7 参考資料 操作マニュアル

7.1 システムの利用環境

モデルを実行するにあたり必要なソフト・作業環境は以下の通りである。

ArcView9.0、VBランタイム

(ArcView9.0 をインストールするために、以下動作環境が必要)

基本ソフトウェア

Windows 2000 Professional, Windows NT 4.0, Windows XP Home Edition,

Windows XP Professional Edition、Windows 2000 Advanced Server、Windows Server 2003 サービスパック/パッチ

Windows 2000: SP1、SP2、SP3、SP4 (オプション)

Windows NT 4.0 : SP 6a

Windows XP: SP1、SP2(制限付きサポート*)

プロセッサ Intel Pentium または Intel Xeon プロセッサ (32 bit)

CPU の速度 800 MHz(必須) 1.0 GHz(推奨)

メモリ/RAM 256 MB (必須) 512 MB 以上(推奨)

ディスク容量 605MB NTFS 695MB FAT32

7.2 システムのインストール

報告書に添付されている CD-R をパソコンにセットし、エクスプローラ等で CD-R ドラ イブの内容が表示される。CD-R には複数のフォルダーがある。インストールの際には「イ ンターフェイス」のフォルダーを一式、パソコンの C ドライブ(推奨)にコピーする。フ ォルダー名は自由に変更することができる。

7.3 システムの操作方法

7.3.1 計算準備およびシステム起動

水循環一物質循環一東京湾内の一連の計算は、ケースごとのフォルダを作成して計算を 行う。まず、¥¥Home¥org¥以下のファイルをすべてコピーし、¥¥Home¥ケース 0¥のように 計算フォルダを作成し、¥¥Home¥CaseDir.txtに以下に示すように、計算フォルダを記す。

以後のパラメータの設定、施策の設定、計算等はすべて¥¥Home¥ケース 0¥内で行う。 ここで、<u>¥¥Home¥東京湾.mdx</u>をダブルクリックし、システムを起動させる。

GIS システムが起動したら、メニューバー(画面の右上)に①パラメータの入力、②施 策の選定、③モデルの実行、④結果の可視化が表示されていることを確認する。

図-7.3.1.2 システム起動後の画面

以下、下記のフローチャートの手順で計算を行う。

7.3.2 東京湾流入流域(陸域モデル)の計算

(1) パラメータの入力

「パラメータの入力」では、「水循環モデル」、「物質循環モデル」のデータまたはパラメ ータの確認・変更を行う。

View
s Window Help パラメータの入力 施策の選定 モデルの実行 結果の可視化
🖸 🗠 🔸 🏗 🍰 水循環モデル
New Feature A 東京湾モデル
№ 0 М 🚔 7
] ④ 米 •
図-7.3.2.1 パラメータの入力のプルダウンメニュー

1) 水循環モデル

「パラメータの入力」から「水循環モデル」を選択すると「メインスイッチボード(水 循環)」が表示される。

データの修正・パラメータの変更の方法は各データとも、修正・変更する箇所にカーソルを合わせ直接入力し、「OK」をクリックする。なお、雨量データ、平均気温データ、最低気温データ、湿度データ、風速データについては一括変換も可能とした。

メインスイッチホード(水街塚)	
準備データ(Tran.dat)	雨量データ(Precip.dat)
モデル定数データ1 (Tntank.dat)	平均気温データ(Tmmean.dat)
モデル定数データ2(Tntank.dat)	最低気温データ(Tmmini.dat)
	温度データ(Humity.dat)
	日照時間データ(Suntim.dat)
	風速データ(Windsp.dat)
	 閉じる

図-7.3.2.2 メインスイッチボード(水循環)の画面

A)準備データ

川名: 利	根川・江戸川		▼ メッシ	ユ数: 8553				
タンクNo	フラグ	雨量	気温	湿度	日照	風速	標高	
8	1	18	18	12	18	18	1201.43	
6	0	18	18	12	18	18	1536.20	
4	0	18	18	12	18	18	1301.48	
3	0	18	18	12	18	18	1304.89	
1	0	18	18	12	18	18	1462.72	
2	0	18	18	12	18	18	1335.30	
5	2	18	18	12	18	18	1199.42	
9	2	18	18	12	18	18	1443.33	
13	0	18	18	12	18	18	1556.27	
12	2	18	18	12	18	18	1208.59	
11	1	18	18	12	18	18	1206.09	
16	2	18	18	12	18	18	1108.66	
35	1	18	18	12	18	18	1554.50	
26	0	18	18	12	18	18	1561.28	
18	0	18	18	12	18	18	1677.14	
25	2	18	18	12	18	18	1318.78	
24	2	18	18	12	18	18	1140.31	
22	1	18	18	12	18	18	1249.31	
17	1	18	18	12	18	18	1350.26	

図⁻7.3.2.3 準備データ (Tran.dat)の画面

B) モデル定数データ1

モデル 定数データ1 (Tntank.dat)	<
モデル定数データ 計算年度	
2001 前年度から設定年度 までを対象とする。	
2001 前年度から設定年度 までを対象とする。	
ОК * +>>セル	

図-7.3.2.4 モデル定数データ1 (Tntank.dat)の画面

C) モデル定数データ2

増七ナルのハ	フメーダ 小跑和暦-	ヒナルのバラメータ 地下:	水暦モナルのバラメータ	河道七ナルのバラメータ	
	最終浸透能 fO(cm/s)	表面流の発生する高さ Sf2(m)	中間流の発生する高さ Sf1(m)	地下浸透の発生する高さ SfD(m)	地表面の粗度係数 N(m^(-1/3)・s^(^1))
山地	0.00010	0.015	0.010	0.005	0.7(
水田	0.00001	0.020	0.005	0.002	2.0(
火田	0.00005	0.010	0.005	0.002	0.3(
荒地	0.00005	0.010	0.005	0.002	0.3(
古待+#) <	0 00001	0.005	0 002	0.001	0 0' >

図-7.3.2.5 モデル定数データ 2(Tntank.dat)の画面

D)雨量データ

雨量データ	(precip.dat))										
観測地:	古河		1	▼ 全国観測	所雨量一括	変更%)	10	00	変更(デ	ィスクロコは適	用されません	.)
年月	1日	2日	3日	4⊟	5日	6日	7日	8日	9日	10日	11日	12日 🔼
2000/01	0	0	0	0	0	0	3	18	4	3	0	(L
2000/02	0	0	0	0	0	0	7	0	0	0	0	C
2000/03	22	6	0	9	0	0	0	1	0	0	0	C
2000/04	0	0	1	0	0	0	0	0	0	0	0	C
2000/05	0	2	18	0	0	0	0	18	2	1	5	C
2000/06	0	1	0	0	0	11	27	0	0	9	1	2
2000/07	1	0	0	0	0	3	0	0	0	0	0	(
2000/08	2	0	0	0	0	0	0	0	0	1	16	2
2000/09	0	0	4	7	0	0	0	1	1	50	68	C
2000/10	25	0	0	0	0	0	0	2	0	110	2	C
2000/11	0	0	23	6	8	9	0	0	21	15	0	1
2000/12	0	0	0	3	0	3	0	0	0	0	0	C
2001/01	0	0	0	0	0	0	3	18	4	3	0	C
2001/02	0	0	0	0	0	0	7	0	0	0	0	C
2001/03	22	6	0	9	0	0	0	1	0	0	0	C
2001/04	0	0	1	0	0	0	0	0	0	0	0	C
2001/05	0	2	18	0	0	0	0	18	2	1	5	(
2001/06	0	1	0	0	0	11	27	0	0	9	1	2
2001/07	1	0	0	0	0	3	0	0	0	0	0	C
2001/08	2	0	0	0	0	0	0	0	0	1	16	2
2001/09	0	0	4	7	0	0	0	1	1	50	68	C
2001/10	25	0	0	0	0	0	0	2	0	110	2	C
2001/11	0	0	23	6	8	9	0	0	21	15	0	1 🖂
											ок	キャンセル

図-7.3.2.6 Precip.dat の画面

E) 平均気温データ

年月	1日	2日	3日	4日	5日	6日	7日	8日	9日	10日	11日	12日
000/01	5.5	5.2	5.1	2.6	2.8	1.1	0.2	2.1	2.3	4.6	4.3	
000/02	3.1	3.6	3.3	2.9	3.6	5.2	2.2	3.4	1.8	3.6	3.7	
000/03	5.6	4.3	5.3	5.4	5.9	8.9	7.3	4.0	2.2	3.6	4.0	
000/04	6.2	9.0	10.2	9.4	10.4	13.5	15.0	15.8	15.8	17.1	17.3	1
000/05	10.8	11.0	11.3	13.6	15.8	18.0	19.9	18.2	18.7	18.1	17.5	
000/06	22.9	21.2	21.9	24.1	23.1	18.9	21.0	20.4	21.2	19.8	21.9	
000/07	27.8	26.0	27.6	30.2	30.3	27.9	25.8	25.6	26.2	26.5	27.7	:
000/08	28.6	25.1	26.5	27.0	24.2	23.4	22.3	23.6	26.2	28.3	24.9	:
000/09	23.8	23.7	22.9	21.1	21.6	21.9	21.1	24.7	26.3	25.8	25.2	
000/10	17.5	21.0	20.7	17.9	18.4	20.2	18.1	16.1	18.7	15.6	21.0	
000/11	13.9	15.6	14.4	12.5	9.8	13.7	11.4	10.9	10.9	10.3	9.4	
000/12	7.5	8.0	10.1	7.5	7.6	7.8	6.7	4.8	5.7	5.8	5.5	
001/01	5.5	5.2	5.1	2.6	2.8	1.1	0.2	2.1	2.3	4.6	4.3	
001/02	3.1	3.6	3.3	2.9	3.6	5.2	2.2	3.4	1.8	3.6	3.7	
001/03	5.6	4.3	5.3	5.4	5.9	8.9	7.3	4.0	2.2	3.6	4.0	
001/04	6.2	9.0	10.2	9.4	10.4	13.5	15.0	15.8	15.8	17.1	17.3	
001/05	10.8	11.0	11.3	13.6	15.8	18.0	19.9	18.2	18.7	18.1	17.5	
001/06	22.9	21.2	21.9	24.1	23.1	18.9	21.0	20.4	21.2	19.8	21.9	
001/07	27.8	26.0	27.6	30.2	30.3	27.9	25.8	25.6	26.2	26.5	27.7	
001/08	28.6	25.1	26.5	27.0	24.2	23.4	22.3	23.6	26.2	28.3	24.9	:
001/09	23.8	23.7	22.9	21.1	21.6	21.9	21.1	24.7	26.3	25.8	25.2	:
001/10	17.5	21.0	20.7	17.9	18.4	20.2	18.1	16.1	18.7	15.6	21.0	
001/11	13.9	15.6	14.4	12.5	9.8	13.7	11.4	10.9	10.9	10.3	9.4	

図-7.3.2.7 Tmmean.dat の画面

F)最低気温データ

夏低気温デ	-&(tamin	i.dat)										
観測地:	्रम]	✓ 全国観測	所最低·平±	的気温一括変	更(度) 0.0		変更(デ	ィスクロは適	用されません	.)
年月	1日	2日	3日	4日	5日	6日	7日	8日	9日	10日	11日	12日
2000/01	1.4	-0.2	0.9	-0.4	-1.9	-5.0	-5.0	-0.2	-0.6	1.0	1.3	-1.£
2000/02	1.6	-1.5	-2.4	-0.3	-1.7	-1.0	0.3	0.3	-2.9	-3.7	-3.0	-1.2
2000/03	2.2	0.3	-1.6	2.7	2.1	3.3	2.0	-0.5	-1.6	-3.8	-0.3	1.4
2000/04	-0.2	0.5	4.0	5.2	1.4	5.8	9.3	12.1	10.9	13.1	11.5	10.5
2000/05	6.3	9.6	8.6	9.9	11.8	12.2	13.2	14.7	16.5	15.4	13.3	10.7
2000/06	19.0	16.5	14.1	16.3	18.3	17.1	17.8	17.9	18.5	18.0	17.8	17.£
2000/07	21.8	20.8	22.7	23.2	24.5	24.1	21.8	21.8	21.8	21.1	20.8	24.ć
2000/08	24.8	23.1	22.5	23.9	21.9	21.3	20.5	21.3	22.0	24.8	23.0	20.5
2000/09	20.6	19.6	20.4	19.0	16.7	20.0	19.8	20.7	24.6	25.0	24.5	23.5
2000/10	16.4	17.1	15.8	14.4	16.3	15.7	15.2	14.7	15.1	14.1	17.5	15.4
2000/11	9.2	10.0	11.4	6.7	4.8	10.4	8.1	4.2	8.5	7.6	4.0	4.4
2000/12	2.0	0.6	6.7	4.4	3.8	6.4	1.9	-0.1	-0.3	1.6	-0.2	-1.8
2001/01	1.4	-0.2	0.9	-0.4	-1.9	-5.0	-5.0	-0.2	-0.6	1.0	1.3	-1.6
2001/02	1.6	-1.5	-2.4	-0.3	-1.7	-1.0	0.3	0.3	-2.9	-3.7	-3.0	-1.2
2001/03	2.2	0.3	-1.6	2.7	2.1	3.3	2.0	-0.5	-1.6	-3.8	-0.3	1.4
2001/04	-0.2	0.5	4.0	5.2	1.4	5.8	9.3	12.1	10.9	13.1	11.5	10.5
2001/05	6.3	9.6	8.6	9.9	11.8	12.2	13.2	14.7	16.5	15.4	13.3	10.7
2001/06	19.0	16.5	14.1	16.3	18.3	17.1	17.8	17.9	18.5	18.0	17.8	17.£
2001/07	21.8	20.8	22.7	23.2	24.5	24.1	21.8	21.8	21.8	21.1	20.8	24.ć
2001/08	24.8	23.1	22.5	23.9	21.9	21.3	20.5	21.3	22.0	24.8	23.0	20.5
2001/09	20.6	19.6	20.4	19.0	16.7	20.0	19.8	20.7	24.6	25.0	24.5	23.5
2001/10	16.4	17.1	15.8	14.4	16.3	15.7	15.2	14.7	15.1	14.1	17.5	15.4
2001/11	9.2	10.0	11.4	6.7	4.8	10.4	8.1	4.2	8.5	7.6	4.0	4.4 🔽
<												>
											ок [[キャンセル

図-7.3.2.8 Tmmini.dat の画面

G) 湿度データ

					10.960	~ ***	1.2.					
年月	18	2日	3日	4日	58	6日	78	88	9日	10日	11日	12日
2000/01	47	50	36	45	49	54	61	81	75	80	77	6
2000/02	85	53	49	56	58	65	88	67	62	57	53	4
2000/03	88	71	63	84	53	50	54	55	65	56	42	
2000/04	68	57	69	53	55	55	65	71	71	68	64	
2000/05	67	83	78	68	69	73	69	85	81	79	63	
2000/06	57	56	56	50	63	91	86	76	71	82	71	
000/07	66	69	71	69	63	73	61	65	67	67	69	
2000/08	73	75	79	77	71	72	79	75	76	81	91	
2000/09	70	71	74	83	70	75	80	79	87	91	93	
2000/10	92	63	59	69	88	72	67	76	69	89	75	
2000/11	77	68	78	69	73	79	55	64	79	79	67	
2000/12	68	62	66	80	73	86	52	63	60	57	58	
:001/01	47	50	36	45	49	54	61	81	75	80	77	
001/02	85	53	49	56	58	65	88	67	62	57	53	
2001/03	88	71	63	84	53	50	54	55	65	56	42	
001/04	68	57	69	53	55	55	65	71	71	68	64	
2001/05	67	83	78	68	69	73	69	85	81	79	63	
2001/06	57	56	56	50	63	91	86	76	71	82	71	
2001/07	66	69	71	69	63	73	61	65	67	67	69	
2001/08	73	75	79	77	71	72	79	75	76	81	91	
2001/09	70	71	74	83	70	75	80	79	87	91	93	
001/10	92	63	59	69	88	72	67	76	69	89	75	
2001/11	77	68	78	69	73	79	55	64	79	79	67	
(m)												F

図-7.3.2.9 Humity.dat の画面

H)日照時間データ

8: 古))ग			·								
9	1日	2日	3日	4日	5日	6日	7日	8日	9日	10日	11日	12日
/01	9.1	7.9	8.9	4.6	6.7	9.3	3.2	0.7	5.4	1.9	5.4	9
/02	0.0	4.0	9.4	3.2	4.9	4.7	0.0	8.8	9.4	8.6	9.0	
/03	0.0	7.2	6.0	0.0	10.7	9.2	7.5	7.9	8.8	7.5	11.1	
/04	10.1	10.5	6.8	10.6	8.2	10.8	9.9	4.2	4.0	4.4	5.9	
/05	3.0	0.0	0.0	5.9	0.8	6.6	8.8	0.0	0.0	0.4	7.9	1
/06	8.4	5.0	12.4	11.1	0.0	0.0	2.5	0.7	3.2	0.0	5.8	
/07	5.6	8.6	6.8	7.7	8.2	0.2	9.7	7.8	4.5	6.5	6.6	1
/08	7.0	0.0	4.4	2.8	0.6	0.0	0.0	0.0	1.5	0.1	0.0	
/09	5.5	5.3	0.0	0.8	5.5	0.0	0.0	1.4	0.6	0.0	0.0	
/10	0.0	9.9	10.5	1.9	0.0	6.8	2.6	0.4	5.9	0.0	5.9	
/11	4.1	7.4	0.0	9.8	0.8	1.6	9.2	8.1	0.0	0.0	7.3	
/12	6.1	8.4	6.6	0.0	0.2	0.0	8.6	8.7	9.0	9.0	9.1	
/01	9.1	7.9	8.9	4.6	6.7	9.3	3.2	0.7	5.4	1.9	5.4	
/02	0.0	4.0	9.4	3.2	4.9	4.7	0.0	8.8	9.4	8.6	9.0	
/03	0.0	7.2	6.0	0.0	10.7	9.2	7.5	7.9	8.8	7.5	11.1	
/04	10.1	10.5	6.8	10.6	8.2	10.8	9.9	4.2	4.0	4.4	5.9	
/05	3.0	0.0	0.0	5.9	0.8	6.6	8.8	0.0	0.0	0.4	7.9	1
/06	8.4	5.0	12.4	11.1	0.0	0.0	2.5	0.7	3.2	0.0	5.8	
/07	5.6	8.6	6.8	7.7	8.2	0.2	9.7	7.8	4.5	6.5	6.6	1
/08	7.0	0.0	4.4	2.8	0.6	0.0	0.0	0.0	1.5	0.1	0.0	
/09	5.5	5.3	0.0	0.8	5.5	0.0	0.0	1.4	0.6	0.0	0.0	
/10	0.0	9.9	10.5	1.9	0.0	6.8	2.6	0.4	5.9	0.0	5.9	
/11	4.1	7.4	0.0	9.8	0.8	1.6	9.2	8.1	0.0	0.0	7.3	

図-7.3.2.10 Suntim.dat の画面

I) 風速データ

則地: 古	<u>া</u> ন		•	全観測所	〔風速一括変〕	更%0	10	0	変更(デ	ィスクロは適	用されません	2
年月	1日	2日	3日	4日	5日	6日	7日	8日	9日	10日	11日	12日
2000/01	3	1	2	2	3	2	1	2	1	1	1	
2000/02	1	1	2	2	1	1	1	2	1	1	2	
2000/03	2	3	1	1	3	2	2	3	2	1	3	
2000/04	2	1	2	3	1	2	2	1	1	2	1	
2000/05	2	2	2	2	1	2	3	2	2	1	2	
2000/06	2	2	2	2	2	1	1	1	2	1	1	
2000/07	1	2	2	2	2	1	2	2	1	2	2	
2000/08	1	1	1	1	1	1	2	1	1	1	2	
2000/09	1	1	1	2	1	1	0	1	2	2	2	
2000/10	1	1	2	1	1	1	2	3	2	4	1	
2000/11	0	1	1	2	0	1	1	0	1	1	1	
2000/12	1	1	1	1	1	1	2	1	3	3	3	
2001/01	3	1	2	2	3	2	1	2	1	1	1	
2001/02	1	1	2	2	1	1	1	2	1	1	2	
2001/03	2	3	1	1	3	2	2	3	2	1	3	
2001/04	2	1	2	3	1	2	2	1	1	2	1	
2001/05	2	2	2	2	1	2	3	2	2	1	2	
2001/06	2	2	2	2	2	1	1	1	2	1	1	
2001/07	1	2	2	2	2	1	2	2	1	2	2	
2001/08	1	1	1	1	1	1	2	1	1	1	2	
2001/09	1	1	1	2	1	1	0	1	2	2	2	
2001/10	1	1	2	1	1	1	2	3	2	4	1	
2001/11	0	1	1	2	0	1	1	0	1	1	1	
												F

図-7.3.2.11 Windsp.dat の画面

2) 物質循環モデル

「パラメータの入力」から「物質循環モデル」を選択すると「メインスイッチボード(物質循環)」が表示される。

データの修正・パラメータの変更の方法は各データとも、修正・変更する箇所にカーソルを合わせ直接入力し、「OK」をクリックする。

図-7.3.2.12 メインスイッチボード(物質循環)の画面

A) モデルパラメータ1

Paramet00.dat	
	降雨負荷原単位 (g/m^3)
COD	1.50
T-N	0.80
T-P	0.04
BOD	1.50
	OK キャンセル

図-7.3.2.13 モデルパラメータ 1 (Paramet.dat) の画面

B) モデルパラメータ2

Parameti	00.dat												
表層モデル	レバラメー	·タ:											
		堆積負荷係数1 m(-)	堆積負荷 K(流出係數 -)	数 堆積負荷係 n(-)	数2	極限堆積 Su(g)	量	堆積速度係数 Ks(1/day)	初期の地	推積0からの TO(日)	経過日数	
山地	COD		כ	2.00	D	0		500	0.20			0	
	T-N	1		2.00	0	0		250	0.20			0	
	T-P	1	0	2.00	0	0		60	0.20			0	
	BOD		0	2.00	D	0		500	0.20	0.20		0	
				2.00		-0	2		0.00			0	
イ犯和モデルパラメータ:													
		溶脱負荷係数1 m(-)	溶脱流出(K(-)	系数)落	脱負荷係数2 n(-)	種	限溶脱量 Su(g)	溶脱速度係数 Ks(1/day)		初期の)容	脱Oからの# TO(日)	全通日数	
山地	COD	0	2	.000	0		500		0.20			0	
	T-N	0	2	.000	0		250		0.20		0		
	T-P	0	2	.000	0	0 60		0.20			0		
地下モデル	バラメー												
		- 汚濁負荷濃度											
		C3(mg/l)											
COD			1.00										
T-N			0.50										
T-P			0.02										
BOD			0.50										
河道モデル	レバラメー	·タ:											
	J.	悦酸素定数 k1(1/day)	沈降・吸着0 k3()除去速/ 1/day)	度定数 低層	再開	送濁の負荷減 xt(1/day)	東度定	E数 汚濁	渤質貯留 CA(mg/l)	濃度		
COD		0.200			0.100	0.00:		0.001		1.000			
T-N		0.200			0.100	0.		0.001		1.000			
T-P		0.200			0.100	0.0		0.001		0.100			
BOD		0.300			0.200			(0.001		1.000		
											OK	++>	·セル]

図⁻7.3.2.14 モデルパラメータ 2 (Paramet.dat) の画面

(2)施策の選定

「施策の選定」ではモデル実行に際して、どのような施策を選定し組み合わせるかを設 定する。

【施策設定方法】

- (A) <u>¥¥Home¥ケース0¥BASEDATA¥</u>の中身を書き換える。(施策の設定)
- (B) インターフェイスから計算ファイル作成プログラムの立ち上げ
- (C) データの読み込み・計算期間の設定・メッシュデータの直接読み込み
- (D) データファイルの作成

(A) 施策の設定

BASEDATAの中身はすべてCSVファイルとなっており、これらを施策にあわせて書き換 えた後、計算ファイル作成プログラムを実行する。

各CSVファイルの設定項目は以下の通りである。なお、各種設定変更を補助するエクセ ルファイルを¥¥Home¥BASEDATA変更¥に保存している。

ファイル	設定項目	変更方法
メッシュ基本	· 工業製品年出荷額(百	エクセルで設定し、CSVファイルを
データ.csv	万円)	<u>¥¥Home¥ケースO¥BASEDATA¥</u> に保存。
	• 牛豚頭数	メッシュ基本データ.csvは、後述する(C)メ
	・ メッシュ人口	ッシュデータの直接読み込みでも変更可
	・ メッシュごと土地利	能。
	用比率の設定	土地利用面積比率を変更する場合は、シー
		ト「土地利用条件設定」で設定をする。
下水処理場デ	• 下水高度処理の設定	エクセルで設定し、CSVファイルを
ータ.csv		<u>¥¥Home¥ケースO¥BASEDATA¥</u> に保存。
県基本デー	• 県別処理形態別汚水	エクセルで設定し、CSVファイルを
タ.csv	処理人口比率の設定	<u>¥¥Home¥ケース0¥BASEDATA¥</u> に保存。(※高度
	· 高度処理合併浄化槽	処理合併浄化槽の割合は、未処理人口の比
	の設定	率に割り当てている。よって、高度処理を
		行う時は、同時に負荷原単位.csvを負荷原
		単位(高度処理合併浄化槽).csvに置き換え
		る必要あり。)
市町村基本デ	・ 下水道普及率の設定	エクセルで設定し、CSVファイルを
ータ.csv	・ 節水率の設定	<u>¥¥Home¥ケース0¥BASEDATA¥</u> に保存。
	・ 下水再利用率の設定	
負荷原単	・ 生活・工場・家畜負荷	台所対策を設定する場合、負荷原単位.csv
位.csv	原単位の設定	を負荷原単位(台所対策).csvに置き換え
		る。
灌漑パターン	・ 田畑減水深のパター	特に変更の必要はなし。
データ.csv	ンの設定	
合流式.csv	・合流改善の際の基準雨	合流改善施策を設定する場合、合流式.csv
	量および未処理放流水質	を合流式08mm.csvもしくは合流式25mm.csv
	の設定	に置き換える。

メッシュデータ(210×270)で変更を行うもの(人口の変更等)に関しては次頁で説明。

検討を行った各個別施策の設定方法は以下の通りである。

・BASEDATA を変更するもの→*青字*

Arcview 上で設定するもの→黒字

小項目	概要	反映方法	設定条件	設定方法
各戸雨	各家庭	【設定変更の単位】	デフォルトでは、	「パラメータ
水貯留	で設置	全流域一律+流域毎	導入割合を 100%、	の入力」→「水
・浸透	する雨	【反映方法・設定変更方法】	建ぺい率を 50%、	循環モデル」→
	水貯留	市街地メッシュを対象に、設	として、0.5 とす	「モデル定数
	浸透施	置面積分の表層タンクの最終	る。	データ2」→
	設を設	浸透能が荒れ地の最終浸透能		「表層モデル
	定する。	になるものと考える。市街地メ		のパラメータ」
		ッシュのうち建物用地面積に		で設定
		対する雨水貯留浸透施設設置		
		割合を設定する。貯留も考慮す		
		る必要があるので発生高さも		
		全て荒れ地の値を用いる。		

(ア) 各戸雨水貯留・浸透

ank00. dat									
₹層モデルのパラメータ 不飽和層モデルのパラメータ 地下水層モデルのパラメータ 河道モデルのパラメータ									
	最終浸透能 f0(cm/s)	表面流の発生する高さ Sf2(m)	中間流の発生する高さ Sf1(m)	地下浸透の発生する高さ SfD(m)	地表面の粗度係数 N(m^(-1/3)・s^(^1))	早い中間流の定数 ari(-)			
山地	0.00010	0.015	0.010	0.005	0.70	1.0			
水田	0.00001	0.020	0.005	0.002	2.00	1.0			
火田	0.0000	0.010	0.005	0.002	0.30	1.0			
荒地	0.00005	0.010	0.005	0.002	0.30	1.0			
市街地	0.00001	0.005	0.002	0.001	0.03	1.0			
その他	0.00001	0.005	0.002	0.001	0.03	1.0			
						OK キャンセル			

デフォルトでは、

市街地の最終浸透能
 0.00001→0.0000288

・市街地の表面発生高さ 0.005 →0.00735

とする。

計算式

最終浸透能 =

(0.00005-0.00001)×「導入割合」/100×「建ペい率」/100×0.94_{(建物用地面積比率})+0.00001 表面発生高さ =

(0.010-0.005)×「導入割合」/100×「建ペい率」/100×0.94(_{建物用地面積比率})+0.005

(イ) 透水性・保水性舗装

r				
小項	概要	反映方法	設定条件	設定方法
目				
透水	道路や歩	【設定変更の単位】	デフォルト	「パラメータの
性舗	道、駐車	全流域一律+流域每	では、	入力」→「水循
装	場に整備	【反映方法・設定変更方法】	導入割合を	環モデル」→「モ
	する透水	市街地メッシュを対象に、設置	100 % とす	デル定数データ
	性舗装を	面積分の表層タンクの最終浸	る。	2」→「表層モ
	設定す	透能が荒れ地の最終浸透能に		デルのパラメー
	る。	なるものと考える。市街地メッ		タ」で設定
		シュのうち幹線道路面積に対		
		する雨水貯留浸透施設設置割		
		合を設定する。		

ini	ank00.dat									
щų	表層モデルのパラメータ 不飽和層モデルのパラメータ 地下水層モデルのパラメータ 河道モデルのパラメータ									
		最終浸透能 f0(cm/s)	表面流の発生する高さ Sf2(m)	中間流の発生する高さ Sf1(m)	地下浸透の発生する高さ SfO(m)	地表面の粗度係数 N(m^(-1/3)・s^(^1))	早い中間流の定数 ari(-)			
	山地	0.00010	0.015	0.010	0.005	0.70	1.0			
	水田	0.00001	0.020	0.005	0.002	2.00	1.0			
	火田	0.00005	0.010	0.005	0.002	0.30	1.0			
	荒地	0.00005	0.010	0.005	0.002	0.30	1.0			
	市街地		0.005) _{0.002}	0.001	0.03	1.0			
	その他	0.00001	0.005	0.002	0.001	0.03	1.0			
							OK (キャンセル)			

デフォルトでは、

- ・市街地の最終浸透能
 0.00001→0.0000124
- ・市街地の表面発生高さ 0.005 →0.0053

とする。

計算式

最終浸透能 =

(0.00005-0.00001)×「導入割合」/100×0.06(_{幹線道路面積比率})+0.00001 表面発生高さ =

(0.010-0.005)×「導入割合」/100×0.06(_{幹線道路面積比率})+0.005

(ウ) 調整池

小項	概要	反映方法	設定条件	設定方法
目				
調整	流域に雨	【設定変更の単位】	東京都の流域対	「パラメータの
池	水の流出	全流域一律+流域每	策では大半の河	入力」→「水循
	を一時貯	【反映方法・設定変更方法】	川で 600m3/ha と	環モデル」→「モ
	留させる	市街地メッシュを対象に、表層	なっているので、	デルパラメータ
	調整池を	タンクの表面流・早い中間流の	この数値をデフ	2」→「表層モ
	設定す	発生高さを調整池のボリュー	ォルトとする。	デルのパラメー
	る。	ム相当分に応じて高くする。1	(発生高さに換	タ」で設定
		ha あたりの調整池ボリューム	算すると 6mm 高	
		を入力する。	くすることにな	
			る)	

int	ank00.dat									
表	表層モデルのパラメータ 不飽和層モデルのパラメータ 地下水層モデルのパラメータ 河道モデルのパラメータ									
[最終浸透能 fO(cm/s)	表面流の発生する高さ Sf2(m)	中間流の発生する高さ Sf1(m)	地下浸透の発生する高さ SfD(m)	地表面の粗度係数 N(m^(-1/3)・s^(^1))	早い中間流の定数 ari(-)			
	山地	0.00010	0.015	0.010	0.005	0.70	1.0			
	水田	0.00001	0.020	0.005	0.002	2.00	1.0			
	火田	0.00005	0.010	0.005	0.002	0.30	1.0			
	荒地	0.00005	0.010	0.005	0.002	0.30	1.0			
	市街地	0.00001	0.005	0.002	0.001	0.03	1.0			
	その他	0.00001	0.005	0.002	0.001	0.03	1.0			
							OK キャンセル			

デフォルトでは、

・市街地の表面発生高さ 0.005 →0.011

・市街地の中間流発生高さ 0.002 →0.008

とする。

計算式

表面発生高さ =

0.005+「1ha あたり調整池ボリューム(600m³)」/100/100×「1メッシュあたりの調 整池整備可能面積率(=0.1と仮定)」

中間流発生高さ =

0.002+「1ha あたり調整池ボリューム(600m³)」/100/100×「1メッシュあたりの調 整池整備可能面積率(=0.1と仮定)」

(エ)環境保全型農業

小項	概要	反映方法	設定条件	設定方法
目				
環境	水田、畑	【設定変更の単位】	デフォルト	「パラメータの
保全	への施肥	全流域一律+流域毎	は100%とす	入力」→「物質
型農	量の削減	【反映方法・設定変更方法】	る。	循環モデル」→
業	を設定す	水田・畑のメッシュを対象に、		「モデルパラメ
	る。	表層タンク、不飽和タンクの極		ータ2」で設定
		限堆積負荷量を一定率減じる。		

層モデノ	レバラメー	タ:										
		堆積負荷係数1 m(-)	堆積負荷流出(K(-)	系数 堆積 	負荷係数2 n(-)	極限 S	地積量 u(g)	堆積速度係 Ks(1/day)	約 初期の5	堆積0からの TO(日)	経過日数	
水田	COD	1) 2.	000	C)	3000	0.2	20		0	
	T-N	1	2.	000	C) /	1250) o.:	20			
	T-P	1) 2.	000	0)	400	0.2	20		0	
	BOD		2.	000	0) \	3000	/ 0.2	20		0	
 *== *============================		L」	<u> </u>	000				/				_
1211-1-1	500002 		2008/2017/2018		/X #bo #	500.) o 0		50X\===/~~=+	477#B.00.20			
)谷脱貝何(系数)」)谷肌)荒出1条数 K(-))谷脫貝何 n(-)	1糸銀2 11	朝政:谷朋 Su(g)		谷脱)塞度1条数 Ks(1/day)	その見用のの)を	ARUからの# TO(日)	全通日数	
水田	COD	0	2.000		0	/ 3	3000	0.20)		0	
	T-N	0	2.000		0	1	.250	0.20	2		0	
	T-P	0	2.000		0		400	0.2	י		0	
下モデ)	レバラメー	·タ:				$\overline{\ }$	\mathcal{I}					
		汚濁負荷濃度 C3(mg/l)										
COE)		1.00									
T-N			0.50									
T-P			0.02									
BOE)		0.50									
道モデノ	レバラメー	タ:										
)	脱酸素定数 k1(1/day)	沈隆・吸着の除去 k3(1/day	速度定数 /)	低層再	懸濁の) xt(1/	負荷速度) day)	定数 汚	濁物質貯留 CA(mg/l)))		
COD		0.200		0.100				0.001		1.000		
T-N		0.200		0.100				0.001		1.000		
T-P		0.200		0.100				0.001		0.100		
BOD		0.300		0.200				0.001		1.000		

デフォルトでは、

・水田・畑の表層タンク極限堆積量 →0

・水田・畑の不飽和タンク極限溶脱量 →0
 とする。

(オ) 家畜し尿の農地還元

小項目	概要	反映方法	設定条件	設定方法
家畜し	発生する家	【設定変更の単位】	デフォルトは	BASEDATA¥負荷
尿の農	畜し尿のう	全流域一律 + 流域毎	100%減とす	原単位.csv の中
地還元	ち、現在農	【反映方法・設定変更方法】	る。	の畜産系負荷
	地還元され	家畜に関する流出負荷量原		(牛・豚)の原単位
	ていないも	単位を一定率減じる。一定減		をのとする。
	のを農地還	少比率を入力する。		
	元させる。			

	licrosoft Excel - 負首原単(<u>İ</u> .csy							
•	ファイル(E) 編集(E) 表示(⊻)	挿入① 書詞	t(@) ツール(I) データ(<u>D</u>)	ウィンドウ(W)	ヘルプ(田)	Adobe PDF(<u>B</u>) ,	
B		¥ ~ ¶ ही म	形式を認わして	th(t)(+(s)	n - a - l	4 0 a 100%	-		
I MS					+.0 .00	<u> </u>	A _ 🔊 »	-22-53	デフォルトではす
1410	A15 - f	<u>1</u> <u>0</u> =	= = 🖽		3 .00 + .0	· · · ·		×.	
		в	C	D	F	F /	G		べて0とする。
1	種類	BOD	COD	TP	TN		G		
2	工業系負荷	1.65	3.7	2	0.12				
3	畜産系負荷(牛)	6.4	53	29	0.25				
4	畜産系負荷(豚)	11.4	52	29	0.12				
5	生活系負荷(単独)	22.7	22.5	10.1	0.94				
6	生活系負荷(合併)	2.9	5.4	6.05	0.91				
7	生活糸負荷(し尿)	21.8	19	6.95	1.03				
0	生活不見何(日豕処理) 生活系負荷(去処理)	20	17	11	1.3			_	
10		20	21		1.0			_	
11									
12								-	
14 4	▶ N\ <u>負荷原単位</u> /			•					
図形	(の調整(B)・ 🔓 オートシェイブ(U)	+ 🔨 🔌 🗆] 4 🛟 🙎	🔊 🔷 -	🥖 - <u>A</u> - i	= = = = (»	
עדב	۲ ^۲					NUM			

(カ) 下水処理場の高度処理化

小項	概要	反映方法	設定条件	設定方法
目				
下水	下水処理	【設定変更の単位】	東京湾流総(H9)	下水処理場デー
処理	場の高度	全流域一律+流域毎	における整備目標	タ.xls において、
場の	処理によ	【反映方法・設定変更方法】	より、高度処理水	すべての流域に
高度	る下水処	下水処理場の汚濁負荷処理原	の排水水質は、	1、水質にデフォ
処理	理場から	単位を変更する。変更比率を	(デフォルト値と	ルト値(左記)を
化	の放流水	入力する。	して)	代入し、下水処
	質濃度を	ただし、変更が有効となるの	COD8.0(mg/l)	理場データのシ
	設定す	は設定水質を越える処理場の	TN8.0(mg/l)	ートを CSV 保
	る。	みで、削減の下限値は設定水	TP0.4(mg/l)	存。
		質とする。	BOD8.0(mg/l) と	
			する。	

(キ) 下水道整備

小項	概要	反映方法	設定条件	設定方法
目				
下水	下水道整	【設定変更の単位】	デフォルト	市町村基本データ.xls の
道整	備予定区	市町村単位で設定	値は 100%	「下水道普及率の設定」
備	域に下水	【反映方法・設定変更方法】		で、「整備進捗率の設
	道を整備	下水道普及率を設定		定」を選び、S列「下水
	する。			道整備進捗率(%)」のす
				べての市町村の欄に
				100 を入力する。
				市町村基本データのシ
				ートをCSV で保存。

🛛 Microsoft Excel - 1	図 Microsoft Excel - 市町村基本データ.xis									
Prイル(E) 編集(E)	表示(V) 挿入① 書式(Q) ツー	ル(工) データ(国) ウィンドウ	W) ヘルプ(H)	Adobe PDF(B))		質問を入力	」してください	×
	🖪 🖤 👗 🖻 🛍 • 🝼 🛱 •				Σ - 🗛 🖁	រ្ 👔 🚜 10	°×	<u></u> п - L	でけす。	~ T
MS P 13 m/2 ・ 1	$ \mathbf{p}_{\mathbf{r}} = \mathbf{p}_{\mathbf{r}} $	「整備資	É捗率0	D設定」	m - A -	A - M		オルド	612.9.	· C »
COE			- 12 1 1		□ · <u>~</u> ·	•••	^{>} ~+	m t+ ~	10006 6	いって
		を選択						mj trj C	100%0 C i	ᅗᄹ
			电識別	市町村名	 下水道整備	下水酒普及	筋水率(%)	下水如理水	【参考】	【參考】
		140	21204027013	10-111-0	道捗率(%)	率の任意設		の再利用(%)	現況下水道	下水道整
					(現況状態か	₹			普及率	率100%時
1 下水道善及	素の設定 /		-		ら何%登備さ れたか)	(▶ 水迫普 率
2 整備進捗率の設	定 🗸				0~100%	0~100%	0~100%	0~99%	変更不可	変更不
3			1 0	古河市	100	0	36	10	74	
4 節水型社会(の設定		2 0	総和町	100	0	36	10	45	
<u>5</u> 節水なし	•		3 0	五霞町	100	0	36	10	54	
	토엔미코스 웨스		4 0	境町	100	0	36	10	30	
	門利用率の設定			于都名中	100	0	36	10	82	
			7 1	<u> </u> 上	100	0	30	10	49	
10 シート'市町村	t基本データ'をCSVで保存		/ <u>/</u> B 1	佐野市	100	0	36	10	58	
11			9 1	鹿沼市	100	0	36	10	57	
12		1	0 1	日光市	100	0	36	10	61	
13 ※ ここでは用語をむ	「下のように定義する	1	1 1	今市市	100	0	36	10	55	
14 下水道普及率 =		1	2 1	小山市	100	0	36	10	41	
15	市町村人口	1	3 1	西西町	100	0	36	10	31	
10	下水道利田人口		4 1	来打吧	100	0	30	10	24	
18 下水道整備率 =			6 1	<u>定</u>) 王生町	100	0	36	10	62	
19		1	7 1	石橋町	100	0	36	10	64	
20	下水道利用人口-現況下水道利用.	人口 1	B 1	国分寺町	100	0	36	10	61	
21	計画下水道整備人口-現況下水道利用	1 1	9 1	野木町	100	0	36	10	47	
22		2	0 1	大平町	100	0	36	10	19	
● ● ● ▲ 条件設定/	市町村基本データ/			and the second s	•					
図形の調整(<u>R</u>) → 🔓 オー	ŀシェイフϢ+ ∖ 🔪 🗆 O 🔮	🖹 4 🔅 🛛	2 🔜 🔌	• <u>//</u> • <u>A</u> • =		<i>•</i>				
אעקב.									NUM	

(ク) 下水処理水の再利用

小項目	概要	反映方法	設定条件	設定方法
下水処	下水処理	【設定変更の単位】	東京都の下	市町村基本デー
理水の	水を生活	市町村単位で設定	水処理水リ	タ.xls、の「下水処
再利用	用水とし	【反映方法・設定変更方	サイクル率	理水再利用率の設
	て再利用	法】	が概ね 10%	定」で、「再利用率
	すること	生活用水の使用量原単位	弱で推移し	の設定」を選び、V
	により生	を一定率減じる(排水負荷	ている。	列「下水処理水の
	活用水取	量はこれに応じて自動的	デフォルト	再利用(%)」のすべ
	水量と下	に減少する)。現況の下水排	は 10%とす	ての市町村の欄に
	水排水量	水量のうちリサイクル率	る。	10を入力する。
	を削減す	分、生活用水使用量原単位		市町村基本データ
	る。	を減少させる。		のシートをCSV で
		再利用率を設定する。		保存。

(ケ) 合流改善

小項	概要	反映方法	設定条件	設定方法
目				
合流	合流改善	【設定変更の単位】	デフォルト	BASEDATA ¥合流
改善	を行い、	全流域一律+流域毎	は基準雨量	式.csv を合流式
	雨天時越	【反映方法・設定変更方法】	を25mmと	25mm.csv のもの
	流を抑制	雨天時越流が発生する基準雨	する。	と置き換える。
	する。	量値を設定		

(コ) 合流式下水道から分流式下水道への転換

a) 対象ファイル

.....¥Case0¥Basedata¥合流式.csv

b) 転換方法

合流式.csv をエクセルあるいはテキストエディタで開き、「合流分流」の欄の数値が「1」 になっている処理場を全て「0」にする。

🔀 M	icrosoft Exce	合流式.c	sv							_ 🗆 X
1	ファイル(E)	編集(<u>E</u>)表	示(⊻) 挿入(〕書式(<u>0</u>)	ツール①	データ(<u>D</u>) I	りセル統計(S)	ウィンドウ	(₩) ヘルブ(H)
Acr	obat									_ 8 ×
D		Z D 189	V P. m	<u> -</u>	~~- 🙆	▼ € A I	Z 40a	100%	- 🖸 🛛	*.0 .00 »
		8 🖸 🗸 🗸 🛛	a 48 65	× - / *	···· 👦	2)* Z		1 0010	· • •]	• 0.4 00.
									t	1 1
	C1	•	=	処理場	鼓、市町村数	奴(圏外含む)				
	A	В	d	D	E	F	G	Н	I	J .
1	119	270		処理場数、i	, 市町村数(圏	外含む)				-
2	0	0.9		降雨時未処	理水比率の	下限、上限	(比率B)			
3	5	72		比率B下限·	上限に対応	する日雨量				
4		処理場名	合流合流	BOD	COD	TN	TP(比率A)			
5	1	足利	1	36.07	10.14	1.67	1.83			
6	2	坂西団地		91.33	12.08	3.39	2.69			
7	3	黒川	V 0	44.12	9.07	2.22	3.46			
8	4	小山	1	22.27	11.65	2.32	5.13			
9	5	扶桑	1	28.27	13.3	3.76	2.73			
10	6	巴波川	0	169	16.82	2.8	6.74			
11	7	秋山川	1	53.64	6.93	2.72	7.81			
12	8	大岩藤	1	63.85	10.62	4.08	2.66			
13	9	思川	1	38.52	12.45	4.07	3.67			
14	10	前稿	1	11.06	9.29	1.86	1.9			
15	11	版剤	U	13.58	5.74	2.16	3.04			
16	12	阿久津	0	38.87	9.53	2.26	4.86			
17	13	現野	1	36.98	6.56	2.05	1.82			
18	14	小黒	0	21.04	8.63	2.74	2.99			
19	10	中央弗二	1	40.08	10.08	1.92	1.04			
20	17	空井 (11)		43.97	9.08	2.78	0.08			
21	10	2617年	0	90.55	10.00	3.17	0.04			
22	10	走成山大派	0	16.42	0.20	2.0	10.25			
24	20	精心湖	0	20.75	4 09	3.48	3.6			
25	20	사태	0	38.62	9.30	1.24	1.57			
26	22	物開沢	ĩ	11.56	4.03	6.4	5.32			
27	23	湯沢	1	12.01	5,53	3,27	5,86			
28	24	水沢	1	65.44	11.57	2.56	3.73			
29	25	四万	Ó	105	11.37	6.95	2.31			
30	26	沢渡	0	65.32	8.27	8.06	2.01			
31	27	嬬恋	Ū.	166.15	13.11	8.14	3.66			
32	28	草津	0	71.61	18.63	2.59	14.17			
33	29	白沢	0	50	5.82	2.11	3.39			
34	30	利根	0	148.33	6.92	1.81	3.73			
35	31	湯宿	0	176.5	21.41	41.38	3.05			
36	32	板倉	0	250	15.63	2.56	3.73			
37	33	奥利根	0	43.05	7.61	2.39	5.86			
	▶▶∖含流	λ_{I}				1				
図用	5の調整(<u>R</u>)、	· 🗟 🌀	オートシェイ:	Ĵ∭ • ∖	100		l 👧 👌	• 🏒 - 🗚	• = ==	료 🖌 🔋
- 2	2F							NI	M	

(サ) 高度処理合併浄化槽

小項	概要	反映方法	設定条件	設定方法
目				
高度	下水道未	【設定変更の単位】	デフォルト値	県基本データ.xls の「処理形態別
処理	整備地域	全流域一律+流域毎	は	人口割合(下水処理人口除く)の設
合併	に高度処	【反映方法・設定変更	BOD,COD,TN	定」で、「高度処理合併浄化槽の導
処理	理合併浄	方法】	は 2.5g/人日、	入」を選び、導入割合に 100 を入
槽に	化槽を導	高度処理合併処理槽	TP は 0.25g/人	力する。県基本データのシートを
整備	入する。	の汚濁負荷処理原単	日	CSV で保存。
		位を変更する。下水道		
		処理以外人口に対し		BASEDATA¥負荷原単位データ.csv
		て、下水整備予定人口		を負荷原単位(高度処理合併浄化
		を除いた人口で設定。		<i>槽</i>).csv のものと置き換える。
				(「未処理」の項目を高度処理合併
				浄化槽に置き換えてある)

(シ) 環境保全型社会

小項目	概要	反映方法	設定条件	設定方法
生活排水対策	台所から	【設定変更の単位】	デフォルト	BASEDATA¥負荷
(環境保全型社	の負荷量	全流域一律 + 流域每	値として	原単位デー
会)	を削減す	【反映方法・設定変更方法】	BOD,CODは	タ.csv を負荷原
	る。	単独、し尿、自家、未処理につ	28%、TN は	単位(台所対
		いて雑排水の除去率を変更す	30%、TP は	<i>策</i>).csv のものと
		る。	20%の削減	置き換える。
節水型社会	一人当た	【設定変更の単位】	デフォルト	市町村基本デー
(環境保全型社	りの水使	全流域一律+流域毎	値は 36%の	タ.xls を変更、市
会)	用量が減	【反映方法・設定変更方法】	削減	町村基本デー
	少する。	一人当たり水使用量原単位の		タ.csv 保存。
		変更		

(ス)下水の湾内直接流出のオールカット

a) 対象ファイル

.....¥Case0¥Psimulation¥data¥湾直接.csv

b) カット方法

湾直接.csv をエクセルあるいはテキストエディタで開き、「湾直接放流」の欄の数値が 「1」になっている処理場を全て「-1」にする。

M	icrosoft Exce	al - 湾直接.c	sv							_ 🗆 ×
8	ファイル(E)	編集(E) 表;	示── 挿入(〕 書式(<u>(</u>)	ツール①	データ(<u>D</u>) I	りセル統計(S)	ウィンドウ	₩ ヘルプ(н)
Acr	o <u>b</u> at									<u>_8×</u>
	🖻 🖬 🗧	3 🖪 🖤	እ 🖻 🛍	10 -	· 🖓 + 😫	$\Sigma f_* \frac{1}{2}$		400%	• 🕺 🖣	*.0.00 *
] 🕇	1 🔁
	B2	•	= 足利							
	A	B Mar Handa	C	D	E	F	G	Н	I	J 🔺
72	71	<u>処理場名</u> 津田辺	<u>)湾回接队流</u> 1							
73	72	十余二	0							
74	73	菊間	0							
75	74	松ヶ島	0							
77	76	1回 ク 用 君津富津	1							
78	77	花見川	0							
79	78	花見川第二	1							
80	79	江戸川第二 二河島	1							
82	81	これら	1							
83	82	芝浦	1							
84	83	小台	0							
85	84	落合	0							
87	86	新河岸	0							
88	87	小菅	0							
89	88	葛西	1							
90	89	中川	0							
91	90	中町 右明	1							
93	92	新河岸東	0							
94	93	北野	0							
95	94	錦町 東部	0							
90	95	東部	0 0							
98	97	鶴見川	0							
99	98	小河内	0							
100	99	北多摩一克北多摩一克	0							
102	100	北安摩二ち 多摩川上清	0							
103	102	浅川	0							
104	103	八王子	0							
105	104	南多摩	0							
107	105	中部	1							
108	107	南部	1							
109	108	北部第一	0							
110	109	澄北	0							
112	111	御奈川	1							
113	112	金沢	1							
114	113	北部第二	1							
115	114	人江崎	1							
117	115	海々力	U 0							
118	117	麻生	0							
119	118	下町	0							
120	119	追浜	1							· · · · ·
			+ 1 > - 4	2/03 3				# *		$\rightarrow \square$ »
] (Sift	15の調整(円)、	• K ©	オートシェイ:	v@•∖	× L C	′ 🗒 🛍 🝕	1 120 🖉	• 🚄 • 🗛	• = ==	₩ ∎
_⊐7.	ンド				E E	Sat=0		I) (NU	Mj	

(B) 計算ファイル作成プログラムの立ち上げ

インターフェイスの「施策の選定」メニューより「施策の選定」を選択し、物質流動デ ータ作成プログラムを立ち上げる。

図-7.3.2.15 施策設定のプルダウンメニュー

🧱 物質流動データ作成プログラム 🔰						
【 物質流動モデル 基本データ作成ブログラム 】v1.0 R 2005/6						
「プログラム仕様」						
このプログラムの上位フォルダIこ CaseDir.txt が必要です。						
ケースフォルダには、BASEDATA フォルダが必要であり、本ブログラムはその中のファイルを読み込みます このブログラムはHsimulation,Psimulationフォルダに以下の基本データファイルを作成します。						
ケース別に、農業取水量(INTAKE)、水道取水量(WATER)、下水処理場処理量(SUWAGE)を作成します						
メッシュ毎の計算をするため必要な、FORT_MESHDATA,FORT_CITYDATA,FORT_PREFDATA,						
FORT_IRRIDATA,FORT_LOADDATA を作成します。						
基本データの読込						
計算期間 ~ ~ (1950 ≦ 期間 ≦ 2001)						
データ変更 オブション						
270(V) ×210(H) のCSVファイル						
面積比率の変更 メッシュ数分、6種類の比率CSV						
データファイルの作成						
■ データファイルを作成するとともに、 カレントフォルダのBASEDATA/メッシュ基本データcsv に変更を反映する。						

図-7.3.2.16 施策設定画面

(C) データの読み込み・計算期間の設定・メッシュデータの直接読み込み

- ・ BASEDATAの中のCSVファイルを変更後、「基本データ読み込み」ボタンを押す。
- ・ 2001年の計算を行う場合、計算期間は2000~2001年とする。
- 210×270のメッシュデータを直接取り込む場合、データ変更オプションより該当ファイルを選択する。2100年人口と、2030年人口は¥¥Home¥BASEDATA変更¥に保存されている。210(東西)×270(南北)メッシュの南西端の3次メッシュは、「52383300」。

(D) データファイルの作成

- 「データファイルの作成」ボタンを押す。
- メッシュデータを取り込む場合は、「データファイルを作成するとともに、・・・反
 映する」のチェックボックスにチェックを入れる。

(3) モデルの実行

「モデルの実行」では「水循環モデル」、「物質循環モデル」、「東京湾モデル」の3つの メニューが表示されるので、実際にシミュレーションを行うモデルを選択する。また河川 の選択メニューより、実際にシミュレーションを行う河川を選択する。この際、「東京湾モ デル」まで計算を行う場合は全河川を選択する。

<u>H</u> elp パラメータの入力 施策の選定 H	モデルの実行 結果の可視化
🕨 🗐 1:1.292,810 💽 🛃 🌉	🂫 モデルの実行
ure 💽 Target:	
M ≟ 💈	

図-7.3.2.17 モデル実行のプルダウンメニュー

モデルの実行	×							
┌─ モデル計算年度 ────								
2001 ~ 2001	-							
実行モデルの選択								
☞ 流域水循環モデル								
☑ 流域物質流動モデル	▶ 流域物質流動モデル							
🔲 東京湾モデル								
河川の選択 1 利根川・江戸川 1 荒川 ロー中川・綾瀬川 2 多摩川 1 隅田川 ロー隅田川 ロー水櫃川 二 義老川	×							
ОК	キャンセル							

水循環モデル

「水循環モデル」をクリックすると図-7.3.2.18の通知画面が表示される。 「OK」をクリックすると、それまでの設定によるシミュレーションが始まる。

図-7.3.2.18 水循環モデル/実行の通知画面

物質循環モデル

「物質循環モデル」をクリックすると図-7.3.2.19の通知画面が表示される。「OK」をクリックすると、それまでの設定によるシミュレーションが始まる。

物質循環モデルの実行は、水循環モデルの計算がすべて終了した後に行う。

通知	
東京湾流入流域物質循環モラ	デルシミュレーションを行います。
OK.	キャンセル

図-7.3.2.19 物質循環モデル/実行の通知画面

(4) 結果の可視化

結果の可視化では、実際にシミュレーションを行ったモデルの結果が表示される。

1) 地点流量時系列の表示(水循環モデル計算結果)

「結果の可視化」から「水循環モデル」をクリックすると、「結果表示地点選択」画面が 表示される。地点を選択して、流量の図化を行う。

-	结果表示地点選	ir.			
:	地点リスト:				
	メッシュNo	地点	河川コード	河川名	
	6913	八斗島	0	利根川·江戸川	
	8247	栗橋	0	利根川・江戸川	
	8342	利根関宿	0	利根川・江戸川	
	10758	野田	0	利根川・江戸川	
	11491	流山	0	利根川・江戸川	
	13389	ंग	0	利根川・江戸川	
	8478	寄居	1	荒川	
	8862	大芦橋	1	荒川	
	10392	二瀬ダム	1	荒川	
	10588	浦山ダム	1	荒川	
	12036	笹目橋	1	荒川	
	LADGE		•	7=111	
		OK			Cancel

図^{-7.3.2.21} 結果の可視化 計算結果の選択画面

図^{-7.3.2.22} 地点流量時系列の結果表示

2) 地点別負荷水質時系列図の表示(物質循環モデル計算結果)

<u>t</u> elp パラメータの	D入力 施策の選	定 モデルの実行	結果の可視化	
1:1,292,810	0	🛛 🔊 🚳 🗖 🗌	💑 水循環モデル	
			📕 物質循環モデル	
e 👱	Target			
4 -2→ <i>≸</i>				
× شينة •				
7 3 9 9 3	結果の可相	化。物質循環	゠ ゙゚゚゚ <i>゠</i> , ゠゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゠゚゚゚゚゚゚゚゚゚゠゚゚゚゚゚	しダウンメー -
1.0.2.20	和木の可抗	16-10頁相以		~~~
			/	
結果表示地点	選択		/	×
++++		/		
地点り入下:				
No	地点	河川コード	河川名	
6913	八斗島	0	利根川・江戸川	
8247	東橋	ō /	利根川・江戸川	
8342	利根関宿	n /	利根山・江戸山	
10750		ő /	利根川、江市川	
111758	TTHH			
10/58	野田	ñ /	利根川小丁戸川	
10/58 11491 12290	新田 流山	o /	利根川・江戸川 利根川・江戸川	
10/58 11491 13389	野田 流山 河□ 宏屋	0	利根川・江戸川利根川・江戸川	
10/58 11491 13389 8478	野田 流山 河□ 寄居 古井禄		利根川・江戸川 利根川・江戸川 利根川・江戸川 荒川	
10758 11491 13389 8478 8862	野田 流山 河口 寄居 大芦橋		利根川・江戸川 利根川・江戸川 利根川・江戸川 荒川 荒川	
10758 11491 13389 8478 8862 10392	新田 流山 河口 寄居 大声橋 二瀬ダム		利根川·江戸川 利根川·江戸川 荒川 荒川 荒川	
10/58 11491 13389 8478 8862 10392	17日 流山 寄居 大芦橋 二瀬ダム 選択地点	0 0 1 1 1 0 結果表示	利根川·江戸川 利根川·江戸川 荒川 荒川	図 開じる
10/58 11491 13389 8478 8862 10392	打田 流口 寄居 大芦橋 二瀬ダム 選択地点	0 0 1 1 0 6 結果表示 東京湾流達ペース() 6	利根川·江戸川 利根川·江戸川 荒川 荒川 荒川	▼ 閉じる
10/58 11491 13389 8478 8862 10392	打田 流山 河口 零居 大芦橋 二瀬ダム 選択地点	0 0 1 1 0 6 年 2 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	利根川·江戸川 利根川·江戸川 荒川 荒川 荒川 荒川	▽ 閉じる

「結果の可視化」から「物質循環モデル」をクリックすると、「結果表示地点選択」画面 が表示される。表示地点を選択し、「選択地点の結果表示」をクリックして水質の図化を行 う。

図-7.3.2.24 物質循環モデルの結果画像

3) 年平均濃度平面図の表示

telp パラメータ	ぬ入力 施策の選定	皀 モデルの実行	結果の可視化		
1:1,292,810		🔊 🚳 🗖	💦 水循環モ 💦 物質循環	デル モデル	
e _	- larget			<u>≓</u> ц.	
ء 🛃 🕯			876 ж 77/50.		
7.3.2.25	結果の可視(上 - 物質循 ^現	景モデ ルの	プルダウン	ンメニ
結果表示地	点選択				
地点リスト:					
メッシュNo	地点	河川コード	河川名		
6913	八升島	0	利根中江戸	90	
8247	果稿	0	利根川・江戸	911 500	
10759	个小10月第11百 甲名中国	0	不可知力に対した	99 111	
11491	流山	0	利根川・江戸	00 00	
13389	河口	0	利根川 江戸	ijij	
8478	寄居	1	荒川		
8862	大芦橋	1	荒川		
10392	二潮ダム	1	売リ		
	選択地点0)結果表示		閉じる	
	J	東京湾流達ベース(河	(川合計)		
		年平均濃度平面	表示		

「結果表示地点選択」画面において、「年平均濃度平面表示」をクリックすると、ArcGIS 表示用の Shape ファイルの作成が開始される。

※ここで作成された Shape ファイルは、ケース 0 ではなく、…¥home¥System¥shape 以下に 上書きされるため、画像を保存する場合は dbf ファイル(陸域年平均濃度_BOD.dbf 等)を…¥ケ ース 0¥Flame 以下に保存しておく。

「陸域年平均濃度」を選択し、適当な凡例を与えることにより流域全体の水質の平均値の平面図が表示される。(次頁の図-7.3.2.26)

図-7.3.2.26 年平均水質平面図

- (5) その他の設定や表示について
- 1) 過去再現計算
- ・ 連続計算は行わず、単独年(助走計算を合わせて2年分)の計算とする
- ・ 計算可能年は1950年、1970年~2000年である。
- ① 計算フォルダの作成

¥ケース 1976 等

気象データの変更

<u>¥ケース 1976¥Hsimulation¥data</u> にある「humity.dat」、「Precip.dat」、「suntim.dat」、「Tmmean.dat」、「Tmmini.dat」、「windsp.dat」を計算対象年のデータ (¥BASEDATA 変更¥過去再現用¥気象データ)に置き換える。

tntankの書き換え1 (計算年の変更)

<u>¥ケース 1976¥Hsimulation¥cntl</u>にある「tntank00~25.dat」の1行目を書き換える。

例) 1976 年を計算の場合

4 tntankの書き換え2 (ダム設定の変更)

<u>¥ケース 1976¥Hsimulation¥cntl</u>にある「tntank00、01、03.dat」の48行目以降に ダム設定の記述があり、5桁目が2であればそのダム地点では実測放流量で計算される。 過去再現を行う場合、5桁目を1として、ダム操作はないものと仮定する。

ただし、1976年のみ実測データがありこの場合、<u>¥BASEDATA 変更¥過去再現用¥1976</u> <u>用</u>にある tntank**.dat を<u>¥ケース 1976¥Hsimulation¥cntl</u>に、daminf**.dat を<u>¥ケース</u> <u>1976¥Hsimulation¥</u>に上書きする。 ※daminf**.dat:ダム実測放流量データ

⑤ 土地利用の変更

土地利用を昭和51年のメッシュデータに置き換える場合、¥BASEDATA変更¥過去再 現用¥メッシュ基本データ(過去再現用).xls で条件を設定し、CSVファイルを作成する。

⑥ 負荷原単位の変更

以下を参考に「負荷原単位.csv」の変更を行う。

[※]ただしプログラムの都合上、1950年を計算の場合は1950~1951で設定する。

・ 生活負荷原単位の変更

		BOD	COD	TN	TP
流総指針	(単独)	22.7	22.5	10.1	0.94
(H11)	(合併)	2.9	5.4	6.05	0.91
	(し尿)	21.8	19	6.95	1.03
	(自家処理)	20	17	2	0.4
	(未処理)	29	27	11	1.3
流総指針	(単独)	17.45	19.075	10.1	0.742
(S49)	(合併)	2.2	4.4	6.05	0.679
	(し尿)	16.8	16.8	6.95	0.799
	(自家処理)	15.5	15.5	2	0.4
	(未処理)	22	22	11	0.97

工業系負荷原単位の変更

	BOD	COD	TN	TP
2001年想定	1.65	3.7	2.0	0.12
1976年想定	2.96	6.57	35.05	0.95
1970年想定	19.87	104.58	58.42	2.64
1950年想定	25.54	134.40	75.07	3.40

工業系負荷原単位は<u>¥BASEDATA 変更¥過去再現用¥工業負荷原単位(過去再現用).xls</u>で計算年と排水水質を設定することで算出される。

工業系負荷原単位を変更する場合は同時に、「県基本データ」(工業取水量原単位)、「メ ッシュ基本データ」(出荷額)を書き換える必要がある。

¥BASEDATA 変更¥過去再現用¥メッシュ基本データ(過去再現用).xls で西暦年を選択し、CSVで保存する。

¥BASEDATA変更¥過去再現用¥県基本データ(過去再現用).xlsで西暦年を選択し、CSV で保存する。

⑦ to-baymodel.cnt の変更

<u>¥ケース 1976¥Psimulation¥cntl</u>にある「To-Baymodel.cnt」の 1、2行目の西暦を変 更する。1976 年を計算する場合は、下図において2箇所ずつ 2000→1975、2002→1977 に変更する。

以上の設定が終了後、インターフェイスで「施策の設定」の処理を行う。このとき計算 年が例えば 1976 年の場合は、「計算期間」の入力は 1975~1976 とする。ただし、1950 年の計算を行う場合のみ、1950~1951 を入力する。

2) 負荷集計計算

- 流域別流達負荷量の作成方法
 - a. すべての流域で水循環・物質循環の計算を行う。
 - b. ¥ケース 0¥Psimulation¥bin¥AfterPsim_sys.bat を実行。
 - c. ¥ケース 0¥Psimulation¥result¥に e_ave_day.dat が作成される。
 - d. ¥ケース 0¥Psimulation¥result¥e_ave_day.dat をエクセルで読み込み、ツールバーの 「データ→区切り位置」でセルに分割
 - e. ¥ケース 0¥流域別流達負荷量.xls のシート「e_ave_day」に上書きで貼り付ける。
 - f. 流域別流達負荷量.xlsのシート「最終表示」に結果が表示される。
- 流域別発生負荷量の作成方法
 - a. ①で AfterPsim_sys.bat を実行した際に、 ¥ケース 0¥Psimulation¥result ¥に e_sum_day.dat が同時作成される。
 - b. ¥ケース 0¥Psimulation¥result¥e_sum_day.dat をエクセルで読み込み、ツールバー の「データ→区切り位置」でセルに分割
 - c. ¥ケース 0¥流域別発生負荷量.xls のシート「e_sum_day」に上書きで貼り付ける。
 - d. ¥ケース 0¥流域別負荷集計.exe を実行する。以下の画面が表示される。

📓 造規則負荷集計 Version 6.0 🛛 🛛 🗙		
【 流域別負荷集計プログラム 】 v6.0 R 2005/7		
一使用方法 1. BASEDATAフォルダを指示		
2. 上記以外に使用するファイルは、pitot** (00~08)のみ、収納されたフォルダを指定してください。		
集計年		チェック外す
Basedata フォルダ	1	
pltot フォルダ	L 1	
出力ファイル名		
☑ メッシュ毎の頁荷集計を出力 Mesh_****_nnnn.csv ***:Kind, nnnn:year		
「下水処理場の負荷をメッシュに加算する。		
「集計開始」 開Uる		

- ・集計年「2001」。
- ・BASEDATA フォルダは「¥ケース 0¥BASEDATA」を選択。
- ・Pltot フォルダは「¥ケース 0¥Psimulation¥result」を選択。
- ・任意の出力ファイル名(例:aaa)を設定し、集計開始ボタンを押す。
- ・aaa.csv が同じフォルダに作成される
- e. aaa.csv を流域別発生負荷量.xls のシート「発生」に上書きで貼り付ける。
- f. 流域別発生負荷量.xlsのシート「最終表示」に結果が表示される。

3) 河口・水質測定地点上流域全体の表面,中間,基底の流出負荷、水質のグラフ作成方法

02 綾瀬川・中川流域

20 養老川~村田川残流域

05 小櫃川流域

08 鶴見川流域

14 花見川(千葉)

11 都川(千葉)

- a) 使用データファイル
 - ・流量データ¥<u>Case0</u>¥Hsimulation¥result¥**Flwtot**.dat**
 - ・負荷量データ¥Case0¥Psimulation¥result¥Pltot**.dat

計算を行っているフォルダ(フォルダ名は可変)

- ※ **は流域番号を表す。
- Tran**.datの番号と流域の対応は下記のとおり
 - 00 利根川・江戸川流域01 荒川流域03 多摩川流域04 隅田川流域
 - 06 養老川流域
 07 小糸川流域
 - 09 村田川(千葉) 10 帷子川(神奈川)

 - 12 目黒川(東京) 13 帷子川南残流域 1
 - 15 帷子川南残流域 2 16 養老~小櫃川残流域 1 17 養老川~小櫃川残流域 2
 - 18 矢那川(千葉) 19 海老川(千葉)
 - 21 江戸川~中川残流域 22 目黒川~多摩川残流域 23 都川~村田川残流域
 - 24 海老川~花見川残流域 25 荒川~隅田川残流域
- b) 作成グラフフォーマットファイル ・物質収支グラフフォーム(集計).xls
- c) グラフ作成手順

ア)流量データの貼り付け

- ・Flwtot**.dat をテキストエディタで開く。
- ・流量測定地点および河口地点ごとに成分流出量のデータが1年分ずつ縦方向に格納されているので、表示させたい地点の一年分のデータをテキストエディタ上でコピーする。

📋 flwtot	:03.dat - ワードハ	*y**									_ 🗆 ×
ファイル(ビ) 編集(<u>E</u>) 表	i∓W	挿入仰	書式(Q)	^/レプ(<u>H</u>)						
De		88	X Bo	اصلی							
		ara	00 1-12								
Ca	lc No>		467	Tank No.	>	12195	1 200002000	0.051303010			A 000 100 F01
	2 0.0000		0.0)00000028)000000259	1.8	38100008	4.763237000	3.651/3/213 8 005286217	0.0000074	28 0.001204441 28 0.001204441	-0.033432581 0
	3 0.0000	000000	ŏ.0	000000312	1.7	55544305	4.629949570	7.952980995	0.0000074	28 0.001204441	-0.033432581 0
	4 0.0000	000000	0.0	00000081	1.7	16829538	4.566230297	7.902482986	0.0000074	28 0.001204441	-0.033432581 0
	5 0.0000		0.0	00000296	1.6	31555390	4.504208088	8.243759155	0.0000074	28 0.001204441	-0.033432581 0
	7 0.0000		0.0	000000288	1 1.6	43548650	4.443880558	3.656625748	0.0000074	28 0.001204441	-0.033432581 0
	8 0.0057	28506	0.0	371866413	2.0	3219995	4.334397793	12.738903046	0.0000074		-0.033432581 0
	9 0.0000	00000	ŏ.3	94291735	5 2.8	32511854	4.300986767	11.841689110	0.0000074	28 0.001204441	-0.033432581 0
	10 0.0000	00000	0.2	234867513	3.4	45347309	4.285370350	12.149708748	0.0000074	28 0.001204441	-0.033432581 0
	11 0.0000	000000	0.0	2816436	3.7	64670134	4.281380653	11.588732719	0.0000074	28 0.001204441	-0.033432581 0
	12 U.UUUU 19 0.0000	000000	U.U	JUUUUUI/, 100000079	(3.6) 9.5	/ / 355 DE900047	4.280/36051	11.525254250	0.00000/4	28 U.UUI2U4441	-0.033432581 0
	14 0.0000	100000	0.0)000000073)000000083	3.4	18366203	4.272530078	11.413784981	0.0000074		-0.033432581 0
	15 0.0000	00000	Ó.(0000036	3.2	39783716	4.264583111	11.359718323	0.0000074	28 0.001204441	-0.033432581 0
	16 0.0000	000000	0.0)00000304	\$ 3.1	78830862	4.254337788	11.307874680	0.0000074	28 0.001204441	-0.033432581 0
	17 0.0000		0.0	000000540) 3.0	74812651	4.241981983	11.103106499	0.0000074	28 0.001204441	-0.033432581 0
	18 0.0000		0.0	000000254	+ 2.8 ; 2.9	25071992	4.22/6888318	11.034888712	0.0000074	28 0.001204441	-0.033432581 0
	20 0.0000	000000	ů.ů	000000302	2.7	38575401	4.193949699	10.795480728	0.0000074	28 0.001204441	-0.033432581 0
	21 0.0000	00000	0.0	00000068	2.7	16916323	4.174826145	11.075617790	0.0000074	28 0.001204441	-0.033432581 0
	22 0.0000	00000	0.0	00000088	2.6	39429808	4.154384613	11.033235550	0.0000074	28 0.001204441	-0.033432581 0
	23 0.0000	000000	0.0	000000903	2.5	55950871	4.132748127	10.991992950	0.0000074	28 0.001204441	-0.033432581 0
	24 0.0000		U. (000000028	5 2.4	36284362	4.11003/804	10.351/38433	0.0000074	28 0.001204441	-0.033432581 0
	26 0.0000		0.8	62020659	3.6	42528534	4.084049225	12.848421097	0.0000074	28 0.001204441	-0.033432581 0
	0.8675	606742	Ó.;	07023084	4.4	70184326	4.100764751	14.007574081	0.0000074	28 0.001204441	-0.033432581 0
	28 0.0000	00000	Q.;	22919552	2 4.5	12223721	4.131213188	11.996834755	0.0000074	28 0.001204441	-0.033432581 0
	29 0.0000		0.0	00000118	4.3	24948311	4.161734104	11.799373627	0.0000074	28 0.001204441	-0.033432581 0
	30 U.UUUU 21 O.OOOO	000000	U.U	/UUUUUU2 \000000028	4.1 : 9 0	35681623 20102066	4.18/2//31/	11.727539062	0.00000/4	28 0.001204441	-0.033432581 0
	32 0.0000	100000	0.0)3759708F	3.9	41783667	4.225232124	11.908898354	0.0000074		-0.033432581 0
	33 0.0000	00000	Ó.(06938023	3.9	41184282	4.242365360	11.699961662	0.0000074	28 0.001204441	-0.033432581 0
	34 0.0000	000000	0.0	000000130) 3.81	03356647	4.257430077	11.628115654	0.0000074	28 0.001204441	-0.033432581 0
	35 0.0000		0.0	0000015	5 3.6	57716274	4.268385410	11.592026711	0.0000074	28 0.001204441	-0.033432581 0
	36 U.UUUU 27 O.OOOO		0.0	100000023	5 3.00 7 9.4	22034370	4.270270022	11.524510384	0.0000074	28 0.001204441	-0.033432581 0
	38 0.0000	000000	ů.ů	173070168	3.6	46230459	4.283822536	11.993085861	0.0000074		-0.033432581 0
	39 0.0000	000000	ŏ.(09293475	3.8	18921804	4.293015957	11.654342651	0.0000074	28 0.001204441	-0.033432581 0
	40 0.0000	00000	0.0	00000086	3.7	05502748	4.302410603	10.433066368	0.0000074	28 0.001204441	-0.033432581 0
	41 0.0000	000000	0.0	00000243	3.5	59828808	4.807997704	8.356030464	0.0000074	28 0.001204441	-0.033432581 0
	42 U.UUUU 49 O.OOOO		0.0	000000648) 3.4·	49919701	4.303762001	7.513808250	0.0000074	28 0.001204441	-0.033432581 0
	44 0.0000	00000	0.0	000004018	3.2	33233452	4.303170204	7.426655293	0.0000074	28 0.001204441	-0.033432581 0
	45 0.0000	000000	0.0	000000996	3 8.1	33524370	4.296030521	7.454723358	0.0000074	28 0.001204441	-0.033432581 0
	46 0.0000	00000	0.0	0000002	3.1	29817963	4.287315369	7.359364510	0.0000074	28 0.001204441	-0.033432581 0
	4/ 0.0000	100000	0.0	100004263	3.0	9598446	4.276853561	7.352941990	0.0000074	28 0.001204441	-0.033432581 0 🗸
•											Þ
F1 キーを	押すとヘルフを表:	示します	•								NUM //

Flwtot03.dat(多摩川流域)をワードパットで開いた画面 地点ごとの一年分の日データの先頭に計算順(Calc No.)およびメッシュ番号(Tank No.)が記載 されているので、これにより地点を判別する。(番号と地点の対応は後述。「Calc No.」をキー ワードとしてエディタの検索機能を用いると、比較的簡単に図化したい地点の先頭にカーソル を移動させることができます。)

- ・コピーしたデータをエクセル新規シートに貼り付ける。
- ・データを貼り付けたエクセル新規シートの「A列」を全て選択し、ファイルメニューの「データ→区切り位置」を選択する。

- ・元データの形式が「スペースによって…」の方にチェックされていることを確認し、
 「次へ」をクリックする。
- ・区切り位置がデータの末尾になっていることを確認し、「完了」をクリックする。

・区切り位置を直したデータを全て選択し、「物質収支グラフフォーム.xls」の「流量」シ ートに貼り付ける。

「貼り付け」

() 負荷量データの貼り付け

- ・Pltot**.dat をテキストエディタで開く。
- ・水質測定地点および河口地点ごとに成分流出負荷量のデータが1年分ずつ縦方向に格納されているので、表示させたい地点の一年分のデータをテキストエディタ上でコピーする。

Prince Prin Prin Prin	pltot03.dat -	- ワードパッド		±++									_ 🗆 ×
Calc No. > 467 Tank No. > 12185 2 0.00 0.00 0.00 0.05 0.08 0.00 0.05 0.18 0.00 0.18 0.00 0.18 0.00 0.18 0.00 0.18 0.00 0.12 0.18 0.00 0.12 0.18 0.00 0.12 0.18 0.00 0.12 0.18 0.00 0.12 0.18 0.00 0.12 0.18 0.00 0.12 0.18 0.00 0.12 0.18 0.100 0.12 0.18 0.100 0.12 0.18 0.100 0.12 0.18 0.100 0.12 0.18 0.100 0.11 0.18 0.100 0.11 1.18 0.00 0.11 0.18 0.00 0.11 1.18 0.00 0.11 1.18 0.01 0.11 0.18 0.00 0.11 1.18 0.00 0.12 1.11 0.18 0.00 0.12 1.11 0.18 0.00 0.12 1.11 1.10	- 771ルビノ 編集 	展U/表示⊻	/ ∄\Ų I uln⊾		107°CH)								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Ð								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Calc No 1 2 3 4 5 6 7 8 8 10 11 12 13 14 15 16 17 18 18 19 20 21 20 21 22 23 24 22 25 6 27	> . 0.00 . 00	X E 467 0.00 0.00 0.00 0.02 4.34	Tank No 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	-> 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	$\begin{array}{c} 12195\\ 0.06\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.04\\ 0.08\\ 0.14\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.20\\ 0.14\\ 0.14\\ 0.14\\ 0.18\\ 0.16\\ 0.15\\ 0.14\\ 0.11\\ 0.11\\ 0.11\\ 0.11\\ 0.13\\ 0.23$	0.03 0.03 0.03 0.02 0.02 0.04 0.04 0.04 0.04 0.04 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08	0.00 0.00	0.06 0.05 0.05 0.05 0.05 0.04 0.22 0.23 0.22 0.23 0.14 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18	0.13 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.12 0.12	$\begin{array}{c} 0.06\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.06\\$	0.00 0.00	0.13 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11
	28 28 30 31 32 33 34 35 36 37 38 38 40 41 42 43 44 44 45 46 47 47 47				0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.35 0.32 0.32 0.27 0.27 0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	0.18 0.18 0.16 0.14 0.13 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.12	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.385 0.32 0.27 0.27 0.27 0.23 0.23 0.23 0.24 0.22 0.24 0.22 0.24 0.22 0.24 0.22 0.21 0.13 0.17 0.18	0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	0.007 0.07 0.06 0.06 0.06 0.06 0.06 0.06	$\begin{array}{c} 0.00\\$	0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

Pltot03.dat(多摩川流域)をワードパットで開いた画面

地点ごとの一年分の日データの先頭に計算順(Calc No.)およびメッシュ番号(Tank No.)が記載 されているので、これにより地点を判別する。(番号と地点の対応は後述。「Calc No.」をキー ワードとしてエディタの検索機能を用いると、比較的簡単に図化したい地点の先頭にカーソル を移動させることができます。)

注意!!

Pltot**.dat には、同じ地点で3種類のデータが縦方向に並んでいます。最初にタンクごと流 出成分集計データ、次に点源の生活系・工業系・畜産系集計データ、最後に面源の土地利用別 (畑・畑以外)集計データという並びです。 (以下の手順は流量データ貼り付けと同じようなものとなります。)

- ・コピーしたデータをエクセル新規シートに貼り付ける。
- ・データを貼り付けたエクセル新規シートの「A列」を全て選択し、ファイルメニューの「データ→区切り位置」を選択する。
- ・元データの形式が「スペースによって…」の方にチェックされていることを確認し、
 「次へ」をクリックする。
- ・区切り位置がデータの末尾になっていることを確認し、「完了」をクリックする。
- ・区切り位置を直したデータを全て選択し、「物質収支グラフフォーム.xls」の「負荷量」 シートに貼り付ける。(次頁参照)

以上の手順により、「GRAPH(3)」シートの負荷量グラフ、「GRAPH(2)」シートの水質グ ラフおよびグラフ下の負荷量・濃度の平均値表数値が更新されます。 各シートの「A1」の セルに貼り付けたデータの地点名を入力してください。

										1	2					
_	Al	-		Calc												
. 6	A	1		C	D	E	F STATUTE	6	н		1	<u>K</u>	1	M	N	_
ΗĽ	-BIC	10	0	407	anii, rez.		0.06	0.02		0.06	0.10	0.06		010	0.1	
		2	0	0	0	0	0.05	0.03	0	0.05	0.12	0.05		0.10	2.1	
		â	0	0	0	0	0.05	0.03	0	0.05	0.12	0.06	0	0.12	21	
		4	0	0	ñ	0	0.05	0.03	0	0.05	0.12	0.06	0	0.12	2.1	
		5	0	0	õ	0	0.05	0.02	0	0.05	0.12	0.06	0	0.12	2.1	
		6	0	0	0	0	0.05	0.02	0	0.05	0.11	0.06	0	0.11	2.1	
		7	0	0	0	0	0.04	0.02	0	0.04	0.11	0.06	0	0.11	2.1	
		8	1.65	0.65	0.06	1.55	0.08	0.04	0	0.08	0.11	0.06	0	0.11	2.1	
		9	0.31	0.13	0.01	0.31	0.14	0.07	0	0.14	0.12	0.06	0	0.12	2.1	
		10	0.19	0.09	0.01	0.19	0.21	0.1	0	0.21	0.12	0.06	0	0.12	2.1	
		11	0	0	0	0	0.25	0.12	0.01	0.25	0.12	0.06	0	0.12	2.1	
		12	0	0	0	0	0.23	0.12	0.01	0.23	0.12	0.06	0	0.12	2.1	
4		13	0	0	0	0	0.22	0.11	0.01	0.22	0.12	0.06	0	0.12	2.1	
		4	0	0	0	0	0.2	0.1	0	0.2	0.12	0.06	0	0.12	2.1	
1		10	0	0	0	U	0.19	0.09	0	0.19	0.12	0.06	0	0.12	2.1	
1		0	0	0	0	0	0.18	0.09	0	0.18	012	0.06	0	0.12	2.1	
		17	0	0	0	0	0.15	0.00	0	0.16	0.11	0.06	0	0.11	2.1	
ł.		18	0	0	0	U O	0.10	0.08	0	0.15	0.11	0.00	0	0.11	2.1	
1		19	0		0	0	0,14	0.07	0	0.14	0.11	0.00	0	0.11	2.1	
ł.		10	0	0	0	0	0.14	0.07	0	0.14	0.11	0.05	0	0.11	0.1	
1		12	0		0	0	0.10	0.00	0	0.13	0.11	0.05		0.11	2.4	
1		10	0	0		0	0.12	0.06	0	0.12	01	0.06	0	11.1	0.1	
1	-12	74	0	0	0	0	0.11	0.05	0	0.11	0.1	0.05	0	01	21	
1		15	0.05	0.02	ő	0.05	0.13	0.06	0	0.13	0.1	0.05	0	0.1	21	
1	1	16	111	0.46	0.04	111	0.23	0.12	0.01	0.23	0.11	0.05	0	0.11	21	
		27. 1	0.41	4.34	0.38	10.41	0.35	0.17	0.01	0.35	013	0.06	0	013	2.1	
1		29	0.07	0.03	0	0.07	0.35	0.10	0.01	0.35	0.13	0.07	0	0.12	2.1	
		29	0	0	Ű	U	0.32	0.16	0.01	0.32	0.13	0.07	0	0.13	2.1	
	1	30	0	0	0	0	0.3	0,15	0.01	0.3	0.13	0.06	0	0.13	2.1	
		31	0	0	0	0	0.27	0.14	0.01	0.27	0.12	0.06	0	012	2.1	
	194	12	0.01	0	0	0.01	0.27	0.10	0.01	0.27	0.12	0.06	0	0.12	2.1	
4		33	0	0	0	0	0.27	0.13	0.01	0.27	0.12	0.06	0	0.12	2,1	
		34	0	0	0	0	0.25	0.12	0.01	0.25	0.12	0.06	0	0.12	2.1	
4)5	0	0	0	0	0.23	0.11	0.01	0.23	0.12	0.06	0	012	2,1	
H		30	0	0	0	0	0.21	0.11	0.01	0.21	0.12	0.06	0	0.12	2.1	
Ŧ.		11	0.00	0.01	0	0	0.2	0.1	0	0.2	0.12	0.06	0	0.12	21	
		10	0.02	0.01	0	0.02	0.23	0.11	0.01	0.23	0.12	0.06	0	0.12	2,1	
H	1	10	0	0	0	0	0.20	0.13	0.01	0.25	0.12	0.00	0	0.12	2.1	
	2	15	0	0	0	0	0.24	0.12	0.01	0.24	0.12	0.06	0	0.12	2.1	
f.		12	8	0	0	0	0.21	0.1	0.01	0.21	0.11	0.06	0	0.11	21	
1		13	ő	0	0	0	0.19	0.1	0	0.19	0.11	0.05	ő	0.11	21	
1		44	0	0	0	0	0.18	0.09	0	0.18	0.11	0.05	0	0.11	2.1	
1		45	0	0	0	0	0.17	0.09	0	0.17	0.11	0.05	0	0.11	2.1	
		16	0	0	0	0	0.17	0.08	0	0.17	0.11	0.05	0	0.11	2.1	
1		47	0	0	0	0	0.16	0.08	0	0.16	0.1	0.05	0	0.1	2.1	
1	11	18	0	0	U	0	0.15	0.08	0	0.15	0.1	0.05	Û	0.1	2.1	
		19	0	0	0	0	0.15	0.08	0	0.15	0.1	0.05	0	0.1	2,1	
	12	50	0	0	0	0	0.17	0.00	0	0.17	0.1	0.05	0	0.1	2.1	
	(INAS	heet1 /								141					And in case of the local division of the loc	

 \downarrow

「コピー」

									12	12				
2	A3	-	= Calc											
	•	表面負荷	C I	D	E (「「「「「「」」」	0	H	200	委應負荷	K.	T.0		人工乐角间
5	ik	No>	467 T	ank No.		12195	1/4		800	COD	1.0		800	000 1
	1	0	0	0	0	0.06	0.03	0	0.06	0.10	0.06	0	0.13	2.1
	2	0	0	0	0	0.05	0.00	0	0.05	0.12	0.06	0	0.12	2.1
	3	D	0	0	0	0.05	0.03	0	0.05	0.12	0.06	0	0.12	21
		0	0	0	0	0.05	0.03	0	0.05	0.12	0.06	0	0.12	2.1
	6	0	0	0	0	0.06	0.02	0	0.05	0.12	0.06	0	0.12	21
	2	0	0		0	0.04	0.02	0	0.04	0.11	0.06	ő	0.11	21
		1.55	0.65	0.05	1.55	0.08	0.04	0	0.09	0.11	0.06	0	0.11	21
	9	0.31	0.13	0.01	0.31	014	0.07	0	0.14	0.12	0.06	0	0.12	21
	10	0.19	0.06	0.01	0.19	0.21	0.1	0	0.21	0.12	0.06	0	0.12	2.1
	11	0	0	0	0	0.25	0.12	0.01	0.25	0.12	0.06	0	0.12	2.1
	12	0	0	0	0	0.23	0.12	0.01	0.23	0.12	0.06	0	0.12	2.1
	13	0	0	0	0	0.22	0.11	0.01	0.22	0.12	0.06	0	0.12	2.1
	14	0	0	0	.0	0.2	0.1	0	0.2	0.12	0.06	0	0.12	21
	16	0	0	0	ň	0.19	0.09	n n	0.19	0.12	0.06	0	0.12	21
	17	ů.	ő	ő	0	0.16	0.08	0	016	0.11	0.06	6 0	0.11	21
	18	0	0	0	0	0.15	0.08	0	0.15	0.11	0.06	0	0.11	2.1
	19	0	0	0	0	0.14	0.07	0	0.14	0.11	0.06	0	0.11	2.1
	20	0	0	0	0	0.14	0.07	0	0.14	0.11	0.05	0	0.11	21
	21	0	0	0	0	0.13	0.05	0	0.13	0.11	0.05	0	0.11	2.1
	22	0	0	0	. 0	0.12	0.06	0	0.12	0.11	0.05	0	0.11	2.1
Ŀ	- 23	0	0	0	0	0.11	0.85	0	0.11	0.1	0.05	0	0.1	2.1
ļ.	24	0	0	0	0	0.11	0.05	U	0.11	0.1	0.05	0	0.1	21
	20	0.05	0.02	0.04	0.05	0.13	0.05	0.01	0.13	0.1	0.05	0	0.11	21
E	27	10.41	4.34	0.38	10.41	0.35	0.12	0.01	0.35	0.13	0.00	ő	0.13	21
	28	0.07	0.03	0	0.07	0.35	0.18	0.01	0.35	0.13	0.07	0	0.13	21
	29	0	0	0	0	0.02	0.16	0.01	0.02	0.13	0.07	0	0.12	2.1
		0	0	0	0	0.3	0.15	0.01	0.0	0.13	0.06	0	0.13	2.1
	21	0	0	0	0	0.27	0.14	0.01	0.27	0.12	0.06	0	0.12	2.1
E	32	0.01	0	0	0.01	0.27	0.13	0.01	0.27	0.12	0.06	0	0.12	2.1
	33	0	0	0	0	0.27	0.13	0.01	0.27	0.12	0.06	0	0.12	21
	34	0	0	0	0	0.25	0.12	0.01	0.25	0.12	0.06	0	0.12	21
	20	0	0	0	0	0.23	0.11	0.01	0.23	0.12	0.06	0	0.12	21
	37	0	0	0	0	0.21	01	0.01	0.2	0.12	0.00	0	0.12	21
	38	0.02	0.01	0	0.02	0.23	0.11	0.01	0.23	0.12	0.06	0	0.12	21
	39	0	0	0	0	0.25	0.13	0.01	0.25	0.12	0.06	0	0.12	21
	40	0	0	0	.0	0.24	0.12	0.01	0.24	0.12	0.06	0	0.12	21
	41	0	0	0	0	0.22	0.11	0.01	0.22	0.11	0.06	0	0.11	2.1
	42	0	0	0	0	0.21	0.1	0	0.21	0.11	0.06	0	0.11	2.1
	43	0,	0	0	0	0.19	0.1	0	0.19	0.11	0.05	0	0 11	2.1
	44	0	0	0	0	0.18	0.09	0	0.18	0.11	0.05	0	0.11	21
	40	0	0	0	0	0.17	0.09	0	0.17	0.11	0.06	0	0.11	21
	40	0	0	0	0	0.17	0.08	0	0.17	0.11	0.05	0	0.11	21
Ľ	48	0	n	0	0	0.15	0.08	0	0.15	0.1	0.00	0	0.1	21

「貼り付け」

ウ) Tank 番号と地点の対応

各河川の出力メッシュと地点の対応

	-	-
	メッシュNo	地点
00利根川·江戸川	6913	八斗島
	8247	栗橋
	8342	利根関宿
	10758	野田
	11491	流山
	13389	河口
01荒川	10392	二瀬ダム
	10588	浦山ダム
	8478	寄居
	8862	大芦橋
	12036	笹目橋
	13665	河口
02中川・綾瀬川	11487	八条
	13600	河口
03多摩川	12195	調布橋
	13640	石原
	14435	河口
04千葉1	14754	河口
05隅田川	13943	河口
06千葉2養老川	14224	河口
07千葉3	14992	河口
08鶴見川	14336	亀の子橋
	14554	河口

その他の残流域は河口地点のみ

- I)河川メッシュの抽出方法
 - (1) 対象ファイル

……¥Case0¥Hsimulation¥cntl¥Tran**.dat (**は河川流域の番号)

- (2) 抽出方法
- ・ Tran**.dat をテキストエディタで開く。
- 2行目以降に河川流域ごとの計算メッシュ順の設定データが並んでいる。
- 2行目以降: 最初の5カラム:計算順

5桁のメッシュ番号

図-7.3.2.27 多摩川の例

7.3.3 東京湾モデルの計算

(1) パラメータの入力

「パラメータの入力」から「東京湾モデル」を選択すると「メインスイッチボード(東 京湾)」が表示される。

計算時間ステップや溶出速度についてはインターフェイス上で変更する。

その他の項目については下記の手順で設定テキストファイルを変更を行う。

1) 水質モデルのパラメータの変更

a) 対象ファイル

.....¥<u>Case0</u>¥Tokyo_bay¥cntl¥ **coeffcient.txt**

b) 変更方法

coeffcient.txt をテキストエディタで開き、変更したいパラメータの欄の数値を変更する。

	H:¥tyol:yo-(GUI¥ケース1950¥	Tokyo_bay¥cnt	¥coeffcier	nt.txt -秀丸						_ 🗆 ×
77	イル(E) 編約	集(E) 検索(S)	<u> ሳሪ</u> ዮን <u>መ</u>	7カロ(<u>M</u>) +	その他(0)		•				1: 1
					<u>vfot</u> 🖸				170	100	
<u>u</u>		<u>, 10 , , , , , , , ,</u>	20,,,1,,,			50 ,			<u></u> ↓	1	┶╍╍▲
l :	共通の位	糸枚						С	oef0↓		
Ľ	20,	.0 best.	_temp (°C)		 !最適水温↓				↓		
	植物ブ	ラレクトンで	で使用する係	彩数				c	↓ oef1↓		
	0.02 0.26 0.17 0.04 0.00 0.2 0.0 1.0 0.2 0.1 0.2 0.2 0.2 0.2	26 1ambdx 18 1ambdx 16 best_ 17 f_k_ir 18 f_k_ir 13 f_k_ir 13 f_k_ir 13 f_mur 13 f_mur 13 r_p 16 r_p 17 theta 18 omega 15 alpha	a_g ! ; a_h ! ; illumi ! ; p ! k p_max ! ; p ! k _p ! k _p ! c	lg i ls : (in) (ip) (pmax i (pmax i (pmax i (pmax i (pmax i (pmax i)) (pmax i (pmax i)) (pmax i) (pmax i) (pm	植物プランク 最機能に 最適機能 に MJ 無機 総 し ンク の 米 機 地 物 フ ランク ク 植 物 プ ランク ク で し の 光 の 光 の 光 の 光 の 光 の 光 の 光 の 光 の 光 の	ト減/10min)た シ衰のののした ののののののののの ののののののののののののののののののののののの	こる光の → コエ 大 シ → コエ 、 、 、 、 、 、 、 、 、 、 、 、 、	表 数 (m 愛数 (m (1 平 (1 平 (1 平 (1 平 (1 平 (1 平 (1 平 (↓ 女↓ sN/I)↓ /day)↓ ≊ (1/d: 系数↓	ay)↓	
	動物ブ	ラレクトンで	で使用する係	 系数 				c	↓ oef2↓		
	40. 0.0 1.0 0.7 1.0 0.0 0.0	5 gamma 4 alpha 2 r_z 5 theta 1 d_z 72 c_g_m 5 theta 12 f_k_p 5 alpha	_pz ! ? _z ! C _z ! C _z ! C ax ! C _pg ! C g ! C	rpz Rz Pz Dz Ogmax Ppg Kpg 1 Rzi 1	植物plankton 植物プランク 動物プランク 動物プランク のでにおける 20°Cにおける 飽食効果に対 動物プランク	量トトトト の の の の の の に の い の に の に の の に の の の の)動物plar シ動物plar シマレン いたよる 一般のによる 見然死滅 過率 の 温 副本 い に い に い の に り の に よる で の に よる で の に よる で の に よる で の に よる で の に よ の の に よ の の に よ の の に よ の の に よ の で の に よ の で の に よ の の に よ の の に よ の の に よ の の に よ の の に よ の の に よ の の に よ の の に よ の の に よ の の の に よ の の に よ の の の に よ の の の い ろ の の い う の の に よ の の の の の の の の の の の い う の の の の の の の	hktonが 分解退 分解退 gC*day gC*day 数↓	↓ 炭素量へ 速度定数 速度の温)↓ E係数↓	への換算係数 対↓ 温度補正係数	ζ↓ _
ļ	無機態	窒素(Inorgan	nic Nitrog	ien)で傾	使用する係数			c	↓ oef3↓ -↓		
	5. 0.08 1.0 0.2 1.0 0.1	0 gamma 32 kappa 35 theta 21 gamma 35 theta 30 w_in 30 omega	_pn ! 1 _n ! / _on ! 6 _zn ! 1 _in ! 6 _ ! V _on ! 6	rpn 植 cn 有 rzn gon g rzn m k n k n k n n f n n f n	物ブランクト 機態窒素度の 素分解速度の 物ブランクト 泥からの無機 機態窒素沈降	ン量化分離温ン態度中窒素素(らの窒素量 建速())	1への推 ↓↓ 」)温度神 (gN/m2	↓ 與算係数 札正係数 /day)↓ 	¢↓	
li	無機態	アン(Inorgan	nic Phosph	orusn)	で使用する係	 数 		c	↓ oef4↓		•
, 秀才	L^/J/7°	下候補		単語を北	2-1分割り72トウ切り	J抜き u	<u>~</u> 貼	り付け	タケシャンフ	* 強調表示の	 〒番号表示

- 2) 下水処理場水温相関式の書き換え方法
- a) 対象ファイル
 -¥Case0¥Psimulation¥cntl¥To-Baymodel.cnt

b) 書き換え方法

To-Baymodel.cnt をエディタで開き、「水温-気温一次相関式」の a,b 欄の数値を変更する。

T:¥¥050805¥To-Baymodd	el.ont - 秀丸		-							
ファイル(E) 編集(E) 検索(S	י (שילי/ייי (רהו≫בורם	7加(M) その他(o o ル o) ea l						1:1
					. 60	. 70 <u></u>	1	, <u>90 , , , , , , , , , , , , , , , , , , ,</u>	. 100 I 1 2	
	000 1	2 1	0		0 200	2	1	1	0	01
▲ 植物7~ランクトン相関a,b 4 3423 0 0F	o(ax+b) DU相 322 10 -29	関d,c,b,a(a 1 -0 2809	+:-:::::::::::::::::::::::::::::::::::	d) N NNNNA	Zoo.P(X)↓ 3 0.1↓	•				
253 255 江戸川	版水路放流E	: 9/10-9-1	2	I	N/T-N I-	P/T-P 7	<u>但-気温-</u>)	欠相関式定義	数ax+b↓	
tlwtot00.dat plt flwtot01.dat plt	tot00.dat tot01.dat	01edoH0 02araRI	6江戸川放水 6荒川	13389 13665	0.8670 0.8900	0.6790 0.3240	0.8316 0.6780	1./140↓ 5.6685J		
flwtot02.dat plt	tot02.dat	03KYedo	418江戸川	13600	0.8670	0.6790	0.7951	2.59114		
flwtot03.dat plt	tot03.dat	04tamaR	3多摩川 3週四111	14435	0.8900	0.3970	0.6056	4.2425↓ E.0005↓		
flwtot05.dat plt	tot04.dat tot05.dat	Osobitu	20両田川 1小櫃川	13943 14754	0.8900	0.3240	0.6780	0.90894 0.90894		
flwtot06.dat plt	ot06.dat	07youro	1養老川	14224	0.7784	0.4147	1.1126	-1.2645↓		
flwtot07.dat plt flwtot08.dat plt	tot07.dat tot08.dat	08koito 09turum	1小糸川 2曜目目	14992 14554	0.7671 0.9159	0.4147	0.7836	2.6665↓ 7.7714↓		
flwtot09.dat plt	tot09.dat	10murat	1村田川	14147	0.3133	0.8400	1.1126	-1.26454		
flwtot10.dat plt	tot10.dat	11katab	1帷子川	14664	0.9159	0.8460	0.6454	7.7714		
flwtotll.dat plt flwtot12_dat _plt	totll.dat totl2 dat	12miyak 13megur	都川 1日里	13987 17108	0.7784 0.8900	0.4147 0.3240	1.1126	-1.2645↓ 5.66851		
flwtot13.dat plt	tot12.dat	14katZ1	1帷子残1	15094	0.9159	0.8460	0.6454	7.7714		
flwtot14.dat plt	tot14.dat	15hanam	1花見川	13670	0.8670	0.6790	0.8316	1.71404		
flwtot15.dat plt	tot15.dat tot16 dat	16kat22 17voob1	1吨丁%Z 1養老小櫃1	14840 14559	0.9159	0.8460 0.4147	0.6454	7.7714↓ -1.2645↓		
flwtot17.dat plt	ot17.dat	18yoob2	1養老小櫃2	14438	0.8924	0.5505	0.8967	0.90891		
flwtot18.dat plt	tot18.dat	19yanaR	1矢那川 1海老川	14900	0.7671	0.4147	0.7836	2.66654		
flwtot19.dat plt	tot19.dat tot20.dat	20ebiKI 21vo-mu	1))) 1養老村田残	13309 14226	0.8670	0.6790	0.8316	1.7140↓ -1.2645↓		
flwtot21.dat plt	tot21.dat	22ed-na	1江戸中川残	13793	0.8670	0.6790	0.7951	2.5911		
flwtot22.dat plt	tot22.dat	23me-ta	1目黒多摩残	14265	0.8900	0.3970	0.6056	4.24254		
flwtot23.dat pit	tot23.dat tot24.dat	24mi-mu 25eb-ha	1泊約11田23 1海老花見残	13465	0.7764	0.4147	0.8316	1.7140↓		
flwtot25.dat plt	ot25.dat	26ar-su	1荒川隅田残	13790	0.8900	0.3240	0.6780	5.66854		
Syori2bayALL.dat		27sunaS	1砂町処理場	1	0.9048	0.1667	0.8020	10.00004		
Syori2bayALL.dat		20kasao 29irieS	3入江崎処理	2 3	0.9048	0.1667	0.8020	10.00004		
Syori2bayALL.dat		30sibaS	4芝浦処理場	4	0.9048	0.1667	0.8020	10.00004		
I Svori2bavALL.dat ≉tr∧uz°	下候補	_31futuS _1⊯	5名/平富/丰 語変化に 11分割に	5 2016/05-1004	0.9048	0.1667	0 8020	10.00004	論調表示の一	▲ 「「一」 「「一」 「一」 「一」 「一」 「一」 「一」 「
	1-37/10] ±		101 7 99.			V	V	a	and a subscription of
			. (1)	2	•	3 (<u>4</u> (5)	
 :流域・処 	理場名	2:	T-N に対	する	I-N の言	割合	3 : T	-Pに対	するI	-P の割合

④:水温-気温一次相関式の定数 a ⑤:水温-気温一次相関式の定数 b

下水処理場水温相関式を書き換えた場合は、再度物質シミュレーション後のポストプロ セッサである、¥ケース0¥Psimulation¥bin¥AfterPsim_sys.bat を実行する。

(2) モデルの実行

「モデルの実行」で「東京湾モデル」を選択する。

Help パラメータの入力 施策の選定 モデルの実行 結果の可視化 11.292.810 Image: Ima		
11.292,810 「Target 「Target Image: Target 「Target [Target Image: Target [Target	Help パラメータ	の入力 施策の選定 モデルの実行 結果の可視化
Image:	1:1,292,810	 ・ /ul>
 ▲ 会 ダ モデル計算年度 2001 < 2001 < 2001 < 実行モデルの選択 流域水循環モデル 流域物質流動モデル マ 東京湾モデル 河川の選択 列根川・江戸川 荒川 中川・綾瀬川 「陽田川 小櫃川 養老川 OK キャンセル 	ure 🔄	- Target 🖌 🖓 🖽 🖂
モデルの実行 モデル計算年度 2001 2001 2001 2001 第 2001 2001<td>M 📤 💈 💧</td><td></td>	M 📤 💈 💧	
 モデル計算年度 2001 < 2001 < 2001 < 実行モデルの選択 流域水循環モデル 流域物質流動モデル マ 東京湾モデル 河川の選択 可川の選択 可川・法規川 中川・ 法規川 第四川 小櫃川 素老川 OK キャンセル 		モデルの実行
2001 2001 実行モデルの選択 流域水循環モデル 流域物質流動モデル マ東京湾モデル 河川の選択 一利根川・江戸川 荒川 中川・綾瀬川 愛摩川 隅田川 小櫃川 養老川 OK キャンセル		- モデル計算年度
実行モデルの選択 流域水循環モデル 流域物質流動モデル マ東京湾モデル 河川の選択 1利根川・江戸川 売川 中川・綾瀬川 「諸田川 小櫃川 養老川 OK キャンセル		2001 ~ 2001 ~
 流域水循環モデル 流域物質流動モデル ✓ 東京湾モデル ✓ 東京湾モデル 河川の選択 河川の選択 第川 第川 中川・綾瀬川 ※摩川 隅田川 小櫃川 養老川 OK キャンセル 		実行モデルの選択
 流域物質流動モデル ▼東京湾モデル 河川の選択 利根川・江戸川 荒川 中川・綾瀬川 「夢摩川 隅田川 小櫃川 養老川 OK キャンセル 		□ 流域水循環モデル
 ▼東京湾モデル 河川の選択 利根川・江戸川 荒川 中川・綾瀬川 今専川 隅田川 小櫃川 義老川 OK キャンセル 		流域物質流動モデル
河川の選択 □ 利根川・江戸川 □ 荒川 □ 中川・ (法瀬川 □ P川・ (法瀬川 □ 7)個川 □ 小櫃川 □ 素老川 □ CK キャンセル		▼ 東京湾モデル
□ 利根川・江戸川 □ 荒川 □ 中川・綾瀬川 □ 第田川 □ 小櫃川 □ 養老川 OK キャンセル		- 河川の選択
□ 荒川 □ 中川・綾瀬川 ☑ 多摩川 □ 隅田川 □ 小櫃川 □ 養老川 ○ K キャンセル		□ 利根川·江戸川 _
□ + 小 (g k # 5) □ 落座川 □ 小櫃川 □ 素老川 OK キャンセル		
□ 隅田川 □ 小櫃川 □ 養老川 OK キャンセル		
□ 小櫃川 □ 養老川 OK キャンセル		
OK キャンセル		
		OK キャンセル

図-7.3.3.1 モデルの実行のプルダウンメニュー

「東京湾モデル」をクリックすると図-7.3.3.2 の通知画面が表示される。「OK」をクリ ックすると、それまでの設定によるシミュレーションが始まる。

道知		×
	東京湾モデルシミュレーションを行います。	
	OK キャンセル	

図-7.3.3.2 東京湾モデル/実行の通知画面

(3) 結果の可視化

1) 東京湾特定地点の時系列グラフ作成

<u>t</u> elp パラメ	ータの入力 施策の選定 モデルの実行 結果の可視化
1:1,292,8	810 🖃 🕺 象 🖸 💑 水循環モデル
e	■ Target: ■ Target: ■ □
4 ≟ 💈	
<u>.</u>	→
<u>ष</u> - 7.3.3.3	
	· 累牙消给非表示 ▲
	地点別グラフ表示
	面表示 T-N
	面表示 T-P
	面表示 DO
	閉じる

「結果の可視化」から「東京湾モデル」をクリックすると、「東京湾結果表示」画面が表示される。ここで、「地点別グラフ表示」をクリックするとエクセルが起動し、特定地点における水質の時系列グラフが作成される。

図-7.3.3.4 東京湾各特定地点の時系列グラフの結果画像

2) 東京湾モデル計算結果の平面表示

「東京湾結果表示」の画面で表示したい水質項目の面表示ボタンをクリックすることに より、平面表示のための Shape ファイルが作成される。

※ここで作成された Shape ファイルは、ケース 0 ではなく、…¥home¥System¥shape 以下に上書 きされるため、画像を保存する場合は dbf ファイル(東京湾濃度_COD_01 月.dbf 等)を…¥ケー ス 0¥Flame 以下に保存しておく。

表示したい項目にチェックを入れると次頁の図-7.3.3.6のように結果が表示される。

図-7.3.3.6 東京湾水質計算結果平面表示