ISSN 1346-7328 国総研資料 第456号 平成20年3月

国土技術政策総合研究所資料

TECHNICAL NOTE of National Institute for Land and Infrastructure Management

No. 456

March 2008

空港エプロンPC舗装版の補強構造に関する研究

坪川将丈 水上純一 江崎徹 小林雄二 吉松慎哉 青山敏幸 阪上徳行 野中聡

Study on Structural Improvement for Airport Prestressed Concrete Pavement

Yukitomo TSUBOKAWA, Junichi MIZUKAMI, Toru ESAKI, Yuji KOBAYASHI Shinya YOSHIMATSU, Toshiyuki AOYAMA, Noriyuki SAKAGAMI, and Satoru NONAKA

National Institute for Land and Infrastructure Management Ministry of Land, Infrastructure, Transport and Tourism, Japan

空港エプロンPC舗装版の補強構造に関する研究

坪川将丈*・水上純一**・江崎徹***・小林雄二****・ 吉松慎哉*****・青山敏幸*****・阪上徳行*****・野中聡*****

要 旨

東京国際空港西側旅客ターミナル地区エプロンに用いられている PC 舗装において,航空機の走行 に伴い膨張目地部から水が噴出する現象(ポンピング現象)が確認された.このポンピング現象を防 止することを目的として,空港 PC 舗装の補強構造について検討した.対象とする補強構造としては, 高圧の噴出水の噴き上げを防止するための新たな伸縮目地装置,およびポンピング現象の原因と考え られる PC 版端部とその下部の枕版との相対変位を低減するための締結ボルトによる PC 版一枕版の 一体化構造である.この二種類の補強構造について,室内試験,走行載荷試験,FEM 解析により, その適用性を検討した.

その結果,以下の結論が得られた.

- (1) 伸縮性能,段差吸収性能,荷重支持性能に優れた伸縮目地装置を開発した.
- (2) 締結ボルトにより PC 版端部と枕版を締結することにより,航空機走行時の PC 版端部-枕版間の 相対変位量を抑制でき、ポンピングなどが生じにくい状況とすることが出来る.また、ボルトの 配置間隔については、40kN 程度のボルト締結力を導入することにより、ボルト間隔を 2.2m とし た場合でも、1.1m とした場合と同等の効果が得られる.
- (3) ボルト締結力が減少する要因を明らかにし、これらの要因を考慮したボルト締結力の管理方法を まとめた.

キーワード: PC舗装, ポンピング, ボルト締結構造, 伸縮目地装置

^{*} 空港研究部主任研究官

^{**} 空港研究部空港施設研究室長

^{***} 九州地方整備局鹿児島港湾・空港整備事務所 (元・空港施設研究室)

^{****} 空港研究部空港施設研究室

^{***** (}株)ピーエス三菱

^{〒239-0826} 神奈川県横須賀市長瀬 3-1-1 国土交通省国土技術政策総合研究所

電話:046-844-5034, Fax:046-844-4471, E-mail:tsubokawa-y92y2@ysk.nilim.go.jp

Study on Structural Improvement for Airport Prestressed Concrete Pavement

Yukitomo TSUBOKAWA^{*}, Junichi MIZUKAMI^{**}, Toru ESAKI^{***}, Yuji KOBAYASHI^{****}, Shinya YOSHIMATSU^{*****}, Toshiyuki AOYAMA^{*****}, Noriyuki SAKAGAMI^{******} and Satoru NONAKA^{******}

Synopsis

Pumping due to aircraft running near expansion joint of prestressed concrete pavement was confirmed at apron area in Tokyo International Airport. To prevent the pumping, we verified structural improvement for prestressed concrete pavement. One structural measure is new equipment for expansion joint to prevent water comes up from joint. Another is to connect the PC slab with joint sleeper slab by bolt to decrease relative displacement between these slabs. For the purpose of clarifying verification of these two structural measures, laboratory test, accelerated pavement test and FEM analysis were conducted.

As a result, following conclusions were obtained.

- (1) New equipment is developed for expansion joint. The performances of this equipment concerning to expansion, contraction, faulting, load capacity are superior to those of standard rubber equipment.
- (2) By connecting PC slab with joint sleeper slab, relative displacement between these slabs can be decreased and pumping can be prevented. The effectiveness of 2.2 m spacing bolts is almost same as that of 1.1 m spacing bolts if bolt tensile force is 40kN.
- (3) The causes of decrease of bolt tensile force are clarified, and maintenance method of bolt tensile force is proposed.

Key Words: prestressed concrete pavement, pumping, bolt connecting slabs, equipment for expansion joint

^{*} Senior Researcher, Airport Department

^{**} Head, Airport Facilities Division, Airport Department

^{**} Kagoshima Port and Airport Construction Office, Kyushu District Construction Bureau

⁽Former Research Engineer, Airport Facilities Division, Airport Department)

^{*****} Research Engineer, Airport Facilities Division, Airport Department

P.S. Mitsubishi Construction Co., Ltd.

National Institute for Land and Infrastructure Management, Ministry of Land, Infrastructure, Transport and Tourism 1-1, Nagase 3, Yokosuka 239-0826, Japan

Phone: +81-46-844-5034, Fax: +81-46-844-4471, E-mail: tsubokawa-y92y2@ysk.nilim.go.jp

目 次

1. はじめに	1
2. 伸縮目地構造の検討・・・・・・	2
2.1 伸縮目地構造の設計条件	2
2.2 伸縮目地構造案	4
2.3 基礎試験 1 概要	5
2.4 基礎試験 1 結果	9
2.5 基礎試験 2 概要	13
2.6 基礎試験 2 結果	19
2.7 まとめ	30
3. 締結ボルト構造の検討	33
3.1 FEM 解析に基づく一体化構造の効果に関する検討	33
3.2 PC版の温度伸縮を模擬したスライド試験(1)	37
3.3 スライド試験(1)結果	41
3.4 PC版の温度伸縮を模擬したスライド試験(2)	47
3.5 スライド試験(2)結果	50
3.6 静的載荷試驗······	54
3.7 静的載荷試験結果	62
3.8 締結金具の構造・取り付け方法およびボルト締結力管理方法	69
3.9 アンカー部の材料変形によるボルト締結力減少量確認試験	77
3.10 緩衝ゴム変形によるボルト締結力減少量確認試験	86
3.11 トルク値のばらつき確認試験	87
3.12 ボルト締結力の管理方法	90
3.13 締結金具の構造・取り付け方法およびボルト締結力管理方法のまとめ	92
3.14 まとめ	92
4. 走行載荷試験による検証	93
4.1 PC版舗装の製作及び設置	93
4.2 PC版上の走行載荷試験	09
4.3 考察	17
4.4 まとめ	19
5. 結論	20
6. おわりに	20
参考文献	20
付録	21

1.はじめに

東京国際空港西側旅客ターミナル地区エプロンに用 いられている PC 舗装において,航空機の走行に伴い膨 張目地部から水が噴出する現象(ポンピング現象)が確 認された.この噴出水は,水とともに小石や細粒化した グラウト材等の異物を吹き上げるため,航空機のジェッ トエンジンが噴出物を吸い込む可能性があり,問題とな った.

当該鋪装は,縦100m,横80m程度を一つのユニット とする PC 舗装版が多数並べられた構造となっている. PC 舗装版は,建設終了後も沈下の継続する埋立て地盤上 で施設閉鎖が不要で補修が可能な唯一のものである.こ の舗装では,隣り合う PC 舗装版の間には 2m 程度のスペ ースが必要となり,その部分には細長い PC 舗装版(緩 衝版)が施工されている.緩衝版と PC 舗装版端部には その下部にコンクリート製の枕版が設置されており,両 者の間の段差を防ぐ構造となっている.また,PC 舗装版 が長大なため年間気温の変化によって PC 舗装版の伸縮 が大きくなることから,PC 舗装版と緩衝版の間には膨張 目地が設けられている.目地には弾性材料(ゴムガスケ ット)が設置されており,雨水が PC 舗装版下へ浸入す ることが防止されている.

しかし,供用後 10 年ほど経過して,地盤の不同沈下 の進行,目地材の防水機能の衰え等が生じたことから, エプロンの一部では雨水が PC 舗装版下へ浸入すること となった.浸入した雨水は降雨後数日間 PC 舗装版下に 滞水する状態となる.PC 舗装版と緩衝版を鉄筋等で連結 することは構造上できないことから,この上を航空機が 通過するときには PC 舗装版端部がたわみ,その後航空 機が緩衝版へ移動したときには PC 舗装版端部が跳ね上 がる.この現象が繰り返されることにより,PC 舗装版下 に施工されたグラウト材料が細粒化する現象が進行し, これが滞留している水と一緒になって,航空機の通過時 に目地から上方へ吹き上げる,いわゆるポンピング現象 となったと考えられる.

ポンピング現象を防止する目地構造としては、八谷ら ¹⁾によるプレキャストプレストレストコンクリート (PPC)版舗装の連結部を対象とした圧縮ジョイントが開 発されているが、この圧縮ジョイントは今回のような膨 張目地部での使用を想定していないことから、適用する のは困難であると考えられる.

以上のことから, PC 舗装の膨張目地部におけるポンピング現象を防止することを目的として,空港 PC 舗装の 補強構造について検討した. 補強構造の一つ目は、高圧の噴出水の噴き上げを防止 するための新たな伸縮目地装置の開発である.この目地 装置には、目地構造が設置される PC 版の温度伸縮や段 差に追従する機能、上載荷重を支持する機能、および構 造細目上・施工上の制限を満足することが求められるた め、これらの要件を満足する伸縮目地装置を検討した.

補強構造の二つ目は,締結ボルトによる PC 版端部と その下部にある枕版との一体化構造である.前述したグ ラウトの細粒化の原因としては,航空機の走行により PC 版端部とその下部の枕版の相対変位が大きくなり,グラ ウトが大きな繰返し圧縮に曝されていることが考えられ る.グラウトが細粒化すると,当該箇所に空隙が発生し, ポンピング現象が発生する原因となる.そこで,PC 版端 部と枕版間の相対変位を低減させるために,PC 版端部と 枕版を締結ボルトにより固定することを考えた.本報告 では,温度変化による PC 版の水平伸縮が締結ボルトに より阻害されないかの検討,ボルト締結力,ボルトの配 置間隔が,PC 版と枕版の一体化構造に及ぼす影響につい ての検討,締結金具の構造・取り付け方法ならびにボル ト締結力の管理方法等について検討した.

これらの検討は、まず各種の室内試験および FEM 解 析により基本的な特性を把握し、次に国土技術政策総合 研究所所有の航空機荷重載荷装置を使用した走行載荷試 験により適用性の検討を実施した.

2. 伸縮目地構造の検討

目地構造による対策として,図-1に示すようなPC版 と緩衝版との目地遊間から噴出する間隙水を鉛直方向に 噴出させない目地構造2案について検討した.

図-1 間隙水の噴出防止イメージ図

目地構造の検討にあたっては、目地構造が設置される PC版の温度伸縮や段差に追従する機能,上載荷重を支持 する機能,および構造細目上・施工上の制限を満足させ る必要があるため,所定の設計条件を設定して試験を行 った.

2.1 伸縮目地構造の設計条件

目地構造の検討にあたり設定した設計条件を以下に 示す.表-1に設計条件一覧を示す.

版のはつり可能深さΔh

目地構造の設置に必要な深さ(PC版のはつり可能深 さ)は、PC鋼材定着具を傷めない深さ(40mm)以下と した.

② 設計移動量 △1

PC版伸縮時の理論上の不動点は中央であるが,実際に は路盤との摩擦等の影響で中央から離れる可能性が高い. さらに15番・16番スポット以外の他区域への適用も考 慮して,PC版の長さを設定した.なお,安全をみて伸び 側・縮み側ともに全温度変化分の移動量を確保するもの とした.

 $\Delta 1 = \mathbf{K} \cdot \Delta \mathbf{T} \cdot \mathbf{B} = \pm 40 \text{ (mm)}$

K:コンクリートの線膨張係数 10×10⁻⁶ (1/℃)

- ΔT:温度変化 ±40 (℃)
- B: PC版の長さ 100,000 (mm)
- ③ 最大目地遊間量 Lmax

目地遊間量の標準値には,エプロン舗装部のAタイプ (ゴムガスケット)目地の値を適用した.

- $Lmax = L + \Delta l = 120 (mm)$
- L:目地遊間量の標準値 80 (mm)
- Δ1:設計移動量(②より) 40 (mm)
- ④ 緩衝版と PC 版の許容段差

目地構造は地盤沈下等により生じる緩衝版と PC 版の 段差を吸収する必要がある.よって,許容段差をエプロ ン部の設計基準(勾配),および出来形管理基準(段差) のいずれか大きい方の値に余裕量を与えた数値とした.

- ・設計基準:空港土木施設設計基準
 エプロン部勾配=1.0 (%)以下
- ・出来形管理基準:空港土木工事共通仕様書 目地における版の高さの差=2mm以下であるが,余裕 量を考え,5 mmと設定した.

この場合の勾配は,

- 最小遊間時:5/40×100=12.50 (%) > 1.0 (%)
- 最大遊間時:5/120×100=4.17(%) > 1.0(%)

⑤ 荷重条件

目地遊間部を走行する車両のうち,タイヤ接地形状が 最大目地遊間量よりも小さな小型車両は目地遊間部にタ イヤが脱落する可能性がある.

よって、目地構造遊間部の構造はこの荷重(Case 1)を支 持できる必要がある.一方、大型機種のタイヤ接地形状は 大きく、目地遊間部に脱落する可能性は極めて低いが、 最大目地遊間量と近い機種の荷重(Case 2)について安全 のため考慮する.また実構造物においては、航空機の走行 に伴う舗装版端部の損傷が報告されており、本目地構造 の検討においても航空機荷重(Case 3)を端部荷重として 考慮する.

・Case 1:小型車両

4.00-8-6PR(1) (JIS D 6401-1995;産業車両及び建設車両用タイヤ)

エプロン部を走行する小型車両として小型トーイン グトラクターやコンテナドーリー等が挙げられるが, 荷重条件に関する明確な基準書がない.よって,JIS に規定される空気圧およびタイヤ断面幅から,載荷形 状および荷重を設定した.

 ・Case 2:大型機種
 神鋼電機 TD-750 (空港舗装構造設計要領;トーイン グトラクターの諸元)
 空港舗装構造設計要領に記載されるトーイングトラ クターの諸元のうち,タイヤ接地形状が最大目地遊間 量と近い機種について荷重を考慮した.

・Case 3:航空機

ボーイング社 B-747-400 (空港舗装構造設計要領;航 空機の諸元)

走行載荷試験で載荷する航空機荷重と同一なタイヤ 接地圧を端部荷重として考慮する.なお,試験設備の 制約から載荷板は Case 2 と同一とした. ⑥ 施工性

現在供用中のエプロン部での施工を考慮し,施工時間 を離発着の無い夜間 4~5 時間に制限した.

⑦ 維持管理性

固定ボルトの緩み止め等により,点検業務の省力化を 図るとともに,リフトアップ工事に伴う一時撤去・破損 時の交換を考慮することとした.

\setminus	項	目	設計条	件	備考			
1	版のはつ	り深さ	最大 40	mm	PC鋼材定着部に損傷を与えない			
2	設計移動	量	± 40	mm	温度変化40℃, PC版の長さ100,000mm			
3	最大目地	遊間量	120	mm	標準時目地遊間80mm			
4	許容段差		5	mm	設計基準:1.0%以下 出来形管理基準:目地における版の高さの差2mm以下			
		Case1	$\sigma 1 = 0.725$	N/mm2	小型車両 (接地寸法 80mm×115mm)			
5	荷重 条件	Case2	$\sigma 2 = 0.590$	N/mm2	大型機種 (接地寸法130mm×220mm)			
		航空機 (接地寸法130mm×220mm)						
6	施工性 クローズすることなく、夜間4~5時間で作業できること.							
\bigcirc	維持管理性 点検頻度が少なく,交換が可能であること.							

表-1 設計条件一覧

2.2 伸縮目地構造案

(1) 第1案 目地構造

本目地構造は、目地遊間部の伸縮ゴムと、その両側の 不等辺山形鋼を加硫接着により一体化することでポンピ ング現象による水の噴出を防止する.図-3に目地構造概 要図を示す.

PC 版の温度伸縮による移動量は目地遊間部の伸縮ゴムが吸収し,目地遊間部に載荷される荷重は作業車程度の軽微な荷重を上側ゴムが,設計条件で設定する大きな荷重(Case 1, Case 2)は下側ゴムが支持する.なお,上側ゴムの表面形状は,作業者の躓き・落ち込み防止に配慮した.

目地構造と舗装版の固定は、皿ネジボルト・長ナット および補強筋付き平鋼、無収縮モルタルと舗装版との付 着を介して行うが、目地構造の位置調整が完了した段階 で、舗装版に固定した溶接アンカーと目地構造のアンカ 一筋を溶接して位置を固定する.長ナットは無収縮モル タル内に収めることにより、既設の鉄筋や PC 鋼材定着 具との干渉を考慮しなくてもよい構造とした.

試験に用いた供試体の長さは試作金型を用いた押し 出し成形により製作したため、皿ネジボルト間隔の2倍 の300(mm)とした.実製品は製造上の限界長さである 600(mm)を工場接合した3@600=1800(mm)を1ユニット とし、ユニット同士の接合は現場接合する計画とした. 据え付けは、目地遊間量を実構造物にあわせて調整(遊 間調整装置)し、高さ調整機構付きの仮固定治具により 固定して行う.交換は一体化された伸縮ゴムと不等辺山 形鋼の取替えにより行う.

(2) 第2案 目地構造

本目地構造は、目地遊間部全面を覆う鋼板(荷重支持板)によりポンピング現象による水の噴出を防止するとともに、目地遊間部に載荷される荷重(Case 1, Case 2)を支持する. 図-4 に目地構造概要図を示す.

荷重支持板は上面のゴム板と一体となって滑り板上 を移動し, PC版の温度伸縮による移動量は荷重支持板両 側のゴム可動部にて吸収する.

目地構造と舗装版の固定は,固定ボルトおよび打ち込 み式アンカーを介して行うが,打ち込み式アンカーと既 設鉄筋との干渉に備えてゴム板全長に渡って座グリを設 け,固定ボルトの位置を柔軟に変更できる構造とした. 座グリ部は据え付け完了後に充填材により平滑に仕上げ る.

ゴム板の据え付けは、目地遊間量の大小に関わらず標

準形状で行い,交換は一体化されたゴム板と荷重支持板 の取替えにより行う.

2.3 基礎試験1概要

基礎試験1は目地構造が設計で想定した伸縮挙動を示 すことの確認を目的に,各目地構造メーカーの試験所に て実施した.挙動確認の必須項目として伸縮性能・段差 吸収性能を挙げ,必要に応じて荷重支持性能確認試験を 実施した.

(1) 第1案目地構造に関する試験項目

a) 伸縮性能確認試験, 段差吸収性能確認試験

表-2 に供試体一覧を示す.本試験では, PC 版の温度 変化による伸縮挙動を日変化と年変化に分類し,それぞ れの移動量および繰り返し回数を設定した.

①日変化を想定した試験:伸縮性能・段差吸収性能

日変化は、温度変化量は小さいが繰り返し回数(年365 回×10年)が多いため、10tf 高速アクチエーターを用いて 移動量±35mm、繰り返し回数合計 6000 回、載荷速度 42mm/s、供試体数 1 体(No.1)として伸縮挙動試験を行っ た. なお、繰り返し回数 2000 回ごとに段差の有無を設定 し、段差吸収性能確認試験を同時に実施した. 写真-1 に 試験状況、図-5 に治具組立図を示す.

②年変化を想定した試験:伸縮性能

年変化は,温度変化量は大きいが繰り返し回数(年1回 ×10年)が少ないため、500kNアムスラー型万能試験機 および引張側・圧縮側の各専用治具を用いて、移動量± 40mm相当,載荷速度1mm/sとして,破壊伸縮量に至る まで載荷した.供試体数は,引張側・圧縮側の各3体(合 計6体)とした.写真-2に試験状況,図-6,図-7に引張 側・圧縮側それぞれの治具組立図を示す.

b) 荷重支持性能確認試験

表-3 に供試体一覧,図-8 に荷重支持性能確認試験に 用いた治具組立図を示す.本目地構造は,目地遊間部に 載荷される荷重に対して不等辺山形鋼と加硫接着した伸 縮ゴムが支持する構造であるため,加硫接着部の強度が 課題となった.よって,基礎試験2に先行して伸縮ゴム 部に対する荷重支持性能確認試験を実施した.試験は, ①目地遊間量を変化させた試験,およびその結果を踏ま えた②加硫接着部の安全性を確認する試験の2種類とし, 500kN アムスラー型万能試験機を用いて実施した.なお ②の試験については,後述する加硫接着部の接着長を伸 ばした改良型供試体についても実施した.

①目地遊間量を変化させた試験

荷重支持の面で不利となる目地遊間量を確認するため,目地遊間量を120mm・100mmの2水準に変化させ, 各3体(合計6体)について載荷試験を実施した.遊間 量 100mm のときの伸縮ゴム幅は 86mm であり, 設計条 件の Case 1 の接地長 80mm にほぼ相当する. 試験は, 載 荷板寸法 70mm×100mm, 載荷荷重 Case A (5.11kN=設 計条件 Case1 と同一接地圧), Case B (7.67kN) の 2 ケ ースとした (120mm: No.8~No.10 供試体, 100mm: No.11 ~No.13 供試体).

②加硫接着部の安全性を確認する試験

上記の試験結果より,目地遊間量を 120mm として, 旧型供試体 3 体 (No.14~No.16 供試体) および加硫接部 の接着長さを伸ばした改良型供試体 3 体 (図-9 参照, No.17~No.19 供試体) に対して試験を実施した.

試験は、載荷板寸法 80mm×115mm, 載荷荷重 Case C (設計条件 Case 1 相当 6.7kN), Case D (7.0kN), Case E (10.0kN), Case F (14.0kN) の4ケースとし、繰り返し 回数は各供試体に対して表-3の通り設定した.

表-2 伸縮性能確認試験·段差吸収性能確認試験供試体一覧

(1)日変化を想定した試験

4 <u>4</u> ⇒ 4 (+-		移動量		仍辛		繰り返	し回数		変位
供訊体	引張側	圧縮側	合計	权定	段差無	段差有	段差無	合計	速度
留 万	(mm)	(mm)	(mm)	(mm)	(回)	(回)	(回)	(回)	$(\rm mm/s)$
No. 1	+35	-35	70	5	2000	2000	2000	6000	42
1101.1	00	00	1.0	Ű	1000	1000	1000	0000	10

※ 測定項目:荷重・変位・外観

<u>(2)年変化を想定した試験</u>

/#L =+ /+-		移動量		矾辛		繰り返	し回数		変位
供訊体 釆 早	引張側	圧縮側	合計	权定	段差無	段差有	段差無	合計	速度
笛勺	(mm)	(mm)	(mm)	(mm)	(回)	(回)	(回)	(回)	(mm/s)
No. 2	1.00				1			1	1
No.3	+29 DJ F		(80)		1			1	1
No. 4	以 上				1			1	1
No. 5		E 1			1			1	1
No.6		-91 DJ F	(80)		1			1	1
No.7		以上			1			1	1

※ 測定項目:荷重・変位・外観

※ No.2~No.7の移動量は、目地遊間部の標準外寸法が91(mm)のため、

引張側+29(mm)【91+29=120mm】, 圧縮側-51(mm)【91-51= 40mm】とした.

写真-1 伸縮性能確認試験状況(日変化)

図-5 伸縮性能確認試験 治具組立図(日変化)

写真-2 伸縮性能確認試験状況(年変化)

図-6 伸縮性能確認試験(年変化)治具組立図(引張側)

図-7 伸縮性能確認試験(年変化)治具組立図(圧縮側)

表-3 荷重支持性能確認試験供試体一覧

(1)目地遊間量を変化させた試験

出計は	載荷板	/#+⇒≠	· /+-	目地		載荷	荷重	
供訊件 采 旦	寸 法	田田田	別	遊間	Cas	e A	Cas	e B
笛与	(mm)	1里		(mm)	(kN)	(回)	(kN)	(回)
No.8					5.11	1	7.67	1
No.9	(幅)		旧型	100	5.11	1	7.67	1
No. 10	70				5.11	1	7.67	1
No. 11	X (長)	旧型		120	5.11	1	7.67	1
No. 12	100				5.11	1	7.67	1
No. 13	100			5.11	1	7.67	1	

※ 測定項目:荷重·変位·外観

(2) 加硫接着部の安全性を確認する試験

₩⇒₽₩	載荷板	曲封体	目地		載荷荷重								
供訊件 釆 早	寸 法	供訊件 研	遊間	Cas	e C	Cas	e D	Cas	e E	Cas	e F		
111 万	(mm)	1里 刀门	(mm)	(kN)	(回)	(kN)	(回)	(kN)	(回)	(kN)	(回)		
No. 14				6.7	10	7.0	0	10.0	0	14.0	0		
No. 15	(幅)	旧 型	120	6.7	10	7.0	0	10.0	0	14.0	0		
No. 16	80			6.7	20	7.0	2	10.0	1	14.0	1		
No. 17	X (長)			6.7	20	7.0	1	10.0	1	14.0	1		
No. 18	115	改良型	120	6.7	20	7.0	1	10.0	1	14.0	1		
No. 19	- 10			6.7	20	7.0	1	10.0	1	14.0	1		

※ 測定項目:荷重・変位・外観

(a) 目地遊間量 120mm

(b) 目地遊問量 100mm図-8 荷重支持性能確認試験 治具組立図

2.4 基礎試験1結果

- (1) 第1案目地構造に関する試験結果
- a) 伸縮性能確認試験 · 段差吸収性能確認試験

表−4に試験結果一覧を示す. 試験結果から以下の傾向 を把握した.

- ① 日変化を想定した試験結果(No.1 供試体)から,外 観に亀裂や剥離等の異常はみられず,段差 5mm を設 けた 2000 回を含む合計 6000 回の伸縮挙動に対して十 分追従できる.
- ② 年変化を想定した試験結果(No.2~No.4 供試体)から,設計最大遊間量120mmの状態で異常はみられな

かった.また,破壊遊間時は加硫接着部の端部の剥離 により破壊したが,破壊遊間量は設計最大遊間量に対 して平均118mm上回っており(破壊安全率4程度), 引張側の伸縮挙動に対して十分追従できる.

③ 年変化を想定した試験結果(No.5~No.7 供試体)から,設計最小遊間量 40mmの状態で異常はみられなかった.一方,最小遊間量より縮めた状態では,目地延長方向への追い出しや,場合によっては上方向への膨らみが発生するため,圧縮側の適用範囲は最小遊間量 40mm までである.なお,引張試験・圧縮試験とも除荷後の復元性は良好であった.

表-4 伸縮性能確認試験·段差吸収性能確認試験 試験結果一覧

<u> </u>					
供試体	繰返回数	段差	最小引張荷重	最大圧縮荷重	人 先日
番 号	(回)	(mm)	(kN)	(kN)	27 観
	2000		2.8	6.6	OK
No. 1	4000	5	2.9	5.3	OK
	6000		2.6	7.0	OK
平均值			2.8	6.3	

(1)日変化を想定した試験

(2)年変化を想定した試験

			引張側			圧縮側			
供試体	遊間:	120mm	破断遊間			遊間	40mm	遊間	35mm
番号	荷重	内 知	荷重	遊間	破断	荷重	内 知	荷重	内 毎
	(kN)	クト観	(kN)	(mm)	位置	(kN)	クト観	(kN)	クト観
No. 2	3.5	OK	20.0	250	端部				
No. 3	3.5	OK	19.5	240	端部				
No. 4	3.5	OK	16.5	225	端部				
平均值	3.5		18.7	238					
No.5						8.8	OK	16.0	追出
No. 6						14.7	OK	19.5	上膨追出
No. 7						14.7	OK	20.6	追出
平均值						12.7		18.7	

※ 荷重は目地構造300mm当たりの値を示す.

※ 追出:目地構造端部の伸縮ゴムが,直角方向へ追い出された状態.

※ 上膨:伸縮ゴムが、上方向へ膨らんだ状態.

b) 荷重支持性能確認試験

表-5 に試験結果一覧を示す. 試験結果から以下の傾向 を把握した.

- 目地遊間量を変化させた試験結果より,荷重載荷時の 鉛直変位は目地遊間量 120mm の方が大きくなった. よって,目地遊間量 120mm の設計最大目地遊間時の 方が荷重支持の面で不利となる.
- ② 設計荷重 Case 1 と同一接地圧とした Case A 荷重に対しては、全供試体とも異常はみられなかった.一方、Case 1 に対して 15%程度割り増した Case B 荷重に対しては、目地遊間量 120mm の供試体 1 体 (No.10 供試体)で加硫接着部の剥離が確認された.ただし、設

計以上の荷重であり,試作段階の当該供試体固有の問題とも考えられたが,品質管理体制を強化のうえ,加硫接着部の接着長を伸ばした改良型が望ましいと判断した.

- ③ 加硫接着部の安全性を確認する試験では,加硫接着端 部の構造に関わらず,旧型および改良型供試体ともに, 設計荷重 Case 1 の 2 倍以上の Case F(14kN)に対し ても異常はみられなかった.
- ④ Case C の繰り返し載荷完了時の増加変位は、旧型よりも改良型の方が若干大きくなったが、加硫接着部の安全性を優先して接着長を伸ばした改良型を採用することとした。

表-5 荷重支持性能確認試験 試験結果一覧

	巡問里で	友 Cピ/	ここに同次		
/++ ⇒+ /+-	目地	Case A:	5.11(kN)	Case B:	7.67(kN)
供訊件 乗 早	遊間	最大変位	ん 毎日	最大変位	人名英国
百万	(mm)	(mm)	クト電光	(mm)	クト観
No. 8		28.0	OK	38.0	OK
No. 9	120	29.5	OK	40.0	OK
No.10		27.0	OK	38.0	接着剥離
平均值		28.2		38.7	
No.11		20.0	OK	24.0	OK
No. 12	100	19.0	OK	23.5	OK
No.13		19.0	OK	23.0	OK
平均值		19.3		23.5	

(1)目地遊間量を変化させた試験

(2) 加硫接着部の安全性を確認する試験

					変位(mm)				-1.5 FFA
供試体	供試体		Cas	e C		Case D	Case E	Case F	訊 駅
番 号	種 別		6.7	(kN)		7(kN)	10(kN)	14(kN)	於] 时 从 鉬
		1回目	10回目	20回目	増加変位	1回目	1回目	1回目	/1° ⊫九
No.14		27.5	29.7		2.2				OK
No. 15	旧型	28.0	31.7		3.7				OK
No. 16		28.3	30.8	31.2	2.9	26.1	31.0	46.1	OK
No.17		28.5	32.3	32.6	4.1	32.7	38.5	53.4	OK
No.18	改良型	29.7	34.2	34.6	4.9	34.8	42.0	59.3	OK
No. 19		29.5	33.1	33.8	4.3	34.0	40.7	55.6	OK

(2) 第2案目地構造試験項目

a) 伸縮性能確認試験, 段差吸収性能確認試験

表-6 に供試体一覧,図-10 に供試体断面図を示す.供 試体は全2体とし,可動部のゴム山の数および座グリ部 の補強の有無を組み合わせた.また,実構造物での挙動 および施工性を確認するため,供試体は PC 版を模擬し たコンクリートブロック上へ据え付けて試験を行った. 載荷は伸縮挙動試験機と専用治具を用いて実施し,温度

変化量および繰り返し回数は年変化(±40mm)・日変化 (年 365 回×10 年以上)のそれぞれ厳しい方の値を設定

した. なお, No.2 供試体は本試験終了後に基礎試験 2 へ 流用した.

b) 荷重支持性能(設計計算)

本目地構造は目地遊間部に載荷される荷重に対して, 設計計算上の充分な安全率をもった荷重支持板 (SS400, t=9mm) により支持するため,荷重載荷試験は後述する 基礎試験 2 において実施することとした.表-7 に設計計 算結果を示す. (3) 第2案目地構造試験結果

表-8に試験結果一覧を示す.試験結果から以下の傾向 を把握した.

- ① No.1-1 供試体は、挙動 1 回目において圧縮側・引張 側ともに異常が発生した.引張側はボルト部のゴムが 極端に変形し、圧縮側は片側の可動部を頂点として目 地構造全体に浮き上がる現象が生じた.
- ② No.1-2 供試体では、目地構造全体の浮き上がりとボルト部の変形を抑制するため、座グリ部に補強座金(平鋼)を配置した.その結果、引張側のボルト部の変形は抑制できたものの、圧縮挙動1回目において両側の可動部に挟まれた区間に浮き上がりが生じた.
- ③ No.2 供試体では,再度条件を見直した解析を行い, 可動部のゴム山の数を3山から5山へ変更した.その 結果,圧縮時に可動部が僅かに盛り上がったものの目 地構造全体が浮き上がることはなかった.その後,連 続挙動試験を実施したが,段差を設けると可動部の盛 り上がりが大きくなる傾向がみられた.

表-6 伸縮性能確認試験·段差吸収性能確認試験 供試体一覧

供試体 番 号		可動如	声ガリ		移動量		仍主	繰	り返し回]数
		可動部 世	産クリ 部補強	引張側	圧縮側	合計	权左	段差無	段差有	合計
		10 11		(mm)	(mm)	(mm)	(mm)	(回)	(回)	(回)
No. 1	-1	3山	なし				0			
NO. 1	-2	3山	あり	+40	-40	80	0			
No. 2		5山	あり				5	3650	1825	5475

※ 測定項目:外観・可動部盛り上がり量

(a) No.1 供試体

(b) No.2 供試体

図-10 供試体断面図

表-7 荷重支持板 設計計算結果

	曲	げ引張応力	度	せん断応力度			
	計算値	許容値	史公应	計算値	許容値	史公束	
	(N/mm2)	(N/mm2)	女主竿	(N/mm2)	(N/mm2)	女主竿	
Case1中央載荷	85.9		1.6	3.2		25.0	
Case1端部載荷	76.4	140	1.8	4.3	80	18.6	
Case2中央載荷	78.7		1.8	3.9		20.5	

※ 許容値は道路橋示方書・同解説Ⅱ鋼橋編より.

表-8 伸縮性能確認試験・段差吸収性能確認試験 試験結果一覧 (1)外観状況

圧縮側		
ボルト部		
変形		
OK		
OK		

※ 測定項目:外観・可動部盛り上がり量(No.2供試体のみ) ※ 可動部盛り上がり量は,固定ボルト付近の最大点での計測

(2)No.2供試体の盛り上がり量実測値(圧縮側)

供きた	段差	なし	段差	5 (mm)
供 () () () () () () () () () (测占	実測値	测占	実測値
······································	侧示	(mm)	侧示	(mm)
	1	3	1	8
	2	5	2	9
No. 2	3	4	3	9
NO. 2	4	3	(4)	5
	5	4	5	6
	6	4	6	5
平均值		3.8		7.0

2.5 基礎試験2概要

(1) 試験概要

基礎試験2は目地構造の施工性および荷重支持性能の 確認を目的に,両目地構造案とも(株)ピーエス三菱技 術研究所にて実施した.施工性能は供試体作製手順を実 施工と同様とすることにより確認し,荷重支持性能は破 壊試験および疲労試験により確認することとした.

なお,第2案目地構造については,荷重支持性能確認 試験終了後の供試体を用いて伸縮性能確認試験および段 差吸収性能確認試験(圧縮側)を実施した.

(2) 供試体作成

目地構造の実施工においては設計条件に示す時間的 制約を受けるため、その施工性について事前に確認する 必要がある.よって基礎試験2は、舗装版を模擬したコ ンクリートブロックに実施工と同じ作業手順で目地構造 を据え付けて試験を行った.図-11、図-12に供試体概要 図を示す.

コンクリートブロック間の目地遊間量は,基礎試験 1 の試験結果から荷重支持の面で最も不利な設計最大遊間 量 120mm とし,調整台の上にボルトで固定した. コン クリートブロックと切り欠き部後埋め材との界面は,チ ッピングによる打ち継ぎ処理を行った.

(3) 使用材料

a) コンクリートブロック(両目地構造共通)

コンクリートブロックの作製に用いたコンクリート の呼び強度は舗装版と同じ40N/mm²とし,セメントは早 強セメントを使用した.表-9にコンクリートの品質管理 試験結果を示す.

b) 無収縮モルタル(第1案目地構造切欠き部後埋め材)

第1案目地構造は切り欠き部後埋め材の厚みが比較的 厚く(30mm程度),施工が目地構造設置後の注入となる ことから,流動性と無収縮性に優れた無収縮モルタル(プ レミックスタイプ)を使用した.また,施工時間の制約 を考慮して速硬型を選択した.表-10に配合表を示す.1 袋あたりの水量は,標準水量の4.5kgとした.

c) 樹脂モルタル・打ち継ぎ接着剤(第2案目地構造切欠 き部不陸調整材)

第2案目地構造は切り欠き部後埋め材の厚みが薄く (5mm 程度),滑り板の設置前に左官仕上げにより施工 することから,薄塗り用の樹脂モルタルを使用した.ま た施工時間の制約を考慮して速硬型を選択した.表-11 に配合表を示す.なお,コンクリート面には打ち継ぎ接 着剤を塗布(メーカー推奨仕様)した.

(4) 試験項目

a) 施工性確認試験

本試験では計画段階で想定した据え付け手順の妥当 性を検証するため、実施工と同じ作業手順で目地構造を 据え付けることとした.図-12 に各目地構造案の据え付 け手順を示す.

第1案目地構造の据え付けは遊間量を実構造物にあわ せて行う必要があるため、専用の遊間調整装置および仮 固定治具(所定の遊間量に調整した状態を維持するため の治具)を用いて遊間調整を行う.遊間調整済みの目地 構造は、切り欠き内に収めた後、事前に打ち込んだ溶接 アンカーと目地構造側の補強筋を溶接することにより所 定の位置で仮固定する.

目地構造の配置が正しいことを確認した後,切り欠き 部後埋め材(無収縮モルタル)を注入・硬化後に仮固定 治具を解放して完了となる.

第2案目地構造の据え付け位置は打ち込みアンカーの 配置精度に大きく左右されるため,先行してアンカー孔 を削孔して詰め物(ウェス等)により養生してはつり作 業を行う.

打ち込みアンカーが既設鉄筋等に干渉して所定の位 置に配置困難な場合は、目地構造延長方向に位置を変更 し、これにあわせて補強座金およびゴム板のボルト孔を 新たに削孔する(座グリ内で調整).はつり面は打ち継ぎ 接着剤を塗布して樹脂モルタルの左官仕上げにより不陸 調整を行い、硬化前に滑り板を配置して馴染ませる.

ゴム板を滑り板の上に配置してボルトで固定し,仕上 げ工として座グリ部へのシール材充填・養生ゴムの配置, ゴム板縁部へのシール材充填・バックアップ材配置を行 い完了となる.

b) 切り欠き部後埋め材(モルタル)の圧縮強度試験

夜間 4~5 時間/日の施工時間の制約から,切り欠き 部の後埋めに用いるモルタルは,打設完了後 2~3 時間程 度で航空機荷重に耐えうる圧縮強度を発現している必要 がある.よって,本試験ではモルタルの若材齢圧縮強度 について確認した.

表-12に供試体概要を示す.供試体は φ50×100mmの 円柱供試体とし,試験材齢は2時間・3時間・1日(第2 案目地構造のみ)・3日・28日とした.供試体の採取は, 特に若材齢時の試験結果にばらつきが予想されたため, 材齢2時間と3時間については各5体ずつとし,最大値 と最小値を控除するものとした.

なお,第2案目地構造に用いる樹脂モルタルの品質管

理試験は 40×40×160mm の角柱供試体を用いた曲げ圧 縮強度(JIS R 5201)によることが一般的であるが,現場品 質管理への適用性や試験方法の統一性を考慮して, φ50 ×100mm の円柱供試体を用いた.一般に,円柱供試体に よる圧縮強度は角柱供試体による曲げ圧縮強度と比較し て安全側の評価となる.

c) 荷重支持性能確認試験

表-13 に供試体一覧を示す. 目地構造の荷重支持性能 は,設計荷重時の挙動(鉛直変位やひずみ)および破壊 強度の設計荷重に対する安全率,繰り返し載荷による疲 労耐久性などにより確認することとした.

① 破壊試験

図-13 に破壊試験装置図,図-14 に試験ステップを示す. 本試験では,目地遊間量を 120mm として鉛直載荷試験 機の載荷フレームおよび 10tf 手動ジャッキを用いて載荷 し,破壊強度に対する設計荷重の安全性を確認した.試 験は所定の設計荷重(Case 1, Case2)を載荷・除荷して 復元性を確認した後,目地遊間部のみに載荷する Case 1 の載荷板を用いて破壊に至るまで載荷した.第2案目地 構造は明確な破壊性状を示さないため,荷重支持板の中 央3点で計測したひずみの平均値が降伏ひずみに達した 時点を破壊とした.

② 疲労試験

図-15 に破壊試験装置図,図-16 に試験ステップを示 す.本試験では,破壊試験と同様に作製した供試体に疲 労試験機を用いて繰り返し荷重を載荷し,目地構造の疲 労耐久性を確認した.

試験は,所定の設計荷重(Case 1,Case 2,Case 3)をアクチ ュエーターの制御が有効な 0.1Hz~1.0Hz 範囲で適宜調 整し,繰り返し回数 15000 回を上限として載荷した.

繰り返し載荷による荷重支持性能の劣化程度を確認 するため,第1案目地構造の Case 1 では 500~1000 回に 1 回程度の頻度で,その他は原則 15000 回の繰り返し載 荷前後に静的載荷を実施した.第2案目地構造は,15000 回完了時点でも破壊しなかったため,続けて破壊試験を 実施した.

第1案目地構造の No.1F-3 供試体に用いた載荷板(A) は、加圧面の4辺をR=3mm 程度で面取りを行っていた が、伸縮ゴムへの食い込みや削り現象など実際には有り 得ない挙動を示した.よって、No.1F-1 および No.1F-2 供試体では、面取り寸法をR=8mm 程度へ拡大し、加圧 面に加えて高さ方向の4辺に対しても面取りを行った載 荷板(B)を用いることとし、繰り返し載荷中については直 下にグリスを塗布したゴム板(t=5mm)を敷いて、荷重以 外の要因による損傷を抑制した. Case 3 は、目地構造を調整台ごと目地直角方向へ移動 し、コンクリートブロックの端部に載荷されるよう調整 した.第1案目地構造は載荷板が不等辺山形鋼と無収縮 モルタルを跨ぐため、載荷板の直下にゴム板(t=5mm) を挟み、第2案目地構造は載荷板直下に固定ボルトがこ ないように目地延長方向にも移動させた.

d) 伸縮性能確認試験・段差吸収性能確認試験(第2案目 地構造 圧縮側)

第2案目地構造は,基礎試験1の試験結果から圧縮時 の伸縮性能および段差吸収性能を再度確認する必要があ ると判断し,荷重支持性能確認試験終了後の供試体を用 いて図-17 に示す伸縮性能確認試験および段差吸収性能 確認試験を簡易的に実施することとした.

本目地構造は,最大目地遊間量 120mm に対して標準 形状で据え付けたため,そこから 40mm の圧縮を加えた. また,段差の有無による挙動の違いを明確にし,想定を 越える段差が生じた場合の挙動を確認するため,供試体 に与える段差を 25mm とした.

なお、供試体作製時の滑り板の設置精度の問題から、 荷重支持板と滑り板の間に2~3mm 程度の隙間が生じて いたが、隙間が無くなるようにコンクリートブロックの 傾きを調整した後に試験を実施した.

※供試体の長さは、皿ネジボルト間隔の2倍の300mmとした.

※供試体の長さは、実製品の計画寸法の1050mmとした.
 ※本目地構造は、目地遊間量120mmに対して、標準形状で据え付けた.
 図-12 第2案目地構造 供試体概要図

111712改由	フランプ	粗骨材の	hulo 1645	オイヤカントトレ	▶		E縮強度		
呼び強度	学び強度 スワンフ 最大寸法	最大寸法	にトス記号	// ٢// ٢/٢	生火里	温度	材齢7日	材齢28日	
(N/mm2)	(cm)	(mm)	にようにク	(%)	(%)	(°C)	(N/mm2)	(N/mm2)	
40	12 (14.5)	20	Н	37.0	4.5 (3.6)	(28.5)	(48.7)	(57.7)	

表-9 コンクリートの品質管理試験結果

※ () 内は実測値

表-10 無収縮モルタル配合表(速硬型)

水	粉	体
(kg/袋)	(kg/	′袋)
4.5 (4.2 \sim 4.9)	25.	. 0
※ () 内け相定水量範囲		

※ () 内は規定水量範囲

表-11	樹脂モルタル配合表	(速硬型)
------	-----------	-------

水	粉 体	シーラー
(kg/袋)	(kg/袋)	(kg/袋)
3.0(2.8~3.0)	25.0	1.0

※ () 内は規定水量範囲

図-12 目地構造据え付け手順(第1案目地構造)

表-12 モルタル圧縮強度試験 供試体概要

目地構造	使用材料	供試体数 (φ 50×100)							
		2時間	3時間	1日	3日	28日			
第1案	無収縮モルタル	5	5		3	3			
第2案	樹脂モルタル	5	5	3	3	3			

国総研資料No. 456

表-13 荷重支持性能確認試験 供試体一覧

(1)破壊試験

		供試体供試体		a i	Case 1 設計荷重			Case 2 設計荷重			破壞荷重		Í
目 地	供試体		供試体	供試体	Case 1 載費垢	載荷板	反寸法	載荷	載荷板	反寸法	載荷	載荷板	反寸法
構	造	種 別	番 号	載何 <u>似</u> 種 別	幅	長さ	荷重	唱	長さ	荷重	幅	長さ	荷重
				12 //1	(mm)	(mm)	(kN)	(mm)	(mm)	(kN)	(mm)	(mm)	(kN)
第1	し案	改良型	No. 1B	А	80	115	6 67	120	220	16.0	80	115	破壞
第2	2案	5 山	No. 2B	А	80	110	0.07	130	220	10.9	80	110	まで

(2)疲労試験

			、 供試体			~	Case	1 設計	+荷重	Case	2 設計	+荷重	Case	3 設計	+荷重		破壊征	前重
目 地 供 構 造 種	供試体	Case 1 載費振		載荷橋	反寸法	載荷	載荷板	反寸法	載荷	載荷材	反寸法	載荷	載荷橋	反寸法	載荷			
	種別番号	種別番	種 別	削 番 号	載印 倣 種 別	幅	長さ	荷重										
			12		LE //1	(mm)	(mm)	(kN)										
		No. 1F-1	В	80	115	6 67												
第1	案	改良型	No. 1F-2	В	80	110	0.07											
	-	No. 1F-3					130	220	16.9	130	220	39.5						
第2	案	5 山	No. 2F	A	80	115	6.67	130	220	16.9	130	220	39.5	80	115	破壊まで		

※ 供試体種別 : 改良型=基礎試験1にて, 加硫接着部の接着長を伸ばした.

5 山=基礎試験1にて、可動部のゴム山の数を3山から5山へ変更した.

※ Case 1載荷板種別:A=載荷板の加圧面4辺の角部の面取りがR=3(mm)程度

ッと高さ方向4辺の角部の面取りがR=8(mm)程度

※ 繰返載荷回数上限:15000回

B =

※ 測定項目 :荷重・変位(4方向)・鋼板ひずみ(第2案目地構造のみ3点)・外観

※ No. 1F-3供試体は, Case 1設計荷重を載荷板種別(B)で載荷した結果,載荷板角部が伸縮ゴムへ食い込んで 破壊したため, Case 1設計荷重に対するデータは不採用とした.

図-13 破壊試験装置図

図-14 破壊試験 試験ステップ

図-15 疲労試験装置図

図-16 疲労試験 試験ステップ

図-17 伸縮性能確認試験·段差吸収性能確認試験(圧縮側)

2.6 基礎試験2結果

(1) 第1案 目地構造

a) 施工性確認試験結果

① 溶接アンカーと補強筋との溶接作業性

写真-3に溶接部の拡大写真を示す.溶接作業空間が非常に狭小であり,作業に手間取る状況が見られた.また,溶接アンカーと補強筋の間に離れが生じて溶接が困難な箇所があったため,鉄筋を配置して対処した.

以上より, 翼筋や通し筋を追加して溶接作業性の向上 を図るのが良いと考えられる.

② 無収縮モルタルの可使時間・充填性

写真-4にモルタル充填状況を示す.本試験環境下での 可使時間は20~30分程度であったが,その間に流下試験 等の品質管理試験を行ったため注入中に急激に硬化が進 行し,一部の供試体で未充填箇所が生じた.

以上より,注入状況の確認と空気抜きを目的に,目地 構造上面に空気抜き孔を設けるのが良いと考えられる. また,規定範囲内であることを条件に水量を増やすこと も有効な手段であると思われる.

b) 無収縮モルタルの圧縮強度試験結果

表-14 に品質管理試験結果を示す. 材齢 2 時間以降の 圧縮強度は航空機の最大タイヤ接地圧 1.5N/mm² に対し て 10 倍以上の安全率を有しており, 圧縮強度の発現性に 問題はなかった.

ただし、本試験環境は外気温が高く圧縮強度の発現に 有利であったが、実施工においては施工時の気象条件を 考慮した上で使用する無収縮モルタルを選定するのがよ い.

写真-3 溶接部

写真-4 モルタル充填状況

	温	度	流下時間				
外気温	水温 粉体温度		練混温度	実測値	平均值	規格	
(°C)	(°C) (°C)		(°C)	(秒)	(秒)	(秒)	
				6.58			
28	26	27	30	6.59	6.86	8 ± 2	
				7.40			

表-14 無収縮モルタルの品質管理試験結果

			航空機荷重		
2 時間	3時間	1日	3日	28日	最大タイヤ接地圧
(N/mm2)	(N/mm2)	(N/mm2)	(N/mm2)	(N/mm2)	(N/mm2)
15.8	18.0		45.8	45.2	1.5

※ 材齢2・3時間の値は,最大最小の2体を除いた残り3体の平均値

表-15 荷重支持性能確認試験結果一覧

(1)破壊試験

	Case 1	Ca	se1	Ca	se2		破壞	荷重			
供試体 番 号		6.6	7kN	16.9kN		6.67kN		最大荷重			
	載何板 - 種 別	変位	復元州	変位	復一州	変位	荷重	変位	復一世		
		(mm)	復几任	(mm)	復几任	(mm)	(kN)	(mm)	復儿住		
No. 1B	А	30	良好	1	良好	30	20	80	良好		

(2)疲労試験

供試体 番 号	Case 1 載荷板 種 別	Case 1							Case 2	Case 3	
		6. 67kN								16.9(kN)	39.5kN
		1	П	300	0回	3500回	3951回	4000回	6087回	15000回	15000回
		変位(mm)	外観	変位(mm)	外観	外観	外観	外観	外観	外観	外観
No. 1F-1	В	42	OK	50	OK		微小亀裂	試験終了			
No. 1F-2	В	39	OK	49	OK	微小亀裂		亀裂進展	試験終了		
No. 1F-3										異常なし	異常なし

表-16 樹脂モルタルの品質管理試験結果

温度								
外気温	水温	粉体温度	練混温度					
(°C)	(°C)	(°C)	(°C)					
24	23	23	26					

		航空機荷重			
2 時間	3時間	1日	3日	28日	最大タイヤ接地圧
(N/mm2)	(N/mm2)	(N/mm2)	(N/mm2)	(N/mm2)	(N/mm2)
3.6	5.4	18.0	20.5	40.9	1.5
1. 1. 1th o	0 14 88			0 H + 10	よおりの仕の可比は

※ 材齢2・3時間の値は、最大最小の2体を除いた残り3体の平均値

c) 荷重支持性能試験結果

表-15 に試験結果一覧を示す.以下に破壊試験および 疲労試験の結果をそれぞれ記す.

① 破壊試験

- ・小型車両を模擬した Case 1 設計荷重時の鉛直変位は約 30mm であり,異常はみられなかった.また,除荷後 は載荷板外周部に沿った跡が薄く残ったものの,復元 性は良好であった.
- ・大型機種を模擬した Case 2 設計荷重時の鉛直変位は約

1mm であり, 異常はみられなかった. また, 除荷後は 載荷板外周部に沿った跡が薄く残ったものの, 復元性 は良好であった.

・Case 1 の載荷板を用いた破壊試験では、設計荷重の約 3 倍の 20.5kN まで載荷した結果、鉛直変位は 81.4mm に達するものの剥離等の異常はみられなかった.また、 除荷後は載荷板角部の食い込みにより傷がついたが、 復元性は良好であった. ② 疲労試験

- ・Case 1 設計荷重の繰り返し1回目の鉛直変位は 39~
 42mm であり、破壊試験に比較して大きな値となった.
 これは載荷板の面取り寸法を大きくしたことにより、
 載荷が集中荷重側へシフトしたためと考えられる.
- ・Case 1 設計荷重の繰り返し 3000 回目の鉛直変位は 49 ~50mm であり, 1 回目と比較して 10mm 程度増加し たものの異常はみられず復元性も良好であった. 一方 3500 回以上では, 上側ゴムの谷部に極微少な亀裂が確 認された.
- Case 2 および航空機を模擬した Case 3 設計荷重に対しては 15000 回の繰り返し載荷を行ったが、目地構造や 無収縮モルタル・コンクリートブロックに異常はみられなかった。

以上より,本目地構造は小型車両の荷重に対して充分 な破壊安全性と3000回以上の疲労耐久性を有している. なお,実際のタイヤ形状は円形であるため,鉛直変位が 増すごとに接地面積が増加して荷重が分散することや, 車両走行中の負荷時間が極めて短いことを考慮すれば, より高い疲労耐久性を期待できると考えられる.また, 大型機種や航空機の荷重に対しても問題になることはな いと考えられる.

(2) 第2案 目地構造

- a) 施工性確認試験結果
- ① 打ち込みアンカー位置の精度

打ち込みアンカーの配置精度を考慮してチッピング 前にコンクリートブロックの削孔を行ったが,滑り板の ボルト孔と微妙に整合せず,滑り板のボルト孔を開け直 す必要があった.

② 樹脂モルタルの取り扱い(練り混ぜ・機材の洗浄等)

樹脂モルタルの練り混ぜ等に用いた機材は溶剤で洗 浄する必要があり,廃液の処理を含めて作業が煩雑であ った.

③ 樹脂モルタル左官仕上げ面と,滑り板間の空隙の有無 樹脂モルタルの左官仕上げ完了後,直ちに滑り板を設 置したが,接触面の馴染みが十分とれず,滑り板の下面 に空隙が生じた.また,滑り板を精度良く据え付けるこ とが困難であり,荷重支持板と滑り板の間に 2~3(mm) 程度の隙間が生じた.よって,新たに据え付け治具等を 考案する必要があると考えられる.

④ 座グリ部シールの硬化時間

固定ボルトの締め付け完了後,座グリ部にシール材を 充填したが,12h以上経過した時点でも硬化が十分でな

- く,24h 経過後にようやく硬化を確認できた.
- ⑤ その他

シール材充填箇所近辺のマスキングやプライマー塗 布が必要であり,作業工程が多く煩雑であった.

b) 樹脂モルタルの圧縮強度試験 (φ 50×100mm)

表-16 に品質管理試験結果を示す. 材齢 2 時間以降の 圧縮強度は無収縮モルタルには劣るものの, 航空機の最 大タイヤ接地圧 1.5N/mm²の 2 倍以上の安全率を有して おり, 圧縮強度の発現性に問題はなかった. ただし,本 試験環境は外気温が高く圧縮強度の発現に有利であった が,実施工においては施工時の気象条件を考慮した上で, 別途試験を実施するのが望ましいと考えられる.

c) 荷重載荷試験

表-17~表-19 に試験結果を示す.以下に破壊試験及び 疲労試験の結果をそれぞれ記す.

① 破壊試験

- ・小型車両を模擬した Case 1 設計荷重時の荷重支持板ひ ずみは許容ひずみ 700 µ (許容曲げ引張応力度 140N/mm²として算出)に対して 237 µ であり,安全率 は 2.9 以上であった.可動部のゴムが若干横方向へ膨 らむ傾向がみられたが,鉛直変位は 2mm 程度に抑え られており,除荷後の復元性も良好であった.
- ・大型機種を模擬した Case 2 設計荷重時の荷重支持板ひ ずみは許容ひずみ 700 µ に対して 471 µ であり,安全 率は 1.4 以上であった.可動部のゴムの横方向への膨 らみは Case 1 に比較して大きくなったものの,鉛直変 位は同等であり,除荷後の復元性も良好であった.
- ・Case 1 の載荷板を用いた破壊試験では、荷重支持板ひずみが降伏ひずみ 1175 µ (降伏応力 235N/mm²として算出)に達した 30.8kN まで載荷したが、鉛直変位は10mm 未満であった.ただし、可動部のゴムは除荷後の復元性は良好なものの、横方向への膨らみに加えて上方向へ大きく盛り上がる現象がみられた.
- ② 疲労試験
- ・Case 1 設計荷重の繰り返し回数を上限の 15000 回としたが、その前後に実施した静的載荷試験の鉛直変位・荷重支持板ひずみに大きな差はなかった.載荷板外周に沿った跡が残ったものの、除荷後の復元性は良好であった.
- ・Case 2 設計荷重の繰り返し回数を上限の 15000 回としたが、その前後に実施した静的載荷試験の鉛直変位・荷重支持板ひずみに大きな差はなかった.載荷板と可動部のゴムが接する箇所に摩耗が生じたものの、除荷後の復元性は良好であった.
- ・航空機を模擬した Case 3 設計荷重の繰り返し回数を上

限の15000回としたが、繰り返し1回目から座グリ部の養生ゴムが浮き上がり、15000回完了時点では載荷板直下の養生ゴムが剥がれ、その下のシール材が破壊されていた.

d) 伸縮性能確認試験・段差吸収性能確認試験(圧縮側)
 表-20 に伸縮性能確認試験・段差吸収性能確認試験の
 試験結果一覧を示す.

No.2B 供試体(破壊試験完了後)は段差の有無により 2 ケースの圧縮を行った.段差を設けない場合は,圧縮 量が 40mm に到達する直前に可動部が屈曲し,段差を 25mm とした場合は早期に可動部が屈曲した.

No.2F 供試体(基礎試験1および疲労試験終了後)は 段差を設けないで圧縮を行った. 圧縮量が40mmに到達 しても可動部の屈曲は生じなかったが,可動部には約 10mmの盛り上がりが生じた.

両供試体ともに,一度可動部に屈曲現象が生じると遊 間量を広げない限りは所定の位置へ押し下げることは困 難であった.

国総研資料No. 456

			N	lo.1B供言	式体				
討論生活	鉛直載荷	苛試験機載	荷フレーム		形北	犬 改	良型的	共試体	
叫水衣但	10tf手動	動ジャッキ			遊『	引 12	0 (mm)		
	Case1 :	載荷板	80 (mm) × 11	5 (mm),	R=3 (m	n) 荷i	重 6.	670(kN)	
載荷荷重	Case2 :	載荷板	$130 \text{ (mm)} \times 22$	0 (mm),	R=3 (m	n) 荷i	重 16.	874(kN)	
	破壊:	載荷板	80 (mm) × 11	5 (mm),	R=3 (m	n) 荷i	重 20.	510(kN)	
Case 1 設計荷重 6.670 (kN)	設計荷	66111111111111111111111111111111111111	7 7 まなし	荷荷		行後:復	元性月	良好	最大鉛直変位 約30 (mm)
Case 2 設計荷重 16.874 (kN)	していたので、こので、こので、こので、こので、こので、こので、こので、こので、こので、こ	9	الم الم الم الم الم الم الم الم الم الم	荷	重除布	万後:復	元性目		最大鉛直変位 約 1 (mm)
破壊荷重 20.510 (kN)	↓ Land Land Land Land Land Land Land Land	重時:異常 0 10	まなし No.1B(計荷工時 20 30	荷 破壊訪問 1110110000000000000000000000000000000	重除布 食) 载荷 20.5 81.4	方後:復 最終 1[kN] 3[m] 1	元性 J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 20 20 20 20 20 20 20 20 20 20 20 20 2	設計 設計 計 直 変 、 (mm) 最大 直 、 、 、 で 、 (mm) 、 、 、 、 、 、 、 、 、 、 、 、 、
		U IU	20 30 鉛	40 5 直変位	(mm]	0 /0	80	90	鉛直変位 81.4 (mm)

表-17(a) 荷重支持性能確認試験(破壊試験) No.1B

表-17 (b) 荷重支持性能確認試験(破壊試験) No.2B

No. 1F-1供試体						
计段扩展	庙心計陸楼	形状	改良型供試体			
武 歌衣旦	波力 武 政 1成	遊間	120 (mm)			
	Case1: 載荷板(B)80(mm)×115(mm)	, R=8(mm)	荷重 6.670(kN)→0.1(Hz)			
載荷荷重						
			3 951			
載荷前		3951回	上側ゴム谷部に微小な亀裂			
3000回	第二日本では	最 終 4000回	4000回で試験終了			
	No.1F-1(疲労試慰	食 Case 1)				
荷重変位 曲 線 の 変 化	15 10 型 10 一 10 10 10 10 1000回 2000回 3000回 4000回 0 10 10 10 10 10 10 10 10 10		 初回 鉛直変位 約42 (mm) 50 60 			

表-18(a) 荷重支持性能確認試験(疲労試験) No.1F-1

No.1F-2供試体							
康 世 計	形状	改良型供試体					
加力和款援	遊間	120 (mm)					
Case1: 載荷板(B)80(mm)×115(mm),	R=8 (mm)	荷重 6.670(kN)→0.1(Hz)					
3000 3000 第本 1	4000回	4000 4000					
上側ゴム谷部に微少な亀裂	最 終 6087回	6087 6087 集裂回士が繋がり上側ゴム貫道	Ĩ.				
No.1F-2(疲労試騎	Case 1)						
15 設計荷重 10 10 2000回 2000回(3日後) 平 5 6000回 0 10 2000回 10 2000回 10 10 10 10 10 10 10 10 10 10	- + - + - + - +		n) n)				
	疲労試験機 Case1 : 載荷板 (B) 80 (mm) × 115 (mm), 運営なし 運常なし 「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	取出業 形式 形式 度労試験機 超 樹 通 Case1: 載荷板(B) 80 (mm) × 115 (mm), R=8 (mm) 4000回 異常なし 第 七	$mod n = 0$ $m \neq k$ </td				

表-18 (b) 荷重支持性能確認試験(疲労試験) No.1F-2

	No. 1F-3供試体
試験装置	疲労試験機 形 状 改良型供試体 遊 間 120 (mm)
載荷荷重	Case2: 載荷板 130 (mm) × 220 (mm), R=3 (mm) 荷重 16.874 (kN) → 1.0 (Hz) Case3: 載荷板 130 (mm) × 220 (mm), R=3 (mm) 荷重 39.468 (kN) → 1.0 (Hz)
Case 2 16.874 (kN) × 15000回	15000 16177 載荷状況 異常なし
Case 3 39.468 (kN) × 15000回	載荷状況 異常なし

表-18	(c)	荷重支持性能確認試験	(疲労試験)	No.1F-3
------	-----	------------	--------	---------

表-19(a) 荷重支持性能確認試験(疲労試験) No.2F (Case1, Case2)

表-19(b) 荷重支持性能確認試験(疲労試験) No.2F (Case3, 破壊)

表-20 伸縮性能確認試験·段差吸収性能確認試験(圧縮側)試験結果一覧

2.7 まとめ

基礎試験の各段階においては、新たに得られた知見を 直ちに改良案として反映させた.これにより、設計条件 に挙げた各性能のうち、十分満足させることができた項 目がある一方で、相当な改良が必要となる課題も明らか となったため、走行載荷試験の開始前に1案に絞ること とした.表-21、表-22 に両目地構造の比較表を示す.

- (1) 第1案目地構造
- ①本目地構造は段差 5mm を設けた状態で 2000 回,設 けない状態と合わせて合計 6000 回の伸縮挙動に対し て追従することができ,伸縮性能および段差吸収性能 に優れている.
- ② 破壊を決定づける小型車両から目地遊間部に受ける 荷重に対しては、不等辺山形鋼に加硫接着された伸縮 ゴムが支持する構造であるが、十分な破壊安全率と約 3000 回の疲労耐久性が確認された.なお、実際のタ イヤ形状や、極めて短い負荷時間、破壊状態と判定し た上側ゴム谷部の亀裂が微小であることを考慮すれ ば、それ以上の繰り返し回数に対応できると考えられ る.また、大型機種や航空機から受ける荷重に対して も特に異常はみられず、十分な荷重支持性能を有して

いる.

- ③ 施工性については,目地構造固定時の溶接作業性や無 収縮モルタルの充填性に課題がみられたが,それぞれ 翼鉄筋や通し筋の追加,空気抜き孔の追加などによっ て対処可能であると考えられる,
- (2) 第2案目地構造
- ① 基礎試験 1 において改良を施した伸縮ゴム可動部の 浮き上がり現象が基礎試験 2 においても発生し、伸縮 性能および段差吸収性能に問題があるため、可動部の 形状を抜本的に変更する必要がある。
- ② 小型車両や大型機種から受ける荷重に対しては目地 遊間を跨ぐ鋼板が支持する構造であるため、荷重支持 性能に優れている.一方、航空機から受ける荷重に対 しては、座グリ部の養生ゴムの剥がれや充填したシー ル材の破壊が確認されたため、座グリ部の構造を見直 す必要がある.
- ③ 施工性については、工程が多く各作業内容が煩雑であったため、施工時間の制約を考慮して合理的な施工方法を検討するのが望ましいと考えられる.また、アンカーボルト孔や滑り板・荷重支持板の配置精度など、品質に大きく関わる点でも課題がみられた。

(3) 総合評価

第2案目地構造は、伸縮性能に関する問題に対して抜 本的な変更が必要であり、荷重支持性能や施工性の面で も課題があることを考慮すると、その改良範囲が多岐に 渡るとともに相当な時間が必要になると予想された.よ って、第2案目地構造は基礎試験2をもって開発を終了 することとした.第1案目地構造は基礎試験結果を反映 した改良品を用いて走行載荷試験を実施することとした.

表-21 目地構造比較表(第1案)

	設	計条件	第1案 目地構造						
(1)	版のはつり深さ	40 mm ※全高の制限	開始						
(2)	設計移動量	\pm 40 mm		-					
(3)	最大目地遊間量	120 mm		_					
(4)	許容段差	5 mm							
		80 × 115 × 0.725	は、 「」 「」 」 「、 」 。 「 』 」 、 」 、 」 、 」 、 」 、 、 」 、 、 」 、 、 」 、 、 」 、 、 、						
	設(小型単両)	= 6.670 kN		-					
(5)	計 Case 2	130 × 220 × 0.590		_					
	10 (入空機裡)	= 10.874 KN	<u>90 90 90 10 (5)</u> 毎成第三ルタル な気は存在 ロジンボント						
	▲ Case 3 (航灾機)	- 20 469 kN	(注理型) - ・補強筋溶接 - ・補強筋溶接						
	(加工1成)	-39.400 KN 20-7t3 - 2tt/		-					
(6)	施工性	夜間4~5時間で作業							
		占権頻度が少なく		_					
(7)	維持管理性	交換が可能	- 10 10 10 10 10 10 10 10 10 10 10 10 10						
	①PC版と彩	援衝版に段差がない.							
	②PC版と総	爰衝版は健全または補修済み.							
×.	その他 ③PC版と総	爰衝版下の空隙は、裏込め	cos <u>U 120</u> U cos <u>打ち機友接着剤</u>						
~	施工条件 グラウト	トが施工済み.	(水溶性腺素)						
			na tri shtemmi na sulli tala 2000 ang tang suna 1980 a Suna Indo Masu Suna Uli 1100 a Sulahashi sulli ang						
	1++ 14- Ing		目地遊間部の伸縮ゴムと、両側のアングルを加硫接着により一体化した構造である.						
(1)	構這概要		舗装版の移動量は伸縮ゴムにより吸収し、目地遊間部に載荷される荷重は、軽微な ままた「側ゴノボーストロ」のままた「側ゴノにトルませたス						
			何里を上側コムル,てれ以上の何里を下側コムにより又付りる. 工種が小なく 勤錬を要する佐業がない。ただし 独小な姿培佐業な問めエルタル						
(2)	施工性能 (基礎註	t 験2)	工催が少なく、窓線を安りるド来がない。たたし、沃小な俗族ド来王向くてルクル	\square					
			の冗僕正向工家が保護となったが対衆う能である。 (工因な対象項任係) 伸縮性能に関する要求性能を満足しており 特に引張側は設計移動量に対して						
(3)	伸縮性能 (基礎註	【験1・基礎試験2)∗1	4程度の破壊安全率を有する、一方、圧縮側は設計移動量が限界値である。	0					
			段差を設けた状態で2000回,設けない状態との合計では6000回の伸縮に対しても、						
(4)	段左败収性能(基礎記	【験 ・基礎試験2)*	追従できる.	0					
()	左手士性树能 (甘林封	₩ FE21_ 甘 TAH ≣+1 FE2-0 \ _+0	静的載荷における破壊安全率は3程度を有しており、動的載荷の最大繰り返し回数						
(3)	· 川主又行IC 化 、 本 啶 茚		はCase1で3000回以上(破壊形式は上側ゴムの亀裂)の疲労耐久性を有する.	0					
	 Case1 (小型車) 	5)荷重	剥離等の異常なし. (設計荷重時の鉛直変位は約30mm)						
静	©			0					
的	② Case2 (大型機利)	重)荷重	剥離等の異常なし. (加硫接着部の端部で倚重を文符, 鉛直変位は約1mm)						
戦荷				10					
(~)	 Case1載荷板 私 	皮 壊荷重(静的載荷)	新国変化は80mm値となるものの, 取入20KNの何里に対しても判離寺の共吊はなく, 設計芸術に対して9年度の破壊安全家を右している	\sim					
			3000回以上でけ、上側ゴムに微少か角裂が生じるが、加磁接着部け健全である						
	 小型車両(Case 	1)荷重	変位は初回約40mmから3000回完了時点で約50mmとなり、除々に増加する.	0					
動	◎ 上刊₩1€ (0	の、 共手	15000回完了時点でも剥離等の異常なし.						
的	② 入空機裡 (Jase	: Z)何里		0					
載	③ 航空機 (Case	3) 荷重	アングルおよび無収縮モルタル部で荷重を支持するが、15000回完了時点でも						
荷		' ♥/ 刑王	アングルや無収縮モルタルにひび割れ等の異常なし.	0					
	④ Case1載荷板 &	皮壊荷重 (静的載荷)	繰り返し回数15000回に到達する前に、上側ゴムに亀裂が発生したため実施せず.						
				L					
(6)	維持管理性能		アンクル・皿ホルトの防錆処埋,皿ホルトの緩み止め材,取り付け・取り外し 四の伝田宮、海町調整治見が乱画されている。						
			用の仮回足・班间調整宿具が計画されている.						
(7)	経済性 (概算工事費,	第1案を1.0とした場合)	1.0 ※材工一式	\cap					
			伸縮性能・段差吸収性能に優れる.荷重支持性能はCase1(小型車両)の繰り返し						
(~ `	你人玩店		載荷に対しても加硫接着部の損傷はなく、3000回以上の疲労耐久性を有している.						
(8)	総合評価		また、第2案に比較して、施工性および経済性に優れる.	\bigcirc					
				\cup					
	設	計条件	第2案 目地構造						
-----	---------------------------------------	---------------------	--	-------------					
(1)	版のはつり深さ	40 mm ※全高の制限	開始						
(2)	設計移動量	\pm 40 mm	140 55 + 55 - 28 - 49 - 10 ① 打ち込みアンカー孔削孔・清掃	1 I					
(3)	最天日地遊間重 計	120 mm		-					
(4)		3 mm		-					
	·····································	= 6670 kN							
(-)	計 Case 2	130 × 220 × 0.590	④ 切り欠き内清掃]					
(5)	荷(大型機種)	= 16.874 kN	<u> 構築理金</u> <u> 構築理金</u> <u> 10 5 5 5 5 1 6 1 1 5 5 5 5 1 5</u>	1					
	重 Case 3	130 × 220 × 1.380		1					
	(航空機)	= 39.468 kN		-					
(6)	施工性	クローズすることなく,	115224式7/2+4141 周期111111111111111111111111111111111						
		夜間4~5時間で作業。	<u>滑り橋 高度技権</u> 1=4,5 53400,119 目60 目60 国定 (標準形状)]					
(7)	維持管理性	交換が可能.	③ ゴム板座グリ部・縁部プライマー塗布]					
	①PC版と総	援衝版に段差がない.	40 420 10 ゴム板座グリ部シール	1					
	②PC版と総	爰衝版は健全または補修済み.		-					
*	その他 ③PC版と総	爰衝版下の空隙は, 裏込め		-					
	施工条件 グラウト	トが施工済み.							
			完 了						
(1)	構造概要		舗装版の移動量は荷重支持板両側のゴム板可動部により吸収し、目地遊間部に載荷						
			される荷重は、荷重支持板(鋼板)により支持する.						
(2)	施工性能 (基礎試	【験2)	工種が多く、各作業も煩雑である。アンカー孔の位置ずれ、モルタルなじみ不良、荷重						
			文持板と消り板の隙间、シール材の硬化時間などの課題に対する対策が必要である. 其体社験1で対策を拡けた正統時の巡さしばり現色が、其体社験9にたいてす	Δ					
(3)	伸縮性能 (基礎註	【験1・基礎試験2)∗1	金融N級IC対象を通じた工相時の存さエバリ残象が, 金融N級Zにおいても 発生したため、伸縮(縮側)性能に対する改良が必要である。	\wedge					
()	四关四点性化、甘油制		圧縮時に生じる浮き上がり現象が、段差を設けた場合は、生じやすくなる傾向						
(4)	段差吸収性能(基礎証	↓映┃・基礎試験2)*	にある.	\triangle					
(5)	荷重支持性能(基礎試	【験1・基礎試験2)∗2	第1案に比較して、目地遊間部の荷重支持性能に優れるが、動的載荷のCase3						
			において養生コム・シール材の破壊が認められ,座ぐり部の構造に改良か必要である.	\square					
主体	 Case1 (小型車) 	両)荷重	設計何重時の何重又行板ののりみは、計谷のりみに対して2.9以上の女主竿を 有しており、鉛直変位も2(mm)程度である。	\cap					
前		エ、 サ <i>エ</i>	設計荷重時の荷重支持板のひずみは、許容ひずみに対して1.4以上の安全率を	Ŭ					
載	(2) Case2 (大型機構	里) 何 里	有しており,鉛直変位も2(mm)程度である.	0					
荷	③ Case1載荷板 私	皮读荷重 (静的載荷)	降伏ひずみ到達時の荷重は31kNであり、設計荷重に対して4.6程度の破壊安全率						
			を有しているが、可動部のゴムが上方向へ大きく盛り上がる現象がみられた。	0					
	 小型車両(Case 	1)荷重	15000回元」時点で英常はなく,設計何里時に生しるひすみは,初回と元」時点で オキな美けない	\cap					
勈		o. #7	15000回完了時点で異常はなく、設計荷重時に生じるひずみは、初回と完了時点で	<u> </u>					
前	(2) 大型機種(Case)	2)荷重	大きな差はない.	0					
載	③ 航空機 (Case	3) 荷重	初回から養生ゴムにめくれが生じ、15000回完了時点ではシール材の破壊が確認						
荷			され,座ぐり部の構造に改良が必要である.	\triangle					
	④ Case1載荷板 砧	皮 壊荷重(静的載荷)	降伏ひすみ到達時の荷重は32kNであり、動的載荷後も静的載荷と同程度の破壊						
			安主学を有している。たたし、可動部コムの上方向への盈り上がりがみられた。 黄重支持板の防铸処理 国宝ボルトのシール材に上ろ経み止めが計画されている	0					
(6)	維持管理性能		交換時の遊間調整は、バール等により強制的に行う.						
(7)	级这些(脚笛工声弗	第1家た1 0と」 た 提合)	11 ※#丁一弌						
()	性仍住(佩异工争复,	お 米で VC しに 物口 /	1.1 ※約上一九	\triangle					
			Case3(航空機)に対して、座ぐり部の構造(養生ゴム・シール材)に改良が必要である.						
(8)	総合評価		圧縮時に存さ上かり現家が発生し、伸縮(縮側)性能に対する収良が必要である。 また 第1家に比較して 施工性お上び経済性に劣る						
			みた、加工木に地転して、肥工におよい社内区に力な。	\triangle					

表-22 目地構造比較表(第2案)

3. 締結ボルト構造の検討

本章では構造的対策として、図-18 に示すように PC 版の端部と緩衝版をそれぞれ枕版とボルトにて固定する ことにより, PC 版端部と緩衝版を一体化する構造につい ての検討結果を述べる.今回対象としている PC 版は場 所打ちコンクリートによる舗装版であり、1 ユニットの 寸法が 100m 程度に及ぶため, PC 版の温度変化に伴う伸 縮は最大で 40mm 程度生じる可能性が考えられる.その ため本試験では、①温度変化による PC 版の伸縮が、版 端部にボルトを配置しても問題なく作用するかの検討, ②ボルト締結力、ボルトの配置間隔が、緩衝版と PC 版 の一体化構造に及ぼす影響についての検討、③締結金具 の構造・取り付け方法ならびにボルト締結力の管理方法、 について実験的な検討を行った.

図-18 PC 版端部・緩衝版の一体化構造

3.1 FEM 解析に基づく一体化構造の効果に関する検討

(1) 解析モデル及び解析条件

解析モデルは, 図-19 に示すように PC 版をソリッド要素, ボルトをビーム要素とした. 各版の境界面は NO TENSION 結合とし, 境界面の引張力はボルトのみ荷重を伝達するものとした. 物性値, 拘束条件, 荷重条件は, 以下に示す通りとした.

a) 解析諸条件

コンクリート:3次元ソリッド要素(版厚方向3分割) E=30000N/mm², $\mu = 0.1667$

PC 鋼棒:ビーム要素

E=200000N/mm², μ=0.3, φ=24mm X 方向:各版2本×3=6本(図-2 解析モデル参照) Y 方向(版幅方向):解析の変動パラメータ 鋼材間隔=1000,2000,2500mm

(締結力 30kN 時のみ 500,1500,3000mm も解析) 締結力: 0, 10, 20, 30, 40, 50kN

b) 拘束条件

版底面で,バネ定数 0.07N/mm³

PC版と枕版,緩衝版と枕版はNO TENSION 結合

c) 荷重条件

航空機荷重

B747-200B 満載時一脚:818kN(複々車輪) 載荷位置:

載荷位置は、図-20 に示す載荷位置で検討するものとした.図は鋼材間隔 1000mm のときであるが、 間隔が変化した場合も脚の中心が鋼材と鋼材の中 間になるように載荷する.これは、付録-1 に示す 載荷ケースの中から、PC 版の版端部で枕版との隙 間が最大となる載荷位置から決定した.

図-20 載荷位置

(2) 解析結果と考察

PC 鋼材の締結力と版の隙間の関係を図-21,表-23 に それぞれ示す. (a)~(d)は図-22 に示す位置に生じた隙間 の位置であり, (a), (b)は,鋼材と鋼材の中間部, (c), (d) は鋼材位置での隙間を示す.

FEM 解析の結果では、鋼材間隔 1m の場合(b)位置において若干の隙間が生じているが、それ以外の位置(a)、(c)、(d)では締結力が 20kN で PC 版と枕版に生じる隙間がゼロになる結果となった. 鋼材間隔が 2m, 2.5m についても、(b)位置では PC 版と枕版に若干の隙間が生じること、(a)位置においても締結力の違いにより 0.1~0.3mm の隙間が生じる結果となった.また鋼材間隔 2m, 2.5m ともに、締結力が 30kN 以下の場合は、締結力の減少に伴いPC 版と枕版の間に生じる隙間は大きくなる傾向にあり、締結力が 30kN 以上の場合は、PC 版と枕版との間に生じる隙間の差が小さくなる傾向を示した.

図-23 は締結力 30kN と一定として,鋼材が無い場合, および鋼材間隔を 500mm~3000mm に変化させた際の, 鋼材間隔と枕版と PC 版との間に生じた隙間の計算結果 を示す.

(b)位置の隙間は締結力,鋼材間隔による影響が比較的 小さい結果となった.これは,(b)位置での隙間が,締結 ボルトによる一体化が不十分なのではなく,版のたわみ による PC 版と枕版の曲率の違いで発生することが原因 だと考えられる.

これに対し,(a)位置では鋼材間隔が 1m であれば PC 版と枕版に生じる隙間は著しく小さいが,1.5m あたりか らボルト間隔が大きくなるにつれて PC 板と枕版に生じ る隙間も大きくなる傾向を示した.

今回の解析によりボルト締結力とボルト間隔が PC 版 と緩衝版の一体化に及ぼす影響を検討した結果,ボルト の締結力は 30kN,鋼材間隔 1m 程度であれば,枕版と PC 版との間に生じる隙間を抑制できる可能性が高い結 果となった.一方,鋼材間隔が大きくなるに従い,PC 版と枕版の間に生じる隙間は大きい傾向を示したが,鋼 材間隔が 3m 程度であれば,何も対策を行わない構造に 比べて,隙間は半分以下に抑制できる傾向を示した.PC 版と枕版に生じる隙間がどの程度で,グラウトの粉砕化, ポンピング現象が生じるかは不明であるものの,PC 版と 枕版,緩衝版と枕版をボルトにより締結することにより, グラウトの粉砕化,ポンピング現象の抑制効果が期待で きるものと考えられる.

図-21 ボルト締結力と PC 版と枕版の隙間量の関係

公园十十月月17日	位要			緊	張力		
亚叫 121 甲」 P鬥	世區	0kN	10kN	20kN	30kN	40kN	50kN
	(a)	0.03	0.01	0.00	0.00	0.00	0.00
1000mm	(b)	0.13	0.12	0.11	0.10	0.10	0.10
100011111	(c)	0.02	0.01	0.00	0.00	0.00	0.00
	(d)	0.01	0.01	0.00	0.00	0.00	0.00
	(a)	0.16	0.13	0.11	0.10	0.09	0.09
2000mm	(b)	0.14	0.14	0.13	0.13	0.13	0.13
200011111	(c)	0.03	0.01	0.01	0.00	0.00	0.00
	(d)	0.02	0.01	0.01	0.00	0.00	0.00
	(a)	0.28	0.25	0.22	0.20	0.20	0.19
2500mm	(b)	0.14	0.14	0.14	0.14	0.14	0.14
250011111	(c)	0.03	0.02	0.01	0.00	0.00	0.00
	(d)	0.02	0.01	0.01	0.00	0.00	0.00

表-23 PC版と枕版に生じた隙間の計算結果

(単位:mm)

図-23 鋼材間隔と版の隙間の関係(締結力 30kN)

A 断面:鋼材中間断面

・鋼材間隔 2500mm, 緊張力 0kN 時

B 断面:鋼材断面

(b)

平面図

図-22 荷重位置と着目した隙間の位置

3.2 PC版の温度伸縮を模擬したスライド試験(1)

(1) スライド試験(1)の概要

前節の FEM 解析の結果より, 締結力が 30kN~40kN 程度で PC 版と枕版に生じる隙間が抑制されることが確 認された.一方で,本構造の適用対象となっている箇所 は,場所打ち PC 版舗装であり,1ユニットは最大で 100m 程度の寸法を有している.

その場合,温度伸縮に伴う移動量を下式により算出す ると,場合によっては40mm程度の移動が生じてしまう 可能性が考えられる.その場合,ボルトによる締結がPC 版の温度伸縮を拘束してしまう可能性やPC版の温度伸 縮による移動により,ボルトに変形が生じてしまう可能 性が考えられる.

そこで本試験では、①使用する締結ボルトの構造が、 版を拘束せずに伸縮するか、②版の伸縮に対して、ボル トの締結力は保持されているか、③伸縮時に締結ボルト の変形がどの程度で収まるか(最適ボルト径の決定)、に ついて確認することを目的とし、PC版の温度伸縮を模擬 したスライド試験を実施した.

(2) PC 版の温度伸縮による移動量の算出

理論上の PC 版伸縮時の不動点は版中央部になるもの と考えられるが, PC 舗装版は路盤に設置された構造物で あり,路盤と PC 版の設置状況により不動点が変化する ことが予想されるため,ここでは PC 版の端部に不動点 が生じることを想定して, PC 版の温度伸縮による移動量 を算出した.

 $\Delta L = K \cdot \Delta T \cdot B = \pm 40 mm$

ここに, ΔL:PC版の温度伸縮による移動量 K:コンクリートの線膨張係数 10×10⁻⁶(1/℃) ΔT:温度変化 ±40℃ B:PC版の長さ 100m

(3) パラメータ

3.1 の FEM 解析に基づく PC 版・緩衝版一体化構造の 検討結果では、枕版を定着アンカーとして、枕版と PC 版を 40kN 程度でボルトにより締結すれば、PC 版と枕版 との間に隙間が生じない傾向にあることが推察された. そこで本実験では、図-24 ならびに写真-5 に示すような、 1m×1m×0.18m のコンクリート版の中心部 2 ヶ所に 40kN のボルト締結力を与えた状態で、コンクリート版を (+) 側、(-) 側にスライドさせる実験を行った. スライド試験は2回に分けて実施し,第1回試験では 締結ボルトの滑り面(図-25に示す⑤ 座金Bタイプと⑥ 滑り板の接触面)をパラメータとして,滑り面の最適材 料を検討した.滑り面の構造は写真-6に示すように,(1) テフロン加工,(2)クロムメッキ加工,(3)SS400材, (4)SUS304 材,(5)ゴムのせん断変形に期待した構造,の 計5種類とした.

また第1回の試験結果から,滑り面の加工としてテフ ロン加工が優れていること,ボルトの径が20mmの場合 は,引張力,せん断力に対しては十分な強度を有してい るが,ボルトの曲げ変形によりボルトが変形してしまう 可能性が高いことから,第2回の試験ではボルトの径と 緩衝ゴムの有無をパラメータとして実験を行った.

(4) 試験方法

スライド試験の方法を図-26 に示す. 試験は, 枕版を 想定した 50mm の鋼板の上に 1m×1m×0.18m のコンクリ ート版を設置した後, 50mm の鋼板をボルトのアンカー として所定締結力を導入し, 両端部に設置したセンター ホールジャッキを押すことにより, H 鋼を介してプレキ ャスト版をスライドさせた. 実際の構造では, プレキャ スト版に切り欠き部を設け, その中に滑り板, 座金等の パーツを配置して版の表面部に上蓋を設置するが, 今回 は滑り板の取り替え, 計測のしやすさ等を考慮してプレ キャスト版の上面に滑り板を設置した.

図-24 スライド試験(1)

写真-5 スライド試験(1)

(a) 第1回試験

図-25 締結ボルト構造図

No.1 (テフロン加工)

No.2 (クロムメッキ加工)

No.3 (SS400 材)

写真-6 締結ボルトの滑り面の形状

項目	計測機器	数	備考
版の移動量	変位計	4	プレキャスト版の移動量測定.
ボルトの変形量	変位計	2	ボルト先端部の変形量
ボルトの締結力	ひずみゲージ (基部 15mm)	4	締結時,版のスライド時の締結力測定. ボルト1本につき2ヶ所測定.
ボルトの締結力	ひずみゲージ (基部 15mm)	4	締結時,版のスライド時の締結力測定 ボルトの曲げにより生じる応力測定. ボルト1本につき2ヶ所測定.
荷重	ロードセル	2	版の移動時,ボルト変形の解放時の荷重測定 用.

図-26 測定位置

3.3 スライド試験(1)試験結果

(1) PC 版のスライドに関する検討

第1回試験では、滑り面の材質を「テフロン」、「クロ ムメッキ」、「SS400」、「SUS304」、「ゴム」を用いて、M20 のボルトで約40kNの締結力を導入した.第1回試験時 において、基準位置からコンクリート版を移動させた際 のボルト先端部の変形量と版の移動量の関係を図-27 に、 また各試験の水平荷重から算出した滑り面の静摩擦係数 の結果を表-24 に、試験終了後のボルトの状況を写真-9 にそれぞれ示す.なお全供試体のボルト先端部の変形量 と版の移動量の結果は付録-2 に、水平荷重とボルト先端 部の変形量の結果は付録-3 に示す.試験結果をまとめる と以下のとおりである.

a) 滑り面の摩擦係数

滑り面をテフロン加工したものは,滑り面で滑りが生 じるまではボルトの変形が生じるが,それ以降はコンク リート版の移動が生じてもボルトの変形は小さい範囲で 収まった.それ以外のタイプは,滑り面で座金の滑りは 生じず,コンクリート版の移動と共に,**写真-9**に示すよ うにボルトが変形する結果となった.

b) 各材料の静摩擦係数

滑り面をテフロン加工した試験体の静摩擦係数は 0.08 ~0.17 の範囲にあった.

c) 滑り面の最適材料

締結金具に使用する材料のうち、版の伸縮により移動 する滑り面(図-25の⑤座金 B タイプと⑥滑り面の接触 面)には、テフロン加工を施した材料を使用するものと した.

	試験体種類	滑り面	版の滑り面	P(kN)	Pmax(kN)	水平力(kN) Pmax-P	締結力+ 版自重 (kN)	静摩擦係数
	S40-1	テフロン		_	14.1	14.1	85.2	0.17
	S40-2	クロムメッキ		_	30.1	30.1	85.2	0.35 以上
签1回封除	S40-3	SS400	テフロンシート	_	33.3	33.3	85.2	0.39 以上
労 ・凹 武 歌	S40-4	SUS304		_	47.4	47.4	85.2	0.56 以上
	S40-5	ゴム	[_	31.0	31.0	85.2	0.36 以上
	S40-6	テフロン	ベニヤ板	21.5	30.9	9.4	85.2	0.11
	S40-7			23.3	30.5	7.2	85.2	0.08
	S40-8			23.0	34.0	11.0	85.2	0.13
笠つ同封陸	S40-9	テフロン	细垢	24.0	30.4	6.4	85.2	0.08
弗 ∠凹武歟	S40-10		到叫 171又	23.6	31.4	7.8	85.2	0.09
	S40-11			24.5	35.0	10.5	85.2	0.12
	S40-12	テフロンー鋼	[26.3	42.1	15.8	85.2	0.19

表-24 各試験体の静摩擦係数の測定結果

S40-1~S40-5については、版の滑り面の摩擦係数の方が小さいため、Pmaxを使用して算出した.

S40-1 (テフロン)

S40-2(クロムメッキ)

S40-3 (SS400)

S40-4 (SUS304)

S40-5 (ゴム)

写真-9 スライド試験後のボルトの状況

(2) 版の移動に伴うボルト締結力の変動量

第1回試験の結果に基づき,第2回試験では滑り面の 材質をテフロン加工としてボルト径,座金間に設けた緩 衝ゴムの有無をパラメータとしてスライド試験を実施し た.滑り面の材質をテフロン加工としたケースのボルト 締結力と版の移動量の関係を図-28 に示す.またボルト 締結力と版の移動量のデータを付録-4 に示す.

なお本データの締結力は、鋼材に貼付したひずみゲージから換算するものとした.また初期締結力は、各供試体で若干のばらつきが生じたため、初期締結力を 1.0 とした場合に、版の移動によりどの程度の締結力が変化するかの比率で評価した.試験結果をまとめると以下のとおりである.

a) 締結力の変動について

今回の実験では、版の寸法誤差、あるいは枕版を想定 した鋼板の凹凸等の影響により、(+)側に版をスライド させた場合は締結力が低下する傾向に、(-)側に版をス ライドさせた場合は締結力が増加する傾向にあった.ま た版をスライドさせる方向に対して外側のボルトの締結 力の低下割合が内側に比べて大きい結果となった.

b) 緩衝ゴムの影響について

S40-7 と S40-10, S40-8 と S40-11 の結果より,下図に 示すように締結力が増加しようとする際にも,緩衝ゴム により張力が緩和されるため,締結力の増加の割合が小 さい.以上の結果より,実際の PC 版に本構造を適用す る場合は,座金と座金の間に緩衝ゴムを設置するものと する.

(3) ボルト径の選定に関する検討(ボルトの変形の検討) (1)の結果より、テフロン加工したスライド版を用いた 場合は、滑り面にすべりが生じるまではボルトの変形が 生じるが、一度すべりが生じるとボルトの変形が小さい ことが確認できた.

ここでは、第2回試験時にボルト基部にひずみゲージ を貼付することにより、ボルト基部に発生する応力を測 定するとともに、両端固定のはりを仮定したモデルによ る計算値との妥当性について検討を行った. コンクリー ト版を基準位置(ゼロ)から25mm移動させる際の水平 荷重とボルト基部に生じたひずみの結果を付録-5に、両 端固定のはりを仮定したモデルにより最適ボルト径を算 出するための計算フローを付録-6に、その考え方を用い て計算した結果と付録-5に示す実験値との比較を表-25 ならびに図-29にそれぞれ示す.また、本計算法により 算出した滑り面の摩擦係数に応じて生じるボルトの曲げ 変形によるひずみの関係を図-30に示す.なお計算は、 版の上面に切り欠きを設けたことを想定して,ボルト長 さを 110mm として計算した. 試験結果をまとめると以 下のとおりである.

- ボルト径は,締結力,せん断力に対する検討に加えて、 滑り面で滑りが生じるまでの曲げ変形量を考慮する ことにより決定可能である.
- ② ボルトに生じる曲げ変形に対しての最適ボルト径は、 両端固定はりを仮定したモデルにより算出できるものと考えられる。
- ③ 実際にボルトを設置する構造では、ボルト長さが 110mm 程度であること、今回実験したテフロン加工 を用いた場合の摩擦係数が最大でも 0.17 程度である ことから、図-30 により算出した結果をもとに、実際 には M30 のボルトを用い、滑り面にはテフロン加工 を施した材料を使用するものとする。

図-28 版の移動に伴うボルト締結力の変動の割合

		S4	0-7	S4	0-8	S4	0-9	S40	0-10	S40	D-11	S40)-12	
		Ν	S	Ν	S	Ν	S	N	S	N	S	N	S	
	ボルト径(mm)	2	24		30		42		24	30		4	2	
ボルト諸元	ボルト断面積(mm ²)	45	452		707		1385		52	707		1385		
	断面2次モーメントI (mm ⁴)	162	16286		39761		152745		16286		39761		745	
	支点沈下量δ(mm)	0.5	370	0.3	360	0.0	509	0.5	820	0.3	210	0.1	257	
	支点反力 R _A (kN)	3.	3.60		5.50		3.20		3.90		25	7.90		
計算値	M _(ゲージ位置) (kN・m)	0.270		0.412		0.240		0.293		0.394		0.593		
	$\sigma_{(f'-ジ位置)}(N/mm^2)$	19	199		156		33		216		149		81	
	ひずみ _(ゲージ位置) (µ)	99	94	778		165		1078		743		40)7	
	版移動時の荷重P(kN)	23	.3	23.0		24.0		23	3.6	24	1.5	26	i.3	
	ボルトの滑り発生荷重Pmax(kN)	30	.5	34	l.0	30	30.4		.4	35.0		42.1		
	{(P-Pmax)/2}(kN)	3.	60	5.	50	3.:	20	3.90		5.25		7.90		
実験値	ボルト最大ひずみ(μ)	1130	1007	922	535	167	165	594	1017	801	355	310	432	
	ボルト最小ひずみ(μ)	-1017	-1084	-880	-506	-159	-162	-458	-1083	-751	-289	-256	-351	
	ボルトひずみ平均値(μ)	1074	1046	901	521	163	164	526	1050	776	322	283	392	
	ボルトひずみ2本の平均値(μ)	10	60	711		163		788		549		33	37	

表-25 ボルト基部に生じるひずみの実験値と計算値の比較

図-29 変形により生じるボルトのひずみの実験値と計算値の比較

図-30 滑り面の摩擦係数に応じて生じるボルトの曲げ変形によるひずみの関係

3.4 PC版の温度伸縮を模擬したスライド試験(2)

(1) スライド試験(2)の概要

スライド試験(1)では、ボルトの締結力を保ちつつコン クリート版を拘束することなく伸縮するための構造とし て滑り面にテフロン加工を施した材料を使用すること、 ボルトの曲げ変形に対して鋼材の降伏強度内に収まるボ ルト径として M30 を選定した.しかし実際には、締結ボ ルトが目地に平行して複数設置されるため、ここでは、 より実際の構造に近い形で PC 版を模擬したコンクリー ト版のスライド試験を実施することにより、①使用する ボルトの構造が版を拘束せずに伸縮し、ボルトの変形も 計算で想定された応力で収まっているか、②版の伸縮に 対して、ボルトの締結力は保持されているか、について 確認することを目的とする.

なお 3.1 の FEM 解析に基づく PC 版・緩衝版一体化構 造, 3.2 の PC 版の温度伸縮を模擬したスライド試験(1) では, 図-31 の a)変更前の図に示すように, PC 版端部に はそれぞれ 2 本ずつの鋼材を配置することにより, PC 版と緩衝版を一体化する構造を検討していた. しかし, これまで検討していたボルトの配置方法では PC 版に配 置されている PC 鋼材と接触してしまうこと,実工事で は PC 版にコア削孔を行わなければならないため, 設置 箇所も極力少ないことが望ましいため, 今後は図-31 の b)変更後の図に示すボルト配置により検討を行った. またボルト配置間隔については,既設 PC 版の PC 鋼材の 配置間隔が 375mm を基本に配置されていることから, スライド試験(2)ならびに後述する PC 版と緩衝版との連 続性を確保するための静的載荷試験では、ボルトの最小

間隔は1.1mを基本に検討した.

(2) パラメータ

供試体の形状・寸法を図-32 に、試験のパラメータを 表-26 にそれぞれ示す. 試験は、全てのケースにおいて ボルト間隔 1.1m とし、ボルト締結力を 5kN, 10kN, 20kN, 40kN に変化させて実施した. 試験に使用した PC 版の寸 法は、4.4m×2.1m×0.18m とした. 詳細は 3.6 の(2)供試 体の概要に示す.

(3) 試験方法

スライド試験の装置図を図-33 に、PC 版に設置するボ ルトの形状・寸法を図-34 にそれぞれ示す.試験は、反 力壁に固定した両動油圧ジャッキを用いて、H 鋼を介し て PC 版を±15mm 程度押し引きするものとした.試験 では、PC 版の押し引きに伴う版のずれを防止するため、 両サイドにはローラーを設けた.またテフロン加工した 滑り板のセットは、あらかじめ抜き型枠の上面に石膏を ならし、その上に滑り板を水平器でレベルになる程度の 精度でセットした.

(4) 測定項目

測定項目を表-27 に、計測位置を図-35 にそれぞれ示 す.測定項目は、PC 版の移動量を確認するための変位計、 ボルトの曲げ変形により生じる基部のひずみ、ボルトの 締結力の変動、PC 版を押し引きするための水平荷重とす る. ボルトの締結力は、静的載荷試験と同様に、鋼材に 貼付したひずみゲージにより管理した.

図-31 ボルトの配置方法

図-32 供試体の形状・寸法

写真-10 スライド試験(2)

表_26	試験の	パラ	メータ
न <u>र</u> −20	市1、初田 レノノ	~ /	<u> 入 一 グ </u>

No.	ボルト間隔	ボルト1本あたりの 締結力					
1	なし	_					
2		5kN					
3		10kN					
4	1.1m	20kN					
5		40kN					

図-34 PC版に設置するボルトの形状・寸法

表-27 スライド試験における測定項目

項目	計測機器	数	備考
版の変形量	ひずみゲージ	4	PC 版の移動量測定
ボルトの締結力	ひずみゲージ	8	ボルト4本×2枚/本=8枚
ボルト基部のひずみ	ロードセル	8	ボルト4本×2枚/本=8枚
水平荷重		1	
計		21	

図-35 計測位置図

3.5 スライド試験(2)試験結果

(1) PC 版の伸縮およびボルトの変形に関する検討

各試験ケースにおける水平荷重と PC 版移動量の関係 を図-36 に、水平荷重の結果から算出した静摩擦係数の 結果を表-28 にそれぞれ示す.また No.2~No.5 のボルト 基部に生じたひずみと PC 版の移動量の結果を図-37 に 示す.試験結果をまとめると、以下のとおりである. a) PC 版の伸縮

今回実施したスライド試験のうち,最も厳しい条件で ある No.5 (ボルト締結力 40kN) においても,PC 版は伸 縮挙動を示した.また水平荷重の結果から算出した滑り 板と座金部の静摩擦係数は,締結力が 10kN, 20kN, 40kN 時で 0.13~0.17 程度であり,スライド試験(1)とほぼ同等 な静摩擦係数の値を示した.

b) PC 版が伸縮した際のボルトの曲げ変形

締結力が大きくなるに従い,ボルト基部に発生するひ ずみにばらつきが生じたが,今回使用した M30 のボルト について,曲げ変形により生じたひずみは,全てのケー スで鋼材の降伏強度以内に収まった.

(2) 伸縮に伴うボルト締結力の変動に関する検討

No.2~No.5 のボルト締結力の変動と PC 版の移動量の 結果を図-38 に、この結果をもとにボルト締結力の変動 量の最大値と最小値を抽出した結果を表-29 にそれぞれ 示す.ここで、表-29 中の変動割合は、初期締結力に対 して締結力が低下した割合を示している.

PC 版の伸縮に伴うボルト締結力の変動は、締結力を

40kN 導入した場合において, -24%~+17%の変動の範囲にあった.また初期締結力が小さいケースほど, 初期締結力に対しての締結力の変動が大きくなる傾向にあった.

図-36 各試験ケースの水平荷重-PC 版移動量の関係

試験ケース	ボルト間隔	ボルト締結 力	PC版自重	P _{max} (kN)			コンクリート 面水平荷重	テフロン面 水平荷重	静摩擦係数
No 1		_		(+)	9.2	9.7	_	_	0 237
110.1				(-)	10.1	0.7			0.237
No 2		5 kN		(+)	(+) 14.0		14.4	-0.5	-0.022
10.2				(-)	13.9	14.0	14.4	-0.5	-0.023
NI- 2		10 LN	40.8 kN	(+)	25.9	25.0	10.2	67	0 167
10.5				(-)	25.8	20.9	19.2	0.7	0.107
NI- 4	1.10	20 1-11		(+)	42.1	40.6	20.6	10.0	0.150
INO.4		20 KN		(-)	39.1	40.0	28.0	12.0	0.150
]	40 kN		(+)	74.0	68.0	47.6	20.4	0 1 2 9
6.0M		40 kN		(-)	62.0		47.0	20.4	0.128

表-28 各試験ケースの静摩擦係数の測定結果

※滑り板と座金の静摩擦係数は、水平荷重の実験値からコンクリート底面の水平荷重を差し引いたものを、ボルト 締結力で除して算出した.

図-37 ボルト基部に生じたひずみと PC 版の移動量の結果

図-38 No.2~No.5 のボルト締結力の変動と PC 版の移動量の結果

	No.2	No.3	No.4	No.5
	(ボルト締結力 5kN)	(ボルト締結力 10kN)	(ボルト締結力 20kN)	(ボルト締結力 40kN)
ボルト1	-2.5kN~2.9kN	-3.0kN~2.9kN	-2.7kN~6.2kN	-6.3kN~7.0kN
ボルト2	-3.3kN~1.4kN	-3.9kN~2.9kN	-5.6kN~5.0kN	-7.0kN~6.8kN
ボルト3	-2.2kN~3.6kN	-4.5kN~4.4kN	-7.9KN~8.8kN	-13.5kN~7.8kN
ボルト4	-1.7kN~1.8kN	-2.5kN~2.7kN	-5.9kN~5.0kN	-10.7kN~6.0kN
平均值	-2.4kN~2.4kN	-3.5kN~3.2kN	-5.5kN~6.3kN	-9.4kN~6.9kN
変動割合	(-48%~+48%)	(-35%~+32%)	(-28%~+32%)	(-24%~+17%)

表-29 各試験ケースのボルト締結力の変動量の結果

3.6 静的載荷試験

3.1 で検討した PC 版と緩衝版の一体化構造の効果についての解析的な検討結果を踏まえ、本節では、PC 版端部を模擬した供試体を製作し、静的載荷試験を行うことにより、PC 版端部と緩衝版の連続性が確保されているかについて、実験的に確認することを目的とする.

(1) パラメータ

供試体の形状・寸法を図-39 に,静的載荷試験の状況 を写真-10に,載荷ケースを表-30に,ボルトの配置方法 を図-40に,ボルトの形状・寸法を図-41 にそれぞれ示す.

試験は、模擬路盤(発泡スチロール)上に 3.2m×4.4m ×0.25m の枕版を設置し、枕版上面の中心部に 1.04m× 4.4m×0.18m の緩衝版を、枕版上面の両端部に 2.1m× 4.4m×0.18m の PC 版を設置し、前述した FEM 解析の結 果より、PC 版と枕版の間に最も隙間が生じると考えられ る緩衝版端部に載荷した.その際に PC 版と枕版に生じ る隙間、PC 版と緩衝版のたわみ差、PC 版と緩衝版のひ ずみ差を測定することにより、PC 版と緩衝版の一体化を 評価した.

試験のパラメータは, PC 版と枕版の支持条件, 締結ボルトの有無, 締結ボルトの配置間隔, 締結力とし, 計 32 種類の載荷試験を実施した.

PC版と枕版の支持条件については,以下の4種類をパ ラメータとして実施した.

シリーズ1,シリーズ2は,設計上想定されたように PC版が枕版に支持された状況を模擬したものであり,載 荷試験前に実施した発泡スチロールの平板載荷試験の結 果(付録-7),シリーズ1の路盤支持力係数は0.14N/mm³, シリーズ2の路盤支持力係数は0.08N/mm³であった.

シリーズ3は、枕版下の路盤の支持力が低下し、枕版 のみが局所的に沈下した状態を模擬するため、PC版両端 部にゲビンデ PC 鋼棒を1本あたり100kNで8ヶ所固定 した状態で試験を実施した.

シリーズ4は、載荷点近傍のPC版に空隙が生じ、PC 版は目地平行方向の両端部でのみ枕版にて支持された状態を模擬したものであり、PC版の目地直角方向の両端部 に高さ調整用プレートを配置した状態で試験を実施した. 今回提案している一体化構造を用いる場合は、PC版と路 盤の間にはグラウト材を充てんし、隙間を設けないこと を前提としているが、今回は様々な環境下において締結 ボルトの効果を確認することを目的としたため、本条件 下においても試験を実施した.

締結ボルトの配置間隔については、前述の FEM 解析

により枕版と PC 版の間に隙間が生じると推定されたボ ルトの間隔が 2m~3m であったこと,今回ポンピング現 象が生じた羽田西側エプロン部の PC 舗装版の PC 鋼材の 配置間隔が約 375mm ピッチであり, PC 鋼材の配置位置 を交わした際の区切りの良い配置が 1.1m であったこと から,今回の実験では,図-39 に示すように,ボルト間 隔は 1.1m を基準に, 2.2m, 3.3m の 3 種類を設定した.

締結力は,解析結果から 40kN 程度で PC 版と枕版の間 に生じる隙間が低減される傾向にあったとの結果を踏ま え,5kN と 40kN を締結力の基本として試験を実施した. また PC 版,緩衝版には,それぞれ図-41 に示すような締 結ボルトを使用し,ボルト締結力の管理は,付録-8 に示 す締結ボルトの応力-ひずみの関係をもとに,鋼材に貼付 したひずみゲージにより行った.

(2) 供試体の概要

a) 枕版

枕版の形状・寸法を図-42 に示す.供試体の寸法は 3200 ×4400×250mm とした. コンクリートの設計基準強度は 40N/mm²とし,鉄筋は多層弾性理論により算出した断面 力に対して 100N/mm²以内の応力になるような鉄筋を配 置するものとした. なお載荷試験時におけるコンクリー トの圧縮強度は**付録-9**に示す値であった.

b) 緩衝版

緩衝版の形状・寸法を図-43 に示す.供試体の寸法は 1040×4400×180mm とした. コンクリートの設計基準強 度は 40N/mm²とし,目地平行方向は ¢ 23mm のアンボン ド PC 鋼棒を 4 本配置した PC 構造,目地直角方向は D19 を配置した RC 構造とした.

c) PC 版

PC 版の形状・寸法を図-44 に示す.供試体の寸法は 2100×4400×180mm とし、コンクリートの設計基準強度 は 40N/mm²とした.また今回の実験では、PC 版に直接 載荷は行わないため、目地平行方向、目地直角方向とも に RC 構造とし、D16 の鉄筋を配置した.

d) 模擬路盤(発泡スチロール)

今回の実験では、模擬路盤として硬質発泡スチロール (カネパールソイルブロック DX-29)を用いて路盤を構 成した.シリーズ1では枕版下の発泡スチロール厚さを 100mm、シリーズ2~シリーズ4では枕版下の発泡スチ ロール厚さを200mmとして、静的載荷試験を実施した. 先述したように、発泡スチロール厚さを100mmとした 場合の路盤支持力係数は0.14N/mm³、発泡スチロール厚 さを200mmとした場合の路盤支持力係数は0.08N/mm³ であった.

図-39 供試体の形状・寸法

写真-10 静的載荷試験の状況

載荷ケース	シリーズ1				シリーズ2				
模擬路盤厚	発泡スチロール厚さ:100mm				 発泡スチロール厚さ:200mm				
	ゲビンデPC鋼棒:緊張なし				ゲビンデPC鋼棒:緊張なし				
	PC版は枕版に全面支持	Fされたケー	ス		PC版は枕版に全面支持	寺されたケー	·ス		
	PC鋼棒(緊張なし)	PC鋼	棒(緊張なし)	P	C鋼棒(緊張なし)	PC鋼	棒(緊張なし)		
PC版の				F		1657			
支持条件	【	100mm) / /			<u>///発港スチ/ロー/ル厚差</u> 」	(20ømm) / /			
	¥		*	-	₩ ₩		#		
		<u> </u>	77			<u> </u>	$\overline{7}$		
			Í						
	供試体名	ボルト	ボルト 締結中		供試体名	ボルト	ボルト 毎年カ		
	1 2/11	同州罚	市市ノノ	0	2.11. 70. 1.1. FIN	[四][月]	が市がロノノ		
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	1.1m	DKN 401-N	8	$y - \chi_2 = 1. \text{ Im} = 5 \text{ KN}$	1.1m	DKN 401-N		
載荷ケース	$2 y - x_1 - 1$. Im -40 kN		40KN 51/N	9	5 - 7 - 72 - 1.1 m - 40 kN		40KN 51/N		
戦刑クノ	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	2.2m	JAN 401-N	10	5 - 7 - 72 - 2.2 III - 5 KN	2.2m	JOI-N		
	$\frac{4}{5} \frac{5}{1} \frac{1}{5} \frac{1}$		40kh 5kh	11	2 - 7 - 3 - 3 - 5kN		40KN 5kN		
	$6 \frac{2}{2} \frac{1}{2} - \frac{3}{2} \frac{3m}{40 \text{kN}}$	3.3m	40kN	12	$\frac{5}{2}$ $\frac{1}{2}$ $\frac{1}$	3.3m	40kN		
	7 シリーズ1-無	_	_	14	シリーズ2-無	_	_		
載荷	$0kN \rightarrow 350kN \rightarrow 0kN \rightarrow 350l$	$N \rightarrow 0 k N \rightarrow 35$	0kN	$0 \text{kN} \rightarrow 205 \text{kN} \rightarrow 0 \text{kN} \rightarrow 205 \text{kN} \rightarrow 0 \text{kN} \rightarrow 205 \text{kN}$					
ステップ	の3回繰り返し	レ載荷			の3回繰り返	し載荷			
載荷ケース	シリーズ	3			シリース	4			
模擬路盤厚	発泡スチロール厚	さ:200mm		発泡スチロール厚さ:200mm(版端部のみ支持)					
	ゲビンデPC鋼棒:	緊張あり		ゲビンデPC鋼棒:緊張なし					
	枕版のみが不同沈下した状態	態を模擬し†	ミケース	載荷面近傍のPC版に空隙が生じ、PC版は枕版両端 部で支持された状態を増援したケース					
				部で文持された状態を模擬したケース					
	PC鋼棒(緊張あり) 「╋────────────────────────────────────	PC鋼	棒(緊張あり)	P C 鋼棒 (緊張なし) 目地平行方向両端部で支持 P C 鋼棒 (緊張なし) ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑					
支持条件		20.6mm)	$\overline{7}$	/ 発送スデ/ロー/ル厚差 (20g/mm) / /					
200001011		200011111) / / /							
		/							
						-			
	供試体名	ボルト	ボルト		供試体名	ボルト	ボルト		
		间隔	術楦刀			间牌	術宿力		
	15 シリーズ3-1.1m- 5kN	1.1m	5kN	24	シリーズ4-1.1m- 5kN	1.1m	5kN		
	16 > 9 - 3 - 1.1m - 40kN		40kN	25	シリース4-1.1m-40kN		40kN		
# # ない フ	17 > 9 - 3 - 2.2m - 5kN	2.2m	5kN	26	5 - 7 - 7 - 2.2m - 5kN	0.0	5kN		
戦何クース	$18 \sim 9 \sim 3 - 2.2m - 40 \text{kN}$		40kN	27	5 - 7 - 74 - 2.2m - 20kN	2.20	20kN		
	$19 > 9 - x_3 - 3.5 \text{m} - 3 \text{KN}$		DKN 10kN	20	5 - 74 - 2.2m - 40 kN		40KN 51/N		
	20 > 7 - 73 - 3.3m - 10 KN	3.3m	20kN	29	5 - 74 - 3.3 = -3 - 3 = -3 = -3 = -3 = -3 = -3	3 3m	OKN 201/N		
	21 - 7 - 73 - 3 - 3 - 20 KN 22 - 7 - 73 - 3 - 3 - 20 KN		20kN 40kN	31	~ 1	0.00	20kh 40kh		
	23 シリーズ3-無	_		32	シリーズ4-無	_	-		
載荷	$\frac{1}{0kN} \rightarrow 205kN \rightarrow 0kN \rightarrow 205k}$	N→0kN→?5	0kN	02					
ステップ	0kN→205kN→0kN→205kN→0kN→350kN の3回繰り返し載荷				0kN→350kN→0kNの1回繰り返し載荷				

表-30 載荷ケース

※印の供試体については、0kN→350kN→0kNの1回繰り返し載荷

図-42 枕版の形状・寸法

図-43 緩衝版の形状・寸法

図-44 PC版の形状・寸法

(3) 試験方法

静的載荷試験の方法を図-45 に示す. 試験は鉛直載荷 システムを使用し, FEM 解析の結果より, PC 版と枕版 の隙間が最も生じると推定された緩衝版端部に載荷した. 載荷点には, 直径 450mm の鋼製載荷板(下面に硬質ゴ ム付き)を用いた.

(4) 測定項目

静的載荷試験における測定項目を表-31 に, PC 版と枕版との間に生じる隙間, コンクリート版のたわみ, ひずみの測定状況を写真-11 に,変位計の設置位置を図-46 に, ひずみの測定位置を図-47 にそれぞれ示す.

また試験シリーズ 2~4 について実施した PC 版と枕版 との間に生じる隙間は図-48 に示す方法により, PC 版と 緩衝版のたわみ差・たわみ伝達率の測定は図-49 に示す 方法により測定した.

a) PC 版と枕版との間に生じた隙間

PC版と枕版との間に生じた隙間は,図-48に示すように PC版に固定した変位計を枕版上面にセットすることにより算出した.

b) PC 版と緩衝版のたわみ差・たわみ伝達率

PC版と緩衝版のたわみ差は、図-49に示すように載荷

点近傍に設置した変位計により PC 版のたわみと緩衝版 のたわみの差を求めた.またたわみ伝達率は,載荷点近 傍の設置した PC 版と緩衝版の変位計の値を用いて,次 式により算出した.

たわみ伝達率(%)
$$E_{ff} = \frac{2d_1}{d_0 + d_1} \times 100$$

ここに,

d₁: PC版(非載荷側)のたわみ(mm)

d₀:緩衝版(載荷側)のたわみ(mm)

c) PC 版と緩衝版のひずみ伝達率

ひずみ伝達率は,載荷点中心から 275mm 位置の版上 面のひずみゲージの値を用いて,次式により算出した.

ひずみ伝達率(%)
$$E_{ff} = \frac{2\varepsilon_1}{\varepsilon_0 + \varepsilon_1} \times 100$$

 $\epsilon_1: \mathbf{PC} 版 (非載荷側) のひずみ (<math>\mu$), $\epsilon_0: 緩衝版 (載荷側) のひずみ (<math>\mu$)

図-45 静的載荷試験の方法

項目	計測機器	数	備考
	変位計	9	目地平行方向(PC 版載荷側)
	変位計	9	目地平行方向(緩衝版)
版のたわみ	変位計	4	目地直角方向(PC 版載荷側)
	変位計	2	目地直角方向(緩衝版)
	変位計	5	目地直角方向(PC 版非載荷側)
PC 版・枕版の隙間	変位計	2	シリーズ 2~4 にて測定を実施
枕版の変形量	変位計	2	目地平行方向の端部
コンクリート	ひずみゲージ	8	目地平行方向(PC 版載荷側)
表面ひずみ	ひずみゲージ	8	目地平行方向 (緩衝版)
コンクリート	ひずみゲージ	2	緩衝版載荷位置側面
側面ひずみ	ひずみゲージ	2	PC 版載荷側
ボルトの締結力	ひずみゲージ	32	最大 32 枚 (2 枚×16 本=32 枚)
載荷荷重	ロードセル	1	載荷荷重の確認用
計		86	

表-31 静的載荷試験における測定項目

(目地直角方向のたわみ)

図-46 変位計の設置位置

図-47 コンクリート表面のひずみ測定位置

図-48 PC 版と枕版との間に生じる隙間の測定方法

図-49 PC版と緩衝版のたわみ差・たわみ伝達率の測定方法

3.7 静的載荷試験結果

(1) PC 版と枕版との間に生じた隙間の結果

試験シリーズ2~4のPC版と枕版との間に生じた隙間の結果を図-50に示す.

シリーズ2については,設計荷重205kNまでの載荷で 試験を終了しているため,図は100kNと250kN載荷時の ボルト間隔とPC版と枕版との間に生じた隙間の結果を, シリーズ3,4については350kNまで載荷しているので, 100kN,205kN,350kN載荷時のボルト間隔とPC版と枕 版との間に生じた隙間の結果を示す.

図-50の結果から、PC版が枕版にて全面で支持された 状態(シリーズ2)では、ボルト間隔が1.1mではほとん ど隙間が生じておらず、ボルトを配置していない場合に ついても約0.15mmに収まる結果となった.一方、枕版 が局所的に沈下する状況を想定したケース(シリーズ3)、 載荷面付近のPC版に空隙が存在する状況(シリーズ4) では、それぞれ設計荷重時に約0.3mmと約0.7mm、350kN 載荷時に約0.7mmと約1.1mmの隙間が生じたのに対し て、ボルトを配置した場合には隙間が抑制された.この 傾向はボルト間隔が小さく、かつボルト締結力が多いほ ど顕著であった.

すなわち, PC 版が枕版に全面的に支持された構造であ れば、ボルトの有無によらず PC 版と枕版との間に生じ る隙間が小さいこと、シリーズ 3、4 のように PC 版と枕 版との支持条件が悪くなった場合において、ボルト締結 による効果が認められる傾向を示した.またボルト間隔 が 1.1m の場合は、ボルト締結力が 5kN であっても 40kN であっても、PC 版と枕版との間に生じる隙間の変動は小 さいが、ボルト間隔が大きくなるにつれてボルト締結力 の影響が大きくなる傾向を示した.

(2) PC 版と緩衝版とのたわみ差・たわみ伝達率

試験シリーズ 1~4の PC 版と緩衝版のたわみ差を測定 した結果を図-51 に, PC 版と緩衝版のたわみ伝達率の測 定結果を図-52 にそれぞれ示す.また各試験ケースの目 地平行方向の載荷側(緩衝版)と非載荷側(PC版)のた わみ分布を付録-10 に,目地直角方向のたわみ分布を付 録-11 にそれぞれ示す.

PC版と緩衝版との間に生じた隙間の結果と同様に、 PC版が枕版にて全面で支持された状態(シリーズ1,シ リーズ2)のボルト無しで設計荷重を載荷させた場合で は、シリーズ1が約0.6mm、シリーズ2が約0.4mmのた わみ差を有していた.シリーズ1とシリーズ2を比較し た場合には、シリーズ2の路盤支持力係数が小さいため、 たわみ差が大きいものと想定されたが、シリーズ1では PC版と枕版の支持において若干の不陸が生じたため、結 果としてシリーズ1がシリーズ2に比べて若干たわみ差 が生じる結果となった.またボルトを配置したケースは、 路盤の支持状態によらず PC版と緩衝版のたわみ伝達率 がボルトを配置しないものに比べて向上する傾向を示し た.ボルト間隔がL1mの場合には、締結力の影響が小 さく、ボルト間隔が広がるにつれて、ボルト締結力の影響が大きくなる傾向を示した.

図-52 各試験シリーズの PC 版と緩衝版のたわみ伝達率の結果

(3) PC 版と緩衝版とのひずみ伝達率の測定結果

試験シリーズ1~4のPC版と緩衝版のひずみ伝達率の 結果を図-53 にそれぞれ示す.また目地平行方向の載荷 側(緩衝版)と非載荷側(PC版)コンクリート表面のひ ずみ分布を資料-12 にそれぞれ示す.

シリーズ1,シリーズ3の一部では、ボルト間隔が2.2m より3.3mの方がひずみ伝達率が向上しているデータも 存在したが、全体的にはボルトが配置されてかつボルト の配置間隔が小さい、かつボルト締結力が大きいほど、 PC版と緩衝版との応力の伝達も向上する傾向を示した.

(4) 載荷に伴うボルト張力の変動

試験シリーズ1~4それぞれの載荷側のPC版,緩衝版, 非載荷側のPC版に設置した締結ボルトの張力変動量の 結果を図-54に示す.

今回の実験より, PC 版, 緩衝版のボルト張力の増加量 は,最大でも 10kN 程度で収まっている結果となった. また緩衝版に設置したボルトの軸力変動に着目した場合 には,載荷を行うことにより緩衝版が縮まる結果として ボルト締結力が減少する傾向を示したが,荷重を除荷し た場合にはボルト締結力はもとに戻る傾向を示した.

(5) 静的載荷試験のまとめ

路盤の支持条件,ボルトの配置間隔,ボルト締結力を パラメータとして,PC 版端部を模擬した供試体の静的載 荷試験を実施することにより,PC 版と緩衝版の一体化の 効果について実験的な検討を行った.今回の実験により 得られた結果を以下に示す.

a) PC 版と枕版との間に生じた隙間,たわみの連続性

PC版が枕版にて全面で支持された状態(シリーズ2) では、ボルトを配置しなくても PC版と枕版との間に生 じた隙間は、205kNの載荷(設計荷重相当)で約0.15mm に収まった.一方、枕版が局所的に沈下する状況を想定 したケース(シリーズ3)、載荷面付近のPC版に空隙が 存在する状況(シリーズ4)では、205kN載荷時でシリ ーズ3では約0.3mm、シリーズ4では約0.7mmの隙間が 生じたが、締結ボルトを配置することにより、PC版と枕 版の間に生じる隙間が抑制されることが確認できた.ま たボルトの配置間隔が1.1mの場合は、ボルト締結力に よらず抑制されること、ボルト間隔が2.2m、3.3mと広 がるにつれてボルト締結力の影響が大きくなる傾向を示 した.

b) ボルト張力の変動

静的載荷試験時に測定したボルトの張力の結果から, 今回の実験の範囲では最大でも 10kN 程度の増加に収ま っていることが確認できた.また載荷箇所についいては, 載荷により路盤が変形し,締結力が低下する箇所も生じ たが,除荷に伴いボルト締結力も復元する傾向を示した.

図-53 各試験シリーズの PC 版と緩衝版のひずみ伝達率の結果

図-54 各試験シリーズのボルト張力の変動の結果

3.8 締結金具の構造・取り付け方法およびボルト締結力 管理方法

既設空港エプロン PC 舗装版に一体化構造を用いる場合は、夜間の限られた時間内に既設の PC 版をコア削孔 し、締結金具を設置する必要がある.本節では、4 章で 述べる走行載荷試験を行う際に実施した締結金具の取り 付け方法とその際に生じた課題点ならびにその改良試験、 ボルト締結力の管理基準の概要を述べる.

(1) 締結金具の構造

締結ボルト構造の概要を図-55 に, PC 版用締結ボルト 構造の詳細図を図-56 に, PC 版用締結金具の材料を図-57 に,緩衝版用締結金具の材料を図-58 にそれぞれ示す.

締結金具は, PC 版用, 緩衝版用ともに, 全ねじボルト, ロングナット, エポキシ樹脂, グラウト止めパッキン, カセット,カセットと既設舗装版を一体化させるための グラウト材,座金①,②,緩衝ゴム,ボルト,蓋から構 成した.

PC版に設置する締結金具は、PC版の温度伸縮に伴う 移動を確保するスペースが必要となるが、緩衝版の短手 方向の版長は 1m弱であること、長手方向は枕版と一体 となって伸縮するものと想定するため、温度伸縮に伴う 移動がほとんどないものと考えられるため、コア削孔径、 カセットの直径は PC版と緩衝版で異なるものを使用し た.

図-55 PC 版用,緩衝版用の締結ボルト構造の概要

図-56 PC 版用締結金具の詳細図

図-57 PC 版用締結金具

図-58 緩衝版用締結金具

(2) 締結金具の取り付け方法と課題点

締結金具の取り付けフローを図-59 に, a)コア削孔, b)カセット設置, c)無収縮グラウトの注入・養生, d)ボル ト定着用エポキシ樹脂注入, e)ボルト・座金セット, f) ボルト・座金のばらし, g)ボルト締結力導入 に関する 作業の概要と課題点を図-60~図-65 ならびに写真-12 に それぞれ示す.

a) コア削孔

走行載荷試験時は,締結ボルトを設置することによる 構造的な検討を行うことを主目的として行ったため,コ ア削孔は行わずあらかじめ孔を設けた PC 版,緩衝版を 製作した. PC 版用のコア削孔径は,PC 版上面側から ϕ 305mm, ϕ 128mm, ϕ 78mm とした.また緩衝版用のコ ア削孔径は,緩衝版上面側から ϕ 160mm, ϕ 110mm, ϕ 78mm とした.

b) カセット設置

締結ボルトを配置した際にも,PC版が温度伸縮に対し てスムーズに移動するよう,カセットは設置治具を用い て PC版に対して平行に作用するようにセットした.そ の際,カセットのまわりに充てんする無収縮グラウト材 が PC版下に漏れるのを防止するためのコンクリート止 めのパッキンをカセット下にセットしたが,パッキンの 反発力が強く設置治具が浮き上がる傾向にあった.今回 は、コンクリート供試体を治具の上にセットすることに より,設置治具、カセットの浮き上がりを防止する処置 を施したが、実施工では、パッキンの変更あるいはカセ ットが浮き上がらない重量の設置治具を使用する必要が ある.

c) 無収縮グラウト注入, 養生

無収縮グラウトの材料は、コア削孔部とカセット設置 部の隙間が1cm程度と小さいため流動性に優れているこ と、材齢2時間で硬化していること、材齢28日ではPC 版と同等以上の強度を有している材料を選定した.今回 はプレキャストPC舗装版の目地部のジョイント(水平 ジョイント)の充てんに用いられる材料 MG-5(三菱マ テリアル(株))を使用した.

d) ボルト定着用エポキシ樹脂注入

エポキシ樹脂は、土木建築用低粘度型エポキシ樹脂 ボンド E2300J (コニシ(株)製)を使用した。樹脂注入 量をあらかじめ計算し、その分のエポキシ樹脂を注入す る作業を行ったが、一部エポキシ樹脂の量が多く、ロン グナットのネジ部にエポキシ樹脂が入ってしまった。 実施工では,エポキシ樹脂の注入量を少なめにしておき, エポキシ樹脂硬化後に,不足分を再注入する等の手順が 良いものと考えられる.

e) ボルト, 座金セット

樹脂注入後,全ねじボルト,ロングナット,M30ボルト,座金①,緩衝ゴム,座金②を一体化させた状態でボルトをセットする.

f) ボルト, 座金のばらし

ボルト,座金を取り外した際に,エポキシ樹脂の量が 著しく減少している場合は再度エポキシ樹脂を追加注入 する.

g) 締結力導入

エポキシ樹脂を注入後,材齢1日で40kNの締結力を 導入した場合,締結力が半分以下に低下する結果となっ た.また材齢7日で同様な作業を行った場合,締結力は 若干減少したが,材齢1日に比べて著しく抑制された.

以上,実施工を想定したケースにて締結金具の取り付 けを実施したが,基本的には問題なく作業を行うことが できた.しかし,g)ボルト締結力の導入 に関して,エ ポキシ樹脂を注入して材齢7日で締結力を導入した場合 には,ボルト締結力の減少量は小さかったが,材齢1日 でボルトに締結力を導入した場合には,ボルトの締結力 が導入時に比べて半分以下に低下した.また PC 版と緩 衝版のボルト締結力の減少量を比較した場合には,座金 の面積が小さい緩衝版の方が,ボルト締結力が減少する 傾向にあった.

そこで、これら締結力の減少量の要因を確認すること、 アンカー部の耐力を確認することを目的に、アンカー部 の材料の材齢を変化させた場合のボルト締結力の経時変 化の測定試験、樹脂アンカー部の引抜き試験(アンカー 部強度確認試験)と、図-56 に示す座金①と座金②の間 に挟み込んだ緩衝ゴムの状態が締結力の減少に及ぼす影 響を確認するための試験(緩衝ゴム改良試験)、ならびに 締結力をトルクにて管理する場合のトルク値のばらつき を確認するための試験を実施した.

図-59 締結金具の取り付けフロー

図-60 コア削孔

図-61 カセット設置

図-62 無収縮グラウト注入,養生

図-63 ボルト定着用エポキシ樹脂注入

図-64 ボルト, 座金セット

図-65 ボルト, 座金のばらし

写真-12 締結力の導入状況

3.9 アンカー部の材料変形によるボルト締結力減少量確 認試験

(1) 試験概要

ボルト締結を行う際のアンカー部について,材料の変 形に伴うボルト締結力の減少量と引抜き耐力を実験的に 確認することを目的に,定着ボルトをセットした後に,

「ボルト締結力の経時変化測定試験」,「アンカー部の引 抜き試験」を実施した.

試験ケースを表-32 に,試験に使用したコンクリート 版の形状・寸法を図-66 にそれぞれ示す.試験は,アン カー定着用材料としてエポキシ樹脂とモルタル材料の 2 種類につき,材齢1日,7日でボルト締結力の経時変化 測定試験をそれぞれ3ヶ所で実施するとともに,材齢7 日でアンカー部の引抜き試験を実施した.

また実構造物の枕版の厚さは 250mm であるが,今回の実験では厚さ 200mm のコンクリート版に φ 78 の孔を 削孔し,定着アンカーをセットした後に試験を実施した.

	ボルト締結力の	引抜き試験	
	材齢1日	材齢7日	材齢7日
テモナン神聖	3ヶ所	3ヶ所	3ヶ所
エルモン樹脂	(⊠-66 ①~③)	(閨-66④~⑥)	(閨-66④~⑥)
エ リ <i>は</i> リ	3ヶ所	3ヶ所	3ヶ所
モルタル	(図−66 ⁽¹⁰ ~ ⁽¹²⁾)	(⊠-66 ⑦~⑨)	(⊠-66 ⑦~⑨)

表-32 試験ケース

(2) 試験手順と方法

a) 定着アンカーのセット

試験は、枕版を想定したコンクリート版(図-66)に、 実際に施工する際と同一寸法のφ78の孔を削孔した後、 エポキシ樹脂材料は写真-13、モルタルは写真-14に示す 方法により材料を練混ぜた後に、写真-15、写真-16に示 す方法により材料を注入した.アンカー部定着用材料は、 表-33に示すものを使用した.

写真-13 エポキシ樹脂練混ぜ状況

写真-14 モルタル練混ぜ状況

写真-15 エポキシ樹脂注入状況

写真-16 エポキシ樹脂注入状況

写真-17 アンカー固定状況

写真-18 アンカー設置完了

材料名	主成分	用途	メーカー	比重
ボンド E2300J	エポキシ樹脂	土木建築用低粘度型 エポキシ樹脂	コニシ(株)	1.2±0.10
キューテックス Type-A	特殊セメント 無機系	セメント系 アンカーボルト定着材	電気化学工業㈱	2.85

表-33 アンカー部注入材料

b) ボルト締結力の経時変化測定試験

ボルト締結力の経時変化測定試験の概要を**写真-19**ならび図-67に示す.

試験は、アンカー部に埋め込んだロングナットを介し て、M30 ボルトをひずみ管理により所定の締結力(40kN) までスパナにより手動で導入し、その後一定の時間間隔 でひずみを計測し、ボルト締結力の経時変化を測定した. 今回の試験では、走行載荷試験を行った際に使用したボ ルトを使用した.試験前には、ボルトの荷重-ひずみの 関係を再確認するために、センターホールジャッキを用 いて、写真-20 に示すような方法でボルトのキャリブレ ーションを行い、ボルトの締結力と発生ひずみの関係(図 -68) を確認した.

c) アンカー部の引抜き試験

アンカー部の引抜き試験の概要を図-69 に、引き抜き 試験の状況を写真-21 にそれぞれ示す.本試験は、材齢7 日経過したアンカーに対して、センターホールジャッキ を用いて載荷した.前述の PC 版と緩衝版との連続性を 確認するための静的載荷試験では、ボルトに 5kN~40kN の締結力を導入した供試体に対して、載荷に伴うボルト 張力の変動が 10kN 程度に収まっていること、走行載荷 試験時のボルト張力の振幅も 20kN 程度で収まっている ことから、本試験は、ボルト締結力の 3 倍である 120kN まで 3 回の繰り返し加力を実施するとともに、そのうち の 1 ヶ所はボルト降伏荷重相当(170kN)まで載荷した.

なお載荷荷重はロードセルにより、基部に発生する変 位は**写真-22**に示すような方法により測定した.

写真-19 ボルト設置状況

写真-20 ボルトキャリブレーション状況

図-68 キャリブレーション結果

図-69 引抜き試験の概要

写真-21 引抜き試験状況

写真-22 変位測定状況

(3) 試験結果と考察

a) ボルト締結力の経時変化測定試験の結果

材齢1日において締結力を導入してからの経過時間と ボルトひずみの変化量を測定した結果を表-34 ならびに 図-70に、材齢7日において締結力を導入してからの経 過時間とボルトひずみの変化量を測定した結果を表-35 ならびに図-71にそれぞれ示す.表-34,表-35に示す結 果は、それぞれ締結力を導入してから2時間~2時間半 程度の測定後の値を示す.

アンカー定着用材料にエポキシ樹脂を用いた場合は, 材齢1日でボルトに40kNの締結力を導入しても締結力 の減少が著しく,90%以上の締結力の減少が認められた. 一方,アンカー定着用材料にモルタルを用いた場合は, ボルト締結力の減少が10%程度に収まった.

材齢7日で40kNの締結力を導入した場合は、エポキシ樹脂を用いた場合でもボルト締結力の減少が最大で11%程度、モルタルの部分は6%程度に収まった.

今回の実験結果より、走行載荷試験を実施する際にア ンカー定着用材料を注入した初期段階でボルト締結力が 著しく低下した要因は、定着用材料の影響であることを 確認した.また両材料とも、材齢7日でボルトに締結力 を導入した場合は、40kNのボルト締結力に対して減少量 は10%程度であることを確認した.

b) アンカー部の引抜き試験の結果

アンカー定着用材料としてエポキシ樹脂ならびにモ ルタルを使用し,120kNまで加力したときの荷重と基部 の変位の結果を図-72に,ボルト降伏荷重の170kNまで 載荷したときの荷重と基部の変位の結果を図-73にそれ ぞれ示す.

図-72 に示す 120kN までの繰返し試験の結果より, エ ポキシ樹脂, モルタルともに荷重-変位の挙動は比例関係 にあり, 特に大きな変化は認められなかった. またアン カー部分及び周辺のコンクリートにも変化も認められな かった. なお 120kN 加力時の基部の変位は, エポキシ樹 脂は平均 0.5mm 程度, モルタルの変位は平均 0.3mm 程 度であった.

図-73 に示すボルト降伏荷重(170kN)までの加力も 120kN までの加力と同様に,荷重-変位の挙動は比例関係 にあり,アンカー部分および周辺のコンクリートにも変 化は認められなかった.

今回の実験結果より,エポキシ樹脂,モルタルともに, アンカー部に必要な耐力は,十分に有しているものと考 えられる.現場において樹脂を注入する箇所が湿潤ある いは水中環境であることを考えると,水中環境下におい ても施工が可能なエポキシ樹脂が有利と考えられること から、後述する走行載荷試験においてエポキシ樹脂材料 を採用し、繰り返し荷重に対しても問題ないことを実証 したが、モルタル材料についても、繰返し荷重に対して の挙動を確認する必要があるものと考えられる.

ボルトNo.	導入時ひずみ (µ)	経過時間	ひずみ (μ)	ひずみ減少量 (_μ)	減少率 (%)
樹脂No.1	273	2:27	7	266	97%
樹脂No.2	281	2:26	10	271	96%
樹脂No.3	283	2:25	24	259	92%
モルタルNo.1	270	2:23	233	37	14%
モルタルNo.2	281	2:16	250	31	11%
モルタルNo.3	286	2:15	262	259	8%

表-34 材齢1日後のボルト締結力試験の結果

ボルトNo.	導入時ひずみ (**)	経過時間	ひずみ	ひずみ減少量	減少率 (%)
111 814-	(μ)		(μ)	(μ)	(%)
樹脂No.1	280	2:16	248	32	11%
樹脂No.2	281	2:15	250	31	11%
樹脂No.3	288	2:02	266	22	8%
モルタルNo.1	281	2:11	263	18	6%
モルタルNo.2	274	2:05	258	16	6%
モルタルNo.3	277	2:04	265	12	4%

表-35 材齢7日後の締結力試験の結果

衣-30 供码件 超九						
No.	ゴノの西南	ゴムの厚さ	ゴムの大きさ	ゴムと座金の		
	コムの使度	(mm)	(mm)	接着		
1	80	5	φ 90	なし		
2	60	3	φ 90	なし		
3	60	5	φ 80	なし		
4	80	5	φ 80	なし		
5	60	5	φ 90	あり		
6	80	5	φ 90	あり		
走行載荷試験	60	5	φ 90	なし		

表-30 供訊件諸元

表-37 締結力導入試験(緩衝ゴム改良)

ボルト No	導入時ひずみ	怒過時間	ひずみ	ひずみ減少量	減少率
AV/P [* 110.	(µ)		(µ)	(µ)	(%)
No.1-1	269	15:30	191	78	29.0
No.1-2	226	15:30	167	59	26.1
No2-1	303	0:24	130	173	57.1
No2-2	286	0:24	128	158	55.2
No.3	276	0:24	126	150	54.3
No.4	295	0:24	156	139	47.1
No.5	308	15:30	253	55	17.9
No.6	315	15:30	268	47	14.9

3.10 緩衝ゴム変形によるボルト締結力減少量確認試験

(1) 試験概要

本試験では、走行載荷試験時のボルト締結力の導入に おいて、締結力の低下の割合が高い緩衝版部の締結金具 を対象に、図-74 に示す座金①と座金②の間に挟み込ん だ緩衝ゴムのゴム硬度・厚さ・大きさ・座金との接着と いう改良を加えた場合に、時間の経過に伴うボルト締結 力の減少量の測定を行った.試験パラメータを表-36 に 示す.

締結力の経時変化の測定は、ボルトに貼付したひずみ ゲージにより行った. なおボルト締結力は、軸力 40kN に相当する 280μを目標に導入した. ゴムと座金の接着 は、市販されている瞬間接着剤を使用した.

(2) 試験結果と考察

締結力導入後の経過時間とボルトひずみの関係を図 -75 に、各試験シリーズのひずみ減少量をまとめた結果 を表-37 にそれぞれ示す.なおここに示すボルト締結力 の減少率は、緩衝ゴムの影響に加え、アンカー部の影響 による締結力の減少も含んだ値を示す.

走行載荷試験時に実施した構造に対して、ゴムの硬度 を80と硬くしたNo.1は、硬度60の場合と同じくひずみ は約26~29%減少した.ゴムの厚さを3mmに薄くした No.2は、締結力導入時に比べて55~57%ひずみが減少し た.横方向への変形を抑える効果を期待し、ゴムの直径 を座金より10mm小さくしたNo.3、No.4は、それぞれ締 結力導入時に比べて54%と47%のひずみが減少した.横 方向への変形を抑える効果を期待し、ゴムと上下の座金 を接着剤により一体化したNo.5、No.6は、それぞれ締結 力導入時に比べて18%と15%とひずみの減少量が小さく、 締結力の減少の抑制に大きな効果があると考えられた。

今回の実験結果より、緩衝ゴムの影響による締結力の 減少を抑制するための対策としては、緩衝ゴムの上下面 を接着剤にて接着し、一体化する構造が最も効果があり、 その場合ゴム変形とアンカー樹脂の変形を含む締結力の 減少量がゴムの硬度が60で18%、ゴムの硬度が80で15% であり、ゴム硬度が締結力の減少に及ぼす影響は小さか った.よって実施工の際に使用する緩衝ゴムは硬度60 とし、ゴムと座金の界面は接着剤を使用し、座金と緩衝 ゴムを一体化した構造を用いるものとする.

図-75 締結力導入後の経過時間とボルトひずみの関係

3.11 トルク値のばらつき確認試験

(1) 試験概要

4 章に示す走行載荷試験におけるボルト締結力の管理 は、ボルトに貼付したひずみゲージにより行った.しか し実施工でひずみゲージにより締結力を管理することは 現実的ではないことから、ここではボルト締結力の管理 方法として、トルクにより管理する手法について検討し た.

締付トルクと軸力の関係に関しては、以下の関係が成 り立っている.

T=K・d・N ここに, T: 締付トルク(N・m), K:トルク係数, d:ボルトの呼び径(m),

N:軸力(N)

ここでトルク係数 K は,一般に 0.2 程度の値が示され ているが,潤滑剤,被締付体の機械的要因,環境,締付 速度,ねじの繰返し使用等の影響により変動する傾向に ある.

本試験では,走行載荷試験を行った図-76 に示す PC 版4ヶ所(図-76のNo.1, No.2, No.7, No.8),緩衝版4 ヶ所(図-76のNo.3, No.4, No.5, No.6)の計8ヶ所のボルト孔を使用し,トルクレンチを用いて締め付けトルクの試験を行った.

試験手順は、トルクレンチを用いてトルク値を 60N・ m(軸力 10kN)ごとに増加させながらひずみを計測し、 360N・m(軸力 60kN)までの締結力を導入した.この作 業をボルト孔 No.1~No.8に対して 5回ずつ行い、トルク 値とひずみ(軸力)の関係を測定した.なおトルク値 60N・mは、トルク係数 K=0.2、ボルトの径 d を 0.03(m)、 軸力 N=10000(N)として算出した値である.

(2) 試験結果と考察

No.1~No.8 のボルト孔につき,それぞれ1回目から5 回目までの試験に対してトルク値とボルトひずみの関係 を示したグラフを図-77 に示す.

本試験に示すトルクとひずみの関係より,全ての試験 においてトルク値と鋼材ひずみは比例の関係にあること を確認した.

この結果をもとに、トルク値と鋼材ひずみの近似曲線 を算出し、40kN(ボルトひずみ280µ)の締結力に相当 するトルク値を試験毎に算出した結果を図-78 に示す. 図中に示す太線は、同一ボルト孔に対して5回試験をし た際の平均値を、点線は平均値に対して+10%、-10% に相当する値を示す.

図に示す結果より、同一ボルト孔に対しては、40kNの 締結力を導入した際のトルク値のばらつきは、平均値に 対してほぼ10%以内(4kN)に収まる傾向にあった.しかし ボルト孔 No.4, No.8 は、他の箇所に比べてばらつきが大 きく、40kN に相当するトルク値も大きい傾向にあった. この理由は、今回の実験ではアンカー部に充てんするエ ポキシ樹脂の量が多く、ボルトをセットした段階でエポ キシ樹脂がロングナットのねじ部分に浸入し、ボルトが 回りにくくなったためトルク値が上昇し、同一締結力に 対してのトルク値のばらつきも大きくなったものと考え られえる.

図-79 は、各ボルト孔の 40kN(ボルトひずみ 280 μ) の締結力に相当するトルクの平均値をまとめたものであ る. 左図はボルト孔 No.1~No.8 全てのデータに対しての トルク値-ひずみ関係図を示し、右図はエポキシ樹脂がね じ山に浸入し、ねじ山の状態が変化した No.4、No.8 のデ ータを削除した値を示す.また図中に示す太線は、デー タの平均値を、点線は平均値に対して+20%、-20%に 相当する値を示す.

図に示す結果より、ボルト孔が異なる場合は、40kNの 締結力を導入するためのトルク値のばらつきも大きくな る傾向を示した.但し、エポキシ樹脂の影響によりねじ 山がおかしくなった No.4 と No.8 を除けば、そのばらつ きはほぼ 20%程度(8kN)以内に収まる傾向にあった.

今回の実験結果より、同一ボルト孔に対して5回の締結力の導入試験を実施した結果,40kNの締結力に対してのトルク値のばらつきは10%程度以内であること、ねじ山にエポキシ樹脂が浸入した No.4, No.8 を除いたボルト孔の全ての値に対してのトルク値のばらつきは、20%程度以内であった.

図-76 締結ボルト位置図

[No.1]

400 350 300 (j) 250		400 300 € 220 No.1 2回目	400 350 300 € 250	400 300 (E 250	400 500 № 1.5回目 (2 220
N単200 単211 100 50			X 1200 4 1100 50 4 50 50 50 50 50 50		
[No.2	0 100 200 300 400 500 UJFA(µ)	0 100 200 300 400 500 ひげみ(µ)	0 100 200 300 400 500 ひ∜#∌(μ)	0 100 200 300 400 500 U I V I V I V I V I V I V I V I V I V I	0 100 200 300 400 500 0 100 200 300 400 500 ζλ∜#ρ(μ)
400 350 10 25 10 25 10 20 10 20 10 20		000 100.2 2 @ 目 000 100.2 2 @ 目 000 100.2 2 @ I 000 100.2 2 @ I	⁶⁰ ¹⁰ ¹⁰ ²⁰ ¹⁰ ²⁰ ¹⁰ ²⁰ ¹⁰		000 №0.2 500 目 000 ● 000 ● 000 ● 000 ● 000 ● 000 ● 000 ● 000 ● 000 ● 000 ● 000 ● 000 ● 000 ● 000 ● 000 ● 0000 ● 00000 ● 00000 ● 00000 ● 00000 ● 000000 ● 000000 ● 00000000 ●
[NO.3	No.3 101	400 360 No.3 201	400 350 No.3 30 E	400 350 No.3 4回目	400 350 No.3 5D E
300 (E 256 (H) 200 (H)					
[No.4	No.4 10目 ▶	400 No.4 2回目	400 No.4 30 E	100 No.4 4回目	400 No.4 5回目 人
356 300 10 10 10 50 50 50 50 50 50 50 50 50 50 50 50 50					
[No.5	No.5 10目	400 No.5 2回目	400 No.5 30 E	400 No.5 40 E	400 No.5 5回目
355 300 (2) 255 200 4) 155 100 50 50 50 50 50 50 50 50 50 50 50 50 5					
[No.6) No.6.1018	⁴⁰⁰ No.6 2回日	400 No.6 3018	400 No 6 40 E	400 No 6 5回日
350 300 (2) 255 200 4) 155 100 50 50 50 50 50 50 50 50 50 50 50 50 5					
[No.7	No.7 108	⁴⁰⁰ No.7 2回目	400 No.7 301	400 No.7 401	400 No.7 5回目
350 300 255 255 200 201 201 150 50 50 50 50 50 50 50 50 50 50 50 50 5					
[No.8]				[
400 350 200 2 250 2 250 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					

図-77 トルク-ひずみ関係図

表−38 ボルト締結力の減	心に及ぼす影響
----------------------	---------

	1	2	3	4
締結力減少の要因	緩衝ゴム・ アンカー樹脂の変形	トルクのばらつき	PC 版の温度伸縮	PC 版と路盤との なじみ
緩衝版	40kNの締結力に対し て最大 20%程度(8kN)	40kN の締結力に対し て 20%(8kN)	_	最大で 10kN 程度
РС版	ゴムの面圧が緩衝版 に比べて小さいため, 上記以下(8kN)	40kN の締結力に対し て 20%(8kN)	最大で 10kN 程度	最大で 10kN 程度
備考	3.10 緩衝ゴム改良試 験の結果より	 3.11 トルク値のばら つき確認試験の結果 より 	3.4 PC 版の温度伸縮 を模擬したスライド 試験(2)の結果より	走行載荷試験の 結果より

3.12 ボルト締結力の管理方法

今回の実験より,ボルト締結力の減少に及ぼす影響を まとめた結果を表-38 に示す.

締結力減少の要因としては,①緩衝ゴム・アンカー樹 脂の変形,②トルクのばらつき,③PC版の温度伸縮に伴 う版の移動による変動,④航空機荷重の作用に伴う PC 版と路盤のなじみ(荷重作用により路盤が圧密されるこ とによるとのなじみ),による影響が考えられた.

①の緩衝ゴム・アンカー樹脂の変形による締結力の減少 は、40kNの締結力に対して最大で8kN程度の低下であった.

②のトルク値のばらつきは、同一ボルト孔に対して5回の試験を行った結果,40kNの締結力に対して10%程度、ボルト孔全体に対して20%(8kN)程度の低下であった。
 ③の PC 版の温度伸縮に伴うボルト締結力の変動は、スライド試験(2)の結果より最大で10kN 程度の低下であった。

④の PC 版と路盤とのなじみは、走行載荷試験の結果より最大で 10kN 程度の低下であった。

このうち③については、締結金具の取り付け方法、PC 版の温度伸縮による移動量等により変化することが予想 されること、④については走行載荷試験場と実際に何回 も繰り返し走行が行われた現地のエプロン舗装版下では 状況が異なることが予想される.

またボルトに過度な締結力を導入した場合は,PC版の 温度伸縮に対してボルトが変形してしまう可能性がある こと,ボルト締結力が PC版と枕版に生じる隙間に及ぼ す影響については,PC版と緩衝版の連続性を確認するた めの静的載荷試験の結果より,ボルト間隔が 2.2mの場 合,ボルト締結力が 40kN でも 20kN でもほぼ同等な値で あること(図-50),走行載荷試験の結果より,ボルト間 隔が 1.1m, 2.2mの場合,ボルト締結力が 30kN 程度に低 下していても,PC版と枕版に生じる隙間に大きな差は生 じなかったことから,ボルト締結力が 20~30kN 程度に 低下してもポンピング現象,グラウト材の粉砕化が生じ る可能性は非常に小さいものと考えられる.

そこでボルト締結力の管理は、ボルト締結力の減少が 確実な①の緩衝ゴム・アンカー樹脂の変形による減少量 (8kN)に対しての締結力を余分に与え、締結力導入から1 週間後に①による締結力の減少を確認するため、半年程 度経過後には③PC版の温度伸縮,④航空機の繰り返し載 荷による PC版と路盤のなじみによる締結力の減少を確 認するため,40kNの締付力に設定したトルク値でボルト 締結力の点検を行う方法を提案する.

なおアンカー部の材料としてエポキシ樹脂を使用す る場合は、最低でも1週間は材料の養生を行った後に締 結力を導入する必要があるが、この養生期間はエプロン 供用に影響を及ぼすものではない.

※締結ボルトの直径が変更する場合,ボルトのねじ山,締結金具の構造が変更に なった場合は,適宜試験を実施する.

図-80 ボルト締結力の管理フロー

- 91 -

3.13 締結金具の構造・取り付け方法およびボルト締結力 管理方法のまとめ

一体化構造を既設 PC 舗装版に採用するために, 締結 金具の構造・取り付け方法ならびにボルト締結力の管理 方法についてまとめた結果を以下に示す.

(1) 締結金具の構造・取り付け方法

締結金具は、全ねじボルト、ロングナット、アンカー 定着用材料(エポキシ樹脂あるいはモルタル系材料)、グ ラウト止めパッキン、カセット、カセットと既設舗装版 を一体化させるためのグラウト材、座金、緩衝ゴム、ボ ルト、蓋から構成した.

実施工を想定したケースにて締結金具の取り付けを 行ったが、基本的には問題なく作業を行うことができた. 但しボルトのアンカー定着用材料にエポキシ樹脂を用い てボルト締結力を導入する場合には、材料を注入してか ら1週間は養生する必要がある.

アンカー定着用材料としてエポキシ樹脂とモルタル 系材料を使用した引抜き試験を行った結果,ボルト降伏 荷重(170kN)相当の荷重に対しても,特に異常は認められ なかった.

緩衝ゴムと座金を接着し一体化することにより、ゴム 変形による締結力を減少することが可能である.

(2) ボルト締結力の管理方法

ボルト締結力の減少に及ぼす要因は、①緩衝ゴム・ア ンカー樹脂の変形、②トルクのばらつき、③PC版の温度 伸縮による版の移動による影響、④PC版上に繰り返し航 空機荷重が作用することによる PC版と路盤とのなじみ による影響 があり、①、②はそれぞれ最大で8kN程度、 ③、④はそれぞれ最大で10kN程度の減少が考えられる.

一方で、ボルトに過度な締結力を導入した場合には、 PC版の温度伸縮によりボルトが変形する可能性がある こと、また PC版と緩衝版の連続性を確認するための静 的載荷試験の結果より、ボルト間隔が2.2m程度であれ ばボルト締結力が20kNでも40kNでもPC版と枕版との 間に生じる隙間はほぼ同等、走行載荷試験の結果でも、 ボルト締結力が30kN程度に低下しても、PC版と枕版と の間に生じる隙間はほぼ同等であることが確認された.

そこでボルト締結力に関しては, 締結力導入時に 40kN の締結力の 1.2 倍(①緩衝ゴム・アンカー樹脂の変形に よる締結力の減少量を考慮)を導入し, その後1週間後 (①緩衝ゴム・アンカー樹脂の変形)と半年後程度(③ PC 版の温度伸縮による版の移動による影響, ④PC 版上 に繰り返し航空機荷重が作用することによる PC 版と路 盤とのなじみによる影響)を目安に、トルクレンチに 40kNの締結力相当のトルク値を設定して、ボルトの点検 を行う方法を提案する.

3.14 まとめ

場所打ち PC 舗装版の版端部の「ポンピング現象」を 改善するための構造的対策として, PC 版の端部と緩衝版 をそれぞれ枕版と固定することにより, PC 版端部と緩衝 版を一体化する構造について,

- ① 温度変化による PC 版の伸縮が、版端部にボルトを配置しても問題なく作用するか.
- ② ボルト締結力,配置間隔が,緩衝版とPC版の一体化 構造に及ぼす影響
- ③ PC 版への締結金具の取り付け方法ならびにボルト締 結力の管理方法

についての検討を行った.その結果,以下の結論が得ら れた.

①については、PC版の伸縮を模擬したスライド試験を 実施した結果,締結金具内の滑り面にテフロン加工を施 した材料を使用すること,ボルト径は締結力,せん断力 の検討に加えて曲げ変形を考慮したボルト径を用いるこ とで対応できることを確認した.

②については、PC 版端部を模擬した供試体を製作して 静的載荷試験を行い、PC 版が枕版に全面的に支持された 構造であれば、ボルトがない状態においても PC 版と枕 版との間に生じる隙間の値は小さいこと、PC 版が枕版に 支持されていない状況、載荷面付近の PC 版下に空隙が ある状況では、締結ボルトを配置することによる PC 版 と緩衝版の一体化の効果が確認できた.またボルトの配 置間隔が 1.1m の場合は、ボルト締結力によらず一体化 の効果があること、ボルト間隔が 2.2m、3.3m と広くな るに従い、ボルト締結力により PC 版と枕版との間に生 じる隙間に差が生じる傾向を示した.

③については、4 章の走行載荷試験を実施する際に締 結金具の取り付け試験を行い、基本的には問題なく作業 を行うことができた.

ボルト締結力の減少に及ぼす要因は,(1)緩衝ゴム・ アンカー樹脂の変形,(2)トルクのばらつき,(3)PC版 の温度伸縮による版の移動による影響,(4)PC版上に繰 り返し航空機荷重が作用することによるPC版と路盤と のなじみによる影響 があるため,これらの影響を考慮 したボルト締結力の管理方法を提案した.

4. 走行載荷試験による検証

本章は、これまで検討した各種構造の適用性について、 国土技術政策総合研究所が所有する航空機荷重載荷装置 を用いた走行載荷試験により検証した結果についてまと める.

4.1 PC版舗装の製作及び設置

(1) PC 版の工場製作および設置

PC版の工場製作に関しての概要を図-81に,既設舗装の開削及び枕版,緩衝版,PC版の設置や目地構造の設置 に関して,図-82~図-85に示す.

以下の手順により, PC 版を航空機荷重原型載荷実験槽 建屋内に設置した.

- PC版,緩衝版ならびに枕版を工場にて製作し,航空 機荷重載荷実験槽建屋内まで運搬した.
- ② 実験槽内の既設アスファルト舗装を撤去し、粒状路盤の整形および再転圧を行った。
- ③ 図-86 に示すとおり,基層(20)を用いて上層路盤を 19cm(2層)にて施工した.
- ④ 枕版直下の不同沈下による空洞を想定し、脚荷重走行時に枕版の鉛直変位が大きくなるように、枕版の縁部に枕版支持用のコンクリート(圧縮強度 24N/mm²)を打設し、その上にゴム板(厚さ 45mm)を設置し、粒状材面と枕版下面の間に隙間を設けた。
- 5 工場製作した PC 版ならびに緩衝版を図-86 に示すと おり設置した.
- ⑥ 図-87に示すように、版中央の目地部にレーザー変位計を設置した.なお、載荷槽内の水位を上げた場合の走行載荷試験を実施する際に、水膜に対してレーザー照射とならないように、枕版にアルミの反射板を設置した.レーザー変位計は、走行試験中のPC版ー枕版間ならびに緩衝版ー枕版間の相対垂直変位の計測に用いることから、枕版の変形に追従できるようにした.
- ⑦ 図-88 に示したひずみゲージを貼り付けたボルトは、 図-89 のような締結金具設置用のボルトを通じて枕 版と締結を行った.ひずみゲージの配線については、 PC 版ならびに緩衝版上面にあらかじめ設けた溝を用 いて、ボルト設置部に取り付ける蓋や PC 版上を走行 するタイヤにより断線のないようにした.
- ⑧ 緩衝版と PC 版の目地部は、2章で検討した第1案目 地構造(図-90)を採用した.目地構造設置位置と車 輪走行位置の関係を図-91に示す.走行載荷試験時の タイヤ走行位置は、脚中心が締結ボルトと締結ボルト

の中心を走行するようにした.

本試験に用いたゴム板,路盤-PC版間の剥離用シート, ひずみゲージの規格を表-39に示す.また,ひずみゲー ジを取り付けたボルトの概要と較正試験の結果を図-88 に示す.ボルト締結力としては40kNを目標としたこと から,校正試験の結果を参考に,ボルトのひずみとして は280×10⁻⁶程度を目標にすることとした.

図-81 PC版の製作と運搬の作業フロー

既設のアスファルト舗装をカッターにて切断し、アスファルト混合物を破砕し積み込む.

完成予定高さから370mm下がりとなるように, 既設の路盤材料を鋤取る. 40kNのコン バインドローラを用いて転圧を行う. 端部は, ランマとプレートで転圧を行った.

下層路盤上の路盤支持力係数K₇₅=32MN/m³(K₃₀値=96MN/m³)以上あることを確認 する. 上層路盤であるアスファルト安定処理施工前に, RSK-3を1.2リットル/m²散布する.

上層路盤のアスファルト安定処理を2層施工で、190mmに仕上げる. 上層路盤上の 路盤支持力係数 K_{75} =70MN/m³(K_{30} 値=350MN/m³)以上あることを確認する.

図-82 既設舗装の開削及び路盤工の作業フロー

PC版(180mm)+PCグラウト(15mm)+ 枕版(250mm)+ゴム板(45mm) 合計485mm下 がりを目標に、枕版の支持コンクリート下面の785mm下がりまで掘り下げ、型枠を設 置. 24N/mm²の早強コンクリートを打設. 3日間養生した後に、路盤材で埋め戻し、転 圧する. 地下水位観測用のスタンドパイプを立ち上げる.

現場で縦緊張を行った枕版を所定の位置に設置し、シース内にPCグラウトを注入する. グラウト材は膨張率や一軸圧縮強度にて管理を行う.

現場で縦緊張を行った枕版を所定の位置に設置し、シース内にPCグラウトを注入する. グラウト材は膨張率や一軸圧縮強度にて管理を行う.

現場でPC版に縦緊張(400kN)を行う.シース内にPCグラウトを注入する.

図-83 枕版支持コンクリート, 枕版の設置 作業フロー

路盤との剥離用のビニルフィルムを敷設し、PC版敷設を行う. 上層路盤とPC版間の 15mmの空間にアンダーシーリング用グラウトを注入する.

PC版の据え付け後, 密粒度アスファルト混合物で, 周辺を埋め戻す.

溶接アンカー打ち込み,目地構造を設置する.現場で溶接し,PC版と緩衝版に目地構造を固定する.

無収縮モルタルの打設.本体に皿ネジボルトを取付ける(緩み止め材塗布状況).

図-84 PC 版設置及び目地構造の設置 作業フロー

PC版と緩衝版の所定の位置に、枕版との固定用の締結金具を挿入し、無収縮モル タルを打設する.

締結金具と枕版固定用の樹脂モルタルの挿入. 締結金具の装着をする.

軸力測定用のボルトを装着し, 軸力40kNとなるように締結する. 測定用のレーザー変 位計を設置する.

走行試験の準備として計測機器の配置を行う. 航空機走行車輪の移動.

図-85 締結金具の設置及び走行載荷試験の準備 作業フロー

図-5 PC版等の相対変位を測定するレーザー変位計の設置位置図

X 00 区面已后初相处相它们都规控队时加获					
品名	材料の種類	規格	分類番号	参考	
ゴム板	天然ゴム (NR)	JIS K 6386	A06	破断伸び 500%, せん断弾性係数 0.6N/mm ²	
シート	ビニルフィ ルム			幅 1.8m, 厚さ 0.1mm	
ひずみゲージ		FLA-3-5LT		M30 のボルトに貼付け, ひずみと荷重の較正 試験を行う.	

表-39 使用した材料規格と計器類埋設詳細表

図-88 ボルトゲージの状況と荷重とひずみの較正結果

図-89 PC版と枕版の締結装置

図-90 目地構造の概略図

図-91 目地構造の設置位置と航空機タイヤ走行位置の関係

- (2) 舗装の出来形および品質管理
- a) 基準高と層厚

各舗装の舗設後に,所定の測点において,タイヤ走行 位置および中央部において基準高測定を行った.測量の 測定位置を図-92に数字で示し,基準高のまとめを表-40 に示した.基準高から算出した各舗装厚のまとめを表-41 に示す.上層路盤のアスファルト混合物は設計厚よりも 厚くなったが,他の層は設計厚と同等な厚さを確保して いる.

表-41 舗装厚のまとめ

舗装構成	層厚 (mm)
PC版,緩衝版(グラウトを含む)	196
枕版+ゴム板	289
支持コンクリート厚	305
上層路盤(アスファルト安定処理)	196

図-92 測量位置図

± 10	甘油古油内什田
衣⁻40	基 华 向 側 上 箱 禾

						-							
測点	(A)	(B)	(C)	(D)	平均								
支持コン下面	793	792	790	788	791								
支持コン仕上がり面	488	485	485	484	486								
支持コン厚(mm)	305	307	305	304	305								
測点	(A)	(B)	(\mathbf{C})	(D)	平均	[
支持コン什上がり面	488	485	485	484	486								
枕版上面	197	197	198	194	197								
枕版+ゴム板厚	291	288	287	290	289								
測占	(1)	2	\overline{O}	8	(a)	(h)	(c)	(d)	亚均	[
下層路盤	392	394	395	388	388	387	390	390	391				
上層路盤	195	191	194	198	197	194	198	191	195				
上層路盤厚	197	203	201	190	191	193	192	199	196				
測点	1	2	3	4	5	6	$\overline{\mathcal{O}}$	8	9	10	1	(12)	平均
枕版/上層路盤上面	195	191	196	197	195	196	194	198	196	197	197	195	196
PC版上面	0	1	-2	-1	-1	2	4	0	-2	-2	0	-4	0
PC版+グラウト厚	195	190	198	198	196	194	190	198	198	199	197	199	196
測点	1	(2)	(7)	(8)	平均	ĺ							
上層路盤	195	191	194	198	194.5								
アスファルト上面	0	1	4	0	1.3								
舗装厚	195	190	190	198	193.3								

図-93 載荷計測装置概略図

表-42 載荷計測装置機器一覧表

名称項目	仕 様	数量
荷重計	プルービングリング(容量 50kN)	1個
荷重装置	5 tf 油圧ジャッキ	1 台
載荷板	鋼製・直径30cm・厚さ2.5cm	1 個
変位計	精度1/100mm・ストローク30mm	2 個
ゲージホルダー	マグネットスタンド	2 個
反力荷重	バックホー	1 台

b) 路盤の支持力係数

下層路盤上と上層路盤上にて,設計支持力係数の確保 ができているか検討を行った.ここでは路盤支持力係数 を直径 300mm の載荷板を用いて平板載荷試験を実施し た.試験方法は道路の平板載荷試験 JIS A 1215:2001 によった.

① 載荷計測装置

載荷計測装置の概略図および載荷測定機器一覧を図 -93 および表-42 に示す.

② 路盤支持力測定方法

路盤支持力測定方法は,『道路の平板載荷試験 JIS A 1215』:社団法人 地盤工学会に基づいて実施した.測定 方法の概略の手順は以下のとおりである.

・路盤を水平にならし、必要があれば薄く砂を敷く.

- この上に載荷板(直径 30cm)を置き、測定面とのなじ みを確認する。
- ・載荷板の上にジャッキを置き、反力装置と組み合わせて所要の反力が得られるようにする.その際、反力装置の支持点は、載荷板の外側端から1m以上離して設置する.
- ・沈下量測定装置を載荷板および反力装置の支持点から 1m以上離して設置し、載荷板の正しい沈下量が測れ るように変位計を取り付ける。
- ・載荷板を安定させるため、あらかじめ載荷圧力 35kN/m²
 相当の荷重をかけてから零に除荷し、変位計の指示値
 を読み取り、沈下の原点とする.
- ・載荷圧力(荷重強さ)が35kN/m²刻みになるように荷 重を段階的に増加していき,荷重を上げるごとにその
荷重による沈下の進行がとまるのを待って荷重計と 変位計の指示値を読み取る(1分間の沈下量が,その 荷重強さによる段階における沈下量の1%以下であれ ば,沈下の進行が止まったと認める).

3 結果の整理

路盤支持力係数(地盤反力係数)は,載荷圧力(荷重 強さ)-沈下量曲線から,沈下量1.25mmの載荷圧力を用 いて下式により計算をする.

Ks= p∕S

ここに,

Ks:路盤支持力係数(地盤反力係数) (MN/m³)

p :載荷圧力(荷重強さ) (kN/m²)

S : 沈下量 (mm)

本試験は,載荷板直径30cmを用いるため,路盤支持力 係数*K*₅₀を換算値で除すことで設計支持力係数*K*₇₅を算 定した.

粒状路盤:K₇₅=K₃₀/3.0

(下層路盤 設計支持力係数K₇₅=32 MN/m³)
 安定処理路盤:K₇₅=K₃₀/5.0
 (上層路盤 設計支持力係数K₇₅=70 MN/m³)

各層の路盤支持力係数の測定結果を表-43 及び図-94, 図-95 に示す.以上の結果から、本試験舗装の K₃₀から 得られた路盤以下の支持力係数は、下層路盤上で 150 MN/m³,上層路盤のアスファルト安定処理上で 350 MN/m³以上が得られており、十分な支持力を有している. 設計支持力係数である K₇₅に関しても、換算係数を用い て除算しても規定値を満足する結果であった.

また,下層路盤(粒状路盤)の締固め度は,図-96の結果のように,各測定位置とも100%以上あることから, 十分な転圧が行われたといえる.

設計支持力係数 路盤支持力係数(MN/m³) 工種 測定位置 K_{75} K_{30} K75 右側 152.8 50.9 32 MN/m³以上 下層路盤 中央(枕版設置位置) 205.6 68.5 左側 82.9 248.8 右側 365.2 73.0 70 MN/m³以上 上層路盤 左側 391.6 78.3

表-43 各路盤上の路盤支持力係数

図-94 各路盤上の K₃₀から換算した路盤支持力係数 K₇₅の比較

図-95 K₃₀による路盤以下の支持力係数

(3) コンクリートの配合と日常管理試験結果a) PC 版・緩衝版・枕版の製作

PC版・緩衝版・枕版は、(株)ピーエス三菱の茨城工場 にて製作を行った.今回製作したのは、緩衝版(t=18cm)1 枚、PC版(t=18cm)4枚、枕版(t=25cm)2枚である. コ ンクリートの製造に用いた使用材料と産地を表-44 に示 す. また、コンクリート打設に用いた骨材の特性値を表 -45 に示す. ここでは、いずれの試験項目でも規格値を 満足しており、問題ない.

PC 版等の製作に用いたコンクリート骨材の粒度を図 -97 に示す. コンクリートの配合を表-46 に示し、コンク リートの打設日と一軸圧縮強度を表-47 に示す. 高強度 を得るため、水セメント比は 40%を目標とし、28 日圧縮 強度は 50N/m² 以上を確保しており、安定したコンクリ ート版が製作された.

b) PC 版 · 緩衝版 · 枕版の設置

工場から持ち込んだ PC 版は,航空機載荷試験実験槽 にて鋼棒を用いて緊張し,シースにグラウトを流し込ん で定着を行った.

PC版には PC 鋼棒 ϕ 26mm を 13本使用した. PC版の 緊張力は版あたりで設計 398.2kN,目標 458.2kN とした ため、1本あたりの応力度は、設計で 58N/mm²以上、目 標値で 66N/mm²である. 枕板には PC 鋼棒 ϕ 32mm を 16 本使用した. 枕版の緊張力は版あたりで設計 398.2kN, 目標 458.2kN としたため、1本あたりの応力度は、設計 で 47N/mm²以上、目標値で 54N/mm²である.

緊張の固定用にシースに流し込んだグラウトの配合

図-96 下層路盤(切込み砕石)の締固め度

と強度試験関係に関して,表-48と表-49にまとめた.現 場緊張の鋼棒と固定させるための材料のため,セメント グラウトの強度は母体のコンクリートと同等以上の強度 が得られている.膨張や収縮などはほとんどない.

PC 版の設置に用いた裏込注入グラウト²⁾の配合を表 -50 に示し,一軸圧縮強度と変形係数及び引張り強度試 験の結果を表-51 に示す.圧縮応力度と引張り応力度の 関係を図-98 に示す.

裏込注入グラウト材は、ジェットグラウト系は水材料 比 50-80%が一般的に使われているが、ここで使用した グラウト注入材は超早硬セメント系を使用しているため 水が少なく、早期の強度が高い.

材料名	銘柄	製造者/産地						
セメント	早強ポルトランドセメ ント	宇部三菱セメント㈱						
粗骨材	砕石 2005	栃木県鹿沼市産						
如母材	山砂	(有)茂木建材/行方市産						
州山 月 1/1	砕 砂	栃木県鹿沼市産						
水	上水道水	行方市						
高性能減水剤	レオビルド 8000S	(㈱エヌエムビー						
AE 剤	マイクロエア 775S	(㈱エヌエムビー						

表-44 コンクリート版の製造に用いた使用材料

表-45 コンクリート用骨材の物理特性

			細智	骨材		粗骨材		
試験項目		山砂		砕砂		砕石200	5	
		規格値	試験値	規格値	試験値	規格値	試験値	
表乾密度	(kg/リッ)	2.50以上	2.58	2.50以上	2.62	2.50以上	2.64	
絶乾密度	(kg/リッ)	2.50以上	2.52	2.50以上	2.58	2.50以上	2.62	
吸水率	(%)	3.5以下	2.13	3.0以下	1.31	3.0以下	0.69	
微粒分量		3.0以下	0.90	7.0以下	1.60	1.0以下	0.10	
単位容積質量	(kg/y)		_		—	1.50以上	1.63	
実績率	(%)		—		—	55以上		
粒形判定実績率	(%)	_	—	53以上	55.9	55以上	62.2	
粘土塊量	(%)	1.00以下	0.47	1.00以下	0.42	0.25以下	0.00	
砂の有機不純物		淡いこと	淡い	淡いこと	淡い	_	1	
砂の塩分含有量	(%)	0.030以下	0.000	0.030以下	0.000	_		
比重1.95に浮くもの	(%)	0.5以下	0.30	0.5以下	0.00	0.5以下	0.00	
軟石量	(%)	_	—		—	5.0以下	1.5	
安定性	(%)	10以下	2.6	10以下	1.2	12以下	0.4	
すりへり減量	(%)		_		—	40以下	11.1	
アル加骨材反応		無害	無害	無害	無害	無害	無害	
使用比率	(%)		50		50			

ふるい目	細情	骨材	粗骨材
(mm)	山砂	砕砂	砕石2005
30			100
25			100
20			98
15			62
10	100	100	30
5	93	100	4
2.5	86	88	0
1.2	75	57	
0.6	55	35	
0.3	16	18	
0.15	4	7	
FM	2.71	2.95	6.67

図-97 コンクリート用骨材の粒度分布

	粗骨材 の最大	スランプ の範囲	空気量 の範囲	水セメン ト比	細骨材 率	単位 水量	重 量(kg/m ³)		化学混 使用量	和剤の (kg/m ³)			
	寸法	(cm)		W/C	s/a	w	セメント	細骨	材 S	粗骨材	泪和壮	80005	7758
	(mm)	(only	(%)	(%)	(%)	(kg)	С	山砂	砕砂	G	ル比个山竹り	00005	1155
$1 m^3$	20	$12.0{\pm}2.5$	4.5 ± 1.5	39.6	40.0	157	397	347	352	1,064		2,499	1,785

表-46 コンクリートの配合

表-47 各コンクリート版の打設日と一軸圧縮強度試験結果

制口夕	作制在日口	コンクリート圧縮強度(N/mm ²)			スランプ	空気量	塩化物量(平均)	気温	コンクリート温度
我吅勹	1F表牛月口	導入時	材齢7日	材齢28日	(cm)	(%)	(kg/m^3)	(°C)	(°C)
緩衝版	H18.11.24	33.0	46.3	58.9	13.0	3.5	0.018	12.0	18.7
枕版①	H18.11.28	36.3	50.3	54.6	13.0	4.1	0.018	12.0	20.0
枕版②	H18.11.30	36.7	46.5	54.5	14.0	4.3	0.011	12.0	18.9
PC版①	H18.12.1	44.5 ^{**}	50.4	57.9	11.0	4.4	0.008	9.0	17.5
PC版②	H18.12.4	30.0	48.6	56.5	13.0	4.1	0.009	7.0	16.8
PC版③	H18.12.5	29.8	48.1	53.2	13.0	3.3	0.015	8.0	16.5
PC版④	H18.12.6	29.9	48.0	56.3	14.0	3.1	0.013	11.0	16.4

※は材齢3日,それ以外は材齢1日

表-48 シースに注入したセメントグラウトの配合

西미	セメント	水	混和剤	水セメント比
- 現日	(kg)	(kg)	(kg)	(W/C) (%)
使用材料	早強ポルトランドセメント	飲料水	GF-1720 (H)	-
1m ³ 当り	1305.5	561.37	13.1	43
1バッチ当り	75	32.25	0.75	43
計量	75	32.25	0.75	43

表-49 セメントグラウトの流動性,一軸圧縮強度試験結果

施工箇所	施工年月日	品質管理項目		試験測定値	規	格値	試験(測定)方法
		流動性試験	(秒)	18.3	JPD	14~23 秒	(社)土木学会規準
		ブリーディング率試験	E (%)	0.0	20時間後	0%	「PCグラウト試験方法」
		膨張率試験	(%)	0.0	20時間後	0.5 %以下	
枕版・PC版	H18.12.13	水セメント比測定	(%)	43.0	45 %	%以下	
		圧縮強度試験	(N/mm^2)	89.0	28日強度	30 N/mm ² 以上	
		塩化物含有量試験	(kg/m^3)	0.1687	0.3 kg	/m ³ 以下	
		グラウト温度	(°C)	22.0	5~	∙35° C	

西미	セメント	水	混和剤	水材料比 (W/C)
項日	(kg)	(kg)	(kg)	(%)
使用材料	超早硬セメント系	飲料水	高性能減水剤 (マイティ150,花王)	_
1m ³ 当り	1075	622	9	58.7
1バッチ当り	75	43.5	0.51	58.7
計量	75	43.5	0.51	58.7

表-50 裏込注入グラウトの配合

表-51 一軸圧縮強度と変形係数及び引張り強度試験の結果

施工箇所	施工年月日	品質管理項目	試験測定値	規格値	試験(測定)方法	
		圧縮強度試験 (2h 後) (N/mm ²)	4.24	図_15のとおり	「+の-軸圧縮試	
		変形係数 (2h 後) (N/mm^2)	1046	図-15のとわり	· 工の ⁴¹ 二個武 験方法 JJIS A 1216	
PC版 經衝版	H18.12.14	圧縮強度試験(7日) (N/mm ²)	7.30	1.96以上	「コンクリートの曲げ強	
77 友11到11以		変形係数 (7日 後) (N/mm ²)	1186	_	度試験方法JJIS A	
		引張強度試験(7日) (N/mm ²)	3.08	図-15のとおり	1100	

図-98 裏込グラウトの圧縮応力度,引張応力度,変形係数

4.2 PC 版上の走行載荷試験

(1) 走行載荷試験方法

設置した PC 版に関して, 航空機荷重載荷装置を用い, 走行載荷試験を実施した.

a) 走行載荷試驗条件

走行載荷試験の前に, PC 版および枕版の締結ボルトの 緊張力を管理しながら締結作業を行った. PC 版および緩 衝版と枕版との締結状況を写真-23 に示す.

写真-23 締結ボルトの緊張作業状況

締結作業が完了した後,図-99 に示すように PC 舗装版 上において,航空機荷重載荷装置を走行させた.なお, 走行回数, PC 版ボルト締付の有無,地下水(載荷槽水張 り)の有無については,表-52 の条件とした.

条件1と条件2については、PC版-枕版および緩衝版 一枕版の締結ボルトによる一体化構造の妥当性について 検討することを目的とした.なお,条件2で走行回数を 多くすると、PC版と枕版の間のグラウト材が破損し、条 件3および条件4の実験の実施が困難になることが懸念 されたため、比較検討に必要な測定を行うための最小限 の走行回数にとどめている.また,条件3では、地下水 位が高い場合における締結ボルトによる一体化構造の効 果について確認することを目的とした. さらに, 条件 4 は、実際に東京国際空港西旅客ターミナル地区エプロン において水の噴出現象が確認された環境に最も近いと考 えられる条件であり,本実験手法の妥当性の検証および 設置した目地構造による水の噴き上げ防止効果の確認を 目的としたものである.「地下水あり」とした条件3およ び条件 4 の場合は、地下水位を図-100 に示すように PC 版と枕版の界面に設定した. 試験手順は、まず走行車輪 を図-99の左端停止位置まで移動させ、走行車輪を舗装 表面に接地させた後、プレッシャーゲージによりタイヤ 圧が1.38MPaになっているか確認してから走行を開始した.走行載荷条件としては、走行速度 5km/h、載荷荷重は 910kN とした.なお、走行方法は図-99 の左端から右端へ走行し、その後折り返して右端から左端へ走行する. 走行回数としては、この1往復をもって2回としている.
b)変位測定方法

PC 版ならびに緩衝版の目地部に取り付けたレーザー 変位計を用いて,PC 版一枕版間および緩衝版一枕版間の 動的相対変位を測定する.測定時期としては,表-53 の とおりとした.条件4の場合は,ボルトの締結が無く, 地下水位が高いことから,目地部からの水の噴き上げが 想定されたため,レーザー変位計に防水対策をして測定 を行った.レーザー変位計の設置状況を写真-24 に示す. センサーの測定位置と番号は,図-99 に示した D1 から D4 の 4 個である.

c) ひずみ計測

前述の図-88 のように PC 版のボルト締付部に貼付け たひずみゲージにて,ボルトのひずみを測定した.測定 時期は表-53 のとおりとし,ひずみ計測と変位測定を同 時に行った.ひずみゲージの測定の位置と番号は,図-99 に示した BT1 から BT8 の8本である.データ整理では, ボルトの軸力は左右対称と考え,BT1 と BT2,BT3 と BT4, BT5 と BT6, BT7 と BT8 の平均値を使用した. d)測定データ例

走行載荷試験時の各データの測定例を図-101 に示す. これは,条件4(地下水位あり,ボルト締結なし)にお ける測定結果である.図-99 における左端の車輪停止位 置において脚荷重を初期荷重の 60kN から設定荷重の 910kNに上昇させ,その後走行開始してからの版の相対 変位,脚荷重,走行速度についてまとめたものである.

図-101(a)をみると、航空機の脚荷重は、停止位置に おいて油圧により設定荷重に達するまでに、24秒を要し ていることがわかる.また、図-101(b)を見ると、停止位 置から走行を始めた直後から徐々に速度が上昇し、今回 試験の対象としているPC版と緩衝版の目地部付近では、 5km/h 程度で走行速度は安定している.図-101(c)は、走 行時のPC版一枕版間(D1, D4)および緩衝版一枕版間(D2, D3)の相対変位である.この条件では、締結ボルトによ る一体化がなされていないことから、タイヤが通過した 前後で、PC版等と枕版の相対変位が大きく変動している ことがわかる.

これらのデータは、制御板の BNC 端子からアナログ データを動的デジタルレコーダに取り込んでまとめたも のである.荷重は 1200kN が 10V となっており、速度は 6km/h の際に 10V であった.

- 110 -

図-100 条件3,条件4における地下水位設定

	表-53 相対変位と締結ボルトのひずみ計測時期
条件	計測時期
ケース1	0-50, 450-500, 950-1000, 1950-2000, 2950-3000
ケース2	0-50(ボルトを締結していないため、変位計測のみ)
ケース3	0-50, 450-500, 950-1000
k-71	0-50, 50-100, 150-200, 350-400, 550-600, 750-800, 950-1000
ッニス 4	(ボルトを締結していないため,変位計測のみ)

写真-24 レーザー変位計の設置状況

(c) 走行時の相対変位(走行1~4回目)図-101 脚荷重による走行載荷試験の状況

- (2) 条件1と条件2の試験結果
- a) 走行回数増加に伴う変動

PC 版一枕版間および緩衝版一枕版間の累積相対変位 (版が離れる場合が正)と走行回数の関係を図-102 に, ボルトの軸力と走行回数の関係を図-103 に示す.これら の数値は,一定の走行載荷試験が終了した後,脚荷重に よる載荷が無い場合に測定されたものである.PC 版と枕 版との累積相対変位は走行回数の増加に伴い増加(PC 版が枕版との密着が増す)している.これは,条件1の 走行試験が舗装上での最初の載荷であったことから,路 盤やグラウトの圧縮によって版が沈下したことが原因と 考えられる.これに対し,枕版に支持されている緩衝版 は,累積の変形がほとんどないことがわかる.

ボルトの締結力を示す軸力は,載荷前に36-40kNの締 結力であったが,載荷直後には PC 版-枕版間の軸力が 減少している.これは前述の沈下の影響により,PC 版-枕版間の密着が増したことから,軸力が減少したものと 推測される.

図-102 累積相対変位と走行回数の関係(条件1,条件2)

図-103 ボルトの軸力と走行回数の関係(条件1,条件2)

b) タイヤ走行前後の動的変動

条件1におけるタイヤ走行前後の PC 版-枕版間およ び緩衝版-枕版間の相対変位(PC版および緩衝版が枕版 から離れる方向が正)を図-105 に示す. タイヤは図-99 の左端から走行を開始するため, PC 版側に設置されてい る変位計 D1 における変位は最初に負(PC 版が枕版に押 し付けられる方向)となり、タイヤが PC 版から緩衝版 へ移動する際に正(PC版と枕版が離れる方向)となる. この理由としては、PC 版上にある脚荷重が緩衝版へ移動 した際, PC版の変形は回復するが, 枕版は緩衝版上から の荷重を受け続けていることから下方へ変位し、その結 果 PC 版と枕版とが離れる方向への相対変位が発生して いると考えられる. これとは反対側の PC 版に設置され ている変位計 D4 における変位は、D1 とは正負反対の挙 動を示す.一方,緩衝版に設置されている変位計 D2 お よび D3 はタイヤの通過前後での変位は非常に小さい. 走行回数との関係では、これらの変位が走行回数の増加 に伴い大きくはなっていないことから、締結ボルトの効 果は 3000 回走行後においても維持されていると考えら れる.

条件 1 におけるタイヤ走行前後のボルトの軸力を図 -106 に示す.ボルトの軸力は前述の相対変位と関係して おり,相対変位が負の場合にボルトの軸力は減少し,相 対変位が正の場合にボルトの軸力は増加する.ボルトの 軸力については,走行開始直後には前項の理由により初 期値(およそ 40kN)から減少するものの,その後につい てはほぼ一定の値となっている.

図-107 に,条件2における相対変位を示す.条件2で はボルト締結がされていないため,条件1と比較して相 対変位が大きくなっている.特に,タイヤが PC 版から 緩衝版に移動する際には,PC 版と枕版が離れる方向の変 位が著しく大きくなっており,最大で1.5mm 程度の変位 が生じている.

以上の結果から,ボルト締結の有無による差は明らか であり,ボルトを締結することにより,PC版と枕版との 相対変位を減少させることが可能であるといえる.

図-107 相対変位の時刻歴変化(条件2)

図-108 累積相対変位と走行回数の関係(条件3,条件4)

図-109 ボルトの軸力と走行回数の関係(条件3,条件4)

(3) 条件 3 と条件 4 の試験結果

a) 走行回数増加に伴う変動

条件2の試験終了後,再度ボルトを締結し,地下水位 を PC 版と枕版の界面まで上昇させた後に,条件3およ び条件4の走行載荷試験を実施した.

PC 版-枕版間および緩衝版-枕版間の累積相対変位 (版が離れる場合が正)と走行回数の関係を図-108 に, ボルトの軸力と走行回数の関係を図-109 に示す.これら の数値は,一定の走行載荷試験が終了した後,脚荷重に よる載荷が無い場合に測定されたものである.PC 版と枕 版との累積相対変位は走行回数の増加に伴い若干増加

(PC版が枕版との密着が増す)しているもののその値は 非常に小さい.また,枕版に支持されている緩衝版につ いては,条件1および条件2の場合と同様に累積の変形 がほとんどないことがわかる.ボルトの締結力を示す軸 力は,ほぼ一定の値であり,水浸条件下においても,ボ ルトが緩んではいないことを示している.

以上のことから、ボルト締結による効果は、水浸条件 下においても有効であるといえる.

b) タイヤ走行前後の動的変動

条件3におけるタイヤ走行前後のPC版一枕版間および緩衝版一枕版間の相対変位(PC版および緩衝版が枕版から離れる方向が正)を図-110に示す.条件1の場合と同様に、タイヤは図-99の左端から走行を開始し、目地部を通過するたびに、PC版側に設置されている変位計D1における変位は最初に負(PC版が枕版に押し付けられる方向)となり、タイヤがPC版から緩衝版へ移動する際に正(PC版と枕版が離れる方向)となる.また、これとは反対側のPC版に設置されている変位計D4における変位は、D1とは正負反対の挙動を示す.一方、緩衝版に設置されている変位計D2およびD3はタイヤの通過前後での変位は非常に小さい.変位は条件1の場合と大差なく、地下水位が高いことによる影響は見受けられない.

条件 3 におけるタイヤ走行前後のボルトの軸力を図 -111 に示す.ボルトの軸力については、ほぼ一定の値と なっており、地下水位が高いことによる影響は見受けら れない.

図-112 に,条件4における相対変位を示す.条件4で はボルト締結がされていないため,条件3と比較して相 対変位が大きくなっており,同じくボルト締結を行わな かった条件2と比べても,相対変位は大きくなっている. 以上の結果から,ボルト締結の有無による差は明らかで あり,ボルト締結を行っている場合には,地下水位が高 いことによる影響がほとんど無いものの,ボルト締結を 行っていない場合には,地下水位が無い場合と比較して 相対変位が大きくなっていることがわかる.

図-112 相対変位の時刻歴変化(条件4)

c) ポンピング現象の確認

条件4(地下水あり、ボルト締結なし)の50回走行後の水の噴出状況を写真-25に示す.前述のとおり、条件4 ではボルト締結を行っていないことから、PC版と枕版の 相対変位が大きくなり、PC版と緩衝版の目地部に設置し た二つの目地構造の間から水が噴出するのが確認された. 写真-25に示すように、セメントグラウトの破片、水の 噴出による噴泥物がレーザー変位計の反射板に溜まって いるのがわかる.しかしながら、目地構造が設置されて いる部位からの水の噴出は確認されなかったことから、 この目地構造により、水の噴出を防止することが可能で あると考えられる.また、目地構造のプレートとゴムに ついて若干の磨耗が確認されたが、構造上問題となるよ うな磨耗ではなかった.

走行試験後の目地部の状況とセメントグラウトの破 損状況を**写真-26** に示す.セメントグラウトの破片の散 乱状況と清掃後の状況から,ボルト締結なしの場合には タイヤが通過するたびに PC 版と枕版の相対変位によっ て,セメントグラウトが PC 版端部から破損したと推測 される.

(a) 地下水有,ボルト締結無の 50 回走行後の水の噴出
 (b) 目地構造のプレートとゴムの摩耗
 写真-25 条件4の 50 回走行載荷試験後の PC 版舗装の路面状況

(a) 目地部の清掃後(PC 版と枕版の間に隙間有り)
 (b)清掃後の噴出物の状況
 写真-26 走行試験後の目地部の状況とセメントグラウトの破損状況

4.3 考察

(1) タイヤ走行時の相対変位の変動

条件1~条件4においてタイヤ走行時に連続的に測定したPC版-枕版間の相対変位(D1, D4)および緩衝版-枕版間の相対変位(D2, D3)の最小値と最大値を抽出し,その差を相対変位の振幅量として図-113に整理した.

ボルトを締結した条件1,条件3と,ボルトを締結しな かった条件2,条件4を比較した場合,ボルトを締結した 場合では,PC版一枕版間の相対変位は約0.3mm程度以下 である傾向に対して,条件2の相対変位は1.8mm,条件4 では2.3mm程度であった.今回の実験により,ボルトを 締結することにより,PC版一枕版間の相対変位を低減で き,ポンピングが生じにくい状況とすることが確認でき た.

また,ボルト間隔が1.1mの場合の相対変位(D1)と2.2m

の場合の相対変位(D2)を比較すると,条件1の3000回走 行時において,ボルト間隔が1.1mの場合で0.309mm, ボルト間隔が2.2mの場合で0.192mm,条件3の1000回 走行時において,ボルト間隔が1.1mの場合で0.239mm, ボルト間隔が2.2mの場合で0.276mmであった.このこ とから,締結力として30~40kNが導入されている場合 には,ボルト間隔の違いによる相対変位の差に大きな変 化は認められなかった.

(2) タイヤ走行時の軸力の変動

ボルトを締結した条件1,条件3について,タイヤ走行 時に連続的に測定したボルトの軸力の平均値および最小 値と最大値から計算した振幅量を整理したものを図-114 に示す.

条件 1,条件 3 ともに,走行載荷試験開始直後と走行 開始 500 回時のボルト軸力の平均値を比較すると,PC 版に設置されたボルトの軸力は 2 割程度減少していた. この理由は,初期の走行載荷により路盤の圧縮により版 の沈下が生じたために,PC 版や枕版と路盤との密着度が 向上したため,結果としてボルトの軸力が減少したもの と考えられる.しかし,500 回時以降のボルト軸力の平 均値の変化は非常に小さく,繰返し載荷によるボルト軸 力の減少は生じないものと考えられる.また,緩衝版に 設置したボルト軸力の平均値は走行回数によらずほぼ一 定の値であり,ボルト軸力の振幅も非常に小さいことが わかる.

4.4 まとめ

今回の走行載荷試験から得られた結果をまとめると以 下のようになる.

- (1) 締結ボルトによってタイヤ走行時のPC版端部の相対 変位量を抑制でき、ポンピングなどが生じにくい状況 とすることが出来る.
- 2) 走行載荷試験当初の版の沈下により、ボルト軸力は2 割程度減少するものの、500回を過ぎると相対変位や 軸力は安定する.
- 3) 脚荷重の走行によって、目地構造の表面やゴムなどの 摩耗が多少見られるものの、合計5,000回の載荷試験 にも耐久性が高い.また、目地構造の設置されていな い箇所からは水が噴出したものの、目地構造が設置さ れている箇所からの水の噴出が観測できなかったた め、目地構造が水の噴き上げを防止する効果が確認さ れた.
- 4) ボルトを締結しない場合には、PC 版と枕版との相対 変位が大きいことが原因で、PC 版下面に注入した 15mm 厚のグラウトが割れたものと推測される.

5. 結論

空港エプロンPC舗装の補強構造について,室内試験, 実大規模走行載荷試験,FEM解析等により検討した結果 は、以下のようにまとめられる.

5.1 伸縮目地構造について

- (1) 第1案目地構造
- 伸縮挙動に対して追従することができ,伸縮性能および段差吸収性能に優れている.
- ② 目地遊間部に受ける荷重に対しては、十分な破壊安全 率と疲労耐久性が確認されたことから、十分な荷重支 持性能を有している。
- ③ 施工性については、いくつかの課題がみられたが、それぞれ翼鉄筋や通し筋の追加、空気抜き孔の追加などによって、対処可能である。
- ④ 脚荷重の走行によって,目地構造の表面やゴムなどの 摩耗が多少見られるものの,耐久性は高いと考えられる.また,目地構造が水の噴き上げを防止する効果が 確認された.
- (2) 第2案目地構造
- (1) 伸縮ゴム可動部の浮き上がり現象が発生し,伸縮性能 および段差吸収性能に問題がある.
- ② 目地遊間部に受ける荷重に対しては、目地遊間を跨ぐ 鋼板が支持する構造であるため、荷重支持性能に優れ ている.ただし、座グリ部の構造を見直す必要がある.
- ③ 施工性については、工程が多く、各作業内容が煩雑で あったため、施工時間の制約を考慮して合理的な施工 方法を検討するのが望ましい。

5.2 締結ボルト構造について

- ① 温度変化による PC 版の伸縮に対しては、締結金具内の滑り面にテフロン加工を施した材料を使用すること、ボルト径は締結力、せん断力の検討に加えて曲げ変形を考慮したボルト径を用いることで対応できる.
- ② 締結ボルトにより PC 版,緩衝版と枕版との一体化構造については、締結ボルトを配置することにより、航空機走行時の PC 版端部の相対変位量を抑制でき、ポンピングなどが生じにくい状況とすることが出来る.また、ボルトの配置間隔については、40kN 程度のボルト締結力を導入することにより、ボルト配置間隔が1.1mの場合のみならず2.2mの場合でも、相対変位を低減することができる.
- ③ PC 版への締結金具の取り付け方法については,取り 付け試験を行い,基本的には問題なく作業可能なこと

を確認した.また,ボルト締結力の管理方法について は、ボルト締結力の減少に及ぼす要因を明らかにし、 これらの要因を考慮したボルト締結力の管理方法を 提案した.

6. おわりに

本研究を実施するにあたり,国土交通省関東地方整備 局東京空港整備事務所,国土交通省東京航空局東京空港 事務所から多くの助言を頂きました.厚くお礼申し上げ ます.また,独立行政法人港湾空港技術研究所 八谷好 高地盤・構造部長,北詰昌樹特別研究官をはじめ,本共 同研究に関わって頂いた関係各位に謝意を表します.

(2008年2月14日受付)

参考文献

- 八谷好高,野上富治,横井聰之,赤嶺文繁,坪川将 丈,松崎和博,高橋 修,室園正徳,阿部 寛:プレ キャスト PC 舗装版を対象とした圧縮ジョイントの 構造設計法,国土技術政策総合研究所研究報告, No.3, 2001.
- 上薗 晃,中島 禎,宮内 健,今井泰男,稲田雅裕: P C舗装リフトアップ工法に使用するグラウト材の 品質に関する検討,第1回舗装工学講演会講演論文 集, pp.299-304, 1996.

```
載荷荷重ケースの選定
```


121-

解析は, 左図に示すように 荷重ケース(1) ~荷重ケース (6) について, 各載荷パター ンを載荷させた際に PC 版端 部と枕版との隙間が最大とな る載荷位置で決定した.

付録-4 ボルト締結力と版の移動量の結果

S40-12

荷重,たわみ曲線,せん断 力図,曲げモーメント図	反力 R _A , R _B , せん断力 Q	曲げモーメント M
	$R_{A} = R_{B} = \frac{12 EI}{l^{8}} \delta$ $Q = R_{A}$	$M = \frac{6 EI\partial}{l^2} \left(2 \frac{x}{l} - 1 \right)$ $M_{max} = \frac{6 EI}{l^2} \delta$ $M_A = M_D = \frac{6 EI}{l^2} \delta$
R_{A} Q_{A} R_{A} R_{B}		
$-M_A = M_B$		

構造力学公式集より抜粋

付録-7 模擬路盤(発泡スチロール)の平板載荷試験の結果

【試験方法】

路盤材として使用する硬質発泡スチロール(カネパールソイルブロック DX-29)の路盤 支持力係数を把握することを目的として,静的載荷試験前に平板載荷試験を実施する.

試験は,(株)ピーエス三菱の小田原技術研究所の鉛直載荷システムを使用し,下記図 に示すように、載荷装置上に硬質発泡スチロール(2000×100×100mm および 2000×100× 200mm)を敷き, 直径 450mm の鋼製円形載荷板を設置して載荷する.

H-350*350*700

0

50 10

発泡スチロールの平板載荷試験図

模擬路盤(発泡スチロール)の平板載荷試験の状況

【試験結果】 ①発泡スチロール厚さ100mmのケース (K=0.14N/mm³)

②発泡スチロール厚さ200mmのケース (K=0.08N/mm³)

付録-8 締結ボルトの応力-ひずみの関係

実験に使用したボルト1~16の応力-ひずみの関係ならびに鋼材の弾性係数の測定結果を以下に示す.

5kN 時 → 7.1 (N/mm²) → $\epsilon = \sigma / E =$ 7.1 / 221,275×10⁶= 32 (µ)

40kN 時 → 56.6 (N/mm²) → $\epsilon = \sigma$ /E=56.6 / 221,275×10⁶=256 (μ)

として,実験時の締結力を管理した.

弹性係数平均值 (N/mm²)

221275

ボルトの引張試験の状況

付録-9 圧縮強度試験の結果

		載荷試験前				載荷試験後		
				2006/3/7		2006/3/29		
		圧縮強度	(N/mm^2)	弾性係数	(N/mm^2)	圧縮強度	圧縮強度(N/mm ²)	
经承诺	2/20-No.1	58.3		32200		61.4		
板側版	2/20-No.2	57,4	57.3	31000	31500	59.6	61.1	
172 712	2/20-No.3	56.2		31200		62.4		
	2/22-No.1	52.9		28900		58.3		
РС版	2/22-No.2	53.8	53.0	29400	28700	59.8	58.9	
	2/22-No. 3	52.4		27800		58.5]	

【2/20 打設分】

載荷試験前に実施したコンクリート試験体の応力-ひずみの関係

圧縮強度試験の状況

付録-10 目地平行方向のたわみ分布

(1) シリーズ1

(3) シリーズ3

付録-11 目地直角方向のたわみ分布

(1) シリーズ1

シリーズ 2-無

付録-12 目地平行方向のひずみ分布

(1) シリーズ1

付録-13 荷重-PC版に締結したボルトひずみの関係

(1) シリーズ1

(2) シリーズ2

(3) シリーズ3

(4) シリーズ4

付録-14 静的載荷試験の状況写真

枕版配筋状況

PC 版配筋状況

枕版・緩衝版コンクリートのフレッシュ性状試験

PC版コンクリートのフレッシュ性状試験

枕版のコンクリート打設状況

緩衝版のコンクリート打設状況

PC版のコンクリート打設状況

1層目発泡スチロール敷設状況

枕版の設置状況

緩衝版の設置状況

2層目発泡スチロール敷設状況

3,4層目発泡スチロール敷設状況

PC版の設置状況

国土技術政策総合研究所資料 TECHNICAL NOTE of NILIM No. 456 March 2008

編集·発行 ©国土技術政策総合研究所

本資料の転載・複写のお問い合わせは

〒239-0826 神奈川県横須賀市長瀬3-1-1
管理調整部企画調整課 電話:046-844-5019