

DWT	TEU		
	25%	50%	75%
60,000	4539	4774	5023
70,000	5225	5496	5783
80,000	5903	6208	6532
100,000	7236	7612	8009

Figure 3-56 Container Ship (Over-Panamax) TEU-DWT

3.3 Oil Tanker

Figure 3-57 to **Figure 3-59** show the results of analysis of Loa, B, and d for DWT. And the following are the analysis method applied to each main dimension and the range of the ship classes to which each method was applied. And **Table 3-9** shows the results of analysis of the main dimension according to the ship class that was set.

(1) Loa, Lpp (Figure 3-60 to Figure 3-65)

The ships were divided into three classes with 8,000DWT and 200,000DWT as the boundaries. Less than 8,000DWT was analyzed by the logarithmic regression analysis method, obtaining $R^2 = 0.855$ for Loa and $R^2 = 0.938$ for Lpp. 8,000DWT or more and less than 200,000DWT was analyzed by the logarithmic regression analysis method, obtaining $R^2 = 0.871$ for Loa and $R^2 = 0.915$ for Lpp. 200,000DWT or more and less than 400,000DWT was analyzed by the average value analysis method.

(2) B (Figure 3-66 to Figure 3-68)

The ships were divided into three classes with 8,000DWT and 200,000DWT as the boundaries. Less than 8,000DWT was analyzed by the logarithmic regression analysis method, obtaining $R^2 = 0.695$. 8,000DWT or more and less than 200,000DWT was analyzed by the logarithmic regression analysis method, obtaining $R^2 = 0.807$. 200,000DWT or more and less than 400,000DWT was analyzed by the average value analysis method.

(3) d (Figure 3-69, 70)

The ship were divided into two classes with 50,000DWT as the boundary and the logarithmic regression analysis method was applied to each class, obtaining $R^2 = 0.830$ for less than 50,000DWT and $R^2 = 0.870$ for 50,000DWT or more.

Table 3-9 The results of analysis of main dimensions (Oil Tanker)

Dead Weigth Tonnage	Length Overall	Length P.P.	Breadth Molded	Full Load Draft
(t)	(m)	(m)	(m)	(m)
1,000	63	57	11.0	4.0
2,000	77	72	13.2	4.9
3,000	86	82	14.7	5.5
5,000	100	97	16.7	6.4
10,000	139	131	20.6	7.6
15,000	154	146	23.4	8.6
20,000	166	157	25.6	9.3
30,000	184	175	29.1	10.4
50,000	209	199	34.3	12.0
70,000	228	217	38.1	12.9
90,000	243	232	41.3	14.2
100,000	250	238	42.7	14.8
150,000	277	265	48.6	17.2
300,000	334	321	59.4	22.4

Figure 3-58 Oil Tanker B-DWT

Figure 3-59 Oil Tanker d-DWT

 $Y=\alpha \cdot X^{\beta}$

	50%	75%
α	8.5137	8.9769
β	0.2826	0.2826

$R^2 =$	0.855 ,	σ=	0.034)
	50%	7	5%	

	5070	1570
a	0.9301	0.9531
b	0.2826	0.2826

Figure 3-60 Oil Tanker (Less than 8,000DWT) Loa-DWT

(

	50%	75%
a	1.1186	1.1280
b	0.2539	0.2539

50% 75% 13.1416 13.4278 α 0.2539 β 0.2539

Figure 3-61 Oil Tanker (8,000~Less than 200,000DWT) Loa-DWT

$$Y=a_0$$

($\sigma= 5.240$)

	Average	75%
a ₀	330.5	334.0

Figure 3-62 Oil Tanker (200,000~Less than 400,000DWT) Loa-DWT

Figure 3-63 Oil Tanker (Less than 8,000DWT) Lpp-DWT

Figure 3-64 Oil Tanker (8,000~Less than 200,000DWT) Lpp-DWT

Y=a ₀	
(σ= 5.390)

	Average	75%
a ₀	317.3	321.0

Figure 3-65 Oil Tanker (200,000~Less than 400,000DWT) Lpp-DWT

	50%	75%
α	1.7201	1.8629
β	0.2577	0.2577

(R^2 = 0.695 , σ = 0.051) 50% 75% 0.2356 0.2702 a b 0.2577 0.2577

Figure 3-66 Oil Tanker (Less than 8,000DWT) B-DWT

Figure 3-67 Oil Tanker (8,000~Less than 200,000DWT) B-DWT

Figure 3-68 Oil Tanker (200,000~Less than 400,000DWT) B-DWT

	50%	75%
α	0.5339	0.5877
β	0.2786	0.2786

 $(R^2 = 0.830, \sigma = 0.062)$

0.2786

b

d-DWT

0.2786

Figure 5-07 On Tanker (50,000 W 1)	Figure 3-69	Oil Tanker	(~50,000DWT)
--	-------------	------------	--------------

Figure 3-70 Oil Tanker (greater than 50,000~Less than 400,000DWT) d-DWT

3.4 Roll-on/Roll-off Ship

Figure 3-71 to Figure 3-73 show the results of analysis of Loa, B, and d for GT. And the following are the analysis method applied to each main dimension and the range of the ship classes to which each method was applied. Because the dimensions of ships of 60,000GT or more are unique, they were exempted from the statistical analysis. Table 3-10 shows the results of analysis of each main dimension according to the ship class that was set.

(1) Loa, Lpp (**Figure 3-74, 75**)

The ships were divided into three classes with 30,000GT and 40,000GT as the boundaries. Less than 30,000GT was analyzed by the logarithmic regression analysis method, obtaining $R^2 = 0.906$ for Loa and $R^2 = 0.900$ for Lpp. 30,000GT or more and less than 40,000GT and 40,000GT or more and less than 60,000GT were analyzed by the average value analysis method.

(2) B (Figure 3-76)

The ships were divided into two classes with 40,000GT as the boundary. Less than 40,000GT was analyzed by the logarithmic regression analysis method, obtaining $R^2 = 0.725$. 40,000GT or more and less than 60,000GT was analyzed by the average value analysis method.

(3) d (**Figure 3-77**)

The ships were divided into two classes with 30,000GT as the boundary. Less than 30,000GT was analyzed by the logarithmic regression analysis method, obtaining $R^2 = 0.788$. 30,000GT or more and less than 60,000GT was analyzed by the average value analysis method.

Table 3-10 The results of analysis of main dimensions(Roll-on/Roll-off Ship)

Gross Tonnage	Length Overall	Length P.P.	Breadth Molded	Full Load Draft
(t)	(m)	(m)	(m)	(m)
3,000	98	88	18.1	4.6
5,000	117	105	20.4	5.5
10,000	149	136	23.9	6.9
20,000	189	174	28.0	8.7
40,000	194	174	32.3	9.7
60,000	208	189	32.3	9.7