What is occurring in tropical large cities in developing countries :

Population increase causes horizontal urban expansion, reducing surrounding greenery and increasing risk of floods. Mass transportation is poor and traffic jams are caused by rapidly increasing vehicles, especially motor bicycles. Higher incomes boosts the consumption of electricity. A/C is installed in houses without thermal design. Houses with shorter service lives consume materials causing destruction of forests and consumption of fossil fuels. Solutions can be sought through invention and socialization of images of new utopia, before inflation of fossil fuels' price. Tropical traditional houses that have coexisted with nature offer many suggestions for future, through their design and usage of materials.

1. Analysis of satellite images to grasp existing conditions

(1) Identification of houses supports field survey activities

Bandung: IKONOS(1m), Cirebon and Malang:Quick Bird (0.6m)

Initial form of houses

Extended houses

Town planning in 1970s (Sarijadi complex in Bandung)

(2) ALOS (2.5m): Acquisition of DEM from stereo pair image Identification of Low wet coastal zone and slope area.

Fig. 2 The obtained DEM data for Bandung

& Geographical Map 1:25,000

2. Field Survey of Life

Under supervision of the Research Center for Human Settlements Ministry of Public Works, a questionnaire survey was performed of 900 sample households from 13 planned housing complexes in 7 Indonesian Cities. Most were masonry houses made by greatly expanding the original houses. Domestic consumption of energy and of fuels for transportation and usage of building materials were monitored. Building material factories were also surveyed to identify the life cycle emission of each material occurring outs ide of the complexes. The length of life of houses was c.a. 15 years, to calculate annual emission through building materials compared to that of domestic energy and vehicle fuels.

Graph: National Emission, announced by the government

In spite of a monetary crisis(1997), constantly increasing, doubling every 10 years

Contribution of electricity is large. It is highly dependent on income according to the survey finding.

In this research, evaluation is not confined to "housing" sector, but also include the indirect emissions that are classified in other sectors in this graph.

Table: Emission coefficient used	cities	Samples	Domestic	Transportation	B. material	Total
Flactricity: 0.684KgCO / kWh	Bandung	200	2,390	1,455	108	3,868
(Diesel generators are popular in local cities.)	Cirebon	200	1,891	751	76	2,708
•Kerosene 1 liter emits 2.54kg-CO ₂	Makassar	100	2.262	821	75	3,159
Weight 0.8136Kg/L Carbon weight 85%	Banjarmasin	100	2,120	1,322	81	3,502
Weight 677Kg/m ² Cathon weight 81 896	Semarang	100	1.976	1,092	72	3,199
•LPG 1Kgemits 2.999kg-CO ₂ Carbon weight0.818kg/L	Mataram	100	1,870	1,223	99	3,192
	Malang	100	2,087	1,179	85	3,350

Fable: Total annual emission of household (kg - CO / Year/Househo	ld))
--	----	---	---

One average household emits 3-4 tons of CO_2 in one year.

National total emission is 200 million tons per year, therefore one ton per person per year, and the survey result is comparative to this. The survey targets are urban planned housing areas, and the average emission per year is probably relatively larger than national average of whole houses including rural settlements.

3. Planning alternative futures

With the participation of Indonesian architects and city planners, alternative plans were elaborated for two actual districts in Bandung and Cirebon cities, considering the "emission", instead of usual "cost". Before starting the design, a workshop was held in Bandung (March 2006) in order to discuss the basic concepts, including the understanding of system boundary, saving energy and electricity, LCE (life cycle emission) of building materials and carbon stock effect, evaluation of greenery (absorption of CO2 and exterior heat), natural ventilation, and transportation trip of vehicles. Several new solar cells, building greenery, high-rise building and low house combination, etc. were proposed.

Elaborated alternative plans were presented in the form of three dimensional data, with explanations of concepts and reduction of CO2 emission, at the workshop, held with invited non-engineer resource persons and citizens in the target areas (March 2007).

Alternative 3: Carbon stock in fire-proof timber houses Wood town

Kerja Atap

ierja lantai kedua

Alternative 4,5,6:Creation of greenery by apartment

GIAH BLOS MA

Alternative 7: Greenery on roofs and walls of apartment

Jalan Struktur Makro : Tahan Lama 100tha-Raya (sebagai Prasarana Kota: CDM?) Pertokoan Sekolah Kawasan Perkantorar Permukiman Struktur Mikro sebagai Pengisi Asset Pribadi) Lift (utle 8 lantai)

Table: Summary & evaluation of alternatives (Cirebon)

literar	Existing	Plaz 1	Plan 2	Plas. 3	Flaz.4	Unit
Landarea	54,700 ¹⁰	54,200	54,700	54,200	54,700	0 ²
Total units	324	364	924	578	344	Units
Population	1,090	1,457	3,737	2,312	1,336	Persons
Total floor ann	39,056	41,616	136,836	35,616	25,420	m ²
Housing	22,236	32,396	72,036	27,396	17,200	m ²
Non-housing	8,220	8,220	64,200	8,220	\$,220	m ²
CO, emission/Year/Dait	2.710	5,419	2.382	4,163	4226	7.00,
Building Material LCE	369	15,209	13,483.6	13,369	\$ 394	T-CO,
B. natorial LCEknit	1.140	43.4	146	231	24.4	T-CO,
Expected length of life	15	15	60	15	15	Years
B Material LCE/Vear	24.624	1,054	224.8	291	560	T-CO,
LCE.Unit/New	0.076	2.2	0.343	1.54	1.63	T-CO,
LCE/m ⁴ of floor Fear	0.00035	0.033	1600.0	0.033	D.033	T-CO,
Domestic starsty/Year/Unit	1.891	1.291	1.291	1,291	1,291	T-CO,
Transportation/VereIUnit	0.751	0.751	0.263 8.0	0.751	D.751	T-CO,
Tree cap coverage	4,814	15,614	25,150	14.944	29,994	or ²
Absorption/year * #	-5.1	-16.6	-26.6.	-15.2	-31.8	T-CO ₂
Absorption/Rear/Fact/rait	-0.003	-0.023	-0.015	-0.01.4	-0.046	T-CO;
Carbon Stock in Building	324	364	a	0	D	Ton-C

Absorption of CO₂ by trees is calculated using IPCC default value of 2.9 ton-C/Year), however this must be larger in tropical zones, and it is now studied through forestry researches.

Carbon stock is related to the amount of timber as a building material.

Potongan

Photo: discussion and evaluation workshop (2007.3.6-7)

The evaluation of a housing complex still does not reflect its location of in an overall city, therefore the whole city is not evaluated. In the next step, evaluation of the total city must be done by comparing new town development in the fringe of city vs. urban renewal in the inner city area.