1. まえがき

港湾施設の中でも代表的な構造物の1つである防波堤 は、港湾内の静穏度確保の観点から、数百mを越える大 延長となる場合が多い. そのため, 防波堤の建設には一 般に複数年の期間を要し、ある一定の間、施工途中の不 完全な状態で放置される場合がある. したがって, 防波 堤の設計においては、この状態における安定性を施工時 として照査している. その場合, 対象とする荷重レベル すなわち設計波高を,完成時断面に対して一般に用いら れる50年確率波高から10年確率波高に下げ、それに対す る安全性を完成時と同等もしくはそれ以下として照査す る事例が多い.しかしながら、この根拠は必ずしも明確 ではなく,かつ施工期間(未完成状態が存置される期間) も様々である.施工時の荷重レベルや安全性水準は,施 工期間と波浪の遭遇確率、さらには被災時の損失費用に よって決定されるべきである、その際、施工期間に応じ た期待総費用により評価する方法が考えられる(本研究 では,施工期間をライフサイクルと考え,施工期間中に 発生する期待総費用を施工時ライフサイクルコストと定 義し、以下、施工時LCCと称す).

そこで本研究では、既往の施工時照査法に関する実態 調査を行うとともに、わが国における代表的構造形式で ある消波ブロック被覆堤(図-1参照)の施工状態として、 消波ブロック未施工状態を対象とし、標準的と想定され る照査法による設計断面と施工時LCC最小化による設計 断面の比較検討を実施した.ここで、現時点では標準的 な照査法が確立されていないが、信頼性設計法への移行 を考慮すると、荷重レベルとして10年確率波高を用い、

(b)完成状態(消波工あり)

吉岡ら⁸⁾が提案するケーソン式混成堤の部分係数を用い る方法の採用が考えられることから、本研究では、これ を標準的な方法(以下,施工時標準照査法と称す)とみ なして検討を行った.さらに,施工時LCCを最小化する 観点から,最適な目標安全性水準の検討を実施し、この 水準を各種の設計パラメータによって簡易に推定して部 分係数に応用する方法を提案した.

以下, 2. では,既往の施工時照査法の実態調査につい て述べる. 3. では,施工時標準照査法,施工時LCC算出 方法などに関して述べる. 4. では,施工時LCCの算出結 果について, 5. では,施工時LCCに基づく目標信頼性指 標の算定方法について述べる. 6. では,前章で求めた目 標信頼性指標を基に部分係数を算出し,その部分係数を 用いて試設計を行い,施工時標準照査法による設計結果 との比較検討を実施する.

2. 既往の施工時照査法に関する実態調査

2.1 調査方法

調査対象は直轄港湾施設の重力式防波堤(ケーソン式 混成堤,消波ブロック被覆堤,上部斜面ケーソン堤,消 波スリットケーソン堤等)とし,各地方整備局,北海道 開発局および沖縄総合事務局にヒアリングを行った.調 査項目は,①構造形式,②考慮した施工状態,③施工期 間(放置期間,設計上考慮した期間もしくは実績),④対 象波,⑤許容安全率,⑥照査結果等とした.なお,消波 ブロック被覆堤については,当初は消波ブロックがない 状態,すなわちケーソン式混成堤として設計・施工し, 後に反射波対策等の理由により消波ブロックを設置した というケースが多数あると考えられる.そのようなケー スは,今回の調査対象からは除外している.

2.2 調査結果

調査結果を図-2に示す.分類に使用できたサンプル数 は101ケースである.本調査範囲では,消波ブロック被覆 堤が最も多く施工時照査が行われる構造形式となってい る.設計状態としては,消波ブロックなし,上部工なし, 暫定上部工の単独もしくはそれらの組合せが考慮されて いる.ここで, "消波ブロックなし"には不完全被覆が7 ケース含まれているので注意を要する.

調査結果によると、施工期間は1年未満から5年程度と 幅広く、対象波は10年確率波がほとんどであるが、安全 側に完成時と同様の50年確率波としている事例もある. 対象波として50年確率波を用いる事例は全て日本海側に 位置しており、冬季風浪により毎年同程度の波浪が来襲

図-2 調査結果

し得ることが要因と考えられる.許容安全率は,滑動・ 転倒ともに完成時と同じく1.2とする事例や,滑動1.0・転 倒1.1とする事例が大半である.また,施工時照査により 断面が決定されるケースは,全ての構造形式についてみ ると全体の25%程度ある.これを,"消波ブロックなし" を施工状態としているケース(不完全被覆除く)のみに限 定すると,施工時照査が断面決定要因となる割合が55% となった.したがって,消波ブロック未施工状態の照査 が設計結果に有意な影響を及ぼしていると言える

3. 検討方法

3.1 施工時の安定性照査方法

前章の調査結果からもわかるように,防波堤の施工時 安定性照査に用いる荷重レベルや安全性水準は地域的, 施工条件的に様々で,設計者の工学的判断に基づき設定 されることが多い.このように,現時点では防波堤施工 時の標準的な安定性照査方法は確立されていないが,本 研究では,信頼性設計法への移行を踏まえて,吉岡ら⁸⁾が 提案するケーソン式混成堤の部分係数を用い,荷重レベ ルとして最も採用例の多い10年確率波高を用いる方法を 仮に施工時標準照査法とする. 一方,完成時断面に対して,設計波を50年確率波高と し,消波ブロック被覆堤の部分係数を用いた照査を完成 時標準照査法とする.また,設計波を10年確率波とし, 本研究で提案する最適信頼性指標を用いて算出した部分 係数による照査を提案法とする.以上の各照査方法を用 いて,次項に示す設計条件のもとに試設計を行い,比較 検討を実施する.

3.2 設計条件

本研究で対象とするケースは、長尾⁶⁾によって全国広 範囲より地域的、設計条件的に偏りがないように収集さ れた建設事例の中から、消波ブロック被覆堤の35ケース を対象とした.長尾⁶⁾が収集した建設事例の分布を図-3 に、各ケースの主な設計条件を表-1に示す.

安定性照査において考慮する破壊モードは,堤体直立 部の滑動および転倒とした.基礎の支持力については, 滑動または転倒に比べ破壊可能性が小さい⁸⁾ことから未 考慮とした.レベル1信頼性設計法の安全性照査式(滑 動,転倒)を式(1)~(3)に,ケーソン式混成堤および消波 ブロック被覆堤の部分係数の標準値⁸⁾を表-2に示す.

(滑動)
$$\gamma_f f_k (\sum \gamma_{W_i} W_{ik} - P_{Bd} - \gamma_{P_U} P_{Uk}) \ge \gamma_{P_H} P_{Hk}$$
 (1)

(転倒)
$$a_1 \sum \gamma_{W_i} W_{ik} - a_2 P_{Bd} - a_3 \gamma_{P_U} P_{Uk} \ge a_4 \gamma_{P_H} P_{Hk}$$
 (2)

$$P_{Bd} = \rho_w g(\gamma_{w\ell} w \ell_k + h) B_C \tag{3}$$

ここに,

- f :堤体底面と基礎との摩擦係数
- W_i: 堤体を構成する材料(鉄筋コンクリート,
 無筋コンクリート,中詰砂)の重量(kN/m)
- *P_B*:堤体に作用する浮力(kN/m)
- P_U : 堤体に作用する揚圧力 (kN/m)
- P_H: 堤体に作用する水平波力(kN/m)

 $a_1 \sim a_5$:各荷重のアーム長(m) ρ_w :海水の密度(t/m^3) g:重力加速度(m/s^2) wl:潮位(m) h:水深(m) B_C :堤体幅(m) γ :添字設計因子に対する部分係数

式中の添字 *k*, *d* は, それぞれ特性値および設計用値を 表し,また式(3)は,ケーソンがフーチングを有しない場 合の浮力設計用値の算定式である.

No.	設計波高 50年確率 (H _D)	有義波高 50年確率 (H _{1/3})	有義周期 50年確率 (T)	入射角 (θ)	海底勾配	設計潮位 (wl)	摩擦係数 (f)	前面水深 (h)	設置水深 (h')	港外側 マウント [*] 肩幅 (BM ₁)	港内側 マウント「肩幅 (BM2)	上部工 天端高 (<i>C</i> _T)	現行設計 堤体幅 (B _{C Current})
	m	m	s	0	_	m	_	m	m	m	m	m	m
5	9.1	5.3	12	0	0.01	0.5	0.6	11.5	8.5	_	7	4	11.9
6	8.60	5.3	12	0	0.01	0.5	0.6	10.5	8	_	7	4	11.3
8	8.7	5.8	12	0	0.01	0.5	0.6	10.5	8	_	7	4	11.5
10	12.85	7.9	13	54	0.011	0.5	0.75	16.5	12.5	_	9.4	7	12.3
11	12.40	7.5	12.5	52	0.011	0.5	0.6	15.5	11.5	_	9.4	6.5	12.45
15	7.50	4.2	13	0	0.007	1.5	0.6	12.3	7	_	9	4	10.15
19	12.8	7.1	13	13.5	0.005	1.5	0.75	16.5	11.5	_	7.5	5.8	16.45
20	12.7	7.2	13	28.5	0.005	1.5	0.6	15.3	11.5	_	6.5	5.7	16.85
21	11.2	6.3	13	20	0.002	1.5	0.6	19	13	_	6.5	5.3	15
26	9.96	6.01	14	0	0.004	1.33	0.6	12.6	9.5	_	9	5	11.95
27	8.4	4.8	12.5	14.6	0.033	1.1	0.6	14.5	10	_	5	3.6	9.8
28	7.5	4.9	10.5	8	0.01	0.8	0.6	10.6	7		5	3	8.85
29	11.3	8	12	0	0.009	3.6	0.75	11.5	8		9.5	7	13.2
30	5.7	3.5	7.4	0	0.01	4.4	0.6	7.2	4.5		6	5.7	6.5
31	11.6	8	12	0	0.01	3.6	0.75	11.5	8		11.5	7	13
32	11.6	8	12	0	0.01	3.6	0.75	13	8		9.5	7	13.5
40	12.4	9.5	16	0	0.006	2.1	0.6	13.4	9		14.5	7.6	14.7
41	15.5	9.4	17.4	35	0.01	2.2	0.6	21.1	12		32	8	16.65
45	12.7	8.1	12	3	0.02	1.5	0.6	15.7	13		5.7	6.4	16.5
46	8.2	4.8	11.5	58	0.01	0.4	0.6	11.3	9		6.3	3.2	9.75
48	9.3	5.7	12.1	40	0.01	1.2	0.6	12.1	10		5.1	5.8	13.3
49	9.8	5.9	11	0	0.01	0.5	0.6	14.2	11.5	_	5	4.1	13.55
51	7	5.4	10	0	0.01	0.3	0.6	8.4	5.5		6.5	5.2	6.5
52	6.4	4.9	13	25	0.01	0.3	0.6	6	4		5.2	4.5	10.4
53	8.7	5.9	12	9	0.01	0.3	0.6	11.3	6.5	_	7.2	5.1	9
55	3.7	2	11	0	0.01	0.5	0.6	5.3	3.5		2.5	2.3	4.3
61	11.63	7	14	0	0.01	0.5	0.75	14.5	10	9.4	6.5	6	13.6
62	8.8	5.2	12	15	0.0091	1.6	0.6	11.8	9.5	5	8.5	4.8	10.95
63	9.9	5.6	12	20	0.0091	1.6	0.6	12.8	10	7	9	5	12.6
65	6.6	3.7	13	34	0.01	1.5	0.6	10.5	7	19	10.5	4	7.65
66	10.02	5.83	13	0	0.002	1.7	0.6	12.1	9	23.9	10	5.2	14
70	11.51	7.36	15	15	0.002	1.4	0.6	14	10	8	7	6	15.85
71	20.09	12	16	0	0.001	3.5	0.75	17	8	14	10	7	24.1
72	14	10.5	16	2.5	0.01	3.5	0.75	14.2	10	17	10.5	7	18.55
73	10.8	6	16.5	0	0.01	3.5	0.75	17.2	12.5	31.5	10	6	13.9

表-1 消波ブロック被覆堤35ケースの主な設計条件⁶⁾

*表中のケース No.は長尾⁶⁾の検討によるもので、本研究においてもこれを踏襲する.

*水深は設計潮位を含まない値である.

*堤体幅は、フーチング幅を除いたケーソン幅である.

	構造刑	形式		ケーソン	式混成場	Ē	消波ブロック被覆堤				
γ計	·算に用いる目标	票信頼性指標 β_T	2.40								
			γ	α	μ / X_k	V	γ	α	μ / X_k	V	
	摩擦係数f		0.79	0.689	1.060	0.150	0.77	0.750	1.060	0.150	
	水平波力P _H	水深変化緩	1.04	0.704	0.740	0.239	0.91	0.626	0.702	0.191	
	揚圧力 P_U	水深変化急	1.17	-0.704	0.825	0.251	1.01	-0.030	0.772	0.205	
滑		$r_{wl} = 1.5$	1.03		1.000	0.200	1.04		1.000	0.200	
-	潮位 wl	$r_{wl} = 2.0, 2.5$	1.06	-0.059	1.000	0.400	1.08	-0.081	1.000	0.400	
動		H.H.W.L.	1.00		-	-	1.00		-	-	
	自重 W _{RC}	鉄筋コンクリート	0.98	0.030	0.980	0.020	0.98	0.030	0.980	0.020	
	W _{NC}	無筋コンクリート	1.02	0.025	1.020	0.020	1.02	0.031	1.020	0.020	
	W _{SAND}	中詰砂	1.01	0.150	1.020	0.040	1.01	0.150	1.020	0.040	
	水平波力 P_H	水深変化緩	1.15	0.068	0.740	0.239	1.01	0.062	0.702	0.191	
	揚圧力 P_U	水深変化急	1.31	-0.908	0.825	0.251	1.14	-0.902	0.772	0.205	
		$r_{wl} = 1.5$	1.04		1.000	0.200	1.06		1.000	0.200	
転	潮位 wl	$r_{wl} = 2.0, 2.5$	1.09	-0.092	1.000	0.400	1.13	-0.133	1.000	0.400	
倒		H.H.W.L.	1.00		-	-	1.00		-	-	
	自重 W _{RC}	鉄筋コンクリート	0.98	0.044	0.980	0.020	0.98	0.050	0.980	0.020	
	W _{NC}	無筋コンクリート	1.02	0.040	1.020	0.020	1.02	0.054	1.020	0.020	
	W _{SAND}	中詰砂	1.00	0.232	1.020	0.040	1.00	0.248	1.020	0.040	

表-2 部分係数⁸⁾

※1: γ : 部分係数, α : 感度係数, μ/X_k : 平均値の偏り(平均値/特性値), V: 変動係数

※2: r_{wl}:既往最高潮位(H.H.W.L.)と朔望平均満潮位(H.W.L.)の比(図-4参照)

※3: 水深変化緩/急:海底勾配1/30未満/以上

表-2に示した部分係数は,式(4)を用いて算定しており, 感度係数α,変動係数Vなどのパラメータの値はコード キャリブレーションにより決定している.つまり,ケー ソン式混成堤,消波ブロック被覆堤の既往施設の平均安 全性水準を信頼性指標で2.40と定め,これを目標値とし て部分係数を決定している.

$$\gamma_{X} = \left(1 - \alpha_{X} \beta_{T} V_{X}\right) \mu / X_{k} \tag{4}$$

ここで、 α_X , V_X , μ_X はそれぞれ設計因子 Xの感度係数, 変動係数および平均値,また, X_k は設計因子 Xの特性値, β_T は目標信頼性指標である.

3.3 施工時LCCの算出方法

防波堤の施工期間中に要する費用は、初期建設費,維持管理費,および被災時の復旧費であるが,港湾構造物 における維持管理費は、初期建設費と比較して非常に僅 かである.このことから、本研究では、施工時 LCC を構 成する因子としては、初期建設費と被災時の復旧費のみ を考える.このとき、施工時 LCC の期待値は、次式によ って定義される.

$$ELC = C_i + EC_f \tag{5}$$

ここに, *ELC*:施工時 LCC の期待値, *C_i*:消波ブロック を除いた初期建設費, *EC_f*:施工期間 *L* 中の期待復旧費 期待復旧費は,長尾ら⁷に従い,式(6)によって計算す る.すなわち,被災時の復旧費に,複数の荷重作用にお ける期待被災回数を乗じて算出し,さらにポアソン過程 に基づく社会的割引率によって現在価値換算する.

$$EC_f = \sum_{j=1}^m E_{jj} C_f \frac{R}{L}$$
(6)

$$R = \sum_{k=1}^{L} \frac{1}{(1+i)^k}$$
(7)

ここに, *m*:対象とする荷重ランク数, *L*:施工期間, *E*_{*f*}: 対象とする荷重による期待被災回数, *C*_{*f*}:被災時の復旧 費, *i*:社会的割引率

対象とする荷重作用による期待被災回数は、長尾ら⁷⁾ が示す方法により算出した.荷重作用はポアソン過程に 従うと仮定すると、同じ強度が複数回作用する場合、構 造物が破壊する事象は各荷重作用時で独立であると仮定 する方法と、完全相関であると仮定する方法の2通りの 方法があり、期待被災回数はそれぞれ式(8)および式(9) により得られるが、両者は一致する.

$$E_{jj} = \sum_{n_j=1}^{\infty} n_j \frac{\left(\nu_j L P_{jj}\right)^{n_j}}{n_j!} \exp\left(-\nu_j L P_{jj}\right) = \nu_j L P_{jj} \qquad (8)$$

$$E_{jj} = P_{jj} \sum_{n_j=1}^{\infty} n_j \frac{\left(\nu_j L\right)^{n_j}}{n_j !} \exp\left(-\nu_j L\right) = \nu_j L P_{jj}$$
(9)

ここで、 P_{fj} は対象とする荷重の作用による破壊確率、 ν_j は対象とする荷重の年平均発生率 $(1/r_j-1/r_{j+1})$, ただし 最長の再現期間荷重に対しては $1/r_j$), r_j は対象とする荷 重の再現期間である.

また,将来発生する被災時費用は社会的割引率を用い て現在の費用に換算する.本研究では土木事業における 一般値として4%を用いる.なお,インフレは経済評価に おいては考慮しないのが原則であるため対象外とする.

3.4 破壊確率の算出方法

期待復旧費 *EC_f*を計算するためには複数の荷重ランク を考慮する必要があることから,再現期間1,3,5,10, 25,50,75,100,200年の9段階の設計波高を評価した. 再現期間別の設計波高は以下の手順により算出した.

まず,高田ら⁵⁾によってまとめられている全国各地の 沖波表から,対象事例に最も近い沖波波高を抽出する. 次に,合田ら²⁾を参照して波浪の極値の最適母分布関数 を当てはめ、沖波の確率波高を推定する.続いて、同じ く高田ら⁵⁾によってまとめられている全国各地の沿岸係 数表を用いて換算沖波波高とした.ここに、沿岸係数α= 屈折係数 Kr×回折係数 Kt である.最後に、合田¹⁾の浅 水変形、砕波変形計算により、堤体位置での有義波高お よび最高波高(設計波高)を計算する.なお、算出した 有義波高および最高波高は、設計資料として残っている 50 年確率波高に一致するよう補正を行っている.

各設計波高に対する破壊確率 P_fは, 滑動および転倒破 壊に基づくシステム破壊確率とした.システム破壊確率 は以下の手順により算出した.まず,一次信頼性理論

(FORM: First-Order Reliability Method) によって, 滑動・ 転倒信頼性指標を算出する.ここで, 両破壊モードの性 能関数は, 力の釣合いに基づき次式により定義している.

(滑動破壊モード)

$$Z = f\left(\sum_{i} W_{i} - P_{B} - P_{U}\right) - P_{H}$$
(10)
(転倒破壊モード)

$$Z = a_1 \sum_{i} W_i - a_2 P_B - a_3 P_U - a_4 P_H$$
(11)

各設計因子の従う確率分布は全て正規分布を仮定し, 長尾⁶⁾がまとめた値を用いた.また,水平波力および揚 圧力は消波ブロックがない場合の合田波力公式に従い算 出した.完成状態(消波ブロックあり)では波力低減係 数は $\lambda_1 = \lambda_3 = 0.8$, $\lambda_2 = 0$ であり,砕波圧成分が作用しな いのに対し,施工状態(消波ブロックなし)では $\lambda_1 = \lambda_2 = \lambda_3$ = 1.0 となり,砕波圧が作用する.

信頼性解析により算出した滑動・転倒信頼性指標(それぞれ β_s , β_0)および両破壊モード間の相関係数 ρ_{so} を用いて、次式によりシステム破壊確率 $P_{f_{sys}}$ を評価する.

$$P_{f_{-sys}} = P_{s} + P_{o} - P_{so}$$

= $\Phi(-\beta_{s}) + \Phi(-\beta_{o}) - \Phi_{2}(-\beta_{s}, -\beta_{o}, \rho_{so})$ (12)

ここに、 Φ_2 は標準正規同時確率分布関数であり、以下 に示す Owen¹⁰⁾のモデルによって算出した.

$$\Phi_{2}(-\beta_{S},-\beta_{O},\rho_{SO}) = \Phi(-\beta_{S}) \cdot \Phi(-\beta_{O}) + \int_{0}^{\rho_{SO}} \frac{1}{2\pi\sqrt{1-t^{2}}} \exp\left(-\frac{1}{2}\left(\frac{\beta_{S}^{2}-2t\beta_{S}\beta_{O}+\beta_{O}^{2}}{1-t^{2}}\right)\right) dt \quad (13)$$

破壊モード間の相関係数*ρ_{so}は*, FORM によって副次的 に算出される感度係数αを成分に持つ単位ベクトルの内 積により算出した(式(14)).

$$\rho_{SO} = \sum_{X} \alpha_{X,S} \cdot \alpha_{X,O} \tag{14}$$

ここに, X:確率変数(設計因子)

3.5 被災時費用の算出方法

被災時の復旧費の算出にあたっては,表-3に示す中規 模被災と大規模被災を想定し,原型復旧に要するそれぞ れの対策費を積算した.しかしながら,力の釣合いに基 づく破壊確率では被災規模の判定は不可能であるため, 中規模被災と大規模被災の平均復旧費を用いた.消波ブ ロックを除いた初期建設費および被災時の復旧費は,直 接工事費とし,「港湾土木請負工事積算基準(国土交通 省港湾局監修)」を参考に算出した.

被災時の復旧費には,直接的な被害費用(物理的な復 旧に要する費用)に加えて,社会経済面における間接的 な被害費用を考慮する必要があるが,これは背後圏の状 況によって複雑に変化するため算定困難である.したが って本研究では,直接的被害費用の複数倍(n倍)するこ とにより,間接的被害費用を考慮した.港湾構造物に対 する間接被害費用の研究例として,柴崎ら⁴⁾が行った重 力式岸壁の地震災害に対する検討によると,その間接被 害費用は直接被害費用の1~8倍程度である.そこで,そ の中間的な値である5倍及び最大値と判断できる10倍を 用いることとした.

以上の解析を,堤体幅を5cm刻みで変化させて実施した.この際,2.3の調査結果に基づき,施工期間Lを1,3,5年として,それぞれ施工時LCCを算出した.

4. 施工時LCCの算出

4.1 再現期間別の設計波高

各検討ケースの合田¹⁾に基づく浅水変形,砕波変形計 算の入力条件を表-4,表-5に示す.沖波の最適母分布関 数は全てワイブル分布であった.また,表中の₇₅₀は,合 田³⁾が提案する極値分布形の汎用的尺度母数を表す裾長 度パラメータ(50年確率波高H_{o50}に対する10年確率波高 H_{o10}の比)であり,沖波の極値分布形の裾の広がり具合 を表す指標である.なお表中のケースNo.は長尾⁶⁾による 値を踏襲している. 以上の計算条件のもと、検討対象の35ケースについて波 浪変形計算を実施し、各ケースの設計波高を算出した. 35ケースの中から水深に大差のない3ケースを抽出し、算 出した再現期間別の波高(*H_{max}*:最高波高,*H_{1/3}*:有義波 高,*H_o*':換算沖波波高)と水深波高比*h/H_o*'を比較し て図-5に示す.また,抽出した3ケースの主な設計条件を 表-6に示す. Case1は重複波領域,Case3は砕波領域, Case2はその中間的な領域にあたる.なお,4.3 以降は, 抽出した3ケースを中心として検討結果を示す.

図-5からわかるように、一般に水深波高比h/H_o'が3 を下回る場合に砕波影響が顕著になることから、Casel の重複波領域では再現期間に比例して最高波高は増大す るのに対し、Case2、Case3の砕波領域では最高波高は頭 打ちとなっている.

4.2 施工時標準照査法による設計断面

本節では、前節で算出した設計波高を用いて、①施工 時標準照査法と②完成時標準照査法による設計断面の比 較を行う.併せて参考として、③既往施工時照査法 (Fs=1.2)と④既往施工時照査法(Fs=1.0)による設計断

面も算出する.各照査法の詳細は**表-7**のとおりである.

各照査法による設計結果の比較を図-6に示す. 図にお いて,堤体重量比は②完成時標準照査法による重量Woに 対する比を表している. ②完成時標準照査法による設計 断面よりも①施工時標準設計法による設計断面が大とな るケースが,35ケース中31ケースある. その理由につい て以下に考察する.

図-7は、50年確率波高(堤前,最高波)に対する10年 確率波高の低下率と,消波ブロックの有無による水平波 力の増加率を見たものである.最高波高比については, 沖波の極値分布の裾が短い(裾長度パラメータγ50が小さ い),すなわち毎年同程度の波浪が来襲する海域や,砕 波によって波高の上限が規定される海域では,最高波高 の低下度が小さい.一方,水平波力比については,消波 ブロックの有無による水平波力の増加度が総じて大きい.

表-3 想定被災程度と対策工

	中規模被災	大規模被災
被災程度	マウンド上での滑動	マウンドからの滑落
対策工	 ①撤去工(上部工,中詰砂,根固・ 被覆ブロック) ②ケーソン浮揚 ③基礎工(基礎捨石本均し,荒均し) ④本体工 ⑤根固・被覆工 	 ①撤去工(同左,水中作業) ②ケーソン浮揚(大型起重機船使用) ③基礎工(基礎捨石投入,本均し, 荒均し) ④根固・被覆工
	⑥上部工	⑥上部工

	沖波											換算沖波					
No.	尺度母数	位置母数	形状母数		再現期間別沖波波高Hc					裾長度	沿岸係数	再現期間別換算沖波波高Ho'(m)					
	Α	В	k	Rp=1年	Rp=3年	Rp=5年	Rp=10年	Rp=25年	Rp=50年	γ ₅₀	α	Rp=1年	Rp=3年	Rp=5年	Rp=10年	Rp=25年	Rp=50年
5	0.8707	1.1786	1.40	1.179	2.110	2.402	2.758	3.185	3.485	1.264	0.9990	1.177	2.108	2.399	2.756	3.182	3.482
6	0.8707	1.1786	1.40	1.179	2.110	2.402	2.758	3.185	3.485	1.264	0.9990	1.177	2.108	2.399	2.756	3.182	3.482
8	0.8707	1.1786	1.40	1.179	2.110	2.402	2.758	3.185	3.485	1.264	0.9990	1.177	2.108	2.399	2.756	3.182	3.482
10	1.6291	5.7683	1.40	5.768	7.511	8.057	8.724	9.523	10.084	1.156	1.0390	5.993	7.804	8.371	9.064	9.895	10.478
11	1.6291	5.7683	1.40	5.768	7.511	8.057	8.724	9.523	10.084	1.156	1.0390	5.993	7.804	8.371	9.064	9.895	10.478
15	1.2302	5.5273	1.00	5.527	6.879	7.507	8.360	9.487	10.340	1.237	0.9480	5.240	6.521	7.117	7.925	8.994	9.802
19	1.1867	4.2574	1.00	4.257	5.561	6.167	6.990	8.077	8.900	1.273	1.1130	4.738	6.190	6.864	7.780	8.990	9.906
20	1.1867	4.2574	1.00	4.257	5.561	6.167	6.990	8.077	8.900	1.273	1.1130	4.738	6.190	6.864	7.780	8.990	9.906
21	1.3359	5.0940	1.00	5.094	6.562	7.244	8.170	9.394	10.320	1.263	1.3860	7.060	9.094	10.040	11.324	13.020	14.304
26	0.8015	6.4344	1.00	6.434	7.315	7.724	8.280	9.014	9.570	1.156	1.0590	6.814	7.747	8.180	8.769	9.546	10.135
27	4.7210	1.3553	2.00	1.355	6.304	7.344	8.519	9.825	10.693	1.255	0.9920	1.344	6.253	7.286	8.451	9.747	10.607
28	2.2077	3.1586	2.00	3.159	5.473	5.959	6.509	7.119	7.525	1.156	0.9670	3.054	5.292	5.763	6.294	6.885	7.277
29	0.3832	2.4592	0.75	2.459	2.894	3.182	3.624	4.280	4.821	1.330	0.5520	1.357	1.597	1.756	2.001	2.363	2.661
30	0.4501	1.0066	0.75	1.007	1.517	1.856	2.375	3.146	3.781	1.592	0.7900	0.795	1.198	1.466	1.876	2.485	2.987
31	0.3832	2.4592	0.75	2.459	2.894	3.182	3.624	4.280	4.821	1.330	0.5520	1.357	1.597	1.756	2.001	2.363	2.661
32	0.3832	2.4592	0.75	2.459	2.894	3.182	3.624	4.280	4.821	1.330	0.5520	1.357	1.597	1.756	2.001	2.363	2.661
40	0.8260	8.1100	0.75	8.110	9.046	9.668	10.622	12.036	13.202	1.243	1.0300	8.353	9.318	9.958	10.940	12.397	13.598
41	2.1063	6.0100	1.00	6.010	8.324	9.400	10.860	12.790	14.250	1.312	0.8450	5.078	7.034	7.943	9.177	10.807	12.041
45	1.2179	4.1199	1.00	4.120	5.458	6.080	6.924	8.040	8.884	1.283	1.0000	4.120	5.458	6.080	6.924	8.040	8.884
46	2.3472	2.5075	2.00	2.508	4.968	5.485	6.069	6.719	7.150	1.178	0.9570	2.400	4.754	5.249	5.808	6.430	6.843
48	1.5252	3.1000	1.00	3.100	4.776	5.555	6.612	8.009	9.067	1.371	1.0450	3.240	4.991	5.805	6.909	8.370	9.475
49	1.9227	3.3800	2.00	3.380	5.395	5.819	6.298	6.830	7.183	1.141	0.8630	2.917	4.656	5.022	5.435	5.894	6.199
51	4.3323	0.8224	2.00	0.822	5.363	6.319	7.396	8.595	9.391	1.270	1.0380	0.854	5.567	6.559	7.677	8.922	9.748
52	4.9108	0.2100	2.00	0.210	5.357	6.440	7.662	9.021	9.923	1.295	1.0660	0.224	5.711	6.865	8.167	9.616	10.578
53	2.2181	4.5240	2.00	4.524	6.849	7.338	7.890	8.504	8.911	1.129	1.0000	4.524	6.849	7.338	7.890	8.504	8.911
55	1.9227	3.3800	2.00	3.380	5.395	5.819	6.298	6.830	7.183	1.141	0.8630	2.917	4.656	5.022	5.435	5.894	6.199
61	1.5910	5.1430	2.00	5.143	6.811	7.161	7.557	7.997	8.290	1.097	1.0080	5.184	6.865	7.219	7.618	8.061	8.356
62	0.6210	5.5090	1.00	5.509	6.191	6.508	6.939	7.508	7.938	1.144	0.9480	5.223	5.869	6.170	6.578	7.118	7.526
63	0.6210	5.5090	1.00	5.509	6.191	6.508	6.939	7.508	7.938	1.144	0.9480	5.223	5.869	6.170	6.578	7.118	7.526
65	0.9130	6.5270	1.00	6.527	7.530	7.996	8.629	9.466	10.099	1.170	0.9360	6.109	7.048	7.485	8.077	8.860	9.452
66	1.0560	3.2680	1.00	3.268	4.428	4.968	5.700	6.667	7.399	1.298	0.9990	3.265	4.424	4.963	5.694	6.660	7.392
70	1.3170	5.9370	1.00	5.937	7.384	8.057	8.970	10.176	11.089	1.236	1.0380	6.163	7.664	8.363	9.310	10.563	11.511
71	0.9710	10.2320	0.75	10.232	11.333	12.063	13.184	14.847	16.217	1.230	0.9620	9.843	10.902	11.605	12.683	14.283	15.601
72	0.8100	8.6490	0.75	8.649	9.567	10.177	11.112	12.499	13.642	1.228	1.0220	8.839	9.778	10.401	11.356	12.774	13.942
73	0.8100	8.3150	0.75	8.315	9.233	9.843	10.778	12.165	13.308	1.235	0.6260	5.205	5.780	6.162	6.747	7.615	8.331

表-4 再現期間別の換算沖波波高の導出

※沖波の最適母分布関数は全てワイブル分布である.

表-5 浅水変形,砕波変形計算の入力条件

							波浪変形言	+算入力条	件					
No.	周期To	波長Lo	水深ho	設計潮位	h=ho+wl	海底勾配	1/	波形勾配			水深波高	比h/Ho'		
	(s)	(m)	(m)	wl(m)	(m)	tanθ	tanθ	Ho'50/Lo	Rp=1年	Rp=3年	Rp=5年	Rp=10年	Rp=25年	Rp=50年
5	12.00	224.64	11.50	0.50	12.00	0.010	100	0.015	10.192	5.694	5.001	4.355	3.771	3.446
6	12.00	224.64	10.50	0.50	11.00	0.010	100	0.015	9.342	5.219	4.585	3.992	3.457	3.159
8	12.00	224.64	10.50	0.50	11.00	0.010	100	0.015	9.342	5.219	4.585	3.992	3.457	3.159
10	13.00	263.64	16.50	0.50	17.00	0.011	91	0.040	2.837	2.179	2.031	1.875	1.718	1.623
11	12.50	243.75	15.50	0.50	16.00	0.011	91	0.043	2.670	2.050	1.911	1.765	1.617	1.527
15	13.00	263.64	12.30	1.50	13.80	0.007	143	0.037	2.634	2.116	1.939	1.741	1.534	1.408
-19	13.00	263.64	16.50	1.50	18.00	0.005	200	0.038	3.799	2.908	2.622	2.314	2.002	1.817
20	13.00	263.64	15.30	1.50	16.80	0.005	200	0.038	3.545	2.714	2.447	2.159	1.869	1.696
21	13.00	263.64	19.00	1.50	20.50	0.002	500	0.054	2.904	2.254	2.042	1.810	1.574	1.433
26	14.00	305.76	12.60	1.33	13.93	0.004	250	0.033	2.044	1.798	1.703	1.589	1.459	1.374
27	12.50	243.75	14.50	1.10	15.60	0.033	30	0.044	11.604	2.495	2.141	1.846	1.601	1.471
28	10.50	171.99	10.60	0.80	11.40	0.010	100	0.042	3.732	2.154	1.978	1.811	1.656	1.567
- 29	12.00	224.64	11.50	3.60	15.10	0.009	111	0.012	11.124	9.454	8.597	7.548	6.391	5.674
30	7.40	85.43	7.20	4.40	11.60	0.010	100	0.035	14.587	9.681	7.913	6.182	4.668	3.884
31	12.00	224.64	11.50	3.60	15.10	0.010	100	0.012	11.124	9.454	8.597	7.548	6.391	5.674
32	12.00	224.64	13.00	3.60	16.60	0.010	100	0.012	12.229	10.393	9.451	8.297	7.026	6.237
40	16.00	399.36	13.40	2.10	15.50	0.006	167	0.034	1.856	1.663	1.557	1.417	1.250	1.140
41	17.40	472.31	21.10	2.20	23.30	0.010	100	0.025	4.588	3.313	2.933	2.539	2.156	1.935
45	12.00	224.64	15.70	1.50	17.20	0.020	50	0.040	4.175	3.151	2.829	2.484	2.139	1.936
46	11.50	206.31	11.30	0.40	11.70	0.010	100	0.033	4.876	2.461	2.229	2.014	1.820	1.710
48	12.10	228.40	12.10	1.20	13.30	0.010	100	0.041	4.106	2.665	2.291	1.925	1.589	1.404
49	11.00	188.76	14.20	0.50	14.70	0.010	100	0.033	5.040	3.157	2.927	2.705	2.494	2.371
51	10.00	156.00	8.40	0.30	8.70	0.010	100	0.062	10.192	1.563	1.326	1.133	0.975	0.892
52	13.00	263.64	6.00	0.30	6.30	0.010	100	0.040	28.143	1.103	0.918	0.771	0.655	0.596
53	12.00	224.64	11.30	0.30	11.60	0.010	100	0.040	2.564	1.694	1.581	1.470	1.364	1.302
55	11.00	188.76	5.30	0.50	5.80	0.010	100	0.033	1.988	1.246	1.155	1.067	0.984	0.936
61	14.00	305.76	14.50	0.50	15.00	0.010	100	0.027	2.893	2.185	2.078	1.969	1.861	1.795
62	12.00	224.64	11.80	1.60	13.40	0.009	110	0.034	2.566	2.283	2.172	2.037	1.883	1.781
63	12.00	224.64	12.80	1.60	14.40	0.009	110	0.034	2.757	2.453	2.334	2.189	2.023	1.913
65	13.00	263.64	10.50	1.50	12.00	0.010	100	0.036	1.964	1.703	1.603	1.486	1.354	1.270
66	13.00	263.64	12.10	1.70	13.80	0.002	500	0.028	4.227	3.120	2.781	2.424	2.072	1.867
70	15.00	351.00	14.00	1.40	15.40	0.002	500	0.033	2.499	2.009	1.841	1.654	1.458	1.338
71	16.00	399.36	17.00	3.50	20.50	0.001	1000	0.039	2.083	1.880	1.766	1.616	1.435	1.314
72	16.00	399.36	14.20	3.50	17.70	0.010	100	0.035	2.002	1.810	1.702	1.559	1.386	1.270
73	16.50	424.71	17.20	3.50	20.70	0.010	100	0.020	3.977	3.581	3.360	3.068	2.718	2.485

	重複波領域		砕波領域
ケース名 (ケースNo.)	Case1 (No.32)	Case2 (No.45)	Case3 (No.15)
h	16.6	17.2	13.8
h'	11.6	14.5	8.5
B_M	9.5	5.7	9.0
S	1/100	1/50	1/150
$H_{max 50}$	11.6	12.7	7.5
T_{50}	12.0	12.0	13.0
γ ² 50	1.330	1.283	1.237

表-6 抽出3ケースの計算条件

注) $h: f - y \rightarrow \hat{n}$ 面水深 (m) , $h': f - y \rightarrow \hat{n}$ 置水深 (m) , B_M : 港内側マ ウンド肩幅 (m) , S: 海底勾配, $H_{max50}: 50$ 年確率最高波高 (m) , $T_{50}: 50$ 年確率有義波周期 (s) , $\gamma_{50}:$ 裾長度パラメータ, $f - \lambda$ No. : 表-1 参照

図-5 再現期間別の堤前波高と水深波高比

表-7 各種照查法

照查法	消波ブロック	設計波	安全性照査 (部分係数γ or 安全率Fs)
①施工時標準照査法	無	10年確率波	ケーソン式混成堤γ
②完成時標準照査法	有	50年確率波	消波ブロック被覆堤γ
③既往施工時照査法A	無	10年確率波	滑動Fs=1.2, 転倒 Fs=1.2
④既往施工時照查法B	無	10年確率波	滑動Fs=1.0, 転倒 Fs=1.1

図-6 設計断面の比較

図-10 再現期間別のシステム破壊確率

これは、消波ブロック有りの場合は、波力低減係数が $\lambda_1 = \lambda_3 = 0.8$ 、 $\lambda_2 = 0$ であるのに対し、消波ブロック無しの 場合は $\lambda_1 = \lambda_2 = \lambda_3 = 1.0$ となり、砕波圧が作用するためで ある. 図-8はこれら最高波高比と水平波力比の積に対す る堤体重量比との関係を見たものであるが、極めて良い 相関性が見られる. つまり、最高波高の低下率に比べて 水平波力の増加率が大きいため、②完成時標準照査より も①施工時標準照査により断面が決定している.

施工時照査で断面が決定すること自体は必ずしも不合 理ではないものの,過大な設計となる場合もあると考え られることから,最適な荷重レベルもしくは安全性水準 についての検討が必要である.

4.3 信頼性指標とシステム破壊確率

一次信頼性理論FORMより算出した、10年確率波高に 対する滑動・転倒信頼性指標 $\beta_s \cdot \beta_o$ および両破壊モード 間の相関係数 ρ_{so} を図-9に示す.基本的に転倒 β_o よりも 滑動 β_s の方が小さい、つまり滑動が支配モードとなるケ ースや断面が多い.さらに、滑動よりも転倒の方が堤体 幅に対する β の増加度が大きい.また、堤体幅に対する 各信頼性指標の変化度はケースによって様々である.破 壊モード間の相関係数 ρ_{so} については、両破壊モードに含 まれる波力の感度係数の影響により、基本的に高い正の 相関を示す.しかしながら、堤体幅が増加するにつれ、 滑動モードにのみ含まれる摩擦係数の感度係数が増加す るため,相関係数は低下する. βやρの変化が緩やかに なっている区間は,ケーソン幅ではなく,フーチング幅 を変化させた領域である.

続いて、式(12)を用いて、 $\beta_s \cdot \beta_o$ および ρ_{so} からシステム破壊確率 $P_{f_{sys}}$ を算出した.再現期間別のシステム破壊 確率を図-10に示す.システム破壊確率は堤体幅の増加に 伴って純減する.また、再現期間が長くなるに従い、シ ステム破壊確率も増加しているが、その増加の程度は各 ケースによって大きな違いが見られる.これは、図-5に 示した設計波高の分布によるものであり、設計波高が砕 波によって頭打ちされるケースでは、再現期間別のシス テム破壊確率の差は小さく、重複波領域のケースではシ ステム破壊確率の差が大きくなっている.

4.4 初期建設費および被災時費用

図-11に、各堤体幅に対する初期建設費と復旧費(想定 被災程度:大,中)を示す.消波ブロックがある場合を 実線で,ない場合を破線で示している.次節の施工時LCC の算定においては,消波ブロックがない場合のコストを 用い,被災時費用は被災程度大中の平均復旧費用をもと に,間接的被害費用を考慮して5倍および10倍(*n*=5,10) した値を被災時費用としている.

4.5 施工時LCC

図-12に、施工期間Lを1、3、5年、直接的被害費用に乗 じる倍率nを5、10とした場合の、施工時LCC曲線を示す. 図において横軸は、完成時標準照査法による堤体重量と の比を表しており、図中×印は施工時LCCが最小となる 設計点、〇印は施工時標準照査法による設計点を表す. 堤体重量が小さくなるほど初期建設費は減少するが、そ の分期待被災回数に伴う被災費の項が増加し、施工時 LCCは下に凸の曲線となる.ここでは、施工時LCCが最 小となる設計点(×印)を最適な設計断面とみなす.LCC 曲線の形状はケース毎に大きく異なっているが、施工期 間が長くなるほど期待被災回数が増加するため、いずれ のケースにおいても施工時LCC最小設計点(×印)は重 量が増加する傾向にある.このようにLCC評価手法を用 いれば、施工期間に応じた構造物の破壊可能性や必要な 安全性を適切に評価できる.

図-13は、LCC曲線より抽出した各設計点の堤体重量比 をケース毎に比較したものである.大部分のケースにつ いて、施工時LCC最小設計点より標準照査法設計点の方 が堤体重量は大きく、安全側の設計となっている.この ようなケースは35ケース中32ケース(n=5の場合)および 28ケース(n=10の場合)あり、このことから施工時の照 査法として、10年確率波高およびケーソン式混成堤の部 分係数を用いれば、施工時LCC最小化の観点から十分安 全な照査になると言える.ただし、前述したとおり、標 準照査法を用いると完成時よりも施工時照査で断面が決 まるケースが多い.施工時照査が支配的となること自体 は必ずしも不合理ではないものの、過大な設計となる場 合もあることから、次章では最適な安全性水準について 検討する.

5. 施工時LCCに基づく目標安全性水準

5.1 最適安全性水準

図-14に、横軸を10年確率波高に対するシステム信頼性 指標 β_{10} とした場合のLCC曲線を再掲する.図中×印は施 工時LCCが最小となる設計点であり、これが最適な安全 性水準ということになる.以下ではこれを最適信頼性指 標 β_{opt10} とする.

また、図中〇印は施工時標準照査法による設計点を表わしており、いずれのケースも β_{10} は2.4程度となっている. 施工時標準照査法は、目標信頼性指標 β_T =2.4に基づく部分係数を用いたものであるから、その保有信頼性指標が2.4周辺に集中することは当然の結果である. Casel

(L=3,5, n=10)を除くいずれのケースも β_{opt10} (×印) は2.4以下の値となっており,施工時標準照査法は安全側 の設計となっている.施工期間Lで比較すると,Lが長く なるほど期待被災回数が増加するため, β_{opt10} は高い値と なっている.また,ケース毎に比較すると,重複波領域 にあるCase1が最も β_{opt10} が高く,続いて砕波領域にある Case3が,両者の中間の海域条件にあるCase2は最も低い 値となっている.直接的被害費用に乗じる倍率nは,その 値が大きくなるほど復旧費用が増加するため,施工時 LCC最小設計点は破壊確率が小さくなる(β_{opt10} が大きく なる)方向に移動している.

図-15に、各施工期間Lに対する β_{opt10} の分布を示す.施 工期間に応じて β_{opt10} の平均値は変化し、ケース毎すなわ ち海域条件によるばらつきも大きいことがわかる.また、 間接的被害費用をどの程度考慮するか(倍率 nをいくら にするか)によっても β_{opt10} は変化する.このような有意 に異なる条件に対し、全国一律の安全性水準を定め ることは困難であるため、以下では、 β_{opt10} と設計条件と の相関性の議論から、 β_{opt10} の簡易算定モデルを検討し、 レベル1信頼性設計法への適用を試みる.なお、施工時照 査に用いる荷重レベルとしては、実態調査の結果、使用 実績が圧倒的に多い10年確率波高とする.

図-15 最適信頼性指標の分布

5.2 重回帰分析

前述したとおり、 β_{opt10} との相関性が高い因子としては、 第一に施工期間Lが挙げられる. 図-15に示した各施工期間に対する β_{opt10} の平均値は、施工期間Lの対数値と極め て高い相関を示す(図-16参照).

さらに、初期建設費 C_i と被災費 C_f の大小関係 C_f/C_i も LCCに影響し得る.そこでまず、これらを説明変数とし た重回帰分析により、その線形重回帰式を得た.回帰分 析にあたり、Case1 (L=3,5, n=10)のように β_{opt10} が2.4 を上回るケースが少数あるが、このように完成時断面よ りも高い安全性水準を求めるケースについては、消波ブ ロック被覆堤として設計すること自体が適切ではないと 考えられるため、検討対象から除外した.

以上の条件から得られた回帰式を以下に示す.

 $\beta_{opt10} = 2.4 \left(0.53 \log_{10} L + 0.07 C_f / C_i + 0.17 \right)$ (15) $\hbar t t U, \quad 0.7 < \beta_{opt10} < 2.4$

式中の第1項が施工条件を,第2項が被災規模条件を表 している.また,推定式には図-15の結果に基づき, β_{opt10} の上下限値を設けている.式(15)による β_{opt10} の推定値と 実際の計算値(LCC最小に対応した β_{opt10})との相関を図 -17に示すが,相関係数は0.78と若干低い値を示している. これは,海域条件の影響を適切に評価できていないため と考えられる.ここで,実際の計算値と回帰式による推 定値との差を $\delta\beta_{opt10}$ と定義すると, $\delta\beta_{opt10}$ が残りの海域条 件による影響分を表しているということになる.以下で は, $\delta\beta_{opt10}$ と海域条件との相関性について議論する.

図-18に、裾長度パラメータと水深波高比の積 750 × h/H_{o10} 'と、 $\delta\beta_{opt10}$ との関係を示す.ここで、 H_{o10} 'は10年 確率の換算沖波波高である.図より、 y50×h/Ho10'=4程度 を境として $\delta\beta_{opt10}$ の傾向が反転していることがわかる. また, _{ア50}×h/H_{o10}'が10程度より大きいケース,および2 程度より小さいケースにおいてはδβopt10が大きな正の値 を示している.これは, ン50 × h/Ho10' が大きいケースは, 高波浪の来襲可能性がありながら防波堤が重複波領域に 位置しており、極大波浪の到達による期待被災回数が大 きくなるため、より高い安全性が求められることを意味 している. 一方, Y50×h/Ho10' が小さいケースは, 毎年同 程度の波浪が来襲しつつ防波堤が砕波領域に位置してお り、毎年同規模の波浪が到達することによって期待被災 回数が大きくなるため同様に高い安全性が求められる. したがって、 $\delta\beta_{opt10}$ は $\gamma_{50} \times h/H_{o10}$ 、を指標とした補正を行 うことにより減少させることが可能と考えられる.

以上の結果から, 説明変数に y50 × h/Ho10' を追加して,

図-18 海域条件とδβ_{opt10}の関係

再度,重回帰分析を実施した.この際,推定値が実際の 計算値よりも安全側の値となるように切片の値を調整した.また,推定式の連続性を保つために, $\gamma_{50} \times h/H_{o10}'=4$ での推定値が一致するように切片の値を微調整した.こ のようにして得られた β_{opt10} の簡易推定式を以下に示す.

$$\beta_{opt10} = 2.4 \left(0.55 \log_{10} L + 0.06 C_f / C_i + \kappa \right)$$

$$\kappa = \begin{cases} -0.15 \gamma_{50} h / H_{o10}' + 0.77 : \gamma_{50} h / H_{o10}' \le 4 \\ 0.06 \gamma_{50} h / H_{o10}' - 0.07 : \gamma_{50} h / H_{o10}' > 4 \end{cases}$$

$$\uparrow c \uparrow c \downarrow, \quad 0.7 < \beta_{opt10} < 2.4$$
(16)

式中の第1項が施工条件を,第2項が被災規模条件を, 第3項が海域条件を表している.また,推定式には図-15 の結果に基づき, β_{opt10} の上下限値を設けている.特に, β_{opt10} が2.4を大きく上回る計算結果となる場合には,構造 形式の見直し,もしくは施工計画の見直しが必要である.

また,図-19に示すとおり,式(16)による推定値と計算 値の相関係数は0.92となっており,海域条件_{/50}×h/H_{o10}'を 考慮することによって相関係数は向上し,実用上十分な 精度を有している.

図-19 計算値と推定値(式(16)による値)の相関

6. 部分係数の設定方法の提案

6.1 部分係数の設定方法

式(4),(16)および表-2に示す値を用いた部分係数の計 算例を表-8に示す(表中の記号については表-2,表-6参 照). C_f/C_i は,直接的被害費用に乗じる倍率nを5とし た場合の値である.ここで,式(16)は10年確率波高に対 する目標システム信頼性指標 β_{opt10} を定める式であり,式 (4)に用いるべき目標値 β_T とは厳密には異なる.しかし, 式(16)が1~2割程度の安全側の値を与える式としている ことから,式(16)による計算値をそのまま β_T としてよい こととした. さらに,より厳密に言えば, β_{T} の値によっ て感度係数を再評価する必要がある.しかしながら,感 度係数を再評価しない簡易な方法によってもレベル1信 頼性設計の合理性は維持される⁹⁾ことから,**表-2**に示す 値をそのまま用いてよいこととした.

表-8 提案法による部分係数の計算例

		C	ase?	C	ase3		
	Y	C	-	Cases			
u	L		5		l		
itio	% 50	1.	28	1.24			
ond	h/H_{o10} '	2.	48	1.74			
Ö	C_f/C_i	2	.3	1.5			
A	$\beta_{opt10} \left(\beta_T \right)$	1.	96	1.29			
		Sliding	Overturning	Sliding	Overturning		
s	P_H, P_U	0.98	1.08	0.90	0.96		
ctor	wl	1.05	1.07	1.03	1.05		
al fa	f	0.84	—	0.91	—		
Partia	W_{RC}	0.98	0.98	0.98	0.98		
	W_{NC}	1.02	1.02	1.02	1.02		
	W _{SAND}	1.01	1.00	1.01	1.01		

6.2 提案法と施工時標準照査法による設計結果の比較 図-20に,提案法と施工時標準照査法による設計結果の

比較を示す.図の縦軸は、施工時LCC最小化設計に対す

る堤体重量比としている.堤体重量比の平均値 μ および 標準偏差 σ は、施工時標準照査法 μ =1.42、 σ =0.22に対し て本提案法が μ =1.19、 σ =0.10であり、施工時標準照査法 に比べ、本提案法はLCC最小となる断面とのズレが小さ く、より合理的な照査となっていることがわかる.また、 倍率 $n \ge 10$ とした場合は、施工時標準照査法 μ =1.27、 σ = 0.18に対して本提案法が μ =1.15、 σ = 0.08となり、倍率nを変化させた場合も合理的な照査が可能となっている.

7. まとめ

本研究では、まず、全国の重力式防波堤を対象として、 重力式防波堤の施工時照査方法について実態調査を実施 した.その調査結果を基に、消波ブロック被覆堤の施工 時安定性照査に用いる目標安全性水準を、施工時のLCC を最小化する観点から設定する方法を検討した.

得られた主要な結論は、以下のとおりである.

- ①防波堤の施工期間は1年未満~5年程度と幅広く,施工時照査に用いる設計波は10年確率波が最も多い.消波ブロック被覆堤は,施工時照査で断面が決定する割合が高く,施工時照査が設計結果に有意な影響を及ぼしているといえる.
- ②消波ブロック被覆堤の施工時LCCが最小となる最適安 全性水準は、施工期間や海域条件(波浪の来襲頻度と 砕波・非砕波条件),初期建設費と被災費の比によっ て大きく変化する.
- ③これらを説明変数とした最適信頼性指標の評価式を提案した.提案式により算出した最適信頼性指標を目標値とし、感度係数は既往の値を用いることにより、部分係数を簡易に修正し、合理的な施工時の照査を行うことが可能となる.

(2006年11月17日受付)

謝辞

本研究を行うにあたり,港湾施設研究室の方々に貴重 な意見を多く頂きました.ここに記して,深甚なる謝意 を表します.

参考文献

- 合田良実:浅海域における波浪の砕波変形,港湾技術 研究所報告, Vol.14, No.3, 1975.
- 2)合田良実,小長谷 修,永井紀彦:極値波浪統計の母 分布関数に関する実証的研究,海岸工学論文集,第 45巻,pp.211-215,1998.

- 3)合田良実:設計波高に係わる極値統計分布の裾長度パ ラメータとその意義,海岸工学論文集,第49巻, pp.171-175,2002.
- 4)柴崎隆一,森屋陽一,渡部富博,安間 清:貨物輸送 費用も考慮した港湾施設の耐震設計における経済評 価手法の構築,国土技術政策総合研究所資料,No.125, 27p, 2003.
- 5)高田悦子,諸星一信,平石哲也,永井紀彦,竹村慎治: 我が国沿岸の波浪外力の分布(海象外力検討調査), 国土技術政策総合研究所資料, No.88, 2003.
- 6)長尾 毅:ケーソン式防波堤の外的安定に関する信頼
 性設計手法の適用,土木学会論文集,No.689,
 pp.173-182, 2001.
- 7)長尾 毅,森屋陽一:港湾構造物の目標安全性水準に 関する研究,構造工学論文集,第50巻A,pp.187-197, 2004.
- 8)吉岡 健・長尾 毅:重力式防波堤の外的安定に関す るレベル1信頼性設計法の提案,国土技術政策総合研 究所研究報告, No.20, 2005.
- 9)吉岡 健・長尾 毅:信頼性の変化に対応した部分安 全係数の設定方法,構造工学論文集, Vol.51A, pp. 401-412, 2005.
- 10)Owen, D. B.: Tables for computing bivariate normal probabilities, Ann, Math. Stat., Vol.27, pp. 1075-1090, 1956.