ入力地震動であってもトロリ位置(吊り荷位置)に よってクレーンの地震時応答が変化するため,トロリ位 置についても,クレーン設置者が入港する船舶の船型の 分布,荷役サイクルや安全管理体制等を考慮して,適切 に設定する必要がある.設定の考え方としては,例えば 以下に示すようなものが考えられる.

①地震発生時のクレーン安全管理方針に基づく設定

例えば、緊急地震速報等を用いて、クレーンオペレータ に地震速報を確実に伝達することにより、地震の主要動 が来襲する前にクレーン運転室をコンテナクレーンの耐 震設計上考えられる最も安全な位置もしくは所定の位置 に戻すことができる場合には、その状態でのクレーン姿 勢を解析対象として設定することが可能である.

②入港船舶船型の頻度分布と荷役サイクル等から設定

まず,対象岸壁に入船する船型の頻度分布を設定し, 各船型に対する荷役サイクル (船舶へのコンテナの積 み卸しの経路(軌道)と任意のトロリ位置における時間 配分)を設定する.この情報に基づき,作業中の任意の トロリ位置に対応する時間占有確率を設定することが 可能となる、一般に、トロリ(運転室も含む)が海側の ブーム先端方向に位置するほど, クレーンの重心位置が 海側に寄り不安定な状態になるため,特に陸側クレーン 脚の浮き上がりが発生しやすくなる.これを考慮すると、 例えば「作業時の○%時間カバー率を確保できるトロリ 位置」をレベル2地震動作用時における作業時クレーン 姿勢として設定することができる. すなわち, トロリ位 置が陸側から海側に移動すればするほど (カバー率を大 きく設定),陸側クレーン脚が浮き上がりやすくなり危 険な状態となるが、どの程度の危険性をレベル2地震時 に考慮するかをクレーン設置者が判断して設定するこ とになる.

(2) 入力地震動の設定

a)基本的な設定の考え方

コンテナクレーンの耐震性能照査における入力地震動 (レベル2地震動)は、クレーンレール面上で規定され るべき時刻歴波形であり、係留施設の耐震設計との整合 性の観点から、係留施設側で設定された工学的基盤面に おけるレベル2地震動と整合的に与えられるべきもので ある.

入力地震動の成分については、水平方向2成分、鉛直 方向1成分の合計3成分が存在する.ここで、水平方向 2成分のうち、係留施設の法線直交方向はクレーンの横 行方向、係留施設の法線平行方向はクレーンの走行方向 に対応する.係留施設側の設計では、一般的に係留施設 の法線直交方向の水平地震動成分のみを考慮している. これは、係留施設が水域側へ開放されているケースがほ とんどであり、係留施設の地震時挙動、特に変形問題を 考慮した場合、開放方向(水域側)に対する慣性力、ま たは偏土圧が作用する係留施設の法線直交方向の挙動が 係留施設の安定性にとって支配的であるためである.ま た、1995年兵庫県南部地震で被災した重力式岸壁に対し て行われた被災再現検証の結果,鉛直地震動が岸壁の変 形に与える影響は,水平方向(法線直交方向)の地震動 が与える影響に対して極めて小さいものであることが確 認されている[¬].これらのことから,係留施設の設計に おいては,震度法による設計震度については水平方向の 震度のみを考慮しており,また2次元の有効応力地震応 答解析による係留施設の動的変形照査を行う際にも,一 般的には係留施設の法線直交方向の水平1成分の地震動 のみを利用して解析を行っている.

一方, コンテナクレーンについては, 兵庫県南部地震 以降の免震クレーンの耐震性能照査(3次元 FEM 解析) においては、レール基面に与える入力地震動として水平 方向2成分を考慮することが一般的である.これは、ク レーンの横行方向の地震動については、クレーンレール 上から車輪が外れない限りは、レール面からの入力地震 動がそのまま直接クレーンに入力されるため、クレーン 応答に対して大きな影響を与えるためである.また、ク レーンの走行方向については、レール上を車輪が転がる などの効果により、レール面からの入力地震動がクレー ン本体に直接そのまま入力されないため、横行方向に比 較するとクレーン応答に及ぼす影響は相対的に小さいと 考えられるが、ブームが走行方向に揺れるクレーンの水 平方向のねじれモードによりクレーン脚の浮き上がりや 構造部材の発生応力度を顕著に増加させる場合もあるた め,横行方向に加えて走行方向も同時に加振させた状態 で耐震性能照査を実施している.一方,鉛直成分につい ては、「コンテナクレーン耐震設計の手引き(案)」(平 成10年)8)によると、「鉛直地震荷重については、兵庫 県南部地震では大きな上下動が観測されたが、通常のク レーン構造は, 鉛直方向の強度が水平方向に比し大きい ため, 鉛直地震荷重の影響は小さいこと, また兵庫県南 部地震の上下動を含めた動的解析によっても上下動の影 響は小さいことが確認されていることから、従来通り鉛 直荷重は考慮しないものとした. | と記載されている. また、鉛直動は水平動に比較すると、高周波数成分が卓 越しており,一般的は鉛直動のみではクレーン構造部材 の損傷を招くようなロッキング等を発生させることはな いと考えられているため、その影響は軽微であるとの判 断から,既存の免震コンテナクレーンの耐震設計では、 鉛直動を3次元 FEM 解析の入力条件として用いること はなかった.

免震コンテナクレーンの動的解析手法による耐震性能 照査を,水平方向2成分に鉛直成分を加えた合計3成分 の入力地震動を考慮して実施することがより厳密な手法 ではある.しかしながら,上述したとおり,係留施設側 では水平方向一成分(法線直交方向)のみを対象として 動的解析手法による耐震性能照査を実施していること, および既存の免震コンテナクレーンであっても水平方向 二成分のみを対象とした動的解析手法による耐震性能照 査を実施していることを踏まえると,現状の技術レベル において,3方向同時加振による免震クレーンの動的解 析の実施による耐震性能照査は困難であると考えられる.

このため、以下 b)では、レベル 2 地震動に対応した免 震コンテナクレーンの耐震設計を実務レベルで円滑に実 施するために、便宜的な対応ではあるが、係留施設側の 検討結果からコンテナクレーン側における 3 方向の入力 地震動の設定例を示す.その上で、3.3 節において、水 平方向 2 成分と鉛直成分の合計 3 成分の入力地震動が準 備されていることを前提とした場合の、コンテナクレー ンの 3 次元 FEM モデルを用いた動的解析による耐震性 能照査の具体的な方法について検討することとした.

b)各地震動成分の算出方法

[重力式係船岸および矢板式係船岸の場合]

一般に、係留施設が耐震強化施設である場合、レベル 2 地震動に対して法線直交方向の地震動成分を工学的基 盤面における入力条件とし、係留施設の2次元動的解析 により変形照査がなされる.なお、工学的基盤面に鉛直 動を入力した解析も可能であるため、クレーン脚部節点 での応答加速度時刻歴(法線直交方向及び鉛直方向成 分)は、容易に算定することができる.

一方,法線平行方向については通常施設の耐震安定上 問題とならないため,一般的には検討されない.また,3 次元の岸壁構造を考慮することのできる3次元モデルに よる動的解析を実施することは可能ではあるが,設計実 務における解析結果の利用方法が明瞭ではないことに加 えて解析実施に係るコストが多大であるため,研究以外 の目的で解析が実施されることはない.そこで,本検討 では,便宜的ではあるが,係留施設背面(裏込石等を含 む)の土層をモデル化した1次元動的応答解析を実施し, レベル2地震動による法線平行方向成分を算定すること とした.

〔桟橋式係船岸の場合〕

桟橋式についても,重力式および矢板式と同様,レベ ル2地震動に対して法線直交方向の方向成分合成波(場 合により鉛直方向成分波も含む)を入力条件とし,係留 施設の2次元動的解析や2次元動的骨組み解析等により 照査がなされる.このため,クレーン脚部節点での応答 加速度時刻歴(法線直交方向及び鉛直方向成分)を算定 することができる.

一方,法線平行方向については,桟橋構造と地盤の双

方を3次元 FEM 等によりモデル化し,動的解析を実施 することにより,法線平行方向の応答加速度を得ること ができるが,研究以外の目的でこの解析が実施される例 は少ない.ジャケット式桟橋のように比較的複雑な構造 で加振によりねじりのモードが無視できない場合は,桟 橋構造本体の3次元動的骨組み解析が実施される場合が あるが,地盤側のモデル化は単に桟橋杭と地盤との間に 地盤剛性に対応して設定する線形バネを考慮するのみで あり,レベル2地震時の地盤液状化などの影響が全く考 慮できないことや,鉛直動に対応した解析実績が皆無で あることなどから,設計実務での適用は難しいと考えら れる.

このため、例えば、桟橋式基礎の捨石マウンド位置の土 層をモデル化した1次元動的応答解析を実施し、桟橋構 造の法線平行方向の剛性は十分高いものと仮定し、下部 工杭の平均的な1/β位置における応答加速度をレベル2 地震動による法線平行方向成分として算定することが考 えられる.非常に便宜的な手法ではあるが、本検討では この方法によって桟橋の法線平行方向の入力地震動を設 定した.

(3) 走行装置周辺のモデル化

クレーン脚の浮き上がり挙動や実機の装置構成を考慮 した走行装置周辺のモデル化を以下に示す.図-2.3に

図-2.3 走行装置周辺のモデル化

走行装置周辺のモデル化概要を示す.走行装置周辺の3 次元 FEM モデルにおける拘束条件一覧を表-2.1 に示 す.なお,実機における走行装置周辺の部材構成などは 前報⁴⁾を参照されたい.

クレーンの主構造部材であるシルビームからレール面 までの間に位置する走行装置は、構造部材と比べて剛性 が十分高いため、剛梁要素にてモデル化した.また、実 機に倣い、走行装置のほぼ中央の高さには、下部の車輪

考慮する向き		固有値解	释析	地震応答解析		
		作業時	休止時	作業時	休止時	
並進	X(横行)	固定	同左	同左	同左	
	Y(走行)	固定	同左	フリー	同左	
				(摩擦μ=0.075)		
	Z(鉛直)	固定	同左	浮き上がり	同左	
				考慮(GAP 要素)		
回転 $\theta x(X 軸廻り)$		フリー(ロッカービ	同左	同左	同左	
		ーム位置)				
	θy(Y軸廻り)	フリー	同左	同左	同左	
	θ z(Z 軸廻り)	フリー	同左	同左	同左	

表-2.1	コンテナクレーン3次元解析・脚下端の拘束条件の設定
	(a) 走行装置

(b) 逸走防止金具

考慮する向き		固有値角	军析	地震応答解析		
		作業時 休止時		作業時	休止時	
並進	X(横行)	フリー	同左	同左	同左	
	Y(走行)	フリー	フリー*1	フリー	フリー*1	
	Z(鉛直)	フリー	同左	同左	同左	
回転	θ x(X 軸廻り)	フリー	同左	同左	同左	
	θy(Y軸廻り)	フリー	同左	同左	同左	
	θ z(Z 軸廻り)	フリー	同左	同左	同左	

*1 逸走防止金具は休止時の走行方向変位量に合わせて適切な遊問量を持たせるものとし、レベル2地震時には反力が作用しないものとした.

部分と上部の装置部分とを連結するピン部材を配置し, ピン部材箇所において横行方向周り(図中のX軸周り) のモーメントが伝達されない機構を表現した.走行装置 下部の車輪部のレール面から浮き上がりは,NASTRAN 言語でGAP要素と呼ばれる非線形バネ要素にてモデル 化した.GAP要素は,浮き上がりを表現するために引張 側に非常に小さい剛性のバネ値を,圧縮側はレール面と 接しているため非常に高い剛性のバネ値を入力する.ま た,GAP要素の下端位置で摩擦係数を設定することによ り,GAP要素が圧縮されている状態において,車輪があ る摩擦力を超えた場合にレール面上を滑動する挙動を再 現可能である.

GAP要素のバネ剛性の設定は、浮き上がりが発生する などの非線形性の強い動的解析の場合、解析結果に大き な影響を及ぼすと考えられる.NASTRANのマニュアル ⁹⁾に示される解説によると、「ほとんどの接触問題では、 K_A(閉じたギャップに対する軸剛性)は、まわりの節点の 剛性より3倍の大きさのオーダーを選ぶようにすべきで ある.ただし、これよりもずっと大きいオーダーのK_Aに すると収束が遅くなったり、あるいは発散してしまうこ とがあり、一方、これよりずっと小さいオーダーのK_Aに すると得られる結果の精度が低下する可能性がある.」 と示されている.

このため、本検討では、GAP要素の剛性を試行的に変 化させ、クレーン全体の応答に及ぼす影響について検討 し、GAP要素のバネ剛性を設定した.

GAP要素の圧縮側のバネ剛性は、走行装置を剛梁要素 (剛性∞)としてモデル化する場合、走行装置部材に接続 するシルビーム部材端部の剛性の10倍として設定した. これは、圧縮側剛性を100~1,000倍のオーダーで設定し た場合、剛性が高すぎるため脚が一旦浮き上がり着地し た瞬間に大きい上向き反力が生じ、応答加速度や脚の浮 き上がり量が瞬間的に大きくなり、安定した解析結果を 得られなかったためである.また、圧縮側剛性を部材の 10倍より小さくとると、クレーン構成部材のたわみや変 形に先立って脚下端での圧縮変位が生じ、脚が鉛直方向 に沈下するような状態となる.このため、モデル構成上 GAP要素に近接した要素の10倍の剛性が適当と判断し た.

次に,GAP要素の引張側バネ剛性は、本来脚の浮き上がりを表現するためには剛性ゼロとすべきであるが、解 析が発散するなどの不具合が生じた.このため、GAP要 素の引張側バネ剛性は、主部材のうち最も剛性が低い部 材(上部テンション部材)の剛性の1/1,000倍に設定した. なお,引張側のバネ値を1/10,000~1/100,000倍に変化さ せても脚の浮き上がり量自体は変化しないことを確認し、 これを引張側のバネ剛性の収束値と判断した.一方、こ れより引張側の剛性を最小部材剛性の1/100~1/10倍と やや大きく設定した場合、クレーン構成部材の剛性と近 づくため、脚の浮き上がりを拘束しようとする下向き反 力が大きくなり、妥当な解析結果が得られない可能性が ある.

なお、コンテナクレーンのレベル2地震時の耐震照査 においては、逸走防止装置や転倒防止装置は作動させて いないものとした.これは、通常これらの装置は台風接 近時に休止時姿勢としたクレーンの暴風時荷重に対する 安定を補完するための装置であり、一般の作業時・作業 一旦休止時といった状況では完全に固定された状態では ないためである.遭遇確率が非常に小さい台風時と地震 時の荷重同時足し合わせを考慮しないことと同様の考え 方である. (4)免震装置部分の設計の考え方・モデル化

一般に、コンテナクレーンの免震装置には、表-2.2 に示す機能が必要とされる.本項では、既報³⁾で紹介し たコンテナクレーンの免震装置のうち代表的な3種類を 対象として、免震装置の設計の考え方や FEM によるモ デル化の方法について説明する.なお、以下に記載する 内容・数値等については、クレーンメーカーへの口頭ヒ アリングに基づく数値も含まれているため、その数値の 位置付け等については十分留意されたい.

a) 免震装置A(水平型免震(積層ゴム式))

i)基本構造

図-2.4に免震装置Aの機構イメージを示す.

図-2.4 免震装置 A の構造図 (イメージ)¹⁰⁾

本免震装置の基本構造は、各クレーン脚と走行装置と の取り付け部に設置される積層ゴムおよび水平ダンパー により構成されている.すなわち、積層ゴムにより、鉛 直荷重を支持するとともにクレーン横行方向の固有周期 の長周期化を図り、水平ダンパーにより地震エネルギー を吸収するものである.なお、通常時においては、免震 機構によって機構は異なるが、シアピン(地震時に破断) もしくは油圧シリンダ等により、積層ゴムには水平変位 を発生させない構造となっており、地震作用時のみ積層 ゴムとダンパーが横行方向に作動する機構となっている.

また,地震時における積層ゴム部分の過度の横行方向 への水平変形量の抑制と,ゴムからの走行方向の水平力 を構造部材に伝達させるための機構(一般に,平行リン クと呼ばれる)が組み込まれている.地震時に発生する 免震装置部分における横行方向の水平変形量がこの変形 量の許容値を超えないように設計する必要がある.また, 積層ゴムの回転変位を拘束する機構(一般に,モーメン

表-2.2 免震装置に必要とされる機能

必要な機能	内 容
加速度低減機能 •復元機能	 クレーンの固有周期を調整し、長 周期化又は入力地震動の卓越周期 等からずらすことにより、クレーンの地震応答を低減する機能 地震荷重による変位を元の位置に 戻す機能
トリガー機能	 ・通常のクレーン荷役作業時(所定 の荷重以下)では、免震装置を作 動させないための機能
減衰機能	 ・地震によって生ずる応答加速度等 を減衰機構により減衰させる機能
変位追随機能	 ・地震時に発生する免震装置における変位に追随する機能

ト受けローラーと呼ばれる)も組み込まれており,ゴム からの回転モーメントをローラーで受けることにより, ゴムの回転変位を拘束している.クレーンメーカーへの ヒアリング結果によると,本免震機構を採用したクレー ンの横行方向の固有周期は4.0秒程度,減衰定数は15~ 20%程度,免震装置の許容変形量は±30cm程度である.

ii) 設計の考え方およびモデル化

表-2.3 に,免震装置Aの主要構成要素に対する本検 討における設計の基本的な考え方および FEM モデル化 の概要を示す.また,図-2.5 に免震装置部分の FEM モ デル図を,図-2.6 に免震装置Aの標準的な設計のフロ ーを示す.

積層ゴムの仕様は,主に鉛直荷重(常時・地震時等) を確実に支持することができ,かつレベル2地震動作用 時において所要の固有周期が得られることを目標として 設定する.主に,地震動の最大加速度のレベル,最大水 平変形量,目標とするクレーン全体の固有周期,積層ゴ ムの設置幅・高さ等に対する制限等により定まる.本検 討では,図-2.7に示す「免震積層ゴム入門」(日本免 震構造協会編,1997.7.)¹¹⁾に基づく積層ゴム設計手順に 従い,積層ゴムの仕様を仮設定した.例えば,横行方向 の固有周期を目標に合わせるためには,クレーン自重に 対する積層ゴムの水平方向のバネ係数をコントロールす れば良い.目標とする水平バネ係数は,下式で算出する ことができる.

$$K_{h} = \frac{W}{g} \cdot \left(\frac{2\pi}{T}\right)^{2} \tag{1}$$

構成要素名	機能	構造上の特徴・ 設計上の基本的な考え方	FEM 解析上のモデル化
積層ゴム アイソレータ (天然ゴム系)	加速度低減 機能・復元機能	 ・常時,地震時における鉛直荷重を確実に支持. ・クレーンの横行方向固有周期を調整し,長周期化又は入力地震動の卓越周期等からずらすことにより,クレーンの地震応答を低減. ・今回の設計では,「免震構造入門」(日本免震構造協会編,H7年7月発行)に示されている積層ゴム設計手順を参考としてゴムの仕様を設定. 	 (横行方向) ・線形バネとしてモデル化 (走行方向) ・積層ゴムの走行方向の変位 は発生しない機構としている ため、モデル化しない. (鉛直方向) ・線形バネとしてモデル化
水平ダンパー (オイルダンパー)	減衰機能	 ・免震装置部分で発生する横行方向の相対速度に対応して、ダンパーにより地震エネルギーを減衰。 ・想定する固有周期および地震動レベルにおいて、クレーン全体の加速度応答と免震装置部分に発生する相対変位が所要の許容値に収まるように設定。 	速度比例型ダッシュポット (横行方向のみ)
シアピン	トリガー機能	 ・トリガー値を越えると、シアピンを破断させ、免震装置を作動。 ・一般には、トリガー値は、暴風時水平力(横行方向)以上の値を設定。 	モデル化しない
モーメント 受けローラ	ゴムの回転変位 拘束機能	・積層ゴム部分に作用する回転モーメントをローラで受けることにより、ゴムの回転変位を拘束.	 節点拘束条件によりモデル化 剛結合 (免震部分の Y 軸回転: 拘束) (免震部分の X 軸回転: 拘束)
平行リンク	ゴムの水平変位 抑制機能	 ・対向する2辺のリンクで、積層ゴム部分で発生する横 行方向の水平変位を抑制(積層ゴムの水平方向の変位 許容値:例えば±30cm). 	モデル化しない
	走行方向水平力 の伝達機能	 ・ベースとゴム支持台とを連結させることにより、走行 方向の水平力を伝達。 	節点拘束条件によりモデル化(走行方向:拘束)(免震部分の2軸回転:拘束)

図-2.5 免震装置 Aの FEM モデル図

図-2.6 免震装置Aの設計フロー(案)

図-2.7 積層ゴムの設計フロー(文献11)より一部加筆)

ここに、W:クレーン重量 g:重力加速度 T:目標と するクレーン固有周期であり、このバネ係数を目標とし つつ、ゴムに作用する面圧・せん断ひずみ、座屈等の照 査を満足するようなゴムの仕様(ゴム一層の厚さと積層 数)を設定することができる.

水平ダンパーについては、一般的なオイルダンパーが 使用される.ダンパーの仕様は、まず目標とするクレー ン全体の減衰定数hの設定を行う.積層ゴム設置時のク レーンの固有周期と免震装置に生じる変位量より免震装 置が稼働している際の応答速度を算定し、目標とする減 衰定数が得られる減衰力F_Dを算定する.減衰力が得られ れば、減衰係数(速度比例係数)Cが得られるため、適 用すべきオイルダンパーを選定するための諸元を設定す ることができる.ただし、オイルダンパーは原理上ダン パーの径や部材長でスペックが決定されるが、積層ゴム を含む他の部材と合わせ、走行装置内に内蔵可能な寸法 が制限されるため、自ずと適用可能な減衰係数の範囲が 限定されることに留意が必要である.

シアピンによる初期のトリガー機能は、地震応答解析 において地震動作用の最初期がクレーン全体の応答に与 える影響が小さいと想定される場合や、地震計との連動 により電気的な制御で免震装置を作動させることを目標 とする場合、解析モデルの簡略化を図りモデル化しない とすることができる.

平行リンクによる免震装置の最大変位抑制機能は,地 震応答解析ではモデル化せず,応答結果をみて許容され る変位量の範囲内であるか否かによって判定することが できる.平行リンクによる変位制限機能は,免震装置を はさみ下部の走行装置と上部のクレーン脚部材とで相対 水平変位が一定以上大きくなると,レールの軸線位置と 脚の重心位置とのずれにより走行装置の横倒れが生じる などの危険性を避けるための安全策である.このため, 免震装置で生じる相対変位量は,クレーンの安定性照査 として重要な照査項目である.また,係留施設の構造に より海陸クレーン基礎の相対変位が生じる場合,クレー ンの主要部材より相対的に剛性が小さい免震装置部分で 変位を吸収する挙動となることが予想されるため,特に 留意を要する.

表-2.3 に,以上に示した標準的な設計フローに準じ て設定した免震装置Aの初期値設定例を示す.

- b)免震装置C(ヒンジ式)
- i) 基本構造

図-2.7に免震装置 Cの機構イメージを示す.

本免震装置はヒンジ式免震装置と呼ばれ、脚の途中に ヒンジ部を設け、クレーンの横行方向固有周期の長周期 化を図ることにより免震化するものである. ヒンジ部は、 脚を挟むように皿ばねを2箇所設置するとともに、上下 フランジの接触部に2箇所のピンを設置することによっ て(上下フランジの間に空隙を設ける),ヒンジ部分に 復元力(復元モーメント)を発生させる機構となってい る. なお,通常時においては,自重およびばねによって フランジ面に作用する圧縮力を超過するモーメントが作 用するまで免震機構は変形を起こさないことから、これ を通常時のトリガー機構としている.また、復元力の勾 配特性により、クレーンの応答加速度の低減を図ること ができる.この免震機構を導入したクレーンの設置実績 としては、釧路港(レールスパン16m級の連続アンロー ダ)がある.なお、製造メーカーへのヒアリングによる と、本免震機構を30mスパン級のコンテナクレーンに導 入した場合、クレーンの横行方向の固有周期は 3.5 秒程 度(水平変位 50cm での等価固有周期),減衰定数は最 大 20%程度(水平変位 50cm での等価減衰定数),免震 装置の設計上の許容値としては、クレーンの応答加速度 250(cm/s²) が想定されるという結果を得ている.

図-2.7 免震装置 C の構造図 (イメージ)¹²⁾

ii) 設計の考え方およびモデル化

表-2.4 に,免震装置Cの主要構成要素に対する本検 討における設計の基本的な考え方および FEM モデル化 の概要を示す.また,図-2.8 に免震装置部分の FEM モ デルを示す.図-2.9 に,免震装置Cの標準的な設計の フローを示す.

表-2.	3	包震装置 A	\mathcal{O}	FEM	モデ	ルにお	ける	る初期	值設定例
------	---	--------	---------------	-----	----	-----	----	-----	------

設定項目	設定細目	設定値	備考
基本条件	クレーン総重量	10,000kN/基	・クレーン輪荷重計算書より.
	クレーン固有周期	2.05秒	・クレーン固有値解析結果より.
	地震動条件	最大 500gal	・地震応答解析の結果,非免震クレーンの場合はクレー
			ン脚の脱輪,部材応力の許容値超過等を確認.
	クレーンレールの相対変位	最大 10cm 程度	 ・係留施設のレベル2地震時変形解析結果より.
	量		
目標性能	固有周期 T	4.00秒	・クレーン基礎応答スペクトル図より 4.0 秒程度で浮き
			上がり限界加速度を満足することを確認.
	減衰定数 h	20%	・一般的な免震装置の実績値より.
	許容変位量 Xd	$\pm 30 { m cm}$	・一般的な免震装置の実績値より.
積層ゴム諸元の設定	•		
ゴム材料の選定	せん断弾性係数 G	3.5kgf/cm ²	・天然ゴム系・メーカー値の一例.
	弾性係数 Eo	10.5kgf/cm ²	・同上
	体積弾性係数 Eb	20,000kgf/cm ²	・同上
	硬度補正係数 κ	0.9	・同上
目標水平バネ係数の	$W \left(2\pi\right)^2$	$630t \cdot m/s^2/m$	• $K_{\rm H}$ =10,000(t·m/s ²)/9.81(m/s ²) × {2 π /4.0(s)} ²
設定	$K_H = \frac{1}{g} \cdot \left(\frac{1}{T_H}\right)$		・1 脚当たり K _H /4
使用面圧より形状設	使用面圧の設定 σ d	100kgf/cm ²	・装置受圧面圧の目安・既往実績より.
定		_	・1 脚当たり 2,500kN/(π D1 ² /4) \leq 100kgf/cm ²
			• $D_1 \ge \sqrt{(2, 500/9, 810 \times 4/\pi)} = 570 \text{mm}$
変形量より形状設定	変形安全率	60%以下	・最大変位量 X _d より,最大相対変形 600mm が 60%以下と
			なるよう外径 D₁を設定. D₁≧600/0.6=1,000mm
ゴム平面形状の設定	外径 D1	1,000mm	・上記照査より.
	製作用中心孔φ	70mm	・天然ゴム系・メーカー値の一例.
ゴム総厚の設定	Н	19.8cm	• H=G×A/K _H =3.5(kgf/cm ²) × π (100 ² -7 ²)/4(cm ²)
	$K_{H}=G \times A/H$		÷642(kgf/cm)=42.6cm
			・一方,二次形状係数の条件より,
			$H=n \cdot T_R=33 \times 0.6=19.8 cm$
水平バネ定数の設定	$K_{H}=G \times A/H$	1354t·m/s ² /m	• $K_{\rm H}$ =G×A/H=3.5× π (100 ² -7 ²)/4/19.8=1,382(kgf/cm)
			=138(tf/m) > 目標水平バネ 64.22(tf/m)
一次形状係数の照査	$S_1 \ge 35$	38.75	• 一層厚 $T_{R} \leq (100-7) / (4 \times 35) = 0.66 \rightarrow T_{R} = 0.6 cm$
	$S_1 = (D_1 - \phi) / 4T_R$	T _R =0.6cm	$S1=(100-7)/(4\times0.6)=38.75\geq35$
二次形状係数の照査	$S_2 \ge 5$	5.05	• $100/(n \times 0.6) \ge 5$ n ≤ $100/(0.6 \times 5) = 33.3 \rightarrow 33$ 層 • S $100/(22 \times 0.6) = 5.05 \ge 5$
(約古バラ 京教管山)	$S_2 - D/(\Pi^* I_R)$	1 612+f/am	$3_{2=100}/(35 \times 0.0) - 5.05 \le 5$
如但八个化数异山	$K_{\nu} = \frac{A}{1 - 1} \cdot \frac{E_o \cdot (1 + 2\kappa S_1) \cdot E_b}{1 - 1}$	4,013t1/Cm	H = 10.8 cm
	$H_{R} \left[E_{o} \left(1 + 2\kappa S_{1}^{2} \right) + E_{b} \right]$		• $H_R = 13.0 \text{ Cm}$ • $K = 7.915/10.9 \times \{10.5 \times (1+2 \times 0.0 \times 29.75^2)\}$
			$(10.5 \times (12.5 \times (12.$
			=4.613.000 kgf/cm(クレーン1 脚当たり自重反力につ
			き変位量 0.54mm→十分剛と見なせる範囲である)
ダンパー諸元の設定	1	1	
応答実行速度算定	$V_{f} = V_{max} / \sqrt{2}$	33.3cm/s	・応答最大値付近での速度が正弦波で近似できると仮
	1 max'	,	定.
			・最大速度 V _{max} =2 π/4.0(sec)×30(cm)=47.1cm/s
			・1周期内の平均速度(応答実行速度)
			$V_{f} = V_{max} / \sqrt{2} = 33.3 \text{cm/s}$
所要減衰力の算定	$F_d = 4 \pi / T \cdot M \cdot h \cdot V_f$	53.3t·m/s ²	• $F_d=4\pi/4.0$ (sec) ×10,000 (t·m/s ²)/9.81 (m/s ²) ×0.20
	=2 π /Τ·C·δ		$\times 0.333 (\text{m/s}) = 213.3 (\text{t} \cdot \text{m/s}^2)$
			・1 脚当たり F _d /4
減衰係数の設定	$C=F_{d}/(2\pi/T\cdot\delta)$	113.1	• C=53. $3(t \cdot m/s^2) / \{2\pi/4.0(sec) \times 0.30(m)\}$
		$t \cdot m/s^2/s/m$	=113.1(t·m/s ² /s/m)
			*実機の減衰係数のオーダーとしては小さいため、ダン
			パーの配置が可能な制約内で解析上の初期値を設定
			する.

構成要素名	機能	構造上の特徴・ 設計上の基本的な考え方	FEM 解析上のモデル化	
	加速度低減• 復元機能	・フランジを皿バネで接合することで、自重 および皿ばねによって得られる圧縮力を利 用して、地震による揺れを長周期化し、復 元モーメントを発生させる.	 ・非線形バネ(鉛直) (バネ自体は線形材料だが,折れ点を有する トリリニア型) (2箇所の鉛直バネの合成として,免震装置のY軸回転バネ) 	
皿バネ	減衰機能	 ・皿バネが弾性変形する際の摩擦減衰によって地震エネルギーを減衰させる。 	・モデル化しない	
	トリガー機能	・上下フランジに一定の間隔を空け,フランジ面に作用される予圧縮力を超過するモーメントが作用した際に免震機構が変形を始める.	 ・非線形バネ(鉛直) (バネ自体は線形材料だが,折れ点を有する トリリニア型) (2箇所の鉛直バネの剛性として,免震装置 のY軸回転のトリガー機能を表現) 	
皿バネ フランジ部	変位制御機能	 フランジがヒンジ式に開くことで、皿バネ が圧縮され、必要な変位を得る、皿バネが 圧縮限界に至るとそれ以上はフランジが開 かない。 	モデル化しない (地震応答解析の結果,皿バネの圧縮限界に 至る変形量以内であることを確認する)	
フランジ部 ピン	フランジが開 く際のピン支 点	 ・常時は上下フランジ間の隙間を確保するためのスペーサーとなっているが、トリガー機能を超過するフランジ回転力が作用した際にピン支点となり、クレーン重量を支持する.また、フランジ面には球形の食い込みがあり、ピンが横行方向にずれないように圧縮力がかかった際は固定されている. 	 ・GAP要素 (鉛直方向:圧縮側剛,引張側柔のバネ剛性) (横行方向,走行方向:圧縮時摩擦係数1.0相当の拘束) ・節点拘束条件によりモデル化 剛結合 (免震装置の2軸回転:固定) 	
皿バネ束 軸部材	変位制御機能	・皿バネ内径を買いて束ねるための軸部材. 端部には皿バネを固定するためボルトの頭 のような形状となっており,皿バネをフラ ンジと挟み込むことで圧縮力を得る.な お,この軸部材は上下フランジを貫通して いるため,免震装置上下の脚のずれを制御 する機能も有する.	 ・節点拘束条件によりモデル化 剛結合 (横行方向,走行方向:固定) (免震装置のX軸回転:固定) (免震装置のZ軸回転:固定) 	

表-2.4 免震装置Cの各構成要素における構造上の特徴,設計の基本的な考え方および FEM 解析上のモデル化

耐震強化施設としてのコンテナクレーンの耐震性能照査手法に関する研究(その3)/ 宮田正史・吉川慎一・竹信正寛・菅野高弘・小濱英司・久保哲也

図-2.9 免震装置Cの設計フロー(案)

免震装置Cは、フランジ・ピン・皿バネを束ねた軸部 材の配置と皿バネの剛性により、所定の免震機構(復元 力を有する回転バネ)が得られるように設計される.一般 的な鋼製部材のみで構成される免震装置であるため、機 構がシンプルである一方、その配置は主にクレーン主要 構造部材との取り合いに留意して定める必要がある.

免震装置の設置位置は、免震効果の合理性や陸上の荷 役輸送機械との干渉、他の主要構造部材との干渉などに 配慮し、脚間水平材の直下付近を設定する.さらに、ク レーン脚部材断面の中で、皿バネ束の配置やフランジの 大きさを検討する.参考として、免震装置位置の設定例 を図-2.10 に、各構成部材の配置例を図-2.11 に示す.

免震装置のトリガー値の設定は,作業時の突風や暴風 時を対象として行う.暴風時による免震装置部分に作用 する曲げモーメントを算定し,そのモーメントが作用し ても免震装置が作動しない(フランジが開かない)よう に,クレーン自重および皿バネの初期締め付け力の導入 を設定する.

トリガー超過後の免震装置の曲げ剛性は、目標とする クレーンの応答加速度最大値、想定されるクレーン基礎 の相対変位、クレーンが転倒に至らない脚先変位量の最 大値等を条件として設定する.本免震装置の復元力とト リガー値の特性を図-2.12に示す.目標とする曲げ剛性 が得られるよう、フランジの回転中心となるピンから離 れた側の皿バネまでの距離と皿バネの圧縮剛性の関係で, 所要の皿バネ剛性が決定される.皿バネとは、円盤状の ばねをお皿のように膨らみを持たせたもので、中央部分 に開口があるドーナツ型の鋼製バネである.上下面に力 を加えると押しつぶされた形状となり、これが元の形状 に復元しようとする力が反力となる. 鋼製バネの規格品 で、小さい変位量で大きい反力が得られる特徴があり、 板厚・サイズ・材質により一枚当たりの剛性が異なる. 東状に重ねる重ね合わせ方により直列・並列の連続バネ として任意の剛性を設定することが出来る. 皿バネの重 ね合わせ設定例を図-2.13に示す.

皿バネはあるたわみ量に達すると全圧縮状態となり剛 な鋼材と等しい状態となるため、フランジ面の最大回転 角に応じて必要な皿バネ枚数を設定することで、免震装 置の最大回転角の制限値が決定される。

なお,クレーンの固有値解析においては,トリガー機 能やGAP要素を用いた非線形要素を導入できないため

(無減衰・線形モデルでの解析),トリガー超過後の回 転剛性が当初より作動するものとして線形回転バネ要素 に簡略化したモデルで対応することができる.

表-2.5~2.6に、以上に示した標準的な設計フローに

準じて設定した免震装置Cの初期値設定例を示す.

図-2.10 免震装置 C の設置位置の設定例

図-2.12 免震装置 C の復元力特性

図-2.13 免震装置 C の皿バネ重ね合わせの設定例

表-2.5 免震装置 C の FEM モデルにおける初期設定例(1/2)

設定項目	設定細目	設定値	備考
基本条件	クレーン総重量	10,000kN/基	・クレーン輪荷重計算書より.
	クレーン固有周期	2.05秒	・クレーン固有値解析結果より.
	地震動条件	最大 500gal	 ・地震応答解析の結果、非免震クレーンの場合はクレー
			ン脚の脱輪,部材応力の許容値超過等を確認.
	クレーンレールの	最大 10cm 程度	・係留施設のレベル2地震時変形解析結果より.
	相対変位量		
目標性能	固有周期 T (参考条件)	4.00秒	・クレーン基礎応答スペクトル図より 4.0 秒程度で浮き
			上がり限界加速度を満足することを確認(参考条件).
	減衰定数 h	20%	 一般的な免震装置の実績値より.
	許容変位量δ _{max}	最大開き 30cm 程	 ・仮設定値.免震装置片側脚あたり 15cm×2 箇所=30cm
	ind A	度	程度の股開きに対応.
	最大応答加速度 a max	250gal	・浮き上がり限界加速度相当.
免震装置構成の設定	incer	ю.	
免震装置位置	レール面からの高さ H	13.0m	・水平材直下で格点部補剛部材に干渉しない位置(図-
			2.10 参照).
フランジ幅	PL-B×L	$B2,000 \times L1,720$	・脚部材フランジ幅 1,500×梁高 1,220 より(図-2.11
			参照).
ピン位置	脚部材フランジ位置	ピン間隔 1,220mm	・同上
		ピン長 1,600mm	
皿バネ束配置	脚フランジ面をはさみ外内	皿バネ東 250mm	・同上
	に1列ずつ配置	ピッチ	
トリガー値の設定	•		
作業時突風荷重	暴風時脚モーメント	3, 250kN. m	・作業時突風 : U=35m/s
			(最大瞬間風速時の風荷重:H=0.1G=1,000kN/基が,脚
			先端に集中荷重として作用すると考えると、免震装置
			に生じるモーメント(1 脚当たり)は, M=1,000×1/4×
			13.0=3,250kN.m)
クレーン自重	初期圧縮力	2,500kN/脚	• 10,000×1/4
初期締め付け力	初期締め付け力	1,414kN/列	・片側バネ列での所要抵抗力:
			T=M/1.22=3,250kN.m T=2,664kN
			・自重による圧縮力(ピン2箇所):
			V=2, 500/2=1, 250kN
			・必要初期締め付け力:
			T _o =T-V=2, 664-1, 250=1, 414kN
			・バネ束1本当たり:
			T _o /16=88.38kN/本
トリガー超過後の曲げ	剛性の設定	0	
目標曲け剛性の設定	地震時脚モーメント	8,125kN.m	・目標最大加速度: $\alpha_{max}=250$ gal
			(作用水平力:H=0.25G=2,500kN/基が,脚先端に
			集中荷重として作用すると考えると、
			免農装置に生じるモーメント(1)脚当たり)は,
	ム電壮里曲近回山山ホロセオ	1 050 507	M=2, 500×1/4×13.0=8, 125kN.m/ 即た本体見のロウナ 10 - 1/ビデルウナマ
	兄晨装直囲け剛性の目標値	1,056,567	・脚先変位重の目女を10cm と仮設走する.
		KN•m/rad.	$\theta = 0 / n=0. 10 / 13. 0=7.09 \times 10^{\circ} rad.$
			• 冗長表直田(7) 門注: Λ_{θ} $K = M/(09, 195/7, 60 \times 10^{-3} - 1, 056, 567 h N + m/mod$
公直バネ1市当たり	バネ市亦位量	Q Amm	K _θ -m/ υ -0,125/7.09へ10 -1,050,507KN・M/ rad. ・ 皆側バネ別の変位量・
町 旦 ハ イ I 水 ヨ に リ の 剛性 設定	「「不久」」 単	J. 4000	/ μu/ ハアクリジス 世里 · δ =1 220× θ=9 /mm
マノ門川王良又人と	バネ市心東豆カレ剛州	11 28kN/mm	0 ₁₀ -1,220へ0-5.4mm ・ 皆側バネ列の必要反力・
	/ 「不 小 女 仄 刀 こ 門門主	44. 20KN/ IIIII	「川駅/ ハウリジン公女区/J・ T -M/1 99-8 195/1 99-6 650 84bM
			1 ₁₀ m/1.22-0,120/1.22-0,009.04KN ・バネ市1木当たり(並列配罟)・
			$t_{re} = T_{re} / 16 = 416 \ 94 \text{kN}$
			 ・バネ東1本当たり副性・
			$k_{10}=416$ $24/9$ $4=44$ $28kN/mm$
1	1	1	10 110 B1/0 I II BONIN/ IIII

設定項目	設定細目	設定値	備考
皿バネの枚数・配置の	皿バネ仕様の選定	重荷重用 A-140	・メーカーパンフレットより.
設定			・外径 D140×内径 d72×板厚 t8.0×隙間高 h3.2(全高 11.2)
			$\delta_{0.5}$ =0.50h=1.60mm P _{0.5} =6,070kgf k _{0.5} =3,794kgf/mm
			$\delta_{0.75}$ =0.75h=2.40mm P _{0.75} =8,700kgf k _{0.75} =3,625kgf/mm
			・δ=0.75h 以上は全圧縮状態となるため,変位量最大値は
			これを上限とする.
	皿バネ枚数の設定	6枚	・脚先変位 10cm 時→バネ列変位 9.4mm にひずみ 50%を目標:
	「「ジュチャクト」の部合	이 분수 꾼 지 것이 되는	N= $\delta_{10}/\delta_{0.5}=9.40/1.60=5.88\rightarrow 6$ 仮配直
	血ハイ里ね合わせの設定	3 权业列×2 段 古列	• 3 权业列×2 段旦列配直(凶一 2.13 麥煎). $K=2,704\times2\times1/2=5,6011caf/mm$
	必要剛性との比較	直列 4.514kgf/mm	k = 4.4 - 28 k N/mm = 4 - 51.4 k a f/mm < k - 0 K
	曲げ剛性の質定	10 244kN • m	 ・ 片個バネ列剛性・
		10,211111 1	$K=k \times 16=91, 056 kgf/mm=893, 26 kN/mm$
			・脚先変位 10cm 時→バネ列変位 9.4mm 時の反力:
			$T_{10}=16 \times 5, 691 \times 9.4=855, 926 \text{kgf}=8, 396.64 \text{kN}$
			・免震装置の復元モーメント:
			M ₁₀ =T ₁₀ ×1.22=8,396.64×1.22=10,244kN • m
	目標曲げ剛性との比較	1,056,567	• K $\theta = M/\theta = 10, 244/7.69 \times 10^{-3} = 1,332, 120 \text{kN} \cdot \text{m/rad}.$
		kN•m/rad.	> 目標値 1,056,567kN・m/rad.
皿バネ最大圧縮時の	皿バネ最大圧縮変位量	14.4mm	• $\delta_{\max} = \delta_{0.75} \times 6 = 2.40 \times 6 = 14.4 \text{mm}$
发位	脚先最大泼位量	0.153m	• $\theta_{\text{max}} = \delta_{\text{max}} / 1,220 = 0.0118 \text{ rad}$
			・脚先 ð max = 13.0×0.0118=0.153m い母に依知むにてな母は思いの、もしくいい即た本任い
			・ 地震心合解析に (知震 装直 η θ_{max} もしく は 脚 光変 位 η
	如期亦位昌(矣孝)	1 6	0 _{max} を超回りる場合,
	初期変型里(参考)	1.0mm	・ハイ朱1半目だり必要種の竹り刀: エ /16-99 39bN/本-0 000kgf/本
			1 ₀ /10-00.30KN/平-9,009Kg1/平 • 初期下縮変位 ·
			$\delta = 9.009/5.691 = 1.6$ mm
			・1 枚当たり ·
			0.26 mm(0.08 h)
免震装置の曲げ剛性の	設定		
	モーメント		
	10,244kN·m		
	3,250kN · m		トリガー値
	0kN·m		
			荷重作用時
			トリガニ値
	10.04/101		最大変位量
-	-10,244kN ·		
	-0.10	m Om	0.10m 0.153m 脚先変位
	0.101		
本解析におけろバネ	値の調整:		
皿バネの重ね合わ	世 3枚並列×4段直列 k=	$=3,794 \times 3 \times 1/4 = 2,8$	846kgf/mm→片側バネ剛性 446.63kN/mm
]	最大回転角 θ _{max} =0.011	8×2=0.0236rad 脚先最大変位δ _{max} =0.307m
皿バネの重ね合わ	せ 3枚並列×6段直列 k=	$=3,794 \times 3 \times 1/6 = 1,8$	97kgf/mm→片側バネ剛性 297.75kN/mm
	Į	最大回転角θ _{max} =0.011	8×3=0.0354rad 脚先最大変位δ _{max} =0.460m

表-2.6 免震装置 C の FEM モデルにおける初期設定例(2/2)

耐震強化施設としてのコンテナクレーンの耐震性能照査手法に関する研究(その3)/ 宮田正史・吉川慎一・竹信正寛・菅野高弘・小濱英司・久保哲也

c) 免震装置 D(鉛直型免震(ロッキング式))

i) 基本構造

図-2.14に免震装置Dの機構イメージを示す.

免震装置Dの主要減衰機構は免震装置Aと同様であり、 ばね(復元機構)およびダンパー(減衰機構)により構 成されているが、免震装置Aでは水平方向の変位に対し て減衰機構・復元機構が作用することにより免震効果が 発揮されるのに対し、装置Dでは鉛直方向の変位に対し て免震装置が作動する点に相違がある.免震装置は,陸 側のクレーン脚の基部のみに設置され,これにより海側 レールを中心としたロッキングを発生させることによ り,陸側脚基部の免震装置部分で地震エネルギーを吸収 するとともに、クレーン横行方向の固有周期の長周期化 を図るものである.なお、過度の鉛直変位を抑制するた めの機構が組み込まれており, 地震時に発生する免震装 置部分の鉛直変位量が許容値を超えないように設計す る必要がある.この免震機構を導入したクレーンの設置 実績としては、苫小牧港(レールスパン16m級のコンテ ナクレーン)がある.なお、製造メーカへのヒアリング によると、本免震機構を30mスパン級のコンテナクレー ンに導入した場合、クレーンの横行方向の固有周期は 3.5秒程度(ロッキングが発生するモードに対応),減 衰定数は20%程度,免震装置部分の鉛直方向の許容変位 量は±15cm程度が想定されるという結果を得ている.

ii) 設計の考え方およびモデル化

表-2.7 及び図-2.15 に,免震装置Dの主要構成要素 に対する本検討における設計の基本的な考え方および FEM モデル化の概要を示す.また,図-2.16 に免震装 置部分の FEM モデルを示す.

図-2.17 に, 免震装置 D の標準的な設計のフローを示す.

鉛直バネ(コイルバネ)の仕様は,地震の発生時に作 動した際,鉛直荷重(自重及び慣性力作用による軸力変 動)を確実に支持することができ,かつレベル2地震動 作用時において所要の固有周期が得られることを目標と して設定する.地震動の最大加速度のレベル,最大鉛直 変形量,目標とするクレーン全体の固有周期,コイルバ ネの径・設置高さ等に対する制限等により定まる.本検 討では,地震時のクレーン応答加速度の目標値を脚の浮 き上がりが生じる限界加速度と仮設定した.このとき, 免震装置を内蔵する2脚に発生する軸力は,クレーン重 量が全て片側2脚で支持する状況になるものと想定する. 一方,最大鉛直変形量は,後述する走行装置連結部材が 確実に配置され,過度のロッキングの発生により脱輪が

図-2.14 免震装置 D の構造図(イメージ)¹³⁾

生じない適切な範囲に設定する必要がある.既往の設定 事例や安全性に考慮し,最大鉛直変形量は±15~30cm程 度の範囲内で設定することができる.最大鉛直変形量と 最大軸力が設定されれば,鉛直方向のバネ定数が設定で きる.

鉛直方向のダンパーについては,一般的なオイルダン パーが使用される.ダンパーの仕様は、まず目標とする クレーン全体の減衰定数 h の設定を行う. 免震装置作動 時のクレーンの固有周期と免震装置に生じる変位量より 免震装置が稼働している際の応答速度を算定し、目標と する減衰定数が得られる減衰力 FDを算定する.減衰力が 得られれば、減衰係数(速度比例係数)C が得られるた め、適用すべきオイルダンパーを選定するための諸元を 設定することができる.ただし、オイルダンパーは原理 上ダンパーの径や部材長でスペックが決定されるが、鉛 直バネを含む他の部材と合わせ、走行装置内に内蔵可能 な寸法が制限されるため, 自ずと適用可能な減衰係数の 範囲が規定されることに留意が必要である.なお、ダン パーは走行装置の下部車輪部と接続する部位に海陸両面 に取り付け可能であり,最大4本程度配置が可能である. このため、水平型免震装置と比較し多数のダンパーを配 置が可能である.

走行装置連結部材は、走行装置本体とクレーンのシル ビームとを連結する軸部材であり、鉛直コイルバネの芯 材として配置される.この連結部材により、横行・走行 方向への変位や軸回転を拘束する.鉛直方向は、軸部材 の片側端部は固定され、もう片側は鉛直方向にフリーと なっており、頭部にストッパーが設けられ、過度の変形 による構造の逸脱を抑制する構造となっている.この鉛 直変位の抑制機能は、地震応答解析ではモデル化せず、 応答結果をみて許容される変位量の範囲内であるか否か によって判定することができる. なお,鉛直バネとシルビームとの間には,レベリング ジャッキが配置され,荷役作業中には免震装置が作動し ないように制御するトリガー機能が導入されている.ト リガー機能は,地震計との連動など電気的な制御により 免震装置を作動させることとした場合,解析モデルの簡 略化を図りモデル化しないとすることができる.

図-2.15 構成要素の取付位置

図-2.16 免震装置 Dの FEM モデル図

表-2.	7 免震装置 D	の各構成要素における構造上の特徴,	設計の基本的な考え方および	FEM 解析上のモデル化
------	----------	-------------------	---------------	--------------

構成要素名	機能	機構	FEM 解析上のモデル(案)
鉛直バネ (コイルバネ)	加速度低減 機能	・鉛直荷重の支持 ・横行・走行方向固有周期の長周期化.	・線形バネ(鉛直バネ)
鉛直ダンパー (オイルダンパー)	減衰機能	・シリンダピストン前後に生じるオイルの圧 力差による地震エネルギーの減衰.	・ダッシュポット (鉛直)
レベリング ・ジャッキ	トリガー機能	 ・荷役時の荷重については機械的な調整機構 で鉛直変位を制御し、地震発生の際には免 震装置を作動させる. 	・モデル化しない
	横行方向水平力・ 回転拘束 走行方向水平力・ 回転拘束	 ・走行装置と脚部材との連結部材で、横行方向の水平力・回転力は伝達される。 ・走行装置と脚部材との連結部材で、走行方向の水平力・回転力は伝達される。 	 ・節点拘束条件によりモデル化 剛結合 (横行方向,走行方向:固定) (免震装置のX軸回転:固定)
脚部連結部材	鉛直方向 最大変位制限 回転拘束	 ・走行装置と脚部材との連結部材で、鉛直方 向の回転力は伝達される.また、過度の鉛 直変位が発生した際にクレーン構造部材 と走行装置とが離れないように最大変位 を制限するストッパーとしての機能. 	 (免震装置の Y 軸回転:固定) (免震装置の Z 軸回転:固定) (鉛直方向最大変位の制限はモデル化しない.地震応答解析の結果,変形変位量以内であることを確認する)

耐震強化施設としてのコンテナクレーンの耐震性能照査手法に関する研究(その3)/ 宮田正史・吉川慎一・竹信正寛・菅野高弘・小濱英司・久保哲也

図-2.17 免震装置 D の設計フロー(案)

設定項目	設定細目	設定値	備考
基本条件	クレーン総重量	10,000kN/基	・クレーン輪荷重計算書より.
	地震動条件	最大 500gal	・ 地震応答解析の結果,非免震クレーンの場合はクレー
			ン脚の脱輪,部材応力の許容値超過等を確認.
	クレーンレールの相対変位	最大 10 cm 程度	・係留施設のレベル2地震時変形解析結果より.
	量		
目標性能	固有周期 T (参考条件)	3.50秒	・クレーン基礎応答スペクトル図より 3.5 秒程度で浮き
			上がり限界加速度を満足することを確認(参考条件).
	最大応答加速度	210~300gal	・クレーン輪荷重計算書より重心位置を算出し、浮き上
			がり限界加速度を算出.
	減衰定数 h	20%	 一般的な免震装置の実績値より.
	許容変位量 Z _d	± 20 cm	・安全を考慮した最大変形量の設定例.
鉛直バネの設定		1	
発生変形量の算定	許容変形量より	0~40cm	 ・最大圧縮時 0cm~最大引張時 40cm を目安とする.
鉛直バネ係数の設定	Kv=V/δ	12,500kN/m	 ・最大偏心時陸側脚反力:
			V=W/2=10,000 (kN) /2=5,000 (kN)
			・最大偏心時に最大圧縮となるバネ係数:Kv
			$Kv = V/\delta_{max} = 5,000/0.40 = 12,500 (kN/m)$
			 ・ 死倚重作用時の変形量:δο ・ Ψ(1) ・ Ψ(1) ・ Ψ(1)
			$\delta_{o} = W/4/Kv=2,500/12,500=0.20 (m)$
			・ 軸刀木作用時の変形重: 0 min
ドン・・ サー のました			$\delta_{\min} = 0/12, 500 = 0.00 \text{ (m)}$
タンハー諸元の設正	<u>u u / Co</u>	00.0 /	亡族日上ははにての法庭がデオカマに切てもストにウ
心谷夫仃速度异正	$V_f = V_{max} / \sqrt{2}$	22.2cm/s	・応合菆大恒付近じの速度か止弦波じ近似じさると仮定.
			取入速度 $V_{\text{max}} = 2 \pi / 4.0 (\text{sec}) \times 20 (\text{cm}) = 31.4 \text{cm/s}$
			 1 同期内の半均速度(応合夫11速度) N=N (「2=22, 2=m/-
正面は存力の管空	$E = 4 = /T \cdot M \cdot h \cdot V$	$71 \ 1 \pm 1 = 100$	$v_{\rm f} - v_{\rm max} / \sqrt{2 - 22.2 \text{ cm}/\text{s}}$
別安佩泉刀の昇足	$F_d = 4\pi/1 \cdot M \cdot n \cdot v_f$	/1.1t•m/s-	• $F_d = 4\pi/4$. 0 (sec) × 10, 000 (1 · m/s ⁻) / 9. 81 (m/s ⁻) × 0. 20
	$-2\pi/1$ °C ° 0		へり、222(III/S)=142、19(t・III/S)
減春区粉の設定	$C = F / (2 \pi / T \cdot \delta)$	226.3	
199、22、177 女2、177 如2、177 如2、177 如2、177 如2、177 如2、177 如2、177 wastan wasta	$C = \Gamma_{d} / (2\pi / 1 - 0)$	$\frac{220.3}{1.00}$	$= 226 - 3(1 \cdot m/s^2/s/m)$
		с ш/ 5 / 5/Ш	*宝楼の減衰係数のオーダーとしてけ小さいため ダンパ
			一の配置が可能な制約内で解析上の初期値を設定

表-2.8 免震装置 Dの FEM モデルの初期設定例

2.4 照査項目および照査規準

(1)クレーン共通

a) クレーン構造部材の応力照査

レベル2地震動に対するクレーンの主たる構造部材の 応力照査は,降伏応力を閾値とした照査を実施する.先 述したとおり,本検討で対象としているのは,レベル2 地震動に対するコンテナクレーンの修復性の確保である. 鋼部材の降伏応力度を超えると速やかな修復は極めて困 難であるため,最低限の照査規準としては,鋼部材の降 伏応力の照査が適当であると考えられる.以下に具体的 な照査式の例を示す.

(曲げ応力に対する照査)

曲げ応力に対する照査は、「クレーン鋼構造部分の計 算基準 JIS B 8821」規格に順じ、下記の照査式を用い ることができる.

①曲げ引張応力に対する照査式

$$\sigma_t = \frac{N}{A} + \frac{M_Z}{I_Z} \cdot e_Z + \frac{M_Y}{I_Y} \cdot e_Y \leq \sigma_{ta}$$

②曲げ圧縮応力に対する照査式(長柱座屈考慮)

$$\sigma_c = \frac{N}{A} \cdot \omega + 0.9 \cdot \left(\frac{M_Z}{I_Z} \cdot e_Z + \frac{M_Y}{I_Y} \cdot e_Y \right) \leq \sigma_{ca}$$

③曲げ圧縮応力に対する照査式(長柱座屈未考慮)

$$\sigma_c = \frac{N}{A} + \frac{M_Z}{I_Z} \cdot e_Z + \frac{M_Y}{I_Y} \cdot e_Y \leq \sigma_{ca}$$

ここに,

- N:軸方向力(N) M_Z : Z 軸回りの曲げモーメント(N・cm) M_Y : Y 軸回りの曲げモーメント(N・cm) I_Z : Z 軸回りの断面二次モーメント(cm4) I_Y : Y 軸回りの断面二次モーメント(cm4) A: 部材の総断面積(cm²) e_Z : Z 軸に関して中立軸から断面のヘリまでの距離 (cm) e_Y : Y 軸に関して中立軸から断面のヘリまでの距離 (cm) ω : 座屈係数(クレーン構造令) σ_{Ia} : 許容引張応力(N/cm²)
 - σ_{ca}:許容圧縮応力(N/cm²)

(せん断応力に対する照査)

$$\tau = \frac{V}{A} \le \tau_a$$

ここに, V: せん断力(N) A: 部材の有効せん断面積(cm²) _{*τ*_g}: 許容せん断応力(N/cm²)

(曲げとせん断の合成応力に対する照査)

$$\sigma_{conb} = \sqrt{\sigma^2 + 3\tau^2} \le \sigma_{ta}$$

$$z \ge kz,$$

 σ_{conb} : 合成応力(N/cm²) σ :曲げ引張応力(N/cm²)

 σ_{ta} :許容引張応力(N/cm²)

なお、本検討で対象とする作用は、偶発作用であるレベル2地震動であるため、許容応力としては鋼材の保証 降伏点強度を基本とする.具体的には以下のとおりである.

・許容引張応力:
$$\sigma_{ta} = \sigma_y$$

・許容圧縮応力:
$$\sigma_{ca} = \frac{\sigma_{ta}}{1.15}$$

・ せん断: $\tau_a = \frac{\sigma_{ta}}{\sqrt{3}}$

b) 浮き上がり・脱輪の照査

本検討において、浮き上がりとは、クレーン車輪がク レーンレール面から上方へ離れることを示す.また、そ の離隔を浮き上がり量と定義する.脱輪とは、クレーン 車輪が浮き上がり、クレーン車輪がレールから逸脱する ことを示す.

レベル2地震に対するクレーン車輪の浮き上がり・脱 輪の照査規準については、コンテナクレーンの修復性の 確保を考慮して、個別のクレーン毎に走行装置等の構造 や地震後の復旧体制等に応じて、個別に設定する必要が ある.例えば、以下のような照査の考え方がある.

・浮き上がりを発生させない

クレーン車輪の浮き上がりが発生しなければ,走行装 置等が損傷することは無いため,浮き上がりを発生させ ない(浮き上がり量=ゼロ)ことを照査規準とすること ができる. ・浮き上がり量を車輪つばの高さ以下に抑える

クレーン車輪に浮き上がりが発生した場合であって も、浮き上がり量が小さく、車輪が脱輪しなければ走行 装置等の損傷が発生しないと判断される場合には、脱輪 が発生しない浮き上がり量として、車輪つばの高さを照 査規準として設定することができる.

なお、レベル2地震動に対する修復性(要求性能)を 確保できる場合には、当然、これら以外の照査規準の考 え方もあるので、設計者において任意に設定することが できる.

c) その他の留意事項

係留施設の設計段階においては、クレーン輪荷重反力 (横行方向・走行方向水平,鉛直)を仮設定し、それを 設計条件として、係留施設本体の安定検討やクレーン基 礎部分の配筋計算がなされる.一方、クレーンの地震応 答解析結果により、クレーン脚下端での鉛直・水平反力 が得られるが、この反力値が係留施設側が当初設定した 値を超過する場合、係留施設の構造形式によっては局所 的に部材耐力が不足するなどの不具合が生じる場合が 考えられる.従って、クレーンの地震応答解析結果に対 し、必要に応じて、係留施設側の設計条件との照合や部 材耐力などの照査を検討することが望ましい.

(2) 免震装置の照査

レベル2地震作用時に,免震装置における応答が,許 容される範囲以内での応答であることを照査する必要 がある.先述したとおり,免震コンテナクレーンの免震 機構は,複数存在するため,個別の免震機構ごとに適切 に照査項目と照査規準値を設定する必要がある.表-2.9に,免震装置別の照査項目の設定例を示す.

免震装置A(水平型免震(積層ゴム式))については, 地震応答解析の結果から算出される,積層ゴム部分に発 生する最大せん断変形量・最大鉛直力および積層ゴムを 固定する構造部材に発生する応力が,許容値以内である ことを照査する.

免震装置C(ヒンジ式)については、地震応答解析の 結果より、皿バネ部分に発生する最大鉛直変位量(フラ ンジの開き量)もしくはそれに伴う免震装置の最大回転 角、及び皿バネ固定部材に発生する応力が、許容値以内 であることを照査する.

免震装置D(鉛直型免震(ロッキング式))について は、地震応答解析の結果より、鉛直バネ部分に発生する 最大鉛直変位量、および免震装置を構成する脚部連結部 材に発生する応力が,許容値以内であることを照査する.

なお、これらの照査項目のうち、免震装置の詳細設計 段階においては走行装置内での各部材の配置・収納のレ イアウトも含め、構成部材各々の照査が必要となるが、 本検討においては免震装置が本来具備すべき加速度低 減・減衰機能を担保する上で最も重要な項目(すなわち 最大変位量等のスペックに係わる照査項目)に着目し 3.4節および3.5節の試設計を実施した。

表-2.9 各免震装置の照査項目

免震	照查項目	FEM解析における出力項目
装置		
А	積層ゴムに発生する	免震装置の上下端の節点か
	せん断変形量	ら算出するクレーン横行方
		向の最大相対変位
	積層ゴムに作用する	免震装置部分(バネモデ
	鉛直力*	ル)に発生する鉛直力
	積層ゴムを固定する	免震装置の上下端の節点で
	構造部材の応力*(モ	発生する伝達荷重
	ーメント受けロー	(走行方向反力,横行・走
	ラ, 平行リンク等)	行・鉛直軸廻り回転反力)
С	ヒンジ部の回転量	ヒンジ部の上下に連結して
		いるフランジ部両端の節点
		の相対変位から算出する走
		行軸廻りの最大回転角
	ヒンジ部周辺の構造	ヒンジ部の上下端の節点で
	部材の応力*(フラン	発生する伝達荷重
	ジ・ピン, 軸部材等)	(横行・走行方向反力,横
		行・鉛直軸廻り回転反力)
D	鉛直バネに発生する	免震装置の上下端の節点か
	鉛直変形量	ら算出する鉛直方向の最大
		相対変位
	鉛直バネを固定する	免震装置の上下端の節点で
	構造部材の応力*(脚	発生する伝達荷重
	部連結部材)	(横行・走行方向反力,横
		行・走行・鉛直軸廻り回転
		反力)

*印は細部設計段階にて部材諸元を検討するための照 査であり、本試設計においては検討を省略した.

3. 三次元有限要素法を用いた免震コンテナクレーンの耐震性能照査の事例

3.1 概説

本章では,前報⁴⁾で3次元有限要素法によりモデル化し た実機コンテナクレーン2基について,さらに免震装置 を導入した場合のモデル化を行い,レベル2地震動を入 力したコンテナクレーンの地震応答解析を実施した.モ デル化の対象は,前報に示すT港とS港に設置されてい る実機コンテナクレーンである.**表**-3.1に解析対象ケ ースの一覧を示す.S港クレーンについては,免震装置 Aを導入したクレーンについてモデル化した.また,T 港クレーンについては,非免震クレーンと免震装置A, CおよびDを導入した免震クレーンの合計4種類のクレ ーンをモデル化した.

これらの解析対象クレーンについて,以下の手順で解 析・検討を進めた.

まず,予備解析(1)として,3次元FEMモデルに入力す る地震動成分(横行,走行および鉛直の三成分)につい て,主要構造部材の応力照査や脚の浮き上がり挙動に与 える影響を分析し,本検討において考慮すべき地震動成 分と対応する解析方法について検討を行った.

さらに、予備解析(2)として、耐震性能照査を行う上 でのクレーン姿勢について、作業時のトロリ位置がクレ ーン応答に及ぼす影響について感度分析を行い、その影 響度合いを検討した.

最後に、3次元FEM解析を利用した免震コンテナクレ ーンの耐震性能照査事例として、上述した免震化された S港クレーンとT港クレーンの照査結果を示す.なお、S 港クレーンについては、当該クレーンが重力式係船岸上 に設置されたケースについての照査事例を示す.また、 T港クレーンについては、当該クレーンが桟橋式係船岸 上に設置されたケースについての照査事例を示す.

3.2 免震コンテナクレーンのモデル化

図-3.1に対象クレーン(S港およびT港クレーン)の モデル図を示す.また,モデル化の基本条件として座標 系の定義,対象クレーンの主要諸元,FEMモデルの概 要を,図-3.2,表-3.2および表-3.3に示す.

表-3.1 地震応答解析実施ケース一覧

解析モデル	S 港ク	レーン	T 港ク	ウレーン	備考
係留施設	重力:	式岸壁	桟橋	式岸壁	
クレーン姿勢	休止時	作業時	休止時	作業時	
予備解析(1) 非免震	—	—	—	0	地震入力成分検討(作業時トロリ位置:アウト
					リーチ)
予備解析(2) 免震A	—	0	—	—	トロリ位置の感度分析
本解析 非免震	—	—	0	0	固有値解析を含む(作業時トロリ位置:休止時)
本解析 免震 A	0	_	0	0	固有値解析を含む(作業時トロリ位置:休止時)
本解析 免震 C	—	—	0	0	固有値解析を含む(作業時トロリ位置:休止時)
本解析 免震 D	—	_	0	0	固有値解析を含む(作業時トロリ位置:休止時)

(a) S港クレーン

(b)T港クレーン

図-3.1 FEM 解析モデル

図-3.2 コンテナクレーンの部材名称とモデル図

议 J.Z. 二 ジ / / / / ジ J.K./府州 巫平木什 見							
解析対象	泉クレーン	S 港クレーン	T 港クレーン				
		(岸壁構造形式:重力式)	(岸壁構造形式:桟橋式)				
座標系の定義		・横行方向:X	 ・同 左 				
		・走行方向 : Y					
		・鉛直方向: Z					
		 ・横行方向軸廻り回転:θx 					
		 ・走行方向軸廻り回転:θy 					
		・鉛直方向軸廻り回転:θz					
クレーンの仕様		・総重量(本体部): 9,415kN(960tf)	・総重量(本体部): 10,595kN(1080tf)				
		・コンテナ : 398kN(40.6tf)	・コンテナ:398kN(40.6tf)				
		・重量物:491kN(50.0tf)	・重量物:491kN(50.0tf)				
		・全高:66.762m	・全高:60.660m				
		・レールスパン:30.0m	・レールスパン:30.0m				
		・ホイールベース:16.8m	・ホイールベース:16.8m				
		・全横行距離:115.65m	・全横行距離:95.0m				
		・脚のタイプ:剛脚タイプ	・脚のタイプ:剛脚タイプ				
モデル規模		 総節点数:222 	 総節点数:222 				
		 総要素数:261 	・総要素数:270				
		 ・総自由度数:184 	 総自由度数:248 				
構造部材の	要素の剛性	・クレーン構造計算書より各部材のE,	•同 左				
モデル化方針		I, Aから設定					
	要素間の節点拘	・テンションバー、斜材の両端はピン結	 ・同 左 				
	束条件	合とし. その他はすべて剛結合とした.					
	要素の分割数	・3 次程度のモードが再現できる分割数	• 同 左				
		とし,最小4分割以上とした.断面剛					
		性変化点でも節点を設ける.					
解析手法	解析コード	• M S C . N A S T R A N	 ・同 左 				
	固有值解析手法	・モーダル解析	 ・同 左 				
	地震応答解析手	・大質量法(脚下端の節点と大質量点を剛	• 同 左				
	法	梁要素にて接続)					
	入力地震動	・海陸各々の大質量点へ時刻歴加速度を	・海陸共通の大質量点へ時刻歴加速度を				
		強制入力.	強制入力.				

表一3.2	コンテナク	レーンさ	3次元解析基本条件	一覧
10.2		* * (元

表-3.3	コンテナク	レーン3	次元解析	·条件設定例一覧
-------	-------	------	------	----------

解析対象	泉クレーン	S港クレーン(岸壁構造形式・重力式)	T港クレーン (岸辟構浩形式・桟橋式)
クレーン木休	材料の力学時代	 ・ 約形エデル 	
ジレ ジネド 部材	初れの力子内止	· 汲更妻 (·同 左
111,111	前内 C / / C	*女示 (井山木)	
		は合とし、その他はすべて剛結合と	
		した.	
	クレーンの構造	 減衰定数:3.0%(一般値) 	 ・減衰定数:3.0%(一般値)
	減衰		
	クレーンの数値	・数値減衰:0.01	・同左
	減衰	(NASTRAN デフォルト値)	
付属設備重量	機械室, 走行装	・機 械 室 : 1,333kN	・機 械 室 : 1,264kN
	置,トロリー荷重	・走行装置 : 877kN	・走行装置:1,325kN
		・トロリー: 196kN	・トロリー: 280kN
		・重量物+吊り具: 549kN	・重量物+吊り具:549kN
		(それぞれの重心位置に集中荷重とし	(それぞれの重心位置に集中荷重として
		て与える.)	与える.)
車輪部	部材モデル	・GAP 要素(点接触要素)	・同左
		車輪の浮き上がりを評価できるバネ	
		要素.	
	つばの高さ	• 25mm	• 同 <i>左</i>
	垂直反力に伴う	・摩擦係数	 同 左
	摩擦力	横行方向:1.0(固定)	
		走行方向:0.075(レール摩擦)	
走行装置部	部材モデル	・車輪部とシルビームとを接続する剛	・同左
		梁要素とし、中間の高さ位置にピン	
		(θxフリー)をモデル化.	
		・ビンより下部(車輪部)は θ x 周り	
		の回転を拘束.	
境界条件		・表-2.1 参照.	 ・同 左
重量・重心位置	実機の諸元(吊り	・クレーン総重量:9,896kN	・クレーン総重量:10,877kN
調整方法	荷含む・最大輪荷	・重心位置(アウトリーチ時)	・重心位置(アウトリーチ時)
	重計算書より)	X(海側脚より)=7.44m	X(海側脚より)=6.70m
		Z(レール面より)=34.8m	Z(レール面より)=33.60m
	モデル上の重量	・鋼材単位質量γ=7.85t/m ³ →増加	・鋼材単位質量γ=7.85t/m ³ →増加
	調整	脚,水平材,斜材:γ=8.44t/m ³	脚,水平材,斜材:γ=8.62~20.80t/m ³
		ガーター : γ=12.20t/m ³	ガーター : γ=11.04t/m ³
		ブーム, ワイヤ : γ=10.35t/m ³	ブーム:γ=12.94~19.15t/m ³
		テンションバー:γ=12.85t/m ³	テンションバー : γ =15.38~24.00t/m ³
		上部支柱 : γ =15.75t/m ³	上部支柱 : γ=8.62~21.14t/m ³
		その他部材:γ=7.85t/m ³ (調整なし)	その他部材:γ=7.85t/m ³ (調整なし)
	調整後の重量及	・クレーン総重量:9,896kN(誤差0%)	・クレーン総重量 : 10,877kN(誤差 0%)
	び重心位置	・重心位置(アウトリーチ時)	・重心位置(アウトリーチ時)
		X(海側脚より)=7.89m(誤差 6%)	X(海側脚より)=6.50m(誤差 3%)
		Z(レール面より)=33.1m(誤差 5%)	Z(レール面より)=32.60m(誤差 3%)

3.3 予備解析

(1)入力地震動成分と解析手法a)概要

予備解析(1)として、3次元FEMモデルに入力する地 震動成分(横行,走行および鉛直の三成分)について、 主要構造部材の応力照査や脚の浮き上がり挙動に与え る影響を分析し、本検討において考慮すべき地動成分と 対応する解析方法について検討を行った.

具体的な検討内容としては、従来の免震クレーンの3 次元FEM解析では、水平方向の2成分の地震動を入力する のみであったため、鉛直方向の地震動の入力の必要性に ついて検討を行った.また、本検討で使用している解析 コード(MSC.NASTRAN)を用いて鉛直方向の地震動 を考慮した性能照査を行う場合の具体的な留意点を整 理した.

b) 鉛直方向の地震動入力に関する留意点

本検討で使用した解析コード(MSC.NASTRAN)で は、ソフトの特性上、加振方向の固定点はフリーとする 必要がある.水平方向(横行・走行方向)のみの加振の 場合は,鉛直方向を固定として重力加速度相当の下向き 成分を載荷し、クレーン自重による初期状態をモデル化 できる.一方,鉛直方向の加振を考慮する場合,鉛直方 向をフリーとして,自重に対する反力分として別途節点 力を脚下端より入力して, 釣り合い状態としてモデル化 する必要がある(図-3.3).横行・走行・鉛直方向を 同時に単一のモデルで加振する場合, クレーン本体と加 振点である大質量点は、いずれの方向にも固定されず, 前述の節点力により支持された初期状態となっている. この状態に強制加速度を入力すると、大質量点とクレー ン本体とはGAP要素を挟んで接続されているため、僅か な大質量点の鉛直方向の移動に伴い, 圧縮側の剛性が大 きいGAP要素で発生する力が大きく変動すると考えら れる.

試行的に3方向同時加振による解析を実施したところ, 解析が不安定化すると判断されるケースが多数発生した.このため,本研究では,2.3(2)で述べたとおり,実務的には現状の技術レベルにおいて3方向同時加振による免震クレーンの動的解析の実施による耐震性能照査は困難であることも考慮し,3方向同時加振による動的解析の実施は今後の検討課題とし,以下c)において,鉛直方向の地震動の影響を適切に反映する照査手法について検討を行った.

c)解析結果

解析対象としたモデルは,**T**港クレーンモデル(非免 震,作業時アウトリーチ)とした.脚下端の拘束条件は

図-3.3 GAP 要素と入力地震動成分の概念図

Г				御浮き上がり		北京時の7,107	1
1.11	0.150						
14012	0.100		A A]
구민	10.000 12 0.000			an an	<u> </u>		
	70	0.0	80.0	時刻(sec)	90.0	10	00.

図-3.4 陸側脚浮き上がり量の時刻歴の比較

前述のとおりである.比較検討を実施したケースは,以下の3ケースである.

①鉛直成分のみ入力したケース
 ②水平成分のみ入力したケース
 ③水平成分と鉛直成分を同時入力したケース

各解析ケースにおける陸側脚下端の浮き上がり量の 時刻歴を図-3.4に示す.水平成分のみ入力の場合は(黒 実線),クレーンの固有周期に対応して,比較的長い周 期の大きなロッキング挙動に伴う大きな浮き上がり(最 大88mm)が発生していることがわかる.一方,鉛直成 分のみ入力の場合は(灰色実線),短時間に小さな浮き 上がりが発生している(最大31mm).さらに,水平動 と鉛直動を同時入力したモデルでは,その他の解析ケー スにおける浮き上がりの状況と比較すると,その他ケー スと全く関係のないと考えられる時刻において非常に 大きい浮き上がりが発生しており,妥当な解析結果が得 られているとは判断することが出来ない. さらに,入力 地震動の各方向成分の周波数特性にもよるが,一般的に は短周期成分が卓越する鉛直動よりも水平動によるク レーンのロッキング挙動に伴う浮き上がりが顕著であ ると考えられる.以上のことから,本検討においては, クレーン脚の浮き上がりについては,入力地震動として は水平成分のみを入力した解析で評価しても概ね妥当 な照査ができると判断した.

次に、クレーン構造部材の応力照査について、同様の 観点から検討を行う.陸側クレーン脚に発生する鋼材応 力(-:圧縮方向,+:引張方向)の加振中における変動 成分の時刻歴の比較を図-3.5(a)~(d)に示す.図中には, 鉛直成分のみ入力したケースにおける初期応力(自重) からの応力変動分(黒実線),水平成分のみを入力した ケースにおける自重による初期応力を含んだ応力(灰実 線),および両ケースの解析結果を加算した結果(黒点 線)をプロットしている.また,図-3.5(a)には軸力に よって発生する応力成分を,図-3.5(b)には横行方向軸 回りモーメントによって発生する応力成分を,図-3.5(c)には走行方向軸回りモーメントによって発生する 応力成分をプロットしている.また,図-3.5(d)は軸方 向応力と2方向の曲げ応力を足し合わせた結果を示す.

これらの結果より,地震による発生する部材の応力を 曲げによる成分と軸力による成分とに分けた場合,2 方 向の曲げによる応力成分が卓越する傾向にあることが分 かる.この傾向は,脚部材のみならず,水平部材などで は特に顕著に見受けられる.ただし,クレーン脚に浮き 上がりが発生する場合には,着地した瞬間に大きい軸力 が発生することに注意が必要である.以上を考慮すると, クレーンの主構造部材の応力照査にあたっては,特に, 曲げ成分による発生応力と浮き上がりに伴う軸力の増加 による発生応力の両者を適切に評価する必要があると言 える.

ここで、上述した②水平成分のみ入力したケースであ れば、クレーンの振動特性(固有周期等)に対応して発 生する主構造部材における大きな曲げモーメントを概ね 再現することができ(①鉛直成分の入力したケースにお ける応力発生レベルは小さい),またロッキング挙動で の浮き上がりも表現できるため(瞬間的な軸力増加を考 慮できる),応力照査は②(水平成分地震動のみを入力) を基本とすることが妥当であると考えられる.ただし、 ①鉛直成分のみ入力したケースで発生する応力成分も小 さいながらも無視できるレベルではないため、②水平成 分入力による発生応力に、①鉛直成分入力による発生応 力を足し合わせた応力照査も実施する必要があると考え

⁽d)応力(軸力成分と曲げ成分の両者を考慮)

図-3.5 クレーン脚に発生する鋼材応力の時刻歴比較

られる.ただし,この二つの応力評価手法のどちらが安 全側の評価になるかは特定できない.これは,鉛直動に よる軸応力成分と水平動による応力成分を時刻歴で足し 合わせた場合,ある時刻の発生軸応力の方向(正負)に よっては応力を増加したり,打ち消しあう効果となった りするため、一概に①鉛直成分の入力による応力を単純 に加算しても,必ずしも応力が安全側の評価になるとは 限らないためである.実設計における照査の場合,これ らの応力照査に係る留意点を考慮して行う必要がある.

なお, 3.5 以降に示す試検討では,前者による応力照 査を満足することを確認した上で,水平成分のみを入力 した解析から得られた応力と鉛直成分のみを入力した解 析から得られた応力変動分とを足し合わせた応力照査結 果のみを紹介している. (2) 作業時のトロリ位置による影響検討

作業時のトロリ位置によるクレーン応答に及ぼす影響を把握するために、S港クレーン(免震Aタイプ,作業時)を対象に以下の5ケースの吊り荷位置による感度分析を行った(図-3.6).なお、()内Xの距離は、海側脚からのトロリ位置水平距離を示す.

①アウトリーチ位置(X=-51.5m)

②船舶ホールド内吊り荷の最陸側寄り位置(X=-10m)

- ③トラック積み込み位置(X=+6.5m)
- ④トロリ休止位置(X=+25.0m)

⑤バックリーチ位置(X=+45.0m)

図-3.6 解析対象のトロリ位置

①は最も岸壁から離れた位置の吊り荷の吊り上げ・吊り下ろしをする状態であり、クレーン構造規格に準じた安定計算では必ず考慮される姿勢である。ただし荷役のサイクルタイムとして非常に短い時間占有率の状態であり、これを作業時姿勢の代表として選択すると過度に安全側の照査となる可能性がある。

②はコンテナ船内に搭載されている貨物の内,ホール ド内の最も岸壁寄りの列を吊り上げ・吊り下げする状態 であり,海上にトロリがある位置のうち最も陸側に寄っ た状態を模擬している.

③は通常荷役サイクルの検討において、トラック・シ ャーシへの積み卸し位置として設定される位置である. これらの①~③は、比較的トロリが海側脚付近にあり、 クレーン全体の重心も海陸脚間の中央よりも海側寄りに 位置している状態である.

④は作業の休止時にトロリが格納されている状態であ る.

⑤は陸側脚よりも背面側にトロリを移動して吊り荷の 吊り上げ・吊り下ろしを行う位置であり、クレーンの作

(a)免震装置で発生する最大変形量への影響

(c)陸側脚の発生応力(最大値)の比較

(d)海側脚の発生応力(最大値)の比較

図-3.7 作業時におけるトロリ位置の影響

業形態によっては生じる可能性のある姿勢である.クレ ーン構造規格に準じた安定計算では,作業時のうち最も クレーン全体の重心が陸側寄りになった状態であるため, かならず安定計算の対象となるケースである.

図-3.7(a)に、トロリ位置を変化させた解析ケースご とに得られる免震装置部分で発生する最大せん断変形量 の結果を示す.また、図-3.7(b)~(d)に、クレーン脚の 最大浮き上がり量、陸側脚で発生する最大応力および海 側脚で発生する最大応力について、同様の結果を示す. これらの結果より、以下の傾向が確認された.

免震装置(積層ゴム)の最大せん断変形量については、 トロリ位置に依存せずに概ね一定であった.これは、本 免震クレーンの機構上、クレーン全体の振動モードとし て、4 箇所の積層ゴムの上をクレーン本体がそのまま水 平方向に変位するモードが卓越する.クレーン本体の最 大水平変位量を決定づけるのはクレーン本体に作用する 水平慣性力であり、この水平慣性力はトロリの水平位置 が異なっても概ね一定である.その結果として積層ゴム 部分における最大せん断変形量も概ね一定になるためで あると考えられる.

脚の浮き上がりについては、トロリの水平位置による 影響が極めて大きいことがわかる.特に、全体の重心位 置が最も海側寄り(アウトリーチ)の場合、陸側脚の浮 き上がり量が極端に大きくなることがわかる.トロリ位 置が海側脚付近から陸側に移ると、陸側脚の浮き上がり 量が小さくなるが、全体の重心位置が最も陸側寄り(バ ックリーチ)の場合には、海側脚の浮き上がりが発生す るようになる.

陸側脚に発生する応力については、横行軸廻りモーメ ント成分に関してはトロリが近づくほど応力値が増加す る傾向にあり、走行軸廻りモーメントや軸応力はさほど の変化が見られない.曲げと軸力の合成応力ではアウト リーチ時とバックリーチ時で35%程度の差が生じている.

一方,海側脚に発生する応力は、トロリがバックリー チに至るまでいずれの位置でもほとんど発生応力に変化 がなく、バックリーチ位置に来た場合には極端に曲げ応 力が低下する結果となっている.トロリがバックリーチ 位置の場合に海側脚の曲げ応力が低下するのは、クレー ン後方に重心が移動することにより、海側脚の浮き上が りが発生し、これに伴い海側脚の曲げ応力が解放される ためであると考えられる.

以上のことから、本検討ケースの場合には、作業時に おけるトロリ位置を休止時の位置として、脚部材に対す る応力照査を実施しても、概ね問題がないと判断できる. なお、個別のコンテナクレーンの耐震設計においてト ロリ位置を設定する際には、以上に示したとおり、トロ リ位置によって免震装置に作用する変位や海側脚・陸側 脚で発生する応力・浮き上がり量などが変化する場合が あるため、これらの特徴を十分に把握してから、トロリ 位置を設定することが望ましい.

3.4 重力式岸壁上におけるコンテナクレーンの耐震性 能照査の事例

本節では,係留施設の構造形式として重力式,搭載される免震コンテナクレーンとして免震装置A(積層ゴム 式)を対象として解析を実施した.対象クレーンは,S 港クレーンである.

(1)解析ケースおよび解析条件等

図-3.8に係留施設の標準断面図を示す.図-3.9に係 留施設の地震応答解析(2次元 FLIP)に入力した工学的 基盤におけるレベル2地震動波形を示す.また,海陸各々 のクレーン基礎位置における時刻歴応答加速度を図-3.10に,時刻歴応答変位を図-3.11に示す.なお,法線 平行方向の時刻歴応答加速度は,岸壁背後の裏込捨石位 置をモデル化した一次元 FLIPによる地震応答解析結果

今回解析対象としたのは、休止時姿勢、免震装置Aタ イプを用いたケースである。免震装置に関するモデル化 の概要を表-3.4に示す。なお、前項にて検討した免震 Aタイプの初期設定値(水平バネ1354kN/m,減衰係数 113kN/s/m)に対して、実際のFEMモデルにおける免 震装置のスペックは一部変更している。これは、初期設 定値による予備解析を実施したところ、減衰効果が小さ いため免震装置におけるせん断変形量が許容値を超えた ため(許容値30cmに対し、免震装置の水平変位34cm 程度)、免震装置(積層ゴム)の水平方向バネ定数と減 衰係数を実機で製作可能な範囲内の値で調整し、許容値 を満足するようにしたためである。本クレーンの耐震性 能照査項目と許容値の設定内容を表-3.5に示す。

(2)固有值解析結果

である.

免震Aタイプを採用したクレーンについて,休止時を 対象とした初期設定値による固有値解析結果を図-3.12に示す.

免震クレーンは当初目標とした横行方向固有周期4.0 秒に対して,免震装置の水平バネ定数を大きい値に変更 したため,解析結果は2.86秒となり,若干小さい値とな った.設定した免震装置のバネ値1,500kN/mは既存の免 震装置のスペックとしては最大程度であり,本解析によ る結果を見て,バネ値の再設定が必要か否かを判断する こととした.

(3)本解析の結果

前述の時刻歴加速度を,海陸各固定点に個別に入力し, 地震応答解析を実施した.まず鉛直動のみ入力するモデ ルにて自重による初期応力からの変動量を算定した.そ

図-3.8 係留施設の標準断面図

の後,横行方向及び走行方向の加速度を入力したモデル にて、クレーン全体の加速度および変位応答,脚の浮き 上がりと免震装置の相対水平変位量を算定した.主要構 造部材に生じる応力は、水平動による時刻歴発生応力に、 鉛直動による変動分を足し合わせた合成応力に対して 応力照査を行った.また、脚下端における反力値は、プ ログラム上、固定点からの直接出力ができないため、下 端に接する要素の断面力から算定した.代表的な解析結 果として、図-3.13に着目点位置を、図-3.14に重心位 置の時刻歴変位、脚下端の浮き上がり時刻歴、免震装置 の相対水平変位の時刻歴、脚下端の反力値の時刻歴を示 す.

本モデルは休止時を対象とし、ブームを上方に格納し た姿勢であるが、上部構成部材のうち陸側脚背面に位置 する機械室の占める質量が大きく、全体の重心位置が陸 側に寄った状態となっている.このため、脚の浮き上が りは相対的に軸力が小さい海側脚にて生じている.また、 走行方向の加振による影響でブームが左右(走行方向) に揺れるモードとなり、2 脚ある海側脚は同時に浮き上 がる場合のみでなく、左右それぞれが個別に浮き上がっ たり着地したりするロッキング挙動が確認された.3.3 節(2)でも述べたように、コンテナクレーンは重心位置が 高い位置にあり、機械室や吊り荷の位置、ブームの姿勢 により振動モードが大きく異なる傾向にあるため、実務 上はモデル化対象とする姿勢等を十分に吟味する必要が ある.

クレーン全体の変位挙動や脚下端の反力は,免震装置 による固有周期に応じた応答となっている.図-3.15に 最大応答が発生する時刻前後での水平材端部の応力履 歴を示す.部材発生応力についてもクレーン全体挙動に 応じた周期となっていることがわかる.

本解析結果による性能照査の結果(表-3.6),全ての 性能照査項目において許容値を満足しており,本免震ク レーンが成立することを確認することができた.

耐震強化施設としてのコンテナクレーンの耐震性能照査手法に関する研究(その3)/ 宮田正史・吉川慎一・竹信正寛・菅野高弘・小濱英司・久保哲也

図-3.10 入力地震動の加速度時刻歴 (岸壁上 XYZ 海側,陸側)

図-3.11 クレーン基礎における水平・鉛直変位の 時刻歴(係留施設の動的解析結果)

免震装置の部位	要素種類	設定値	設定方法概要
積層ゴム	線形バネ要素	1,500kN/m	目標固有周期 T=4.0sec となるバネ定数を試算
アイソレータ	(横行並進)		し設定後,地震応答解析の結果より調整.
オイルダンパー	減衰要素	1,200kN-s/m	目標減衰力を得られる減衰定数を試算し設定
	(横行並進)		後,地震応答解析の結果より調整.
シアピン	—	モデル化しない	トリガー機能はモデル化しない.
モーメント	節点拘束条件	横行・走行軸	装置による変位拘束効果をモデル化.
受けローラ		回転固定	
平行リンク	節点拘束条件	走行方向固定	装置による変位拘束効果をモデル化.
		鉛直軸回転固定	横行方向の最大変位抑制機能はモデル化しな
		(許容水平相対変位	い(モデル最大相対変位量にて確認).
		量±30cm)	

表-3.4 免震装置Aのモデル設定値(S港クレーン対象)

表-3.5 コンテナクレーンの耐震性能規定(S港クレーン)

照查項目	許容値	設定の考え方
浮き上がり・脱輪	• 30mm	・車輪のつばの高さ
脚下端の反力	 ・海側脚: 	係留施設側からの申し送り事項
(8 輪/脚)	鉛直 1,324kN/輪→10,592kN/脚	(設計荷重条件).
	水平 118kN/輪→944kN/脚	
	 陸側脚: 	
	鉛直 1,324kN/輪→10,592kN/脚	
	水平 118kN/輪→944kN/脚	
主要構造部材の応力	・軸力・曲げ・せん断作用に対する鋼部材	・レベル2地震動に対する修復性の確保
	の発生応力が降伏応力以内	
免震装置Aタイプ	・免震装置の水平変位量	・免震装置(積層ゴム)の許容最大せん断変位
	許容ストローク±30cm	

図-3.12 固有値解析結果(S港・免震A・休止時)

図-3.13 着目部位(S港クレーン)

(b)浮き上がり量

85.516

(c)免震装置水平変位

図-3.14 地震応答解析結果(S港・免震A・休止時)

クレーン名称				S港クレーン				
地震動				LEV	EL2			
加震方向				横行+走行	テ(+鉛直)			
構造減衰				3	%			
走行装置下端条件				GAP	拘束			
GAP剛性	KA(圧縮側)		[N/m]	2.51	2.51E+11 4 70E+04			
	KB(引張側)		[N/m]	4.70E+04				
クレーンの姿勢				休止時				
免震装置				免震A (K=1500kN/m,C=1200kNs/m)				
解析回数				1回目				
浮き上がり量	海側		[m]	0.029				
	陸側		[m]	0.0	00			
免震装置変位	海側	[m] or [rad.]	0.2	08			
<u>※免震Cのみ回転角</u>	陸側	[m	0.1	49				
重心位置加速度	横行方向		[m/s ²]	-3.0)53			
	走行方向		[m/s ²]	3.4	20			
	鉛直方向		[m/s ²]	5.3	66			
重心位置変位量	横行方向		[m]	-0.3	327			
	走行方向		[m]	0.2	63			
	<u>~1771</u> 公百方向		[]					
	」		լայ	-0.0	7Z I			
		1		海側L2	陸側L3			
脚下端反力	鉛直方向	最大値	[kN]	1063	360			
			[s]	130.06	124.10			
		最小値	[kN]	-3391	-4469			
			<u>۔ ۔</u> [م]	121.85	122.88			
	楼仁士白	旱土店	[U]	E40	410			
	(1) 刀円	取入胆		549	413			
			[s]	123.13	130.09			
		最小值	[kN]	-513	-463			
			[s]	117.41	117.48			
	走行方向	最大値	[kN]	350	322			
			[s]	128.09	121.20			
		最小値	[kN]	-156	-250			
		10.1.IE	[6]	120.25	127.10			
			[3]	120.20	127.10			
六十六四 末			5	15年	J/疝			
心刀度照宜	囲けり版	心力度	[kN/m ⁻]	47,578	60,102			
陸側脚下端		必力度比	гэ	0.135	0.170			
	またり合	<u> </u>	[S]	114.80	170.010			
	田け圧縮	心力度	[kN/m ⁻]	-153,385	-1/0,812			
	(坐屈考慮)	必要的	г л	0.500	0.556			
	また月谷	<u> </u>	[S]	130.10	130.09			
	田け圧縮	心力度	[kN/m ⁻]	-157,204	-1/6,4/2			
	(坐屈木考慮)	心力度比	гл	0.512	0.575			
	前新	<u> 光土 </u>	[S]	10.001	10.004			
	労切	心力度	[kN/m ²]	18,381	18,381			
		<u>心力度比</u> <u> み</u> 止 せ 加	۲_٦	0.090	0.090			
o 进	全成立力	<u> 光土 </u>	[S]	150.410	170 500			
Element 117		応力度	[KN/m]	0.450	1/0,000			
		心力反比 登生時刻	۲_٦	120.10	120.00			
	1	九工时刻	[S]	130.10	130.09			
	中に217月	内土田	Fig. 2-	山山				
心力反照宜	回りり版	心力度	[kN/m ⁺]	221,879	195,452			
冲 側水半材		<u>心力度比</u> 器片吐力	Г. 1	0.611	0.538			
	曲尾に統	<u> 光土 </u>	[S]		123.13			
	四 リ 圧 稲 (広 尼 去 虚)	心力皮	[kN/m [*]]	-202,826	-140,994			
	()) () () () () () () () () () () () ()	心力度比	г л	0.642	0.465			
	またにな	<u> 光生時刻</u>	[S]	11/.41	101.000			
	曲り圧縮 (広見ままま)	心力度	[kN/m ²]	-223,671	-161,636			
	() () () () () () () () () () () () () (心力度比		0.708	0.512			
		<u> </u>	[s]	117.41	117.41			
	勞町	心力度	[kN/m ⁴]	22,/82	22,/82			
		心力度比		0.109	0.109			
o.#		<u> 発生時刻</u>	[s]	117.35	117.35			
5)を	官 成心刀	心刀度	[kN/m²]	226,968	197,587			
Element:97		心力度比		0.625	0.544			
	l	発生時刻	s	117.41	123.13			

表-3.6 耐震性能照查結果一覧(S港・免震A・休止時)

3.5 桟橋式岸壁上におけるコンテナクレーンの耐震性 能照査の事例(免震クレーン②)

本節では、係留施設の構造形式として桟橋式、搭載される免震コンテナクレーンとして免震装置A(積層ゴム 式), C(ヒンジ式), D(ロッキング式)を解析対象 とする.なお、3.2で述べたとおり、クレーン姿勢は2姿 勢(休止時、作業時)とする.対象クレーンは、T港ク レーンである.

(1)解析ケースおよび解析条件等

図-3.16 に係留施設の標準断面図を示す.図-3.17 に係留施設の地震応答解析(2次元 FLIP)に入力した工 学的基盤におけるレベル2地震動波形を示す.また,図 -3.18 にクレーン基礎位置における加速度時刻歴を,図 -3.19 に変位時刻歴を示す.なお,法線平行方向の時刻 歴応答加速度は,桟橋基礎部をモデル化した一次元 FLIP による杭の1/β平均深度における地震応答解析結果か ら算出した.算定位置は図-3.16 に示すとおりである. 実施した解析ケース一覧を表-3.7 に示す.本クレーン の耐震性能照査項目の一覧を表-3.8 に示す.

各免震装置に関するモデル化の概要を表-3.9~3.11 に示す. なお, 前項にて検討した各免震タイプ別の初期 設定値に対して,実際のFEMモデルにおける免震装置 のスペックを修正している. 免震装置Aについては,初 期設定値(水平バネ1390kN/m, 減衰係数1310kN/s/m) による予備解析を実施したところ, 浮き上がり量が若干 許容値を超過しており(浮き上がり量27mm>許容値 25mm),免震装置の変形量は十分小さかったため(変 形量13.7cm<許容値30cm),実機で製作可能な範囲の 値で水平方向バネを低減して地震力の減衰効果をより 大きくすることが有効と判断し、入力値の調整を行った. 免震装置 C については、初期設定値の復元力によるモデ ルでは、ほとんど地震力の低減効果が見られなかったた め,実機で製作可能で免震装置に配置可能と判断できる 範囲内でバネ値を調整し、よりバネ値を小さくする(回 転復元力を小さくする)方向へ修正した. 免震装置Dに ついては、初期設定値のモデルにて所定の耐震性能が得 られたため、バネ値・ダンパーの調整は行っていない.

図-3.16 係留施設の標準断面図

表-3.7 T港クレーンの解析ケース

クレーン姿勢	休止時	作業時
免震Aタイプ	0	0
免震 C タイプ	0	0
		(2回実施)
免震 D タイプ	0	0

図-3.19 クレーン基礎における水平・鉛直変位の時刻歴 (係留施設の動的解析結果)

照查項目	許容値	設定の考え方
浮き上がり・脱輪	25mm	・車輪のつばの高さ
脚下端の反力	 海側脚: 	・設計荷重条件
(8 輪/脚)	鉛直 975kN/輪→7,800kN/脚	
	水平 109kN/輪→872kN/脚	
	 陸側脚: 	
	鉛直 693kN/輪→5,544kN/脚	
	水平 74kN/輪→592kN/脚	
主要構造部材の応力	・軸力・曲げ・せん断作用に対する鋼部	・レベル2地震動に対する修復性の確保
	材の発生応力が降伏応力以内	
免震装置 A タイプ	・免震装置の水平変位量	・免震装置(積層ゴム)の許容最大せん断変位
	許容ストローク±30cm	
免震装置 C タイプ	・免震装置の最大回転量	・免震装置(ヒンジ部)の最大回転角
	許容ストローク	
	→0.0236rad(1 回目)	
	→0.0354rad (2 回目)	
免震装置 D タイプ	・免震装置の鉛直変位量	・免震装置部分の許容最大鉛直変位
	許容ストローク 0~40cm	

表-3.8 コンテナクレーンの耐震性能規定(T港クレーン)

免震装置の部位	要素種類	設定値	設定方法概要							
積層ゴム	線形バネ要素	1,000kN/m	目標固有周期 T=4.0sec となるバネ定数を試算							
アイソレータ	(横行並進)		し設定後,地震応答解析の結果により調整.							
オイルダンパー	減衰要素	1,200 kN-s/m	目標減衰力を得られる減衰定数を試算し設定							
	(横行並進)		後,地震応答解析の結果より調整.							
シアピン	—	モデル化しない	トリガー機能はモデル化しない.							
モーメント	節点拘束条件	横行・走行軸	装置による変位拘束効果をモデル化.							
受けローラ		回転固定								
平行リンク	節点拘束条件	走行方向固定	装置による変位拘束効果をモデル化.							
		鉛直軸回転固定	横行方向の最大変位抑制機能はモデル化しな							
		(許容水平相対変位	い(モデル最大相対変位量にて確認).							
		量±30cm)								

表-3.9 免震装置Aのモデル設定値(T港クレーン対象)

表-3.10 免害装置Cのモデル設定値(T 港クレーン)	対象)
-------------------------------------	-----

免震装置の部位	要素種類	設定値	設定方法概要
皿バネ剛性	線形バネ要素	446,630kN/m	目標変形量を満足するバネ定数を試算し設定
	(鉛直並進)	×2 箇所	後,地震応答解析の結果により調整. ()内は1
		(297,750kN/m	回目の設定値では所定の耐震性能が得られな
		×2箇所)	かったため,2回目に設定を修正した値.
皿バネ離隔距離	—	1,220mm	脚部材のウェブ高寸法より.
			回転剛性として 666,060kN.m/rad
			(2回目再設定後 222,020kN.m/rad)
フランジ部ピン	GAP 要素	KA, KB=脚下端剛性	脚下端の GAP 要素と同様の設定.
		条件と同等,	圧縮側は十分大きい剛性, 引張側は十分小さい
		摩擦係数 1.0	剛性.
		×2 箇所	鉛直並進バネと並列に配置.
		横行・走行方向固定	
		鉛直軸回転固定	
皿バネ束軸部材	節点拘束条件	横行・走行軸	装置による変位拘束効果をモデル化.
		回転固定	鉛直方向の最大変位抑制機能はモデル化しな
		(許容回転量	い(モデル最大回転量にて確認).
		0.0236rad)	
		(2回目設定値	
		0.0354rad)	

表-3.11 免震装置Dのモデル設定値(T港クレーン対象)

免震装置の部位	要素種類	設定値	設定方法概要
コイルバネ	線形バネ要素	12,500kN/m	最大偏心時反力と変形量より初期値設定後,固
	(鉛直並進)		有値解析により確認.
オイルダンパー	減衰要素	8,000kN-s/m	目標減衰力を得られる減衰定数を試算し設定
	(鉛直並進)		後,地震応答解析の結果より調整.
レベリング	—	モデル化しない	トリガー機能はモデル化しない.
ジャッキ			
脚部連結部材	節点拘束条件	横行・走行方向固定	装置による変位拘束効果をモデル化.
		横行・走行・鉛直軸	鉛直方向の最大変位抑制機能はモデル化しな
		回転固定	い(モデル最大相対変位量にて確認).
		(許容鉛直相対変位	
		量 0~40cm)	

(2)解析結果(免震Aタイプ)

a) 固有値解析の結果(免震 A タイプ)

免震Aタイプを採用したクレーンについて,作業時を 対象とした初期設定値による固有値解析結果を図-3.20~3.21に示す.

免震クレーンは当初目標とした横行方向固有周期4.0 秒に対して,解析結果は休止時3.63秒,作業時3.64秒と なり,若干固有周期が短く算定された。ただし,設定し た免震装置のバネ値1,000kN/mは既存の免震装置のス ペックとして相応であり,本解析による結果を見て,バ ネ値の再設定が必要か否かを判断することとした.

b)本解析の結果(免震Aタイプ)

前述の時刻歴加速度を、脚下部の固定点に入力し、地 震応答解析を実施した.まず対象とする解析モデルに鉛 直地震動のみを入力し、自重による初期応力からの変動 量を算定した.その後、横行方向及び水平方向の加速度 を入力し、クレーン全体の変位応答、脚の浮き上がりと 免震装置の相対水平変位量、脚下端反力を算定した.主 要構造部材に生じる応力は、水平動による時刻歴発生応 力に、鉛直動による変動分を足し合わせた合成応力に対 して応力照査を行った.代表的な解析結果として、図ー 3.22に着目点位置、図-3.23に作業時における解析結果 として重心位置の時刻歴変位、免震装置の相対水平変位 の時刻歴、脚下端の反力値の時刻歴を示す.また、図ー 3.24に最大応答発生時点前後での免震装置及びクレー ン重心位置の応答変位を示す.なお、本解析では脚下端 の浮き上がりは発生しなかった.

本解析結果による性能照査の結果(表-3.12),全ての性能照査項目において許容値を満足しており,本免震 クレーンが成立することを確認することができた.なお 同表には,参考として非免震クレーンの照査結果も示し ている.

(a)4 次モード・横行 1 次・T=3.63sec

(b)5 次モード・走行 1 次・T=2.81sec 図-3.20 固有値解析結果(休止時)

(a)4 次モード・横行 1 次・T=3.64sec

(b)5次モード・走行1次・T=2.76sec図-3.21 固有値解析結果(作業時)

図-3.22 着目部位(T港クレーン)

(a)重心位置の応答変位

(b)免震装置水平変位

(c)脚反力

図-3.23 地震応答解析結果(T港・免震A・作業時)

図-3.24 最大応答時の免震装置及び重心位置応答

クレーン名称			T港クレーン											
地震動				LEVEL2										
加震方向				橫行+走行(+鉛直)										
構造減衰				3%										
走行装置下端条件					GAP拘束									
GAP剛性	KA(圧縮側)		[N/m]				2.46	E+11						
	KB(引張側)		[N/m]		8.18E+04									
クレーンの姿勢					作業時トロ	リ休止位置		休止時						
免震装置				非免震		免證 (K=1000kN/m,0	免震A (K=1000kN/m,C=1200kNs/m)		非免震		震A C=1200kNs∕m)			
解析回数				1回目		1回目		1回目		1回	1日			
浮き上がり量	海側		[m]	0.00	00	0.0	00	0.0	01	0.0	00			
	陸側		[m]	0.00	04	0.0	00	0.0	09	0.0	00			
免震装置変位	海側	[n	<u>n] or [rad.]</u>			-0.1	09			-0.1	21			
※免震Cのみ回転角	陸側	Lu	<u>n] or [rad.]</u>			-0.0	078	-	·	-0.0	192			
重心位置加速度	横行万问		[m/s ²]	-4.9	38	-2.7	45	-4.8	55	-2.6	137			
	走行方向		[m/s ²]	1.73	35	1.7	12	1.7	59	1.6	57			
	鉛直方向		$[m/s^2]$	0.99	90	-0.2	93	1.94	42	0.2	68			
重心位置変位量	横行方向		[m]	0.46	60	0.2	76	0.4	59	0.2	59			
	走行方向		[m]	-0.6	91	-0.8	69	-0.8	38	-0.8	396			
	鉛直方向		[m]	-0.0	14	-0.0	112	-0.0	32	-0.0)29			
	Loss and a state of the state o		500	 海側 2	陸側13		陸側13	 海側12	陸側 3		陸側13			
ᅄᅋᆍᄮᄥᆮᆂ	创造十百	日十坊	D M I	/母 民门 [2	PE (K) L0	/毋 戌一乙	150	/HF (H) L2	P主 民 L5	7年民亡2	P主 民 L 5			
脚下端反力	鉛直方回	<u> </u>	[kN]	-160	895	-1161	-153	668	1147	-501	-334			
			[s]	75.90	80.91	75.87	79.39	77.85	80.96	75.85	73.51			
		最小值	[kN]	-5377	-4461	-4339	-3381	-4892	-4531	-4054	-3688			
			[s]	79.18	80.24	82.13	71.21	79.13	77.76	82.08	71.23			
	横行方向	最大値	[kN]	1030	782	572	450	1047	781	546	423			
			[2]	75.89	75.89	75.86	75.86	77.90	77.90	75.86	75.86			
		是小植	[LN]	-702	-522	-290	-207	-962	-596	-410	-207			
		取1.1回	[.1]	735		77.00	207	77.16	77.15	77.00	77.04			
	~~	日上は	[S]	//.1/	//.1/	11.22	11.24	//.10	77.15	11.22	77.24			
	定行方问	<u> </u>	[kN]	355	266	325	287	246	323	262	293			
			[s]	73.67	75.53	73.69	75.53	73.69	77.52	73.65	75.56			
		最小值	[kN]	-273	-236	-271	-260	-279	-251	-260	-267			
			[s]	71.58	74.71	71.57	74.72	71.34	71.36	74.75	71.36			
				I端	J端	I端	J端	I站	J端	I端	J端			
応力度照査	曲げ引張	応力度	[kN/m ²]	97,952	147,981	0	0	113,347	161,335	0	0			
陸側脚下端		応力度比		0.277	0.419	0.000	0.000	0.321	0.457	0.000	0.000			
		発生時刻	[s]	80.96	80.98	0.00	0.00	81.00	81.00	0.00	0.00			
	曲げ圧縮	応力度	[kN/m ²]	-166,620	-242,996	-137,956	-168,078	-200,116	-269,424	-148,346	-179,058			
	(座屈考慮)	応力度比		0.543	0.792	0.449	0.547	0.652	0.878	0.483	0.583			
	11 . 2 - 4	発生時刻	[s]	77.77	75.85	71.29	75.80	77.84	77.84	75.75	75.79			
	曲げ圧縮	応力度	[kN/m ²]	-165,104	-246,852	-135,224	-169,642	-197,548	-274,557	-147,302	-180,083			
	(座屈未考慮)	応力度比		0.538	0.804	0.440	0.553	0.643	0.894	0.480	0.587			
		発生時刻	s	77.77	75.85	71.31	75.80	77.84	77.84	75.73	75.79			
	剪断	応力度	[kN/m²]	26,745	26,745	21,303	21,303	34,784	34,784	21,572	21,572			
T港		応力度比		0.131	0.131	0.105	0.105	0.171	0.171	0.106	0.106			
Element:5	ヘナナン	<u> </u>	[s]	100.001	80.07	/5.8/	/5.8/	//.92	//.92	/5.88	/5.88			
	合成応力	心力度	[kN/m ²]	169,804	250,021	138,638	1/3,2/3	208,509	280,747	152,518	183,668			
		心力度比	г л	0.481	0.708	0.393	0.491	0.591	0.795	0.432	0.520			
		完生时刻	LSJ	//.//	/ 0.80	/1.29	/5.80	11.84	//.85	/0./0	/5./9			
广 上皮177末	# () 3 3E	++++	- 2-	156	し」「面	1)喃	して 200 071	山面	J 编	15面	し 200 051			
心力及思望	田17515枚	心力皮	[kN/m [*]]	301,/52	319,544	222,070	200,071	389,288	343,328	208,455	188,254			
> 海側水平材端部		<u>於力度比</u>	г л	0.997	0.880	0.613	0.551	1.0/2	0.946	0.5/4	0.519			
	曲ば圧縮	<u> 完生</u> 時刻	[S]	/0.88	17.89	/0.84	110 590	202.217	77.90	/ 0.84	/ 0.84			
	曲い圧縮 (広見考慮)	心力反	[kN/m ⁻]	-2/0,017	-230,037	-140,179	-110,569	-303,217	-232,027	-137,310	-100,120			
	(座曲考慮)	<u>応力度に</u> 惑生味如	Г-1	0.882	0./30	0.444	0.300	0.960	0.798	0.435	0.342			
	曲尾丘線	<u> 元王</u> 何 刻	[S]	-204 792	-251 470	-154.079	-121 101	-221.022	-274 156	-150 502	-119.069			
	四つ工帽 (広見ままま)	心力皮			231,470	1,078	0,000	1.040	274,130	130,302	0.074			
	()))))))))))))))))))))))))))))))))))))	<u>心力度に</u> 発生時刻	[_]	0.904	0.796	0.488	0.383	1.048	0.808	0.4/6	0.3/4			
	前新	広力度	[5]	20.327	20,327	14 743	14 743	19.7/3	19.743	15.425	15.425			
T :#	57 (4)	応力度し	LKIN/ M]	20,327	20,327	14,743	0.070	13,743	19,743	13,423	13,423			
Flement:7		<u>心力反応</u> 登生時刻	[_1]	70.097	70.097	74.50	74.50	77 10	77 10	75.00	75.22			
Listing (合成応力	応力度	[kN /m ²]	362.959	320 942	224 078	201 637	390 689	344 916	209 627	189 551			
	- 1900 23	広力度1		1 000	0.884	0.617	0 555	1 076	0 950	0.577	0.522			
		発生時刻	[s]	75.88	77.89	75.84	75.84	77.90	77.90	75.84	75.84			

表-3.12 耐震性能照査結果一覧(T港・免震A及び非免震・休止時及び作業時)

耐震強化施設としてのコンテナクレーンの耐震性能照査手法に関する研究(その3)/ 宮田正史・吉川慎一・竹信正寛・菅野高弘・小濱英司・久保哲也

(3)固有値解析結果(免震Cタイプ)

a) 固有値解析の結果(免震Cタイプ)

免震Cタイプを採用したクレーンについて,作業時を 対象とした固有値解析結果を図-3.25~3.26に示す.な お,本タイプの免震クレーンは1回目の照査の結果,部 材の耐力が許容値を満足しなかったため,さらに免震装 置の減衰効果や許容変形量を大きくする方向に調整し, 2回目の照査を実施した.

免震クレーンは当初目標とした横行方向固有周期4.0 秒に対して,解析結果は1回目で作業時3.03秒,2回目で 作業時3.41秒となり,目標とする固有周期より短い固有 周期となった.従って,本解析による結果を見て,バネ 値の再設定が必要か如何かを判断することとした.

b)本解析の結果(免震Cタイプ)

前述の時刻歴加速度を、脚下部の固定点に入力し、地 震応答解析を実施した.応力の足し合わせや変位挙動の 算定方法は免震Aタイプと同様である.照査項目の一覧 は前述した.代表的な解析結果として、図-3.27に重心 位置の時刻歴変位、脚下端の浮き上がりの時刻歴、免震 装置の回転角の時刻歴、脚下端の反力値の時刻歴を示す. また、図-3.28に最大応答発生時点前後でのクレーン重 心位置の応答変位を示す.

本解析結果による性能照査の結果(表-3.13),2回 目の照査の結果,水平部材の応力がわずかに許容値を超 過していることがわかる.ただし,応力比としては1.03 程度まで低減されているため,フランジ板厚の増加など の軽微な補強により対処が可能であると考えら,それ以 外の全ての性能照査項目において許容値を満足してお り,本免震クレーンが成立することを確認することがで きた.

(a)4 次モード・横行 1 次・T=3.03sec

(b)5 次モード・走行 1 次・T=2.74sec 図-3.25 固有値解析結果(作業時・1 回目)

(a)4 次モード・横行 1 次・T=3.41sec

(b)5 次モード・走行1次・T=2.74sec図-3.26 固有値解析結果(作業時・2回目)

図-3.27 地震応答解析結果(T港·免震C·作業時2回目)

図-3.28 最大応答時の重心位置応答

表-3.13 耐震性能照査結果一覧(T港・免震 C・休止時・作業時1回目及び2回目)

クレーン名称							T港クレーン					
地震動				LEVEL2								
加震方向				横行+走行(+鉛直)								
構造減衰						3	%					
走行装置下端条件			EN / 7			GAP	拘束					
GAP剛性		000000000F00000000F00000	[N/m]	2.40E+11								
クレーンの姿勢	ND(5)]近[11]/		LIN/ mj		作業時下口以休止位置 休止時							
免震装置				免震C (K=446630kN/m,C=0kNs/m)		免题 (K=297750kN/	震C ∕m,C=0kNs∕m)	免還 (K=446630kN/	€C m,C=0kNs/m)			
解析回数				1回]目	2回 免震バネ5]目 定数DOWN	1回	目			
浮き上がり量	海側		[m]	0.0	00	0.0	00	0.0	00			
	陸側		[m]	0.04	41	0.0	24	0.04	46			
免震装置変位	海側	[m] or [rad.]	-0.0	017	-0.0	026	-0.0	17			
<u>※ 究 展 C の み 回 転 用</u> 重 心 伝 罢 加 油 座	陸側	Lu.	<u>or [rad.]</u>	0.0	14	-0.0	50	0.0	60			
里心位直加还反	(現1) 万円 土仁十白		[m/s ⁻]	4.3	30	-4.0	00	4.20	JU			
	<u> </u>		[m/s ⁻]	-2.3	06	2.5	64	-2.0	20			
重心片罕亦片星	<u> </u>		[m/s]	5.4	90	4.4	4	4.3	30			
里心江直変江重	(現行力) (二) (二) (二) (二) (二) (二) (二) (二) (二) (二		[m] יי	-0.6	12 I	0.7	44	-0.6	23			
	<u> </u>		[m] 	-0.5	11	-0.8	10	-0.7	/0			
	垣 旦 丿 问		[m]	-0.0	111	U.U	13	-0.0	20 R±/R± 0			
ᅄᅮᄴᆮᆂ	いまナム		D 107) 海側L2	陸側L3	────────────────────────────────────	陸側L3))) / / / / / / / / / / / / / / / / /	陸側L3			
脚下端反刀	鉛直方问	<u> </u>	[kN]	-370	1247	108	1447	80	1124			
			[s]	85.99	89.91	78.89	82.90	75.87	89.96			
		最小值	[kN]	-5763	-4642	-4918	-4741	-5364	-4973			
			[s]	82.14	88.25	74.73	81.69	82.09	88.27			
	横行方向	最大値	[kN]	867	777	858	797	870	777			
			[s]	93.52	93.52	78.90	78.90	83.39	83.40			
		最小值	[kN]	-960	-705	-834	-611	-993	-734			
			[s]	89.75	84.78	82.73	82.75	84.75	84.76			
	走行方向	最大値	[kN]	297	291	293	312	202	318			
			[s]	73.66	75.53	73.64	73.89	73.64	75.57			
		最小値	[kN]	-254	-248	-238	-274	-323	-275			
			[s]	71.59	71.35	71.57	74.72	74.81	71.36			
				I端	J端	I端	J端	I端	J端			
応力度照査	曲げ引張	応力度	[kN/m ²]	106,187	179,097	123,165	175,672	111,979	189,108			
陸側脚下端		応力度比		0.301	0.507	0.349	0.498	0.317	0.536			
		<u>発生時刻</u>	[s]	77.33	82.30	77.40	77.40	79.45	84.77			
	田け上縮	心力度	[kN/m ²]	-192,516	-259,367	-1/9,099	-235,367	-200,193	-267,810			
	(座曲考慮)	<u> </u>	[6]	0.627	0.845	0.583	0.767	0.652	0.872			
	曲げ圧縮	<u>元工時刻</u> 応力度	$[kN/m^2]$	-189 635	-265 149	-185 356	-238 726	-197 454	-272 789			
	(座屈未考慮)	応力度比		0.618	0.864	0.604	0.778	0.643	0.889			
		発生時刻	[s]	81.13	86.06	73.84	78.81	83.35	83.36			
	剪断	応力度	[kN/m ²]	35,453	35,453	32,262	32,262	37,442	37,442			
T港		応力度比	F 7	0.174	0.174	0.158	0.158	0.184	0.184			
Element:5		<u> </u>	[s]	83.34	83.34	/5.23	/5.23	83.36	83.36			
	音风心力	応 力度	[kN/m ⁻]	190,710	271,120	189,930	240,007	210,424	280,392			
		<u>心力度比</u> 発生時刻	[s]	81 14	86.06	73.86	78.81	83 35	83 36			
	1		[0]	I端	J端	, 0.00 I端	,0.01 J端	1端	 J端			
応力度照査	曲げ引張	応力度	[kN/m ²]	343.060	301.706	345.128	304.839	346.020	305.031			
海側水平材端部		応力度比	Luu, III 1	0.945	0.831	0.951	0.840	0.953	0.840			
		発生時刻	[s]	93.52	93.52	78.91	78.90	83.40	83.40			
	曲げ圧縮	応力度	[kN/m ²]	-337,052	-281,087	-298,774	-247,025	-337,093	-280,273			
	(座屈考慮)	応力度比		1.067	0.890	0.945	0.782	1.067	0.887			
	曲ば広徳	<u> </u>	[s]	84.76	84.76	75.22	75.22	77.25	77.25			
	曲け止縮 (広局主考虑)	応力度	[kN/m ²]	-368,567	-306,383	-328,066	-2/0,56/	-368,253	-305,120			
	(产出不方息)	<u>心力良亡</u> 発生時刻	[م]	84.76	84.76	75.22	0.800	77 25	77 25			
	剪断	応力度	[kN/m ²]	26.171	26.171	26.421	26.421	27.424	27.424			
T港	l	応力度比		0.125	0.125	0.126	0.126	0.131	0.131			
Element:7		発生時刻	[s]	72.23	72.23	72.22	72.22	72.23	72.23			
	合成応力	応力度	[kN/m ²]	370,109	308,237	346,701	306,624	369,809	307,402			
		応力度比		1.020	0.849	0.955	0.845	1.019	0.847			
		発生時刻	[s]	84.76	84.76	78.91	78.90	77.25	83.40			

(4)固有値解析結果(免震 D タイプ)

a) 固有値解析の結果(免震Dタイプ)

免震Dタイプを採用したクレーンについて,作業時及 び休止時を対象とした初期設定値による固有値解析結 果を図-3.29~3.30に示す.

免震クレーンは当初目標とした横行方向固有周期4.0 秒に対して,解析結果は休止時2.76秒,作業時2.69秒と なり,目標固有周期に対して短い固有周期が算定された. 従って,本解析による結果を見て,バネ値の再設定が必 要か否かを判断することとした.

b)本解析の結果(免震Dタイプ)

前述の時刻歴加速度を、脚下部の固定点に入力し、地 震応答解析を実施した.応力の足し合わせや変位挙動の 算定方法は免震Aタイプと同様である.照査項目の一覧 は前述した.代表的な解析結果として、図-3.31に重心 位置の時刻歴変位,免震装置の鉛直相対変位量の時刻歴, 脚下端の反力値の時刻歴を示す.また、図-3.32に最大 応答発生時前後の脚下端反力を示す.なお、本免震クレ ーンモデルでは脚下端の浮き上がりは発生していない.

免震装置 D タイプは、トリガー機能であるレベリング ジャッキをモデル化せず、加振前より免震装置が作動し ている状態でモデル化した.このため、陸側脚では自重 により免震装置部での鉛直変位を生じており(初期値 15cm),重心位置応答変位も初期段階で横行変位が20cm, 鉛直変位が5cm 程度生じている(陸側に向かって傾いた 状態).なお、横行方向・走行方向の応答変位の傾向は、 免震 A タイプと類似している.

本解析結果による性能照査の結果(表-3.14),全ての性能照査項目において許容値を満足しており,本免震 クレーンが成立することを確認することができた.

(b)5 次モード・横行 1 次・T=2.69sec 図-3.30 固有値解析結果(作業時)

(a)重心位置の応答変位

-0.4

		免震装置D相对变位	——陸側103-0.0	089~-0.204
-0.0500	00 50.0	100.0	//////////////////////////////////////	108~-0.203 200
Ê 英 −0.1000				
例 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	-aanaanaanaanahahahahahahahahahahahahaha	<u>ىرى ئارىپى ئەرەپۇرىيە ئارلىرى ئارلىرى،</u>	la 1998 a ga da da sectara a sectara a casa	v a nna g ann
-0.2000		10		
-0.2500	L			

(b)免震装置鉛直変位

(c)脚反力

図-3.31 地震応答解析結果(T港・免震 D・作業時)

図-3.32 最大応答時の重心位置応答変位と 脚下端反力

クレーン名称		T港クレーン							
地震動				LEVEL2					
加震方向									
構造減衰				3%					
走行装置下端条件					GAP	拘束			
	KA(圧縮側)		[N/m]		2.46	E+11			
GAP阿们生	KB(引張側)		[N/m]	8.18E+04					
クレーンの姿勢				作業時トロ	リ休止位置	休」	上時		
免震装置 				免震D 免震D 免震D (K=12500kN/m,C=8000kNs/m)			震D C=8000kNs∕m)		
解析回数				1回	1回目 1回目				
浮き上がり量	海側		[m]	0.0	00	0.0	00		
	陸側 [m]		[m]	0.0	00	0.0	00		
免震装置変位	海側	[m	n] or [rad.]	-	-	-	-		
※免震Cのみ回転角	陸側 [m] or [rad.]		-0.2	.03	-0.2	21			
重心位置加速度	横行方向 [m/s ²]		-3.7	33	-3.5	571			
	走行方向		[m/s ²]	1.4	50	-1.4	35		
	鉛直方向		[m/s ²]	0.3	24	0.3	03		
重心位置変位量	横行方向		[m]	0.5	89	0 5	92		
	走行方向		[m]	_0 7	95	-0.7	49		
上17万円			 	0.7	151	0.7	170		
	1410月11日		[m]	-0.0	101	-0.0	112		
	I			海側L2	陸側L3	海側L2	陸側L3		
脚下端反力	鉛直方向	最大值	[kN]	-641	-26	83	-130		
			[s]	75.88	79.46	75.87	77.36		
		最小值	[kN]	-5318	-3790	-4709	-4192		
			<u>۔ ۔</u> [ء]	74 74	76.06	74 67	75 94		
	楼行古向	是士佑	[UN]	0.09	604	052	71/		
	「「「」」」「「」	取八世		300	75.00	355	714		
			[s]	/5.8/	/5.86	/5.86	/5.85		
		最小值	[kN]	-660	-443	-659	-435		
			[s]	74.66	74.64	77.18	77.19		
	走行方向	最大値	[kN]	359	234	283	238		
			[s]	73.69	73.03	73.63	75.58		
		最小值	[kN]	-265	-236	-245	-248		
		4X-1 1E	[6]	76.65	74.20	71 75	71.26		
			[8]	70.05	/4.25	/1./J	71.30		
	1		- 0-	山山	し「」	1/师	J姤		
応力度照金	田け引張	応力度	[kN/m²]	0	0	0	0		
陸側脚卜端		心力度比	г л	0.000	0.000	0.000	0.000		
	また月谷	<u> </u>	[S]	0.00	00.0	0.00	0.00		
	曲げ圧縮 (広見表点)	応力度	[kN/m ²]	-147,064	-214,817	-169,698	-235,188		
	(坐出考慮)	心力度比	гл	0.479	0.700	0.553	0.766		
	またりな	<u> </u>	[S]	/5.82	/5.83	/5.81	/5.83		
	曲け圧縮	心力度	[kN/m ⁻]	-142,690	-217,384	-166,652	-238,490		
	(座畑木考慮)	心力度比	۲-٦	0.400	0.708	0.543	0.///		
	前新	<u>光土时刻</u> 広力度	[S]	20.711	20 711	20.279	75.62		
т. #	97 BU	<u>心力反</u> 広力度比	[KIN/ M]	29,711	29,711	25,270	29,270		
Flement:5		<u>心力反比</u> 登生時刻	[6]	75.87	75.87	75.83	75.83		
Liement.J	合成応力	<u>- 元工時刻</u> 広力度	[LNI /m ²]	155.615	223 310	177.057	243 809		
		応力度比		0.441	0.633	0.502	0.601		
		<u>希生時刻</u>	[s]	75.82	75.83	75.81	75.82		
			[0]	「端	.1送	「端	,如此		
広力 庶昭 杏	曲げご連	広力度	[L.N. /	336 708	297.805	337.051	298 712		
海側水亚材 逆如	אנרכיי ביים	応力度比	[KIN/ M]	0.020	0.820	007,001	0 822		
		<u>希生時刻</u>	[6]	75.85	75.85	75.84	75.84		
	曲げ圧縮	応力度	[kN /m ²]	-211 487	-172 980	-217.363	-177 679		
	(座屈老盧)	応力度比		0.660	0.547	0.688	0.562		
	(正面:句應)	<u>希生時刻</u>	[6]	77 22	77 99	77 19	77 19		
	曲げ圧縮	応力度	[kN/m ²]	-231 254	-188 469	-237 270	-193 177		
	(座屈未老虐)	応力度比		0 732	0 596	0 751	0.611		
		発生時刻	[ء]	77.92	77.22	77 19	77 19		
	剪断	応力度	[kN/m ²]	23.981	23.981	24.815	24.815		
T港		応力度比		0 114	0 114	0.118	0 118		
Element:7		発生時刻	[s]	74.53	74.53	75.79	75.79		
	合成応力	応力度	[kN/m ²]	338.829	300.201	339.705	301.704		
		応力度比		0.933	0.827	0.936	0.831		
		発生時刻	[s]	75.85	75.85	75.84	75.84		

表-3.14 耐震性能照査結果一覧(T港・免震 D・作業時及び休止時)

4. まとめ

本研究では、既存の免震コンテナクレーンを対象とし て、免震装置の基本仕様を設定する際の基本的な考え方 および設計手順について例示するとともに、3次元有限 要素法を用いた免震コンテナクレーンのモデル化の具 体的手法について取りまとめた.また、3次元有限要素 法を用いた免震コンテナクレーンの地震応答解析を実 施し、モデル化する上でのコンテナクレーンの姿勢や吊 り荷位置の反映方法、免震装置毎に異なる機構と免震装 置のバネ値や減衰係数によるクレーン応答特性の差異 について検証し、コンテナクレーンの性能照査における 留意点や係留施設側の設計において関連する事項を示 した.

以上の検討結果をふまえ,係留施設とコンテナクレーンの双方の耐震性を確保するための,レベル2地震動に 対する標準的な耐震性能照査手法,照査項目および許容 値の考え方等について取りまとめた.

(2009年10月30日受付)

謝辞

本研究の遂行にあたっては,(社)港湾荷役システム 協会(吉田由治氏,中村武男氏,平形忠之氏,コンテナ 施設調査調査研究委員会メンバー各位)より,各種デー タの提供及び貴重なご意見を頂いた.ここに深く感謝の 意を表します.

参考文献

 1)国土交通省港湾局:http://www.mlit.go.jp/kowan/
 2)国土交通省港湾局:港湾の施設の技術上の基準・同解 説,(社)日本港湾協会,平成19年7月.

- 3)宮田正史ほか:耐震強化施設としてのコンテナクレーンの耐震性能照査手法に関する研究(その1),国総研資料, No.455, 2008.3.
- 4) 宮田正史ほか:耐震強化施設としてのコンテナクレーンの耐震性能照査手法に関する研究(その2),国総研資料, No.515, 2009.3.
- 5)(社)日本クレーン協会:クレーン等安全規則の解説(改 正5版),平成18年6月.
- 6)厚生労働省労働基準局安全衛生部安全課編:クレーン 等構造規格の解説(改訂3版),(社)日本クレーン協会, 平成9年6月.
- 7) 一井康二,井合進,森田年一:「兵庫県南部地震にお

けるケーソン式岸壁の挙動の有効応力解析」,港湾技術研究所報告, Vol.36, No.2, 1997.

- 8)(社)港湾荷役機械化協会:コンテナクレーン耐震設計のための手引き,平成10年2月.
- 9) MSCソフトウェア: MSC. NASTRAN2001クイックリファレ ンスガイド
- 10) 永松健一郎・小柳誠一: 免震装置付コンテナクレーン,港湾荷役,第47巻,1号,2002.
- 11)「免震積層ゴム入門」,日本免震構造協会 編,オ ーム社,1997.7.
- 12) 辻直人・島田貴弘・柏崎昭宏・信太雅人・近藤晃司: コンテナクレーン用ヒンジ式免震装置の開発,石川島 播磨技報, Vol. 43, No. 6, 2003.
- 13)村野健一・吉田和夫・塩崎禎郎・菅野高弘:コンテナ クレーン用ロッキング型免震装置の模型実験と岸壁へ の影響,日本機械学会論文集(C編), Vol. 70, No. 689, 2004.

国土技術政策総合研究所資料 TECHNICAL NOTE of NILIM No. 563 January 2010 編集・発行 ©国土技術政策総合研究所

本資料の転載・複写のお問い合わせは ^{〒239-0826} 神奈川県横須賀市長瀬 3-1-1 管理調整部企画調整課 電話:046-844-5019