3. 締結ボルト構造の検討

本章では構造的対策として、図-18 に示すように PC 版の端部と緩衝版をそれぞれ枕版とボルトにて固定する ことにより, PC 版端部と緩衝版を一体化する構造につい ての検討結果を述べる.今回対象としている PC 版は場 所打ちコンクリートによる舗装版であり、1 ユニットの 寸法が 100m 程度に及ぶため, PC 版の温度変化に伴う伸 縮は最大で 40mm 程度生じる可能性が考えられる.その ため本試験では、①温度変化による PC 版の伸縮が、版 端部にボルトを配置しても問題なく作用するかの検討, ②ボルト締結力、ボルトの配置間隔が、緩衝版と PC 版 の一体化構造に及ぼす影響についての検討、③締結金具 の構造・取り付け方法ならびにボルト締結力の管理方法、 について実験的な検討を行った.

図-18 PC 版端部・緩衝版の一体化構造

3.1 FEM 解析に基づく一体化構造の効果に関する検討

(1) 解析モデル及び解析条件

解析モデルは, 図-19 に示すように PC 版をソリッド要素, ボルトをビーム要素とした. 各版の境界面は NO TENSION 結合とし, 境界面の引張力はボルトのみ荷重を伝達するものとした. 物性値, 拘束条件, 荷重条件は, 以下に示す通りとした.

a) 解析諸条件

コンクリート:3次元ソリッド要素(版厚方向3分割) E=30000N/mm², $\mu = 0.1667$

PC 鋼棒:ビーム要素

E=200000N/mm², μ=0.3, φ=24mm X 方向:各版2本×3=6本(図-2 解析モデル参照) Y 方向(版幅方向):解析の変動パラメータ 鋼材間隔=1000,2000,2500mm

(締結力 30kN 時のみ 500,1500,3000mm も解析) 締結力: 0, 10, 20, 30, 40, 50kN

b) 拘束条件

版底面で,バネ定数 0.07N/mm³

PC版と枕版,緩衝版と枕版はNO TENSION 結合

c) 荷重条件

航空機荷重

B747-200B 満載時一脚:818kN(複々車輪) 載荷位置:

載荷位置は、図-20 に示す載荷位置で検討するものとした.図は鋼材間隔 1000mm のときであるが、 間隔が変化した場合も脚の中心が鋼材と鋼材の中 間になるように載荷する.これは、付録-1 に示す 載荷ケースの中から、PC 版の版端部で枕版との隙 間が最大となる載荷位置から決定した.

図-20 載荷位置

(2) 解析結果と考察

PC 鋼材の締結力と版の隙間の関係を図-21,表-23 に それぞれ示す. (a)~(d)は図-22 に示す位置に生じた隙間 の位置であり, (a), (b)は,鋼材と鋼材の中間部, (c), (d) は鋼材位置での隙間を示す.

FEM 解析の結果では、鋼材間隔 1m の場合(b)位置において若干の隙間が生じているが、それ以外の位置(a)、(c)、(d)では締結力が 20kN で PC 版と枕版に生じる隙間がゼロになる結果となった. 鋼材間隔が 2m, 2.5m についても、(b)位置では PC 版と枕版に若干の隙間が生じること、(a)位置においても締結力の違いにより 0.1~0.3mm の隙間が生じる結果となった.また鋼材間隔 2m, 2.5m ともに、締結力が 30kN 以下の場合は、締結力の減少に伴いPC 版と枕版の間に生じる隙間は大きくなる傾向にあり、締結力が 30kN 以上の場合は、PC 版と枕版との間に生じる隙間の差が小さくなる傾向を示した.

図-23 は締結力 30kN と一定として,鋼材が無い場合, および鋼材間隔を 500mm~3000mm に変化させた際の, 鋼材間隔と枕版と PC 版との間に生じた隙間の計算結果 を示す.

(b)位置の隙間は締結力,鋼材間隔による影響が比較的 小さい結果となった.これは,(b)位置での隙間が,締結 ボルトによる一体化が不十分なのではなく,版のたわみ による PC 版と枕版の曲率の違いで発生することが原因 だと考えられる.

これに対し,(a)位置では鋼材間隔が 1m であれば PC 版と枕版に生じる隙間は著しく小さいが,1.5m あたりか らボルト間隔が大きくなるにつれて PC 板と枕版に生じ る隙間も大きくなる傾向を示した.

今回の解析によりボルト締結力とボルト間隔が PC 版 と緩衝版の一体化に及ぼす影響を検討した結果,ボルト の締結力は 30kN,鋼材間隔 1m 程度であれば,枕版と PC 版との間に生じる隙間を抑制できる可能性が高い結 果となった.一方,鋼材間隔が大きくなるに従い,PC 版と枕版の間に生じる隙間は大きい傾向を示したが,鋼 材間隔が 3m 程度であれば,何も対策を行わない構造に 比べて,隙間は半分以下に抑制できる傾向を示した.PC 版と枕版に生じる隙間がどの程度で,グラウトの粉砕化, ポンピング現象が生じるかは不明であるものの,PC 版と 枕版,緩衝版と枕版をボルトにより締結することにより, グラウトの粉砕化,ポンピング現象の抑制効果が期待で きるものと考えられる.

図-21 ボルト締結力と PC 版と枕版の隙間量の関係

公园十十月月17日	位要			緊	張力		
亚叫 121 甲」 P鬥	世區	0kN	10kN	20kN	30kN	40kN	50kN
	(a)	0.03	0.01	0.00	0.00	0.00	0.00
1000mm	(b)	0.13	0.12	0.11	0.10	0.10	0.10
100011111	(c)	0.02	0.01	0.00	0.00	0.00	0.00
	(d)	0.01	0.01	0.00	0.00	0.00	0.00
	(a)	0.16	0.13	0.11	0.10	0.09	0.09
2000mm	(b)	0.14	0.14	0.13	0.13	0.13	0.13
200011111	(c)	0.03	0.01	0.01	0.00	0.00	0.00
	(d)	0.02	0.01	0.01	0.00	0.00	0.00
	(a)	0.28	0.25	0.22	0.20	0.20	0.19
2500mm	(b)	0.14	0.14	0.14	0.14	0.14	0.14
250011111	(c)	0.03	0.02	0.01	0.00	0.00	0.00
	(d)	0.02	0.01	0.01	0.00	0.00	0.00

表-23 PC版と枕版に生じた隙間の計算結果

(単位:mm)

図-23 鋼材間隔と版の隙間の関係(締結力 30kN)

A 断面:鋼材中間断面

・鋼材間隔 2500mm, 緊張力 0kN 時

B 断面:鋼材断面

(b)

平面図

図-22 荷重位置と着目した隙間の位置

3.2 PC版の温度伸縮を模擬したスライド試験(1)

(1) スライド試験(1)の概要

前節の FEM 解析の結果より, 締結力が 30kN~40kN 程度で PC 版と枕版に生じる隙間が抑制されることが確 認された.一方で,本構造の適用対象となっている箇所 は,場所打ち PC 版舗装であり,1ユニットは最大で 100m 程度の寸法を有している.

その場合,温度伸縮に伴う移動量を下式により算出す ると,場合によっては40mm程度の移動が生じてしまう 可能性が考えられる.その場合,ボルトによる締結がPC 版の温度伸縮を拘束してしまう可能性やPC版の温度伸 縮による移動により,ボルトに変形が生じてしまう可能 性が考えられる.

そこで本試験では、①使用する締結ボルトの構造が、 版を拘束せずに伸縮するか、②版の伸縮に対して、ボル トの締結力は保持されているか、③伸縮時に締結ボルト の変形がどの程度で収まるか(最適ボルト径の決定)、に ついて確認することを目的とし、PC版の温度伸縮を模擬 したスライド試験を実施した.

(2) PC 版の温度伸縮による移動量の算出

理論上の PC 版伸縮時の不動点は版中央部になるもの と考えられるが, PC 舗装版は路盤に設置された構造物で あり,路盤と PC 版の設置状況により不動点が変化する ことが予想されるため,ここでは PC 版の端部に不動点 が生じることを想定して, PC 版の温度伸縮による移動量 を算出した.

 $\Delta L = K \cdot \Delta T \cdot B = \pm 40 mm$

ここに, ΔL:PC版の温度伸縮による移動量 K:コンクリートの線膨張係数 10×10⁻⁶(1/℃) ΔT:温度変化 ±40℃ B:PC版の長さ 100m

(3) パラメータ

3.1 の FEM 解析に基づく PC 版・緩衝版一体化構造の 検討結果では、枕版を定着アンカーとして、枕版と PC 版を 40kN 程度でボルトにより締結すれば、PC 版と枕版 との間に隙間が生じない傾向にあることが推察された. そこで本実験では、図-24 ならびに写真-5 に示すような、 1m×1m×0.18m のコンクリート版の中心部 2 ヶ所に 40kN のボルト締結力を与えた状態で、コンクリート版を (+) 側、(-) 側にスライドさせる実験を行った. スライド試験は2回に分けて実施し,第1回試験では 締結ボルトの滑り面(図-25に示す⑤ 座金Bタイプと⑥ 滑り板の接触面)をパラメータとして,滑り面の最適材 料を検討した.滑り面の構造は写真-6に示すように,(1) テフロン加工,(2)クロムメッキ加工,(3)SS400材, (4)SUS304 材,(5)ゴムのせん断変形に期待した構造,の 計5種類とした.

また第1回の試験結果から,滑り面の加工としてテフ ロン加工が優れていること,ボルトの径が20mmの場合 は,引張力,せん断力に対しては十分な強度を有してい るが,ボルトの曲げ変形によりボルトが変形してしまう 可能性が高いことから,第2回の試験ではボルトの径と 緩衝ゴムの有無をパラメータとして実験を行った.

(4) 試験方法

スライド試験の方法を図-26 に示す. 試験は, 枕版を 想定した 50mm の鋼板の上に 1m×1m×0.18m のコンクリ ート版を設置した後, 50mm の鋼板をボルトのアンカー として所定締結力を導入し, 両端部に設置したセンター ホールジャッキを押すことにより, H 鋼を介してプレキ ャスト版をスライドさせた. 実際の構造では, プレキャ スト版に切り欠き部を設け, その中に滑り板, 座金等の パーツを配置して版の表面部に上蓋を設置するが, 今回 は滑り板の取り替え, 計測のしやすさ等を考慮してプレ キャスト版の上面に滑り板を設置した.

図-24 スライド試験(1)

写真-5 スライド試験(1)

(a) 第1回試験

図-25 締結ボルト構造図

No.1 (テフロン加工)

No.2 (クロムメッキ加工)

No.3 (SS400 材)

写真-6 締結ボルトの滑り面の形状

項目	計測機器	数	備考
版の移動量	変位計	4	プレキャスト版の移動量測定.
ボルトの変形量	変位計	2	ボルト先端部の変形量
ボルトの締結力	ひずみゲージ (基部 15mm)	4	締結時,版のスライド時の締結力測定. ボルト1本につき2ヶ所測定.
ボルトの締結力	ひずみゲージ (基部 15mm)	4	締結時,版のスライド時の締結力測定 ボルトの曲げにより生じる応力測定. ボルト1本につき2ヶ所測定.
荷重	ロードセル	2	版の移動時,ボルト変形の解放時の荷重測定 用.

図-26 測定位置

3.3 スライド試験(1)試験結果

(1) PC 版のスライドに関する検討

第1回試験では、滑り面の材質を「テフロン」、「クロ ムメッキ」、「SS400」、「SUS304」、「ゴム」を用いて、M20 のボルトで約40kNの締結力を導入した.第1回試験時 において、基準位置からコンクリート版を移動させた際 のボルト先端部の変形量と版の移動量の関係を図-27 に、 また各試験の水平荷重から算出した滑り面の静摩擦係数 の結果を表-24 に、試験終了後のボルトの状況を写真-9 にそれぞれ示す.なお全供試体のボルト先端部の変形量 と版の移動量の結果は付録-2 に、水平荷重とボルト先端 部の変形量の結果は付録-3 に示す.試験結果をまとめる と以下のとおりである.

a) 滑り面の摩擦係数

滑り面をテフロン加工したものは,滑り面で滑りが生 じるまではボルトの変形が生じるが,それ以降はコンク リート版の移動が生じてもボルトの変形は小さい範囲で 収まった.それ以外のタイプは,滑り面で座金の滑りは 生じず,コンクリート版の移動と共に,**写真-9**に示すよ うにボルトが変形する結果となった.

b) 各材料の静摩擦係数

滑り面をテフロン加工した試験体の静摩擦係数は 0.08 ~0.17 の範囲にあった.

c) 滑り面の最適材料

締結金具に使用する材料のうち、版の伸縮により移動 する滑り面(図-25の⑤座金 B タイプと⑥滑り面の接触 面)には、テフロン加工を施した材料を使用するものと した.

	試験体種類	滑り面	版の滑り面	P(kN)	Pmax(kN)	水平力(kN) Pmax-P	締結力+ 版自重 (kN)	静摩擦係数
	S40-1	テフロン		_	14.1	14.1	85.2	0.17
l	S40-2	クロムメッキ		_	30.1	30.1	85.2	0.35 以上
签1回封除	S40-3	SS400	テフロンシート	_	33.3	33.3	85.2	0.39 以上
労 ・凹 武 歌	S40-4	SUS304		_	47.4	47.4	85.2	0.56 以上
	S40-5	ゴム	[_	31.0	31.0	85.2	0.36 以上
	S40-6	テフロン	ベニヤ板	21.5	30.9	9.4	85.2	0.11
	S40-7			23.3	30.5	7.2	85.2	0.08
	S40-8			23.0	34.0	11.0	85.2	0.13
笠つ同封陸	S40-9	テフロン	细垢	24.0	30.4	6.4	85.2	0.08
弗 ∠凹武歟	S40-10		到叫 171又	23.6	31.4	7.8	85.2	0.09
	S40-11		-	24.5	35.0	10.5	85.2	0.12
	S40-12	テフロンー鋼		26.3	42.1	15.8	85.2	0.19

表-24 各試験体の静摩擦係数の測定結果

S40-1~S40-5については、版の滑り面の摩擦係数の方が小さいため、Pmaxを使用して算出した.

S40-1 (テフロン)

S40-2(クロムメッキ)

S40-3 (SS400)

S40-4 (SUS304)

S40-5 (ゴム)

写真-9 スライド試験後のボルトの状況

(2) 版の移動に伴うボルト締結力の変動量

第1回試験の結果に基づき,第2回試験では滑り面の 材質をテフロン加工としてボルト径,座金間に設けた緩 衝ゴムの有無をパラメータとしてスライド試験を実施し た.滑り面の材質をテフロン加工としたケースのボルト 締結力と版の移動量の関係を図-28 に示す.またボルト 締結力と版の移動量のデータを付録-4 に示す.

なお本データの締結力は、鋼材に貼付したひずみゲージから換算するものとした.また初期締結力は、各供試体で若干のばらつきが生じたため、初期締結力を 1.0 とした場合に、版の移動によりどの程度の締結力が変化するかの比率で評価した.試験結果をまとめると以下のとおりである.

a) 締結力の変動について

今回の実験では、版の寸法誤差、あるいは枕版を想定 した鋼板の凹凸等の影響により、(+)側に版をスライド させた場合は締結力が低下する傾向に、(-)側に版をス ライドさせた場合は締結力が増加する傾向にあった.ま た版をスライドさせる方向に対して外側のボルトの締結 力の低下割合が内側に比べて大きい結果となった.

b) 緩衝ゴムの影響について

S40-7 と S40-10, S40-8 と S40-11 の結果より,下図に 示すように締結力が増加しようとする際にも,緩衝ゴム により張力が緩和されるため,締結力の増加の割合が小 さい.以上の結果より,実際の PC 版に本構造を適用す る場合は,座金と座金の間に緩衝ゴムを設置するものと する.

(3) ボルト径の選定に関する検討(ボルトの変形の検討) (1)の結果より、テフロン加工したスライド版を用いた 場合は、滑り面にすべりが生じるまではボルトの変形が 生じるが、一度すべりが生じるとボルトの変形が小さい ことが確認できた.

ここでは、第2回試験時にボルト基部にひずみゲージ を貼付することにより、ボルト基部に発生する応力を測 定するとともに、両端固定のはりを仮定したモデルによ る計算値との妥当性について検討を行った. コンクリー ト版を基準位置(ゼロ)から25mm移動させる際の水平 荷重とボルト基部に生じたひずみの結果を付録-5に、両 端固定のはりを仮定したモデルにより最適ボルト径を算 出するための計算フローを付録-6に、その考え方を用い て計算した結果と付録-5に示す実験値との比較を表-25 ならびに図-29にそれぞれ示す.また、本計算法により 算出した滑り面の摩擦係数に応じて生じるボルトの曲げ 変形によるひずみの関係を図-30に示す.なお計算は、 版の上面に切り欠きを設けたことを想定して,ボルト長 さを 110mm として計算した. 試験結果をまとめると以 下のとおりである.

- ボルト径は,締結力,せん断力に対する検討に加えて、 滑り面で滑りが生じるまでの曲げ変形量を考慮する ことにより決定可能である.
- ② ボルトに生じる曲げ変形に対しての最適ボルト径は、 両端固定はりを仮定したモデルにより算出できるものと考えられる。
- ③ 実際にボルトを設置する構造では、ボルト長さが 110mm 程度であること、今回実験したテフロン加工 を用いた場合の摩擦係数が最大でも 0.17 程度である ことから、図-30 により算出した結果をもとに、実際 には M30 のボルトを用い、滑り面にはテフロン加工 を施した材料を使用するものとする。

図-28 版の移動に伴うボルト締結力の変動の割合

			0-7	S4	S40-8		S40-9		0-10	S40-11		S40-12		
		Ν	S	Ν	S	Ν	S	N	S	N	S	N	S	
	ボルト径(mm)	2	4	3	30		42		24	30		42		
ボルト諸元	ボルト断面積(mm ²)	452		452 707		13	1385		52	707		13	85	
	断面2次モーメントI (mm ⁴)	162	286	397	761	152	745	16286		39761		152	152745	
	支点沈下量δ(mm)	0.5	370	0.3	360	0.0	509	0.5	820	0.3	210	0.1	257	
	支点反力 R _A (kN)	3.	3.60		50	3.	3.20		90	5.25		7.90		
計算値	M _(ゲージ位置) (kN・m)	0.2	0.270		0.412		0.240		0.293		0.394		0.593	
	σ _(ゲージ位置) (N/mm ²)	19	99	156		33		216		149		8	1	
	ひずみ _(ゲージ位置) (µ)	99	94	778		165		1078		743		40)7	
	版移動時の荷重P(kN)	23	.3	23.0		24.0		23.6		24.5		26	i.3	
	ボルトの滑り発生荷重Pmax(kN)	30	.5	34	1.0	30	30.4		.4	35.0		42.1		
	{(P-Pmax)/2}(kN)	3.	60	5.	50	3.:	20	3.	90	5.25		7.9	90	
実験値	ボルト最大ひずみ(μ)	1130	1007	922	535	167	165	594	1017	801	355	310	432	
	ボルト最小ひずみ(μ)	-1017	-1084	-880	-506	-159	-162	-458	-1083	-751	-289	-256	-351	
	ボルトひずみ平均値(μ)	1074	1046	901	521	163	164	526	1050	776	322	283	392	
	ボルトひずみ2本の平均値(μ)	10	1060		711		163		788		549		37	

表-25 ボルト基部に生じるひずみの実験値と計算値の比較

図-29 変形により生じるボルトのひずみの実験値と計算値の比較

図-30 滑り面の摩擦係数に応じて生じるボルトの曲げ変形によるひずみの関係

3.4 PC版の温度伸縮を模擬したスライド試験(2)

(1) スライド試験(2)の概要

スライド試験(1)では、ボルトの締結力を保ちつつコン クリート版を拘束することなく伸縮するための構造とし て滑り面にテフロン加工を施した材料を使用すること、 ボルトの曲げ変形に対して鋼材の降伏強度内に収まるボ ルト径として M30 を選定した.しかし実際には、締結ボ ルトが目地に平行して複数設置されるため、ここでは、 より実際の構造に近い形で PC 版を模擬したコンクリー ト版のスライド試験を実施することにより、①使用する ボルトの構造が版を拘束せずに伸縮し、ボルトの変形も 計算で想定された応力で収まっているか、②版の伸縮に 対して、ボルトの締結力は保持されているか、について 確認することを目的とする.

なお 3.1 の FEM 解析に基づく PC 版・緩衝版一体化構 造, 3.2 の PC 版の温度伸縮を模擬したスライド試験(1) では, 図-31 の a)変更前の図に示すように, PC 版端部に はそれぞれ 2 本ずつの鋼材を配置することにより, PC 版と緩衝版を一体化する構造を検討していた. しかし, これまで検討していたボルトの配置方法では PC 版に配 置されている PC 鋼材と接触してしまうこと,実工事で は PC 版にコア削孔を行わなければならないため, 設置 箇所も極力少ないことが望ましいため, 今後は図-31 の b)変更後の図に示すボルト配置により検討を行った. またボルト配置間隔については,既設 PC 版の PC 鋼材の 配置間隔が 375mm を基本に配置されていることから, スライド試験(2)ならびに後述する PC 版と緩衝版との連 続性を確保するための静的載荷試験では、ボルトの最小

間隔は1.1mを基本に検討した.

(2) パラメータ

供試体の形状・寸法を図-32 に、試験のパラメータを 表-26 にそれぞれ示す. 試験は、全てのケースにおいて ボルト間隔 1.1m とし、ボルト締結力を 5kN, 10kN, 20kN, 40kN に変化させて実施した. 試験に使用した PC 版の寸 法は、4.4m×2.1m×0.18m とした. 詳細は 3.6 の(2)供試 体の概要に示す.

(3) 試験方法

スライド試験の装置図を図-33 に、PC 版に設置するボ ルトの形状・寸法を図-34 にそれぞれ示す.試験は、反 力壁に固定した両動油圧ジャッキを用いて、H 鋼を介し て PC 版を±15mm 程度押し引きするものとした.試験 では、PC 版の押し引きに伴う版のずれを防止するため、 両サイドにはローラーを設けた.またテフロン加工した 滑り板のセットは、あらかじめ抜き型枠の上面に石膏を ならし、その上に滑り板を水平器でレベルになる程度の 精度でセットした.

(4) 測定項目

測定項目を表-27 に、計測位置を図-35 にそれぞれ示 す.測定項目は、PC 版の移動量を確認するための変位計、 ボルトの曲げ変形により生じる基部のひずみ、ボルトの 締結力の変動、PC 版を押し引きするための水平荷重とす る. ボルトの締結力は、静的載荷試験と同様に、鋼材に 貼付したひずみゲージにより管理した.

図-31 ボルトの配置方法

図-32 供試体の形状・寸法

写真-10 スライド試験(2)

表_26	試験の	パラ	メータ
न <u>र</u> −20	市1、初田 レノノ	~ /	<u> 入 一 グ </u>

No.	ボルト間隔	ボルト1本あたりの 締結力						
1	なし	—						
2		5kN						
3		10kN						
4	1.1m	20kN						
5		40kN						

図-34 PC版に設置するボルトの形状・寸法

表-27 スライド試験における測定項目

項目	計測機器	数	備考
版の変形量	ひずみゲージ	4	PC 版の移動量測定
ボルトの締結力	ひずみゲージ	8	ボルト4本×2枚/本=8枚
ボルト基部のひずみ	ロードセル	8	ボルト4本×2枚/本=8枚
水平荷重		1	
計		21	

図-35 計測位置図

3.5 スライド試験(2)試験結果

(1) PC 版の伸縮およびボルトの変形に関する検討

各試験ケースにおける水平荷重と PC 版移動量の関係 を図-36 に、水平荷重の結果から算出した静摩擦係数の 結果を表-28 にそれぞれ示す.また No.2~No.5 のボルト 基部に生じたひずみと PC 版の移動量の結果を図-37 に 示す.試験結果をまとめると、以下のとおりである. a) PC 版の伸縮

今回実施したスライド試験のうち,最も厳しい条件で ある No.5 (ボルト締結力 40kN) においても,PC 版は伸 縮挙動を示した.また水平荷重の結果から算出した滑り 板と座金部の静摩擦係数は,締結力が 10kN, 20kN, 40kN 時で 0.13~0.17 程度であり,スライド試験(1)とほぼ同等 な静摩擦係数の値を示した.

b) PC 版が伸縮した際のボルトの曲げ変形

締結力が大きくなるに従い,ボルト基部に発生するひ ずみにばらつきが生じたが,今回使用した M30 のボルト について,曲げ変形により生じたひずみは,全てのケー スで鋼材の降伏強度以内に収まった.

(2) 伸縮に伴うボルト締結力の変動に関する検討

No.2~No.5 のボルト締結力の変動と PC 版の移動量の 結果を図-38 に、この結果をもとにボルト締結力の変動 量の最大値と最小値を抽出した結果を表-29 にそれぞれ 示す.ここで、表-29 中の変動割合は、初期締結力に対 して締結力が低下した割合を示している.

PC 版の伸縮に伴うボルト締結力の変動は、締結力を

40kN 導入した場合において, -24%~+17%の変動の範囲にあった.また初期締結力が小さいケースほど, 初期締結力に対しての締結力の変動が大きくなる傾向にあった.

図-36 各試験ケースの水平荷重-PC 版移動量の関係

試験ケース	ボルト間隔	ボルト締結 力	PC版自重	P _{max} (kN)			コンクリート 面水平荷重	テフロン面 水平荷重	静摩擦係数
No 1	_	_		(+)	9.2	9.7	_	_	0 237
110.1				(-)	10.1	5.7			0.237
No 2		5 kN		(+)	14.0	14.0	14.4	-0.5	-0.022
10.2		JKIN		(-)	13.9	14.0	14.4	0.0	0.023
NI- 2		10 1.01		(+)	25.9	05 0	10.2	67	0 167
10.5	1.1		40.0 KIN	(-)	25.8	20.9	19.2	0.7	0.107
NI- 4	1.10	20 1-11		(+)	42.1	40.6	00.6	10.0	0.150
INO.4		ZU KIN		(-)	39.1	40.0	28.0	12.0	0.150
No 5]	40 kN		(+)	74.0	69.0	47.6	20.4	0 1 2 9
6.0M		40 KN		(-)	62.0	08.0	47.0	20.4	0.128

表-28 各試験ケースの静摩擦係数の測定結果

※滑り板と座金の静摩擦係数は、水平荷重の実験値からコンクリート底面の水平荷重を差し引いたものを、ボルト 締結力で除して算出した.

図-37 ボルト基部に生じたひずみと PC 版の移動量の結果

図-38 No.2~No.5 のボルト締結力の変動と PC 版の移動量の結果

	No.2	No.3	No.4	No.5
	(ボルト締結力 5kN)	(ボルト締結力 10kN)	(ボルト締結力 20kN)	(ボルト締結力 40kN)
ボルト1	-2.5kN~2.9kN	-3.0kN~2.9kN	-2.7kN~6.2kN	-6.3kN~7.0kN
ボルト2	-3.3kN~1.4kN	-3.9kN~2.9kN	-5.6kN~5.0kN	-7.0kN~6.8kN
ボルト3	-2.2kN~3.6kN	-4.5kN~4.4kN	-7.9KN~8.8kN	-13.5kN~7.8kN
ボルト4	-1.7kN~1.8kN	-2.5kN~2.7kN	-5.9kN~5.0kN	-10.7kN~6.0kN
平均值	-2.4kN~2.4kN	-3.5kN~3.2kN	-5.5kN~6.3kN	-9.4kN~6.9kN
変動割合	(-48%~+48%)	(-35%~+32%)	(-28%~+32%)	(-24%~+17%)

表-29 各試験ケースのボルト締結力の変動量の結果

3.6 静的載荷試験

3.1 で検討した PC 版と緩衝版の一体化構造の効果についての解析的な検討結果を踏まえ、本節では、PC 版端部を模擬した供試体を製作し、静的載荷試験を行うことにより、PC 版端部と緩衝版の連続性が確保されているかについて、実験的に確認することを目的とする.

(1) パラメータ

供試体の形状・寸法を図-39 に,静的載荷試験の状況 を写真-10に,載荷ケースを表-30に,ボルトの配置方法 を図-40に,ボルトの形状・寸法を図-41 にそれぞれ示す.

試験は、模擬路盤(発泡スチロール)上に 3.2m×4.4m ×0.25m の枕版を設置し、枕版上面の中心部に 1.04m× 4.4m×0.18m の緩衝版を、枕版上面の両端部に 2.1m× 4.4m×0.18m の PC 版を設置し、前述した FEM 解析の結 果より、PC 版と枕版の間に最も隙間が生じると考えられ る緩衝版端部に載荷した.その際に PC 版と枕版に生じ る隙間、PC 版と緩衝版のたわみ差、PC 版と緩衝版のひ ずみ差を測定することにより、PC 版と緩衝版の一体化を 評価した.

試験のパラメータは, PC 版と枕版の支持条件, 締結ボルトの有無, 締結ボルトの配置間隔, 締結力とし, 計 32 種類の載荷試験を実施した.

PC版と枕版の支持条件については,以下の4種類をパ ラメータとして実施した.

シリーズ1,シリーズ2は,設計上想定されたように PC版が枕版に支持された状況を模擬したものであり,載 荷試験前に実施した発泡スチロールの平板載荷試験の結 果(付録-7),シリーズ1の路盤支持力係数は0.14N/mm³, シリーズ2の路盤支持力係数は0.08N/mm³であった.

シリーズ3は、枕版下の路盤の支持力が低下し、枕版 のみが局所的に沈下した状態を模擬するため、PC版両端 部にゲビンデ PC 鋼棒を1本あたり100kNで8ヶ所固定 した状態で試験を実施した.

シリーズ4は、載荷点近傍のPC版に空隙が生じ、PC 版は目地平行方向の両端部でのみ枕版にて支持された状態を模擬したものであり、PC版の目地直角方向の両端部 に高さ調整用プレートを配置した状態で試験を実施した. 今回提案している一体化構造を用いる場合は、PC版と路 盤の間にはグラウト材を充てんし、隙間を設けないこと を前提としているが、今回は様々な環境下において締結 ボルトの効果を確認することを目的としたため、本条件 下においても試験を実施した.

締結ボルトの配置間隔については、前述の FEM 解析

により枕版と PC 版の間に隙間が生じると推定されたボ ルトの間隔が 2m~3m であったこと,今回ポンピング現 象が生じた羽田西側エプロン部の PC 舗装版の PC 鋼材の 配置間隔が約 375mm ピッチであり, PC 鋼材の配置位置 を交わした際の区切りの良い配置が 1.1m であったこと から,今回の実験では,図-39 に示すように,ボルト間 隔は 1.1m を基準に, 2.2m, 3.3m の 3 種類を設定した.

締結力は,解析結果から 40kN 程度で PC 版と枕版の間 に生じる隙間が低減される傾向にあったとの結果を踏ま え,5kN と 40kN を締結力の基本として試験を実施した. また PC 版,緩衝版には,それぞれ図-41 に示すような締 結ボルトを使用し,ボルト締結力の管理は,付録-8 に示 す締結ボルトの応力-ひずみの関係をもとに,鋼材に貼付 したひずみゲージにより行った.

(2) 供試体の概要

a) 枕版

枕版の形状・寸法を図-42 に示す.供試体の寸法は 3200 ×4400×250mm とした. コンクリートの設計基準強度は 40N/mm²とし,鉄筋は多層弾性理論により算出した断面 力に対して 100N/mm²以内の応力になるような鉄筋を配 置するものとした. なお載荷試験時におけるコンクリー トの圧縮強度は**付録-9**に示す値であった.

b) 緩衝版

緩衝版の形状・寸法を図-43 に示す.供試体の寸法は 1040×4400×180mm とした. コンクリートの設計基準強 度は 40N/mm²とし,目地平行方向は ¢ 23mm のアンボン ド PC 鋼棒を 4 本配置した PC 構造,目地直角方向は D19 を配置した RC 構造とした.

c) PC 版

PC 版の形状・寸法を図-44 に示す.供試体の寸法は 2100×4400×180mm とし、コンクリートの設計基準強度 は 40N/mm²とした.また今回の実験では、PC 版に直接 載荷は行わないため、目地平行方向、目地直角方向とも に RC 構造とし、D16 の鉄筋を配置した.

d) 模擬路盤(発泡スチロール)

今回の実験では、模擬路盤として硬質発泡スチロール (カネパールソイルブロック DX-29)を用いて路盤を構 成した.シリーズ1では枕版下の発泡スチロール厚さを 100mm、シリーズ2~シリーズ4では枕版下の発泡スチ ロール厚さを200mmとして、静的載荷試験を実施した. 先述したように、発泡スチロール厚さを100mmとした 場合の路盤支持力係数は0.14N/mm³、発泡スチロール厚 さを200mmとした場合の路盤支持力係数は0.08N/mm³ であった.

図-39 供試体の形状・寸法

写真-10 静的載荷試験の状況

載荷ケース	シリーズ	1		シリーズ2				
模擬路盤厚	発泡スチロール厚	さ:100mm		発泡スチロール厚さ:200mm				
	ゲビンデPC鋼棒:	緊張なし	ゲビンデPC鋼棒:緊張なし					
	PC版は枕版に全面支持されたケース				PC版は枕版に全面支持されたケース			
	PC鋼棒(緊張なし)	PC鋼	棒(緊張なし)	PC鋼棒(緊張なし) PC鋼棒(緊張なし)				
PC版の						1657		
支持条件	【	100mm) / /			<u>///発港スチ/ロー/ル厚差</u> 」	(20)0mm) / /		
	¥		*	-	₩ ₩		#	
		<u> </u>	77			<u> </u>	$\overline{7}$	
			Í					
	供試体名	ボルト	ボルト 締結中		供試体名	ボルト	ボルト 毎年カ	
	1 2/11	同州罚	市市ノノ	0	2.11. 70. 1.1. FIN	[四][月]	が市がロノノ	
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	1.1m	DKN 401-N	8	$y - \chi_2 = 1. \text{ Im} = 5 \text{ KN}$	1.1m	DKN 401-N	
載荷ケース	$2 y - x_1 - 1$. Im -40 kN		40KN 51/N	9	5 - 7 - 72 - 1.1 m - 40 kN		40KN 51/N	
戦刑クノ	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	2.2m	JAN 401-N	10	5 - 7 - 72 - 2.2 III - 5 KN	2.2m	JOI-N	
	$\frac{4}{5} \frac{5}{1} \frac{1}{5} \frac{1}$		40kh 5kh	11	2 - 7 - 3 - 3 - 5kN		40KN 5kN	
	$6 \frac{2}{2} \frac{1}{2} - \frac{3}{2} \frac{3m}{40 \text{kN}}$	3.3m	40kN	12	$\frac{5}{2}$ $\frac{1}{2}$ $\frac{1}$	3.3m	40kN	
	7 シリーズ1-無	_	_	14	シリーズ2-無	_	_	
載荷	$0kN \rightarrow 350kN \rightarrow 0kN \rightarrow 350l$	$N \rightarrow 0 k N \rightarrow 35$	0kN		$0kN \rightarrow 205kN \rightarrow 0kN \rightarrow 205$	⊥ kN→0kN→2()5kN	
ステップ	の3回繰り返し	レ載荷			の3回繰り返	し載荷		
載荷ケース	シリーズ	3			シリース	4		
模擬路盤厚	発泡スチロール厚	さ:200mm		発泡スチロール厚さ:200mm(版端部のみ支持)				
	ゲビンデPC鋼棒:	緊張あり		ゲビンデPC鋼棒:緊張なし				
	枕版のみが不同沈下した状態	態を模擬し†	ミケース	載荷面近傍のPC版に空隙が生じ、PC版は枕版両端				
					部で支持された状態を	検 凝 し た グ 、		
	PC鋼棒(緊張あり) 「╋────────────────────────────────────	PC鋼	棒(緊張あり)	P L	C鋼棒(緊張なし) 目地平行方向両	端部で支持 PC鋼	棒(緊張なし)	
支持条件		20.6mm)	$\overline{7}$	/ / 発送スプロー/ル 厚差 (20g/mm) / /				
200001011		200011111) / / /			<u>∥////////////////////////////////////</u>	(20)01111) / /	<u> </u>	
				đ			t	
		/				777		
						-		
	供試体名	ボルト	ボルト		供試体名	ボルト	ボルト	
		间隔	術楦刀			间牌	術宿力	
	15 シリーズ3-1.1m- 5kN	1.1m	5kN	24	シリーズ4-1.1m- 5kN	1.1m	5kN	
	16 > 9 - 3 - 1.1m - 40kN		40kN	25	シリース4-1.1m-40kN		40kN	
# # ない フ	17 > 9 - 3 - 2.2m - 5kN	2.2m	5kN	26	5 - 7 - 7 - 2.2m - 5kN	0.0	5kN	
戦何クース	$18 \sim 9 \sim 3 - 2.2m - 40 \text{kN}$		40kN	27	5 - 7 - 74 - 2.2m - 20kN	2.20	20kN	
	$19 > 9 - x_3 - 3.5 \text{m} - 3 \text{KN}$		DKN 10kN	20	5 - 74 - 2.2m - 40 kN		40KN 51/N	
	20 > 7 - 73 - 3.3m - 10 KN	3.3m	20kN	29	5 - 74 - 3.3 = -3 - 3 = -3 = -3 = -3 = -3 = -3	3 3m	OKN 201/N	
	21 - 7 - 73 - 3 - 3 - 20 KN 22 - 7 - 73 - 3 - 3 - 20 KN		20KN 40kN	31	~ 1	0.00	20kh 40kh	
	23 シリーズ3-無	_		32	シリーズ4-無	_	-	
載荷	$0kN \rightarrow 205kN \rightarrow 0kN \rightarrow 205k$	N→0kN→?5	0kN	02				
ステップ	の3回繰り返し	載荷	-OUT		0kN→350kN→0kNの1	回繰り返し載	這荷	

表-30 載荷ケース

※印の供試体については、0kN→350kN→0kNの1回繰り返し載荷

図-42 枕版の形状・寸法

図-43 緩衝版の形状・寸法

図-44 PC版の形状・寸法

(3) 試験方法

静的載荷試験の方法を図-45 に示す. 試験は鉛直載荷 システムを使用し, FEM 解析の結果より, PC 版と枕版 の隙間が最も生じると推定された緩衝版端部に載荷した. 載荷点には, 直径 450mm の鋼製載荷板(下面に硬質ゴ ム付き)を用いた.

(4) 測定項目

静的載荷試験における測定項目を表-31 に, PC 版と枕版との間に生じる隙間, コンクリート版のたわみ, ひずみの測定状況を写真-11 に,変位計の設置位置を図-46 に, ひずみの測定位置を図-47 にそれぞれ示す.

また試験シリーズ2~4 について実施した PC 版と枕版 との間に生じる隙間は図-48 に示す方法により, PC 版と 緩衝版のたわみ差・たわみ伝達率の測定は図-49 に示す 方法により測定した.

a) PC 版と枕版との間に生じた隙間

PC版と枕版との間に生じた隙間は,図-48に示すように PC版に固定した変位計を枕版上面にセットすることにより算出した.

b) PC 版と緩衝版のたわみ差・たわみ伝達率

PC版と緩衝版のたわみ差は、図-49に示すように載荷

点近傍に設置した変位計により PC 版のたわみと緩衝版 のたわみの差を求めた.またたわみ伝達率は,載荷点近 傍の設置した PC 版と緩衝版の変位計の値を用いて,次 式により算出した.

たわみ伝達率(%)
$$E_{ff} = \frac{2d_1}{d_0 + d_1} \times 100$$

ここに,

d₁: PC版(非載荷側)のたわみ(mm)

d₀:緩衝版(載荷側)のたわみ(mm)

c) PC 版と緩衝版のひずみ伝達率

ひずみ伝達率は,載荷点中心から 275mm 位置の版上 面のひずみゲージの値を用いて,次式により算出した.

ひずみ伝達率(%)
$$E_{ff} = \frac{2\varepsilon_1}{\varepsilon_0 + \varepsilon_1} \times 100$$

 $\epsilon_1: \mathbf{PC} 版 (非載荷側) のひずみ (<math>\mu$), $\epsilon_0: 緩衝版 (載荷側) のひずみ (<math>\mu$)

図-45 静的載荷試験の方法

項目	計測機器	数	備考
	変位計	9	目地平行方向(PC 版載荷側)
	変位計	9	目地平行方向(緩衝版)
版のたわみ	変位計	4	目地直角方向(PC 版載荷側)
	変位計	2	目地直角方向(緩衝版)
	変位計	5	目地直角方向(PC 版非載荷側)
PC 版・枕版の隙間	変位計	2	シリーズ 2~4 にて測定を実施
枕版の変形量	変位計	2	目地平行方向の端部
コンクリート	ひずみゲージ	8	目地平行方向(PC 版載荷側)
表面ひずみ	ひずみゲージ	8	目地平行方向(緩衝版)
コンクリート	ひずみゲージ	2	緩衝版載荷位置側面
側面ひずみ	ひずみゲージ	2	PC 版載荷側
ボルトの締結力	ひずみゲージ	32	最大 32 枚 (2 枚×16 本=32 枚)
載荷荷重	ロードセル	1	載荷荷重の確認用
計		86	

表-31 静的載荷試験における測定項目

(目地直角方向のたわみ)

図-46 変位計の設置位置

図-47 コンクリート表面のひずみ測定位置

図-48 PC 版と枕版との間に生じる隙間の測定方法

図-49 PC版と緩衝版のたわみ差・たわみ伝達率の測定方法

3.7 静的載荷試験結果

(1) PC 版と枕版との間に生じた隙間の結果

試験シリーズ2~4のPC版と枕版との間に生じた隙間の結果を図-50に示す.

シリーズ2については,設計荷重205kNまでの載荷で 試験を終了しているため,図は100kNと250kN載荷時の ボルト間隔とPC版と枕版との間に生じた隙間の結果を, シリーズ3,4については350kNまで載荷しているので, 100kN,205kN,350kN載荷時のボルト間隔とPC版と枕 版との間に生じた隙間の結果を示す.

図-50の結果から、PC版が枕版にて全面で支持された 状態(シリーズ2)では、ボルト間隔が1.1mではほとん ど隙間が生じておらず、ボルトを配置していない場合に ついても約0.15mmに収まる結果となった.一方、枕版 が局所的に沈下する状況を想定したケース(シリーズ3)、 載荷面付近のPC版に空隙が存在する状況(シリーズ4) では、それぞれ設計荷重時に約0.3mmと約0.7mm、350kN 載荷時に約0.7mmと約1.1mmの隙間が生じたのに対し て、ボルトを配置した場合には隙間が抑制された.この 傾向はボルト間隔が小さく、かつボルト締結力が多いほ ど顕著であった.

すなわち, PC 版が枕版に全面的に支持された構造であ れば、ボルトの有無によらず PC 版と枕版との間に生じ る隙間が小さいこと、シリーズ 3、4 のように PC 版と枕 版との支持条件が悪くなった場合において、ボルト締結 による効果が認められる傾向を示した.またボルト間隔 が 1.1m の場合は、ボルト締結力が 5kN であっても 40kN であっても、PC 版と枕版との間に生じる隙間の変動は小 さいが、ボルト間隔が大きくなるにつれてボルト締結力 の影響が大きくなる傾向を示した.

(2) PC 版と緩衝版とのたわみ差・たわみ伝達率

試験シリーズ 1~4の PC 版と緩衝版のたわみ差を測定 した結果を図-51 に, PC 版と緩衝版のたわみ伝達率の測 定結果を図-52 にそれぞれ示す.また各試験ケースの目 地平行方向の載荷側(緩衝版)と非載荷側(PC版)のた わみ分布を付録-10 に,目地直角方向のたわみ分布を付 録-11 にそれぞれ示す.

PC版と緩衝版との間に生じた隙間の結果と同様に、 PC版が枕版にて全面で支持された状態(シリーズ1,シ リーズ2)のボルト無しで設計荷重を載荷させた場合で は、シリーズ1が約0.6mm、シリーズ2が約0.4mmのた わみ差を有していた.シリーズ1とシリーズ2を比較し た場合には、シリーズ2の路盤支持力係数が小さいため、 たわみ差が大きいものと想定されたが、シリーズ1では PC版と枕版の支持において若干の不陸が生じたため、結 果としてシリーズ1がシリーズ2に比べて若干たわみ差 が生じる結果となった.またボルトを配置したケースは、 路盤の支持状態によらず PC版と緩衝版のたわみ伝達率 がボルトを配置しないものに比べて向上する傾向を示し た.ボルト間隔がL1mの場合には、締結力の影響が小 さく、ボルト間隔が広がるにつれて、ボルト締結力の影響が大きくなる傾向を示した.

図-52 各試験シリーズの PC 版と緩衝版のたわみ伝達率の結果

(3) PC 版と緩衝版とのひずみ伝達率の測定結果

試験シリーズ1~4のPC版と緩衝版のひずみ伝達率の 結果を図-53 にそれぞれ示す.また目地平行方向の載荷 側(緩衝版)と非載荷側(PC版)コンクリート表面のひ ずみ分布を資料-12 にそれぞれ示す.

シリーズ1,シリーズ3の一部では、ボルト間隔が2.2m より3.3mの方がひずみ伝達率が向上しているデータも 存在したが、全体的にはボルトが配置されてかつボルト の配置間隔が小さい、かつボルト締結力が大きいほど、 PC版と緩衝版との応力の伝達も向上する傾向を示した.

(4) 載荷に伴うボルト張力の変動

試験シリーズ1~4それぞれの載荷側のPC版,緩衝版, 非載荷側のPC版に設置した締結ボルトの張力変動量の 結果を図-54に示す.

今回の実験より, PC 版, 緩衝版のボルト張力の増加量 は,最大でも 10kN 程度で収まっている結果となった. また緩衝版に設置したボルトの軸力変動に着目した場合 には,載荷を行うことにより緩衝版が縮まる結果として ボルト締結力が減少する傾向を示したが,荷重を除荷し た場合にはボルト締結力はもとに戻る傾向を示した.

(5) 静的載荷試験のまとめ

路盤の支持条件,ボルトの配置間隔,ボルト締結力を パラメータとして,PC 版端部を模擬した供試体の静的載 荷試験を実施することにより,PC 版と緩衝版の一体化の 効果について実験的な検討を行った.今回の実験により 得られた結果を以下に示す.

a) PC 版と枕版との間に生じた隙間,たわみの連続性

PC版が枕版にて全面で支持された状態(シリーズ2) では、ボルトを配置しなくても PC版と枕版との間に生 じた隙間は、205kNの載荷(設計荷重相当)で約0.15mm に収まった.一方、枕版が局所的に沈下する状況を想定 したケース(シリーズ3)、載荷面付近のPC版に空隙が 存在する状況(シリーズ4)では、205kN載荷時でシリ ーズ3では約0.3mm、シリーズ4では約0.7mmの隙間が 生じたが、締結ボルトを配置することにより、PC版と枕 版の間に生じる隙間が抑制されることが確認できた.ま たボルトの配置間隔が1.1mの場合は、ボルト締結力に よらず抑制されること、ボルト間隔が2.2m、3.3mと広 がるにつれてボルト締結力の影響が大きくなる傾向を示 した.

b) ボルト張力の変動

静的載荷試験時に測定したボルトの張力の結果から, 今回の実験の範囲では最大でも 10kN 程度の増加に収ま っていることが確認できた.また載荷箇所についいては, 載荷により路盤が変形し,締結力が低下する箇所も生じ たが,除荷に伴いボルト締結力も復元する傾向を示した.

図-53 各試験シリーズの PC 版と緩衝版のひずみ伝達率の結果

図-54 各試験シリーズのボルト張力の変動の結果

3.8 締結金具の構造・取り付け方法およびボルト締結力 管理方法

既設空港エプロン PC 舗装版に一体化構造を用いる場合は、夜間の限られた時間内に既設の PC 版をコア削孔 し、締結金具を設置する必要がある.本節では、4 章で 述べる走行載荷試験を行う際に実施した締結金具の取り 付け方法とその際に生じた課題点ならびにその改良試験、 ボルト締結力の管理基準の概要を述べる.

(1) 締結金具の構造

締結ボルト構造の概要を図-55 に, PC 版用締結ボルト 構造の詳細図を図-56 に, PC 版用締結金具の材料を図-57 に,緩衝版用締結金具の材料を図-58 にそれぞれ示す.

締結金具は, PC 版用, 緩衝版用ともに, 全ねじボルト, ロングナット, エポキシ樹脂, グラウト止めパッキン, カセット,カセットと既設舗装版を一体化させるための グラウト材,座金①,②,緩衝ゴム,ボルト,蓋から構 成した.

PC版に設置する締結金具は、PC版の温度伸縮に伴う 移動を確保するスペースが必要となるが、緩衝版の短手 方向の版長は 1m弱であること、長手方向は枕版と一体 となって伸縮するものと想定するため、温度伸縮に伴う 移動がほとんどないものと考えられるため、コア削孔径、 カセットの直径は PC版と緩衝版で異なるものを使用し た.

図-55 PC 版用,緩衝版用の締結ボルト構造の概要

図-56 PC 版用締結金具の詳細図

図-57 PC 版用締結金具

図-58 緩衝版用締結金具

(2) 締結金具の取り付け方法と課題点

締結金具の取り付けフローを図-59 に, a)コア削孔, b)カセット設置, c)無収縮グラウトの注入・養生, d)ボル ト定着用エポキシ樹脂注入, e)ボルト・座金セット, f) ボルト・座金のばらし, g)ボルト締結力導入 に関する 作業の概要と課題点を図-60~図-65 ならびに写真-12 に それぞれ示す.

a) コア削孔

走行載荷試験時は,締結ボルトを設置することによる 構造的な検討を行うことを主目的として行ったため,コ ア削孔は行わずあらかじめ孔を設けた PC 版,緩衝版を 製作した. PC 版用のコア削孔径は,PC 版上面側から ϕ 305mm, ϕ 128mm, ϕ 78mm とした.また緩衝版用のコ ア削孔径は,緩衝版上面側から ϕ 160mm, ϕ 110mm, ϕ 78mm とした.

b) カセット設置

締結ボルトを配置した際にも,PC版が温度伸縮に対し てスムーズに移動するよう,カセットは設置治具を用い て PC版に対して平行に作用するようにセットした.そ の際,カセットのまわりに充てんする無収縮グラウト材 が PC版下に漏れるのを防止するためのコンクリート止 めのパッキンをカセット下にセットしたが,パッキンの 反発力が強く設置治具が浮き上がる傾向にあった.今回 は、コンクリート供試体を治具の上にセットすることに より,設置治具、カセットの浮き上がりを防止する処置 を施したが、実施工では、パッキンの変更あるいはカセ ットが浮き上がらない重量の設置治具を使用する必要が ある.

c) 無収縮グラウト注入, 養生

無収縮グラウトの材料は、コア削孔部とカセット設置 部の隙間が1cm程度と小さいため流動性に優れているこ と、材齢2時間で硬化していること、材齢28日ではPC 版と同等以上の強度を有している材料を選定した.今回 はプレキャストPC舗装版の目地部のジョイント(水平 ジョイント)の充てんに用いられる材料 MG-5(三菱マ テリアル(株))を使用した.

d) ボルト定着用エポキシ樹脂注入

エポキシ樹脂は、土木建築用低粘度型エポキシ樹脂 ボンド E2300J (コニシ(株)製)を使用した。樹脂注入 量をあらかじめ計算し、その分のエポキシ樹脂を注入す る作業を行ったが、一部エポキシ樹脂の量が多く、ロン グナットのネジ部にエポキシ樹脂が入ってしまった。 実施工では,エポキシ樹脂の注入量を少なめにしておき, エポキシ樹脂硬化後に,不足分を再注入する等の手順が 良いものと考えられる.

e) ボルト, 座金セット

樹脂注入後,全ねじボルト,ロングナット,M30ボルト,座金①,緩衝ゴム,座金②を一体化させた状態でボルトをセットする.

f) ボルト, 座金のばらし

ボルト,座金を取り外した際に,エポキシ樹脂の量が 著しく減少している場合は再度エポキシ樹脂を追加注入 する.

g) 締結力導入

エポキシ樹脂を注入後,材齢1日で40kNの締結力を 導入した場合,締結力が半分以下に低下する結果となっ た.また材齢7日で同様な作業を行った場合,締結力は 若干減少したが,材齢1日に比べて著しく抑制された.

以上,実施工を想定したケースにて締結金具の取り付 けを実施したが,基本的には問題なく作業を行うことが できた.しかし,g)ボルト締結力の導入 に関して,エ ポキシ樹脂を注入して材齢7日で締結力を導入した場合 には,ボルト締結力の減少量は小さかったが,材齢1日 でボルトに締結力を導入した場合には,ボルトの締結力 が導入時に比べて半分以下に低下した.また PC 版と緩 衝版のボルト締結力の減少量を比較した場合には,座金 の面積が小さい緩衝版の方が,ボルト締結力が減少する 傾向にあった.

そこで、これら締結力の減少量の要因を確認すること、 アンカー部の耐力を確認することを目的に、アンカー部 の材料の材齢を変化させた場合のボルト締結力の経時変 化の測定試験、樹脂アンカー部の引抜き試験(アンカー 部強度確認試験)と、図-56 に示す座金①と座金②の間 に挟み込んだ緩衝ゴムの状態が締結力の減少に及ぼす影 響を確認するための試験(緩衝ゴム改良試験)、ならびに 締結力をトルクにて管理する場合のトルク値のばらつき を確認するための試験を実施した.

図-59 締結金具の取り付けフロー

図-60 コア削孔

図-61 カセット設置

図-62 無収縮グラウト注入,養生

図-63 ボルト定着用エポキシ樹脂注入

図-64 ボルト, 座金セット

図-65 ボルト, 座金のばらし

写真-12 締結力の導入状況

3.9 アンカー部の材料変形によるボルト締結力減少量確 認試験

(1) 試験概要

ボルト締結を行う際のアンカー部について,材料の変 形に伴うボルト締結力の減少量と引抜き耐力を実験的に 確認することを目的に,定着ボルトをセットした後に,

「ボルト締結力の経時変化測定試験」,「アンカー部の引 抜き試験」を実施した.

試験ケースを表-32 に,試験に使用したコンクリート 版の形状・寸法を図-66 にそれぞれ示す.試験は,アン カー定着用材料としてエポキシ樹脂とモルタル材料の 2 種類につき,材齢1日,7日でボルト締結力の経時変化 測定試験をそれぞれ3ヶ所で実施するとともに,材齢7 日でアンカー部の引抜き試験を実施した.

また実構造物の枕版の厚さは 250mm であるが,今回の実験では厚さ 200mm のコンクリート版に φ 78 の孔を 削孔し,定着アンカーをセットした後に試験を実施した.

	ボルト締結力の	ボルト締結力の経時変化測定試験		
	材齢1日	材齢7日	材齢7日	
テモナン神聖	3ヶ所	3ヶ所	3ヶ所	
エルイン倒加	(⊠-66 ①~③)	3 ヶ所 3) (図-66 ④~⑥)	(閨-66④~⑥)	
T 1 D 1	3ヶ所	3ヶ所	3ヶ所	
モルタル	(図−66 ⁽¹⁰ ~ ⁽¹²⁾)	(⊠-66 ⑦~⑨)	(⊠-66 ⑦~⑨)	

表-32 試験ケース

(2) 試験手順と方法

a) 定着アンカーのセット

試験は、枕版を想定したコンクリート版(図-66)に、 実際に施工する際と同一寸法のφ78の孔を削孔した後、 エポキシ樹脂材料は写真-13、モルタルは写真-14に示す 方法により材料を練混ぜた後に、写真-15、写真-16に示 す方法により材料を注入した.アンカー部定着用材料は、 表-33に示すものを使用した.

写真-13 エポキシ樹脂練混ぜ状況

写真-14 モルタル練混ぜ状況

写真-15 エポキシ樹脂注入状況

写真-16 エポキシ樹脂注入状況

写真-17 アンカー固定状況

写真-18 アンカー設置完了

材料名	主成分	用途	メーカー	比重
ボンド E2300J	エポキシ樹脂	土木建築用低粘度型 エポキシ樹脂	コニシ(株)	1.2±0.10
キューテックス Type-A	特殊セメント 無機系	セメント系 アンカーボルト定着材	電気化学工業㈱	2.85

表-33 アンカー部注入材料

b) ボルト締結力の経時変化測定試験

ボルト締結力の経時変化測定試験の概要を**写真-19**ならび図-67に示す.

試験は、アンカー部に埋め込んだロングナットを介し て、M30 ボルトをひずみ管理により所定の締結力(40kN) までスパナにより手動で導入し、その後一定の時間間隔 でひずみを計測し、ボルト締結力の経時変化を測定した. 今回の試験では、走行載荷試験を行った際に使用したボ ルトを使用した.試験前には、ボルトの荷重-ひずみの 関係を再確認するために、センターホールジャッキを用 いて、写真-20 に示すような方法でボルトのキャリブレ ーションを行い、ボルトの締結力と発生ひずみの関係(図 -68) を確認した.

c) アンカー部の引抜き試験

アンカー部の引抜き試験の概要を図-69 に、引き抜き 試験の状況を写真-21 にそれぞれ示す.本試験は、材齢7 日経過したアンカーに対して、センターホールジャッキ を用いて載荷した.前述の PC 版と緩衝版との連続性を 確認するための静的載荷試験では、ボルトに 5kN~40kN の締結力を導入した供試体に対して、載荷に伴うボルト 張力の変動が 10kN 程度に収まっていること、走行載荷 試験時のボルト張力の振幅も 20kN 程度で収まっている ことから、本試験は、ボルト締結力の 3 倍である 120kN まで 3 回の繰り返し加力を実施するとともに、そのうち の 1 ヶ所はボルト降伏荷重相当(170kN)まで載荷した.

なお載荷荷重はロードセルにより、基部に発生する変 位は**写真-22**に示すような方法により測定した.

写真-19 ボルト設置状況

写真-20 ボルトキャリブレーション状況

図-68 キャリブレーション結果

図-69 引抜き試験の概要

写真-21 引抜き試験状況

写真-22 変位測定状況

(3) 試験結果と考察

a) ボルト締結力の経時変化測定試験の結果

材齢1日において締結力を導入してからの経過時間と ボルトひずみの変化量を測定した結果を表-34 ならびに 図-70に、材齢7日において締結力を導入してからの経 過時間とボルトひずみの変化量を測定した結果を表-35 ならびに図-71にそれぞれ示す.表-34,表-35に示す結 果は、それぞれ締結力を導入してから2時間~2時間半 程度の測定後の値を示す.

アンカー定着用材料にエポキシ樹脂を用いた場合は, 材齢1日でボルトに40kNの締結力を導入しても締結力 の減少が著しく,90%以上の締結力の減少が認められた. 一方,アンカー定着用材料にモルタルを用いた場合は, ボルト締結力の減少が10%程度に収まった.

材齢7日で40kNの締結力を導入した場合は、エポキシ樹脂を用いた場合でもボルト締結力の減少が最大で11%程度、モルタルの部分は6%程度に収まった.

今回の実験結果より、走行載荷試験を実施する際にア ンカー定着用材料を注入した初期段階でボルト締結力が 著しく低下した要因は、定着用材料の影響であることを 確認した.また両材料とも、材齢7日でボルトに締結力 を導入した場合は、40kNのボルト締結力に対して減少量 は10%程度であることを確認した.

b) アンカー部の引抜き試験の結果

アンカー定着用材料としてエポキシ樹脂ならびにモ ルタルを使用し,120kNまで加力したときの荷重と基部 の変位の結果を図-72に,ボルト降伏荷重の170kNまで 載荷したときの荷重と基部の変位の結果を図-73にそれ ぞれ示す.

図-72 に示す 120kN までの繰返し試験の結果より, エ ポキシ樹脂, モルタルともに荷重-変位の挙動は比例関係 にあり, 特に大きな変化は認められなかった. またアン カー部分及び周辺のコンクリートにも変化も認められな かった. なお 120kN 加力時の基部の変位は, エポキシ樹 脂は平均 0.5mm 程度, モルタルの変位は平均 0.3mm 程 度であった.

図-73 に示すボルト降伏荷重(170kN)までの加力も 120kN までの加力と同様に,荷重-変位の挙動は比例関係 にあり,アンカー部分および周辺のコンクリートにも変 化は認められなかった.

今回の実験結果より,エポキシ樹脂,モルタルともに, アンカー部に必要な耐力は,十分に有しているものと考 えられる.現場において樹脂を注入する箇所が湿潤ある いは水中環境であることを考えると,水中環境下におい ても施工が可能なエポキシ樹脂が有利と考えられること から、後述する走行載荷試験においてエポキシ樹脂材料 を採用し、繰り返し荷重に対しても問題ないことを実証 したが、モルタル材料についても、繰返し荷重に対して の挙動を確認する必要があるものと考えられる.

ボルトNo.	導入時ひずみ (µ)	経過時間	ひずみ (μ)	ひずみ減少量 (_μ)	減少率 (%)
樹脂No.1	273	2:27	7	266	97%
樹脂No.2	281	2:26	10	271	96%
樹脂No.3	283	2:25	24	259	92%
モルタルNo.1	270	2:23	233	37	14%
モルタルNo.2	281	2:16	250	31	11%
モルタルNo.3	286	2:15	262	259	8%

表-34 材齢1日後のボルト締結力試験の結果

ボルトNo.	導入時ひずみ (**)	経過時間	ひずみ	ひずみ減少量	減少率 (%)
	(μ)		(μ)	(µ)	(%)
樹脂No.1	280	2:16	248	32	11%
樹脂No.2	281	2:15	250	31	11%
樹脂No.3	288	2:02	266	22	8%
モルタルNo.1	281	2:11	263	18	6%
モルタルNo.2	274	2:05	258	16	6%
モルタルNo.3	277	2:04	265	12	4%

表-35 材齢7日後の締結力試験の結果

衣─30 供訊伴銷几						
No. ゴ	ゴノの運産	ゴムの厚さ	ゴムの大きさ	ゴムと座金の		
	コムの硬度	(mm)	(mm)	接着		
1	80	5	φ 90	なし		
2	60	3	φ 90	なし		
3	60	5	$\phi \ 80$	なし		
4	80	5	φ 80	なし		
5	60	5	φ 90	あり		
6	80	5	φ 90	あり		
走行載荷試験	60	5	φ 90	なし		

表-30 供訊件諸元

表-37 締結力導入試験(緩衝ゴム改良)

ボルト No	導入時ひずみ	怒過時間	ひずみ	ひずみ減少量	減少率
AUX 110.	(µ)		(µ)	(µ)	(%)
No.1-1	269	15:30	191	78	29.0
No.1-2	226	15:30	167	59	26.1
No2-1	303	0:24	130	173	57.1
No2-2	286	0:24	128	158	55.2
No.3	276	0:24	126	150	54.3
No.4	295	0:24	156	139	47.1
No.5	308	15:30	253	55	17.9
No.6	315	15:30	268	47	14.9

3.10 緩衝ゴム変形によるボルト締結力減少量確認試験

(1) 試験概要

本試験では、走行載荷試験時のボルト締結力の導入に おいて、締結力の低下の割合が高い緩衝版部の締結金具 を対象に、図-74 に示す座金①と座金②の間に挟み込ん だ緩衝ゴムのゴム硬度・厚さ・大きさ・座金との接着と いう改良を加えた場合に、時間の経過に伴うボルト締結 力の減少量の測定を行った.試験パラメータを表-36 に 示す.

締結力の経時変化の測定は、ボルトに貼付したひずみ ゲージにより行った. なおボルト締結力は、軸力 40kN に相当する 280μを目標に導入した. ゴムと座金の接着 は、市販されている瞬間接着剤を使用した.

(2) 試験結果と考察

締結力導入後の経過時間とボルトひずみの関係を図 -75 に、各試験シリーズのひずみ減少量をまとめた結果 を表-37 にそれぞれ示す.なおここに示すボルト締結力 の減少率は、緩衝ゴムの影響に加え、アンカー部の影響 による締結力の減少も含んだ値を示す.

走行載荷試験時に実施した構造に対して、ゴムの硬度 を80と硬くしたNo.1は、硬度60の場合と同じくひずみ は約26~29%減少した.ゴムの厚さを3mmに薄くした No.2は、締結力導入時に比べて55~57%ひずみが減少し た.横方向への変形を抑える効果を期待し、ゴムの直径 を座金より10mm小さくしたNo.3、No.4は、それぞれ締 結力導入時に比べて54%と47%のひずみが減少した.横 方向への変形を抑える効果を期待し、ゴムと上下の座金 を接着剤により一体化したNo.5、No.6は、それぞれ締結 力導入時に比べて18%と15%とひずみの減少量が小さく、 締結力の減少の抑制に大きな効果があると考えられた。

今回の実験結果より、緩衝ゴムの影響による締結力の 減少を抑制するための対策としては、緩衝ゴムの上下面 を接着剤にて接着し、一体化する構造が最も効果があり、 その場合ゴム変形とアンカー樹脂の変形を含む締結力の 減少量がゴムの硬度が60で18%、ゴムの硬度が80で15% であり、ゴム硬度が締結力の減少に及ぼす影響は小さか った.よって実施工の際に使用する緩衝ゴムは硬度60 とし、ゴムと座金の界面は接着剤を使用し、座金と緩衝 ゴムを一体化した構造を用いるものとする.

図-75 締結力導入後の経過時間とボルトひずみの関係

3.11 トルク値のばらつき確認試験

(1) 試験概要

4 章に示す走行載荷試験におけるボルト締結力の管理 は、ボルトに貼付したひずみゲージにより行った.しか し実施工でひずみゲージにより締結力を管理することは 現実的ではないことから、ここではボルト締結力の管理 方法として、トルクにより管理する手法について検討し た.

締付トルクと軸力の関係に関しては,以下の関係が成 り立っている.

T=K・d・N ここに, T: 締付トルク(N・m), K:トルク係数, d:ボルトの呼び径(m),

N:軸力(N)

ここでトルク係数 K は,一般に 0.2 程度の値が示され ているが,潤滑剤,被締付体の機械的要因,環境,締付 速度,ねじの繰返し使用等の影響により変動する傾向に ある.

本試験では,走行載荷試験を行った図-76 に示す PC 版4ヶ所(図-76のNo.1, No.2, No.7, No.8),緩衝版4 ヶ所(図-76のNo.3, No.4, No.5, No.6)の計8ヶ所のボルト孔を使用し,トルクレンチを用いて締め付けトルクの試験を行った.

試験手順は、トルクレンチを用いてトルク値を 60N・ m(軸力 10kN)ごとに増加させながらひずみを計測し、 360N・m(軸力 60kN)までの締結力を導入した.この作 業をボルト孔 No.1~No.8に対して 5回ずつ行い、トルク 値とひずみ(軸力)の関係を測定した.なおトルク値 60N・mは、トルク係数 K=0.2、ボルトの径 d を 0.03(m)、 軸力 N=10000(N)として算出した値である.

(2) 試験結果と考察

No.1~No.8 のボルト孔につき,それぞれ1回目から5 回目までの試験に対してトルク値とボルトひずみの関係 を示したグラフを図-77 に示す.

本試験に示すトルクとひずみの関係より,全ての試験 においてトルク値と鋼材ひずみは比例の関係にあること を確認した.

この結果をもとに、トルク値と鋼材ひずみの近似曲線 を算出し、40kN(ボルトひずみ280µ)の締結力に相当 するトルク値を試験毎に算出した結果を図-78 に示す. 図中に示す太線は、同一ボルト孔に対して5回試験をし た際の平均値を、点線は平均値に対して+10%、-10% に相当する値を示す.

図に示す結果より、同一ボルト孔に対しては、40kNの 締結力を導入した際のトルク値のばらつきは、平均値に 対してほぼ10%以内(4kN)に収まる傾向にあった.しかし ボルト孔 No.4, No.8 は、他の箇所に比べてばらつきが大 きく、40kN に相当するトルク値も大きい傾向にあった. この理由は、今回の実験ではアンカー部に充てんするエ ポキシ樹脂の量が多く、ボルトをセットした段階でエポ キシ樹脂がロングナットのねじ部分に浸入し、ボルトが 回りにくくなったためトルク値が上昇し、同一締結力に 対してのトルク値のばらつきも大きくなったものと考え られえる.

図-79 は、各ボルト孔の 40kN(ボルトひずみ 280 μ) の締結力に相当するトルクの平均値をまとめたものであ る. 左図はボルト孔 No.1~No.8 全てのデータに対しての トルク値-ひずみ関係図を示し、右図はエポキシ樹脂がね じ山に浸入し、ねじ山の状態が変化した No.4、No.8 のデ ータを削除した値を示す.また図中に示す太線は、デー タの平均値を、点線は平均値に対して+20%、-20%に 相当する値を示す.

図に示す結果より、ボルト孔が異なる場合は、40kNの 締結力を導入するためのトルク値のばらつきも大きくな る傾向を示した.但し、エポキシ樹脂の影響によりねじ 山がおかしくなった No.4 と No.8 を除けば、そのばらつ きはほぼ 20%程度(8kN)以内に収まる傾向にあった.

今回の実験結果より、同一ボルト孔に対して5回の締結力の導入試験を実施した結果,40kNの締結力に対してのトルク値のばらつきは10%程度以内であること、ねじ山にエポキシ樹脂が浸入した No.4, No.8 を除いたボルト孔の全ての値に対してのトルク値のばらつきは、20%程度以内であった.

図-76 締結ボルト位置図

[No.1]

400 350 300 (F 250	*	400 300 (2 250	400 300 12 200 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	400 300 6 250	400 No.1 5回目 300
0002200 100 50					
[No.2]	200 300 400 500 ζλ-ξ ² # ₂ (μ)	0 100 200 300 400 500 D.∜⊅(µ)	0 100 200 300 400 50 ∪₹∌(μ)	0 0 100 200 300 400 500 U∜⊅(µ)	0 200 300 400 500 U∜#A(µ)
	200 100 400 100 D/Th(g)				500 No.2 500 Ξ 100 - 100 - 100 - 0 100 0 100 0 100 0 100 0 100 0 100
[No.3]	/•	400 350 No.3 2回目	400 350 No.3 3回目	No.3 4回目	400 350 No.3 5回目
	200 300 400 500 UFFA(µ)				
(No.4)		400 wo.4 2回目	400 No.4 3回目	₩ No.4 4回目	400 No.4 5回目 人
	200 300 400 500 UTH(x)				
(No.5)		⁴⁰⁰ No.5 2回目	400 No.5 30 E	400 No.5 40 E	400 No.5 5回目
	200 300 400 500 D/FA(g)				
[No.6]	1	400 No.6 2回日	400 No.6.30E	400 No.6 40 E	400 No 6 5回日
	200 200 400 500 UTA(x)				
(No.7)		400 No.7 2回目	400 No.7 301	400 No.7 40 E	400 No.7 5回目
	200 100 400 500 UFA(p)				
[No.8]		1			[
	200 400 500				

図-77 トルク-ひずみ関係図

表−38 ボルト締結力の減	砂に及ぼす影響
----------------------	---------

	1	2	3	4
締結力減少の要因	緩衝ゴム・ アンカー樹脂の変形	トルクのばらつき	PC 版の温度伸縮	PC 版と路盤との なじみ
緩衝版	40kNの締結力に対し て最大 20%程度(8kN)	40kN の締結力に対し て 20%(8kN)	_	最大で 10kN 程度
РС版	ゴムの面圧が緩衝版 に比べて小さいため, 上記以下(8kN)	40kN の締結力に対し て 20%(8kN)	最大で 10kN 程度	最大で 10kN 程度
備考	3.10 緩衝ゴム改良試 験の結果より	 3.11 トルク値のばら つき確認試験の結果 より 	3.4 PC 版の温度伸縮 を模擬したスライド 試験(2)の結果より	走行載荷試験の 結果より

3.12 ボルト締結力の管理方法

今回の実験より,ボルト締結力の減少に及ぼす影響を まとめた結果を表-38 に示す.

締結力減少の要因としては、①緩衝ゴム・アンカー樹 脂の変形、②トルクのばらつき、③PC版の温度伸縮に伴 う版の移動による変動、④航空機荷重の作用に伴う PC 版と路盤のなじみ(荷重作用により路盤が圧密されるこ とによるとのなじみ)、による影響が考えられた.

①の緩衝ゴム・アンカー樹脂の変形による締結力の減少 は、40kNの締結力に対して最大で8kN程度の低下であった.

②のトルク値のばらつきは、同一ボルト孔に対して5回の試験を行った結果,40kNの締結力に対して10%程度、ボルト孔全体に対して20%(8kN)程度の低下であった。
 ③の PC 版の温度伸縮に伴うボルト締結力の変動は、スライド試験(2)の結果より最大で10kN 程度の低下であった。

④の PC 版と路盤とのなじみは、走行載荷試験の結果より最大で 10kN 程度の低下であった。

このうち③については、締結金具の取り付け方法、PC 版の温度伸縮による移動量等により変化することが予想 されること、④については走行載荷試験場と実際に何回 も繰り返し走行が行われた現地のエプロン舗装版下では 状況が異なることが予想される.

またボルトに過度な締結力を導入した場合は,PC版の 温度伸縮に対してボルトが変形してしまう可能性がある こと,ボルト締結力が PC版と枕版に生じる隙間に及ぼ す影響については,PC版と緩衝版の連続性を確認するた めの静的載荷試験の結果より,ボルト間隔が 2.2mの場 合,ボルト締結力が 40kN でも 20kN でもほぼ同等な値で あること(図-50),走行載荷試験の結果より,ボルト間 隔が 1.1m, 2.2mの場合,ボルト締結力が 30kN 程度に低 下していても,PC版と枕版に生じる隙間に大きな差は生 じなかったことから,ボルト締結力が 20~30kN 程度に 低下してもポンピング現象,グラウト材の粉砕化が生じ る可能性は非常に小さいものと考えられる.

そこでボルト締結力の管理は、ボルト締結力の減少が 確実な①の緩衝ゴム・アンカー樹脂の変形による減少量 (8kN)に対しての締結力を余分に与え、締結力導入から1 週間後に①による締結力の減少を確認するため、半年程 度経過後には③PC版の温度伸縮,④航空機の繰り返し載 荷による PC版と路盤のなじみによる締結力の減少を確 認するため,40kNの締付力に設定したトルク値でボルト 締結力の点検を行う方法を提案する.

なおアンカー部の材料としてエポキシ樹脂を使用す る場合は、最低でも1週間は材料の養生を行った後に締 結力を導入する必要があるが、この養生期間はエプロン 供用に影響を及ぼすものではない.

※締結ボルトの直径が変更する場合,ボルトのねじ山,締結金具の構造が変更に なった場合は,適宜試験を実施する.

図-80 ボルト締結力の管理フロー

- 91 -

3.13 締結金具の構造・取り付け方法およびボルト締結力 管理方法のまとめ

一体化構造を既設 PC 舗装版に採用するために, 締結 金具の構造・取り付け方法ならびにボルト締結力の管理 方法についてまとめた結果を以下に示す.

(1) 締結金具の構造・取り付け方法

締結金具は、全ねじボルト、ロングナット、アンカー 定着用材料(エポキシ樹脂あるいはモルタル系材料)、グ ラウト止めパッキン、カセット、カセットと既設舗装版 を一体化させるためのグラウト材、座金、緩衝ゴム、ボ ルト、蓋から構成した.

実施工を想定したケースにて締結金具の取り付けを 行ったが、基本的には問題なく作業を行うことができた. 但しボルトのアンカー定着用材料にエポキシ樹脂を用い てボルト締結力を導入する場合には、材料を注入してか ら1週間は養生する必要がある.

アンカー定着用材料としてエポキシ樹脂とモルタル 系材料を使用した引抜き試験を行った結果,ボルト降伏 荷重(170kN)相当の荷重に対しても,特に異常は認められ なかった.

緩衝ゴムと座金を接着し一体化することにより、ゴム 変形による締結力を減少することが可能である.

(2) ボルト締結力の管理方法

ボルト締結力の減少に及ぼす要因は、①緩衝ゴム・ア ンカー樹脂の変形、②トルクのばらつき、③PC版の温度 伸縮による版の移動による影響、④PC版上に繰り返し航 空機荷重が作用することによる PC版と路盤とのなじみ による影響 があり、①、②はそれぞれ最大で8kN程度、 ③、④はそれぞれ最大で10kN程度の減少が考えられる.

一方で、ボルトに過度な締結力を導入した場合には、 PC版の温度伸縮によりボルトが変形する可能性がある こと、また PC版と緩衝版の連続性を確認するための静 的載荷試験の結果より、ボルト間隔が2.2m程度であれ ばボルト締結力が20kNでも40kNでもPC版と枕版との 間に生じる隙間はほぼ同等、走行載荷試験の結果でも、 ボルト締結力が30kN程度に低下しても、PC版と枕版と の間に生じる隙間はほぼ同等であることが確認された.

そこでボルト締結力に関しては, 締結力導入時に 40kN の締結力の 1.2 倍(①緩衝ゴム・アンカー樹脂の変形に よる締結力の減少量を考慮)を導入し, その後1週間後 (①緩衝ゴム・アンカー樹脂の変形)と半年後程度(③ PC 版の温度伸縮による版の移動による影響, ④PC 版上 に繰り返し航空機荷重が作用することによる PC 版と路 盤とのなじみによる影響)を目安に、トルクレンチに 40kNの締結力相当のトルク値を設定して、ボルトの点検 を行う方法を提案する.

3.14 まとめ

場所打ち PC 舗装版の版端部の「ポンピング現象」を 改善するための構造的対策として, PC 版の端部と緩衝版 をそれぞれ枕版と固定することにより, PC 版端部と緩衝 版を一体化する構造について,

- ① 温度変化による PC 版の伸縮が、版端部にボルトを配置しても問題なく作用するか.
- ② ボルト締結力,配置間隔が,緩衝版とPC版の一体化 構造に及ぼす影響
- ③ PC 版への締結金具の取り付け方法ならびにボルト締 結力の管理方法

についての検討を行った.その結果,以下の結論が得ら れた.

①については、PC版の伸縮を模擬したスライド試験を 実施した結果,締結金具内の滑り面にテフロン加工を施 した材料を使用すること,ボルト径は締結力,せん断力 の検討に加えて曲げ変形を考慮したボルト径を用いるこ とで対応できることを確認した.

②については、PC 版端部を模擬した供試体を製作して 静的載荷試験を行い、PC 版が枕版に全面的に支持された 構造であれば、ボルトがない状態においても PC 版と枕 版との間に生じる隙間の値は小さいこと、PC 版が枕版に 支持されていない状況、載荷面付近の PC 版下に空隙が ある状況では、締結ボルトを配置することによる PC 版 と緩衝版の一体化の効果が確認できた.またボルトの配 置間隔が 1.1m の場合は、ボルト締結力によらず一体化 の効果があること、ボルト間隔が 2.2m、3.3m と広くな るに従い、ボルト締結力により PC 版と枕版との間に生 じる隙間に差が生じる傾向を示した.

③については、4 章の走行載荷試験を実施する際に締 結金具の取り付け試験を行い、基本的には問題なく作業 を行うことができた.

ボルト締結力の減少に及ぼす要因は,(1)緩衝ゴム・ アンカー樹脂の変形,(2)トルクのばらつき,(3)PC版 の温度伸縮による版の移動による影響,(4)PC版上に繰 り返し航空機荷重が作用することによるPC版と路盤と のなじみによる影響 があるため,これらの影響を考慮 したボルト締結力の管理方法を提案した.