1. 序論

我が国は、世界有数のドライバルク貨物の輸入国である. 石炭、鉄鉱石、穀物、木材、チップ等のドライバルク貨物は、産業の基礎素材、食料原料等であることから、これらの海外からの輸送は、我が国の産業活動や生活の生命線であるとさえ言える.

ドライバルク貨物輸送は、コンテナや袋・箱等には詰 められず, バルクキャリア (バルカー, 撤積貨物船) に より、船艙内へ直接積み込むことによって、大量に安く 運搬されている. 近年, 中国の急速な経済発展により, 鉄鉱石や大豆の輸入量が大幅に伸びてきており, これに 伴い、世界のドライバルク貨物の輸送状況に大きな変化 が生じてきている. また, 2014年完成予定のパナマ運河 拡張は、バルクキャリアの船型にも大きな変化をもたら すものと見込まれる. また、2008年9月の「リーマン・ ショック」に始まった世界的な不況は、バルク市況の高 騰を一気に冷ました.このような急激な状況変化の中で, 一方, バルクキャリアの船型や動静についての既往の分 析資料は、非常に限られているのが現状である. 我が国 の産業活動や食生活の生命線の一つであるバルク貨物の 輸送を、より効率的・効果的にしていくためには、世界 の動向を的確に捉えていく必要がある.

本資料は、以上の状況を踏まえ、ドライバルク貨物の中で太宗を占める石炭、鉄鉱石及び穀物の三大バルク貨物を対象に、バルクキャリアによる北東アジア主要国への輸送状況について分析を行い、もって、我が国のバルク貨物輸送にかかわる港湾施策の企画・立案に資することを目的としたものである。具体的には、三大バルク貨物について、これらを輸送するバルクキャリアの船型や動静、これらの貨物を積み出し・荷揚げする主要港湾の施設諸元等についての分析を行った。

以下, 2 章では, バルクキャリアによる輸送分析について, 既往の文献を概観する.

3章では、分析対象品目、フロー、船型 Type 分類、使用データ等分析手法について述べる.

4 章では、石炭輸送を対象に、輸送船の船型や動静、 積出・荷揚港湾の諸元等を整理し、分析を行う.

5章では、鉄鉱石輸送を対象に、輸送船の船型や動静、 積出・荷揚港湾の諸元等を整理し、分析を行う.

6 章では、穀物輸送を対象に、輸送船の船型や動静、 積出・荷揚港湾の諸元等を整理し、分析を行う.

以下に、本資料で用いる用語について、整理を行って おく. 「バルクキャリア」 ばら積み貨物を大量に輸送する船舶. 鉱石専用船や兼用船 (OB: 鉱石/撤兼用船, OBO: 鉱石/撤/油兼用船等) も含む.

「船舶諸元」 船舶の大きさや主要寸法のこと. 本資料では,以下を用いる.

DWT: 載貨重量トン (Dead Weight Tonnage)

L:全長 (Length Over All)

B:型幅 (Breadth Moulded)

d: 満載喫水 (draft Maximum)

「北東アジア」 東アジアの中で、中国・台湾以北のこと、本研究での具体的な分析対象国としては、日本、中国、韓国及び台湾とした。ロシアは、石炭積出国としては分析対象としたが、輸送先(荷揚国)としては、対象にしなかった。

「三大バルク貨物」 船艙にばら積み(撤積)される貨物であるバルク貨物は、石炭、鉄鉱石、穀物、木材等のドライバルク貨物と、原油、石油製品、液化ガス(LNG、LPG)、液体化学薬品等のリキッドバルク貨物とに分類される。三大バルク貨物とは、ドライバルク貨物の中で太宗を占める石炭、鉄鉱石及び穀物を指す、メジャーバルク貨物とも言われる。

「MT」「FT」「DWT」 トン単位の種類のこと. MT (メトリック・トン) と FT (フレート・トン) は,貨物のトン数であり,MT は重量 1,000kg,FT は重量 1,000kg,もしくは,容積 1.133m³のうち,大きい値である. DWT は,前述したとおり,船舶の積載重量トン数である. それぞれのトン単位を明確にするために,本資料では,トン単位を,MT,FT 及び DWT と表記することとする. なお,一部においてトン単位が不明である統計データがあったが,これについては,便宜上,最も良く使用される MT として表記した.また,Revenue Ton (レヴェニュー・トン)を用いている統計データも見られたが,内容は FT と同一のため,本資料では FT と表記した.

2. 既往の文献

ドライバルク貨物輸送について、詳細な分析を行った 既往の文献は、数が限られている。定期的に刊行されて いる資料は、以下の通りであるが、いずれも海運市況の 分析である。

日本郵船調査グループは、毎年、「Outlook for the Dry-Bulk and Crude-Oil Shipping Markets」¹⁾において、バルク貨物輸送にかかる海上荷動きと船腹需給の見通しを発表している。このレポートは、荷動きや船腹需給について、近年の実績だけでなく、今後の見通しをも示しているところに特徴がある。2004年以前は、「海運市況の回顧と展望」との名称であった。

Fearnleys は、毎年、「Review」²⁾において、タンカードライ貨物、天然ガス輸送の市況概況や、各品目の多国間輸送量を示している。2003年以前は、一部内容は、

「World Bulk Trade」として別途発表されていた. また, Fearnleys は, 四半期毎に「Dry Bulk Market Quarterly」³⁾も発行している.

Clarkson は、毎月「Dry Bulk Trade Outlook」⁴⁾として、Drewry は、四半期毎に「Dry Bulk Forecaster」⁵⁾として、各バルク貨物の海運市況をまとめている。いずれにおいても、品目別の各国輸出入量や、市況の状況予測が示されている。

UNCTAD (United Nations Conference on Trade and Development) は、「Review of Maritime Transport」 ⁶⁾を毎年発行しており、その中では、タンカー、ドライバルク、コンテナ輸送について、世界の概況をまとめている。他の資料からの引用等も多く見られるが、全世界の海上輸送量が集計されており、2007年では、約80億 MT、約33兆 MT・Mileの輸送となっている。

また、バルクキャリアの歴史や運用については、小川がまとめたもの 70 が詳しいが、1997年刊行であるため、データは1990年代前半までである.

以上の文献は、いずれも世界のドライバルク貨物輸送の概況を知るのに有用な資料であるが、港湾からの視点の分析については、ほとんど見当たらない。我が国の港湾施策の企画・立案のためには、就航船の船型と積出・荷揚する港湾のバース水深との関係等についての分析が必要である。

この点を踏まえ、赤倉らは、Lloyd's データを用いて、バルクキャリアの寄港実績と船型動向の分析を行っている 8. その中では、バルクキャリア全体の動静分析だけでなく、穀物、原木、チップ、鉄鉱石及びセメント輸送船の日本への船型別寄港回数や必要バース水深を算定し

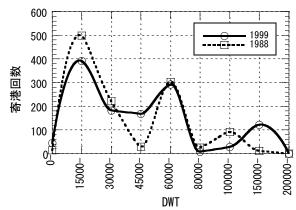


図-2.1 穀物輸送船(日本寄港回数)の DWT 分布 8)

ている. 図-2.1 は、その例であるが、1988 年と 1999 年の日本への寄港回数を比較して、その船型の変化を分析している. ただし、3 章で詳述するが、使用した Lloyd's データの Com Code は船舶要目データの中の輸送品目であり、当該品目を輸送した寄港かどうかについては、判定が出来ていない。また、対応する港湾施設の能力については、分析対象としていない。

以上の状況を踏まえ、本資料は、最新のデータを用いて、三大バルク貨物を対象に、バルクキャリアによる北東アジア主要国への輸送状況について分析を行ったものである.

3. 分析手法

3.1 対象品目

分析の対象品目は、三大バルク貨物と言われる石炭、鉄鉱石及び穀物とする。これらは、ドライバルク貨物の中で太宗を占めており、これ以外のドライバルク貨物はマイナーバルク貨物と呼ばれている。表-3.1 は、UNCTADによるデータ ⁶を基に、世界の海上輸送量を主要品目別に示したものであるが、三大バルク貨物で全体の 1/4 弱を占めていた。これは、石油の7割を占める原油とほぼ同じ量であった。

三大バルク貨物の主な輸入国を見てみると、鉄鉱石では中国が49%、次いで日本が18%、石炭及び穀物では日本が世界最大の輸入国で、それぞれ、世界の25%及び11%を占めていた⁶.このように、三大バルク貨物は、代表的な海上輸送品目であり、その中でも日本の占める割合が大きいことが確認された.

表-3.1 主要品目別の世界輸送量(2007年)

		1.4	
品目·輸送	心能	輸送量	輸送量
四日	心思	$(10^6 MT)$	シェア
ドライ貨物	鉄鉱石	792	9.9%
	石炭	790	9.8%
(ドライバルク	穀物	302	3.8%
+一般貨物)	その他	2,218	27.6%
石油(原油+製	品)	2,681	33.4%
コンテナ		1,240	15.5%
合計		8,022	

注) UNCTAD 「Review of Maritime Transport」 6)より作成

三大バルク貨物について、本資料における、詳細な内容と各種コード等による定義は、表-3.2 のとおりである. 港湾統計を基準にしており、化学工業品に入るコークスは石炭に含めないこととした。また、金属機械工業品の鉄鋼に入る銑鉄も、鉄鉱石には含めないこととした.

表-3.2 分析対象品目の定義

品目	詳細	港湾統計	PIERS
石炭	コークスは	1131 石炭	5213 Coal
10/00	除く	131 100	(140 Cokeを除く)
鉄鉱石	銑鉄は除く	141 鉄鉱石	_
	小麦,大麦	011 麦	1201 G : 0 El
穀物	とうもろこし	·(Y)') 🗆 🗺	1301 Grains&Flour
	大豆等	023 とうもろこし	1714 Soy beans

【輸送船】

- 各種データより、当該品目を輸送するバルク キャリアを特定
- 輸送船の船型を分析

【積出港】--

- 各種資料より, 当該品目を積み 出しする輸出港を特定
- 各港の施設データを整理

- 輸送船の寄港実績の中で、積出港に寄港した場合は、当該品目を輸送したものと判定
- 輸送実績を分析

- 【荷揚港】 -----

- ・輸送実績から、北東アジアで当該品目を荷揚 げした輸入港を特定
- 各港の施設データを整理

【考 察】 ------

• 輸送実績, 港湾施設能力等について, 総合 的に考察

図-3.1 分析のフロー

3.2 分析手順

分析の手順は、図-3.1 のとおり、まずは、後述する船舶諸元や貨物等データである Lloyd's データ、Dry Fixture データ、PIERS データ、さらには、各船社のプレスリリース等から、対象品目を輸送するバルクキャリアを特定する。これらは、船舶の当該品目を輸送することが想定されていることが判明する場合、当該品目を輸送した実績が判明する場合及び当該品目の輸送に長期に携わっていると想定される場合の3種類により、総合的に特定をした。この輸送船について、船型動向を分析する。なお、当該品目の輸送に長期に携わっている輸送船の特定においては、次に記載する主要積出港への寄港データを使用する。

次に、各国・各港湾の統計やClarkson資料、専門資料等により、対象品目を積み出しする港湾を特定する。これらは、炭田や鉄鉱石鉱山、穀倉地帯に近接し、当該品目を多量に輸出する港湾である。その港湾施設のデータについても整理する。

特定された輸送船と積出港を用い、寄港実績データで

表-3.3 様々な資料における船型 Type の定義

UNCTAD(LR-F)

enernb(ERT)								
Туре	DWT	В						
Handy	20,000 — 34,999							
Handymax	35,000 — 54,999							
Panamax	55,000 - 84,999	-32.3						
Small Capesize	80,000 — 149,999	32.3 —						
Large Capesize	150,000 —							

IACS

Type	DWT	L
Mini	10,000 — 23,000	100 - 130
Small-Handy	10,000 — 23,000	130 - 150
Handymax	23,000 - 55,000	150 - 200
Panamax	<i>55,000 — 79,999</i>	200 - 230
Capesize	80,000 —	230 - 270
VL	80,000 —	270 —

本資料

Туре	DWT	В
Mini	- 19,999	-31.9
Handy	20,000 — 34,999	-31.9
Handy max	35,000 - 54,999	-32.9
Panamax	55,000 —	31.8 - 32.9
New Panamax	- 119,999	33.0 - 49.0
Capesize	120,000 — 199,999	<i>33.0</i> —
VLOC	200,000 —	<i>33.0</i> —

ある Lloyd's 船舶動静データ (詳細は後述する) から, 当該品目の輸送実績を特定する. すなわち, 当該品目輸 送船が, 積出港に寄港した場合には, 当該品目を輸送し たものとし判定し, これを集計し, 分析する. 輸送先は, 日本を含む北東アジア 4 ヶ国 (中国, 韓国及び台湾) と する. この際, 同一国内での連続寄港は, 当該品目を複 数港で荷揚げしているものとみなす.

さらに、輸送実績及び各種資料から、北東アジア 4 ヶ国での荷揚港を特定し、主要な荷揚げ港の港湾施設データを整理する.この際、荷揚港のバースは、企業専用と公共に大別されるが、データ上の制約もあり、両者を分けた分析は行っていない.

最後に、船型、輸送実績、港湾施設諸元等について、 総合的な考察を行う.

なお、本資料の特定手法により、後述するとおり、品目別国別輸送実績の 6~9 割を特定したものと見られる. 従って、輸送実績に関する各種分析については、全数ではなく、6~9 割程度の実績を対象としたものとなっていることを留意されたい.

Clarkson

Type	DWT					
Handy	10,000 - 39,999					
Handy max	40,000 - 59,999					
Panamax	60,000 - 99,999					
Capesize	100,000 —					

Drewry

Туре	DWT
Handysize	10,000 - 39,999
Handy max	40,000 - 49,999
Supramax	50,000 - 59,999
Panamax	60,000 - 79,999
Post-Panamax	80,000 - 109,999
Capesize	110,000 — 199,999
VLOC	200,000 —

3.3 船型 Type

船型動向の分析を行う場合, バルクキャリアには, 大 小さまざまな船舶が存在するため、船型の Type 分けが必 須である. 例えば、イギリスのバルティック海運取引所 が発表し、バルク貨物の海上輸送料金の目安とされてい る運賃指標では、総合指標 BDI (Baltic Dry Index) の他 に, 船型 Type 別として BCI (Capesize: 165,000DWT ク ラス), BPI (Panamax: 72,000DWT クラス), BSI (Supra -max: 55,000DWT クラス), BHI (Handysize: 28,000DWT クラス)の4種類を示している.しかし、これらの船型 Type の定義は、資料によって異なっているのが現状であ る.表-3.3 は、様々な資料において使用されている船型 Type であるが、まず、設定されている船型 Type に相違 があり、UNCTAD⁶⁾(原典: Lloyd's Registry – Fairplay) では、Capesize を Small と Large に分けているが、Drewry⁵⁾ では小型の Capesize を, Post-Panamax としている. Drewry⁵⁾では、Handymax と Panamax の間に Supramax を 入れている. また, どの資料でも, 船型 Type の分類は DWT (載貨重量トン)を基本としている点は同じだが、 UNCTAD⁶⁾では、Small Capesize と Panamax を幅 (B) で 分けている. 世界の船級協会の集まりである IACS (International Association of Classification Societies) ⁹⁾では、Handy と Handymax,Capesize と VL の分類は全長(L)を用いている。さらに,DWT の境界値も資料により異なっており,例えば Handymax と Panamax の境界は,UNCTAD⁶⁾及びIACS⁹⁾では5万5千DWTであるのに対し,Clarkson⁴⁾では6万DWTとなっている。境界値は,造船技術の進歩等により時代と共に変化してきており,それぞれの船型 Type の積載量は,少しずつ大きくなってきているものと見られる。以上のような状況を考慮しつつ,本資料では,船型 Type を表-3.3 の最下段のように設定した。これは,既往の文献⁸⁾をふまえつつ,2014年目標でパナマ運河の拡張工事が進められていることを考え,拡張後のパナマ運河を通航できる船型を New Panamax として別途定めたものである。この船型 Type により,以降の分析を行う。

3.4 使用データ

本資料の分析に用いた主要なデータについて,ここで 説明をしておく.

Lloyd's データ: LR-F (Lloyd's Register – Fairplay) による, 船舶の各諸元(船名,船種,全長,満載喫水等)のデ ータ及び LMIU (Lloyd's Marine Intelligence Unit) によ る寄港実績データのこと. IMO ナンバーにより両者を リンク付けし,一体として用いた.

なお, LR-Fの船舶諸元データには, 構造上当該船 舶が特定品目の輸送を想定していることを示す Ship Type Sub Code と、輸送貨物コードの中で船主が輸送品 目を特定する Com Code がある. 既往の研究 8)では, このうち Com Code を用いたが,近年,両データとも 捕捉率が低下してきている. 図-3.2 は, 2007 年末に存 在したバルクキャリアについて, 全隻数並びに三大バ ルク貨物の Sub Code 及び Com Code の登録隻数を船齢 別に見たものである. 船齢が 10 年弱 (2000 年頃) 以 上は、全隻数と Sub・Com Code の登録隻数は一定の関 係が見られるが、船齢が10年未満では、登録隻数が非 常に少なく、その傾向は、特に Com Code で顕著であ った. LR-Fでは、この原因は、船主がデータを出さな くなってきていることとのことである. 本資料では, 相対的には、まだデータの取れている Sub Code を用い ると共に、その他のデータも含めて、総合的に、三大 バルク貨物を輸送する船舶を特定した.

Dry Fixture データ: Maritime Research Inc.による Dry Fixture の成約データであり、ドライバルク貨物のスポ

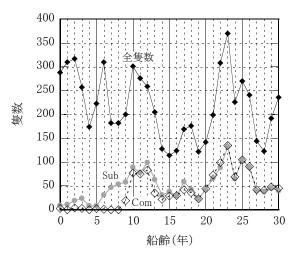


図-3.2 Lloyd's Sub・Com Code の登録隻数

ット用船データを収集したもの 10 . 毎月, Fairplay 誌にも掲載されている.

PIERS データ: PIERS (Port Import/Export Reporting Service) による米国輸出入貨物データ. 輸送品目, MT 数, 荷姿がコンテナかどうかに加え, 船名も判る.

港湾統計:国土交通省による指定統計である港湾統計の こと¹¹⁾.

4. 石炭輸送にかかる動向分析

4.1 石炭輸送船の船型

- (1) 石炭輸送船の特定方法 石炭輸送船は、以下の種別・データにより特定した.
- a) 構造的に石炭を輸送すると想定されているバルクキャリア: Lloyd's データの Ship Type Sub Code を使用した. 3 章で述べたとおり、Lloyd's の船舶詳細コードは Sub Code も Com Code も捕捉率が落ちているが、その中でまだ捕捉率の低下率の少ない Sub Code を用いた.また、補足率の低下を補うため、Clarkson Fleet Database¹²⁾で、2000 年以降建造で船艙が重量貨物対応になっているバルクキャリアも追加した.
- b) 石炭を輸送した実績 (スポット用船) のあるバルクキャリア: Dry Fixture データ、PIERS による輸送実績データから、一度でも石炭の輸送実績のあるバルクキャリアを特定した.
- c) 石炭輸送のために長期用船されていると見られるバルクキャリア: Lloyd's 寄港実績データから,石炭の主要積出港に多数回寄港したバルクキャリアを特定した.また,主要邦船社のプレスリリース等からも石炭を専用的に輸送するバルクキャリアを特定した.

寄港実績データから,長期用船されているバルクキ ャリアを抽出する方法について説明しておく.表-4.1 に、Lloyd's データによる、ある石炭専用船の 2007 年 の寄港実績を示すが, 石炭積出港と日本の間を往復し ているものの, 石炭積出港・国が一つに限定はされて いない. 邦船社で, 石炭を専用的に輸送するバルクキ ャリアについて、このような寄港実績データから、石 炭積出港への寄港回数、寄港港数・国数を整理した. 表-4.1 の例の場合, 積出港への寄港回数:9, 寄港港数: 5, 寄港国数:3となる. 連続寄港も, その間に他港へ の寄港が抜けている場合があるので、そのままカウン トした. このようにして整理した結果が表-4.2 である が、石炭専用船が、石炭積出港に最低で年6回の寄港 があり、寄港する積出港や国は、必ずしも一つに特定 されていないことが判った. そこで, Lloyd's 寄港実績 データより、表-4.3 に示す主要積出港に、合計で年 6 回以上寄港したバルクキャリアを石炭輸送の長期用船 に従事しているものと判定した. なお、後述するよう に、表-4.3 は世界における石炭積出港のうち、主要な

表-4.1 ある石炭専用船の寄港実績

入港日	港湾名	国名	石炭積出港
2007/1/29	Newcastle	Australia	0
2007/2/15	Fukuy ama	Japan	
2007/4/4	Newcastle	Australia	0
2007/4/5	Newcastle	Australia	0
2007/5/4	Banjarmasin	Indonesia	0
2007/5/19	Nanao	Japan	
2007/6/18	Tomakomai	Japan	
2007/7/22	Newcastle	Australia	0
2007/8/7	Tsuruga	Japan	
2007/8/15	Xingang	China	0
2007/8/24	Soma	Japan	
2007/9/21	Gladstone	Australia	0
2007/10/9	Niihama	Japan	
2007/10/12	Newcastle	Australia	0
2007/11/27	Shanghai	China	
2007/12/20	Brisbane	Australia	0

表-4.2 石炭専用船の積出港への寄港回数・港数・国数

ĺ	回数	頻度	港数	頻度	国数	頻度
	5	0	1	0	1	4
	6	1	2	2	2	7
	7	8	3	5	3	8
	8	4	4	6	4	2
	9	5	5	4	5	0
	10	0	6	3	6	0
	11	2	7	1	7	0
	12	1	8	0	8	0
Į	13	0	9	0	9	0

表-4.3 石炭の主要積出港

国	港湾			
	Newcastle, Hey Point/Dalrymple Bay,			
Australia	Gladstone, Port Kembla, Abbot Point,			
	Brisbane			
Canada	Vancouver			
China	Qinhuangdao, Xingang			
	Tanjung Bara, Balikpapan,			
Indonesia	Pulau Laut(NPLCT), Bontang,			
Indonesia	Tanahmerah, Kota Baru(IBT),			
	Banjarmasin			
Russia	Vostochny			
South Africa	Richards Bay			

港湾のみ取り出したものであり、石炭輸送実績の特定においては、その他の小さな港湾も含めた.

以上の a)~ c)のいずれかにおいて特定されたバルクキャリアを石炭輸送船の母集団とし、各年に実際に石炭積出港に寄港したバルクキャリアを石炭輸送船とした.

(2) 船型分析

まず、最新の実績データのある 2007 年において、石炭を輸送したバルクキャリアを、船型 Type 別に整理したのが、表-4.4 である. 隻数では、Panamax が 4 割以上を占めていたが、輸送力を示す DWT (載貨重量トン) の総計では、Panamax が 36%に対し、Capesize が 42%となっていた. 隻数では Panamax、輸送力では Capesize と Panamax が現在の主力と言えよう.

2007 年現在の石炭輸送船について,輸送力を船齢別船型 Type に整理したのが, 図-4.1 である. 船齢 15~19.9年の石炭輸送船では, Capesize が非常に多く(6割以上)なっていたが,船齢が若くなるにつれその割合が減り,5~9.9年では, Panamax が主力(4割超)となっていた.ただし,一番若い船齢5年未満では, Capesize が若干増え, VLOCも4.7%となっていた.

また,2001 年まで遡って石炭輸送船の輸送力を船型 Type 別に整理したのが,図-4.2 である.2007 年の石炭輸送船を整理した図-4.1 に比べて,各年の船型 Type の構成に,大きな変化は見られなかった.継続的な傾向としては,わずかながら,Panamaxの増加(2001 年:34.3%→2007 年:36.2%),Capesizeの減少(2001 年:46.3%→2007 年:41.8%)が見られたが,その他の船型 Type は継続的な増減は見られなかった.

さらに、2007年現在の石炭輸送船について、その船舶 諸元を整理した結果が,表-4.5 である. DWT (載貨重量 トン), L(全長), B(型幅)及びd(満載喫水)の各 諸元について, 船型 Type 別に, 95%値(5%フラクタイ ル値), 75%値(25%フラクタイル値)及び平均値を示 した. DWT については、船型 Type の分類に用いている ため、95%値は、ほとんどが分類の境界値に近い数値と なっていたが、分類上 DWT の上限がない Panamax 及び VLOC については、それぞれ8万2千DWT,21万5千 DWT となっていた。また、L については、Handymax の 95%値が 200m 未満となっており、これは、備讃瀬戸航 路等瀬戸内海の航行において、全長 200m 以上の船舶が 「巨大船」として制限を受けることが影響していると見 られる. d については、Panamax と New Panamax の 75% 値及び平均値で逆転が生じていた. 年代の古い Small Capesize (Over Panamax) の d が小さかったものと考えら れるが、今後竣工が予定されている 12万 DWT クラスの New Panamax は、水深 15m 超との情報があり 13)、変化し ていくものと見られる.

ここで、石炭輸送船に関係する船型 Sub Type について、記載しておく.

・Setouchimax:瀬戸内海諸港の製鉄所のバースに寄港し

表-4.4 石炭輸送船の船型 Type (2007年)

Туре	隻	数	DWT	総計
Mini	56	56 2.3%		0.3%
Handy	205	8.4%	5,896	2.9%
Handy max	494	20.1%	23,393	11.4%
Panamax	1,036	42.3%	74,094	36.2%
New Panamax	118	4.8%	10,146	5.0%
Capesize	519	21.2%	85,449	41.8%
VLOC	24	1.0%	4,933	2.4%
_	2,452		204,585	

注) DWT総計の単位は, 10³トン

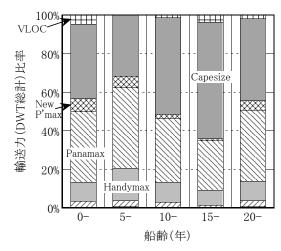


図-4.1 石炭輸送船の船齢別船型 Type (2007年)

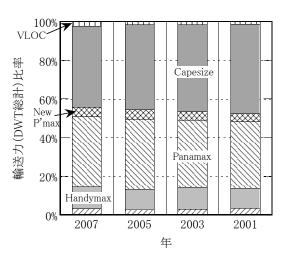


図-4.2 石炭輸送船の船型 Type 別輸送力の推移

易い最大船型. 約20万DWT,最大全長300mで,満載喫水が浅めに設計されている^{14),15)}. Capesize の95%値が300m未満なのは,この船型の影響と見られる.

・Newcastlemax:世界最大の石炭積出港であるオーストラリアの Newcastle に寄港できる最大船型. 18 万 5 千 DWT, B: 47m^{14), 15)}. Capesize と VLOC の境界を 20 万

表-4.5 石炭輸送船(2007年)の船型 Type 別の船舶諸元

Туре	DWT		L (全長)		B (型幅)			d (満載喫水)				
Туре	95%値	75%値	平均値	95%値	75%値	平均値	95%値	75%値	平均値	95%値	75%値	平均値
Mini	19,092	17,366	12,045	152	141	122	25.0	23.0	20.0	9.1	8.5	7.3
Handy	33,700	32,170	28,762	185	177	170	28.4	27.6	26.7	10.9	10.0	9.9
Handy max	53,533	52,300	47,355	195	190	189	32.3	32.3	31.2	12.3	12.0	11.6
Panamax	81,783	75,632	71,519	230	225	223	32.3	32.3	32.2	14.4	14.0	13.6
New Panamax	105,708	91,439	85,983	255	235	233	43.0	43.0	38.9	14.7	13.8	13.3
Capesize	184,349	174,505	164,641	292	289	283	47.0	45.0	44.7	18.2	18.0	17.6
VLOC	215,158	207,096	205,533	315	309	303	50.0	50.0	50.0	19.8	18.1	18.1

表-4.6 石炭積出港の輸出量及び最大船型

모	5H: 5ah	石炭輸	ì出量		最大船	型	
国	港湾	10 ⁶ MT	(年)	DWT	L	В	d
	Newcastle	88.9	(07/08)	180,000	300	50.0	15.2
	Hey Point/Dalrymple Bay	80.4	(07/08)	232,000	320	55.0	16.5
Australia	Gladstone	54.1	(07/08)	232,000	320	55.0	18.8
Australia	Port Kembla	12.7	(07/08)	232,000	300	50.0	15.3
	Abbot Point	12.5	(07/08)	187,000	297	47.5	17.5
	Brisbane	5.5	(07/08)	90,000	-	43.0	13.2
Canada	Vancouver/Roberts Bank	24.8	(07)	230,000	350	53.0	21.0
Cunudu	その他:Prince Rupert						
	Qinhuangdao	34.8	(07)	175,000	280	33.0	15.5
China	Xingang	12.0	(07)	80,000	235	-	13.5
	その他:Huanghua, Rizhao, Lia	nyungang					
	Tanjung Bara	32.0	(Capa.)	211,000	320	50.0	17.2
	Balikpapan	15.0	(Capa.)	75,000	235	32.2	12.5
	Pulau Laut (NPLCT)	14.0	(Capa.)	150,000	320	43.0	14.0
Indonesia	Bontang	12.5	(Capa.)	150,000	-	-	-
maonesia	Tanahmerah	12.0	(Capa.)	150,000	-	-	15.0
	Kota Baru (IBT)	10.0	(Capa.)	-	-	-	-
	Banjarmasin	-		211,000	N	N	N
	その他:Teluk Bayur, Samarind	a					
Russia	Vostochny	15.6	(06)	120,000	315	43.0	15.0
Russia	その他:Nakhodka, Posyet, Var	nino					
South Africa	Richards Bay	66.2	(07)	190,000	314	50.0	17.7
	USA: Norfolk, Newport News, I	Davant, Mo	bile, Balti	more, Myrtle G	rove, Phil	ladelphia,	Burnside
	Colombia: Puerto Bolivar, Santa M	Marta, Puer	to Zuniga,	Cartagena, Bar	ranquilla,	Tolu	
その他	Vietnam: Campha						
ての加	New Zealand:Lyttelton						
	Venezuela: Maracaibo						
	M ozambique : M ap ut o						

注)「石炭輸出量」の (Capa.) は、積出能力を示す. 「最大船型」の N は、制限無しを示す.

各国・各港統計, TEX「石炭年鑑」, Clarkson「Dry Bulk Trade Outlook」, LR-F「Ports & Terminals Guide」等より作成.

DWT としているため、表には数値としては出ていない.

4.2 石炭積出港

各種資料より,世界の石炭積出港を特定し,その輸出量と最大船型を整理したのが,表-4.6 である.以下に主要な国の港湾について,概観する.

オーストラリアは、世界最大の石炭輸出国であり、調べた範囲では、Newcastle、Heypointが世界1位、2位の輸出量を誇っている。Heypoint、Gradstone、Port Kemblaの最大船型23万DWTは、世界最大である。これらの主要積出港湾では、増大する需要に対する能力不足から生じている滞船が、大きな問題となっていたが、世界的不況により、緩和に向かった模様である。

カナダでは、太平洋側の Roberts Bank が有名であるが、 港湾としては、Vancouver 港内にある.

中国は、旺盛な鉄鋼需要のため、内質でも石炭の輸送が活発である。輸出量が最大の Qinhuangrdao (秦皇島)では、2005年の輸出3千4百万MTに対し、内貿移出1億1千万MTとのデータ¹⁶⁾もある。

インドネシアは、近年輸出量の増加が著しく、その多くがカリマンタン島東岸の諸港から輸出されている。港湾施設が十分でなく、沖合いでのバージからの荷役も多い模様 ¹⁷⁾で、輸出量や港湾能力について十分なデータが取れなかった。

ロシアは、今後極東地域での輸出量が増加していく可能性がある ¹⁸⁾. 現在のところ、石炭積出の大半は Vostochny に依っている. Nakhodka では、2005 年 3 月以降石炭の取り扱いを中止している ¹⁸⁾.

南アフリカは,輸出のほとんどを Richard Bay 一港でまかなっている。また、モザンビークの Maputo も、南アフリカにある炭田からの石炭輸出港である ¹⁹⁾.

アメリカは、かつて世界有数の石炭輸出国であり、多くの積出港があるが、現在の輸出量は多くない.

ヴィエトナムは、近年輸出量を伸ばしている国であるが、国内需要も大きな伸びを示しており、2015年には輸出を禁止するとの情報²⁰⁾もある.

4.3 石炭輸送の寄港実績

(1) 石炭輸送の寄港実績の特定方法

石炭輸送の実績は、石炭輸送船が、石炭積出港に寄港 した場合に、石炭を積み出したものとして特定した. そ の例を表-4.7 に示すが、ある石炭輸送船が、積出港であ る Hay Point に寄港し、その後、木更津、名古屋及び戸畑 (北九州) と、日本の港湾に連続寄港して、Port Walcott に向かった場合に、Hay Point から日本の3港湾へ石炭を 輸送したと特定する方法である. 分析対象とした輸送先 は、北東アジア諸国(日本、中国、韓国及び台湾)であ る. 荷揚港については、 寄港の順番を確認すると共に (表 -4.7 の「荷揚港」の 1~3), その中で同じ港湾が二回以上 出てきた場合には、重複してカウントをしないようにし た. 荷揚港の判定において、国が変わった場合(表-4.7 の Tobata→Port Walcott), それ以降は, 石炭の輸送ではな いとした. また, 中国については, 同国の石炭積出港へ の寄港は積み出しであり、荷揚げではないとすると共に、 その後連続して中国国内の港湾に寄港した場合には,内 貿と判定し、分析の対象外とした.

特定した寄港実績より、通常、バルクキャリアは、満

表-4.7 石炭輸送実績の例

入港日	港湾名	国名	積出港	荷揚港
2007/4/23	Hay Point	Australia	0	
2007/5/17	Kisarazu	Japan		1
2007/5/21	Nagoya	Japan		2
2007/5/26	Tobata	Japan		3
2007/6/7	Port Walcott	Australia		

表-4.8 Clarkson 等と寄港実績による輸送量の比較

	年	2007	2005	2003	2001
	Clarkson	200.8	183.2	174.7	155.2
Japan	港湾統計	168.5	171.6	158.7	146.3
	寄港実績	141.2	120.0	110.8	115.6
China	Clarkson	19.9	10.4	6.9	2.1
Cillia	寄港実績	21.6	19.2	11.8	7.9
Korea	Clarkson	<i>83.3</i>	76.7	71.7	65.0
Kolea	寄港実績	56.9	55.6	43.3	32.4
Taiwan	Clarkson	69.9	65.2	54.3	47.6
	寄港実績	38.2	27.0	24.9	24.5

注) Clarkson及び寄港実績は10⁶MT, 港湾統計は10⁶FT. なお 港湾統計2007年値は未発表のため, 2006年値で代替した.

載まで積載して輸送する(Dry Fixture データでは、 載貨重量トン数±5%、±10%との契約が多い)こ とから,全ての石炭輸送船が満載で輸送したと仮定する と、輸送量が推計できる. 北東アジア諸国への石炭輸送 量について、Clarkson による各国輸入量データ 4)と、寄 港実績から推計された輸送量を比較した結果が表-4.8で ある. 基本的には、Clarkson データに比較して、中国を 除けば、寄港実績による輸送量推計値は低く出ており、 日本・韓国へは6~7割程度,台湾へは約半分程度となっ ていた. また、日本については、港湾統計 11)との比較も 行ったが、寄港実績による推計値は港湾統計の約3/4で あった. なお, 港湾統計は, 単位が FT (フレート・トン) であり、厳密には、寄港実績による輸送量や Clarkson デ ータの単位である MT (メトリック・トン) とは異なる が、比重が大きい石炭では、FTとMTはほぼ一致するも のと考えられる.

寄港実績による輸送量が、Clarkson や港湾統計による 輸送量より低くて出ていた原因は、(a)バルクキャリア以 外の船舶による輸送量が存在すること、(b)寄港実績が特 定し切れていないことの二つに大別される. (a)は、一般 貨物船による袋詰めでの輸送やコンテナ船での輸送の可 能性、さらには、陸続きの大陸では、一部鉄道やトラッ クによる輸送量が紛れ込んでいる可能性もあるが、これ らは本資料の推計方法では特定されない. 日本への輸送 量について、Clarkson と港湾統計との差は、一部この原 因も含まれている. (b)は、輸送船や積出港が特定し切れ ていない場合や、寄港実績が追い切れていない場合が考えられる。全世界の積出港を完全に網羅することは困難であるし、Lloyd's の寄港実績データにも抜け落ちがある。例えば、専用船において、積出港での連続寄港が見られたが、そのある程度の割合は、荷揚港への寄港がデータとして落ちているものと想定される。日本や中国の地方港湾、企業の専用港湾などへの寄港実績は追い切れていない部分がある可能性があり、これらが寄港実績による輸送量が小さく出ている主な原因と考えられる。

以降の寄港実績の分析においては,6~7割程度の寄港 実績を対象としたものであることを認識されたい.

(2) 北東アジア諸国への寄港実績の分析

まず,各国への寄港船の平均船型 (DWT) を比較したのが,表-4.9 である.ここでは,それぞれの国への寄港における平均船型を集計しており,2港揚げ,3港揚げでも,寄港回数は1回とした.表-4.9より,2007年時点では,日本は,他の北東アジア諸国より,平均船型が小さかった.中国を除けば,平均船型は小さくなってきた傾向が見られ,これは,後述するように,ロシアや中国等近距離で船型の小さい国からの輸送量が増えていることが原因である.中国は,自国内の輸送は含めていない他,港湾整備により大型船の寄港が可能となり,平均船型が増加していた.

次に、複数港揚げを考慮した平均積卸量を整理したのが、表-4.10 である. 7万 DWT のバルクキャリアが 2港揚げをした場合、平均積卸量は 3.5万 MT となる. 表-4.10 より、日本は、平均積卸量が、他の北東アジア諸国に比べて顕著に少ないことが判った. これは、平均船型が小さいのに加え、複数寄港が多いことが原因であった. 表-4.11 に、一回の輸送での平均寄港回数、すなわち、平均的な荷揚げ港数を示すが、日本が 1.4 前後であり、他国より多くなっていた. 以上より、日本は、平均的に見ると、寄港船の船型が小さめであり、さらに、一回の輸送での寄港回数が多いため、積卸量はさらに小さいことが判った.

さらに、国別に寄港した石炭輸送船の船型 Type を整理した。日本の寄港回数の結果が、図-4.3 である。日本には、Mini から VLOC まで、様々な船型 Type での石炭輸送があったことが判った。表-4.4 の石炭輸送船の船型 Type 構成と比較して特徴的なのは、Mini や Handy といった小さな船型の寄港が多いことと、隻数では 5%以下に過ぎない New Panamax の寄港が多いことであった。日本への寄港を、輸送力、すなわち、DWT において、船型 Type 別の構成を見たのが、図-4.4 である。輸送力では、Panamax

表-4.9 各国寄港船の平均船型 (DWT)

年	2007	2005	2003	2001
Japan	72,411	72,164	77,175	78,721
China	76,393	70,395	73,251	73,498
Korea	77,126	77,840	85,299	86,894
Taiwan	76,732	81,363	87,810	86,406

表-4.10 各国寄港船の平均積卸量 (MT)

年	2007	2005	2003	2001
Japan	49,097	52,705	58,023	55,267
China	59,887	56,029	61,745	68,385
Korea	68,330	68,446	78,358	77,354
Taiwan	69,603	72,419	77,174	76,685

表-4.11 各国寄港船の同国内での平均寄港回数

年	2007	2005	2003	2001
Japan	1.47	1.37	1.33	1.42
China	1.28	1.26	1.19	1.07
Korea	1.13	1.14	1.09	1.12
Taiwan	1.10	1.12	1.14	1.13

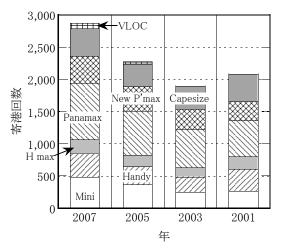


図-4.3 船型 Type 別寄港回数の推移(日本)

以上の占める割合が多く,2005年以降では,VLOCが増加してきていた.

中国について、船型 Type 別寄港回数を整理したのが図-4.5、輸送力の構成を整理したのが図-4.6である.寄港回数で見ると、中国では、圧倒的に Panamax となっていた輸送力でも、Panamax が中心であるのは変わらないが、2割程度は、Capesize であった.

韓国について、船型 Type 別寄港回数を整理したのが図-4.7、輸送力の構成を整理したのが図-4.8である. 韓国の寄港回数は、日本と似て、様々な船型 Type から構成され

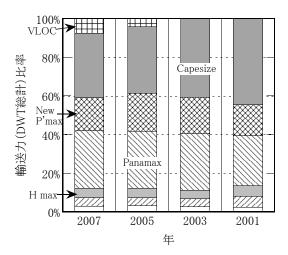


図-4.4 船型 Type 別輸送力比率の推移(日本)

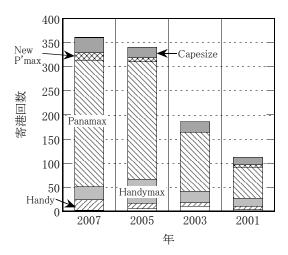


図-4.5 船型 Type 別寄港回数の推移(中国)

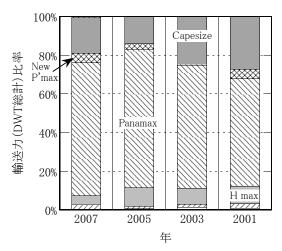


図-4.6 船型 Type 別輸送力比率の推移(中国)

ていたが、Capesize が Panamax に近いくらいの回数があるとの特徴があった. そのため、輸送力では、約 6 割が Capesize となっていた. 韓国の平均船型が大きいのは、

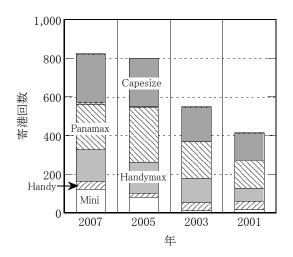


図-4.7 船型 Type 別寄港回数の推移(韓国)

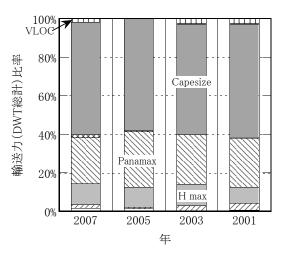


図-4.8 船型 Type 別輸送力比率の推移(韓国)

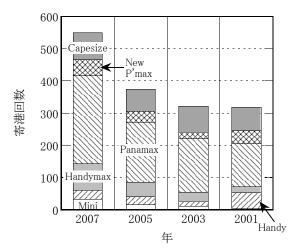


図-4.9 船型 Type 別寄港回数の推移(台湾)

Capesize の比率が大きいためと見られた.

台湾について,船型 Type 別寄港回数を整理したのが図-4.9,輸送力の構成を整理したのが図-4.10である.台湾

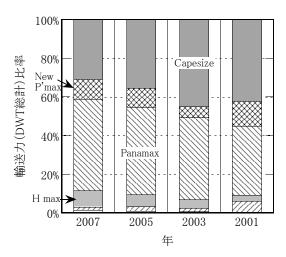


図-4.10 船型 Type 別輸送力比率の推移(台湾)

でも、Mini から Capesize まで、様々な船型 Type の寄港が見られたが、寄港回数で見た場合の主力は Panamax であった.輸送力で見ると、かつては Capesize が一番多かったが、現在では、Panamax が一番多く、4 割を超えていた.

(3) 積出国での寄港実績の分析

北東アジアへの石炭輸送について、各積出国の状況を 確認した.表-4.12は,各国での石炭輸送船の寄港回数で ある. オーストラリアが圧倒的に多い状況には変化が無 いが、中国、インドネシア、ロシアでの積み出しのため の寄港が増えてきていた. カナダは、あまり増減が見ら れなかった,これらの国からの石炭輸送船について,そ の平均船型 (DWT) を確認したのが表-4.13 である. オ ーストラリアは、平均 10 万 DWT を越えており、平均船 型が一番大きかった. カナダも平均船型は大きく, 8 万 DWT は、Panamax の最大クラスに相当した.一方,近年, 積み出しの寄港回数が増えた国の中で, インドネシアは 7万 DWT 強であったが、中国、ロシアは平均 3~5 万 DWT と、船型が小さかった、オーストラリアやカナダに比べ、 輸送距離が短いことが、船型が小さい一つの原因と考え られるが,これらの国からの輸送が増加していることが, 表-4.9 において、中国を除く国での平均船型を押し下げ ていた.

4.4 石炭荷揚港

各種資料より,北東アジア諸国の石炭荷揚港を特定し, その輸入量,最大船型及びバース諸元を整理したのが, 表-4.14 である.

日本の荷揚港としては、港湾統計 ¹¹⁾による 2006 年の

表-4.12 各積出国の寄港回数 (対北東アジア)

年	2007	2005	2003	2001
Australia	1,412	1,149	999	983
Canada	271	258	211	282
China	678	702	642	471
Indnesia	486	332	168	192
Russia	488	393	252	191
USA	29	68	39	19
Vietnam	51	22	10	16
South Africa	44	49	52	62

表-4.13 各積出国の平均船型(対北東アジア)

年	2007	2005	2003	2001
Australia	104,566	105,607	107,174	109,853
Canada	87,238	75,041	82,989	72,016
China	41,716	48,611	56,394	50,359
Indnesia	75,328	76,070	75,951	75,312
Russia	30,661	33,606	40,376	36,984
USA	55,129	69,161	69,407	67,856
Vietnam	32,445	32,558	28,979	29,703
South Africa	66,059	48,944	59,859	66,575

石炭輸入量が5百万FTを超える16港(北九州は, 若松 と戸畑を、それぞれ一港と数えると)をリストアップし た. ここで, 石炭荷揚港は, 大きく, 三種類に分けられ る.一つは、製鉄所のためのバースであり、この場合、 バースが鉄鉱石と共用の場合と, 石炭専用となっている 場合の両方がある. 二つ目が, 石炭火力発電所のための バース、三つ目が、コンビナートにあるバースで、原材 料や燃料となる. 16 港のうち, 各港の最大バースは, 9 港が製鉄所のバース、3港が石炭火力発電所のバース、3 港がコンビナートのバースであった. 製鉄所のバースは, 全て石炭と鉄鉱石の共用であったため、最大船型やバー ス諸元は、他に比べて非常に大きくなっていた. 主に鉄 鉱石船を対象に、減載して寄港できる船型が判明した場 合、表に記載した(詳細は、5.5 参照)、各港への 2007 年の輸送実績を見ると,衣浦:158回,福山:166回,北 九州: 211回,水島: 153回と,輸入量の多い港湾では寄 港回数も多くなっていたが、橘港は、4 回しか寄港が記 録されておらず、一部の港湾では寄港データに抜け落ち があることが確認された.

中国は、近年、主に一般炭の輸入量が増加してきている。ただし、各港における輸入量については、ほとんどデータが無かった。2007年の石炭輸送船の寄港回数から見ると、香港が96回で飛びぬけており、次ぐ上海は39回となっていた。香港は、石炭火力発電所のバースがある。

玉	港湾		石炭輸力	人量	最大船	型DWT	バー	ス諸元
四	伦乌		$10^6 MT$	(年)	通常	減載	最大長	最大水深
	Kinuura	衣浦	9.6F	(06)	70,000	-	660	12.0
	Fukuyama	福山	9.2F	(06)	200,000	290,000	315	17.0
	Kitakyushu(Wakamatsu)	北九州(若松)	8.6F	(06)	150,000	-	315	17.0
	Kitakyushu(Tobata)	北九州(戸畑)	0.01	(00)	200,000	260,000	405	17.0
	Mizushima	水島	7.6F	(06)	200,000	230,000	320	17.0
	Kisarazu	木更津	6.9F	(06)	270,000	320,000	422	19.0
	Tokuy ama/Kudamatsu	徳山下松	6.9F	(06)	150,000	-	420	19.0
日本	Tachibana	橘	6.7F	(06)	140,000	-	300	14.0
日本	Nagoya	名古屋	6.5F	(06)	100,000	330,000	350	14.0
	Kashima	鹿島	6.2F	(06)	150,000	311,000	<i>37</i> 8	19.0
	Matsuura	松浦	6.1F	(06)	130,000	-	370	16.3
	Oita	大分	5.8F	(06)	330,000	-	620	30.0
	Kawasaki	川崎	5.2F	(06)	200,000	290,000	360	22.0
	Higashi-Harima(Kakogawa)	東播磨	5.2F	(06)	160,000	311,000	850	17.0
	Ube	宇部	5.1F	(06)	-	-	-	13.0
	Sakaide	坂出	5.0F	(06)	55,000	-	275	13.0
中国	Hong Kong	香港	**9.1	(07)	145,000	-	545	17.0
	Gwangyang	光陽	-		250,000	-	740	22.5
	Samchonpo	三千浦	19.1F	(07)	100,000	-	-	-
韓国	Incheon	仁川	6.4F	(08)	150,000	-	-	-
	Pohang	浦項	4.1F	(07)	250,000	-	-	19.5
	Donghae	東海	*3.6F	(07)	50,000	-	270	13.0
	Taean	泰安	-		150,000	-	254	-
	Kaohsiung	高雄	*19.7	(07)	-	-	384	16.5
台湾	Taichung	台中	-		-	-	340	18.0
	Mai-Liao 学齢入長しのR暦供がEE	麦寮	-		150,000	-	-	18.0

表-4.14 北東アジアの石炭主要荷揚港の輸入量、最大船型及びバース諸元

注)「石炭輸入量」のFは単位がFT,*は移入込み,**は移入・コークス込みを示す.

各国·各港統計, LR-F「Ports & Terminals Guide」, TEX「輸入鉄鉱石年鑑」, 日本港湾協会「日本の港湾2005」等より作成.

韓国の荷揚港は、寄港回数から見ると、光陽:169回 が最大であり、この光陽と、仁川、浦項は、製鉄所のバースである。一方、三千浦、泰安は、石炭火力発電所のバースである。

台湾では、高雄の輸入量は大きく(移入がほとんど無いとみなすと)、日本最大の衣浦の2倍以上となっていた.この台中は製鉄所、麦寮は石炭火力発電所のバースであり、高雄では両バースが同水深で存在した.

4.5 考察

(1) 積出港と荷揚港

一つ目の考察として、積出港と荷揚港の対応船型を比較した. 図-4.11 は、石炭主要積出港 (表-4.3 の全港湾、表-4.6 で数値が記載してある港湾)の対応船型 (DWT) と、北東アジアの石炭主要荷揚港 (表-4.14 の全港湾)の対応船型とを比較したものである. 積出港・荷揚港ともに、最頻値は 15 万 DWT 以上 20 万 DWT 未満対応であったが、10 万 DWT 以上 15 万 DWT 未満対応の荷揚港が 5

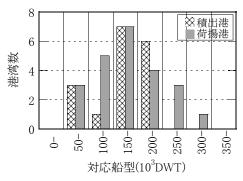


図-4.11 積出港と荷揚港の対応船型

港あったのに対し、積出港は1港しかなく、逆に20万DWT以上25万DWT未満では積出港の方が多かった. 一方、25万DWT以上に対応できるのは荷揚港のみであった. これは、前節で述べたとおり、荷揚港の中には、製鉄所において、鉄鉱石と共用バースとして使用している場合があり、20万DWT以上対応の全ての荷揚港は鉄鉱石との共用バースであった. すなわち、石炭専用バースは最大でも20万DWT未満であり、石炭専用バースに

表-4.15 荷揚港におけるバース対応船型と寄港最大船型

国	種別	バース対応	07寄港最大	比率
日本	石炭専用	109,000	119,192	1.09
日本	鉄原共用	201,111	197,006	0.98
中韓台	石炭専用	124,167	148,608	1.20
中军口	鉄原共用	250,000	195,075	0.78

表-4.16 荷揚港におけるバース水深と最大船の必要水深

国	種別	バース水深	07必要水深	比率
日本	石炭専用	14.6	15.4	1.06
口平	鉄原共用	19.1	18.2	0.95
中韓台	石炭専用	16.5	17.3	1.05
十年口	鉄原共用	21.0	18.4	0.87

注)「07必要水深」とは,07年入港船の最大満載喫水×1.1

限ってみれば、荷揚港は積出港より対応船型が小さいと 見られる. 仮に、世界的な石炭需要が増加する中で、石 炭輸送船がさらに大型化していく場合、石炭専用バース に寄港可能な船型と、鉄鉱石共用バースにしか寄港でき ない船型に分かれていく可能性が考えられる.

(2) 荷揚港のバース諸元と寄港最大船

次に, 積出港の最大バースと, 当該港湾への寄港最大 船の関係を比較分析した.表-4.15は、鉄鉱石との共用バ ースがある港湾と、石炭専用バースが最大バースである 港湾に分けて, それぞれのバース対応船型(DWT)と 2007 年の寄港最大船の船型との, 国別平均値を比較したもの である. 日本も中国・韓国・台湾も, 石炭専用バースの 港湾の方が,バースの対応船型も寄港最大船型も小さく, 平均して、石炭専用バースは New Panamax の最大船型程 度の寄港であるのに対し、鉄鉱石との共用バース (表中 「鉄原共用」)は、Capesize の最大船型まで寄港していた. バース対応船型と, 寄港船の最大船型を比較した場合(表 中「比率」),石炭専用バースの港湾では,バース対応船 型より寄港船型の方が大きいのに対し、鉄鉱石共用バー スでは, バース対応船型の方が大きく, バース諸元に余 裕が見られた. なお, ここで, 寄港最大船が, 各港湾の 最大のバースに着いたかどうかは不明である.

同様に、各港の最大バース水深と、2007年寄港船の最大満載喫水から算定した必要水深との、それぞれの国別平均値を比較したのが、表-4.16である。必要水深は、港湾の施設の技術上の基準・同解説²¹⁾より、最大喫水を満載喫水として、これに10%の余裕水深を見た水深とした。その結果は、船型と同様の傾向であり、日本でも、中国・韓国・台湾でも、石炭専用バースではバース水深が 1m弱不足しているのに対し、鉄鉱石との共用バースではバ

ース水深に余裕が見られた.

(3) 積出港のバース水深と全寄港船の満載喫水

三つ目の分析として、北東アジアの荷揚港へ寄港した 石炭輸送船の満載喫水から算定される必要水深と、当該 港湾の最大のバース水深を比較した.

日本の結果が、図-4.12 である. 横軸は、バース水深か ら必要水深を差し引いた水深差であり、マイナスの水深 差は,スペック上,バース水深が不足していたことを示 す. 図では、その境界を太実線で示した. 実際には、潮 位差もあり、また、積荷を減らすこと、いわゆる足揚げ により寄港した場合もあるが、ここでは、満載で寄港し たときを前提に算定した. また, 複数のバースがある港 湾でも、着岸バースの特定が困難であることから、当該 港湾で最大の水深を持つ石炭バースに着岸したものとし た. 図-4.12 では、水深不足が 2~3m と、水深余裕が 1m 以上に集中が見られ, 日本の港湾では, 十分な水深があ る港湾と, 慢性的に水深が不足している港湾に大別され ているものと見られた、水深が不足していた寄港の割合 は 39.3%に及んでいた. 日本において 2 港目以降の寄港 では、水深が不足する寄港の割合が 44.2%と上がり、特 に、水深が4mを超える不足を示していた寄港は、全て2 港目以降であったことから、足揚げにより寄港可能にな ったものと考えられる.一方で、図-4.12 には記載できな かったが、6m 以上の余裕がある寄港も数多く(全体で 394回) あった.

中国については、主要な石炭荷揚港としてリストアップしたのが、香港1港であったため、この分析は行わなかった.

韓国については、バース水深が判明した光陽、浦項及び東海の3港で分析を行った。その結果が図-4.13であるが、日本とは大きく異なり、2m以上水深が不足していた

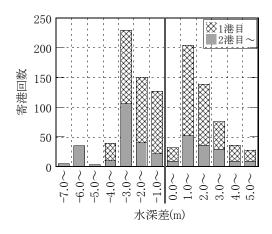


図-4.12 バース水深と必要水深の差(日本)

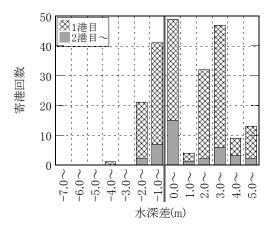


図-4.13 バース水深と必要水深の差(韓国)

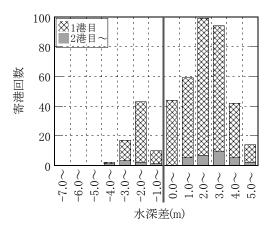


図-4.14 バース水深と必要水深の差(台湾)

寄港はほとんど無かった. 6m 以上余裕のある寄港も結構あり(全体で 159 回),水深が不足する寄港の割合は,16.8%と低かった.

台湾については、主要荷揚港の3港を対象に分析を行った. その結果が図-4.14であるが、バース水深の余裕2m以上4m未満に集中が見られ、水深が不足する寄港の割合は、15.5%であり、韓国と同程度に低かった.

ここで、バース水深と、満載喫水から算定される必要水深とを比較した際に、水深の不足が大きかった港湾について、NILIM-AIS²²⁾により、最深バースへの着岸船の満載喫水とバース水深との関係を確認した。日本の衣浦及び名古屋について確認した結果が、表-4.17である。バースの対応船型から、衣浦は Panamax 以上、名古屋は

Capesize 以上の石炭輸送船を対象とした. 最深バースへ の着岸船について,名古屋は製鉄所のバースであるため, 鉄鉱石輸送船も同じバースを利用している. この場合, 2007年の寄港実績から、どちらを輸送したのかを判定し たが、両者を取扱う船で、寄港実績からでも判定がつか ない場合には、この分析で対象とした(鉄鉱石輸送船の 分析でも対象とした).表より,バース水深と,満載喫水 より算定される必要水深との差(表中「水深差」)は、最 大~平均で,衣浦:-3.7~-1.9m,名古屋:-6.2~-4.8mで あり、図-4.12 での不足水深が 6m 程度以下との状況と概 ね一致が見られ、寄港実績による分析結果が、AIS デー タにおいて確認された.併せて、AIS 航海情報において d_{ais} として受信された実喫水 (既往の研究 ²³⁾では, コンテ ナ船の航行時の実喫水に関する分析に使用されている) も確認した. この d_{ais} は、入港時なのか、もしくは、出 港時なのかは不明であるが、いずれもバース水深より小 さくなっていたものの、衣浦では、10%の余裕水深が取 れていなかった(11.8×1.1=13.1で,12.0mのバース水深 に収まっていない).

(4) 輸送効率化に向けた動き

まず、積出港での能力拡張については、世界最大の石炭輸出国であるオーストラリアでは、世界的な不況により滞船が緩和に向かっているとは言え、需要に対して能力が足りていないため、各港で多くの拡張計画がある. Newcastle では、NCIG (Newcastle Coal Infrastructure Group) による新規ターミナル整備を含め、現有能力 10,200~万 MT を、将来的には 20,100~万 MT まで引き上げる計画である. Hey Point でも、現有能力 11,200~万 MT を、2016~年には 16,000~万 MT に、Gladstone でも、Wiggins 島沖合いに 22~万 DWT クラス対応を 4~バース備えた新規ターミナルの整備を含め、現有能力 7,500~万 MT を、2020~年には 14,300~万 MT とする計画である 200.

一方,海上輸送では、船型 Type 別の年別推移では(図-4.2)、VLOC が増加傾向ではあるが、Capesize は減少傾向であった。ただし、今後、現在建造中のバルクキャリアでは VLOC、Capesize 及び New Panamax の比率が高く(図-4.15:参考文献 2)より作成。図中「200+」が VLOC、「150-200」「100-150」及び「60-100」の一部が Capesize

表-4.17 水深不足が大きいと見られる港湾での満載喫水による必要水深とバース水深の差

ITI	港湾	平均DWT	満載「	喫水d	バース	水浴	彩差	最大	隻数	期間
玉	伦停	十岁DWI	最大d	平均d	水深	最大	平均	d_{ais}	支奴	州间
日本	衣浦	84,611	14.3	12.7	12.0	-3.7	-1.9	11.8	5	08/03/17-08/03/30
	名古屋	173,468	18.3	17.1	14.0	-6.2	-4.8	12.7	4	08/03/03-08/03/16

注)「dais」とは、AISの航海情報として受信した実喫水

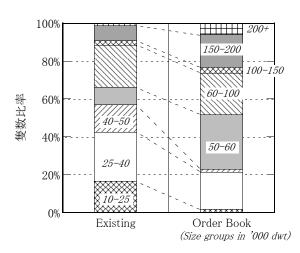


図-4.15 バルクキャリアの既存船と建造船(2008年初)²⁾

及び New Panamax),これらが石炭輸送を担うこととなれば、輸送船が大型化していくこととなる。また、限られた船腹を有効利用するため、石炭と鉄鉱石のコンビネーション輸送も行われている。住友金属と欧州製鉄会社ティッセン・クルップ・スチールが共同で、Capesize 船を用い、豪州炭を欧州に輸送し、その後ブラジルへ回送、ブラジル鉄鉱石を日本に輸送し、オーストラリアへ回送する輸送を行っている²⁴)。それぞれ、単独で輸送するのに比べ、回送距離が減るため、船腹の有効活用となる。

また、荷揚港側では、ある拠点港湾に一度に大量輸入し、周辺へ二次輸送する方法がある。宇部では、沖の山コールセンターにて海外炭を受け入れ、国内へ二次輸送しており、年間受入能力は600万MT、1980年の創業開始以来、累計受入が1億トンを超えている²⁵⁾。このようなコールセンターが、日本には9箇所ある²⁶⁾、その一つでもあ

る徳山下松では、さらに、Capesizeに対応した水深16m岸 壁を整備し、大規模なコールセンターとするスーパーバ ルクターミナル計画が検討されている²⁷⁾. 同様の輸送シ ステムは、韓国では、CTS (Central Terminal System) 事 業として実施されている²⁴⁾. 韓国の製鉄会社POSCOと三 井物産の共同出資によるPOSCO Terminal社が、石炭、鉄 鉱石,マンガン鉱石,石油コークス等を積出国から光陽・ 浦項へ大量に輸送し、保管し、韓国内あるいは近隣諸国 ヘ中小型船で出荷する方法である. 図-4.16の輸送システ ム図によれば、石炭は、オーストラリアやカナダから輸 入し、保管後、日本や台湾へ輸出、鉄鉱石は、ブラジル やオーストラリアから輸入し、中国への輸送することと されている28). 光陽・浦項共に、それぞれの製鉄所のバ ースを使用しており(図-4.17), 25万DWTまで対応可能 となっている. なお,2006年の港湾統計では,韓国から の石炭輸入量は、52万FT弱となっていた.

図-4.17 光陽港のCTS対応ターミナル²⁸⁾

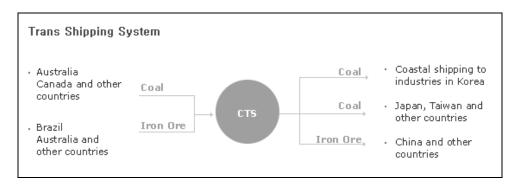


図-4.16 韓国における Central Terminal System による輸送概念図 28)

5. 鉄鉱石輸送にかかる動向分析

5.1 鉄鉱石輸送船の船型

- (1) 鉄鉱石輸送船の特定方法 鉄鉱石輸送船は,以下の種別・データにより特定した.
- a) 構造的に鉄鉱石を輸送すると想定されているバルクキャリア: Lloyd's データの Ship Type Initial Basic Code 及び Ship Type Sub Code を使用した. Initial Basic Codeでは,鉱石専用船(Code:19002)を, Sub Codeでは,バルクキャリアの中で鉄鉱石を輸送できるかどうかを判別した.
- b) 鉄鉱石を輸送した実績 (スポット用船) のあるバルクキャリア: Dry Fixture データ, 輸入鉄鉱石年鑑 ²⁴⁾, 世界最大の鉄鉱石積出港である Port Hedland 港の統計から, 一度でも鉄鉱石の輸送実績のあるバルクキャリアを特定した.
- c) 鉄鉱石輸送の長期用船に従事していると想定される バルクキャリア: Lloyd's 寄港実績データから, 鉄鉱石 の主要積出港に多数回寄港したバルクキャリアを特定 した. また, 主要邦船社のプレスリリース等からも鉄 鉱石を専用的に輸送するバルクキャリアを特定した.

寄港実績データから,長期用船されているバルクキ ャリアを抽出する方法について説明しておく.表-5.1 に, Lloyd's データによる, ある鉄鉱石専用船の 2007 年の寄港実績を示す. この例では、鉄鉱石積出港と目 本の間を往復しているものの、鉄鉱石積出港・国が一 つに限定はされていない. 邦船社で, 鉄鉱石を専用的 に輸送するバルクキャリアについて、このような寄港 実績データから、鉄鉱石積出港への寄港回数、寄港港 数・国数を整理した.表-5.1の例の場合,積出港への 寄港回数:9, 寄港港数:4, 寄港国数:2 となる. 連 続寄港も, その間に他港への寄港が抜けている場合が あるので、そのままカウントした. このようにして整 理した結果が表-5.2 であるが、鉄鉱石専用船が、鉄鉱 石積出港に最低で年6回の寄港があり、寄港する積出 港や国は,必ずしも一つに特定されていないことが判 った. そこで, Lloyd's 寄港実績データより, 表-5.3 に 示す主要積出港に、合計で年6回以上寄港したバルク キャリアを鉄鉱石輸送の長期用船に従事しているもの と判定した. なお、後述するように、表-5.3 は世界に おける鉄鉱石積出港のうち, 主要な港湾のみ取り出し

表-5.1 ある鉄鉱石専用船の輸送実績

入港日	港湾名	国名	鉄鉱石積出港
2007/1/12	Mizushima	Japan	
2007/2/12	Saldanha Bay	South Africa	0
2007/3/22	Kawasaki	Japan	
2007/3/31	Mizushima	Japan	
2007/4/14	Port Walcott	Australia	0
2007/5/7	Kawasaki	Japan	
2007/5/10	Fukuyama	Japan	
2007/5/27	Port Hedland	Australia	0
2007/6/2	Port Hedland	Australia	0
2007/6/15	Kawasaki	Japan	
2007/7/4	Dampier	Australia	0
2007/7/19	Mizushima	Japan	
2007/8/1	Fukuyama	Japan	
2007/8/23	Dampier	Australia	0
2007/9/10	Mizushima	Japan	
2007/9/26	Port Walcott	Australia	0
2007/10/21	Fukuyama	Japan	
2007/11/9	Port Walcott	Australia	0
2007/11/28	Fukuy ama	Japan	
2007/12/16	Port Walcott	Australia	0

表-5.2 鉄鉱石専用船の積出港への寄港回数・港数・国数

回数	頻度	港数	頻度	国数	頻度
5	0	1	0	1	5
6	3	2	1	2	7
7	1	3	6	3	1
8	2	4	5	4	0
9	1	5	1	5	0
10	3	6	0	6	0
11	3	7	0	7	0
12	0	8	0	8	0
13	0	9	0	9	0

表-5.3 鉄鉱石の主要積出港

国	港湾
Australia	Port Hedland (Nelson Point),
Australia	Dampier, Walcott (Cape Lambert)
	Tubarao, Ponta da Madeira/Itaqui,
Brazil	Sepetiba/Guaiba Island Terminal,
	Ponta Do Ubu
India	Mormugao (Goa), Visakhapatnam
South Africa	Saldanha Bay

たものであり、鉄鉱石輸送実績の特定においては、その 他の小さな港湾も含めた.

以上の a)~ c)のいずれかにおいて特定されたバルクキャリアを鉄鉱石輸送船の母集団とし、各年に実際に鉄鉱石積出港に寄港したバルクキャリアを鉄鉱石輸送船とした.

(2) 船型分析

まず、最新の実績データのある 2007 年において、鉄鉱石を輸送したバルクキャリアを、船型 Type 別に整理したのが、表-5.4 である. 隻数で 4 割以上、輸送力を示す DWT(載貨重量トン)で 6 割以上が Capesize となっており、鉄鉱石輸送は Capesize が中心であると言える.

2007 年現在の鉄鉱石輸送船について、輸送力を船齢別船型 Type 別に整理したのが、図-5.1 である. 船齢により、VLOC の割合が増減しているが、やはりどの船齢でもCapesize が中心であった. 5 年未満の鉄鉱石輸送船では、New Panamax 以下の船型が約2割しかなく、VLOCとCapesize が大きな比重を占めていた.

過去の鉄鉱石輸送船の輸送力を,船型 Type 別に整理したのが、図-5.2 である. この図では、VLOC の増加してきていることが、明確な傾向として見られた(2001年: $10.4\% \rightarrow 2007$ 年:12.4%). Capesize は 2001年:61.9%、2007年:62.1%で、ほぼ変化がなかった. 一方で、Panamaxは 2001年: $18.2\% \rightarrow 2007$ 年:17.3%,Handymax は 2001年: $6.9\% \rightarrow 2007$ 年:5.2%に減少していた. これらより、鉄鉱石輸送船は、船型 Type 別に見ると、大型化してきたと言える.

次に、2007 年現在の鉄鉱石輸送船について、その船舶 諸元を整理した結果が、表-5.5 である。DWT について、Panamax と VLOC の 95%値は、それぞれ 8 万 2 千 DWT、32 万 2 千 DWTで、Panamax は石炭輸送船と同程度であった。また、L については、Handy の 95%値が非常に大きくなっているが、これは、1970 年前後に建造された数 隻の全長が大きくなっていたことに依っている。また、石炭輸送船(表-4.5)と比較した場合、どの船型 Type でも、鉄鉱石輸送船の方が、少し全長が長くなっていた。d では、石炭輸送船と異なり、New Panamax は、Panamax より深くなっていた。

ここで、鉄鉱石輸送船が関係する船型 Sub Type について記載しておく.

- ・Dunkirkmax: 欧州有数の鉄鉱石荷揚港湾である Dunkirk に寄港できる最大船型. 17万5千DWT, L:289m, B: 45m^{14), 15)}. Capesize の中にあるため,数値としては出ていない.
- ・Setouchimax:石炭で既出であるが、瀬戸内海諸港の製鉄所バースに寄港し易い船型 ^{14), 15)}.

5.2 鉄鉱石積出港

各種資料より、世界の鉄鉱石積出港を特定し、その輸出量と最大船型を整理したのが、表-5.6である.以下に、主要な国の港湾について、概観する.

表-5.4 鉄鉱石輸送船の船型 Type (2007年)

Type	隻数		DWT総計	
Mini	12	0.9%	167	0.1%
Handy	72	5.4%	2,067	1.3%
Handymax	182	13.5%	8,146	5.2%
Panamax	378	28.1%	27,204	17.3%
New Panamax	24	1.8%	2,404	1.5%
Capesize	590	43.9%	97,520	62.1%
VLOC	86	6.4%	19,447	12.4%
	1,344		156,955	

注) DWT総計の単位は、103トン

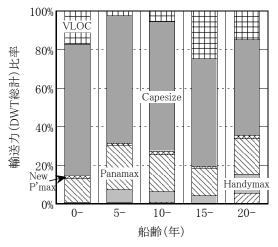


図-5.1 鉄鉱石輸送船の船齢別船型 Type (2007年)

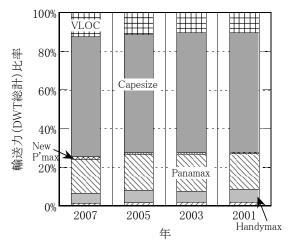


図-5.2 鉄鉱石輸送船の船型 Type 別輸送力の推移

オーストラリアは、世界最大の鉄鉱石輸出国であり、Port Hedland、Dampier は 100万 MT を超える世界 1 位、2 位の輸出量である. ただし、一部では、ブラジルの Tubarao が世界 1 位の積出港としている資料もある ²⁹⁾. しかし、オーストラリア積出港の対応船型は、ブラジルに比べて見劣りし、Port Hedland では 26万 DWT までしか対応で

d (満載喫水) DWT B (型幅) L (全長) Type 平均値 平均値 平均値 75%值 平均值 75%値 95%値 75%値 95%値 95%値 75%値 95%値 19,252 9.9 9.2 Mini 18,951 13,937 162 148 137 25.0 22.9 20.1 8.0 Handy 33,815 30,735 28,703 223 185 182 28.4 27.0 24.9 10.9 10.6 10.0 52,949 44,760 207 190 12.7 Handy max 47,980 189 32.3 32.0 30.5 11.8 11.5 Panamax 82,214 75,397 71,970 245 225 226 32.3 32.3 32.2 14.4 14.0 13.6 New Panamax 115,152 109,846 100,154 261 250 243 43.9 42.0 40.7 15.7 15.7 14.4 Capesize 185,767 175,000 165,289 293 289 284 47.5 45.0 44.8 18.3 18.0 17.6 VLOC 322,398 339 231,851 226,127 312 58.0 54.0 51.7 23.0 19.7 18.8 320

表-5.5 鉄鉱石輸送船 (2007年) の船型 Type 別の船舶諸元

表-5.6 鉄鉱石積出港の輸出量及び最大船型

国	港湾	鉄鉱石輸出量		最大船型				
E	伦停	$10^6 MT$	' (年)	DWT	L	В	d	
	Port Hedland (Nelson Point)	125.3	(07/08)	260,000	340	56.0	18.2	
Australia	Dampier	112.2	(07/08)	325,000	340	60.0	18.7	
Austrana	Walcott (Cape Lambert)	54.4	(05)	340,000	355	55.0	20.0	
	その他:Esperance, Geraldton, '	Why alla, Po	ort Latta					
	Tubarao	83.9	(05)	365,000	400	62.0	20.0	
Brazil	Ponta da Madeira/Itaqui	67.2	(05)	420,000	340	60.0	22.3	
Diazii	Sepetiba/Guaiba Island Terminal	39.4	(05)	365,000	350	54.0	24.0	
	Ponta Do Ubu	15.5	(05)	200,000	<i>30</i> 8	54.0	16.4	
	Mormugao (Goa)	26.7	(06/07)	275,000	335	50.0	12.8	
India	Visakhapatnam	14.7	(06/07)	165,000	270	42.0	16.5	
	その他: Paradip, Chennai (Madras), New Mangalore							
South Africa	Saldanha Bay	26.8	(05)	365,000	350	60.0	21.5	
	Canada: Port Cartier (QCM), Sev	en Islands/S	ept-IIes					
	Chile: Huasco, Guayacan							
	Peru: San Nicolas							
その他	Venezuela: Boca Grande Terminal, Puerto Ordaz							
	Norway: Narvik, Kirkenes, Mo i Rana							
	Sweden:Oxelosund, Lulea							
	Mauritania: Nouadhibou							

注)各国・各港統計, TEX「輸入鉄鉱石年鑑」, Clarkson「Dry Bulk Trade Outlook」, LR-F「Ports & Terminals Guide」等より作成.

きない. また,石炭と同じく,旺盛な需要増に港湾施設の能力が追いついておらず,滞船が問題となっていたが,世界的不況により緩和に向かった模様である.

ブラジルは、オーストラリアに次ぐ鉄鉱石輸出国であり、調べた範囲では、Tubaraoが世界3位、Ponta da Madeiraが世界4位の輸出量である。オーストラリアに比べて、ブラジルの積出港は対応船型が大きく、世界的なVLOC大量建造、さらにはその大型化は、ブラジルの荷揚港が対応できることに依る部分が大きい。ブラジルの積出港でも、港湾施設能力の不足による滞船が問題となっていたが、やはり、緩和に向かった模様である。

インドは,近年輸出量を増やしているが,港湾施設の 対応船型は大きくない.そのため,主要積出港の能力増 強を進めている. 南アフリカでも輸出量の増加のため、Saldanha Bay の能力増強を進めている。また、その他の港湾を拡張整備した上で、利用することも検討されたとの情報もある²⁴)。

5.3 鉄鉱石輸送の寄港実績

(1) 鉄鉱石輸送の寄港実績の特定方法

鉄鉱石の輸送実績は、鉄鉱石輸送船が、鉄鉱石積出港に寄港した場合に、鉄鉱石を積み出したものとして特定した。その例を表-5.7 に示すが、ある鉄鉱石輸送船が、積出港である Port Hedland に寄港し、その後、鹿島、小倉(北九州)、加古川(東播磨)と、日本の港湾に連続寄港して、Richard Bay に向かっている。この場合、Port Hedland から日本の 3 港湾へ鉄鉱石を輸送したと判定す

表-5.7 鉄鉱石輸送実績の例

入港日	港湾名	国名	積出港	荷揚港
2007/5/10	Port Hedland	Australia	0	
2007/5/23	Kashima	Japan		1
2007/6/5	Kokura	Japan		2
2007/7/4	Kakogawa	Japan		3
2007/8/2	Richards Bay	South Africa		

表-5.8 Clarkson 等と寄港実績による輸送量の比較

	年	2007	2005	2003	2001
	Clarkson	138.9	132.3	132.1	126.3
Japan	港湾統計	132.7	133.0	130.9	125.1
	寄港実績	109.6	100.0	93.8	95.4
China	Clarkson	377.1	270.6	146.8	91.4
Cillia	寄港実績	199.5	141.2	75.2	47.6
Korea	Clarkson	46.2	43.5	41.3	45.9
Korea	寄港実績	42.9	37.9	29.8	31.4
Taiwan	Clarkson	16.0	14.6	15.6	15.6
1 aiwali	寄港実績	9.4	8.9	12.1	11.5

注) Clarkson及び寄港実績は10°MT, 港湾統計は10°FT. なお 港湾統計2007年値は未発表のため, 2006年値で代替した.

る方法で、詳細は、石炭(4.3に記載)と同一である.

特定した寄港実績より、全ての鉄鉱石輸送船が満載で輸送したと仮定すると、輸送量が推計できる。北東アジア諸国への鉄鉱石輸送量について、Clarksonデータ^{4),30)}港湾統計データ¹¹⁾と、寄港実績からの推計値とを比較した結果が表-5.8 である。中国は、寄港実績による輸送量が、Clarkson データの約半分強であり、差があったが、その他の国は、寄港実績による輸送量が Clarkson データの7~8割程度となっていた。港湾統計との比較では、寄港実績による輸送量は、約3/4であった。寄港実績による輸送量が、Clarkson データや港湾統計データより小さくなっていたのは、石炭の場合と同じく、バルクキャリア以外の輸送と、輸送船・寄港実績が特定しきれていないことが原因と考えられる。

以降の寄港実績の分析においては,7割程度の寄港実績を対象としたものであることを認識されたい.

(2) 北東アジア諸国への寄港実績の分析

まず,各国への寄港船の平均船型(DWT)を比較したのが,表-5.9である.ここでは,平均船型算定のため,2港揚げ,3港揚げも,1回の寄港とカウントした.表-5.9では,日本と中国への平均船型が大きくなっているのに対し,韓国は微増,台湾は横ばい程度となっており,基本は増加傾向であるものの,国により差が見られた.その中で,いずれの年も,一番船型が大きかったのは韓国であった.

表-5.9 各国寄港船の平均船型 (DWT)

年	2007	2005	2003	2001
Japan	175,713	170,386	166,084	157,990
China	140,174	126,774	127,036	125,163
Korea	179,514	179,470	179,382	177,437
Taiwan	131,698	119,201	117,024	127,517

表-5.10 各国寄港船の平均積卸量 (MT)

年	2007	2005	2003	2001
Japan	123,335	114,305	118,482	110,191
China	103,781	100,589	100,811	100,342
Korea	166,941	144,535	148,887	167,949
Taiwan	131,698	114,617	108,590	122,090

表-5.11 各国寄港船の同国内での平均寄港回数

年	2007	2005	2003	2001
Japan	1.42	1.49	1.40	1.43
China	1.35	1.26	1.26	1.25
Korea	1.08	1.24	1.20	1.06
Taiwan	1.00	1.04	1.08	1.04

次に、複数港揚げを考慮した平均積卸量を整理したのが、表-5.10である。中国が一番少なく、次いで日本となっており、2007年で日本と韓国の差は、4万MT以上あった。

一回の輸送での平均寄港回数 (表-5.11) では、日本が一番多く、次いで中国であり、台湾では、ほとんどが 1 港揚げであった。石炭と同じく、日本の寄港回数は、他国に比べ多くなっていた。

さらに、国別に、寄港した鉄鉱石輸送船の船型 Type を整理した。日本の寄港回数の結果が、図-5.3 である。 Capesize が主力であるものの、VLOC が増加している傾向が見られる。輸送力を船型 Type 別に見た結果が、図-5.4 であるが、VLOC が 2001 年: 21.7%→2007 年: 34.5%と増加し、その分、Capesize が 2001 年: 73.4%→2007 年: 62.2%と減少していた。輸送力面では、Capesize が VLOC に代わりつつあると見ることが出来る。

中国について,船型 Type 別寄港回数を整理したのが, 図-5.5 である. 全体の寄港回数が, 2001 年:463 回→2007 年:1,905 回と,急激な増加を示していた. 2001 年当時, 約4割が Panamax 以下の船型であったが, 2007 年現在で は,その割合は3割を切っていた. それでも,日本に比 べると,相対的には Panamax や Handymax の寄港が目立 っていた. 輸送力の構成を示した図-5.6 では,やはり主 力は Capesize であるものの, 2007 年現在で Panamax:8.2%,

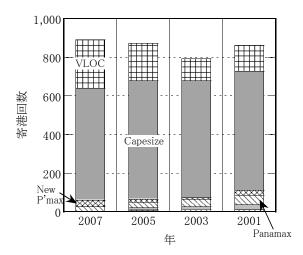


図-5.3 船型 Type 別寄港回数の推移(日本)

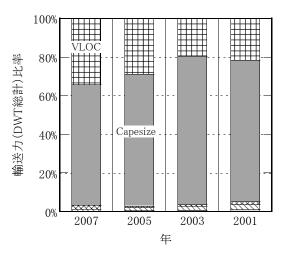


図-5.4 船型 Type 別輸送力比率の推移(日本)

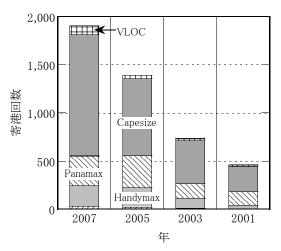


図-5.5 船型 Type 別寄港回数の推移(中国)

Handymax: 3.7%であった.

韓国について、船型 Type 別寄港回数を整理したのが 図-5.7、輸送力の構成を整理したのが図-5.8である. 日本

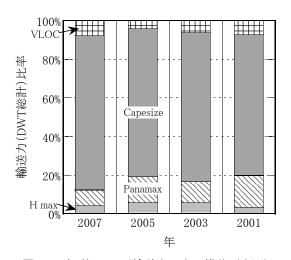


図-5.6 船型 Type 別輸送力比率の推移(中国)

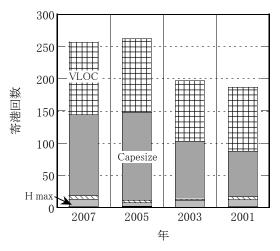


図-5.7 船型 Type 別寄港回数の推移(韓国)

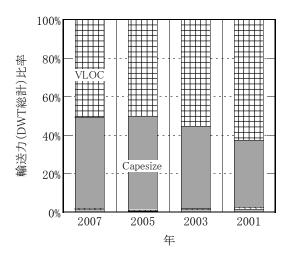


図-5.8 船型 Type 別輸送力比率の推移(韓国)

や中国に比べて VLOC の多さが際だっていた. いずれの 年でも、輸送力の過半数は VLOC であった.

台湾について、船型 Type 別寄港回数を整理したのが

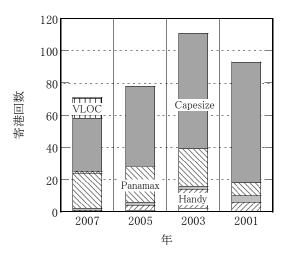


図-5.9 船型 Type 別寄港回数の推移(台湾)

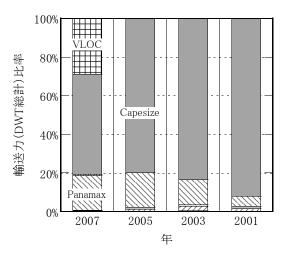


図-5.10 船型 Type 別輸送力比率の推移(台湾)

図-5.9, 輸送力の構成を整理したのが**図-5.10** である. 2005 年までは、VLOC の寄港が無く、Capesize が中心ではあるものの、Panamax の寄港も結構見られた. 輸送力面では、2007年は、VLOC が 3割弱となっていた.

(3) 積出国での寄港実績の分析

北東アジアへの鉄鉱石輸送について、各積出国の状況を確認した。表-5.12 は、各国での鉄鉱石輸送船の寄港回数である。オーストラリアが圧倒的に多いが、ブラジルが大きな伸びを示していた。また、インドの寄港回数も増えていた。これらの国での平均船型(DWT)を確認した結果が、表-5.13 である。港湾施設の対応船型の差から、ブラジルの方が、オーストラリアより平均船型が大きくなっていた。特筆すべきはインドの状況で、2005 年までは Panamax を中心とした寄港であったが、2007 年にはCapesize が多数寄港しており、一気に大型化していた。オーストラリアやブラジル港湾では滞船問題があった中

表-5.12 各積出国の寄港回数 (対北東アジア)

年	2007	2005	2003	2001
Australia	1,215	1,087	735	693
Brazil	659	366	280	213
Canada	21	24	18	14
India	332	390	261	220
South Africa	88	70	87	74

表-5.13 各積出国の平均船型(対北東アジア)

年	2007	2005	2003	2001
Australia	134,490	163,994	164,431	159,383
Brazil	174,870	169,655	165,385	166,893
Canada	164,876	114,082	142,848	154,469
India	178,522	68,564	77,273	91,379
South Africa	144,524	169,007	164,296	155,130

で、整備の進んだインド港湾を大型船が利用し始めた可 能性が考えられる.

5.4 鉄鉱石荷揚港

各種資料より、北東アジア諸国の鉄鉱石荷揚港を特定 し、その輸入量、最大船型及びバース諸元を整理したの が表-5.14 である.

日本の荷揚港としては、港湾統計 ¹¹⁾による 2006 年の 鉄鉱石輸入量が5百万FTを超える12港(北九州は、小 倉と戸畑を、それぞれ一港と数えると)をリストアップ した. また, 輸入鉄鉱石年鑑 24)等より, 減載した場合の 寄港最大船型も把握できた港湾については、表に記載し た. 日本最大の鉄鉱石バースは大分で, 対応船型は 33 万 DWT であった. 満載で 30 万 DWT 以上が寄港できる のは、この大分港だけで、20万 DWT 台後半が寄港でき るのも、木更津港しかなかった. 多くの港湾は、満載で は,20万DWTか,それ以下の船型にしか対応できず, 減載(足揚げ)をして始めて30万DWTクラスに対応で きる状況にあった, 2007年の日本寄港船の平均船型は17 万 6 千 DWT であったが (表-5.9), 満載で受入の出来な い港湾が、6港(北九州(戸畑)を含む)もあった.日 本の鉄鉱石荷揚港の多くは、能力の足りない現存施設に おいて、工夫をして大型船に対応しているものと見られ る. 2007年の寄港実績において、各港への寄港回数を見 ると,水島:93回,福山:86回,木更津:108回,大分: 92回であり、輸入量の多い港湾は寄港回数が多くなって いた. ただし、千葉は、35回と、輸入量に比して少な目 であった.

中国は,近年,鉄鉱石輸入量が大幅に伸びており,こ れに併せて,大型船の対応が可能な港湾が整備されてき

国	港湾		鉄鉱石輸	入量	最大船	型DWT	バー	ス諸元
	伦仔		$10^6 \mathrm{MT}$	(年)	通常	減載	最大長	最大水深
	Mizushima	水島	16.6F	(06)	200,000	230,000	320	17.0
	Fukuyama	福山	15.2F	(06)	200,000	290,000	315	17.0
	Kisarazu	木更津	14.8F	(06)	270,000	320,000	422	19.0
	Oita	大分	13.1F	(06)	330,000	-	620	30.0
	Kashima	鹿島	12.6F	(06)	150,000	311,000	<i>37</i> 8	19.0
日本	Higashi-Harima(Kakogawa)	東播磨	11.9F	(06)	160,000	311,000	850	17.0
日本	Nagoya	名古屋	11.8F	(06)	100,000	330,000	350	14.0
	Kitaky ushu(Kokura)	北九州(小倉)	8.0F	(06)	150,000	180,000	350	13.0
	Kitaky ushu(Tobata)	北九州(戸畑)	o.or	(00)	200,000	260,000	405	17.0
	Kawasaki	川崎	7.0F	(06)	200,000	290,000	360	22.0
	Chiba	千葉	6.9F	(06)	154,000	230,000	406	18.0
	Wakay ama	和歌山下津	6.2F	(06)	165,000	200,000	274	14.0
	Ningbo (Beilun)	寧波(北倫)	*^114.3	(07)	200,000	300,000	360	20.5
	Zhoushan (Majishan)	-舟山(馬迹山)	1114.5	(07)	360,000	-	456	27.0
	Qingdao	青島	* ^81.5	(07)	250,000	-	420	21.0
	Rizhao	日照	* ^75.9	(07)	300,000	-	-	24.5
	Shanghai (Baoshan)	上海(宝山)	* ^60.7	(07)	-	Capesize	-	12.0
中国	Xingang	天津新	* ^53.8	(07)	200,000	-	375	20.8
中国	Tangshan (Caofeidian)	唐山(曹妃甸)	*33.0	(07)	250,000	300,000	735	24.0
	Yingkou	営口	* ^24.1	(07)	200,000	-	359	20.0
	Zhanjiang	湛江	* ^20.7	(07)	250,000	-	-	24.0
	Yantai	煙台	* ^12.7	(07)	150,000	-	-	20.0
	Fangcheng	防城	* ^12.5	(07)	Capesize	-	-	19.0
	Dalian	大連	* ^11.7	(07)	300,000	-		23.0
韓国	Gwangyang	光陽	-		250,000	-	740	22.5
平平区	Pohang	浦項	29.6F	(07)	250,000	-		19.5
	Kaohsiung	高雄	^15.2	(07)	-	-	384	16.5

表-5.14 北東アジアの鉄鉱石主要荷揚港の輸入量、最大船型及びバース諸元

ているし、また、現在も整備中である。寧波-舟山港の馬迹山ターミナルは、上海港洋山コンテナターミナルの沖合(上海沖約 110km)に位置し、東洋最大と言われている ²⁴⁾。その他にも、日照、大連は 30 万 DWT クラスに対応可能とされている。バース水深を見ても、20m 以深が並んでおり、総じて日本より大型船への対応が進んでいると言える。なお、中国港湾の鉄鉱石輸入量は入手できなかったため、ほとんどは鉱石取扱量で代えてある。

韓国は、光陽、浦項の2港に集中して寄港しており、 2007年の韓国全体への鉄鉱石輸送船寄港の9割以上がこ の2港となっていた。対応船型は、いずれも25万DWT であった。

台湾でも,高雄への寄港が集中しており,2007年の台湾全体への鉄鉱石輸送船寄港の9割以上が,高雄に寄港していた。

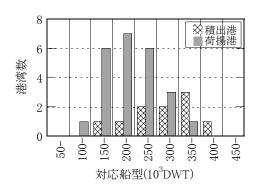


図-5.11 積出港と荷揚港の対応船型

5.5 考察

(1) 積出港と荷揚港

まず,積出港と荷揚港の対応船型を,比較分析した.図 -5.11 は,鉄鉱石主要積出港 (表-5.3 の全港湾,表-5.6 で 数値が記載してある港湾)の対応船型 (DWT) と,北東アジアの鉄鉱石主要荷揚港 (表-5.14 の全港湾)の対応船

注)「鉄鉱石輸入量」のFは単位がFT,* は移入込み,^ はその他金属鉱込み,*^ は輸出入計・その他金属鉱込みを示す. 各国・各港統計,LR-F「Ports & Terminals Guide」,TEX「輸入鉄鉱石年鑑」,日本港湾協会「日本の港湾2005」等より作成.

型とを比較したものである. 荷揚港は, 通常(満載)の対応船型であり, 減載時の対応船型は考慮していない. 図より, 北東アジアの荷揚港では, 20万 DWT 以上 25万 DWT 未満が最頻値で, 大部分が 15万 DWT~35万 DWT の範囲に入っていた. これに対し, 主要積出港では, 最頻値が 35万 DWT 以上 40万 DWT 未満であり, 現存しない 40万 DWT 超を対応船型とする港湾もあった. 以上より, 北東アジアの荷揚港は, 特に日本の港湾において, 積出港に比較して, 対応船型が小さいことが判った. 今後, ブラジルを中心とした積出港の対応船型に併せて, さらに鉄鉱石輸送船が大型化して行く可能性が考えられる中で, 如何に大型船に対応していくかが問題となる恐れがあると言える.

(2) 荷揚港のバース諸元と寄港最大船

次に、荷揚港のバース諸元と寄港最大船の関係を比較分析した.表-5.15 は、各港のバース対応船型(DWT)と、2007年の寄港最大船の船型との、それぞれの国別平均値を比較したものである。台湾は、一港のみであったので、この分析を行っていない。表より、2007年の寄港最大船は、いずれの国も23万DWT程度で差がないが、バース対応船型は、中国・韓国が25万DWT程度であるのに対し、日本は19万DWTと、差があった。そのため寄港最大船型をバース対応船型で除した比率では、日本だけが1.0を超えており、平均してバース対応船型が寄港最大船型に比べて2割ほど小さかった。なお、寄港最大船が、各港湾の最大バースに着いたのかどうかは、不明である。

同様に、各港の最大バース水深と、2007年寄港船の最大満載喫水から算定した必要水深との、それぞれの国別平均値を比較したのが、表-5.16である。必要水深は、最大喫水を満載喫水とし、これに10%の余裕水深とした²¹⁾.表より、必要水深は、各国とも21m前後であるのに対し、

表-5.15 荷揚港におけるバース対応船型と寄港最大船型

[3	E	バース対応	07寄港最大	比率
日	本	193,545	234,920	1.21
中	玉	246,000	239,361	0.97
韓	国	250,000	227,001	0.91

表-5.16 荷揚港におけるバース水深と最大船の必要水深

玉	バース水深	07必要水深	比率
日本	18.2	21.1	1.16
中国	21.3	21.7	1.02
韓国	21.0	20.8	0.99

注)「07必要水深」とは,07年入港船の最大満載喫水×1.1

バース水深は、日本だけ約 18m であった. 日本の港湾の バース水深が、中国や韓国に比べても、大きく不足して いることが判った.

(3) 積出港のバース水深と全寄港船の満載喫水

さらに、北東アジアの荷揚港へ寄港した鉄鉱石輸送船 の満載喫水から算定とされる必要水深と、当該港湾の最 大のバース水深を比較した.

日本の結果が、図-5.12 である、横軸は、バース水深か ら必要水深を差し引いた水深差で,縦の太実線より左側 のマイナスは、バース水深が不足していることを示す. 実際には、潮位差もあり、また足揚げにより寄港した場 合もあるが,ここでは,満載で寄港した場合を前提とし た、また、複数のバースがある港湾でも、各船の着岸バ ースの特定が困難であることから, 当該港湾で最大の水 深を持つ鉄鉱石バースに着岸したものとして算定した. 図-5.12 では、非常に多くの寄港でバース水深が不足して いることが判った. バース水深が不足していた寄港の割 合は、全体で 79.5%、2 港目以降の寄港では 93.5% に達し ていた. 1 港目の寄港では,不足水深は概ね 3m 以下であ ったが、2港目の寄港では最頻値が、不足水深5~6mで あったことから,これらは,足揚げにより寄港可能とな ったものと見られた. なお, 6m を超える余裕水深があっ た寄港も、88回あった。

中国の結果を示したのが、図-5.13である。最頻値が余裕水深1~2mにあり、多くの港湾では水深が充足していた。一方、不足水深7~8mでも200回近くの寄港が見られ、これは全て上海の宝山ターミナルであった。水深が不足した寄港の割合は、全体では19.1%とそれほど高くなかったが、2港目以降の寄港では55.3%となっており、これらは、上海(宝山)を中心に足揚げにより寄港可能になったものと見られる。なお、6mを超える余裕水深が

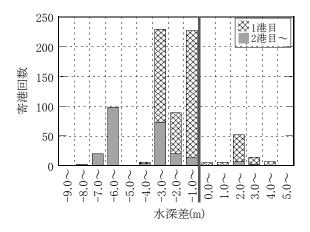


図-5.12 バース水深と必要水深の差(日本)

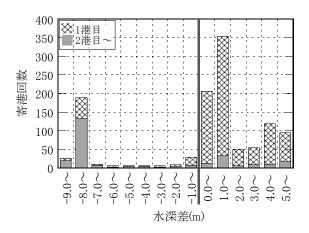


図-5.13 バース水深と必要水深の差(中国)

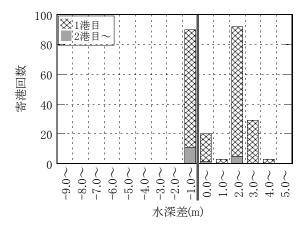


図-5.14 バース水深と必要水深の差(韓国)

あった寄港も、326回あった.

韓国の結果を示したのが、図-5.14 である. 2m 以上水 深が不足する寄港は全くなかった. 1m 未満の水深不足が, 2~3m の余裕水深と同程度の寄港があり、水深が不足し ていた寄港の割合は、全体で37.7%、2港目以降の寄港で は,64.7%であったが,そのほとんどが50cm以下の不足 であり,5m を超えるような大きな不足の見られた日本や 中国(上海)とは状況が異なっていた.

台湾については、主要な鉄鉱石荷揚港としてリストア ップしたのが、高雄1港であったため、この分析は行わ なかった.

ここで, バース水深と, 満載喫水から算定される必要 水深とを比較した際に、水深の不足が大きかった港湾に ついて、NILIM-AIS²²⁾により、最深バースへの着岸船の 満載喫水とバース水深との関係を確認した. 日本につい ては名古屋, 北九州 (小倉), 和歌山下津, それに, 中国 の上海(宝山)について確認した結果が,表-5.17である. Capesize 以上の鉄鉱石輸送船を対象とした. 最深バース への着岸船について、石炭との共用バースの場合、2007 年の寄港実績から石炭輸送なのか、鉄鉱石輸送なのかを 判定した(一部, どちらも輸送することから判定が出来 ず, 石炭輸送船の分析でも対象となっている船がある). 表より、バース水深と、満載喫水より算定される必要水 深との差(表中「水深差」)は、最大~平均で、名古屋: -6.2~-5.5m, 北九州 (小倉):-6.7~-6.0m, 和歌山下津: -6.2~-5.5m, 上海:-8.2~-7.4m であり, **図-5.12** での日本 の不足水深が 7~5m 程度, 図-5.13 での中国の不足水深 が9~7m程度との状況と概ね一致が見られ、寄港実績に よる分析結果が、AIS データにおいて確認された.併せ て、AIS 航海情報において dais として受信された実喫水も 確認したが、いずれもバース水深より小さくなっていた ものの、和歌山下津では、10%の余裕水深が取れていな かった (13.5×1.1=14.9で、14.0mのバース水深に収まっ ていない).

(4) 輸送効率化に向けた動き

まず, 積出港では, オーストラリアの Port Hedland を 使用している BHP Billiton が緊急拡張計画 (Rapid Growth Project) を実施中で、現段階で RGP3:12,900 万 MT の出 荷能力を, RGP5 完成時には 20,500 万 MT に引き上げる こととしており、その中には、Port Hedland でのバース整 備も含まれている³¹⁾. Dampier でも, Rio Tinto が, 現有 能力 11,600 万 MT を, 昨年末に 14,000 万 MT に引き上げ 32). さらに 2040 年目標の同港の長期計画では鉄鉱石の取 扱量 21,000 万 MT となっている ³³⁾.

ブラジルでも, Tubarao で現存の現有能力 10,000 万 MT

玉	港湾	平均DWT	満載	喫水d	バース	水泡	架差 二	最大隻数		期間	
玉	俗俏	号 十均DWI	最大d	平均d	水深	最大	平均	d_{ais}	支奴	791111	
	名古屋	186,587	18.3	17.8	14.0	-6.2	-5.5	12.7	6	08/03/03-08/03/16	
日本	北九州(小倉)	175.388	17.9	17.3	13.0	-6.7	-6.0	9.9	3	08/03/24-08/04/20	
H /T	JU2011 (71.79)	175,500	17.7	17.5	13.0	-0.7	-0.0	7.7	9 3	08/10/20-08/10/26	
L	和歌山下津	171,390	18.3	17.8	14.0	-6.2	-5.5	13.5	4	08/10/01-08/10/31	
中国	上海(宝山)	170,068	18.3	17.6	12.0	-8.2	-7.4	10.4	11	07/11/05-07/11/18	

表-5.17 水深不足が大きいと見られる港湾での満載喫水による必要水深とバース水深の差

注)「dais」とは、AISの航海情報として受信した実喫水

図-5.15 40 万 DWT クラスの CHINAMAX と PANAMAX の比較 36)

図-5.16 曹妃甸港の整備計画図 (同港 Web より)

を, 2008 年中に 11,500 万 MT に引き上げる整備を実施しており, Vale 全体としては, 2012 年末には鉄鉱石 45,000 万 MT の出荷体制とすることを目標としている 34 .

海上輸送では、輸送船の船型 Type 別輸送力 (図-5.2) から、鉄鉱石輸送船では、VLOC が急増し、大型化して いることが判るが、今後の大型船の就航(図-4.15)によ り, 更なる大型化が推測される. この観点で関係者に大 きな衝撃を与えたのは、Valeによる、史上最大となる 40 万 DWT クラス VLOC の発注である. 荷揚国は中国と見 られていたが、中東オマーンへ輸送し、周辺のサウジア ラビア、エジプト、カタールなどにペレットを二次輸送 する計画で、そのために荷揚港のオマーンの Sohar では 23~26m への増深を計画中との情報もある ³⁵⁾. 船級とな った DNV では、同船を Chinamax と称しており、諸元は L:360m, B:65m, d:23m である. DNV による記事 ³⁶⁾ では、同船の1船艙の積載量が5万8千MTに及び、こ れはPanamaxの全積載量の75%に相当すると記載されて いる (図-5.15). この巨大船を追って, VLOC がさらに大 型化するかどうかは不明である.

輸送方法では、石炭とのコンビネーション輸送(4.5) の他、日鉄海運と Rio Tinto Shipping による鉄鉱石同士の コンビネーション輸送もあり、オーストラリアの鉄鉱石 を欧州に輸送して、ブラジルへ回送、ブラジルの鉄鉱石を日本へ輸送して、オーストラリアへ回送する方法で、船腹の有効活用を図っている²⁴⁾. また、JFE スチールでは、国内港湾での対応船型に限界があるため、30万 DWTクラスの VLOCで、ブラジルからフィリピンの Villanuevaへ輸送し、焼結鉱にした上で、国内各港へ輸送している. また、韓国の CTS でも鉄鉱石を扱っているが、基本的には中国向けの模様である²⁸⁾.

荷揚港については,5.4 で述べたとおり,中国の港湾での整備が盛んである.上海洋山港沖合の馬迹山ターミナルは,36 万 DWT の鉄鉱石船に対応可能なバースが既に供用中であるが,さらに,2007 年 10 月より,取扱能力を5,000 万 MT に増強する II 期工事に着手している 37)。 唐山港の曹妃甸でも,I 期として 25 万 DWT クラスの鉄鉱石船バースが 2 バース供用中であるが,さらに,II 期工事として,40 万 DWT クラスの鉄鉱石船バースを 2 バース整備中であり,完成後は,取扱能力が 7,000 万 MT に達するとされている 38 (図-5.16).

6. 穀物輸送にかかる動向分析

6.1 穀物輸送船の船型

- (1) 穀物輸送船の特定方法 穀物輸送船は、以下の種別・データにより特定した.
- a) 構造的に穀物を輸送すると想定されているバルクキャリア: Lloyd's データの Ship Type Sub Code を使用した.
- b) 穀物を輸送した実績 (スポット用船) のあるバルクキャリア: Dry Fixture データ、PIERS データから、一度でも穀物の輸送実績のあるバルクキャリアを特定した.この中で、特に、米国は、世界最大の穀物輸出国(UNCTAD⁶によれば、世界輸出量の 39%)、PIERSデータからの輸送船特定は、大きな割合を占めた.

以上の a), b)のいずれかにおいて特定されたバルクキ ャリアを穀物輸送船の母集団とし、各年に実際に穀物輸 出港に寄港したバルクキャリアを穀物輸送船とした. な お, 石炭や鉄鉱石と異なり, 穀物は季節性の強い貨物で あることもあり、その船積輸送を最適にすることは極端 に難しく、計画的することさえ困難である³⁹⁾とされてい ることから, 穀物だけを専門的に輸送するバルクキャリ アは、ほとんど無いものと考えられる. 邦船社のプレス リリース等でも穀物を専門的に輸送するバルクキャリア が見当たらず、Lloyd's データにおいても、穀物の主要積 出港に連続的に寄港したバルクキャリアがほとんど見当 たらなかった. また, 穀物を専用的に輸送する場合でも 構造上一般の(複数のドライバルク貨物を輸送する)バ ルクキャリアと大差がないこと ⁷もあり、穀物輸送船に ついては、長期用船された、いわゆる専用船は無いもの とみなした.

(2) 船型分析

まず、最新の実績データである 2007 年において、穀物を輸送したバルクキャリアを、船型 Type 別に整理したのが、表-6.1 である. 隻数では、Panamax 及び Handymax が 3 割を超え、Handy も 2 割を超えていた. 輸送力を示す DWT (載貨重量トン)の総計では、過半数が Panamax、3 割が Handymax となっていた. 穀物輸送船は、Panamax と Handymax が主力と言える.

2007 年現在の穀物輸送船について,輸送力を船齢別船型 Type 別に整理したのが図-6.1 である. Panamax は,船

表-6.1 穀物輸送船の船型 Type (2007年)

Type	隻数		DWT総計	
Mini	38	1.9%	550	0.5%
Handy	453	23.2%	12,664	12.5%
Handy max	666	34.1%	30,699	30.4%
Panamax	777	39.8%	54,984	54.4%
New Panamax	12	0.6%	940	0.9%
Capesize	8	0.4%	1,176	1.2%
VLOC	0	0.0%	0	0.0%
	1,954		101,014	

注) DWT総計の単位は, 10³トン

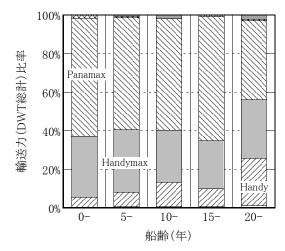


図-6.1 穀物輸送船の船齢別船型 Type (2007年)

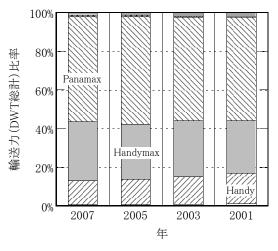


図-6.2 穀物輸送船の船型 Type 別輸送力の推移

齢20年以上を除けば約6割, Handymax が約3割で, Handy が船齢20年以上:24.7%→船齢5年未満:5.7%に大幅減少していた.

過去の穀物輸送船の輸送力を,船型 Type 別に整理したのが、図-6.2 である. Panamax は $53\sim55$ %程度で一定であったが、Handymax が 2001 年: $27.2\%\rightarrow2007$ 年: 30.4%

Type		DWT			L (全長)			B (型幅)		d	(満載喫フ	k)
Type	95%値	75%値	平均値	95%値	75%値	平均値	95%値	75%値	平均値	95%値	75%値	平均値
Mini	19,505	18,433	14,477	159	148	135	25.0	23.1	21.1	9.7	9.2	8.3
Handy	34,227	30,027	27,957	195	181	173	28.0	27.0	25.5	10.9	10.6	10.0
Handy max	53,525	51,069	46,095	200	190	189	32.3	32.3	30.9	12.5	12.0	11.6
Panamax	76,759	74,759	70,765	229	225	224	32.3	32.3	32.2	14.3	14.0	13.5
New Panamax	91,521	87,052	78,308	235	230	229	43.0	37.0	36.9	14.1	14.1	12.9
Capesize	170,170	161,448	147,020	289	280	275	45.0	45.0	43.0	17.6	17.5	17.2
VLOC	-	-	-	-	-	-	-	-	-	-	-	-

表-6.2 穀物輸送船 (2007年) の船型 Type 別の船舶諸元

に増加し、一方、Handy が 2001 年:16.0%→2007 年:12.5% に減少していた.

次に、2007 年現在の穀物輸送船について、その船舶諸元を整理した結果が、表-6.2 である。Panamax の DWT の95%値が 7 万 7 千 DWT 弱で、8 万 DWT を超えていた石炭輸送船・鉄鉱石輸送船とは差が見られた。また、L については、Handymax の95%値が、表では200m との表記となっているが、実際は199.9m であり、備讃瀬戸航路等瀬戸内海航行において、「巨大船」とならない200m 未満に収まっていた。d では、New Panamaxの平均値及び95%値が、Panamaxより小さくなっていたが、石炭輸送船と同じく、これらは、今後大きくなっていく可能性がある13.

ここで、穀物輸送船が関係する船型 Sub Type について記載しておく.

- ・Japanamax: Panamax の中で、日本の主要な穀物荷揚港に寄港できるように、全長を 225m とした船型 ¹⁵⁾. DWT は、7万~7万5千 DWT 程度が中心. Japan と Panamax の造語. Panamax の L の 75%値が、225m となっているのは、この船型の影響と見られる.
- ・Laker: The Grate Lakes (五大湖) を通航できる最大船型. カナダの Thunder Bay 等から, 五大湖内の各港や大西洋方面への穀物輸送に使用されている. St. Lawrence 水路の通航最大幅 23.16m が制限となっており, 2~3万 DWT 程度 ^{7), 15)}. Handy の中にあるため, 数値としては出ていない.

6.2 穀物積出港

各種資料より、世界の穀物積出港を特定し、その輸出量、最大船型及びバース諸元を整理したのが、表-6.3 である. 石炭や鉄鉱石と異なり、最大船型についての情報が限られていたため、併せてバース諸元を整理した. 以下に、主要な国の港湾について、概観する.

アルゼンチンは、トウモロコシ及び小麦の輸出国であ

り,輸出量が伸びてきている. アルゼンチンの積出港は, River Plate 上流の Parana River 沿いの各港 (San Lorenzo, Villa Constitution, San Nicolas, San Pedro, Santa Fe) と, Bahia Branca や Necochea の外洋港に大別されるが, Parana River 各港への利用において、喫水制限があることから, 外洋港の取り扱いが増えてきた ³⁹⁾他, Parana River 各港で 8 割程度まで積み, 残り 2 割を外洋港で積むことも多いとされている ⁴⁰⁾.

オーストラリアは、小麦及び大麦の輸出国であるが、近年、輸出量は余り多くない.輸出量が最大なのが Albany であり、その他港湾の輸出量は、いずれも 2 百万 MT 以下であった.

ブラジルは、穀物輸出の新興国である. 小麦の大量輸入国である一方、近年、大豆やトウモロコシの輸出量を増やしてきている. Santos, Paranagua 及び Rio Grande は南部に位置している.

カナダは、小麦、大麦及びトウモロコシの輸出国であり、積出港は、太平洋沿岸の Vancouver、Prince Rupert と五大港〜St. Lawrence 水路の Thunder Bay 等に大別される。太平洋沿岸からは西方のアジアへ、五大港〜St. Lawrence 水路からは東方のヨーロッパ等へ輸出されている。

アメリカは、世界最大の穀物輸出国であり、小麦、トウモロコシ、大豆が中心である。生産地は、アメリカの中央諸州であり、その多くはバージにより Mississippi River を下り、South Louisiana、New Orleans、Plaquemines 等のガルフから積み出される。残りは、北太平洋の Kalama、Seattle、Tacoma、Portland、東海岸の Houston 等及び五大港の Toledo 等から積み出しされる。

6.3 穀物輸送の寄港実績

(1) 穀物輸送の寄港実績の特定方法

穀物輸送の実績は、穀物輸送船が、穀物積出港に寄港した場合に、穀物を積み出したものとして特定した。そ

表-6.3 穀物積出港の輸出量,最大船型及びバース諸元

国	港湾	穀物輔	ì出量	最大	船型	バース諸元			
E	伧仴	10 ⁶ M T	(年)	全長	満載喫水	最大長	最大水深		
	Bahia Blanca	*7.6	(07)	250	13.7	360	13.7		
	Necochea/Port of Quequen	-		230	12.2	230	12.2		
Amoontino	Rosario	-		277	10.4	-	12.2		
Argentina	San Lorenzo (-San Martin) - 277 10.4 - 12.2								
	その他:Buenos Aires, Villa Con	stitution, S	an Nicolas	s, San Pedr	o, Santa Fe	,			
	River Plate Alpha Zone								
Australia	Fremantle	3.8	(07/08)	-	-	291	16.8		
Australia	その他: Albany, Esperance, Me	elbourne							
	Santos	*11.9	(07)	-	-	250	13.0		
Brazil	Paranagua	9.2	(07)	-	-	230	11.3		
Diazii	Rio Grande	-		-	-	450	14.0		
	その他:Santarem, Sao Francisco do Sul, Itaqui								
Canada	Vancouver	*10.6	(07)	-	-	305	15.2		
	Prince Rupert	7.0	(Capa.)	285	-	-	13.7		
Canada	Thunder Bay	6.3	(07)	222	21.3	518	-		
	その他:Montreal, Quebec, Comeau Bay (Baie-Comeau)								
	South Louisiana	43.2	(06)	-	13.7	366	13.7		
	(Sub Port: Ama Anch., Convent	, Destrehan	, La Place	, Paulina,	Reserve, St	. James)			
	New Orleans	8.6	(06)	-	14.0	-	-		
	(Sub Port: Westwego)								
	Kalama	6.8	(06)	300	12.2	331	12.2		
	Seattle	6.2	(06)	-	-	427	24.4		
USA	Plaquemines	5.9	(06)	-	-	-	-		
	(Sub Port: Davant, Myrtle Grov	re)							
	Tacoma	5.7	(06)	-	-	277	22.3		
	Portland	4.9	(06)	-	-	290	12.8		
	Houston	4.7	(06)	-	-	244	12.0		
	その他:Galveston, Vancouver,	Hampton R	oads (Nor	folk), Tole	do,				
	Baton Rouge (Sub Port:								

注)「穀物輸出量」の(Capa.) は積出能力を、*は内貿込みの積出量を示す、「最大船型」のNは、制限無しを示す、各国・各港統計、LR-F「Ports & Terminals Guide」、日本麦類研究会「穀物・世界貿易・海上運送」等より作成、

表-6.4 穀物輸送実績の例

入港日	港湾名	国名	積出港	荷揚港
2007/1/19	Portland	USA	0	
2007/2/8	Nagoya	Japan		1
2007/2/11	Sakai	Japan		2
2007/2/13	Osaka	Japan		3
2007/2/15	Kobe	Japan		4
2007/2/20	Kisarazu	Japan		5
2007/2/23	Port Klang	M alay sia		

の例を表-6.4 に示すが、ある穀物輸送船が、積出港である Portland に寄港し、その後、名古屋、堺泉北、大阪、神戸、木更津と、5 港湾に連続寄港し、Port Klang に向かっている. この場合、Portland から日本の 5 港湾へ穀物を輸送したと判定する方法である. 詳細は、石炭(4.3 に記載)と同一である.

特定した寄港実績より,全ての穀物輸送船が満載で輸

表-6.5 Clarkson 等と寄港実績による輸送量の比較

	年	2007	2005	2003	2001
	Clarkson	28.3	29.1	30.5	30.5
Japan	港湾統計	26.6	26.9	30.8	23.1
	寄港実績	24.2	23.6	23.5	26.7
China	Clarkson	31.8	32.3	22.5	17.0
Cillia	寄港実績	26.3	27.8	20.6	16.2
Korea	Clarkson	13.6	13.7	14.6	13.9
Korea	寄港実績	11.2	8.9	6.9	11.4
Taiwan	Clarkson	7.9	8. <i>4</i>	8. <i>5</i>	8.5
1 aiwan	寄港実績	4.2	7.2	7.4	9.5

注) Clarkson及び寄港実績は10⁶MT, 港湾統計は10⁶FT. なお 港湾統計2007年値は未発表のため, 2006年値で代替した.

送したと仮定すると、輸送量が推計できる. 北東アジア諸国への穀物輸送量について、Clarkson データ $^{4)$. $^{30)}$ ・港湾統計データ $^{11)}$ と、寄港実績からの推計値を比較した結果が、表-6.5 である. Clarkson データ $^{4)}$ では、中国を除

き大豆輸入量が判らなかったため、日本・韓国については FAOSTAT⁴¹⁾、台湾については USDA⁴²⁾のデータを使用した. どの国も、寄港実績による輸送量が、Clarkson データの 7~9 割程度であった. 日本について、寄港実績による輸送量は、港湾統計の約 9 割であった. 石炭や鉄鉱石に比べて、相対的には、寄港実績を追えているが、2003年の韓国や 2007年の台湾では、寄港実績による輸送量と、Clarkson データに差が見られた.

以降の寄港実績の分析においては、7~9割程度の寄港 実績を対象としたものであることを認識されたい.

(2) 北東アジア諸国への寄港実績の分析

まず、各国への寄港船の平均船型 (DWT) を比較したのが、表-6.6 である. ここでは、平均船型算定のため、2 港揚げ、3 港揚げも、1 回の寄港とカウントした. 表-6.6 では、中国と台湾への平均船型が大きく、次いで韓国となっており、日本の平均船型は一番小さく、2007 年時点で、中国と2万 DWT 以上の差があった.

次に、複数港揚げを考慮した平均積卸量を整理したのが表-6.7 である。平均積卸量で見ると、日本の特異さは歴然としており、各国 4 万 MT 前後で推移している中、日本だけは 2 万 MT に満たない状況であった。

日本の積卸量が他国に比べて極端に小さいのは,平均 船型が小さい上に,一回の輸送での平均寄港回数(表-6.8)

表-6.6 各国寄港船の平均船型 (DWT)

年	2007	2005	2003	2001
Japan	44,465	45,699	50,432	45,975
China	65,093	67,626	66,306	62,530
Korea	57,271	53,245	45,349	50,887
Taiwan	61,137	65,417	64,691	63,542

表-6.7 各国寄港船の平均積卸量 (MT)

年	2007	2005	2003	2001
Japan	17,168	17,926	19,916	18,085
China	47,727	48,087	46,295	42,732
Korea	44,672	40,660	36,327	39,211
Taiwan	38,140	42,579	43,505	39,285

表-6.8 各国寄港船の同国内での平均寄港回数

年	2007	2005	2003	2001
Japan	2.56	2.55	2.53	2.54
China	1.36	1.41	1.43	1.46
Korea	1.28	1.31	1.25	1.30
Taiwan	1.60	1.54	1.49	1.62

が多いためで、日本は、平均して 2.5 港揚げとなっていた。ただし、他国についても、石炭 (表-4.11) や鉄鉱石 (表-5.11) に比較すると、一回の輸送における平均寄港 回数は多かった。これは、穀物輸送では、国内での消費 地の地理的位置や、穀物の保存期間、貯蔵するサイロの能力等が、輸送において制約としてかかわってくるためと考えられる。

さらに、国別に、寄港した穀物輸送船の船型 Type を整理した。日本の寄港回数の結果が、図-6.3 である。増減があるものの、いずれの年でも Handy が一番多かった。2007 年時点では、Handy の寄港回数は、Handymax の約 2 倍となっていた。輸送力を船型 Type 別に見たのが図-6.4であるが、増減があり、2007 年時点では、Handy が 4 割弱、Handymax が 3 割強を占めていた。日本では、隻数では Handy、輸送力では Handy、Handymax、Panamax が主力と言える。

中国について,船型 Type 別寄港回数を整理したのが,

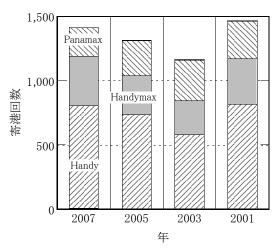


図-6.3 船型 Type 別寄港回数の推移(日本)

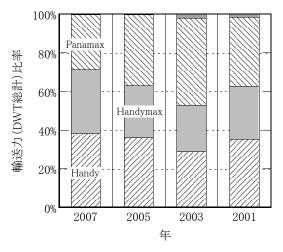


図-6.4 船型 Type 別輸送力比率の推移(日本)

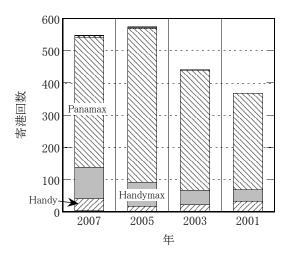


図-6.5 船型 Type 別寄港回数の推移(中国)

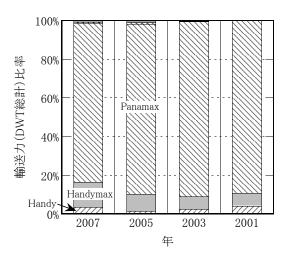


図-6.6 船型 Type 別輸送力比率の推移(中国)

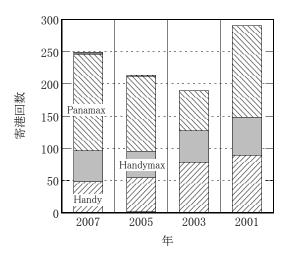


図-6.7 船型 Type 別寄港回数の推移(韓国)

図-6.5, 輸送力の構成を整理したのが図-6.6 である. 日本とは大きく異なり、隻数で見ても、輸送力で見ても、圧倒的に Panamax が多かった. Handymax は、増加傾向が

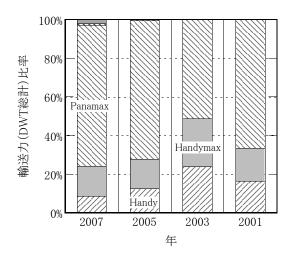


図-6.8 船型 Type 別輸送力比率の推移(韓国)

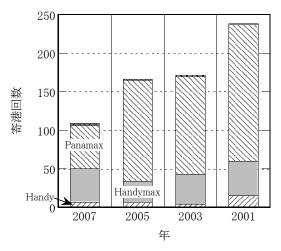


図-6.9 船型 Type 別寄港回数の推移(台湾)

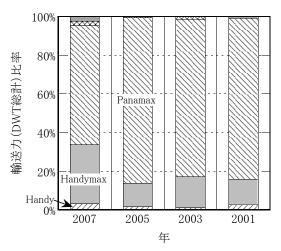


図-6.10 船型 Type 別輸送力比率の推移(台湾)

見られたが、2007 年時点の輸送力で1割程度であった. 韓国について、船型 Type 別寄港回数を整理したのが、 図-6.7、輸送力の構成を整理したのが図-6.8である. 隻数 では、Handy が継続的に減少している一方、Panamax は 2003年に大幅減になった後、増加してきていた。輸送力では、2007年時点で、Panamax が7割を超えていた。

台湾について,船型 Type 別寄港回数を整理したのが, 図-6.9, 輸送力の構成を整理したのが図-6.10 である. 寄港回数が減少傾向で, Panamax が減少しているが, それでも 2007 年時点の輸送力では, 6 割を超えていた. 韓国と比べても, Handy が非常に少ないのが, 特徴であった.

以上より、日本の平均船型が小さく、平均積卸量が少ないのは、その輸送を Handy に追っている部分が大きいことが理由として判った。これは、他国で主力となっている Panamax と、船型 Type では二段階の相違があった。

(3) 積出国での寄港実績の分析

北東アジアへの穀物輸送について、各積出国の状況を 確認した.表-6.9 は、各国での穀物輸送船の寄港回数で ある. アメリカが圧倒的に多い状況に, 変化は無かった. また、アルゼンチンが、増加傾向を示していた.次に、 これらの国での平均船型 (DWT) を確認した結果が、表 -6.10 である. 国により平均船型が大きく異なっており, 距離のあるアルゼンチンとブラジルからは、平均して Panamax が輸送, カナダとアメリカは, Panamax と Handymax の境界 (5 万 5 千 DWT) が平均, オーストラ リアからは、平均して Handymax の輸送となっていた. 基本的には、距離が遠くなるほど船型が大きくなってお り, アルゼンチンでは Parana River の喫水制限がある中 で、外洋港を利用して大型船で輸送していた. 一方、ア メリカは Mississippi River の通航船型の制限が, 平均船型 に大きく効いているものと見られた. オーストラリアに ついては、輸送距離が長くないことに加え、輸送量が減 少してきている影響があるのかも知れない.

表-6.9 各積出国の寄港回数(対北東アジア)

年	2007	2005	2003	2001
Argentina	111	108	76	62
Australia	95	117	99	113
Brazile	121	123	138	117
Canada	182	209	157	224
USA	702	649	574	698

表-6.10 各積出国の平均船型(対北東アジア)

年	2007	2005	2003	2001
Argentina	69,984	70,838	70,435	63,679
Australia	34,347	44,220	39,232	41,199
Brazile	67,589	69,323	69,429	67,228
Canada	50,466	50,606	45,781	44,183
USA	53,302	54,906	56,495	53,664

6.4 穀物荷揚港

各種資料より,北東アジア諸国の穀物荷揚港を特定し, その輸入量,最大船型及びバース諸元を整理したのが, 表-6.11 である.

日本の荷揚港としては、港湾統計 11)による 2006 年の穀物輸入量が 1 百万 FT を超えた 11 港湾をリストアップした. なお、これ以下の取扱量の穀物荷揚港も、数多くあった. この 11 港の中で、対応船型で見ると、Panamaxに概ね対応可能なのは、水島、千葉及び横浜の 3 港のみであり、博多、鹿児島は Handy にしか対応していない.日本は、寄港回数でみても、Handy が最も多かったことと、対応していた.バース水深では、最低でも 12m が確保されており、これは、Handyの d(満載喫水)の 95%値:10.9m(表-6.2)から算定される必要水深:12.0mと一致していた.2007 年の寄港実績において、各港への寄港回数を見ると、鹿島:131回、神戸:113回、名古屋:106回となっており、輸入量が多い港湾は寄港回数も多くなっていたが、志布志:34回、八戸:21回など、寄港回数が少なめの港湾も見られた.

中国は、多くの穀物を自給しているが、大豆については輸入に頼っている。残念ながら、各港における穀物輸入量は、まったくデータが入手できなかったが、寄港回数や各種資料から、荷揚港をリストアップした。対応船型では、Mini しか対応できない天津新を始め、上海、連雲、広州、湛江は、Handy までの対応であり、ほとんどが Panamax との寄港状況とに、差が見られた。

韓国は、仁川、釜山の2港に寄港が集中しており、2007年の寄港回数では、韓国全体の7割を占めていた。対応船型は、いずれも5万DWTクラスで、Panamaxに対応していなかった。なお、仁川はバース水深が14mあり、Handymaxのd(満載喫水)の95%値:12.5m(表-6.2)から算定される必要水深:13.8mより深くなっていた。

台湾は、高雄、台中以外の寄港はほとんど無く (2007年では、他港の寄港回数はわずか2回)、この両港で、ほぼ全ての穀物積み上げを担っていると見られた。対応船型については、情報が無く、バース水深は、高雄が14m、台中が13mとなっていた。

6.5 考察

(1) 積出港と荷揚港

まず,積出港と荷揚港の対応船型を,比較した. **図-6.11** は,穀物主要積出港(表-6.3 で数値が記載してある港湾) のバース水深と,北東アジアの穀物主要荷揚港(表-6.11

	港湾		穀物輸力		最大船型	バー	ス諸元
玉			$10^6 MT$	(年)	DWT	最大長	最大水深
	Kashima	鹿島	4.1F	(06)	65,000	280	13.2
	Kobe	神戸	2.4F	(06)	50,000	171	12.5
	Nagoya	名古屋	2.3F	(06)	65,000	255	12.0
	Mizushima	水島	2.3F	(06)	76,000	534	14.0
	Shibushi	志布志	2.1F	(06)	65,000	205	13.0
日本	Chiba	千葉	1.8F	(06)	73,939	350	12.0
	Hakata	博多	1.3F	(06)	30,000	480	12.0
	Kinuura	衣浦	1.3F	(06)	40,000	195	12.0
	Kagoshima	鹿児島	1.1F	(06)	30,000	239	14.0
	Yokohama	横浜	1.0F	(06)	150,000	350	17.5
	Hachinohe	八戸	1.0F	(06)	50,000	204	13.0
	Qingdao	青島	-		-	312	13.5
	Xingang	天津新	-		20,000	252	11.5
	Liany ungang	連雲	-		35,000	280	12.0
中国	Shanghai	上海	-		25,000	213	10.0
一个国	Guangzhou	広州	-		35,000	220	12.5
	Dalian	大連	-		80,000	310	15.5
	Zhanjiang	湛江	-		35,000	-	-
	Fangcheng	防城	-		50,000	256	13.6
韓国	Incheon	仁川	6.4F	(08)	50,000	-	14.0
甲国	Busan	釜山	1.3F	(07)	50,000	371	12.0
台湾	Kaohsiung	高雄	1.8	(07)	-	330	14.0
口仔	Taichung	台中	-		-	250	13.0

表-6.11 北東アジアの穀物主要荷揚港の輸入量、最大船型及びバース諸元

の全港湾)のバース水深とを比較したものである.本来, このような比較では, 航路やバースの諸元(水深や幅等) を総合的に考慮した対応船型(DWT)の方が望ましいと 考えられるが、主要積出港の対応船型がほとんど不明で あったことから,バース水深によって比較した.図より, 荷揚港, 積出港共に, 最頻値は 12m~14m であり, 一部, 非常に深い水深を持つ積出港があったが,全体としては, 両者に大差は無かった. 穀物輸送船の船型 Type 別隻数で 見ると,一番多いのは Panamax であり (表-6.1), この船 型に満載で対応するためには、計算上15~16mのバース 水深が必要となるが (表-6.2 で Panamax の d の平均値: 13.5m, 95%値: 14.3m であり, それぞれの必要水深は 14.9m, 15.7m となる), バース水深はそこまで深くなか った. これは、穀物が軽い貨物であるため、積載量が容 積で決まっており、重量面での満載とはならない場合が あるためと想定される. すなわち, 逆に見れば, Panamax 船であれば、水深が 13~14m 程度でもある程度対応可能 と見られるので、今後、New Panamax 船 (満載喫水:15m 程度) が穀物輸送の一端を担うこととなるかどうかにつ いては、水深 14m 以深の積出港・荷揚港で、どれだけ輸 送が成り立つのかが、一つの課題となるものと思われる.

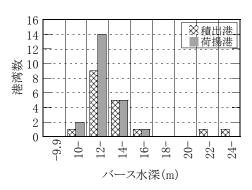


図-6.11 積出港と荷揚港のバース水深

(2) 荷揚港のバース諸元と寄港最大船

次に、荷揚港のバース諸元と寄港最大船との関係を比較分析した.表-6.12 は、各港のバース対応船型 (DWT) と 2007 年の寄港最大船の船型との、それぞれの国別平均値を比較したものである。台湾は、バース対応船型が不明であったため、この分析を行っていない。表より、いずれの国においても寄港最大船の方が、バース対応船型より大きくなっており、特に中国・韓国では、その差が2倍以上となっていた。日本の寄港最大船は Panamax クラスであるのに対し、中国・韓国の寄港最大船は New

注)「穀物輸入量」のFは単位がFTを示す. 各国・各港統計, LR-F「Ports & Terminals Guide」, Lloyd's List「Ports of the World」, 日本麦類研究会「穀物-世界貿易・海上輸送」等より作成.

表-6.12 荷揚港におけるバース対応船型と寄港最大船型

国	バース対応	07寄港最大	比率
日本	63,176	76,910	1.22
中国	40,000	91,924	2.30
韓国	50,000	124,270	2.49

表-6.13 荷揚港におけるバース水深と最大船の必要水深

国	バース対応	07必要水深	比率
日本	13.2	15.6	1.18
中国	12.7	15.2	1.20
韓国	13.0	15.9	1.23
台湾	13.5	15.9	1.18

注)「07必要水深」とは,07年入港船の最大満載喫水×1.1

Panamax 程度であり、バース対応船型に比べて、非常に大きな船型を受け入れていた。もしかしたら、別の品目を扱うバースに着岸した可能性もある。なお、寄港最大船が、各港湾の最大バースに着いたかどうかは不明である。

同様に、各港の最大バース水深と、2007年寄港船の最大満載喫水から算定した必要水深との、それぞれの国別平均値を比較したのが、表-6.13である。必要水深は、最大水深を満載喫水とし、これに10%の余裕水深とした²¹⁾。表より、いずれの国においても、寄港最大船の必要水深は、バース対応水深より大きかった。満載喫水から算定される必要水深に対して、多少のバース水深の不足は、穀物輸送船においては、対応可能と見ることも出来る。

(3) 積出港のバース水深と全寄港船の満載喫水

さらに、北東アジアの荷揚港へ寄港した穀物輸送船の 満載から算定される必要水深と、当該港湾の最大のバー ス水深を比較した.

日本の結果が、図-6.12である. 横軸は、バース水深から必要水深を差し引いた水深差で、縦の太実線より左側のマイナスは、バース水深が不足していることを示す. 先に見たように、穀物輸送船においては、積載量が容積で決まっている場合、満載まで積載しても、実際の喫水は満載喫水まで至っていない可能性がある. また、穀物輸送では、複数港揚げが多いため、2港目以降の寄港では、足揚げとなっている. しかし、ここでは、算定の都合上、満載喫水で寄港した場合を前提とした. また、複数のバースがある港湾でも、各船の着岸バースの特定が不明であることから、当該港湾で最大の水深を持つ穀物バースに着岸したものとして算定した. 図-6.12では、最頻値が余裕水深 1~2mにあり、水深が充足している場合が多い他、水深が不足している場合でも 1~2m以内が多

いことが判った.満載喫水による必要水深に対して、水深が不足していた寄港の割合は、全体で36.2%、2港目以降では28.8%であった.ただし、これは Handy が一番多く、他国に比べて船型の小さい状況においての結果であることを認識しておく必要がある.すなわち、北東アジアの他国と同様に、Panamax が主力となった場合に、この状況は一変する可能性がある.なお、6mを超える余裕水深があった寄港は、48回であった.

中国の結果を示したのが、図-6.13である. 満載喫水による必要水深に対して、水深が充足していた寄港はわずかであり、ほとんどが水深不足であった. 不足した割合で見ると、全体で85.4%、2港目以降では92.0%に達していた.3m以上も水深が不足している寄港が数多く見られることから、Panamax の寄港に対して、足を揚げて寄港可能となっている港湾があったものと見られる.

韓国の結果を示したのが、図-6.14である. 満載喫水による必要水深に対して、2m以下の水深不足から、1m未満の余裕に多くの寄港が見られた. 満載喫水による必要水深から不足した割合は、全体で58.6%、2港目以降では

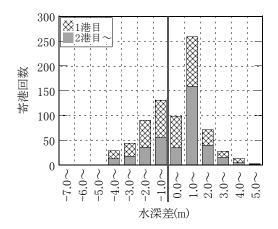


図-6.12 バース水深と必要水深の差(日本)

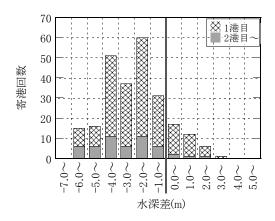


図-6.13 バース水深と必要水深の差(中国)

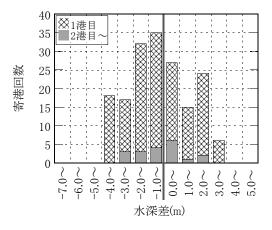


図-6.14 バース水深と必要水深の差(韓国)

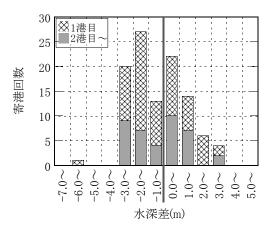


図-6.15 バース水深と必要水深の差(台湾)

52.6%であった. なお,2港目以降の寄港回数は,全体で19回と,非常に限られていた.

台湾の結果を示したのが、図-6.15 である. 満載喫水による必要水深に対して、ほとんどが 3m未満の不足から、充足の範囲であった. 満載喫水による必要水深から不足した割合は、全体で57.0%、2港目以降では51.3%であり、2港目以降の寄港回数は、全体で39回と限られている等、韓国と似た状況が見られた.

ここで, バース水深と, 満載喫水から算定される必要 水深とを比較した際に、水深の不足が大きかった港湾に ついて、NILIM-AIS²²⁾により、最深バースへの着岸船の 満載喫水とバース水深との関係を確認した. 日本につい ては名古屋, 千葉, 衣浦, 中国については, 連雲及び上 海について確認した結果が、表-6.14 である. Handymax 以上の穀物輸送船を対象とした.表より,バース水深と, 満載喫水より算定される必要水深との差(表中「水深差」) は、最大~平均で、名古屋: -3.3~-1.7m, 千葉: -1.5~-0.9m, 衣浦:-3.4~-1.7m, 連雲:-3.6~-2.0m, 上海:-5.4~-4.7m であり、図-6.12 での日本の不足水深 4m 以下、図-6.13 で の中国の不足水深が 6m 以下との状況と概ね一致が見ら れ、寄港実績による分析結果が、AIS データにおいて確 認された.併せて、AIS 航海情報において dais として受信 された実喫水も確認したが、連雲・上海では、バース水 深より実喫水が大きくなっていた他,名古屋以外の4港 では、いずれも10%の余裕水深が取れていなかった(例 えば,衣浦では、11.8×1.1=13.0で、12.0mのバース水深 に収まっていない).

(4) 輸送効率化に向けた動き

穀物積出港、荷揚港における能力拡張については、石炭や鉄鉱石に比べて施設規模が小さいためか、情報に乏しい. 過去であれば、アルゼンチン Rosario、Santa Fe の浚渫による大型船受入やブラジルの穀物専用港整備などが実施されたとの情報がある ⁴³⁾が、穀物メジャーで、世界中で穀物ターミナルを運営する Cargill でも将来の整備計画は見当たらなかった。ただし、世界最大の穀物輸出を支える Mississippi River のロック・アンド・ダムについて、オバマ政権において、全面的に改修・拡張がなされる可能性が指摘されている ⁴³⁾.

海上輸送の面では、今後就航する New Panamax が穀物輸送にどれだけ使用されるのかが鍵となる。 先に述べたように、穀物の多くは米国ガルフより、北東アジアへ輸

	3.0.14 小体小だが入さいこだりかる径角での個戦快小による必要小体とパーク小体の左									
国	港湾	平均DWT	満載「 最大d	関水d 平均d	バース 水深	水浴 最大	聚差 平均	最大 d _{ais}	隻数	期間
	名古屋	59,078	13.9	12.5	12.0	-3.3	-1.7	7.1	3	08/03/03-08/03/16
日本	千葉	49,070	12.3	11.8	12.0	-1.5	-0.9	11.2	3	07/10/07-07/10/13 07/11/11-07/11/17 07/12/09-07/12/15
	衣浦	56,602	14.0	12.5	12.0	-3.4	-1.7	11.8	9	06/08/01-06/08/30 08/03/03-08/03/30
	連雲	58,219	14.2	12.7	12.0	-3.6	-2.0	13.1	4	07/11/05-07/12/02
中国	上海	69,350	14.0	13.3	10.0	-5.4	-4.7	13.8	3	07/10/11-07/10/21 07/11/05-07/11/18

表-6.14 水深不足が大きいと見られる港湾での満載喫水による必要水深とバース水深の差

注)「dais」とは、AISの航海情報として受信した実喫水

表-6.15 New Panamax の船型例 13)

DWT	L	В	d
93,000	235	38.0	14.2
95,000	234	38.0	14.4
116,000	245	43.0	15.3
120,000	250	43.0	15.3

送されており、その経路上の船型制約は、Mississippi River とパナマ運河となる。Mississippi River のロック・アンド・ダムの能力増強、これに応じた河川航行船型の大型化に、パナマ運河拡張が噛み合えば、同航路に New Panamax が導入される可能性も考えられる。ただし、New Panamax の船型が大きいため(表-6.15)、荷揚港が対応できるか、積出港・荷揚港のサイロの収容能力が十分か等の課題が想定される。また。一部において、穀物輸送のコンテナ化が見られたが、現在、世界的不況の中で、コンテナ輸送が減速しており、穀物輸送の主力がコンテナに移るほどの動きは、今のところはなく44)、バルクキャリアによる輸送費の低下により、コンテナからの再回帰の動きも見られるとの情報もある45)。

7. 結論

本資料は、石炭、鉄鉱石及び穀物の三大バルク貨物を対象に、バルクキャリアによる北東アジア諸国への輸送状況の分析を行い、もって、我が国のバルク貨物輸送にかかわる港湾施策の企画・立案に資することを目的としたものである。本資料で得られた結論は、以下のとおり.

- (1) 対象品目を輸送するバルクキャリアと、対象品目を 積み出しする港湾から寄港実績を特定した.この寄港 実績において、全船満載の場合の輸送量は、Clarkson データや港湾統計データの輸送量の 6~9 割程度であった
- (2) 石炭輸送については、輸送船の主力は Capesize と Panamax だが、北東アジアへの輸送では、近距離で Handymax 以下による中国・ロシアからの輸送回数が 増えていた. 荷揚港は、鉄鉱石と共用バースと、石炭 専用バースに大別され、対応船型に大きな差があった. 満載での寄港に対しては、日本は、韓国や台湾に比べ、水深が不足している場合が多く、足揚げによって寄港 可能となった場合がある程度あったものと見られた.
- (3) 鉄鉱石輸送については、輸送船の主力は Capesize、 VLOC が増加傾向であった. 2 大積出国の中で、オーストラリアに比べ、ブラジルは対応船型が大きく、北東アジアへの輸送回数が大幅に増えていた. 荷揚港の対応船型は、特に日本において、積出港に比べて小さく、多くの鉄鉱石輸送船が満載では寄港できないことが判った. また、中国の上海(宝山)も、大きく水深が不足していた.
- (4) 穀物輸送については、輸送船の主力は Panamax と Handymax で、遠距離輸送となるブラジル・アルゼン チンからの輸送船は船型が大きかった。北東アジア主 要国へは、他国がいずれも Panamax による輸送が一番 多い中で、日本への輸送は、 Handy の輸送回数が一番 多く、船型に大きな差があった。 さらには、日本は一回の輸送での寄港回数も多かった。現状で、満載での 寄港に対しては、中国では水深の不足が大きかった。

本資料では、各品目を輸送した実績を、輸送船と積出 港から特定する方法を用いることにより、バルクキャリ アによる輸送状況を分析した. COA (数量輸送契約) が 中心の石炭や鉄鉱石、スポット用船が中心の穀物、輸送 品目が不明のタイムチャーター等、用船形態は多様であ り、このような状況の中で、輸送実績を厳密に特定する ことは、データ制約上、多くの困難を伴う. 一方で、産業の基礎素材や食料原料の輸送を、より効率的にし、我が国の産業の国際競争力の強化や、より安定した食糧供給を実現するためには、出来得る限り正確に、輸送状況を把握し、これに基づいた施策の企画・立案が必要である.

原油価格が高騰し、ドライバルク市況がかつて無い程タイトになり、ドライバルク貨物の輸送価格高騰、これに対処するための VLOC 大量発注による 2010 年問題が懸念されていたのは、この一年以内のことである。今や、世界的不況により、ドライバルク市況は緩み、船社は老朽船の退役を早め、製造業は生産調整を進めている。このような市況の激変の中でも、少しでも将来の霧を払い、効果的な施策の企画・立案が可能となるよう、引き続き研究を進めていきたい。

(2009年2月16日受付)

謝辞

本資料の作成にあたっては、国土交通省港湾局計画課より資料を提供いただくと共に、高橋港湾研究部長を始め、関係の方々から様々なご助言をいただきました。 NILIM-AISデータについては、港湾計画研究室の柳原啓二研究員にデータ整理をしていただきました。また、研究の過程において、新日本製鐵株式會社プロジェクト開発部の門脇直哉部長代理、大分製鐵所総務部浜崎晃防災管理グループリーダー、製銑工場右田光伸製銑原料課長及び設備部北島博文土建水グループリーダーにご協力をいただきました。ここに記し、感謝の意を表します。

参考文献

- (社) 日本海運集会所,日本郵船調査グループ編:
 Outlook for the Dry-Bulk and Crude-Oil Shipping Markets.
- 2) Fearnleys: Review.
- 3) Fearnleys: Dry Bulk Market Quarterly.
- 4) Clarkson: Dry Bulk Trade Outlook.
- 5) Drewry: Dry Bulk Forecaster.
- 6) UNCTAD: Review of Maritime Transport.
- 7) 小川武:不定期船と専用船-大量輸送の主役たち-, 成山堂書店,1997.
- 8) 赤倉康寛・佐藤光子・高橋宏直:バルクキャリアの 寄港実績と船型動向分析,運輸政策研究, Vol.4, No.2, pp.31-40, 2001.
- 9) IACS, Maritime Safety Committee, 74th session, Agenda

- Item 5 : BULK CARRIER SAFTY Formal Safety Assessment Fore-end Watertight integrity, 2001.
- 10) Maritime Research Inc.: CHARTERING ANNUAL.
- 11) 国土交通省総合政策局情報管理部:港湾統計.
- 12) Clarkson: Clarkson Fleet Database (Bulkcarrier).
- 13) 日本海事新聞社:造船各社ニューデザインを開発・ 投入 ポストパナマックス開発・参入本格化,日本海 事新聞2008年7月22日付特集,2008.
- 14) MAN B&W Diesel A/S: Propulsion Trends in Bulk Carriers, 2006.
- 15) オーシャンコマース:船の種類・船型, SHIPPING GUIDE, 2008年6月5日付記事, 2008.
- 16) (独)新エネルギー・産業技術総合開発機構:平成18 年度海外炭開発高度化等調査「中国における石炭事情 および輸送インフラの現状と問題点」報告書,2007.
- 17) 上原正文: インドネシア石炭事情, JCOAL Journal, Vol.5, pp.27-31, 2006.
- 18) (独)新エネルギー・産業技術総合開発機構:平成18 年度海外炭開発高度化等調査(ロシア)「ロシア極東・ 東シベリアにおける石炭需給見通しと輸出ポテンシャ ル」報告書,2006.
- 19) (独)新エネルギー・産業技術総合開発機構:平成18 年度海外炭開発高度化等調査「南東部アフリカ(南ア 及びモザンビーク)における石炭開発計画および輸送 インフラ」報告書,2007.
- 20) TEXレポート: 石炭年鑑.
- 21) (社) 日本港湾協会,国土交通省港湾局監修:港湾の施設の技術上の基準・同解説,2007.
- 22) 高橋宏直・後藤健太郎: AISデータの港湾整備への 活用に関する研究, 国土技術政策総合研究所資料, No.420, 2007.
- 23) 高橋宏直・後藤健太郎: NILIM-AISによる対北米コンテナ航路に関する分析-津軽海峡通過コンテナ船と 東京湾寄港コンテナ船の比較-, 国土技術政策総合研 究所資料, No.476, 2008.
- 24) TEXレポート: 輸入鉄鉱石年鑑.
- 25) 宇部興産株式会社:沖の山コールセンター,開業24 年目で石炭受入累計1億トンを達成,2004年10月8日付 プレスリリース,2004.
- 26) (財)石炭エネルギーセンター: コール・ノート (2008 年版), 2008.
- 27) 国土交通省中国地方整備局港湾空港部:事業概要 バルク貨物の効率輸送による産業の国際競争力強化, Web.
- 28) POSCO Terminal: BUSSINESS, Coal and Iron Ore

- Terminal, Trans Shipping System, Web.
- DNV: Bulk Carrier Update, Ports and terminals, No.2, July 2008, 2008.
- 30) Clarkson: China Intelligence Monthly, Vol.3, No.11, 2008.
- 31) BHP Billiton: BHP Billiton Approves Major Capacity Expansion At Western Australia Iron Ore, 25 November 2008, 2008.
- 32) Rio Tinto Iron Ore: Dampier port capacity increase on time and on budget, 11 January 2008, 2008.
- 33) Dampier Port Authority: Dampier Port Development Plan 2008 (Planned Development to 2040), 2008.
- 34) Vale: Vale settles 2008 benchmark iron ore fines prices with China Steel Corporation, 25 February 2008, 2008.
- 35) 日本海事新聞社: バーレ 40万トン級VLOC 中東 に6隻配船か, 日本海事新聞2008年9月9日付記事, 2008.
- DNV: Bulk Carrier Update, Brutal wake-up to changed conditions!, No.4, November 2008, 2008.
- 37) 小門武:バルク貨物を取り巻く世界の状況とバルク 貨物ターミナルの整備・拡張計画について、OCDI QUARTERLY 76、pp.8-13、2008.
- 38) 上海サーチナ: Search China, 河北省, 曹妃甸大工業区, Web.
- 39) 日本麦類研究会 (トム・シーウェル著樋口健夫訳): 穀物 世界貿易・海上輸送, 2002.
- 40) 岩崎正典:平成19年度食料安定供給対策基本調査等事業第三回食料需給動向総合検討会報告書「Ⅲ大豆・トウモロコシ」, pp.30-55, 2008.
- 41) FAO: FAOSTAT, TradeSTAT, Crops and livestock products, Web.
- 42) USDA Foreign Agricultural Service : GAIN Report, Taiwan Oilseeds and Products Annual.
- 43) 薄井寛:穀物・大豆等の大規模な需給変化と今後の 課題,第7回:南米農業国の躍進と米国との競合(その 3)~「ブラジル・コスト」と米国の河川流通施設の老 朽化~,JA総合研究所Webサイト「世界の窓」,2008.
- 44) Fairplay: US grain exporters think inside the box, 28 August 2008, pp.19, 2008.
- 45) 日本海事新聞社:北米復航「ばら積み」下落顕著に 資源需要低迷も直撃,日本海事新聞2009年1月21日付記 事,2009.