1.はじめに

我が国の社会資本施設は、高度経済成長期を経て、こ れまでにかなりの量がストックされてきた.しかしなが ら、これから成熟した安定成長時代を迎える中、これま でのような社会資本施設に対する投資を期待することは 難しく、できる限り低い負担で新たな施設整備や既存施 設の維持を行っていくことが重要である.このためには、 整備費や補修費のみに着目するのではなく、将来の施設 の性能低下を予測し、維持管理活動を考慮したライフサ イクルマネジメントの検討が必要である.

港湾施設においては、これまでライフサイクルマネジ メントが必ずしも十分に検討されてきたわけではない. それは、港湾施設は、供用期間中、船舶の大型化等に対 応するため岸壁水深を増深して更新、改良することが多 く、その時期を正確に予測することが困難であったこと による.しかしながら、施設は供用期間中のいつの時点 においても要求される性能を満足していなければならず、 経年的な劣化に伴い施設の要求性能が確保できない状態 になれば補修または施設の更新など何らかの対策を講じ なければいけない.現在、港湾施設においてもこのよう な補修や更新を必要とする施設が少なくなく、今後もこ のような施設が増加していくものと考えられる.

港湾構造物の中で,特に補修が必要なものに港湾鋼構 造物がある.港湾鋼構造物は、陸上鋼構造物に比べ、海 水に接し、潮位や波しぶきを受ける苛酷な環境下にある ため、腐食に対する適切な策を講じなければいけない. 鋼材の防食法として,電気防食工法,塗覆装工法,腐食 しろ工法があるが、平成11年に改定された「港湾の施設 の技術上の基準・同解説」(以下、港湾基準と呼ぶ)で は,腐食環境条件下によっては集中腐食等の著しい腐食 が生じる恐れがあるため、原則的に腐食しろ工法は認め ず, 電気防食工法と塗覆装工法により, 鋼材の腐食対策 を行うことを標準としている¹⁾. しかしながら, 平成元 年発刊以前の旧港湾基準では、鋼材の防食法に、集中腐 食等の著しい腐食が生じる恐れがない場合に限り、腐食 しろ工法が認められていた.したがって、旧港湾基準を 準用して腐食しろ工法を適用した港湾鋼構造物もあるが, その中には、集中腐食等の著しい腐食が生じ、施設の性 能低下が問題となっているものも少なくない.現在,鋼 材の防食には,電気防食工法が標準化されているため, 腐食速度は小さく、将来の腐食量も確定的な値として捉 えることに問題はない.しかしながら、従前のように腐 食しろ工法のみで適用しているような場合は、腐食速度 が大きく、かつ周辺環境など種々の不確定要因に影響さ

れ、その変動幅も大きくなるため、腐食量はばらつきを 持った確率変数として捉えることが重要である.したが って、将来の腐食量を確定的な値として捉えるのではな く、ばらつきを持った確率変数として捉えることが重要 である.

以上から,荷重や材料特性等の不確定要因を確率変数 として捉える信頼性設計法を用いれば,腐食量を確率変 数として,将来の鋼構造物の健全性を破壊確率を用いて 定量的に評価することが可能である.そこで,本研究で は,鋼管杭の腐食が進行した既存の直杭式横桟橋の下部 工を対象に,地震動が作用する条件下の経年的な施設の 健全性を破壊確率を用いて評価した.また,一般的な補 修工法を数種類適用し,工法の違いによる経年的な施設 の健全性についても評価した.さらに,後述する期待費 用を算出し,これを指標とする最適な補修戦略について 検討を行った.

ライフサイクルマネジメントの研究には、土木分野の 中では橋梁を対象にした事例が多い.既往研究の例とし ては, 例えば, 杉本ら²⁾, 貝戸ら³⁾, 中原ら⁴⁾の研究があ る. 杉本らは、将来的な予算シナリオの推移に注目し、 予算シナリオと橋梁群の健全度の経年的な関係を示すと ともに、投資する予算シナリオの最適化を図った. 貝戸 らは、橋梁の健全度の進展にマルコフ連鎖モデルを用い て、年平均費用の概念に基づき最適補修戦略を求めた. また,中原らは,橋梁の維持補修戦略の最適化問題に, 補修方法・補修間隔を遺伝子情報とした遺伝的アルゴリ ズムを適用し、維持補修戦略の最適化を検討した.しか しながら,これらの研究は、構造物の健全度を力学的に 評価したものではない. 被害リスクを定量的に評価する 手法として信頼性理論による破壊確率を用いる方法が挙 げられる.このような観点からの研究として、例えば、 高圧ガスパイプラインを対象にした小池⁵⁾の研究がある. これは、信頼性手法を用いて漏洩事故による被害リスク を定量的に評価するとともに、リスク転嫁コストまで考 慮したマネジメント手法を用いて維持管理戦略の最適化 を検討したものである.ただし、荷重の作用は確定的な 検討となっている.しかしながら、実構造物における被 害リスクを考える場合は,供用期間中に発生する様々な 再現期間の地震動等の荷重が作用した場合の経年的な構 造物の性能を評価しておく必要がある.港湾分野では, 直杭式横桟橋を対象に経年後の劣化度合いを発生応力度 と許容応力度の比で評価し、 ライフサイクルコストを検 討した松渕ら⁶の研究がある.しかしながら,被害リス クという観点からは検討の余地がある.したがって、次 期港湾基準の性能設計体系への移行も踏まえると,破壊

確率を考慮した確率論的な経済評価手法の検討が必要で ある.

ライフサイクルマネジメントの検討で指標とするライ フサイクルコストは、通常、建設費、維持管理費、解体 撤去に要する供用期間中の全ての費用の総額を指す。例 えば、前述の松渕らの研究では、建設費、鋼管杭と上部 工の補修費と再補修費、車止め・防舷材の取替え費用な どをライフサイクルコストとして計上している。しかし ながら、一般的に港湾構造物のライフサイクルコストの 約8~9割を建設費が占め⁶⁾、維持管理費は、建設費と比 較して非常に僅かである。また、設計供用期間が過ぎる と撤去されるものでもないため、ライフサイクルコスト を構成する主要な因子は、建設費と破壞時費用と考える ことができる。したがって、本研究では既存施設を対象 に補修費と破壞時費からなる期待費用を指標として補修 戦略の最適化を検討した。

2. 信頼性評価

2.1 検討条件

桟橋は、土留め護岸前面に複数の杭を打設し、その上部 を杭と上部工で結合した構造である.地盤が軟弱で重力式、 矢板式が成立しないような場合または係船岸前面の水深 が浅かったり、既設護岸の前面に新たに係船岸を設けたり する場合に採用されることが多い.桟橋の荷重変位関係は 一般に図-1のようになり、①1つの杭の杭頭降伏、②全杭 頭降伏、③1つの杭の地中部降伏、④全杭頭および地中部 塑性化という順序で破壊が進行する.

ここで、①が使用性に関する限界状態、③が修復性に関する限界状態、④が安全性に関する限界状態と定義できる⁷⁾.

なお、③を修復性に関する限界状態とするのは、地中部 の修復が極めて困難であることによる.

変位

(1) 対象施設

本研究で対象とした施設は、図-2に示す既存の直杭式横 桟橋である.供用開始から 30年以上が経過しており、鋼 管杭の腐食が問題となっている.原設計断面は、照査用震 度 0.20で設計されたもので、鋼管杭の諸元は、必要肉厚に 腐食による減厚を見込んだ余裕代を付加していた.しかし ながら、20年経過時点で行われた鋼管杭の腐食量調査で 集中腐食による残存肉厚の減少が確認された.腐食の主な 原因は、接岸・離岸時の船舶のスクリューによる酸素供給 量の増加および錆層の連続剥離と考えられる.そのため、 本施設は20年経過時点で、全杭の深度-1.0m以浅にペトロ ラタムライニングを施している.しかしながら、本研究で は、未補修の施設の性能を基準とし、補修後の施設の性能 変化を予測・評価するという観点から、ペトロラタムライ ニングが施工される前の桟橋の性能を基に、経年後の桟橋 の性能変化を検討するものとした.

また,20年経過時点では鋼管杭の腐食量調査による腐食 量データが揃っているため、この資料を基に経年後の腐食 量の設定を行う.

図-2 検討対象断面

(2) 耐震性能照查

本研究における耐震性能照査フローを図-3 に示す. 地震 動は,震源特性・伝播経路特性・サイト増幅特性を考慮し た工学的基盤における時刻歴波形として与えた⁸⁾.本研究 では,供用期間中に発生しうる全ての地震動を考慮する観 点から,再現期間 50,75,100,150,200,500 年の地震動を用い た.図-4,5 に工学的基盤における各再現期間の入力地震 動の時刻歴波形およびフーリエスペクトルを示す. 桟橋の

図-1 荷重-変位関係の例

固有周期は、仮想地表面下 1/βの位置を仮想固定点とする ラーメン構造としての水平方向ばね定数と桟橋自重およ び地震時上載荷重等の総和により計算できる¹⁾.βは杭の 剛性や地盤反力係数によって求まる値で、次式で定義され る.

$$\beta = 4 \sqrt{\frac{k_h D}{4EI}} \tag{1}$$

ここに、 β :杭の特性値(cm^{-1}) k_h :水平地盤反力係数(N/cm^3) D:杭の直径(cm) EI:杭の曲げ剛性($N \cdot cm^2$)

以上の方法で算出した桟橋の固有周期は 1.24(s)である. なお,一次元応答計算にはdyneq⁹⁾を使用した.これらの条 件で図-3 に示すフローに従い,照査用震度を求めると表-1 のとおりとなる.

従前の設計震度は、地域別震度・地盤種別係数・重要度 係数の積で求められていた.ここで、地域別震度は全国を 5 ブロックに分けて設定した値で、構造物が建設されるサ イト特有のものではない.また、重要度係数は、構造物の 重要度に応じて設定された値で、安全性余裕が見込まれて いる.それに対して、本研究では、震度は前述のように震 源特性・伝播経路特性・サイト増幅特性を考慮した方法で 求めた再現期間 75 年の信頼度 50%に対する地震動に対し

図-3 耐震性能照査フロー

て算出したものである.したがって,従前の方法による原 設計の設計震度と本研究で算出した震度は異なる値とな る.そこで,仮に,再現期間 75 年の地震動に対する震度 が原設計の設計震度になった場合についても検討を行い, 破壊確率および期待費用に与える影響について示した.

表-1 照查用震度

地震動の 再現期間 (年)	入力加 速度最 大値 (Gal)	1/β地点 の応答加 速度最大 値(Gal)	桟橋上部工の応答加速度最大値(Gal)	照查用 震度	
50	80.9	131.1	120.3	0.123	
75	70.8	110.2	133.1	0.136	
100	84.2	133.5	168.3	0.172	
150	107.2	165.5	224.9	0.229	
200	126.4	191.1	272.3	0.278	
500	200.6	260.6	414.3	0.423	

(3) 信頼性解析

性能照査は,各再現期間の地震動に対して使用性に関する限界状態と修復性に関する限界状態を想定して行う.使用性・修復性ともに(2)式に示す限界状態関数で照査する. ここで,修復性における桟橋の性能を把握しておくことは, 桟橋の構造ロバスト性(地震動の作用により局所的な破壊 が生じたとしても直ちに致命傷には至らない)確保の観点 からも重要であると考える.

$$g = f_{y} - \sigma_{d}(k_{h}, K, F) \ge 0 \tag{2}$$

- ここに,
 - f_y:鋼管杭の降伏強度 k_h:水平地盤反力係数 K:照査用震度
 - F: 腐食量
 - σ_d :鋼管杭に発生する応力度 ($\sigma_d = N/A \pm M/Z$)
 - N: 杭の軸方向力
 - A: 杭の断面積
 - M: 杭の曲げモーメント
 - Z: 杭の断面係数

信頼性解析に用いた確率変数は,鋼材降伏強度,水平地 盤反力係数,震度,腐食量で表-2に示す統計量と分布形を 設定した.鋼材降伏強度,水平地盤反力係数,震度の確率 変数は,長尾ら⁷⁾の研究を参考に設定した.震度の平均値 は,各再現期間の地震動を用いて算出した震度である.腐 食量の確率変数は,対象施設の 20 年経過時点で調査され た腐食データを用いて,後述の方法で設定した.

腐食量調査では、1測点あたり4箇所の肉厚測定を行っ ており、その平均値をその測点の残存肉厚とし、残存肉厚 と初期肉厚との相違に基づき、平均腐食速度を次式のとお り定義する.

確率変数	平均值	変動係数	分布形
鋼材降伏強度 (SKK490)	377 (N/mm ²)	8%	正規
水平地盤反力 係数	2000N (kN/m ³)	75.5%	対数正規
震度	Ι	20%	対数正規
腐食量	_	88%	対数正規

表-2 信頼性解析に用いた確率変数

平均腐食速度
$$(mm/y) = \frac{腐食 \mathbb{Z}(mm)}{腐食期間(y)}$$

= $\frac{初期肉厚(mm) - 残存肉厚(mm)}{腐食期間(y)}$ ⁽³⁾

库金县(

図-6 に対象施設の供用開始から 20 年経過時点の各杭列 の平均腐食速度の深度方向分布を示す.ここに示す平均腐 食速度は,本研究で断面設定を行ったスパンで測定された ものである.また,図中の凡例は,海側から数えた杭列数 を表している(以下,杭列名は海側から数えた列数をいう). また,図中には,港湾基準¹⁾に示されている腐食環境ごと の鋼材の腐食速度の標準的な範囲の上限値と下限値を示 している.この標準値は,H.W.L.以上で 0.3mm/y, H.W.L. ~L.W.L.-1.0mで 0.1~0.3mm/y,海中部で 0.1~0.2mm/y, 海底土中部で 0.03mm/yである.これらの値と比較すると, 対象スパンの平均腐食速度は, 0.0m以浅および-1.0m以深 で小さく,-1.0m付近で大きいことが分かる.

杭の応力度照査は, 骨組解析で求めた断面力を基に行っ た. 骨組解析では, 経年後の腐食を考慮できるように各杭 の深度方向に 2.0m 程度の間隔で節点を設け、各節点間の 部材ごとに腐食量を考慮した杭の断面積, 断面係数等を設 定できるようにモデル化した. 経年後の腐食量は,式(3) で求まる平均腐食速度から推測した値を各部材ごとに設 定した.また、信頼性解析では腐食が最も激しい箇所の腐 食量が信頼性解析に与える影響が大きいものと考えられ るため、その箇所の腐食量を確率変数として設定し、それ 以外の箇所は、腐食量を確定値として与えた.具体的には、 図-6に示したように1列目の深度-1.0mにおける平均腐食 速度が大きく, 信頼性解析ではこの箇所の腐食量を確率変 数として設定することとした. 図-7 に 1 列目の深度-1.0m における腐食量の頻度分布を示す.このデータは、全調査 スパンにおける1列目の深度-1.0mのデータで、データ数 は 60 個である. これより、1 列目の深度-1.0m の腐食量の

図-6 平均腐食速度の深度分布

図−7 1列目の深度-1.00mにおける 腐食量の頻度分布

確率変数は、平均腐食速度から推測した経年後の腐食量を 平均値と設定し、変動係数は 88%とした. なお、分布形 は、腐食量は正値しかとらないため対数正規分布とした.

信頼性解析は、骨組解析により求めた断面力をもとに一次信頼性理論(FORM: First Order Reliability Method)¹⁰⁾を用いて実施した.

FORMに基づき算出される信頼性指標βは,破壊点(g=0, g:限界状態関数)から限界状態関数の平均値がどの程度 離れているかを示す尺度であり安全性余裕の目安である. 限界状態関数gが正規確率変数であれば,信頼性指標βと 破壊確率P_fは次のような関係にある.したがって,信頼性 指標が大きいほど,破壊確率は小さくなる. (4)

$$P_f = 1 - \Phi(\beta)$$

ここに,

Φ(•):標準正規確率分布関数

(4) 生起確率の計算方法

地震動の作用により破壊が生起する確率を補修工適用 時点から 30 年間検討した.生起確率の算出方法を以下に 示す.

いま、t年後に対象とする地震動iが作用した場合に破壊 する確率を P_{fii} とおくと、t年後に地震動の作用により、は じめて破壊する確率 $P_{f(t)}$ は次のように定義できる.

$$P_{f}(t) = \sum_{i=1}^{m} P_{fi}(t)$$
(5)

$$P_{fi}(t) = \begin{cases} q_i \cdot P_{fii} & t = 1 \\ q_i \cdot P_{fii} \cdot E_i & t \ge 2 \end{cases}$$
(6)

$$E_i = \left[\prod_{j=1}^{t-1} \left\{ 1 - q_i \cdot P_{fji} \right\} \right]$$
(7)

- ここに,
 - $P_f(t)$:地震動の作用により t 年後にはじめて破壊する 確率
 - m:対象とする地震動のランク数(6) 再現期間 50,75,100,150,200,500 年の地震動を対象

 q_i : 対象とする地震動iの年平均発生確率 (=1/ r_i -1/ r_{i+1})

rは、対象とする地震動の再現期間(年)

E_i: *t*-1 年後までに対象とする地震動*i*により破壊しない
 確率

t:経過年数(年)

したがって、検討期間中に地震動の作用により破壊が生 起する確率 P_T は、毎年のはじめて破壊する確率を検討期間 分総和して、次式のとおり求めることができる.以下、断 りのない限り、この確率を破壊確率という.

$$P_T = \sum_{t=1}^{T} P_f(t) \tag{8}$$

ここに,

P_T:検討期間中に地震動の作用により破壊が生起する 確率

T:検討期間(年)

(5) 検討ケース

検討ケースを表-3 に示す. case1 は,未補修の場合で, 現状の腐食速度で経年的に腐食が進行するケースである. 補修を行うケースは,工法,補修対象杭,鋼板厚,補修下 端を考慮して設定を行った.補修工法は,現在一般的に用 いられている鋼板溶接工法,塗覆装工法,電気防食工法を 組み合わせて設定した.補修対象杭は,全杭対象にした場 合(case2_1,2_2,3_1,3_2,3_3,6)と3列目または2,3列目 を対象にした場合(case4_1,4_2,5_1,5_2)を設定した.こ こで,2,3列目を対象とした理由は,図-2に示したとお

表-3 補修工の検討ケース

	2 2					
		鋼板溶接	対象杭		腐食速度	
検討		と塗覆装	鋼板溶接			
ケース	備修工	下端	と	電気防食	塗覆部	それ以外
		(m)	塗覆装			
case1	未補修	_	—			現状
case2_1	鋼板溶接(t=0mm)+塗覆装	-1.0	全杭	_	0	現状
case2_2	鋼板溶接(t=10mm)+塗覆装	-1.0	全杭	-	0	現状
case3_1	鋼板溶接(t=0mm)+塗覆装+電気防食	-1.0	全杭	全杭	0	現状の 1/10
case3_2	鋼板溶接(t=5mm)+塗覆装+電気防食	-1.0	全杭	全杭	0	現状の 1/10
case3_3	鋼板溶接(t=10mm)+塗覆装+電気防食	-1.0	全杭	全杭	0	現状の 1/10
case4_1	鋼板溶接(t=5mm)+塗覆装+電気防食	-1.0	3列目	全杭	0	現状の 1/10
case4_2	鋼板溶接(t=10mm)+塗覆装+電気防食	-1.0	3列目	全杭	0	現状の 1/10
case5_1	鋼板溶接(t=5mm)+塗覆装+電気防食	-1.0	2,3 列目	全杭	0	現状の 1/10
case5_2	鋼板溶接(t=10mm)+塗覆装+電気防食	-1.0	2,3 列目	全杭	0	現状の 1/10
case6	鋼板溶接(t=10mm)+塗覆装+電気防食	Ι	全杭	全杭	0	
	塗覆装範囲(±0.0~-1.0mまで)				0	現状の1/10

り,原設計では4列目の杭剛性が他列の杭剛性よりも高く, 補修時点で3列目の杭応力度が最も厳しかったためである. 補修厚は、補修時点の腐食が最も激しい箇所の腐食量が 5mm 程度であることを考慮して, 5mm の場合と, その 2 倍の10mmの場合を設定した.鋼板溶接および塗覆装の補 修下端は、腐食速度から判断すると深度-1.0mまたは深度 -2.0m が適当と考えられるが、本検討に先立って補修下端 深度を-2.0m とした場合について検討した結果, 電気防食 工法を適用すると、防食効率90%で腐食速度が現状の1/10 となるため経年的な腐食量が小さく、補修下端深度を -1.0m とした場合の破壊確率とほぼ同程度の値となった. したがって、本研究では、補修下端深度は、深度-1.0m に 設定し検討することとした. また,腐食速度が早く,経年 的な腐食が最も激しい深度±0.0m~-1.0mの範囲のみ対象 に鋼板溶接と塗覆装を行う場合を考え case6 とした. なお, case2 1,3 1の補修鋼板厚は、t=0mmと設定しているため、 実際は鋼板溶接を行わないケースである.

2.2 信頼性評価

図-8 に使用性に関する限界状態を想定した場合の経過 年数と破壊確率の関係を、図-9 に修復性に関する限界状態 を想定した場合の経過年数と破壊確率の関係を示す.長尾 ら⁷⁾は、レベル1地震動に対する桟橋の信頼性解析を行い、 修復性に関する限界状態の信頼性指標は、使用性に関する 限界状態の値に比べ2.0~2.7程度大きいことを示している. 本結果でも、修復性に関する限界状態の破壊確率は、使用 性に関する限界状態の値と比べ、小さくなっており、使用 性から修復性に至るまでの間には大きな安全性余裕があ ることが分かる.これより、本研究では使用性に関する限 界状態に着目して、以下の考察を行うこととする.

(1) 杭応力度

まず,各確率変数のばらつきを考慮しない確定値とした 場合の骨組解析結果から考察を行う.図-10,11に補修後 5年経過時点および 30年経過時点の再現期間 75年の地震 動が作用した場合の杭に発生する応力度の軸方向分布を 示す.検討ケースは, case1,2_2,3_3,4_2,5_2,6であ る.

補修後5年経過時点の各ケースの杭応力度について考察 する.caselでは、3列目の杭頭の応力度が最も大きい.通 常,桟橋は斜面上に建設されるため、杭自由長の短い4列 目の分担水平力が大きく、杭の剛性が同じであれば4列目 の杭頭応力度が最も厳しくなるが、前述したように原設計 で4列目のみ杭の剛性を高くしていたため、次に分担水平

(修復性) 図-9 経過年数と破壊確率の関係

• case1 \land case2_2 \blacksquare case3_3 \land case4_2 \land case5_2

経過年数(年)

カの大きい3列目の杭頭応力度が最も厳しくなったものと 考えられる.鋼板溶接を行ったケースでは、補修部の応力 度は低減されているが、補修部下端の応力度は、未補修の casel と比べ大きくなる.これは、杭頭部の剛性を高くす ることで、各杭列の水平力の分担率が変わり、補修前に杭 の剛性が低かった杭列の分担水平力が大きくなるためで ある.例えば、case2_2では図-12に示すとおり1列目から 3 列目の杭頭に生じる曲げモーメントが case1 に比べ大き

くなっている.

次に、補修後 30 年経過時点の各ケースの杭応力度につ いて考察する. case1, case2 2 では,他のケースに比べ,1 列目の深度-1.0mの節点の応力度が非常に大きくなる.こ れは、杭に生じる曲げモーメントが5年経過時点とそれほ ど変わらないのに対し、1列目の深度-1.0mの箇所は、腐食 の進行が早く、補修後30年経過時点では剛性が大きく低 下するためである.一方, case2 2 と同様に全杭頭に鋼板 溶接を行った case3 3 は、電気防食を適用しているため腐 食の進行が遅く,1列目の深度-1.0mの節点の杭の応力度も case2 2ほど大きくはならない. また, 2.3 列目のみ鋼板溶 接を行った case4_2, 5_2 は, 1 列目の深度-1.0m の節点の 応力度はそれほど大きくならない.これは、杭の剛性を高 くした 2,3 列目の杭の分担水平力が大きくなり、1 列目の 杭の分担水平力が減少するためと考えられる.したがって, 群杭中で相対的に杭の剛性を高くする杭列を設ければ,他 列の杭の弱点部に杭応力が集中することを避けることが できるものと考えられる.

(2) 破壞確率

(1)の考察をもとに、補修工法と破壊確率の関係につ いて考察する. 最も破壊確率が小さいケースは, case5 2 である. case5 2 と同様に杭列を選定して鋼板溶接を行っ たケースは、いずれも破壊確率は比較的小さくなった.こ れは、上述のとおり、群杭中で相対的に杭の剛性を高くし た杭列を設けたため、弱点部の1列目の深度-1.0mの節点 に杭応力が集中するのを避けることができたことによる ものと考えられる.また、これらのケースでは、鋼板溶接 厚を厚くした方が破壊確率は小さくなっている.一方,全 杭補修したケースでは, 鋼板溶接厚を厚くした方が破壊確 率は大きくなる.これは,全杭対象に鋼板溶接を行う場合, 杭の剛性を高くするほど、補修前に剛性が低かった杭列の 分担する水平力が増加するためである. さらに, case2 2 の場合、上述のとおり杭応力度が最大となる1列目の深度 -1.0mの節点の剛性低下著しいため、未補修の case1 より も 30 年経過後の破壊確率が大きくなったものと考えられ る.

(3) β最小点について

5 年経過後および 30 年経過後における信頼性指標が最 小となる節点を表-4 および図-13 に示す. なお,表-4 中の 記号は,図-13 に示す節点を示したものである.各ケース, 各地震動ごとに信頼性指標が最小となる節点は異なり,ま た経年的にもその節点が変化していることが分かる.ここ で,作用する地震動によって信頼性指標が最小となる節点 が異なるのは、水平力の大きさによって各節点に生じる断 面力の軸方向分布が変化するためと考えられる.また、補 修後 30 年経過時点を見ると、全杭頭に鋼板溶接を行った case2_2、3_2、3_3 は、腐食の進行が早く最も剛性低下が 大きい 1 列目の深度-1.0m の節点で信頼性指標が算出され ているが、2,3 列目のみ鋼板溶接を行った case4_1、4_2、 5_1、5_2 は、1 列目の深度-1.0m の節点で信頼性指標は算 出されていない.これは、上記の考察と調和的である.

(4) 地震動と破壊確率の関係

各再現期間の地震動と破壊確率の関係について,前述の 経年的な破壊確率の増加割合が大きいcase1 と,経年的な 破壊確率の増加割合が小さいcase5_2 を選択し考察する. 図-14 に各再現期間の地震動と破壊確率の関係を示す.な お,ここで示す破壊確率は,t年後に対象とする地震動が作 用した場合に破壊する確率を表しており,前述のP_fにあた る.

再現期間 75 年の地震動に対する経過年数 0 年の破壊確 率は、未補修のcase1では 2.5×10⁻³であるが、case5 2では 2.2×10⁻⁵と破壊確率は非常に小さい.また,図より, case1 は,15年経過以降,再現期間50,75,100年の地震動に対 する破壊確率が急激に大きくなる.一方, case5 2 の破壊 確率は、ほとんど変化していない. このような破壊確率の 経年変化の違いは、信頼性指標が算出される節点によるも のと考えられる. 表-4 に示したようにcase1 は、検討初期 は3列目の杭頭で信頼性指標が算出されるが、経年後には その節点が変わり、腐食の進行が早い1列目の深度-1.0m の節点で算出される.したがって、信頼性指標が算出され る節点が腐食量を確定値とした節点から確率変数とした 節点へ移行したこと, さらに移行先の節点が腐食の進行が 早く,腐食量が大きいことにより,急激に破壊確率が大き くなったものと考えられる. また, case5_2 も経年的に信 頼性指標が算出される節点は移行するが, 腐食量が小さい 節点間の移行でるため、破壊確率もほとんど変化しなかっ たものと考えられる.

(5) 地震動と感度係数の関係

図-15 に、(4)で考察した casel および cse5_2 の 30 年経過時点における各再現期間の地震動と感度係数の関 係を示す.感度係数は、耐力に対しては負値、作用に対し ては正値となり、それらの自乗和は1となる.また、感度 係数の絶対値が1に近い確率変数ほど、信頼性指標に及ぼ す影響が大きいことを意味する.casel では、再現期間 50,75,100,150 年の地震動が作用した場合の腐食量の感度 係数が大きくなっており、腐食量の確率変数が信頼性指標

図-10 5年経過後における杭応力度

図-11 30年経過後における杭応力度

(b) case2_2図-12 杭に生じる曲げモーメント

に及ぼす影響度合いが大きいことが分かる.

また, case5_2 では, 腐食量の感度係数が小さく, 腐食 量の確率変数が信頼性指標に及ぼす影響が小さいことが 分かる.

表-4 信頼性指標 β の最小点

経過		地震動の再現期間(年)					
年数 (年)	case	50	75	100	150	200	500
	1	f	f	f	f	f	f
	2_1	f	f	f	f	f	f
	2_2	с	с	с	с	с	g
	3_1	f	f	f	f	f	f
5	3_2	f	f	f	f	f	f
	3_3	g	g	g	g	g	g
	4_1	d	d	d	d	d	d
	4_2	d	d	d	d	d	d
	5_1	b	b	b	f	f	f
	5_2	b	e	e	e	e	e
	6	f	f	f	f	f	f
	1	с	с	с	с	f	f
30	2_1	с	с	с	с	с	f
	2_2	с	с	с	с	с	с
	3_1	f	f	f	f	f	f
	3_2	с	с	с	f	f	f
	3_3	с	с	с	с	с	g
	4_1	d	d	d	d	d	d
	4_2	d	d	d	d	d	d
	5_1	b	b	b	b	b	b
	5_2	b	b	b	b	b	b
	6	f	f	f	f	f	f

図−13 信頼性指標βの最小点

(6) 腐食量のばらつきと破壊確率の関係

腐食量のばらつきが破壊確率に与える影響を調べるた め、以下の2通りの方法で信頼性解析を実施した.

①全ての箇所の腐食量を確定値とした場合

②腐食量の変動係数は変えずに、腐食量の小さい1列目の深度-3.0mの箇所の腐食量を確率変数とした場合

検討は,経年後に,腐食量を確率変数とした1列目の深 度-1.0mの節点で信頼性指標が算出された case1, case2_2 について行った.図-16 に経過年数と破壊確率の関係を示

(b) case5_2図-14 地震動と破壊確率の関係

す.両ケースとも、①と②の場合の破壊確率は、ほほ同じ 結果となる.これは、信頼性指標が算出される節点の腐食 量がいずれも確定値であるためと考えられる.また、前述 の腐食量が大きい箇所を腐食量の確率変数とした場合の 破壊確率と比較すると、検討初期では case2_2 の破壊確率 が小さくなり、後期では case1, case2_2 ともに破壊確率が 大きくなることが分かる.これは、解析で鋼管杭の肉厚を 初期肉厚から経年後の腐食量を差し引いた厚さでモデル

化したため、腐食量を確率変数とした場合、その変動係数 の大きさが影響したものと考えられる.図-17 に、1 列目 の深度-1.0mの箇所の腐食量を確率変数とした場合の杭の 残存肉厚が、腐食量を確定値とした場合の残存肉厚を超過 する確率を示す.図より、検討初期は、杭の残存肉厚の超 過確率は小さいが、年数が経つにつれて杭の残存肉厚の超 過確率が大きくなっていくことが分かる.つまり、腐食量 を確率変数とした場合の方が経年的に杭の残存肉厚を大 きく見積もる傾向になる.したがって、1 列目の深度-1.0m の節点で信頼性指標が算出される場合、検討初期では、腐 食量を確率変数として扱った方が破壊確率は大きくなる が、検討後期では逆に腐食量を確定値として扱った方が破 壊確率は大きくなったものと考えられる.よって、腐食量

-図-16 腐食量のばらつきと破壊確率の関係

のばらつきが大きい場合や腐食速度が早い場合には,腐食 量の設定方法に十分注意が必要である.

図-18 にcase1 およびcse2_2 の各再現期間の地震動と破 壊確率P_{ft}の関係を示す. 図中の凡例は, 枝番1としたもの が, ①の場合で, 枝番2としたものが②の場合である. ま た, case2_2 については, 腐食量が大きい箇所を腐食量の 確率変数とした場合の結果も示す. case1 は, 前述の図-14 の結果と比較すると, 腐食量を確率変数とする節点の信頼 性指標が算出される経過年数 15 年程度以降, 各再現期間 の地震動に対する破壊確率は、腐食量が大きい箇所を腐食 量の確率変数とした場合よりも大きくなっていることが 分かる.また、case2_2の各再現期間の地震動に対する破 壊確率は、腐食量が大きい箇所を腐食量の確率変数とした 場合に比べて、検討初期は小さくなっているが、年数が経 つにつれて大きくなっていることが分かる.

(7) 震度

前述したように、震度の設定方法の違いにより本研究と 原設計の震度は異なる.そこで、仮に、震度に安全性の余

図-17 杭の残存肉厚の超過確率

裕がなく,再現期間 75 年の地震動に対する震度が原設計 の設計震度と同じになった場合の破壊確率および期待費 用に与える影響を検討した.ここでは,破壊確率の検討に ついて示し,期待費用については後述する.補正は,再現 期間 75 年の地震動に対する震度が原設計の設計震度と同 じ 0.20 となるよう補正し,その他の再現期間の地震動に対 する震度も同程度だけ大きくなるよう補正した.表-5 に補 正後の震度を示す.

検討は、未補修の casel と、経年的な破壊確率が小さかった case4_2、5_2 について行った. 図-19 に経過年数と破壊 確率の関係を示す. いずれのケースも補正後の震度が大き くなるため破壊確率が大きくなるが、各ケースの経年後の 破壊確率の大小関係は、震度補正前と補正後で変わらない ことが分かる.

地震動の	震度		
再現期間 (年)	補正前	補正後	
50	0.123	0.173	
75	0.136	0.200	
100	0.172	0.228	
150	0.229	0.283	
200	0.278	0.338	
500	0.423	0.488	

表-5 震度の補正

3. 期待費用の検討

3.1 期待費用の算出方法

補修戦略等を検討するうえでは、地震時リスクをコスト 化する必要がある.本研究では、T年間の費用を補修費と 破壊時費用からなる期待費用と定義し、次式で算出する.

$$C_T = C_R + P_T \times C_S \tag{9}$$

ここに, *C_T:T*年間の期待費用

 $C_R: 補修費$

- $P_T: T$ 年間の破壊確率
- C_S :破壞時費用

ここで、破壊時費用は、復旧費用と経済損失を考慮する. 経済損失とは、施設が破壊した場合に、当該施設を利用で きないことによる間接的な被害費用を指す.通常,経済損 失は、迂回輸送や輸送取り止めによってもたらされる貨物 の荷主や運送業者の損失,施設利用料金の不回収による港

湾管理者の損出あるいはこれらの被害が地域経済全体に 及ぼす二次的な被害などをいう.しかしながら、①市場の 完全競争状態を仮定すれば,交通施設整備の効果は,交通 活動の直接的な便益のみを計測すれば十分であること11, ②港湾管理者の損出は,社会全体からみればキャンセルア ウトされる可能性があること¹²⁾, ③破壊による貨物需要の 動向は予測が困難であること、などの理由から破壊による 経済損失は当該施設を利用できないことによる迂回輸送 の経済損失のみを考慮することとする¹³⁾. 迂回輸送による 経済損失の算出には、地震動の作用のない条件下(以下, 永続状態と呼ぶ)の破壊に対してコンテナ貨物の流動に着 目して経済損失を求めた尾崎ら¹³⁾の研究を参考とした.こ れは,本研究の場合,当該施設のみが老朽化し不健全な状 態にあるので、地震動が作用すれば、永続状態の破壊と同 様に他の健全な施設は破壊せず当該施設単独の破壊と考 えることができるためである.

復旧費用は、平均的な破壊状況と復旧作業を考慮して算 出した.復旧費用には、上部工・杭の撤去、杭打設、上部 工復旧を想定して算出した直接工事費に、その40%の間接 経費を見込んでいる.

図-20 に補修費と破壊時費用の関係を示す. 各ケースの 補修費は破壊時費用の1~3%程度である. ここで, 破壊時 費用の内訳は, 経済損失が全体の7割程度, 復旧費用が3 割程度である. また, 鋼板の材料費は, 補修費に占める割 合が小さく, 鋼板厚を厚くしても補修費の増加にはあまり 影響していない.

3.2 検討結果

図-21 に,経過年数と期待費用の関係を示す.図-21 は, 使用性に関する限界状態を想定した場合の結果である.な

図-21 期待費用と経過年数の関係

(震度補正後) 図-22 期待費用と経過年数の関係

お、費用は桟橋1ブロック当りの値である.また、将来的 に発生する費用は、社会的割引率を考慮して現在の費用に 換算することが一般的であるが、社会的割引率を考慮する と将来的な費用が減価されるため、本研究では、各ケース の費用差を明確にすることを目的に、社会的割引率は考慮 していない.ただし、社会的割引率を考慮した場合でも各 ケースの期待費用の順序は変わらない.

各ケースとも経年的に期待費用は増加する. casel およ

び case2 1, 2 2 は,時間の経過とともに大きく期待費用が 増加する.また, case5 2 の期待費用の増加率が最も小さ く,最も効果的な補修案であるといえる.ここで, case5 2 は、2.3 列目杭のみ鋼板溶接を行い、杭の剛性を高くした ケースである. したがって, case5_2 の条件で補修するこ とが最も合理的ではあるが、予算の制約上、初期に大きな 投資ができず段階的に補修を行っていくような場合は,次 のような補修戦略を考えることができる. casel を除くと、 経過年数5年まで最も期待費用が安価な case4 2 と, それ 以降最も安価な case5 2 を組合せたシナリオである. つま り、まず case4 2 の条件で 3 列目杭のみ補修し、5 年経過 後 case5 2 の条件となるよう 2 列目杭の補修を行う戦略で ある.これは, case5 2 の条件で破壊確率が最大となる箇 所の条件が変わらないためである.このように、期待費用 の経年的な変化を事前に把握できれば,最も合理的な補修 戦略を決定することができる.

また, 2.2 (7) で述べた震度を補正した場合の結果について図-22 に示す. 図-21 の結果と比べ, 各ケースとも破壊確率が大きくなるため期待費用は増加するが, 各ケースの期待費用の大小関係は変わらず, case5_2 が最安価なケースであるということに変わりはない.

4. まとめ

本研究では,既存の直杭式横桟橋を対象に,信頼性理論 を用いて地震時の破壊確率および期待費用について検討 を行った.今後,老朽化した施設の増加に伴い,低負担で 効果的な補修戦略の検討が重要となってくるものと考え られ,信頼性理論による破壊確率を用いた場合の検討手法 の一例を示すことができた.また,本研究は,新設構造物 のライフサイクルマネジメントを検討する際にも有用で あると考える.

本研究で得た主要な結論は、以下のとおりである.

1) 補修方法と破壊確率の関係

既存の直杭式横桟橋を対象に,工法,補修対象杭, 補修鋼板厚が異なるケースの経過年数と破壊確率の関 係を示した.

- ・全杭頭部に鋼板溶接を行い,杭の剛性を高くする と,補修部下端の杭応力度が厳しくなり,破壊確 率が大きくなる場合があることが分かった.
- ・鋼板溶接と塗覆装を行う杭列を選定すれば、他列の杭の弱点部に杭応力が集中することを避けることができ、破壊確率を小さくできることが分かった。

以上のように、工法、補修対象杭、補修鋼板厚など をパラメータとして検討すれば、経済的な補修設計を 行うことが可能である.

2) 補修戦略

補修方法ごとに補修費と破壊時費用からなる期待費 用の経年変化を求めた.そして,信頼性理論を用いれ ば,定量的に補修戦略を決定できることが分かった.

(2006年2月15日受付)

謝辞:

本研究を進めるにあたり,港湾施設研究室の方々に貴重 なご意見を数多く頂きました.さらに,清水建設㈱ 藤田 宗久博士にも終始適切なご助言を頂きました.ここに,深 く感謝の意を表します.

参考文献:

- 1) 運輸省港湾局監修、日本港湾協会:港湾の施設の技術 上の基準・同解説、1999
- 2)杉本博之,安部淳一,赤泊和幸,渡邊忠朋:公共投資の 経年的シナリオに対する橋梁の健全度推移に関する研 究,土木学会論文集,No.780/I-70, pp.199-209, 2005
- 3) 貝戸清之,保田敬一,小林潔司,大和田慶:平均費用法 に基づいた橋梁部材の最適補修戦略,土木学会論文集, No.801/I-73, pp.83-96, 2005
- 4)中原耕一郎,古田均,亀田学広,高橋裕治:遺伝的アルゴリズムを用いた最適維持管理計画の策定,土木学会年次学術講演会,V-082, pp.163-164, 2003
- 5)小池 武: リスクマネジメント手法によるパイプラインの 維持管理戦略について, 土木学会論文集, No.794/I-72, pp.189-202, 2005
- 6)松渕知,横田弘:係留施設のライフサイクルコスト発生と維持管理意思決定支援システムの構築に関する基礎的研究,港湾技術研究所報告, Vol38, No.2, 1999
- 7)長尾毅,菊池喜昭,藤田宗久,鈴木誠,佐貫哲朗:桟 橋式係船岸のレベル1地震動に対する信頼性設計法, 構造工学論文集,vol.52A,pp.201-208,2006
- 8)長尾 毅,山田雅行,野津 厚:フーリエ振幅と群遅延時間に着目した確率論的地震ハザード解析,土木学会論文集,No.801, I-73, pp.141-158, 2005
- 9) 吉田 望, 末富岩雄: DYNEQ: 等価線形法に基づく水 平成層地盤の地震応答解析プログラム, 佐藤工業(株) 技術研究所報, 1996
- 10)Rackwitz, R. and Fiessler, B. : Structural Reliability under Combined Random Load Sequences, *Computers* &

Structures, Vol. 9, pp.489-494, 1978

- 11)森杉壽芳:社会資本整備の便益評価,勁草書房, 1997
- 12)港湾投資の社会経済効果に関する調査委員会編:港湾 投資の評価に関するガイドライン,港湾空間高度化センター,1999
- 13) 尾崎竜三,長尾毅,柴崎隆一:経済損失を考慮した期 待総費用最小化に基づく港湾構造物の常時のレベル1 信頼性設計法,国土技術政策総合研究所資料,No.217, 2005