3. がけ崩れ発生斜面における貫入試験

本章では調査結果を示す。

3.1 静岡市小坂赤坂地区

3.1.1 がけ崩れの概要

平成15年7月4日未明、静岡市小坂赤坂地区では、平均勾配30°、高さ70~80mの斜面において崩壊が発生した。斜面はみかん畑に利用されており、地質は砂岩である。同地区には、高さ3mの重力式の待受け式擁壁が設置されていた(図3.1)。静岡県の調べによると、7月3日20時から同4日5時までの間の連続降水量は358mm、その間の最大時間降水量は103mm(7月4日1時から2時),最大10、60分間降水量はそれぞれ30mm(4日1:00~1:10)、106mm(4日1:30~2:30)であった。住民への聞き取り調査によると崩壊は7月4日の午前1時半ごろに発生したと考えられる。

斜面下端から崩壊地頭部までの比高は21m、崩壊幅は最大15.3m、平均崩壊深は約1m、 最大崩壊深は約2.5mであった。崩壊地は谷地形を呈しており、大部分の崩壊地の底部は風 化した岩盤が露出していた。崩壊地の詳細な測量に基づくと、崩壊土量は約270m³程度であ ると考えられる。なお、現地調査時に湧水(23日の雨天の後24日に確認)および過去の崩壊 跡が確認されたため、それらの位置を図3.1に付記した。

3.1.2 貫入試験結果

貫入試験は、崩壊発生から19日後の平成15年7月23~24日に行った。縦断測線を崩壊 地内部の1本(縦断測線B)および崩壊地脇の2本(縦断測線A、C)の計3本と、横断測線を 5本(横断測線D、E、F、G、H)設定し、貫入試験を実施した(図3.1)。貫入試験の全ての結果 は巻末のデータ集中の図D1、D2に示した。

(1)崩壞地外

図 3.2 には、崩壊地外のうち3点(A2、B1、C4)および崩壊土砂が堆積していない崩壊地内の2点(B4、A²)の結果を示した。図 3.2 に示したように、崩壊地外の土層は、4 つの層に区分できた(表 3.1)。表層付近は Nc 値が概ね5以下で Nc 値の深さ方向の変動が小さい層が存在し、これをI層とよぶ。また、I層の下には、Nc 値が5~20で、10~20 cmおきに Nc 値が大きい層(Nc 値が10から20)と小さい層(Nc 値が5程度)が交互に存在する層があり、これをII 層と呼ぶ。ただし、A2 では、深さ130~135 cmの範囲に、厚さ5 cm程度の Nc 値が20~50 の層が挟まっていた。同様な結果は、A1、C1 でも見られた(データ集の図 D1 参照)。II 層の下には Nc 値が15~50 で深さ方向の Nc 値の変動が大きい III 層、Nc 値が50 以上で本貫入試験機では測定不能な IV 層が存在した(図 3.2)。なお、既報告(内田ら、2004)と一部土層分類結果が異なるが、既報告後、全てのデータを再解析した上で、土層分類を実施したためであ

る。

崩壊地周囲で実施した全ての調査結果に基づくと、I、II、III 層の厚さは、それぞれ 40~80、 15~135、5~15cm であった(表 3.1;データ集の図 D1 参照)。

(2)崩壊地内

崩壊地中央付近に位置する B4 では、地表面から 10 cmの深さまでは Nc 値が 5 以下の層が 見られ、その下には厚さ 15 cm程度の Nc 値が 5 \sim 20 の範囲で変動する崩壊地外の土層で II 層に分類した部位に相当すると考えられる層があった。さらに、その下には厚さ 5 cm程度の Nc 値が 15 \sim 50 で変動する III 層に相当すると考えられる層が存在した。さらに、それ以下では、 Nc 値が 50 以上の IV 層相当の層となった(図 3.2)。また、A² では、ごく薄く Nc 値が 20 を 越える部位があるものの、地表面から深さ 30 cm までは Nc 値が 5 \sim 20 で変動し、それ以下で は、Nc 値が 50 以上となった(図 3.2)。

3.2 神奈川県横須賀市鴨居地区

3.2.1 がけ崩れの概要

平成 16 年 3 月 31 日未明、神奈川県横須賀市鴨居地区では、平均勾配 50°、高さ 20m の 斜面において崩壊が発生した(図 3.3)。斜面上は宅地として造成され、利用されている。斜面 は広葉樹に覆われており、防空壕の跡が散見される。また、斜面下端は鴨居小学校と接して いる。同地域の基盤をなす地質は上総層群であり、対象箇所の基岩は新第三紀中新世の泥 岩である。神奈川県の調べによると、3 月 30 日 17 時から同 31 日 3 時までの間の連続降水量 は 106 mm、その間の最大時間降水量は 48 mm であった(3 月 30 日 23 時から 24 時)。

斜面下端から崩壊地頭部までの比高は20m、崩壊幅は最大20m、最大崩壊深は約1.8m であった。崩壊地はわずかながら谷地形を呈しており、崩壊地の上部半分は風化した岩盤が 露出していた。

3.2.2 貫入試験結果

現地調査は、崩壊発生から約2ヶ月半経過した平成16年6月16~17日に行った。崩壊地 内の崩壊土砂が堆積していない箇所で2点(P2、P3)、崩壊土砂の堆積が見られる箇所で1 点(P17)、崩壊地周囲で9点実施した(図3.3)。結果の詳細はデータ集の図D3およびD4に 示した。

(1)崩壞地外

鴨居地区では、Nc値の測定結果から崩壊地外の土層は、静岡市小坂赤坂地区と同様4つの層に分類することができた(図 3.3;表 3.2)。また、各層の特徴も概ね同じであった。

地表面以下の表層は小坂赤坂のI層同様、Nc値は概ね5以下であり、Nc値の変動が小さく、これをI層と呼ぶ(図 3.3)。I層以下には、Nc値が5から20で変動するII層がある。II層 を詳しく見ると、厚さ10~50 cmのNc値が概ね5程度のやわらかい層とNc値が15~20の比 較的硬い層に区分できる。II 層の下には、Nc 値が 15 から 50 の間で、深さ方向の Nc 値の変 動が大きい層が存在し、III 層に分類できる。III 層の下には、Nc 値が 50 以上の IV 層が存在 した。なお、既報告(内田ら、2004)と一部土層分類結果が異なるが、既報告後、全てのデータ を再解析した上で、土層分類を実施したためである。

崩壊地周囲の9点の調査結果に基づくと、I、II、III層の厚さは、それぞれ40~170、10~60、10~75cm であった(データ集の図 D3 参照)。

(2)崩壞地内

崩壊地内の崩壊土砂が堆積していない地点で測定した 2 点(P2、P3)の結果を見てみる。 いずれの地点も地表面直下は Nc 値が概ね 5~20 の範囲で変動する崩壊地外の II 層に相当 すると見なせる層が見られ、厚さはそれぞれ 30 および 10 cmであった。その下には、それぞれ 厚さ 10 cm、30 cm の Nc 値が 15~50 で深さ方向の Nc 値の変動が極めて大きい III 層に相当 する層が存在し、それ以下では Nc 値が 50 に達し、測定不能となった。

3.3 新潟県三島町大字逆谷

3.3.1 がけ崩れの概要

平成16年7月12日夜から13日にかけて、新潟・福島の両県で発生した豪雨により、新潟県 においては数多くの土砂災害が発生した(野呂智之ほか(2004):平成16年7,8月新潟,福井およ び徳島における土砂災害(速報)砂防学会誌57(3)、pp.47-52))。そのうち、三島町大字逆谷で は、平均勾配34°、高さ30mの斜面において崩壊が発生した(図3.5)。同地域の基岩地質は 泥質岩を主体とする新第三系からなる。斜面下端から崩壊地頭部までの比高は21m、崩壊幅 は最大18mであった。崩壊地下部は崩壊土砂が堆積していたが、崩壊地上部の底部では風 化した岩盤が露出しており、勾配は70°以上であった。なお、崩壊地は谷型の地形を呈して いた。

同地区には、高さ3mの重力式の待受け式擁壁が設置されていた。さらに、待受け式擁壁の 天端には高さ2mの落石防護柵が設置されていた。崩土は大部分が待受け式擁壁によって捕 捉されていた。擁壁背面付近の縦断方向の堆積土砂表面の勾配は約20°、堆積深は最大で 約3.5mであり、崩土は落石防護柵の上端にまで達していたが、落石防護柵に顕著な変状は 見られなかった。

3.3.2 貫入試験結果

現地調査は、崩壊発生から約2ヶ月半後の平成16年10月7~8日に行った。崩壊地内の 崩壊土砂が堆積していない箇所で3点(P3、P4、P8)、崩壊土砂の堆積が見られる箇所で2点 (P5、P9)、崩壊地周囲で5点実施した(図3.5)。結果の詳細はデータ集の図D5およびD6に 示した。

(1)崩壞地外

逆谷地区においても、小坂赤坂、鴨居同様、土層は4層に分類できたが、I層は小坂赤坂、

7

鴨居のⅠ層とほぼ同様な特徴を有した。一方、Ⅱ層、Ⅲ層の特徴は異なった(図 3.6;表 3.3)。

P1、P2、P10 では、地表面からそれぞれ 130、100、70 cm程度までは、Nc 値が概ね 5 以下 で、Nc 値の変動幅が小さい層が続いていた(I層)。I層の下には Nc 値が 5~15 で、深さ方向 に徐々に Nc 値が増加する II 層が存在した。II 層の深さ方向の Nc 値の変動の程度は、I 層よ りは大きいものの、前述の 2 箇所に比べて、小さかった。II 層の下には、Nc 値が 5~50 で、深 さ方向の Nc 値の変動の大きい III 層が存在した。III 層を詳しく見ると、① 5 cm程度の範囲内 でも深さ方向の Nc 値の変動が大きい硬い層 (Nc=15~50)と ② 比較的深さ方向の Nc 値の 変動が小さい軟弱な層 (Nc=5~15)の 2 つの部位に分類することができた(図 3.6)。さらにそ の下には、Nc 値が 50 以上の IV 層が存在すると考えられるが、本試験地で貫入試験を実施し た 500 cmまでで、IV 層が現れない地点があった(図 3.6)。

崩壊地周囲で 5 点の調査結果に基づくと、I、II、III 層の厚さは、それぞれ 70~170 cm、30~130 cm、80cm 以上であった(データ集の図 D5 参照)。

(2)崩壊地内

崩壊地内の崩壊土砂が堆積していない地点では、表層付近には Nc 値が 5 以下の軟弱な 崩壊地外の I 層とほぼ同じ特徴を有する層が存在した。その下には Nc 値が 5~15 程度で、II 層とほぼ同じ特徴を有する層が P3 では 20 cm、P8 では 120 cmの厚さで存在した。さらにその 下には、崩壊地外の III 層とほぼ同じ特徴を有する層が P3 では 370 cm、P8 では 105 cmの厚 さで存在した。それ以下では Nc 値が 50 に達し、測定不能となった(図 3.6)。

3.4 神奈川県鎌倉市台地区

3.4.1 がけ崩れの概要

平成 16 年 10 月 9~10 日にかけて、台風 22 号により神奈川県内では数多く斜面崩壊が発生した。台風 22 号による雨量は、連続雨量が 266mm(10 月 9 日 13 時~10 月 10 日 18 時)、 最大 24 時間雨量が 251mm(10 月 9 日 18 時~10 月 10 日 18 時)、最大時間雨量が 96mm(10 月 10 日 17 時~10 月 10 日 18 時)であった(神奈川県藤沢土木事務所調べ)。

神奈川県鎌倉市台地区では、台風22号により、斜面下端から崩壊地頭部までの比高10m、 崩壊幅最大8mの崩壊が発生した(図3.7)。同地区は、上総層群の野島層と浦郷層の境界付 近に位置し、基盤地質は第四紀更新世の凝灰質砂岩である。斜面上部の緩傾斜面や斜面表 層部は腐植を含む黒色のロームに覆われていた。

3.4.2 貫入試験結果

現地調査は、崩壊発生から約4ヶ月半後の平成17年2月24日に行った。崩壊地内の崩壊土砂が堆積していない箇所で5点、崩壊地周囲で3点実施した(図3.7)。結果の詳細はデータ集の図D7およびD8に示した。

(1)崩壊地外

台地区では、小坂赤坂、鴨居、逆谷同様、土層は4層に分類できた。また、各層の特徴は、

小坂赤坂、鴨居の両地区と概ね一致した(図 3.8;表 3.4)。

地表面以下の I 層はこれまでの 3 地区の I 層同様、Nc 値は 5 以下で、深さ方向の Nc 値の 変動は極めて小さかった。I 層以下には、Nc 値が 5 から 20 で変動する II 層が存在した。II 層 を詳しく見ると、鴨居同様、厚さ 10~50 cmの Nc 値が概ね 5 程度のやわらかい層と Nc 値が 15 ~20 の比較的硬い層に区分できた(図 3.8)。II 層の下には、Nc 値が 15 から 50 の間で、深さ 方向の Nc 値の変動が大きい III 層が存在した。ただし、P1 のように、III 層の中に、厚さ 20 cm 程度の Nc 値が 10~20 で、深さ方向の Nc 値の変動が小さい層が存在することがある。また、 III 層の下には、Nc 値が 50 以上の IV 層が存在した。

崩壊地周囲で3点の調査結果に基づくと、I、II、III 層の厚さは、それぞれ100~200、25~275、80~100cm であった。

(2)崩壞地内

崩壊地内の崩壊土砂が堆積していない地点のうち P4 では、地表面から深さ 25 cmまでは、 Nc 値が 5 以下の軟弱な崩壊地外の I 層とほぼ似た特徴を持つ層が存在した(図 3.8)。その下 には Nc 値が概ね 5~20 程度で II 層とほぼ似た特徴を持つ層が 80 cmの厚さで存在し、その 下には厚さ 20 cmの III 層とほぼ同じ特徴を有する層が存在した。一方、P7 では、P4とは異なり、 表層付近に Nc 値が 5 以下の部位はなく、地表面直下から II 層に類似した Nc 値が概ね 5~ 20 程度の層が深さ 50 cmまで続いた。その下に、厚さ 40 cmの崩壊地外の III 層とほぼ同じ特 徴を有する層が存在した。

3.5 神奈川県鎌倉市極楽寺地区

3.5.1 がけ崩れの概要

神奈川県鎌倉市極楽寺地区では、台地区同様、台風 22 号により、がけ崩れが発生した。同 地区の斜面下部はコンクリート張工が施行されており、がけ崩れは、残斜面で発生した。斜面 下端(コンクリート張工施行部分は除く)から崩壊地頭部までの比高は 10m、最大崩壊幅は 8.5m であった(図 3.9)。同地区は、基盤地質は三浦層群の逗子層で、新第三紀中新世の泥岩 である。崩壊地内には樹木根系が切断されないまま、ネット状に多数残存していた。

3.5.2 貫入試験結果

現地調査は、崩壊発生から約5ヶ月後の平成17年3月3日に行った。崩壊地内の崩壊土 砂が堆積していない箇所で5点、崩壊地周囲で3点実施した(図3.10)。結果の詳細はデータ 集の図D9およびD10に示した。

(1)崩壞地外

極楽寺地区では、これまでの4箇所同様、土層は4層に分類できた。また、各層の特徴は、 小坂赤坂、鴨居、台の各地区と概ね一致し、特に、地質が同じである、鴨居地区とは、極めて よく似ていた(図 3.10;表 3.5)。

地表面以下のI層は、これまでの4地区のI層と同様に、Nc値は5以下で、深さ方向のNc

地の変動は極めて小さかった。I 層以下には、Nc 値が 5 から 20 で変動する II 層が存在した。 ただし、P1、P6 では厚さ 5 cm程度の Nc 値が 20 を超える部位が挟まっていた。また、II 層の下 には、Nc 値が 15 から 50 の間で、深さ方向の Nc 値の変動が大きい III 層が存在し、III 層の 下には、Nc 値が 50 以上の IV 層が存在した(図 3.10)。

崩壊地周囲 3 点の調査結果に基づくと、I、II、III 層の厚さは、それぞれ 60~80、10~65、10~30cm であった。

(2)崩壞地内

崩壊地内の崩壊土砂が堆積していない地点のうち P4 では、地表面から深さ 10 cmまでは、 Nc 値が 5 以下の軟弱な崩壊地外の I 層とほぼ同じ特徴を有する層が存在した。その下には Nc 値が概ね 5~20 の間で変動する II 層とほぼ似た特徴を持つ層が 10 cmの厚さで存在し、 その下には厚さ 10 cmの崩壊地外の III 層とほぼ同じ特徴を有する層が存在した。一方、P8 で は、P4とは異なり、表層付近に Nc 値が 5 以下の部位はなく、地表面直下から II 層に類似した Nc 値が概ね 5~20 の間で変動する層が深さ 5 cmまで続いた。その下に、厚さ 10 cmの崩壊地 外の III 層とほぼ同じ特徴を有する層が存在した。

3.6 神奈川県鎌倉市手広地区

3.6.1 がけ崩れの概要

神奈川県鎌倉市手広地区では、台地区、極楽寺地区同様、台風22号により、がけ崩れが発生した。斜面下端から崩壊地頭部までの比高30m、最大崩壊幅10mの崩壊が発生した(図3.11)。同地区は、基盤地質は第四紀更新世の浦郷層である。浦郷層は、灰色の砂岩で軽石が 混じる。地域によっては風化によりあまり硬くない砂層の場合もあり、また礫岩を含むこと もある。調査斜面の上部の基盤は凝灰質砂岩であり、また表層にはロームが堆積している。斜 面下部の基盤は凝灰分の若干混じる砂岩であり、上部より急傾斜である。

3.5.2 貫入試験結果

現地調査は、崩壊発生から約5ヶ月後の平成17年3月7日に行った。崩壊地内の崩壊土 砂が堆積していない箇所で9点、崩壊地周囲で5点実施した(図3.11)。結果の詳細はデータ 集の図D11およびD12に示した。

(1)崩壞地外

崩壊地外の測定結果から土層は4層に区分できた(図3.12;表3.6)。II層の特徴は、小坂赤坂、鴨居、台、極楽寺の4地区と異なるものの、I、III、IV層の特徴は類似していた。

斜面の上下とも、地表面以下は Nc 値が 5 以下で、深さ方向の Nc 値の変動が小さい層が見られた(I層)。I層以下では、斜面の上下とも、Nc 値が 5~30 の層が存在するが、斜面上部では、この部位は厚く(200 cm以上)、詳しく見ると、厚さ 10~50 cmの Nc 値が大きく、深さ方向の変動が大きい層(15~30)と Nc 値が小さく、深さ方向の変動が小さい層(5~10)に分類できた(図 3.12a)。また、この 2 つの部位が交互に現れた。一方、斜面下部では、II 層は極めて薄く、

P10 ではその存在は明らかではない(図 3.12 b)。さらに、斜面上部のように 2 つの部位に分類することはできなかった。II 層の下には、Nc 値が 20~50 で変動幅が大きい層が存在した。 また、P1、P2 は 400 cmまでの測定範囲ではこの III 層に到達しなかった。

崩壊地周囲で5点の調査結果に基づくと、I、III層の厚さは、それぞれ20~120、20~60で あった。II層については2点でしか結果が得られていないが、斜面上部のP6では260 cm、 斜面下部のP13では10 cm程度であった。

(2)崩壞地内

斜面上部の崩壊地内の崩壊土砂が堆積していない地点は、厚さ160cm 以内の Nc 値が 5 以下の崩壊地外の I 層に相当すると考えられる層が存在することがあるが、P7 のように明らか ではない地点もあった。この層の下には、詳しく見ると、厚さ10~50 cmの Nc 値が大きく(Nc= 15~30)、深さ方向の Nc 値の変動が大きい層と Nc 値が小さく(Nc=5~10)、深さ方向の Nc 値の変動が小さい層)に分類できる崩壊地外の II 層に相当する部位が存在した。さらに、その 下には、崩壊地外同様、厚さ10~30 cmで Nc 値が 20~50 までで大きく変動する崩壊地外の III 層に相当する層が存在し、III 層の下には Nc 値が 50 以上の IV 層に相当する層が存在し た。

一方、斜面下部の崩壊地内の崩壊土砂が堆積していない地点は、地表面から深さ 5~10 cmまでは Nc 値は 10 以下と小さく、その下には厚さ 10~30 cmの Nc 値が 20~50 までで大きく 変動する崩壊地外の III 層に相当する層が存在し、III 層の下には Nc 値が 50 以上の IV 層に 相当する層が存在した。

図 3.2 小阪赤坂地区の貫入試験結果度土層分類

	名称	Nc値	Nc値の分布	厚さ	備考
	I層	5以下	深さ方向の変動は極めて 小さい	30~80cm	
	II層	5~20	10~20cmおきにNc値が大 きい層(10~20)と小さい 層(5程度)が現れる	15~135cm	A1、A2、C1など5cm以下の薄いN c値が20を超す層が挟まっているこ とがある。
	III層	15~50		5~15cm	
	IV層	50以上			